Import from Assembly Extension for 
Web Services Software Factory 2010
11-Oct-2010 / Ernesto Fuentes
Brief Description
This extension allows the user to select a CLR type from an assembly, and import its public methods as operations and messages into an existing Service Contract. This feature is available as an option in the context menu of the Service Contract Model Designer.
The import utility described in this document is a part of a wider solution which main goal is to achieve “service transparent” or “service ignorant” communication between client and business layer. 
[bookmark: _GoBack]In short, the idea is that in a WSSF solution with both .Net clients and services, the client should be able to call business methods without worrying about the service layer, and all this should be done without manual coding. 
In this schema the client will call methods defined in a generated Service Distributor class, that have the same signatures as the ones defined in the Business Logic; an appropriate way to do this is to make both classes inherit from an interface, that we could call Business Facade or WCF/ASMX ignorant Service Facade.
Service Distributor methods will assemble the request messages, call the corresponding service client methods and then disassemble the responses and return the data to the client. On the server side, the generated Service Implementation methods will do exactly the opposite.
Refer to the Full Story for further explanation and justification.
Installing/Uninstalling the WSSF Import From Assembly 2010 VSIX
To Install and run the WSSF Import From Assembly 2010 vsix, you need the following software installed on your computer: 
System Requirements 
· Microsoft Visual Studio 2010 (Ultimate, Premium, or Professional) 
· Guidance Automation Extensions 2010 
· Visual Studio 2010 SDK 
· Web Service Software Factory 2010
To install the WSSF Import From Assembly 2010 VSIX 
1. Make sure that your computer meets the above System Requirements.
2. Download WSSF-ImportFromAssembly2010.VSIX. Click on Run when finished downloading. This completes the installing process. Or click on Save to save the file on your hard drive and double-click WSSF-ImportFromAssembly2010.vsix to start the installation. 
3. Start Visual Studio 2010. 
To uninstall the Import From Assembly 2010 VSIX 
1. Start Visual Studio 2010. 
1. Click on Tools > Extension Manager. 
1. Click Uninstall on the WSSF Import From Assembly 2010. 
1. Restart Visual Studio 2010. 


Using the WSSF Import From Assembly 2010 Extension
After installing the extension you will see a new option named Import Operations From Assembly in the context menu of the Service Contract Model Designer.
[image: ]
Clicking on this option will open the following dialog where the user will be able to select various import options and proceed with the import process: [image: ]
Steps
1. Select an assembly file where the source CLR types are defined.
2. Exported types are loaded into the CLR Type combo.
3. Choose a source CLR type.
4. Choose a destination Service Contract, the service contract combo is loaded from the model existing service contracts.
5. Optionally select a Data Contract file and a Fault Contract.
6. Optionally change the options below the Fault Contract field.
7. Click on the Import button.


Characteristics of the import utility
Service Contracts are not created automatically; they must exist before performing the import process.
Operations and messages are created automatically but, for existing operations, while the import does overwrite their message parts, the other settings will be overwritten only if the appropriate option is selected. This allows the user to set whatever is needed without the risk of losing these settings in the next import.
Any other properties are no affected and will have their corresponding default values, for new imported operations and messages.
Important: if a new message (request or response) is being created when importing an operation and another message with the same name already exists, it will be removed and replaced by the new generated one.
One Business Facade interface should match with its corresponding Service Contract. The extension uses the following naming conventions in order to automatically perform this match, but they can be overridden by manually choosing the service contract before the import process. For example, if we take the Blue Yonder Airlines solution, the interface names that would match with MaterialMgmtServiceContract can be any of the following:
· IMaterialMgmtService
· IMaterialMgmtServiceFacade
· IMaterialMgmtServiceInterface
· IMaterialMgmtBusinessFacade
· IMaterialMgmtBusinessInterface
The types referenced by the methods to be imported (as parameters or return value) must support serialization in a way compatible with the implementation technology of the Service Contract Model; that is:
· DataContract serialization for WCF 
· XML Serialization for ASMX.
Generic types can be used if their parameter types are compliant with the previous rule.
The operations and messages created follow the naming rules below:
· Operation names are the same as source method names; because of this it’s not valid to have the same method name with different signatures in the source CLR type. E.g. a method named GetPartsDemand will generate an operation named GetPartsDemand.
· Responses names are the same as source methods but with the addition of the “Response” suffix. GetPartsDemandResponse in this example.
· Requests names are the same as source methods but with the addition of the “Request” suffix. GetPartsDemandRequest in this example.
· Dummy requests add the suffix “Request_DUMMY” instead of “Request”.


Options explained
Assembly File: location of the assembly that contains the source types whose public methods will be imported as operations.
CLR Type (source): the type from where public methods will be read and imported as service contract operations and messages.
Service Contract (destination): service contract where imported operations and messages will be imported.
Data Contract File: location of the data contract file where to look for fault contracts. This option is not mandatory.
Fault Contract: the fault contract that will be assigned to all new imported operations. For existing operations the Fault Contract will not be overwritten, this allows to manually assign custom individual fault contracts to any method without risk of losing this definition. This option is not mandatory.
Overwrite Settings for Existing Operations: when an existing operation is being re-imported, overwrite all its settings and its message settings, including: Action, ReplyAction and IsOneWay properties, the FaultContract, Request and Response message names, IsWrapped property, etc.
Remove Inexistent Operations: remove from the chosen service contract those operations that are not matched with any method of the source CRL type.
Generate Dummy Request For Methods Without Parameters: for those methods without parameters, a dummy request with a dummy Boolean parameter will be generated.
Remove Unreferenced Messages: remove from the chosen service contract those messages that are not referenced by any operation.
Set ReplyAction Same as Action: set the ReplyAction operation property with the same value of the Action property for imported operations, otherwise ReplyAction is not set. This option will have effect only when using a WCF implementation technology.
Set IsOneWay depending on response: set the IsOneWay operation property to true if the source method has no return value and no output parameters, otherwise set to false (default behavior). 
Set IsWrapped depending on message part count: for requests and responses, set the IsWrapped message property to false if the message has only one part, otherwise set to true (default behavior). This option will have effect only when using a WCF implementation technology.
CLR Types read from the Assembly File: types to be read from the selected assembly from where methods will be imported.
· Interfaces Only: read only exported interfaces.
· All Types: read all exported types.
[bookmark: _Ref274578776]Perform Auto Layout after import: perform an Auto Layout of the diagram after the import process is finished.
Blue Yonder Airlines brief sample
For this sample we will start from the 15 Minute Walkthrough for WSSF2010 and perform the following tasks:
0. Complete the walkthrough, following the instructions of its documentation.
1. Define business entities to be used in the Business Facade methods. These entities will be similar to the data contracts defined in the original solution.
2. Create a Business Facade project.
3. Add the Business Facade interface for the MaterialMgmt module.
4. Define the business methods to be imported. In this sample we will define two methods similar to operations already defined in the original solution.
5. Compile the Business Facade project.
6. Import these methods from the generated assembly into the Service Contract Model.
Steps 1 to 3. The first thing to do then is to manually add new entities, and the Business Facade (or WCF/ASMX ignorant Service Facade) project and interface. 
[image: ]
Step 4. In the interface two methods have been coded, GetPartDemand_Imported() and SetPartDemand_Imported(), similar to those existent as operations in the original sample. [image: ]
Step 5. Compile the Business Façade project[image: ]
Step 6.a. start the import utility
[image: ]
Step 6.b. select the Business Facade assembly
[image: ]



Step 6.c. select CLR type and service contract and click the Import button
[image: ]
Step 6.d. after import is finished, the new imported operations and messages can be seen: GetPartDemand_Import and SetPartDemand_Import with their requests and responses.
[image: ]
Step 6.3. save and validate model
[image: ]

Full Story
Our team at X-Sistemas has been enthusiastically using WSSF since the Visual Studio 2005 version, mainly to use a common and normalized architecture and achieve better productivity. 
Architectural scenario
The most common scenario in our custom development projects is a WSSF solution with client and server sides in .Net, where no generated proxies are used for business entities because the Business Entities assembly is referenced by both the service and the client layer. 
Also a Service Distributor class is coded on the client side in order to expose WCF/ASMX ignorant business logic methods and to operate as a gateway between client calls to those business logic methods and the corresponding service requests and responses (the inverse process of the Service Interface classes).
Both Business Logic and Service Distributor classes inherit from Business Facade interfaces also called WCF/ASMX ignorant Service Facade interfaces. This is not absolutely necessary but is recommended.
The starting point
One pitfall our team faced was the programming hours needed to add new operations to the service layer or to modify existing ones signatures, what happens very frequently in the early stages of the developing process of an application.
In this scenario, when new methods were needed in service layer we had to manually.
1. Add the new methods to the Business Facade interface which is not aware of WCF concerns (operations and messages) and uses only business entities, primitive types or other classes exported from business layer to client layer.
2. Eventually define data contracts or fault contracts for the new or modified methods in the Data Contract model designer. If business entities are defined as data contracts this step could be skipped depending whether fault contracts are used or not.
3. Define messages and operations in the Service Contract model graphical designer.
4. Validate and Generate Code using WSSF standard features.
5. Manually add code to the non-generated Service Implementation partial class in order to call the Business Facade methods defined in the Business Logic assembly.
6. Compile the host and then update the Service Reference in the client layer.
7. Manually code in the Service Distributor to make the new or modified methods available to the client layer, in order for them to be consumed by the client application (Asp.net, Windows Forms, Silverlight, etc.). These methods would have identical signatures than Business Facade ones and what they do is to assemble the request message, call the service method through the client generated by the service reference, and then disassemble the response and eventually return data.
As a new medium size project started, it was decided to add new functionality to WSSF in order automatize most of these steps and drastically increase productivity.
The goal was to declare the methods in the Business Facade (an interface in most cases), and then transparently consume them from the client layer (all steps 2 to 6) with no coding.
For that purpose, the following software components were planned and implemented:
a) A new Visual Studio extension that allowed the programmer to code all the operations as methods in the Business Facade assembly (WCF/ASMX ignorant Service Facade that defines all exported methods to be consumed by client layer) and then import them into the Service Contract model. This is the WSSF Import From Assembly 2010 extension.
b) Generate a new Service Implementation T4 template in order to add the code needed to call the Business Facade methods for every operation, and embed it in an independent Visual Studio extension that defines a new implementation technology named WCF with Business Facade.
c) Eventually add a new project template for the Service Distributor project (gateway between client app and service reference methods) using a new Visual Studio recipe.
d) Add a new T4 template to generate the Service Distributor class in the client layer, and embed it the same Visual Studio extension of component b). If the Service Distributor project exists, the generated code should be placed there, if not, it should be placed under the client project.
Now the previous 7 steps would be reduced to:
1. Programmatically add the new methods to the Business Facade interface which is not aware of WCF concerns (messages and operations) and uses only business entities, primitive types or other classes exported from business layer to client layer. Same as previous scenario (this is what you normally do when you decide to add a new operation).
2. and 3 are now automatically performed when you import the assembly methods as operations and messages into the Service Contract model.
4. Validate and Generate Code using WSSF standard features. Same as previous scenario (this is also what you normally do).
5 and 7 are automatically performed in the previous step (with the new and modified templates).
6. Must be done manually. Same as previous scenario (again, this is also what you normally do).
To sum up, just declare the new methods in the Business Facade, import them, generate code, update service reference and you have them ready to be consumed in the client / presentation layer.
The first component a) is WSSF Import From Assembly 2010 extension.
Component c) is not considered essential because it makes sense only if you want generate an assembly that contains the Service Distributor classes, and this depends on the selected visual studio solution structure (WSSF default solution structure does not generate a Service Distributor project).
Components b) and d) will be available soon.
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image1.png

image2.png

