

Computational Science Laboratory
Microsoft Research Cambridge

Introduction to Scientific DataSet

A managed library and viewer for scientific data

Version 1.2 – June 4, 2010

Abstract

Scientific DataSet is a managed library for reading, writing, and sharing array-oriented
scientific data such as time series, matrices, satellite or medical imagery, and
multidimensional numerical grids.

This guide is for C# programmers who want to use Scientific DataSet in their scientific
computational programs. The introduction briefly describes the Scientific DataSet
capabilities and data model and then presents a walkthrough that shows you how to:

 Read and write datasets in common formats.

 Switch from one type of data file to another without additional programming.

 Include rich descriptive metadata in your dataset to create self-descriptive data
packages that can easily be shared with other programs.

 Use the DataSet Viewer to visualize data.

Note:

 For more information about Scientific DataSet and related projects, see
“Resources” at the end of this document.

 For Scientific DataSet software, see the Microsoft Research Web site at
http://research.microsoft.com/groups/science/software.aspx.

 To provide feedback about Scientific DataSet, send an e-mail message with your
comments to mssds@microsoft.com.

http://research.microsoft.com/groups/science/software.aspx
mailto:mssds@microsoft.com

Introduction to Scientific DataSet - 2

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Contents

The Challenge: A Common Data Model ... 3
Introducing Scientific DataSet ... 3

About this Document ... 4
About Scientific DataSet ... 4

Scientific DataSet Architecture and Data Model .. 5
Installing the Scientific DataSet Package ... 6

Prerequisites .. 6
Installation ... 7

A Walkthrough: Using Scientific DataSet in Your Programs ... 7
Exercise 1: Add a Column to a CSV File.. 8
Exercise 2: Use the DataSet Viewer in Your Program .. 12
Exercise 3: Express Relationships between Variables as Shared Dimensions 16
Exercise 4: Store Descriptive Metadata for Variables and Datasets 19
Exercise 5: Perform Transactional Updates ... 21
Exercise 6: Use the NetCDF Provider with Large Datasets 26

Next Steps .. 27
Resources ... 29

Disclaimer: This document is provided “as-is”. Information and views expressed in this document,
including URL and other Internet Web site references, may change without notice. You bear the risk of
using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

© 2010 Microsoft Corporation. All rights reserved.

Microsoft, Azure, Excel, MSDN, Visual Basic, Visual C#, Visual Studio, and Windows are trademarks of the
Microsoft group of companies. All other trademarks are property of their respective owners.

Introduction to Scientific DataSet - 3

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

The Challenge: A Common Data Model

Programmers who support scientific research often must create applications that
support one or more specific data formats. Although scientific data—time series,
satellite and medical imagery, and the like—are typically stored in arrays, each
dataset is different. Scientific program code depends heavily on data format, and
transferring data from one component to another can be difficult. Such problems
hinder collaboration in the scientific community.

A single data model that supports multiple specific data formats makes it possible for
programs to store and retrieve data without concern about formatting, thereby
allowing the programs’ users to focus on data analysis and computation rather than
mundane input/output formats. The Unidata Common Data Model (CDM)
implements such a data model for Java programs. However, a similar model has not
been available for C#, managed C++, and Visual Basic® applications.

Scientific DataSet supports a data model that enables .NET Framework programs to
benefit from an abstract view of data storage. By separating dataset access from the
real work of scientific computation and visualization, Scientific DataSet makes it
easier for researchers to collaborate and share data, and reduces the need for
specialized programming for custom data formats. The Scientific DataSet data model
builds upon the proven foundation of Unidata CDM and enhances it to provide
greater interoperability and more robust data access.

Scientific DataSet was created by the Computational Science Laboratory at Microsoft
Research in Cambridge, England, along with other tools for applying computational
science principles in natural science research.

Introducing Scientific DataSet

Scientific DataSet is a managed library for reading, writing, and sharing array-oriented
scientific data such as time series, matrices, satellite or medical imagery, and
multidimensional numerical grids.

You can use Scientific DataSet with your scientific computational program so that:

 Your program is more interoperable, because Scientific DataSet can import and
export data in different formats.

 Your program is more scalable, because Scientific DataSet can seamlessly switch
from the human-readable text files that you might use in small-scale experiments
and debugging to the high-performance binary data formats that might be used
in production software.

Scientific DataSet includes an extensive class library for manipulating datasets in
several formats. The class library can be used in any .NET language such as C#,
Managed C++, or Visual Basic.

Introduction to Scientific DataSet - 4

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

About this Document

This document is for C# programmers who want to start using Scientific DataSet in
their scientific computational programs. It introduces methods for reading and
writing datasets and shows how to use the DataSet Viewer to visualize data.

To take advantage of the capabilities described in this document, you should be
familiar with:

 C# namespaces and classes.

 Microsoft .NET Framework.

 Windows® Presentation Foundation (WPF) applications.

Extensive programming experience is not required.

About Scientific DataSet

Scientific DataSet provides a rich set of features, including:

 Built-in support for several common data formats, such as comma-separated
values (CSV), network common data form (NetCDF), and hierarchical data format
(HDF5).

You can also extend Scientific DataSet to support additional formats.

 A visualization tool that can run as a stand-alone utility or as a component of your
program.

 The ability to create self-descriptive data packages by including rich metadata in
your datasets.

 The ability to perform consistency checks and transactional updates.

 The ability to scale up from simple text files to multi-terabyte Windows Azure™
archives.

Data as Arrays. The Scientific DataSet library is optimized to handle data in the form
of arrays, such as time series and tables, vectors and matrices, or multidimensional
grids. Scientific DataSet bundles several related arrays and associated metadata in a
single self-descriptive package, and it enforces certain constraints on the shapes of
arrays to ensure data consistency.

Extensible, Loadable Data Providers. Scientific DataSet includes an extensible set of
dynamically loadable data providers, so you can choose from different storage
formats and different data access mechanisms. For example, different runs of
the same computational program can read or write data differently by using text files
in CSV format, binary NetCDF files, or other file format or communication
mechanisms.

DataSet Viewer. DataSet Viewer can display the contents of your dataset in several
visualizations. You can use DataSet Viewer as a stand-alone application or as a
component of your own scientific program.

A key goal for Scientific DataSet is to enable concurrent access to data from multiple
scientific applications in a distributed computing environment. As Microsoft Research
continues to develop Scientific DataSet and related tools, your program can become

Introduction to Scientific DataSet - 5

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

part of a sophisticated concurrent data flow system in which researchers collaborate
to solve larger, more complicated problems.

Scientific DataSet Architecture and Data Model

The Scientific DataSet library is designed to work with your existing scientific analysis
programs to read and write array-based datasets. The library includes data providers
for the CSV and NetCDF formats, and you can extend it to support additional formats.

The Scientific DataSet library can read and write data in various formats and then
supply that data to your programs, your data-fitting models, and to the DataSet
Viewer for analysis and visualization, as Figure 1 shows.

Figure 1. Scientific DataSet architecture

The Scientific DataSet application programming interface (API) supports the creation,
access, and sharing of multidimensional array-oriented data. The dataset is self-
describing: you can add metadata to identify the arrays, dimensions, units—or any
other important information you want to archive or share. Figure 2 shows an example
of the types and range of data and metadata that the Scientific DataSet API can
handle.

Model1.exe DataSet ViewerYourProgram.exeModel2.exe

Scientific DataSet API

CSV Provider Other
Your

Provider

NetCDF

Provider

Excel Add-in

Introduction to Scientific DataSet - 6

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Figure 2. Sample Scientific DataSet

The Scientific DataSet library makes it easy for a program to append new data to a
dataset, so you can add computed information to an array or extend a dataset with
new types of information as additional measurement technologies become available.
Such changes do not affect the ability of existing programs to read and write the
dataset, so reprogramming is not required when a dataset changes.

For details about the data model and the object model, see the Scientific DataSet
Reference documentation, which appears on your Windows Start menu after you
install Scientific DataSet.

Installing the Scientific DataSet Package

The Scientific DataSet package is available for download from the Microsoft Research
Web site, as listed in “Resources” at the end of this document.

Prerequisites

Scientific DataSet requires a computer that is running Windows XP or a later release,
plus the software in the following list.

Software Required for …

Microsoft .NET Framework 3.5 Service Pack 1
(SP1)

All Scientific DataSet applications

Microsoft Visual C#® 2008 Express Edition
—OR—
Any edition of Microsoft Visual Studio 2008
or later

Windows Presentation Foundation (WPF)
applications that use DataSetViewerControl

For links to these software packages, see “Resources” at the end of this document.

Name: Surface Temperature

Dimensions: lat(8), lon(10), time(4)

Units: Kelvin

Type: Double

Source: NCEP/NCAR Reanalysis

Created: 2010-04-12T06:56

Name: Longitude

Dimensions: lon(10)

Units: Deg

Type: Single Name: Latitude

Dimensions: lat(8)

Units: Deg

Type: Single

Name: Time

Dimensions: time(4)

Type: DateTime

Introduction to Scientific DataSet - 7

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Installation

To install the Scientific DataSet library, run the .MSI package provided on the
Scientific DataSet Project Web site.

By default, the package installs Scientific DataSet in the C:\Program Files\Microsoft
Research\Scientific DataSet 1.2 directory. The installation includes the following
items:

 DataSet Viewer.exe application

 Sds.exe command-line utility

 Sds.h include file, with C++ class templates that simplify Scientific DataSet
programming using managed C++

 DataSet Editor add-in installer for Microsoft Office Excel® 2007 and 2010

 Help file that describes the complete Scientific DataSet API

The installation package makes the following additional changes to your computer:

 Library assemblies are:

 Placed in C:\Program Files\Reference Assemblies\ Microsoft
Research\Scientific DataSet 1.2 directory so that they appear in Add
Reference dialog box in Microsoft Visual Studio®.

 Installed into the Global Assembly Cache (GAC).

 Four data providers are registered in the computer’s Machine.config
configuration file:

CSV file format
NetCDF file format
In-memory storage
Windows Communication Foundation (WCF)

After installation is complete, these providers are available to all programs that run
on your computer.

A Walkthrough: Using Scientific DataSet in Your Programs

To introduce you to the Scientific DataSet library and tools, the following sections
lead you on a walkthrough tour of the following Scientific DataSet features and
capabilities:

Exercise 1: Add a Column to a CSV File
Exercise 2: Use the DataSet Viewer in Your Program
Exercise 3: Express Relationships between Variables as Shared Dimensions
Exercise 4: Store Descriptive Metadata for Variables and Datasets
Exercise 5: Perform Transactional Updates
Exercise 6: Use the NetCDF Provider with Large Datasets

Most methods used in this introduction are defined in the DataSetExtensions class
from the Microsoft.Research.Science.Data.Imperative assembly. They are part of the
Scientific DataSet imperative API.

Introduction to Scientific DataSet - 8

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Exercise 1: Add a Column to a CSV File

Suppose we need to process the following text file, which contains the result of an
imaginary experiment.

X,Observation
17.84,1.628E-05
19.87,2.023E-05
22.22,2.060E-05
24.08,2.263E-05
25.98,2.333E-05
28.14,2.679E-05
29.8,2.771E-05
32.27,2.793E-05
34.25,3.079E-05
35.85,3.247E-05

Note: Unless otherwise noted, all the exercises in this document use this file as input,
referred to as Tutorial.csv. We recommend that you save the original Tutorial.csv file
so that you can start each exercise with a clean copy in the directory from which you
run the exercises. If you run the program within the Visual C# or Visual Studio
development environment, the file must be in the project’s bin\debug or bin\release
directory.

The Tutorial.csv text file is an example of a file in CSV format, which is a popular
format for relatively small datasets. Such files can be read or written by many
programs, including Microsoft Excel. In many programming languages, it is difficult to
use standard file input and output functions to process CSV files. The standard
functions read a file line by line, whereas in a CSV file the data is logically arranged in
columns. Scientific DataSet can help in this situation, because it treats a dataset as a
set of named variables.

From the point of view of Scientific DataSet, the Tutorial.csv file is a dataset that has
two numeric variables named X and Observation, respectively. By using Scientific
DataSet, your program can implement just one line of code to read a column of data.

The example console program in Listing 1 opens the data file Tutorial.csv and then
proceeds as follows:

 Reads two columns of the data into arrays (lines 12–14).

 Computes coefficients of a linear model that approximates observations (lines
16–26).

 Evaluates predicted model values (lines 27–28).

 Adds those values to the dataset as a third column named Model (lines 30–31).

Listing 1. Adding a column to a CSV file

1 using System.Text;
2 using sds = Microsoft.Research.Science.Data;
3 using Microsoft.Research.Science.Data.Imperative;
4
5 namespace Tutorial1
6 {
7 class Program
8 {
9 static void Main(string[] args)

Introduction to Scientific DataSet - 9

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

10 {
11 // read input data
12 var dataset = sds.DataSet.Open("Tutorial.csv");
13 var x = dataset.GetData<double[]>("X");
14 var y = dataset.GetData<double[]>("Observation");
15 // compute model parameters
16 var xm = x.Sum() / x.Length;
17 var ym = y.Sum() / y.Length;
18 double xy = 0;
19 for (int i = 0; i < x.Length; i++)
20 xy += (x[i] - xm) * (y[i] - ym);
21 double xx = 0;
22 for (int i = 0; i < x.Length; i++)
23 xx += (x[i] - xm) * (x[i] - xm);
24 var a = xy / xx;
25 var b = ym - a * xm;
26 var model = new double[x.Length];
27 for (int i = 0; i < x.Length; i++)
28 model[i] = a * x[i] + b;
29 // write output data
30 dataset.Add<double[]>("Model");
31 dataset.PutData<double[]>("Model", model);
32 }
33 }
34 }

The program in Listing 1 uses methods of the DataSetExtensions class, which is part of
the Scientific DataSet Imperative API. Therefore:

 The example project must reference the following two assemblies:

Microsoft.Research.Science.Data
Microsoft.Research.Science.Data.Imperative

 The source code must include the using statement as shown on line 3:

using Microsoft.Research.Science.Data.Imperative;

Supplying a Variable Name and Type of Data

Line 13 in Listing 1 reads the entire column headed X by calling the GetData method.
In this example project, we call GetData as follows:

GetData <type> (variablename)

where:

 Type specifies the expected type of data.

 Variablename is a string that specifies the name of the variable.

When you call Scientific DataSet methods in strongly-typed languages such as C#, the
Scientific DataSet library does not coerce data types. The data type in a dataset and
the type of data that you specify as a type parameter to the GetData method must
match exactly.

Introduction to Scientific DataSet - 10

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

In its simple form, a CSV file does not have explicit typing of data. In that case,
Scientific DataSet uses the following heuristics:

 If all values in a column can be interpreted as numbers, true/false, or date/time
values, then the column takes the type Double, Boolean, or DateTime,
correspondingly.

 Otherwise, the column has type String.

 Metadata or the inferInts=true provider parameter can change this default
behavior, as described in “Exercise 2: Use the DataSet Viewer Control in Your
Program” later in this paper.

Line 31 of Listing 1 calls the PutData method to store the computed Model value in
the dataset. However, PutData stores data in existing variables only. Therefore, we
must first create a variable to store the computed values.

Creating Variables by Calling the Add Method

If the dataset does not contain a variable for the model data, you must call the Add
method (line 30) to create one. In its simplest form, Add takes the following
parameters:

Add <type> (variablename)

where:

 Type specifies the type and rank of the data in the variable. The parameter can
be:

 A simple scalar type. Scientific DataSet supports all standard integers, floating
point numbers, Boolean, DateTime, and String.

 A one-dimensional array of that type or an array of higher rank to store
vectors, matrices, grids, and other multi-dimensional data.

 Variablename can be any string, although we strongly recommend that you
follow general rules for program identifiers: start with a letter followed by letters,
digits, and underscore symbols.

Note: Variable names are for convenience only. A variable can have no name at
all, or several variables in a dataset can have the same name. However, handling
datasets that contain duplicate variable names is rather inconvenient.

You should be careful when using the Add method. For example, if we run the
program in Listing 1 a second time on the output Tutorial.csv file from the first run of
the program, the Add method will create a fourth column of Model data and the
program will fail at PutData, because PutData cannot uniquely identify which Model
variable to output data to. For this reason, it is better to put the Add method in a
conditional clause.

To use the Add method in a conditional clause

 Use a statement such as the following at line 30:

if (!dataset.Any(v => v.Name == "Model"))
 dataset.Add<double[]>("Model");

Introduction to Scientific DataSet - 11

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Now the model data will always be output in the same column, as shown in the
following example:

X,Observation,Model
17.84,1.628E-05,1.72831547908291E-05
19.87,2.023E-05,1.89603556368157E-05
22.22,2.06E-05,2.09019428230564E-05
24.08,2.263E-05,2.2438688425783E-05
25.98,2.333E-05,2.40084823210414E-05
28.14,2.679E-05,2.57930901177562E-05
29.8,2.771E-05,2.71645942578241E-05
32.27,2.793E-05,2.920532632166E-05
34.25,3.079E-05,3.08412168019819E-05
35.85,3.247E-05,3.21631485032522E-05

Using Variable IDs Instead of Variable Names

To avoid any possible ambiguity, you can use variable IDs instead of variable names.
The variable ID is an integer that uniquely identifies a variable within a dataset.
Variable IDs are valid only until the dataset is disposed.

Scientific DataSet does not store variable IDs; instead, it assigns them to variables at
the time your program opens a dataset. In general, referencing a variable by its ID is
more reliable and efficient than referencing it by name.

The Add method returns the variable it creates. In the program shown in Listing 1, we
ignore that fact.

To use the variable ID in the example project

 Replace lines 30 and 31 in Listing 1 with the following:

int varid = dataset.Add<double[]>("Model").ID;
dataset.PutData<double[]>(varid, model);

Now, if we run the program multiple times, it will successfully create multiple
identical columns.

To use variable IDs with a conditional clause

 Revise the program in Listing 1 as follows to create a file with only three columns:

int varid = dataset.Any(v => v.Name == "Model") ?
 dataset["Model"].ID :
 dataset.Add<double[]>("Model").ID;
dataset.PutData<double[]>(varid, model);

Reading a Modified DataSet File

Datasets typically grow and become more complicated over time as research
continues. Existing C or C++ programs typically require modification to adapt to the
changed dataset. With Scientific DataSet, however, no such modifications are
required.

Even though you have added a column to the dataset, you can successfully run the
program that appears in Listing 1 against an updated dataset that contains an
additional column.

Introduction to Scientific DataSet - 12

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

For example, assume that you have updated the dataset in Tutorial.csv to contain an
additional observation parameter named StdError, as follows:

X,Observation,StdError
17.84,1.628E-05,1.0E-07
19.87,2.023E-05,1.0E-07
22.22,2.06E-05,2.0E-07
24.08,2.263E-05,2.0E-07
25.98,2.333E-05,2.0E-07
28.14,2.679E-05,2.0E-07
29.8,2.771E-05,2.0E-07
32.27,2.793E-05,3.0E-07
34.25,3.079E-05,3.0E-07
35.85,3.247E-05,3.0E-07

If you run the program shown earlier in Listing 1 on this modified dataset, the output
dataset contains the following:

X,Observation,StdError,Model
17.84,1.628E-05,1.0E-07,1.72831547908291E-05
19.87,2.023E-05,1.0E-07,1.89603556368157E-05
22.22,2.06E-05,2.0E-07,2.09019428230564E-05
24.08,2.263E-05,2.0E-07,2.2438688425783E-05
25.98,2.333E-05,2.0E-07,2.40084823210414E-05
28.14,2.679E-05,2.0E-07,2.57930901177562E-05
29.8,2.771E-05,2.0E-07,2.71645942578241E-05
32.27,2.793E-05,3.0E-07,2.920532632166E-05
34.25,3.079E-05,3.0E-07,3.08412168019819E-05
35.85,3.247E-05,3.0E-07,3.21631485032522E-05

Exercise 2: Use the DataSet Viewer in Your Program

When you install Scientific DataSet, the DataSet Viewer application is added to your
computer. The DataSet Viewer can display the contents of a dataset by using several
visualizations:

 A table of values

 A line/markers chart

 A color map

 A contour line plot

You can reuse DataSet Viewer functionality in your own programs. In this exercise,
you create a WPF application by using Microsoft Visual C#® 2008 Express Edition,
which is available for free from the Microsoft Web site, as listed in “Resources” at the
end of this paper. You can also use any edition of Visual C++ 2008 or later.

Note: If you are unfamiliar with Visual C# 2008 Express Edition, see the Visual C#
Developer Center on MSDN®, which is listed in “Resources.”

To reuse the components of DataSet Viewer in your own program

1. Run Visual C# 2008 Express Edition, and create a new project that uses the WPF
Application project template.

2. Add references to assemblies and libraries, as follows:

 On the Project menu, click Add Reference.

 On the .NET tab, include the following references:

Introduction to Scientific DataSet - 13

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Microsoft.Research.Science.Data
Microsoft.Research.Science.Data.Imperative

 On the Browse tab, navigate to the Scientific DataSet installation folder. Add
references to the following dynamic-link libraries (DLLs):

DataSetViewerControls.dll
DataSetViewerCore.dll

 Click OK.

3. Add the DataSetViewerControl to the toolbox, as follows:

 Click the Toolbox icon and then right-click an empty space in the Toolbox
window.

 On the context-sensitive menu that appears, click Choose Items.

 In the Choose Toolbox Items dialog box, go to the WPF Components tab and
click Browse.

 Navigate to the Scientific DataSet 1.2 installation directory, click
DataSetViewerControls.dll, and then click Open.

 Finally, in the ChooseToolboxItems box, click DataSetViewerControl, as the
following figure shows, and click OK.

 Adding DataSetViewerControl to the toolbox

DataSetViewerControl should now appear on the Toolbox menu, as in the
following figure.

Introduction to Scientific DataSet - 14

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

 DataSetViewerControl on the Toolbox menu

4. Double-click DataSetViewerControl to add it to the main application window.

5. Resize the control so that it fills the entire window, as shown in the following
figure.

 Resizing DataSetViewerControl

6. To create the Window_Loaded event handler, double-click the Window1 title bar
in the Design tab to display the event handler template, and copy the
computation code from Listing 2 to the event handler.

7. Add the following using statements:

using sds = Microsoft.Research.Science.Data;
using Microsoft.Research.Science.Data.Imperative;

Introduction to Scientific DataSet - 15

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Listing 2. Event handler of a WPF program that plots data using the DataSetViewerControl

1 private void Window_Loaded(object sender, RoutedEventArgs e)
2 {
3 // read input data
4 var dataset = sds.DataSet.Open("Tutorial.csv");
5 if (!dataset.Any(var => var.Name == "Model"))
6 {
7 var x = dataset.GetData<double[]>("X");
8 var y = dataset.GetData<double[]>("Observation");
9 // compute model parameters
10 var xm = x.Sum() / x.Length;
11 var ym = y.Sum() / y.Length;
12 double xy = 0;
13 for (int i = 0; i < x.Length; i++)
14 xy += (x[i] - xm) * (y[i] - ym);
15 double xx = 0;
16 for (int i = 0; i < x.Length; i++)
17 xx += (x[i] - xm) * (x[i] - xm);
18 var a = xy / xx;
19 var b = ym - a * xm;
20 var model = new double[x.Length];
21 for (int i = 0; i < x.Length; i++)
22 model[i] = a * x[i] + b;
23 // write output data
24 var varid = dataset.Add<double[]>("Model").ID;
25 dataset.PutData<double[]>(varid, model);
26 }
27 viewerControl1.DataSet = dataset;
28 }

Important: Before you run the program, ensure that the project’s bin\release or
bin\debug directory contains a clean copy of the original data file named Tutorial.csv.

8. The last line of the Window_Loaded method (line 27) passes the dataset to the
DataSetViewerControl for processing. When you run the program in Listing 2, you
see the following window:

 Application window with DataSetViewerControl

The left pane displays the current visualization—in this case, a table of variable
values. The right pane lists all the variables in the dataset. Under each variable, the

Introduction to Scientific DataSet - 16

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

DataSet Viewer shows visualizations that are compatible with current visualization in
the left pane. No other visualizations are compatible with the table of Model variable
values, so all other variables in the left pane are grayed out.

To explore the full list of available options in DataSet Viewer

 Uncheck the Table of values visualization and click Model, Observation, and X.

Figure 3 shows the resulting list.

Figure 3. Visualizations for three unrelated columns

All variables in this example have the same list of visualizations: Table, Markers, and
Polyline. You can select any of them. You can even select both Markers and Polyline
for the same variable. However, you cannot plot Model against X, and you cannot
select Polyline for Model and Markers for Observation. These visualizations are
incompatible with each other, because the dataset does not indicate that these
variables somehow relate to each other.

To plot one variable against another, the variables must share a dimension.

Exercise 3: Express Relationships between Variables as Shared
Dimensions

In Scientific DataSet, relationships between variables are expressed using “shared
dimensions.” A dataset dimension is an index space with a unique name.

In our example in Listing 2, each variable has its own index space. Their names are
automatically chosen by the Scientific DataSet library. When Scientific DataSet reads
the variables X and Observation from the file, it names their dimensions csv_0 and
csv_1, respectively. The Add method automatically chose the dimension _1 for
Model. You can clearly see this in the list of visualizations shown earlier in Figure 3.

Introduction to Scientific DataSet - 17

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

To enable richer metadata in the dataset and consequently richer behavior of
components that read this dataset, we can make all our variables share the same
index space. For example, saying that variable Observation shares the dimension with
variable X, we mean that Observation[i] relates somehow to X[i] for all indices i in the
shared index space. This also introduces a constraint on the dataset:

Two variables that share an index space must always be the same size along the
shared dimension.

For example, a matrix can share its first dimension—the number of rows—with a
vector. According to this constraint, the number of rows in the matrix must match the
length of the vector. However, the matrix can have any width because it does not
share the column index with the vector.

The only metadata in our sample CSV file Tutorial.csv is the header line. However,
when we open the file, we can ask Scientific DataSet to assign a single shared
dimension to all the columns that have the same height.

To assign a single shared dimension to all the columns of the same height

 Change line 4 of the sample code in Listing 2 to the following:

var dataset = sds.DataSet.Open("Tutorial.csv?inferDims=true");

 Replace the modified Tutorial.csv file with the original file, and then run the
program again.

As you can see from this example code, you can put a question mark and provider
parameters after the file name. Figure 4 shows that DataSetViewerControl can now
plot—for example—Observation against X.

Figure 4. List of possible visualizations when Observation and X share the dimension

Introduction to Scientific DataSet - 18

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

The Model variable is still in a separate index space. To tell Scientific DataSet that
Model is related to other variables, you must explicitly specify the dimension name in
the call to the Add method.

To specify the shared dimension name in the example code

 Add the dimension name to the Add call at line 24 in Listing 2:

var varid = dataset.Add<double[]>("Model",
 dataset.Dimensions[0].Name).ID;

We mentioned earlier that variables that share dimensions must be the same size.
The Add method creates a variable but does not commit it to the dataset, as
described in “Exercise 5: Perform Transactional Updates” later in this paper. This
statement creates the Model variable, but Model does not contain any data; that is,
its size is 0. Scientific Dataset will commit the variable to the dataset when all the
variables that share the same dimension have the same size.

It would be a mistake to reference this variable in PutData by name in this case;
instead, you must use its variable ID. The variable name does not become part of the
dataset until the variable has been committed to the dataset. However, you can
directly reference the variable by using its variable ID, as discussed in “Exercise 1: Add
a Column to a CSV File” earlier in this walkthrough.

The list of available visualizations now grows considerably, as Figure 5 shows. We can
now draw Model and Observation on the same plot.

Figure 5. List of possible visualizations when three variables share the same dimension

To draw Model and Observation on the same plot in the example

 Select Polyline on X under Model, and select Markers on X under Observation.

Figure 6 shows the resulting visualization.

Introduction to Scientific DataSet - 19

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Figure 6. Drawing two variables on the same plot

Exercise 4: Store Descriptive Metadata for Variables and Datasets

In addition to using Scientific DataSet to store variable names and dimension names,
you can:

 Store other descriptive metadata in the form of a (key, value) dictionary.

 Associate metadata with each variable individually or with the dataset as a whole.

The metadata can contain longer descriptions, units of measurements, a valid range
of values, a value that denotes the absence of a value (missing value), and so on. By
storing metadata in your dataset, you can provide a self-descriptive data package that
includes information for use by other programs.

To programmatically add metadata

 To add metadata to the dataset from within your program, use the PutAttr
method. In this exercise, we call PutAttr as follows:

PutAttr (variable, key, value)

where:

 Variable can be the variable name or variable ID.

 Key is a string that supplies the name of a metadata key.

 Value is the metadata value. The value can be of any scalar type that
Scientific DataSet supports or can be a one-dimensional array of such a type.

For example, DataSetViewerControl uses the VisualHints metadata value to select the
default visualization for the dataset. You can assign a string for this metadata as
follows:

dataset.PutAttr(0, "VisualHints", "Model(X) "

 + "Style:Polyline;Stroke:Navy;;"

 + "Observation(X) Style:Markers;Color:Red");

Introduction to Scientific DataSet - 20

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

The VisualHints metadata value can contain several hints separated by two
semicolons. A hint:

 Tells the control which variables to draw and which visualization style to use.

 Lists specific visualization parameters, separated by single semicolons.

The preceding example contains two hints: one for the Model variable and one for
the Observation variable. Each hint contains two visualization parameters. With the
addition of the VisualHints metadata value, the DataSetViewerControl displays a plot
similar to that shown earlier in Figure 6 without additional user intervention.

Metadata that we add programmatically to our dataset does not persist in the CSV
file because the original file does not have metadata entries. This behavior ensures
better compatibility with programs that expect to find a plain table in the CSV file, but
is undesirable in our case. For example, if we open the resulting file by using the
stand-alone DataSet Viewer application, we must still:

 Specify additional constructor parameters.

 Compose the plot by using the user interface.

To append metadata to the CSV file

 To append metadata to the Tutorial.csv file—thus overriding the default behavior
of Scientific DataSet—change line 4 to include the appendMetadata provider
parameter as follows:

var dataset =

sds.DataSet.Open("Tutorial.csv?inferDims=true&appendMetadata=true");

Every time Scientific DataSet modifies Tutorial2.csv, it now adds metadata to the end
of the file, as in the following:

X,Observation,Model
17.84,1.628E-05,1.72831547908291E-05
19.87,2.023E-05,1.89603556368157E-05
22.22,2.06E-05,2.09019428230564E-05
24.08,2.263E-05,2.2438688425783E-05
25.98,2.333E-05,2.40084823210414E-05
28.14,2.679E-05,2.57930901177562E-05
29.8,2.771E-05,2.71645942578241E-05
32.27,2.793E-05,2.920532632166E-05
34.25,3.079E-05,3.08412168019819E-05
35.85,3.247E-05,3.21631485032522E-05

ID,Column,Variable Name,Data Type,Rank,Missing Value,Dimensions
1,A,X,Double,1,,csv_0:10
2,B,Observation,Double,1,,csv_0:10
5,C,Model,Double,1,,csv_0:10

Variable,Key,Type,Value
0,VisualHints,String,Model(X) Style:Polyline;Stroke:Navy;;Observation(X)
Style:Markers;Color:Red

A blank line always separates data and metadata so that programs such as Excel can
distinguish them easily.

Introduction to Scientific DataSet - 21

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Exercise 5: Perform Transactional Updates

In previous examples, we modified an existing dataset by adding more data to it. A
disadvantage of this technique is the need to deal carefully with repetitive program
runs. A more traditional and safer approach is to read one file and write another one.
In this exercise, we use this approach to perform transactional updates to the
dataset.

Consider the program shown in Listing 3.

Listing 3. Using separate datasets for input and output

1 static void Main(string[] args)
2 {
3 if (args.Length != 2)
4 throw new ArgumentException("I expect 2 command line"
5 + "parameters.");
6 // open input dataset. Set 'read only' mode by default
7 var uri = sds.DataSetUri.Create(args[0]);
8 if (!uri.ContainsParameter("openMode"))
9 uri.OpenMode = sds.ResourceOpenMode.ReadOnly;
10 var input = sds.DataSet.Open(uri);
11 Console.WriteLine(input);
12 // open output dataset. Set 'create' mode by default
13 uri = sds.DataSetUri.Create(args[1]);
14 if (!uri.ContainsParameter("openMode"))
15 uri.OpenMode = sds.ResourceOpenMode.Create;
16 var output = sds.DataSet.Open(uri);
17 // read input data
18 var x = input.GetData<double[]>("X");
19 var y = input.GetData<double[]>("Observation");
20 if (x.Length != y.Length)
21 throw new ArgumentException("X and Observation"
22 + "must have equal length");
23 // compute model parameters
24 var xm = x.Sum() / x.Length;
25 var ym = y.Sum() / y.Length;
26 double xy = 0;
27 for (int i = 0; i < x.Length; i++)
28 xy += (x[i] - xm) * (y[i] - ym);
29 double xx = 0;
30 for (int i = 0; i < x.Length; i++)
31 xx += (x[i] - xm) * (x[i] - xm);
32 var a = xy / xx;
33 var b = ym - a * xm;
34 // write output data
35 int x_id = output.Add<double[]>("X", "table1").ID;
36 int y_id = output.Add<double[]>("Observation", "table1").ID;
37 int m_id = output.Add<double[]>("Model", "table1").ID;
38 output.PutAttr(m_id, "long_name",
39 "linear fit to Observation");
40 output.PutAttr(m_id, "Model_A", a);
41 output.PutAttr(m_id, "Model_B", b);
42 output.PutAttr(0, "VisualHints",
43 "Model(X) Style:Polyline;Stroke:Navy;;"
44 + "Observation(X) Style:Markers;Color:Red");
45 for (int i = 0; i < x.Length; i++)
46 {
47 output.Append(x_id, x[i]);

Introduction to Scientific DataSet - 22

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

48 output.Append(y_id, y[i]);
49 output.Append(m_id, a * x[i] + b);
50 }
51 Console.WriteLine(output);
52 }

If you compile this program into Tutorial3.exe, you can run it from the command
prompt or directly from Visual Studio.

To run this program from the command prompt

1. Change your directory to the folder that contains Tutorial3.exe and supply two
command-line parameters:

tutorial3 tutorial3.csv results.csv

The program will read data from the first file and output results to the second file.

To run the program directly from Visual Studio

 Specify command-line parameters on the Debug tab in the project’s Properties
window.

Opening a Dataset by Using a URI

Earlier, in “Exercise 1: Add a Column to a CSV File,” we opened datasets by using a
string argument with a file name and optional provider parameters. Lines 6–16 in
Listing 3 show an alternative solution:

 First, we create a specialized uniform resource identifier (URI) object from a
string.

This object has a set of typed properties that are specific to Scientific DataSet
providers. You can programmatically set the typed properties to change the
behavior of Scientific DataSet.

 Next, we test whether a user supplied the openMode provider parameter in the
command-line arguments.

If not, the example program applies default openMode values for both the
parameters. The default value for the input file is readOnly and the default for
the output file is create. As a result of the defaults, the program cannot change
the input dataset and always gets a new empty dataset for output, deleting the
existing file if necessary.

The URI appears in a summary of the dataset. Line 11 of Listing 3 shows the fastest
way to display such a summary

To display a summary of dataset contents

 Use the Console.Writeline method, as shown in Line 11 of Listing 3:

Console.WriteLine(input);

 This is what you should see in program output:

msds:csv?file=Tutorial3.csv&openMode=readOnly
[1]
DSID: df730881-6724-4b97-b6f3-4359a72083cb
[2] Observation of type Double (csv_1:10)

Introduction to Scientific DataSet - 23

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

[1] X of type Double (csv_0:10)

In this output:

 The first line shows the standard dataset URI, which consists of the mandatory
URI schema “msds” and the Scientific DataSet provider name “csv” followed by
optional provider parameters.

 The second line shows the dataset version number—1—as an integer in square
brackets.

Scientific DataSet increments the version number each time it commits changes
to the dataset.

 The third line shows the unique dataset identifier (DSID).

 A list of variables follows the DSID. For each variable, the summary shows the
variable ID, name, data type, and shape:

 Variable shape includes one dimension for vectors, two dimensions for
matrices, and so forth.

 The variable summary shows both the name and the length for each of the
dimensions.

Updating the File

The computation in lines 21–33 of Listing 3 is the same as what we’ve seen earlier in
the paper. Let’s now turn to the output section starting at line 35. This section of
code writes data to the file as transactions—that is, it saves proposed changes,
maintains a version number that tracks the number of changes, and commits the
changes to the file only when all the related variables are ready to write.

In lines 35-37, we compose the dataset schema:

 We call the Add method to create the new dataset variables X, Observation, and
Model. Each variable stores a one-dimensional array of doubles.

 We specify “table1” as the dimension name for all three variables because they
share this dimension.

Several related columns that can have different data types but have the same height
constitute what is commonly called a table. A dataset can contain several such tables,
possibly of different heights. For example, to store a graph in a dataset you can
create a table of node properties with one row per node and a table of edges with
two columns that have source and destination node numbers.

So far, the example creates “table1”, which consists of three columns.

Lines 38–44 add metadata to the Model variable:

 The metadata includes numeric values for the coefficients that will be used to
generate model values.

 The resulting file becomes a self-descriptive package that contains both the data
and information about how the data was produced.

Introduction to Scientific DataSet - 24

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

In lines 45–50, the program writes the data itself to the dataset in a loop, row by row,
by using the Append method. Append adds data to an existing variable. The following
shows the final output dataset summary:

msds:csv?file=Results.csv&openMode=create
[18]
DSID: bb322951-7ae5-40db-a314-b1377b12b9b3
[3] Model of type Double (table1:10)
[2] Observation of type Double (table1:10)
[1] X of type Double (table1:10)

You can see that all three variables have the length of 10. What is more interesting is
the version number of 18. This needs more explanation.

Version Numbers

We have already mentioned that Scientific DataSet increments the dataset version
number each time the dataset changes. For example, the call to the Add method in
line 35 of Listing 3 increments it by one, as do the calls to Add and PutAttr in lines
36–44. Therefore, by the start of the output loop, the version number is 8. The loop
repeats 10 times, and each iteration contains three calls to the Append method.

Why does the version increase to 18 and not to 38? Consider the first iteration of the
loop:

 At the beginning all three variables are empty and their lengths equal zero.

 Now we call Append for variable X. Thus, we propose to increase its length to
one.

 Scientific DataSet receives this proposal but does not make the change, because
the shared dimension constraint requires that variables X, Observation, and
Model have equal length.

Increasing the length of variable X without increasing the length of Observation and
Model would result in lengths of 1, 0, and 0, respectively. This is a normal situation
when working with datasets and not an exception. Scientific DataSet does not change
the dataset immediately; instead, it keeps our proposal in its proposed changes list.

When we call the Append method for the second time:

 Scientific DataSet considers our second proposed change together with the
previously saved one.

 Now the lengths of the variables would be 1, 1, and 0, so the shared dimension
constraint is still not satisfied.

After the third call to the Append method in Listing 3, the proposed set of changes
results in a length of 1 for each of the three variables. So Scientific DataSet finally
commits the changes and increments the version number. Thus, the program makes
only one commit per iteration.

Checking for Uncommitted Changes

What happens if by mistake you do not fill the whole table row?

To experiment with not filling the whole table row

 Comment out line 49 in Listing 3 and then run the program again.

Introduction to Scientific DataSet - 25

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

You will see the following summary for the output dataset, and the file itself will
contain no data:

msds:csv?file=Results.csv&openMode=create
[8]*
DSID: 5b92850c-2dc3-4d57-9981-1bcca3110ef7
[3]* Model of type Double (table1:0)
[2]* Observation of type Double (table1:10)
[1]* X of type Double (table1:10)

The asterisk after the version number indicates that the dataset has uncommitted
proposed changes, and an asterisk after a variable ID indicates that the same is true
for that variable. It is a good practice to check whether all changes have been
committed before program exit. Uncommitted changes usually indicate some error in
your program.

The HasChanges property for the output dataset is true if uncommitted changes are
present. You can add the following to the sample to throw an exception if
uncommitted changes are present:

if (output.HasChanges)

 throw new sds.ConstraintsFailedException("Uncommitted data "

 + "remain in output dataset");

Disabling Automatic Commits

Automatic commit of all the proposed changes sometimes introduces a significant
performance penalty. For example, with each change in a CSV file, Scientific DataSet
creates a new file, writes all the data and metadata in the file, and then deletes the
previous version. This is the most robust way to change the file, but it can take
considerable time if the file is large or requires many small changes.

You can easily disable automatic commits.

To disable automatic commits

 Use the following statement in your program:

output.IsAutocommitEnabled = false;

Starting from the point at which the statement appears, Scientific DataSet keeps all
the proposed changes in memory and tries to implement them in the dataset when
you call the Commit method.

To call the Commit method

 Use the following statement in your program:

output.Commit();

Before you call the Commit method, you must ensure that your proposed changes
collectively satisfy all shared dimension constraints. If not, the method throws an
exception.

Introduction to Scientific DataSet - 26

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Exercise 6: Use the NetCDF Provider with Large Datasets

The Scientific DataSet library can read and write data in multiple data formats
without any change to program code. The following example shows how to ask
Scientific DataSet to write to the NetCDF format.

To write results from the example in Listing 3 into a binary NetCDF file

 In Visual Studio, change the parameters on the Debug tab to specify an output
file that has the .nc extension.

—OR—

 Enter the following command at the command prompt:

tutorial3 tutorial3.csv results.nc

The summary of the output dataset is similar to the one for a CSV file, except that the
provider name portion of the dataset URI specifies “nc” instead of “csv”:

msds:nc?file=Results.nc&openMode=create
[18]
DSID: 8050a43d-97cd-498f-a284-787787167106
[3] Model of type Double (table1:10)
[2] Observation of type Double (table1:10)
[1] X of type Double (table1:10)

The NetCDF portable binary format has a significant overhead for small datasets, but
it is very efficient for storing larger datasets. For more information about the NetCDF
format, see the Unidata Web site, which is listed in “Resources” at the end of this
paper.

We will illustrate the use of the NetCDF provider by using the file air.mon.mean.nc as
an example. This 126-MB file is an output of the U.S. National Centers for
Environmental Protection-Department of Energy (NCEP-DOE) Reanalysis 2 project.
The file is available from the NCEP-DOE project data server. For more information
about NCEP-DOE or to download the file, see “Resources” at the end of this paper.

Let’s first explore the contents of the file by using the Sds command-line utility, which
is provided with Scientific DataSet.

To display a summary of a file’s contents

 Run Sds from the command prompt and specify the target NetCDF file, as follows:

Sds air.mon.mean.nc

The command displays the following output:

[6] air of type Int16 (time:372) (level:17) (lat:73) (lon:144)
[5] time_bnds of type Double (time:372) (nbnds:2)
[4] time of type Double (time:372)
[3] lon of type Single (lon:144)
[2] lat of type Single (lat:73)
[1] level of type Single (level:17)

The Sds utility takes a Scientific DataSet file path or URI as a parameter and displays a
list of the variables in the file. In the example output, you can see that the file
contains the 4-dimensional variable air, which shares its dimensions with five other
variables in the dataset.

Introduction to Scientific DataSet - 27

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

To get more information about the contents of the air.mon.mean.nc file

 Print the metadata for the whole dataset, using the following command:

Sds meta air.mon.mean.nc

The command displays the following output:

 Name = air.mon.mean.nc
 Conventions = CF-1.0
 title = Monthly NCEP/DOE Reanalysis 2
 history = created 2002/03 by Hoop (netCDF2.3)
 comments = Data is from
NCEP/DOE AMIP-II Reanalysis (Reanalysis-2)
(4x/day). It consists of most variables interpolated to
pressure surfaces from model (sigma) surfaces.
 platform = Model
 source = NCEP/DOE AMIP-II Reanalysis (Reanalysis-2) Model
 institution = National Centers for Environmental Prediction
 references = http://wesley.wwb.noaa.gov/reanalysis2/
http://www.cdc.noaa.gov/cdc/data.reanalysis2.html

 Print the metadata for an individual variable by using the following command:

Sds meta air.mon.mean.nc air

This command displays the following output:

[6] air of type Int16 (time:372) (level:17) (lat:73) (lon:144)
 Name = air
 long_name = Monthly Air Temperature on Pressure Levels
 valid_range = -32765 -10260
unpacked_valid_range = 137.5 362.5
 actual_range = 179.4077 315.7219
 units = degK
 add_offset = 465.15
 scale_factor = 0.01
 missing_value = 32766
 _FillValue = -32767
 precision = 2
least_significant_digit = 1
 GRIB_id = 11
 GRIB_name = TMP
 var_desc = Air temperature
 dataset = NCEP/DOE AMIP-II Reanalysis (Reanalysis-2) Monthly Averages
 level_desc = Pressure Levels
 statistic = Individual Obs
 parent_stat = Other

Next Steps

Now that you have a sense of what Scientific DataSet can do and how to use it, you
can start to use it in your computational programs. For example, using your own data
files:

 Add computed data to a CSV or NetCDF file.

 Create a visualization by using the DataSet Viewer.

 Add VisualHints metadata to a CSV file to describe the appropriate visualizations
for your data.

 Perform iterative dataset writes using the Append method.

The current release of Scientific DataSet supports the following features:

 Virtualized access to heterogeneous scientific data sources

Introduction to Scientific DataSet - 28

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

 CSV and NETCDF data provider

 Ability to extend Scientific DataSet with your own providers

 Dataset Viewer

 Add-in data editor for Microsoft Excel

As we continue to develop Scientific DataSet, we are investigating the following
additional features:

 The ability to work within a distributed environment

 Inspectable datasets

 More providers

For updates, tools, and discussion, see the Scientific DataSet project Web site, which
is listed in “Resources.”

For more details about Scientific DataSet capabilities, see the Scientific DataSet
Help.chm file.

Introduction to Scientific DataSet - 29

Version 1.2 – June 4, 2010
© 2010 Microsoft Corporation. All rights reserved.

Resources

This section provides links to software and additional information.

Scientific Dataset Library, Tools, Documentation and Discussion

Scientific DataSet Project Site
http://research.microsoft.com/projects/sds

Software and Tools for Computational Science
http://research.microsoft.com/groups/science/software.aspx

Software

The following software packages are available to download at no charge from
Microsoft:

Microsoft .NET Framework 3.5 Service Pack 1
http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-
413D-8319-81DA479AB0D7

Microsoft Visual C# 2008 Express Edition
http://www.microsoft.com/express/Windows/

See the Visual C# Developer Center on MSDN at
http://msdn.microsoft.com/vcsharp/

Data Formats and Providers

NCEP-DOE Project data server
The data file air.mon.mean.nc is available at the following address:
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis2.derived/pressure/air.mon.mea
n.nc

NCEP-DOE Reanalysis 2 Summary
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html

NetCDF on the Unidata Web Site
http://www.unidata.ucar.edu/software/netcdf/

Unidata Common Data Model
http://www.unidata.ucar.edu/software/netcdf-java/CDM/

http://research.microsoft.com/projects/sds
http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-413D-8319-81DA479AB0D7
http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-413D-8319-81DA479AB0D7
http://www.microsoft.com/express/Windows/
http://msdn.microsoft.com/vcsharp/
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis2.derived/pressure/air.mon.mean.nc
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis2.derived/pressure/air.mon.mean.nc
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf-java/CDM/

	The Challenge: A Common Data Model
	Introducing Scientific DataSet
	About this Document
	About Scientific DataSet

	Scientific DataSet Architecture and Data Model
	Installing the Scientific DataSet Package
	Prerequisites
	Installation

	A Walkthrough: Using Scientific DataSet in Your Programs
	Exercise 1: Add a Column to a CSV File
	Supplying a Variable Name and Type of Data
	Creating Variables by Calling the Add Method
	Using Variable IDs Instead of Variable Names
	Reading a Modified DataSet File

	Exercise 2: Use the DataSet Viewer in Your Program
	Exercise 3: Express Relationships between Variables as Shared Dimensions
	Exercise 4: Store Descriptive Metadata for Variables and Datasets
	Exercise 5: Perform Transactional Updates
	Opening a Dataset by Using a URI
	Updating the File
	Version Numbers

	Checking for Uncommitted Changes
	Disabling Automatic Commits

	Exercise 6: Use the NetCDF Provider with Large Datasets

	Next Steps
	Resources
	Scientific Dataset Library, Tools, Documentation and Discussion
	Software
	Data Formats and Providers

