
in4012tu “Real-time ai and

Automated Speech Recognition” – Assignment I

Rogier van Dalen Pascal Wiggers

7th September 2009

In this assignment you will produce a simple speech recogniser. Not all the
details you need are in the textbook we use, Jurafsky and Martin (2009). This
document aims to fill in those gaps. It also gives information specific to this
practical, for example about the input files.

1 The lexicon

The lexicon provides a mapping from words’ orthography (i.e. spelling) to se-
quences of phonemes. This lexicon contains Dutch words with phonemic trans-
criptions. Each line contains a word followed by a sequence of phonemes that
indicate how the word is pronounced. The lexicon uses the cgn notation, which
in turn is based on the sampa notation. All your speech recogniser has to do
is find out which of the phoneme sequences contained in the lexicon is most
likely to have produced the acoustics. To deal with any silence before and after
the word, a sil phoneme should be introduced before and after all phoneme
sequences. For example, if the phoneme sequence with the highest probability
is sil b schwa w aa r schwa sil, then the word that was pronounced must have
been bewaren /b@wa:r@/.

2 Signal processing

Before an audio file (for example, a wav file) can be used in a speech recogniser,
acoustic features have to be extracted from every time slice. We will use a
pre-made tool to compute mfcc features for every 10 ms time slice.

The Hidden Markov Toolkit (htk) is free, written in C, and distributed
by the University of Cambridge. Though the tools inside it were at some point
owned by Microsoft Research, they are Unix-style command line tools. They are
used by many companies and research institutes to train their speech recognisers
and try things out. Our speech recogniser has already been trained; section 3.2
on page 4 explains the content of hmms.mmf in detail. From the Hidden Markov
Toolkit we will only use two tools that extract feature information from audio
files. HCopy.exe and HList.exe are in the hkt_tools_windows.zip file that
should come with this manual. If you like to, you can instantly register at no
cost with the Hidden Markov Toolkit website at http://htk.eng.cam.ac.uk/
to browse or download the documentation or the tool source code. Users of

1



1 2 3

Figure 1: A standard three-state hmm, with non-emitting states 1 and 5, and
emitting states 2, 3, and 4. Emitting states are associated with an output
distribution bi.

other operating systems than Windows should download the source code and
compile it on their systems. This should not be much of a hassle.

The first tool you will use is HCopy, so named because it copies information
from audio files into htk format files with mfccs. HCopy can be called thus:

HCopy -C hcopy_mfcc.cfg tf000116.wav tf000116.mfc
to convert tf000116.wav to tf000116.mfc. hcopy_mfcc.cfg is a configuration
file that is also available from Blackboard. It instructs HCopy to produce 39
mfcc features per 10 ms time slice. These features are saved in a binary file
format that is described in the htk manual (Young et al., 2005, 5.10.1). HList
converts the htk binary files to plain text. You can call it thus:

HList -r tf000116.mfc
to output the feature vectors to the standard output (i.e. the terminal). The
output will look something like this:

1.047198e+000 2.854144e+000 5.039756e+000 2.466356e+000 3.066413e+000 -3.922853e+000 ...
-3.282447e+000 -1.032732e+000 3.812215e+000 2.047029e+000 7.291181e+000 2.135985e+000 ...

but run on for several pages per second of audio file. There are 39 floating
point numbers per line: each line contains one feature vector. This list does
not directly add much to our understanding of the audio file. We will need to
compare this data to a profile of a phoneme.

These tools are provided as a convenience. You do not have to use HList:
you can read the binary file format HCopy produces directly. You do not have
to use HCopy if you want to call functions from the htk library directly from
your program. Though it will make your speech recogniser more self-sufficient,
and therefore much cooler, it will not make your life easier.

3 hmms

A hidden Markov model (long for “hmm”) that outputs a phoneme is depicted in
figure 1. This one has five states. Two are non-emitting, that is, they are merely
endpoints for concatenation. Three actually produce sound. A transition from
state i to state j happens with probability aij . Every box in figure 1 stands
for a function bi that defines probabilistically, in terms of the acoustic features,
what sounds are associated with the state. The reason there are three emitting
states for one phoneme rather than one is that the first bit of a phoneme is
influenced by the previous phoneme, and the last bit by the next one.

When actually recognising speech, the output we expect is compared to the
observation. The Viterbi algorithm finds a path through the states that best
explains the audio signal. See Jurafsky and Martin (2009) for an explanation

2



Table 1: Feature vector from an audio file.

x =



1.713696e-001
3.440685e-001

-8.538713e-001
3.463801e+000
1.651544e+000

-5.355577e+000
4.956263e+000
2.541015e+000
4.452126e-001

-3.111563e+000
-1.992391e+000
-5.376299e+000

1.777077e-001
3.770196e-001
6.087872e-001

1.686706e+000
8.062722e-001
5.015219e-001
3.260719e-001

-1.908163e+000
-1.791249e+000
1.938380e+000
2.100054e+000
-6.479878e-001
-3.242626e-002
-1.169251e-003
-1.236923e-001
-8.561335e-002
3.323697e-001

-5.539750e-001
-2.726229e-001
5.833805e-001

-3.306281e-001
-4.484353e-001

-1.029309e+000
-3.137693e-001
-9.858458e-002
4.486263e-001
4.803071e-003



(The Viterbi algorithm is also explained in more general terms in Russell and
Norvig (2003, 15.2).) To recognise a sequence of phonemes we have to conca-
tenate the hmms. This is where the non-emitting states come in handy. Every
hmm has a start state and an end state. We can use the non-emitting states
to connect copies of various hmms, thereby forming a larger hmm. An hmm is
generated for every word in the lexicon. For example, an hmm for recognising
the word cheque /SEk/ will be a concatenation of the phonemes sil, sh, e, k, and
sil, forming a string of 15 states altogether.1

3.1 Acoustic modelling

A feature vector is extracted from the raw audio for every 10 ms time slice.
Table 1 shows such a feature vector, consisting of 39 mfcc features (actually,
one energy feature and 12 mfcc features, and their derivatives, and their de-
rivatives). To decide whether the acoustics of these 10 ms could be the result
of the first part of an /a:/, we compare the feature vector to the sound of the
/a:/s we trained the recogniser on. The properties of those /a:/s are captured
in Gaussians. A Gaussian is the probability distribution that you know from
statistics courses as the normal distribution. As you remember, the normal dis-
tribution has two parameters: the mean µ and the variance σ. Since one feature
vector contains 39 values, the output of an hmm state is defined by 39 µs and
39 σ2s. In the hmm definition file these are contained in two vectors µ and σ2,
exemplified in table 2 on the following page.

1All hmms we will use have three emitting states. This is not necessarily true in general,
but the canonical hmm has only three emitting states.

3



Table 2: Mean and variance for the first emitting state of a trained hmm for the
phoneme /a:/.

µ =



3.494631e+000
-1.041954e+001
-2.617091e+000
-1.806885e+000

2.389358e-001
1.490016e+000
1.718114e+000

-4.997996e+000
-3.919698e+000
-1.377204e+000
-7.303527e-001
6.678443e-002
8.345999e-001

-1.137392e-001
-1.621469e+000
-8.307990e-002
1.002544e+000
7.614670e-001
4.673814e-001

-1.236874e-001
-8.338841e-001
-4.626290e-001
7.504206e-002
3.008948e-001
1.628574e-001
3.587579e-002

-1.958797e-001
4.565939e-001
3.003341e-001
1.854419e-001

-5.208018e-002
-2.726975e-001
-1.469530e-001
2.463291e-001
2.193729e-001
9.490074e-002
4.042798e-002

-3.333719e-002
-1.544064e-002



, σ
2 =



1.449228e+001
2.109260e+001
2.907835e+001
4.842424e+001
3.910004e+001
4.323362e+001
5.273534e+001
6.665879e+001
5.475682e+001
4.622672e+001
4.192024e+001
3.376055e+001
1.242084e-002

1.612679e+000
2.157096e+000
2.408889e+000
3.135437e+000
3.136988e+000
3.991289e+000
4.134397e+000
4.163263e+000
4.508152e+000
3.797008e+000
3.507058e+000
2.850974e+000
1.700877e-003
3.036627e-001
3.269685e-001
3.568493e-001
6.031566e-001
5.706108e-001
6.718093e-001
7.402067e-001
7.851482e-001
7.109802e-001
6.530800e-001
6.206974e-001
4.968702e-001
2.659142e-004



How do we calculate whether the observation, as in table 1 on the previous
page, fits the acoustics we expect for /a:/? We separately calculate the pro-
bability of every feature fitting the acoustics. This we do with the probability
density function for the normal distribution, which as you remember is

1
σ
√

2π
e−

(x−µ)2

2σ2 . (1)

We calculate this probability for all features and then multiply those numbers
to get the probability of the observation being the output of one state. Note
that this assumes that all the features are independent from one another, which
is nonsense, but hey! it makes the calculations a lot easier.

This is what takes place in the boxes that are associated with the hmms as
in figure 1 on page 2.

3.2 hmms.mmf

hmms.mmf contains a description of a trained speech recogniser. It is an htk
hmm definition file, slightly edited to make it simpler to parse. Its format looks,
but is not quite, like xml. Table 3 on the next page contains an excerpt from
the file.

The description of the phoneme Y 2 starts with ~h "Y". <NUMSTATES> pre-
cedes the total number of states for this hmm. This is always 5. The first and
last states are always non-emitting states. <STATE> starts the description of a

2/y:/ in ipa notation.

4



Table 3: The first hmm definition from hmms.mmf.

~h "Y"
<BEGINHMM>
<NUMSTATES> 5
<STATE> 2
<MEAN> 39
2.354841e+000 5.610937e+000 5.067012e+000 -1.055201e+001 -4.812210e+000 -4.014295e+000 ...

<VARIANCE> 39
1.762409e+001 2.296807e+001 2.819459e+001 5.337686e+001 4.616655e+001 4.337509e+001 ...

<GCONST> 1.113207e+002
<STATE> 3
<MEAN> 39
3.699092e+000 6.638847e+000 7.107974e+000 -1.402351e+001 -6.396945e+000 -3.252827e+000 ...

<VARIANCE> 39
1.022347e+001 1.661865e+001 2.492645e+001 2.507180e+001 3.740020e+001 3.738739e+001 ...

<GCONST> 8.564902e+001
<STATE> 4
<MEAN> 39
5.037427e+000 2.506331e+000 4.572251e+000 -9.221249e+000 -9.585092e+000 -4.441896e+000 ...

<VARIANCE> 39
1.094445e+001 2.240830e+001 2.484098e+001 2.858117e+001 3.546447e+001 3.863903e+001 ...

<GCONST> 9.314183e+001
<TRANSP> 5
0.000000e+000 1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 5.805153e-001 4.194847e-001 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 7.690973e-001 2.309027e-001 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 7.553328e-001 2.446672e-001
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000

<ENDHMM>

5



state. In this edited version of the file the distribution is always contained in the
state description. The vectors µ and σ2 (see table 2 on page 4) follow <MEAN>
or <VARIANCE> and the vector size, 39. You can skip the value for <GCONST>,
a precalculated value that the htk programmers included in a fit of fear of
hurting performance. The number is the logarithm of the squared product of
σ
√

2π from equation (1) on page 4:

ln
N∏

i=1

2πσ2
i (2)

with σ2
i the ith entry of the variance vector. You may wonder why the htk

programmers forgot to take the reciprocal of the square root (see equation (1)).
We will leave the answer as an exercise, but give one hint: it is a slight opti-
misation possible because probabilities are represented by their logarithms (see
appendix A on the facing page). we left the figure in so you may check whether
your implementation calculates the number correct up to this point.

The section marked <TRANSP> contains the transition probabilities (see fi-
gure 1 on page 2) in matrix form:

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 (3)

Almost all acoustic models are like the one in figure 1 on page 2. This means
that almost all transition probability matrices look like

0 1 0 0 0
0 a22 a23 0 0
0 0 a33 a34 0
0 0 0 a44 a45

0 0 0 0 0

 (4)

but not all! The sil phoneme is the exception. You are allowed to assume
that the transition matrix for sil is also like in (4). If so, please say so in the
documentation you submit. It will make your speech recogniser perform slightly
worse, but it will significantly reduce the strain on your programming skills.

3.3 lexicon.txt

lexicon.txt contains all words that can be recognised with their phonemic
transcription.

3.4 hcopy mfcc.cfg

hcopy_mfcc.cfg tells HCopy how it should produce mfcc features (see sec-
tion 2 on page 2). Your program does not have to parse this file.

6



A Representing small probabilities

Applying Viterbi on hidden Markov models yields very low probabilities.3 Even
on short audio fragments the probability of the most likely path will routinely
become as low as 10−10000. 64-bit floating point numbers (e.g. Java doubles)
can represent values as low as 2.22507 · 10−308; anything lower is rounded to
0. By representing a probability p as its logarithm ln p we can reach a lowest
non-zero value of e−1.79769·10308

using doubles. Operations then have to work
on log-probabilities as well. For example, to add probabilities a and b we need
to formulate ln(a + b) in terms of ln a and ln b. Table 4 on the following page
summarises how computers can use log-probabilities in calculations.

A.1 Multiplication

ln(a · b) = ln a+ ln b (5)

ln
(a
b

)
= ln a− ln b (6)

A.2 Addition

Note that addition and subtraction are not needed for recognising with the Vi-
terbi algorithm, i.e. you do not need to implement these. For training, however,
they are necessary.

ln(a+ b) = ln(eln a + eln b) (7)

This simple solution underflows if a < ε or b < ε, which is exactly what we
aimed to cure by using log-probabilities. Let us assume a ≥ b.

ln(a+ b) = ln
(
a+ a · b

a

)
= ln

(
a

(
1 +

b

a

))
= ln a+ ln

(
1 +

b

a

)
= ln a+ ln

(
1 + eln

b
a

)
= ln a+ ln

(
1 + eln b−ln a

)
(8)

If a = 0, however (represented as ln a = −∞), then this trick is not possible.
This begs to be special-cased.

Subtraction works similarly:

ln(a− b) = ln
(
a− a · b

a

)
= ln

(
a

(
1− b

a

))
= ln a+ ln

(
1− b

a

)
= ln a+ ln

(
1− eln b

a

)
= ln a+ ln

(
1− eln b−ln a

)
(9)

This is an invalid operation when 1 ≤ eln b−ln a ⇒ ln a ≤ ln b which is
obvious because when a ≤ b, a−b ≤ 0. The logarithmic representation can only
represent positive numbers.

3Viterbi uses the maximum rather than the sum of probabilities, and the normalising factor
(the denominator in Bayes’ rule) is usually left out.

7



Table 4: Representating small probabilities as their logarithms.

Probability Representation
p ln p
0 −∞
1 0
+∞ +∞
a · b ln a+ ln b
a
b ln a− ln b
a+ b ln a+ ln

(
1 + eln b−ln a

)
a− b ln a+ ln

(
1− eln b−ln a

)
√
a 1

2 ln a

A.3 Comparison

a = b⇔ ln a = ln b (10)
a < b⇔ ln a < ln b (11)
a > b⇔ ln a > ln b (12)

References

D. Jurafsky and J. H. Martin (2009), Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics and
Speech Recognition, Prentice Hall, Upper Saddle River.

S. Russell and P. Norvig (2003), Artificial Intelligence: A Modern Approach,
Prentice-Hall, Eaglewood Cliffs, 2nd ed.

S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P. Woodland (2005), ‘The htk book
(for htk version 3.3)’, URL http://htk.eng.cam.ac.uk/docs/docs.shtml.

8


