
1/ 26

Introduction to Scheduling Theory

Arnaud Legrand

Laboratoire Informatique et Distribution
IMAG CNRS, France

arnaud.legrand@imag.fr

November 8, 2004

arnaud.legrand@imag.fr

2/ 26

Outline

1 Task graphs from outer space

2 Scheduling definitions and notions

3 Platform models and scheduling problems

3/ 26

Outline

1 Task graphs from outer space

2 Scheduling definitions and notions

3 Platform models and scheduling problems

4/ 26

Analyzing a simple code

Solving A.x = B where A is lower triangular matrix

1: for i = 1 to n do
2: Task Ti,i: x(i)← b(i)/a(i, i)
3: for j = i + 1 to n do
4: Task Ti,j : b(j)← b(j)−a(j, i)×x(i)

For a given value 1 6 i 6 n, all tasks Ti,∗ are computations done
during the ith iteration of the outer loop.

<seq is the sequential order :

T1,1 <seq T1,2 <seq T1,3 <seq . . .<seq T1,n <seq T2,2 <seq T2,3 <seq

. . .<seq Tn,n .

4/ 26

Analyzing a simple code

Solving A.x = B where A is lower triangular matrix

1: for i = 1 to n do
2: Task Ti,i: x(i)← b(i)/a(i, i)
3: for j = i + 1 to n do
4: Task Ti,j : b(j)← b(j)−a(j, i)×x(i)

For a given value 1 6 i 6 n, all tasks Ti,∗ are computations done
during the ith iteration of the outer loop.

<seq is the sequential order :

T1,1 <seq T1,2 <seq T1,3 <seq . . .<seq T1,n <seq T2,2 <seq T2,3 <seq

. . .<seq Tn,n .

4/ 26

Analyzing a simple code

Solving A.x = B where A is lower triangular matrix

1: for i = 1 to n do
2: Task Ti,i: x(i)← b(i)/a(i, i)
3: for j = i + 1 to n do
4: Task Ti,j : b(j)← b(j)−a(j, i)×x(i)

For a given value 1 6 i 6 n, all tasks Ti,∗ are computations done
during the ith iteration of the outer loop.

<seq is the sequential order :

T1,1 <seq T1,2 <seq T1,3 <seq . . .<seq T1,n <seq T2,2 <seq T2,3 <seq

. . .<seq Tn,n .

5/ 26

Independence

However, some independent tasks could be executed in parallel.
Independent tasks are the ones whose execution order can be changed
without modifying the result of the program.
Two independent tasks may read the value but never write to the
same memory location.

For a given task T , In(T) denotes the set of input variables and
Out(T) the set of output variables.
In the previous example, we have :{
In(Ti,i) = {b(i), a(i, i)}
Out(Ti,i) = {x(i)} and{
In(Ti,j) = {b(j), a(j, i), x(i)}
Out(Ti,j) = {b(j)} for j > i.

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)
for j = i + 1 to N do

Task Ti,j : b(j)← b(j)−a(j, i)×x(i)

5/ 26

Independence

However, some independent tasks could be executed in parallel.
Independent tasks are the ones whose execution order can be changed
without modifying the result of the program.
Two independent tasks may read the value but never write to the
same memory location.

For a given task T , In(T) denotes the set of input variables and
Out(T) the set of output variables.
In the previous example, we have :{
In(Ti,i) = {b(i), a(i, i)}
Out(Ti,i) = {x(i)} and{
In(Ti,j) = {b(j), a(j, i), x(i)}
Out(Ti,j) = {b(j)} for j > i.

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)
for j = i + 1 to N do

Task Ti,j : b(j)← b(j)−a(j, i)×x(i)

5/ 26

Independence

However, some independent tasks could be executed in parallel.
Independent tasks are the ones whose execution order can be changed
without modifying the result of the program.
Two independent tasks may read the value but never write to the
same memory location.

For a given task T , In(T) denotes the set of input variables and
Out(T) the set of output variables.
In the previous example, we have :{
In(Ti,i) = {b(i), a(i, i)}
Out(Ti,i) = {x(i)} and{
In(Ti,j) = {b(j), a(j, i), x(i)}
Out(Ti,j) = {b(j)} for j > i.

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)
for j = i + 1 to N do

Task Ti,j : b(j)← b(j)−a(j, i)×x(i)

6/ 26

Bernstein conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [Ber66].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

6/ 26

Bernstein conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [Ber66].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

6/ 26

Bernstein conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [Ber66].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

6/ 26

Bernstein conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [Ber66].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

7/ 26

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T ′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arc are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

7/ 26

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T ′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arc are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

7/ 26

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T ′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arc are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

7/ 26

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T ′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to N do
Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to N do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arc are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

8/ 26

Coarse-grain task graph

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be parallel, preemptable, divisible, . . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.

In the following, we will focus on simple models.

8/ 26

Coarse-grain task graph

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be parallel, preemptable, divisible, . . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.

In the following, we will focus on simple models.

8/ 26

Coarse-grain task graph

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be parallel, preemptable, divisible, . . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.

In the following, we will focus on simple models.

8/ 26

Coarse-grain task graph

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be parallel, preemptable, divisible, . . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.

In the following, we will focus on simple models.

9/ 26

Outline

1 Task graphs from outer space

2 Scheduling definitions and notions

3 Platform models and scheduling problems

10/ 26

Task system

Definition (Task system).

A task system is an directed graph G = (V,E, w) where :

I V is the set of tasks (V is finite)

I E represent the dependence constraints:

e = (u, v) ∈ E iff u ≺ v

I w : V → N∗ is a time function that give the weight (or dura-
tion) of each task.

We could set w(Ti,j) = 1 but also decide
that performing a division is more expen-
sive than a multiplication followed by an
addition.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

10/ 26

Task system

Definition (Task system).

A task system is an directed graph G = (V,E, w) where :

I V is the set of tasks (V is finite)

I E represent the dependence constraints:

e = (u, v) ∈ E iff u ≺ v

I w : V → N∗ is a time function that give the weight (or dura-
tion) of each task.

We could set w(Ti,j) = 1 but also decide
that performing a division is more expen-
sive than a multiplication followed by an
addition.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

11/ 26

Schedule and Allocation

Definition (Schedule).

A schedule of a task system G = (V,E, w) is a time function σ :
V → N∗ such that:

∀(u, v) ∈ E, σ(u) + w(u) 6 σ(v)

Let us denote by P = {P1, . . . , Pp} the set of processors.

Definition (Allocation).

An allocation of a task system G = (V,E, w) is a function π : V →
P such that:

π(T) = π(T ′)⇔

{
σ(T) + w(T) 6 σ(T ′) or

σ(T ′) + w(T ′) 6 σ(T)

Depending on the application and platform model, much more com-
plex definitions can be proposed.

11/ 26

Schedule and Allocation

Definition (Schedule).

A schedule of a task system G = (V,E, w) is a time function σ :
V → N∗ such that:

∀(u, v) ∈ E, σ(u) + w(u) 6 σ(v)

Let us denote by P = {P1, . . . , Pp} the set of processors.

Definition (Allocation).

An allocation of a task system G = (V,E, w) is a function π : V →
P such that:

π(T) = π(T ′)⇔

{
σ(T) + w(T) 6 σ(T ′) or

σ(T ′) + w(T ′) 6 σ(T)

Depending on the application and platform model, much more com-
plex definitions can be proposed.

11/ 26

Schedule and Allocation

Definition (Schedule).

A schedule of a task system G = (V,E, w) is a time function σ :
V → N∗ such that:

∀(u, v) ∈ E, σ(u) + w(u) 6 σ(v)

Let us denote by P = {P1, . . . , Pp} the set of processors.

Definition (Allocation).

An allocation of a task system G = (V,E, w) is a function π : V →
P such that:

π(T) = π(T ′)⇔

{
σ(T) + w(T) 6 σ(T ′) or

σ(T ′) + w(T ′) 6 σ(T)

Depending on the application and platform model, much more com-
plex definitions can be proposed.

12/ 26

Gantt-chart

Manipulating functions is generally not very convenient. That is
why Gantt-chart are used to depict schedules and allocations.

P1

P2

P3

Processors

Time

T1

T2

T5

T3 T4

T6 T7

T8

13/ 26

Basic feasibility condition

Theorem.

Let G = (V,E, w) be a task system. There exists a valid schedule
of G iff G has no cycle.

Sketch of the proof.

⇒ Assume that G has a cycle v1 → v2 → . . . → vk → v1. Then
v1 ≺ v1 and a valid schedule σ should hold σ(v1) + w(v1) 6
σ(v1) true, which is impossible because w(v1) > 0.

⇐ If G is acyclic, then some tasks have no predecessor. They can
be scheduled first.
More precisely, we sort topologically the vertexes and schedule
them one after the other on the same processor. Dependences
are then fulfilled.

Therefore all task systems we will be considering in the following are
Directed Acyclic Graphs.

13/ 26

Basic feasibility condition

Theorem.

Let G = (V,E, w) be a task system. There exists a valid schedule
of G iff G has no cycle.

Sketch of the proof.

⇒ Assume that G has a cycle v1 → v2 → . . . → vk → v1. Then
v1 ≺ v1 and a valid schedule σ should hold σ(v1) + w(v1) 6
σ(v1) true, which is impossible because w(v1) > 0.

⇐ If G is acyclic, then some tasks have no predecessor. They can
be scheduled first.
More precisely, we sort topologically the vertexes and schedule
them one after the other on the same processor. Dependences
are then fulfilled.

Therefore all task systems we will be considering in the following are
Directed Acyclic Graphs.

13/ 26

Basic feasibility condition

Theorem.

Let G = (V,E, w) be a task system. There exists a valid schedule
of G iff G has no cycle.

Sketch of the proof.

⇒ Assume that G has a cycle v1 → v2 → . . . → vk → v1. Then
v1 ≺ v1 and a valid schedule σ should hold σ(v1) + w(v1) 6
σ(v1) true, which is impossible because w(v1) > 0.

⇐ If G is acyclic, then some tasks have no predecessor. They can
be scheduled first.
More precisely, we sort topologically the vertexes and schedule
them one after the other on the same processor. Dependences
are then fulfilled.

Therefore all task systems we will be considering in the following are
Directed Acyclic Graphs.

14/ 26

Makespan

Definition (Makespan).

The makespan of a schedule is the total execution time :

MS(σ) = max
v∈V
{σ(v) + w(v)} −min

v∈V
{σ(v)} .

P1

P2

P3

Processors

Time

The makespan is also often re-
ferred as Cmax in the literature.

Cmax = max
v∈V

Cv

I Pb(p): find a schedule with the smallest possible makespan,
using at most p processors. MSopt(p) denotes the optimal
makespan using only p processors.

I Pb(∞): find a schedule with the smallest makespan when the
number of processors that can be used is not bounded.
We note MSopt(∞) the corresponding makespan.

14/ 26

Makespan

Definition (Makespan).

The makespan of a schedule is the total execution time :

MS(σ) = max
v∈V
{σ(v) + w(v)} −min

v∈V
{σ(v)} .

P1

P2

P3

Processors

Time

The makespan is also often re-
ferred as Cmax in the literature.

Cmax = max
v∈V

Cv

I Pb(p): find a schedule with the smallest possible makespan,
using at most p processors. MSopt(p) denotes the optimal
makespan using only p processors.

I Pb(∞): find a schedule with the smallest makespan when the
number of processors that can be used is not bounded.
We note MSopt(∞) the corresponding makespan.

14/ 26

Makespan

Definition (Makespan).

The makespan of a schedule is the total execution time :

MS(σ) = max
v∈V
{σ(v) + w(v)} −min

v∈V
{σ(v)} .

P1

P2

P3

Processors

Time

The makespan is also often re-
ferred as Cmax in the literature.

Cmax = max
v∈V

Cv

I Pb(p): find a schedule with the smallest possible makespan,
using at most p processors. MSopt(p) denotes the optimal
makespan using only p processors.

I Pb(∞): find a schedule with the smallest makespan when the
number of processors that can be used is not bounded.
We note MSopt(∞) the corresponding makespan.

15/ 26

Critical path

Let Φ = (T1, T2, . . . , Tn) be a path in G. w can be extended to
paths in the following way :

w(Φ) =
∑n

i=1 w(Ti)

Lemma.

Let G = (V,E, w) be a DAG and σp a schedule of G using p
processors. For any path Φ in G, we have MS(σp) > w(Φ).

Proof.

Let Φ = (T1, T2, . . . , Tn) be a path in G: (Ti, Ti+1) ∈ E for 1 6
i < n. Therefore we have σp(Ti)+w(Ti) 6 σp(Ti+1) for 1 6 i < n,
hence

MS(σp) > w(Tn) + σp(Tn)− σp(T1) >
n∑

i=1

w(Ti) = w(Φ) .

15/ 26

Critical path

Let Φ = (T1, T2, . . . , Tn) be a path in G. w can be extended to
paths in the following way :

w(Φ) =
∑n

i=1 w(Ti)

Lemma.

Let G = (V,E, w) be a DAG and σp a schedule of G using p
processors. For any path Φ in G, we have MS(σp) > w(Φ).

Proof.

Let Φ = (T1, T2, . . . , Tn) be a path in G: (Ti, Ti+1) ∈ E for 1 6
i < n. Therefore we have σp(Ti)+w(Ti) 6 σp(Ti+1) for 1 6 i < n,
hence

MS(σp) > w(Tn) + σp(Tn)− σp(T1) >
n∑

i=1

w(Ti) = w(Φ) .

15/ 26

Critical path

Let Φ = (T1, T2, . . . , Tn) be a path in G. w can be extended to
paths in the following way :

w(Φ) =
∑n

i=1 w(Ti)

Lemma.

Let G = (V,E, w) be a DAG and σp a schedule of G using p
processors. For any path Φ in G, we have MS(σp) > w(Φ).

Proof.

Let Φ = (T1, T2, . . . , Tn) be a path in G: (Ti, Ti+1) ∈ E for 1 6
i < n. Therefore we have σp(Ti)+w(Ti) 6 σp(Ti+1) for 1 6 i < n,
hence

MS(σp) > w(Tn) + σp(Tn)− σp(T1) >
n∑

i=1

w(Ti) = w(Φ) .

16/ 26

Speed-up and Efficiency

Definition.

Let G = (V,E, w) be a DAG and σp a schedule of G using only p processors:

I Speed-up: s(σp) =
Seq

MS(σp)
, where Seq = MSopt(1) =

∑
v∈V

w(v).

I Efficiency: e(σp) =
s(σp)

p
=

Seq

p×MS(σp)
.

Theorem.

Let G = (V,E, w) be a DAG. For any schedule σp using p processors:

0 6 e(σp) 6 1 .

16/ 26

Speed-up and Efficiency

Definition.

Let G = (V,E, w) be a DAG and σp a schedule of G using only p processors:

I Speed-up: s(σp) =
Seq

MS(σp)
, where Seq = MSopt(1) =

∑
v∈V

w(v).

I Efficiency: e(σp) =
s(σp)

p
=

Seq

p×MS(σp)
.

Theorem.

Let G = (V,E, w) be a DAG. For any schedule σp using p processors:

0 6 e(σp) 6 1 .

16/ 26

Speed-up and Efficiency

Definition.

Let G = (V,E, w) be a DAG and σp a schedule of G using only p processors:

I Speed-up: s(σp) =
Seq

MS(σp)
, where Seq = MSopt(1) =

∑
v∈V

w(v).

I Efficiency: e(σp) =
s(σp)

p
=

Seq

p×MS(σp)
.

Theorem.

Let G = (V,E, w) be a DAG. For any schedule σp using p processors:

0 6 e(σp) 6 1 .

17/ 26

Speed-up and Efficiency (Cont’d)

Theorem.

Let G = (V,E, w) be a DAG. For any schedule σp using p processors:

0 6 e(σp) 6 1 .

Proof.

P4

P3

P2

P1

Processors

Time

idle

active

Let Idle denote the total idle time.
Seq + Idle is then equal to the to-
tal surface of the rectangle, i.e. p ×
MS(σp).

Therefore e(σp) =
Seq

p×MS(σp)
6 1.

The speed-up is thus bound the number of processors. No supra-
linear speed-up in our model !

18/ 26

A trivial result

Theorem.

Let G = (V,E, w) be a DAG. We have

Seq = MSopt(1) > . . . > MSopt(p) > MSopt(p+1) > . . . > MSopt(∞) .

Allowing to use more processors cannot hurt.

However, using more processors may hurt, especially in a model
where communications are taken into account.

If we define MS′(p) as the smallest makespan of schedules using
exactly p processors, we may have MS′(p) > MS′(p′) with p < p′.

18/ 26

A trivial result

Theorem.

Let G = (V,E, w) be a DAG. We have

Seq = MSopt(1) > . . . > MSopt(p) > MSopt(p+1) > . . . > MSopt(∞) .

Allowing to use more processors cannot hurt.

However, using more processors may hurt, especially in a model
where communications are taken into account.

If we define MS′(p) as the smallest makespan of schedules using
exactly p processors, we may have MS′(p) > MS′(p′) with p < p′.

18/ 26

A trivial result

Theorem.

Let G = (V,E, w) be a DAG. We have

Seq = MSopt(1) > . . . > MSopt(p) > MSopt(p+1) > . . . > MSopt(∞) .

Allowing to use more processors cannot hurt.

However, using more processors may hurt, especially in a model
where communications are taken into account.

If we define MS′(p) as the smallest makespan of schedules using
exactly p processors, we may have MS′(p) > MS′(p′) with p < p′.

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

19/ 26

Graham Notation
Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : α|β|γ [Bru98]

I α is the processor environment (a few examples):

I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):

I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):

I Cmax: makespan;
I

∑
Ci: average completion

time;
I

∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(max Ci − di);

I . . .

20/ 26

Outline

1 Task graphs from outer space

2 Scheduling definitions and notions

3 Platform models and scheduling problems

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

21/ 26

Complexity results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I P, 2||Cmax is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a.

p = 2, G = (V,E, w with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I P, 3|prec|Cmax is strongly NP-complete (3DM);

I P |prec, pj = 1|Cmax is strongly NP-complete (3DM);

I P, p > 3|prec, pj = 1|Cmax is open;

I P, 2|prec, 1 6 pj 6 2|Cmax is strongly NP-complete;

22/ 26

List scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).
Any strategy that does not let on purpose a processor idle is efficient.
Such a schedule is called list-schedule.

Theorem (Coffman).

Let G = (V,E, w) be a DAG, p the number of processors, and σp a
list-schedule of G.

MS(σp) 6
(
2− 1

p

)
MSopt(p) .

One can actually prove that this bound cannot be improved.

Most of the time, list-heuristics are based on the critical path.

22/ 26

List scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).
Any strategy that does not let on purpose a processor idle is efficient.
Such a schedule is called list-schedule.

Theorem (Coffman).

Let G = (V,E, w) be a DAG, p the number of processors, and σp a
list-schedule of G.

MS(σp) 6
(
2− 1

p

)
MSopt(p) .

One can actually prove that this bound cannot be improved.

Most of the time, list-heuristics are based on the critical path.

22/ 26

List scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).
Any strategy that does not let on purpose a processor idle is efficient.
Such a schedule is called list-schedule.

Theorem (Coffman).

Let G = (V,E, w) be a DAG, p the number of processors, and σp a
list-schedule of G.

MS(σp) 6
(
2− 1

p

)
MSopt(p) .

One can actually prove that this bound cannot be improved.

Most of the time, list-heuristics are based on the critical path.

23/ 26

Taking communications into account
A very simple model (things are already complicated enough): the
macro-data flow model. If there is some data-dependence between
T and T ′, the communication cost is

c(T, T ′) =

{
0 if alloc(T) = alloc(T ′)
c(T, T ′) otherwise

Definition.

A DAG with communication cost (say cDAG) is a directed acyclic
graph G = (V,E, w, c) where vertexes represent tasks and edges
represent dependence constraints. w : V → N∗ is the computation
time function and c : E → N∗ is the communication time function.
Any valid schedule has to respect the dependence constraints.

∀e = (v, v′) ∈ E,{
σ(v) + w(v) 6 σ(v′) if alloc(v) = alloc(v′)
σ(v) + w(v) + c(v; v′) 6 σ(v′) otherwise.

23/ 26

Taking communications into account
A very simple model (things are already complicated enough): the
macro-data flow model. If there is some data-dependence between
T and T ′, the communication cost is

c(T, T ′) =

{
0 if alloc(T) = alloc(T ′)
c(T, T ′) otherwise

Definition.

A DAG with communication cost (say cDAG) is a directed acyclic
graph G = (V,E, w, c) where vertexes represent tasks and edges
represent dependence constraints. w : V → N∗ is the computation
time function and c : E → N∗ is the communication time function.
Any valid schedule has to respect the dependence constraints.

∀e = (v, v′) ∈ E,{
σ(v) + w(v) 6 σ(v′) if alloc(v) = alloc(v′)
σ(v) + w(v) + c(v; v′) 6 σ(v′) otherwise.

24/ 26

Taking communications into account (cont’d)

Even Pb(∞) is NP-complete !!!

You constantly have to figure out whether you should use more
processor (but then pay more fore communications) or not. Finding
the good trade-off is a real challenge.
4/3-approximation if all communication times are smaller than com-
putation times.
Finding guaranteed approximations for other settings is really hard,
but really useful.

That must be the reason why there is so much research about it !

25/ 26

Conclusion

Most of the time, the only thing we can done is to compare heuris-
tics. There are three ways of doing that:

I Theory: being able to guarantee your heuristic;

I Experiment: Generating random graphs and/or typical applica-
tion graphs along with platform graphs to compare your heuris-
tics.

I Smart: proving that your heuristic is optimal for a particular
class of graphs (fork, join, fork-join, bounded degree, . . .).

However, remember that the first thing to do is to look whether your
problem is NP-complete or not. Who knows? You may be lucky...

26/ 26

Bibliography

A.J. Bernstein.
Analysis of programs for parallel processing.
IEEE Transactions on Electronic Computers, 15:757–762, October 1966.

Peter Brucker.
Scheduling Algorithms.
Springer, Heidelberg, 2 edition, 1998.

	Task graphs from outer space
	Scheduling definitions and notions
	Platform models and scheduling problems

