
Installation manual and quick start guide.

Author: PerceiveIT Limited
Version: 0.8
Status: Beta Release
Date: 26 March 2013

http://www.scryber.co.uk

Installation manual and quick start guide 26 Mar 2013

Congratualtions on downloading Scryber

Scryber has got to be the easiest and best way to generate dynamic pdf documents on the .NET platform.
You start by defining your document content in XML, add some styles to it, even bind to some external data,
and once done render it to a file or out onto a stream with 2 lines of code.

It's now just as easy to create consistently styled documents as it is web pages, when the content changes, so
can your documents.
Product catalogs, invoices, contracts, instruction manuals, articles and more. Everything can be generated as a
document your users can download, save, add to their files or iPad reading list. This is not about printing this is
about storing, preserving and reporting.

Scryber is Open Source under LGPL so you can include it in your own commercial applications / sites free of
charge (See 'About the badge').
Scryber is also easy to extend, with full code support you can push in new components and alter the complete
layout, before rendering.
And if that is not sufficient you can even write your own components, and include in the xml.

About this document

This document takes you through the installation of the Scryber libraries and getting you set up generating your
first pdfs.
All the examples and screen shots are based around Visual Studio 2010, but Scryber is simply a bunch of
libriaries, and you can use them on any .NET solution and development environment of your choice.
By the end of the guide you should be able to create new documents, add pages to the document, and add
content to those pages with styles and layout options.
A complete set of guides is being created at http://www.scryber.co.uk and there is also a forum to ask all the
questions you need.

Release status

Scryber is still, very definitely, in beta release. There are lots of things that may not give you the layout you are
expecting, and you may also find bugs and errors occuring (although we hope there are not too many, and the
messages are good).
Please be aware that if you do decide to take something to a fully loaded production platform - you may regret
it, but if you get the results you want and it works for you, then enjoy!

Page 2 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Install files

You should have already extracted the zip
archive that contains the installer, along with
this guide.
If you haven't already done so, execute the
installer
If you use Visual Studio 2010 - check the
Visual Studio 2010 option,
If you use Visual Studio 2012 - check VS
2012
If you don't use VS then you do not need to
choose either, but you will need to copy the
templates to your solution folder when
required.

Assemblies
There are 7 assemblies (dll's) that make up the core of Scryber, and all work together to generate PDF's. When
you want to use Scryber in a project is it usually easier to just reference all the libraries.
They are fully signed and the installer will add them to the GAC by default.

All the assemblies are currently built against .NET 3.5. If you want to reference them in .NET 4+ then you may
need to alter your application configuration to support dual mode execution.

Templates
The 'Templates' are added to your visual studio templates directory and the installation directory. They contain
pre-formed xml documents that can be added to your projects quickly and easily. There are 4 in total each
named appropriately.

Document.pdfx - a top level document
Page.ppfx - a page that can be referenced from any document
Component.pcfx - a single component that can be added to pages
Styles.psfx - an external styles collection that can be referenced from any document

Whilst the file extensions do not provide any extra capability currently, it is a convention that you should
observe for future compatibility. The content of Document.pdfx is shown below - and this would render a
perfect little 'Hello World'.

<?xml version="1.0" encoding="utf-8"?>
<pdf:Document auto-bind="true"
xmlns:pdf="Scryber.Components, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:style="Scryber.Styles, Scryber.Styles, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:data="Scryber.Data, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe" >
<Pages>
<pdf:Page id="MyFirstPage" >
<Content>
Hello World
</Content>
</pdf:Page>
</Pages>
</pdf:Document>

During this guide we will be using the templates exclusively to add new scryber components to the project.

Page 3 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Schema's

The XSDs are very important! There are 5 of them, and they work together to help you write structured
documents, pages and components without knowing what fits where. All Xml editors should be able to read
and understand these schemas so that when you try to add a component you can see where it should go.
This is a key feature of Scryber! The schemas are not just about intellisense, they also actually relate the xml to
the components and their capabilities.
The namespace for the schemas defines the namespace for the libraries, and we will touch on this capability
later on in the guide!

The visual studio installers add the files to the XML/Schemas directory so Visual Studio can find them, along
with the installation path. The vanilla installer will only install the schemas in the installation path.
Now when you create a document, page, component or style sheet you will have intellisense to add the things
you need where you need them.

Configuration

The Configuration directory of the instalation path contains a single .config file.
This is simply there as assistance to adding to your own project configuration file. If you want to alter the
logging, include non-standard fonts, custom image types or your own components then you will need to edit
the configuration.
We will not be using these sections for this guide, but there are other guides that cover the sections that you
need to add.

Summary

We should now have the dll's in a place where they can be easily added to projects, the templates accessible,
and the schema files (XSDs) accessible to your development environment.

So we are now ready to move on to actually creating PDF documents.

Page 4 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

My First PDF

Let's create our first pdf! If you are not using Visual Studio then it should be possible to follow along using
your own knowledge or your development environment and specific passages in this section.
We are going to be doing this in a web application rather than a forms application, but the process is almost
exactly the same, and we will highlight the changes at the end of the tutorial.

Create a new project

Let's start with a nice clean project, so from Visual Studio, close any
existing solution and Add a New Project.
1. From the dialog choose the .NET Framework 3.5 from the top combo
box. And then the web application project, and save it to a useful place.
This will create the project and a default.aspx page and a bunch of other
stuff.
2. Let's keep all our PDFs in a folder of their own, so select project first,
then Project (or website) -> Add folder, and call it PDFs..
3. And finally lets add Document.pdfx to our folder with a right click on the
folder and from the pop up menu choose Add New Item... Choose the
Scryber category on the right and select the Document.pdfx item.

This will add a new document to our PDFs folder and add the required
references.

Set up the page

What we need to do now is generate the actual pdf file based on the contents of Document.pdfx
Let's do this when a button is clicked on the web page. So.. Open the Default.aspx page in the Visual Studio
html source editor (if it's not already). And add a button like below.

<asp:Button runat="server" Text="Click Me!" ID="GeneratePDF" OnClick="Page_GeneratePDF" />

We need to respond to the click event in our page code behind. So open Default.aspx.cs (.vb) and add a using
for Scryber.Components, plus the handler below, after the page load method.
For C#....

using Scryber.Components;
.
.
.
protected void Page_GeneratePDF(object sender, EventArgs e)
{

PDFDocument doc = PDFDocument.ParseDocument("./App_Data/PDFs/Document.pdfx");
doc.ProcessDocument(this.Response);

}

All the source code is available in Appendix A for this first version.

Page 5 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Hit the button

So all we do now is run our project.
Our page should open in a browser and we can click the
button.
You should then be prompted to open Document.pdf in
your favourite PDF Viewer.

Open it and 'Hello World' will appear.
There you have it, your first PDF document flying over
the network to greet you in just 2 lines of code.

Page 6 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Adding some document content.

So that's OK, but we haven't actually created any content.
Rather than simply typing lines out or pushing in lorem ipsum, we will do some data binding with Scryber that
shows off the dynamic capabilities of the libraries, as well as give us some valuable content.
So let's do some cool stuff!

Where's our data coming from.
The data can be any XML data structue - from a data set, or loaded from a file, but for this exmple the BBC
produce a great rss feed for technology and it is also a good starting point for geting some generic information
into the pdf document. http://feeds.bbci.co.uk/news/technology/rss.xml
The feed is a standard rss feed, but has all the good things that make this a relevant test.

Dynamic uncontrolled input.
A reasonable amount of varied data
A standard structure.

If you want to look at the xml structure, follow the link above.

Layout some basic content
The first thing we need to do is put some features on the document. Scryber supports a simple set of
components that can be built up into complex layouts similar to HTML. There are div's, spans, inline text,
labels, panels, images, lines and drawings - all of which can be styled and positioned inline, as a block,
relativly or even absolutely.
So for the content we are going to have a heading block with some textual elements in it. So remove the'Hello
World' text and add the elements as below.

Page 7 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Reference the RSS feed
If you are unfamiliar with Xml or XPath then don't worry, you will still be able to follow along.
First thing is to add a new XML Data source into the Document.pdfx.

We can then wrap a for each loop atound the
heading Div that will enumerate over the one
rss/channel element in the feed to generate the
content. The text of the headings and labels are
then changed to bind based on the {xpath:...}
value for the attribute.
Hit your 'Click Me!' button again, as there is no
need to rebuild, and you should generate a new
pdf with some new dynamic content.

We can see the content being brought in from the RSS feed and flowing nicely around the page.
If your machine does not have direct access to the internet, download the feed and save it somewhere in your
project. You can change the source-path in the Xml data source to a local file reference.

Page 8 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Bringing in the items

Top title is done, but we now need to include all the RSS feed 'items' into the page as well.
We can do this by simply including another for each loop inside the rss/channel as below. We do not need to
specify the datasource as we have an existing data context.

We are wrapping each item in 2 Div
tags with style:class attributes on them,
and the whole thing is wrapped in an
outer div with another style class. This
will be used a little later on - don't
forget to add it.

All being well, we should end up with a
single page of content that flows down
to the bottom of the page.

Page 9 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Overflow onto a new page

So why does it block? The pdf:Page component is set by default not to allow content to overflow, and
therefore will only be a single rendered page.
There is however, a different component that does overflow pdf:Section. If we change the page
component to a section component we should see a different result.
Change it now at the top and bottom and hit 'Click Me!'.

A quick review

Great - we now have a PDF document that is reaching out for external content and this is binding with XPath
into headings and labels and flowing nicely into a series of pages.

But, boy is it UGLY! Let's give this document some style.

Page 10 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Bring on the Style

Scryber has very comprehensive style support. All the information about how to render a page and it's
components is driven from styles, so let's add some to this document.
Above the Pages element add a new 'Styles' element to the page. Within this element we can either add styles
within the XML directly, or add one or more references to external style documents. The content is exactly the
same.
Because we may want to use our styles on more than one PDF for a consistent look and feel, we'll create an
external file.

Add the reference

Within your project, right click on the PDFs folder and choose 'Add Existing Item'. Navigate to the templates
directory and choose the Styles.psfx.
Within the Document.pdfx Styles element add a Style-Ref element and point it to our new Styles file.

Add the definitions
We can see that there is already a style declared in
this file that will be applied to all components of
type Page specifying a size and orientation.
So let's add to this style and give the page some well
needed margins.
And while we're at it, we can add a new Style
definition for the class 'heading' that our main title
block in the document was declared with.
Hit the button again to see what difference this has
made.

Page 11 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

So What just happened!
When we hit the button, the Document.pdfx file was parsed. Within that file is a reference to this Styles.psfx
file, so this was also parsed and included in the document.
When we came to process the document, each component had a full style built based upon these style
declarations.

Because our pdf:Section is actually a page (PDFSection inherits from the PDFPage) then it had the pdf:Page
style definition applied to it.
Our Div on the other hand has a 'heading' class declared on it, and all the attributes defined on the style were
applied to this Div.
Some of these styles will also cascade down to inner components (e.g. the Font size and style).
Inside our heading Div we have text and labels that are now being rendered at 12 point bold.
The H1 component is actually defined with a base style that has a Font size and style set on it, so these
'heading' options were overridden, but the centre alignment was not overridden.

Styles are a complex subject and rely on a number of capabilities, but we hope this serves as a little
introduction.

A note about units and color
Within the content of the style there are a number of attributes that accept measurement units and colors.
Units are real numbers optionally postfixed with a scale. The supported scales are..

Points (pt). The standard unit of measurement for PDF documents and the default unit. If no scale is provided
then it will be assumed the measurement is in Points. 72pt = 1 inch.

Inches (in). The postfix must be 'in' e.g. 2.5in. A double quote notation is not supported.

Millimeters (mm). The postfix must be 'mm'. 25.4mm = 1 inch.

The pixel is not a supported scale as the layout is not represented on screen dimensions and the percentage
notation is also not supported as the page size is a known dimension.
The style:Postion element does, however, support a boolean 'fill-width' attribute to push sizing to the container
width.

Colours can be identified as one of the known standard 16 colors, or by their hexadecimal notation.
If the notation is 2 characters it is assumed to be grayscale (#FF white, #77 gray, #00 black).
If the notation is 3 characters it is assumed to be RGB short (#FFF white, #F00 red, #000 black).
If the notation is 6 characters it is the full RGB notation (#FFFFFF white #FF0000 red, #000000 black).

Colors can also be defined in G, RGB or HSL decimal notation in the format G(255) or RGB(255,255,255) or
HSL(0,0,100) which all denote white. All other formats will throw an exception.

Page 12 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Styling the items in the feed
So let's add a little style to the items that come back in the feed and see what we can do with this.

This is starting to look pretty cool. What say we add some images and links?

Page 13 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Add some images and links

Adding images is easy, and the BBC feed gives us a logo and an link to include in our feed under the image
element of the channel.

Back in our Document.pdfx in the heading Div, let's put in an If test to make sure that we have an image on
this feed and then we can build a link to a Uri with an image as the content.
Hit the button one more time to generate the document and you should be able to click the image and it will
take you to the technology news page.
Pretty Sweet, and we didn't even have to adjust any other components - it all just flowed!

Page 14 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Secure the files

This is good, and ready to show the client, but there are the more mundane tasks to undertake first.
At the moment the Document.pdfx and the Styles.psfx are actual files on the disk. Therefore they can be served
by IIS and will just return to the client the xml content of the file.
We need to block this content from being served (Or provide a mechanism that will serve the generated
content).
Back in the scryber installation directory there was a configuration directory, and within there a Scryber.config
file.

Open this config file and copy the content within the system.Web/httpHandlers to your config file

<add path="*.psfx" verb="*" type="System.Web.HttpForbiddenHandler" />
<add path="*.ppfx" verb="*" type="System.Web.HttpForbiddenHandler" />
<add path="*.pcfx" verb="*" type="System.Web.HttpForbiddenHandler" />
<add path="*.pdfx" verb="*" type="System.Web.HttpForbiddenHandler" />

And copy the content within the system.webServer/handlers to your config file.

<add name="Scryber.Styles" path="*.psfx" verb="*" type="System.Web.HttpForbiddenHandler" />
<add name="Scryber.Components.Page" path="*.ppfx" verb="*" type="System.Web.HttpForbiddenHandler" />
<add name="Scryber.Components.UserComponent" path="*.pcfx" verb="*" type="System.Web.HttpForbiddenHandler" />
<add name="Scryber.Components.Document" path="*.pdfx" verb="*" type="System.Web.HttpForbiddenHandler"/>

If you want to be doubly safe the put <remove... /> elements above these in the config file. You may also need
to make IIS pass requests through for these file extensions rather than handling them directly, depending on
which version of IIS you are using and whether the application is set up as integrated pipeline.

Page 15 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Just a few small changes

It was all going so well and we showed the document to the client, and they were over the moon.
But there were just a few changes in the feedback...
1. That blue is corporate color, but doesn't fit well with the red of the BBC logo. Can we make the borders (the
same) red.
2. The bottom border should also be on the heading.

Pretty minor all in all. Oh, and they also found out that a lot of their clients read the science feed rather than
technology feed. So can we offer them the choice of download!

Adjust the style

Well we already know we are going to be building some more PDFs with that blue color, so let's add the red
style explicitly to the document.
We can simply extend the existing styles or add more than one style to specific components. This is one
solution to the requirements...

Again all the source code is available to copy and paste in Appendix B for this first version.
Sorted for the styling, but what about that extra feed! We are going to need to go back to our Default.aspx page
for that.

Page 16 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Change the document in code

Let us add a second button to our aspx page, and have both buttons raise a Command event, so we know what
is required - Science or Technology.

We now have 2 commands coming to our event, and based on that we can change the feed.

Well, let's render and see what happens when we choose Science...

This is quite a big thing! It not only means that the layout is dynamic, we knew that.
But it also means that the parsing of a document creates components that can be manipulated.
And that we can programatically add or remove components to that document as we require.

So how does the parser know which component it is to be created then?
All the xml files have namespaces that are references to .NET Namespaces and Assemblies.
The parser looks at the XML elements and identifies their runtime Type based on the assembly and namespace.
And the classes decorated with the [PDFParsableComponent(..)] attribute can be parsed from the document
This means... you can create your own components and include them within the xml. They will be created and
included as part of the document, without changing the scryber source code. Enjoy!

Page 17 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

A bit about the badge

You may have noticed that scryber includes a badge on every page - Generated by scryber.
We have thought long and hard about how to release this library. We want to put it out there, we want people
to use it. We have also spent a long time developing scryber, investing a lot of time and effort, and we think
this is the best way we can continue to work on scryber.
It stays open source under LGPL. Everyone has access, everyone can use it and no one has to pay for it, and it
puts a badge on the page so everyone can see where it came from, and may be use it themselves.

If you need to remove the badge, or have a client that wants it removed then we'd really like you to buy a small
licence file from us that will remove the badge at www.scryber.co.uk, otherwise you can get your hands dirty
in the code and remove the badge rendering from the page.

We obviously prefer the former, and we hope to create extensions / plugins that support the same capability
(freely available, but licence is required for badge removal). We also hope that others, including yourselves,
will create plugins with the same capability.

If you do remove the code to render the badge, the LGPL says you can do that - if it's for internal use, or you
also release under LGPL.
But you will have to invest effort in keeping it up to date with the scryber releases.

We like the badge, and we like scryber, and we like it open source.

What's Next

This has been a pretty deep dive into the capabilities of scryber. Documents, pages, components, styles,
binding and code has all been touched on.
And we hope you have enjoyed it.
There are still a lot more things you can do with scryber - component positioning, embedded fonts, background
images, referenced components, creating your own components. But we hope this has been enough to spark
your interest.
There are also still lot's more things we want to do with scryber - improve flow across regions, fix relative
postioning on full width, and other gripes...
Plus - tables, lists, SQL/Object sources, graphs, text/rtf import, SVGL, unicode, security, zipped streams,
forms, and many nore extensions.

The best resource for finding out about scryber, and asking questions is http://www.scryber.co.uk/.
Documentation is still very light whilst we are in Beta phase, but it's growing.

Get yourself over there, take a look around, and contribute!

Page 18 of 23 Copyright 2013 PerceiveIT Ltd

http://www.scryber.co.uk
http://www.scryber.co.uk

Installation manual and quick start guide 26 Mar 2013

Appendix A: Source code v1 (Blue)

Here's the source for all 4 files created with the this example.

Default.aspx

<form id="form1" runat="server">
<div>

<asp:Button runat="server" Text="Click Me for Tech!" ID="GenerateTechPDF"
OnClick="Page_GeneratePDF" />

</div>
</form>

Default.aspx.cs

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
protected void Page_GeneratePDF(object sender, EventArgs e)
{

PDFDocument doc = PDFDocument.ParseDocument("./App_Data/PDFs/Document.pdfx");
doc.ProcessDocument(this.Response);

}
}

Page 19 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Document.pdfx

<?xml version="1.0" encoding="utf-8"?>
<pdf:Document xmlns:pdf="Scryber.Components, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:style="Scryber.Styles, Scryber.Styles, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:data="Scryber.Data, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
auto-bind="true" >
<Styles>
<style:Styles-Ref source="../PDFs/Styles.psfx" />

</Styles>
<Pages>
<pdf:Section id="MyFirstPage" >
<Content>

<data:XMLDataSource id="BBCRss"
source-path="http://feeds.bbci.co.uk/news/technology/rss.xml" cache-duration="5" >
</data:XMLDataSource>

<data:ForEach select="rss/channel" datasource-id="BBCRss" >
<Template>
<pdf:Div style:class="heading" >
<pdf:H1 text="{xpath:title}"></pdf:H1>
<pdf:Label text="{xpath:description}" />

Date: <pdf:Label text="{xpath:lastBuildDate}" />
</pdf:Div>

<pdf:Div style:class="content" >
<data:ForEach select="item" >
<Template>
<pdf:Div >
<pdf:Div style:class="rss-item-data" >
<pdf:H2 text="{xpath:title}" ></pdf:H2>
<pdf:Label text="{xpath:description}" />
</pdf:Div>
</pdf:Div>

</Template>
</data:ForEach>
</pdf:Div>

</Template>
</data:ForEach>

</Content>
</pdf:Section>
</Pages>
</pdf:Document>

Page 20 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Styles.psfx

<style:Styles xmlns:pdf="Scryber.Components, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:style="Scryber.Styles, Scryber.Styles, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:data="Scryber.Data, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
>

<style:Style applied-type="pdf:Page" >
<style:Page size="A4" orientation="Portrait"/>
<style:Margins left="20pt" bottom="40pt" right="20pt" top="15pt"/>
</style:Style>

<style:Style applied-class="heading" >
<style:Border color="#00FFFF" width="1pt" sides="Top Left Right" />
<style:Background color="#EEEEEE"/>
<style:Padding all="10pt"/>
<style:Margins top="20pt" bottom="20pt"/>
<style:Position h-align="Center"/>
<style:Font bold="true" size="12pt" />
</style:Style>

<style:Style applied-type="pdf:Div" applied-class="content" >
<style:Columns count="2" alley-width="20pt"/>
<style:Font size="12pt" bold="false" italic="false" />
</style:Style>

<style:Style applied-type="pdf:H2" >
<style:Font size="14pt" />
<style:Fill color="#00FFFF"/>
</style:Style>

<style:Style applied-type="pdf:H1" >
<style:Fill color="#00FFFF"/>
</style:Style>

<style:Style applied-class="rss-item" >
<style:Margins bottom="10pt"/>
<style:Padding bottom="3pt"/>
<style:Border color="#00FFFF" sides="Bottom" width="1pt"/>
</style:Style>

</style:Styles>

Page 21 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Appendix B: Source code v2 (Red)

Here's the source for the 3 modified files updated for the red style (with the changes highlighted in red)

Default.aspx

<form id="form1" runat="server">
<div>

<asp:Button runat="server" Text="Click Me for Tech!" ID="GenerateTechPDF"
OnCommand="Page_GeneratePDF" CommandName="Technology" />

<asp:Button runat="server" Text="Click Me for Science!" ID="GenerateSciencePDF"
OnCommand="Page_GeneratePDF" CommandName="Science" />

</div>
</form>

Default.aspx.cs

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
protected void Page_GeneratePDF(object sender, CommandEventArgs e)
{

string path = string.Empty;

if (string.Equals(e.CommandName, "Science"))
path = "http://feeds.bbci.co.uk/news/science_and_environment/rss.xml";

else if (string.Equals(e.CommandName, "Technology"))
path = "http://feeds.bbci.co.uk/news/technology/rss.xml";

PDFDocument doc = PDFDocument.ParseDocument("./App_Data/PDFs/Document.pdfx");
Scryber.Data.PDFXMLDataSource src = doc.FindAComponentById("BBCRss") as
Scryber.Data.PDFXMLDataSource;

if (null != src && !string.IsNullOrEmpty(path))
src.SourcePath = path;
doc.ProcessDocument(this.Response);

}
}

Page 22 of 23 Copyright 2013 PerceiveIT Ltd

Installation manual and quick start guide 26 Mar 2013

Document.pdfx

<?xml version="1.0" encoding="utf-8"?>
<pdf:Document xmlns:pdf="Scryber.Components, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:style="Scryber.Styles, Scryber.Styles, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
xmlns:data="Scryber.Data, Scryber.Components, Version=0.8.0.0, Culture=neutral, PublicKeyToken=872cbeb81db952fe"
auto-bind="true" >
<Styles>
<style:Styles-Ref source="../PDFs/Styles.psfx" />

<style:Style applied-class="heading" >
<style:Border color="#971B1E" sides="Top Left Bottom Right"/>
</style:Style>

<style:Style applied-class="red-text" >
<style:Fill color="#971B1E" />
</style:Style>

<style:Style applied-class="red-underline" >
<style:Border color="#971B1E" />
</style:Style>
</Styles>
<Pages>
<pdf:Section id="MyFirstPage" >
<Content>

<data:XMLDataSource id="BBCRss"
source-path="http://feeds.bbci.co.uk/news/technology/rss.xml" cache-duration="5" >
</data:XMLDataSource>

<data:ForEach select="rss/channel" datasource-id="BBCRss" >
<Template>
<pdf:Div style:class="heading" >
<data:If test="string-length(image/url) > 0" >
<Template>
<pdf:Link action="Uri" file="{xpath:image/link}" new-window="true" alt="{xpath:image/title}">
<Content>
<pdf:Image src="{xpath:image/url}" style:width="{xpath:image/width}" style:padding="10" />
</Content>
</pdf:Link>
</Template>
</data:If>
<pdf:H1 style:class="red-text"text="{xpath:title}"></pdf:H1>
<pdf:Label text="{xpath:description}" />

Date: <pdf:Label text="{xpath:lastBuildDate}" />
</pdf:Div>

<pdf:Div style:class="content" >
<data:ForEach select="item" >
<Template>
<pdf:Div style:class="rss-item red-underline">
<pdf:Div style:class="rss-item-data" >
<pdf:H2 style:class="red-text"text="{xpath:title}" ></pdf:H2>
<pdf:Label text="{xpath:description}" />
</pdf:Div>
</pdf:Div>

</Template>
</data:ForEach>
</pdf:Div>

</Template>
</data:ForEach>

</Content>
</pdf:Section>
</Pages>
</pdf:Document>

Page 23 of 23 Copyright 2013 PerceiveIT Ltd

	Cover Page
	Title

	Congratulations
	About this document
	Release status
	Install files
	Assemblies
	Templates
	Document.pdfx
	Xsd Schemas
	Config Files
	Summary

	My First PDF
	Create a new project
	Set up the page
	Hit the Button

	Add some content
	Layout some basic content
	Reference the RSS feed
	Bringing in the items
	Overflow onto a new page
	A quick review

	Bring on the Style
	Add style definitions
	What just happened!
	Units and Colors
	Styling the items

	Add Some Images and links
	Secure the files
	Just a few small changes
	Adjust the styles
	Change the document in code

	A bit about the badge
	What's Next
	Appendix A: Source code v1 (Blue)
	Default.aspx
	Default.aspx.cs
	Document.pdfx
	Styles.psfx

	Appendix B: Source code v2 (Red)
	Default.aspx
	Default.aspx.cs
	Document.pdfx

