Vhome Java Platform Description

This document presents an overview of the Vhome data model, and describes the Vhome APIs and
their use.

Data Model
1. Classes
Data is organized by dividing it into 'classes', where each 'class' describes a unique type/kind of data

stream.
Classes are stored in a relational database table Class:
Class: (cid, cname, descriptor, rating)
where,
cid : integer primary key called class identifier (> 0, unique for each class)

cname: string class name (may or may not be unique across classes, cannot be null, max length 100
characters)

descriptor: string auxiliary description of the class (may be null, max length 200 characters)
rating: a float value associated with the class, describing wattage of the class (may be null).

Sample entries in a Class table:

cid |cname descriptor rating
1 lighting Philips CFL room lights in the home 100

2 dishwasher Kenmore dishwasher 400

3 envi Mean power measured using Current Cost Envi NULL
4 smartPowerBoard | Zigbee Smart Power Board with five power outlets NULL
5 utilitySmartMeter | Smart meter readings from Waterloo North hydro NULL
6 weather Weather characteristics by UW Weather station NULL

Table |

2. Objects

Given the classes, each class has different objects associated with it, and each object corresponds to one
time series. Objects describe and store the different time series emanating from one particular class.
Hence, objects corresponding to the same class have same cid but different object identifiers.

Objects are stored in a relational database table Objects:

Object : (cid, oid, oname, descriptor, granularity)

cid: integer class identifier of the class associated with this object (foreign key, on Class).
oid: integer identifier of the object for this particular class (>0), and unique per cid value.

Hence, {cid,oid} is the composite key for the table and uniquely identifies an object.

oname: string object name (may or may not be unique across objects, cannot be null, max length 100

characters).

descriptor: string auxiliary description of the class (may be null, max length 200 characters)

granularity: integer granularity (measured in milliseconds) of the time series corresponding to this

object. (Granularity is the time difference between successive entries in the time series.)

Unit: Symbol of units in which the data value is measured (for e.g. W, kWh, Wh, J, C, $).

Note that, two object entries of the same class, (same cid but different oid), may differ only in
granularity and have same oname and descriptor.

In relation to class entries in Table I, sample entries in a Object table:

cid |oid oname descriptor granularity | unit
1 1 bedroom |replaced 01/06/2011 2000 w

1 2 kitchen replaced 01/07/2011 2000 W

1 3 garage replaced:01/01/2011, warranty: 01/01/2020 2000 w

2 1 dishwasher |installed: 07/01/2011 5000 W

3 1 mainFeed |installed: 07/01/2011, aggregate mean power 1000 W

3 2 mainFeed |installed: 07/01/2011, aggregate energy consumption 3600000 |kWh
3 3 mainFeed |installed: 07/01/2011, aggregate energy consumption 90000 Wh
4 1 socketl powers the TV, rating: 200.0 3000

4 2 socket2 powers PC, rating: 190.0 3000

4 3 socket3 powers music system, rating: 900.0 3000

5 1 smartMeter | Smart meter data scraped by data scraper application 3600000 |kWh
6 1 temperature | Weather data scraped by weather scraper 600000 C

6 2 humidity | Weather data scraped by weather scraper 600000 %

Table Il
3. Streams
Each object (has a unique {cid, oid}) and corresponds to one stream or time series, stored as
table S-cid-oid:
S-cid-oid : (timestamp, value)

where,

timestamp: long integer UTC millisecond timestamp, denoting the time-instant or beginning of the

time-interval (e.g. beginning of the hour/minute), for the measured value.

value: float value of the data value at that timestamp.

Some objects may not have any timeseries data associated with them, in which case, the table S-cid-oid
1s empty. The timestamps and the values adhere to the granularity and unit values for the objects' entry
in the Object table.

Sample entries in time-series tables are:

S-1-1

timestamp value

1307897545000 |1900.11
1307897547000 [1918.12
1307897549000 [1971.12

S-5-1

timestamp value
1339473600000 |0.32
1339477200000 [1.98
1339480800000 |2.11
1339484400000 |2.91

APIs

The platform offers APIs using a RESTful service over HTTPS, which allows applications to read data
(as per the model) and create new Classes and Objects, and hence store any time-series data. We now
detail the RESTful service methods, their parameter types and return values.

1. ListAllClasses

Type: GET

Response: All attributes of all entries present in the Class table.
Return type: JSON array.

2. ListClass/param/value
Type: GET
Parameter :
param = either 'cid' or 'cname’
value = cid value (integer) or cname value (string) for the desired Class.
Response: All attributes of Class entry(or entries) with the given cname or cid.
Return type: JSON array.
e.g. ListClass/cid/1, ListClass/cname/lighting
returns complete class entry for cid=1 as a JSON array.

3. ListClass/rating/x/y

Type: GET

Parameter: floats x and y

Response: All attributes of Class entry(or entries) with rating < [x,y].

Return type: JSON.

e.g. ListClass/rating/100/220

returns class entries with rating in [100,220] as JSON array.

4. ListAllObjects

Type: GET

Response: All attributes of all entries present in the Objects table.
Return type: JSON array.

5. ListObject/param1/valuel/param2/value2
Type: GET
Parameter :
paraml = either 'cid’ or 'cname’
valuel = cid value (integer) or cname value (string) for the Class of desired Object.
param?2 = either 'oid’ or 'oname’
value2 = oid value (integer) or oname value (string) for the desired Object.

Response: All attributes of Object entry (or entries) with the given cname or cid, and given oid or
oname.

Return type: JSON array.

e.g. ListObject/cid/1/01d/2, ListObject/cname/lighting/oname/kitchen

returns complete Object entry for cid=1 and oid=2 as a JSON array.

6. ListObject/param1/valuel/granularity/x/y
Type: GET
Parameter :

paraml = either 'cid’ or 'cname’

valuel = cid value (integer) or cname value (string) for the Class of desired Object.

X, y = range [X,y] for the granularity values of desired objects (with the given cid or cname).
Response: All attributes of Object entry (or entries) with the given cname or cid, and granularity &
[x,y].

Return type: JSON array.
e.g. ListObject/cid/3/granularity/900000/3600000,
returns complete Object entries for cid=3 and granularities in [900000,3600000] as a JSON array.

7. ListObject/rating/x/y/param1/valuel
Type: GET
Parameter :
X, y = range [x,y] for the rating values of desired class(es).
paraml = either 'oid’ or 'oname’ of the desired Object(s).
valuel = oid value (integer) or oname value (string) for the desired Object(s).

Response: All attributes of Object entry (or entries) with Class rating in [x,y] and given oid or oname
values.

Return type: JSON array.

e.g. ListObject/rating/100/400/oname/mainFeed,

returns complete Object entries with rating in [100,400], named mainFeed, as a JSON array.

8. ListObject/rating/x/y/granularity/z/w
Type: GET
Parameter :
X, y = range [X,y] for the rating values of desired class(es).
z, w = range [z,w] for the granularity values of desired object(s).
Response: All attributes of Object entry (or entries) with Class rating in [x,y] and granularities in [z,w].
Return type: JSON array.
e.g. ListObject/rating/100/400/granularity/0/1000,
returns complete Object entries with rating in [100,400], and granularity up to 1000 mS as a JSON
array.

(APIs that need explicit authorization from the user. TODO: Add more detail about their use).
9. AddClass/cname/x/descriptor/y/rating/z

Type: POST

Response: New class entry as a JSON array.

10. AddODbject/cid/x/oname/y/descriptor/z/granularity/w
Type: POST
Response: New object entry as a JSON array.

Using the APIs
The Vhome RESTful service is hosted over a Apache Tomcat web-server, over HTTPS.

1. Cloud Based Apps

These apps can use the different function calls (described above) by encoding the respective function
call (with parameter values) as a URI.

For e.g. https://vhomelP/data/ListAllClasses , https://vhomelP/data/ListClass/cname/lighting
However, they need to first obtain a token for access to the respective call(s) and present it as a POST
parameter.

TODO: Add more detail.

2. Native

For providing access to native apps, the RESTful function calls described above, are wrapped into
respective Java functions, thereby forming a Java library, and provided to app developers in a jar file.
Native applications can directly invoke these functions without having to deal with authentication and
authorization, as in case of cloud based applications.

This allows the platform to restrict native applications' use of functions in JAVA.NET.* (i.e. Dis-
allowing any network access, and hence preventing native applications from transferring data out of the
Vhome).

Application developers compile their Java web applications as a war file, which can then be deployed
over the Apache tomcat server using a browser Ul (https://localhost:8080). However, before deploying
the application the platform scans the war file to ensure no use of java.net.* by the native application.
After being successfully deployed the application can be invoked on the Vhome, using a browser and
pointing it to https://localhost:8080/MyNewNativeApp.

https://vhomeIP/data/ListAllClasses
https://localhost:8080/
https://vhomeIP/data/ListClass/cname/lighting

