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development environments go already a long way in providing features for building suchmaintainable, extendible, understandable, and reusable systems. Among the featureswhich object-oriented languages support are encapsulation and information hiding, user-de�ned classes, message passing, inheritance, and polymorphism [46]. Among the featureswhich development environments support are prede�ned class libraries and applicationframeworks, standardized protocols, e.g., naming conventions, and development toolssuch as browsers and inspectors [38, 47].Object-oriented languages and development environments alone, however, are not a pa-nacea for building object-oriented quality systems. For example, one problem encounteredis the quickly increasing complexity of object-oriented systems, which is due to the manyobjects and inter-object relationships in such systems. Hence, what is needed in additionto an object-oriented language and development environment are guidelines, check lists,and metrics which help in the design and development of \good" object-oriented systems- like they were essential for building \good" procedure-oriented systems.There is an increasing awareness of this problem in the \object community". Se-veral guidelines and methods for object-oriented system development have emerged in-dependently, e.g., [1, 20, 22, 23, 28, 31, 50, 57]. Recently, design metrics which takethe idiosyncratic features of object-oriented designs into account have also emerged [2,9, 10, 18, 19, 41, 42, 43, 54, 55]. A common objective of these design metrics is thatthey, besides others, try to quantify the coupling and cohesion properties of the object-oriented system under investigation. For example, in [55] the authors identify complexitymeasures which in
uence coupling and cohesion of object-oriented systems. Besides thismetric-centered view, the notions of coupling and cohesion have been re-discovered inliterature as design characteristics in
uencing properties of object-oriented quality sy-stems [3, 5, 6, 11, 37, 49, 54]. Coupling and cohesion are the primary attributes thatled to procedure-oriented quality systems [48, 53]. There, coupling is a measure of theinterdependencies between di�erent modules, and cohesion is a measure of the binding ofthe elements within a single module. To be rated as well-designed, a procedure-orientedsystem has to have low coupling properties in terms of few interdependencies betweenmodules and high cohesion properties in terms of strong bindings between the elementswithin a single module. Since those days coupling and cohesion have been adapted toAda tasking [45] and abstract data type-based system development [14, 15]. As is statedin [14], coupling and cohesion signi�cantly in
uence maintainability, understandability,and modi�ability, and thus serve as a guide to the development of quality systems.Despite of the growing awareness of coupling and cohesion and to the best of ourknowledge, there exists no thorough discussion of coupling and cohesion properties ofobject-oriented systems in literature. The goal of this paper is to �ll this gap. We intro-duce a comprehensive taxonomy of coupling and cohesion properties of object-orientedsystems and provide guidelines for improving these properties. We consciously do not tryto quantify the various coupling and cohesion properties besides placing them on someordinal scale. This is due to the following reasons. Firstly, we do not try to reinventcoupling and cohesion properties from scratch but adapt existing research in the areaof procedure-oriented systems and abstract data type-based systems. In that realm, noquanti�able and computable metrics have been investigated. And secondly and most im-portantly, so far there are no empirical results on the basis of which any coupling and2



cohesion metric could be veri�ed. Thus, it would not be serious to give numbers with noexperimental backing.When adapting coupling and cohesion properties from procedure-oriented systems thefollowing considerations are in place. Firstly, as opposed to procedure-oriented systemswhere the module is the only subject of interest, in object-oriented systems there existseveral subjects of interest, such as methods and object classes. Secondly, coupling andcohesion properties of the various subjects of interest are not independent from eachother. For example, the coupling properties between methods of di�erent object classeshighly in
uence the coupling properties between these object classes. The enhancementof coupling and cohesion concepts for object-oriented systems is the main contribution ofthis paper.The research to be described has been motivated by the project MooD (Methods forobject-oriented Development) together with SIEMENS Austria, one of Austria's majorsoftware development companies. The aim of the project has been to provide a genericobject-oriented software life cycle model, which emphasizes software quality assuranceand reusability [16, 26].The paper is organized as follows: In the next section we introduce the subjects ofinterest in terms of coupling and cohesion characteristics of object-oriented systems. InSection 3 we analyze coupling quality of various relationships between methods and bet-ween object classes. Section 4 studies cohesion properties of methods and object classes,and uncovers interdependencies between coupling and cohesion. Throughout Section 3and Section 4 we elaborate to which extent existing guidelines improve coupling andcohesion quality. Section 5 concludes the paper and points to further research.2 Basic Concepts of Object-Oriented SystemsTo be able to talk about coupling and cohesion of object-oriented systems we have toidentify the basic building blocks of such systems and their possible relationships in ad-vance. One of the most widely used de�nitions of object-oriented languages and systemsstems from Peter Wegner [56], which we will use in this paper. There, an object-orientedlanguage should support the basic concepts of an object, an object class, and inheritance.An object consists of a set of instance variables representing the internal state of theobject and a set of methods representing the external behavior of the object. To put itin other words, an object is an encapsulation of state and behavior.An object class can be seen as kind of template specifying state and behavior of a setof similar objects, which are created as instances of an object class by some create me-thod during run-time of a program. Object classes are the basic means of object-orienteddesign and development. The de�nition of an object class is based on the principle ofencapsulation following the abstract data type approach and on the principle of informa-tion hiding distinguishing between visible and hidden parts of an object class' de�nition.The visible part is called the speci�cation or interface of an object class and in generalconsists of a set of method speci�cations. The hidden part is called the implementationof an object class and consists of the implementation of the methods and the de�nition3



of the instance variables. We do not consider class variables and class methods in thispaper.An object class may be related to other classes by an inheritance relationship, in whichcase it inherits instance variables and methods from them. An object class C related toobject class C 0 by an inheritance relationship is called direct subclass of C 0. An objectclass C is an indirect subclass of C 0 if there exists some class Ĉ such that C is a directsubclass of Ĉ and Ĉ is a direct or indirect subclass of C 0. An object class C is calledsubclass of object class C 0, if C is a direct or indirect subclass of C 0. Conversely, an objectclass C 0 is called superclass of object class C, if C 0 is a subclass of C. Objects which areinstances of subclasses of C are called members of C. Inheritance from a single directsuperclass is called single inheritance, and inheritance from multiple direct superclassesis called multiple inheritance. The inheritance relationship is transitive, re
exive, andanti-symmetric. The directed acyclic graph built up by the inheritance relationship iscalled inheritance hierarchy. We deliberately use the term inheritance hierarchy insteadof the more precise term inheritance graph since it is commonly accepted in the literature.Besides these basic concepts there are other principles of the object-oriented paradigm,namely message passing and object identity [46], which must be considered when talkingabout object-oriented quality systems. An object o communicates with an object o0 bysending a message to o0. Adhering to the principle of information hiding message passingis the only means to access and alter an object's state. Message passing implies the secondkind of relationship, the interaction relationship. The interaction relationship is de�nedfor methods in the �rst place, and deduced for object classes for which the methods arespeci�ed in turn. Since the inheritance relationship strongly interferes with the interactionrelationship some de�nitions are necessary before we are able to introduce the interactionrelationship.We �rst de�ne the notions of overriding, polymorphism, dynamic binding, and staticclass. Overriding refers to the rede�nition of inherited instance variables and methods insubclasses. Polymorphism means that the same method may be invoked on objects ofdi�erent classes. Dynamic binding means that the binding between method invocationand code to be executed takes place during run-time and depends on the actual class of theobject on which the method is invoked. The static class of a variable is the domain of thisvariable de�ned at compile time. In contrast, the dynamic class of a variable is the actualclass of some object referenced by the variable during run-time. Due to polymorphisma variable with the static class being object class C may reference members of C duringrun-time. Due to overriding a method may have several signatures and implementations,at most one of each for the class where it has been initially de�ned, and at most one ofeach for every subclass. The signature of a method consists of the name of the method,the names and domains of the input parameters, and the domain of the return value.Changing a signature in some subclass comes up to changing the names, domains, andthe number of its parameters. We say, a method m is implemented at object class C if itis initially de�ned at C, or its signature and/or implementation have been overridden atC. We further say that a method m is de�ned at object class C if it is implemented atC or at one of the superclasses of C. Concerning the interaction relationship of a classC with other object classes we restrict our attention to those methods of C which areimplemented at C. Thus, an object class C is related to another object class C 0 by an4



interaction relationship concerning the methodsm implemented at C and m0 implementedat C 0 if in the implementation of m at C the method m0 can be invoked on an objectreferenced by a variable whose static class is either C 0, or a superclass of C 0, or a subclassof C 0 and m is neither implemented at this subclass nor at any class in the superclasschain between this subclass and C 0.Some explanations are in place. (1) We consider only direct interactions at �rst. Thetransitive closure of the interaction relationship due to transitive method invocations willbe treated in section 3.4. (2) Our de�nition of interaction relationship takes static anddynamic classes into account. Of course, the encountered interaction relationships arepotential relationships, which might occur but need not occur during run-time. Thisis in line with the initial incentive that all possible relationships, and thus all possibledependencies have to be investigated. (3) As a special case of the de�nition of interactionrelationship such a relationship may also exist between object classes which inherit fromeach other. For example, a method m is implemented at C, a method m0 is implementedat C 0, and C is a subclass of C 0. Then, C is related to C 0 by an interaction relationshipconcerning m and m0 if in the implementation of m at C the method m0 is invoked onan object referenced by a variable whose static class is either C 0, or a superclass of C 0,or a subclass of C 0 and a superclass of C and m is not implemented at any class in thesuperclass chain between this subclass and C 0. (4) The interaction relationship has beende�ned for object classes and methods together. For sake of simplicity, however, theinteraction relationship and thus interaction coupling will be discussed for methods in the�rst place, and in a second step extended to object classes (cf. Section 3.1 and 3.4).The third relationship which is relevant in terms of coupling properties is made possibleby the concept of object identity, which means that each object has a unique system-maintained identi�er, which does not change in time. Thus it is possible that an objectmay reference other objects via its instance variables using the objects' identi�ers. Theseobjects again may reference other objects and so on. An object class C is related toanother object class C 0 by a component relationship if C 0 is used as domain of someinstance variable of C. Note, for the purpose of investigating coupling properties there isno need to distinguish between componenent relationships in the more restricted sense,such as part hierarchies, and component relationships in the general sense, such as generalreferences between independent objects. Contrary to the interaction relationship, weconsider only direct component relationships in this paper.Based on the above analysis methods and object classes are identi�ed as basic buildingblocks when considering coupling and cohesion of object-oriented systems. Methods arethe basic means of invocation and thus, most similar to modules in procedure-orientedsystems. Note, in this paper the term module is used as in the original literature on cou-pling and cohesion [53, 59] synonymous to procedure, subroutine, or similar programmingunits. Object classes are the basic units of encapsulation and thus, basic building blocksby de�nition. In contrast, we do not consider objects and their coupling and cohesioncharacteristics. Remember that coupling and cohesion are primarily investigated in therealm of object-oriented design, which implies modeling of object classes but not of indi-vidual objects. Furthermore, it is not necessary to consider more complex building blockssuch as subsystems [58]. A subsystem consists of a set of object classes, which cooperateto ful�ll a certain functionality. Subsystems can be seen as more complex object classes,5



usually without inheritance. Thus the discussion of coupling and cohesion characteristicsof object classes can be easily extended to subsystems by recursively applying the rulesde�ned for classes.In the following sections we will deal with methods, object classes, and instance va-riables. Whereas methods and object classes are the primary subjects of interest in termsof coupling and cohesion properties, instance variables are necessary means to exhibitthese properties. We will use C++-style syntax [13] in our examples.3 CouplingCoupling has been de�ned the �rst time in the realm of procedure-oriented systems [53].Stevens et al. de�ne coupling as \the measure of the strength of association establishedby a connection of one module to another. Strong coupling complicates a system, since amodule is harder to understand, change, or correct by itself if it is highly interrelated byother modules. Complexity can be reduced by designing systems with the weakest possiblecoupling between modules". In the previous section we de�ned as the object-orientedequivalent of a module a method. Similar to modules, methods are coupled by invocationof each other and/or by sharing data. Thus they may have an interaction relationshipwith each other (cf. Section 2). Next to methods, also object classes have to be analyzedin terms of relationships with each other, and thus in terms of coupling properties. Objectclasses may have component relationships and inheritance relationships with each other,in addition to interaction relationships (cf. also Section 2). From these relationships threedi�erent dimensions of coupling properties may be deduced in object-oriented systems,which are:� interaction coupling� component coupling� inheritance couplingEach of these coupling dimensions induces that the behavior of a class C depends onthe behavior of a class C 0 if C is related to C 0 by one of the relationships mentionedbefore. Or, to put it in other words, C has to have some information about C 0 such thatin case C 0 changes, C knows what to change, too. The degree of coupling can be describedas how much, how complex and how explicit this information has to be. On one endof the scale, low coupling is described by a small, simple and explicit inter-relationshipbetween methods and between object classes. In general, low coupling correlates to goodsoftware quality in terms of better maintainability and reusability. On the other end,high coupling is described by a large, complex and implicit inter-relationship makingmaintenance a nightmare and reuse even impossible. In the following we study each ofthe coupling dimensions in turn. 6



3.1 Interaction CouplingMethods are coupled by interaction in terms of invocation of each other and/or sharingof data. Since interaction coupling is most similar to the classical de�nition of couplingbetween modules we adopt the various degrees of classical coupling [53, 59] to describeinteraction coupling. In the following we analyze where interaction coupling in object-oriented systems di�ers from the classical notion of coupling. The di�erence mainly stemsfrom two interrelated facts. Firstly, methods belong to object classes. This implies thatobject classes may be interaction coupled, too. Secondly, interaction coupled methodsmay belong to the same object class. This implies that we have to distinguish interactionbetween di�erent classes from interaction within a single class.We consider all degrees of interaction coupling in turn - from worst to best - andrede�ne them according to the idiosyncracy of object-oriented systems where necessary.1. contentContent coupling is the worst form of coupling. It means that one method directlyaccesses parts of the internal structure, i.e., the implementation of another method.Thus one method has to know exactly all internals of the other methods, and anychange in one method may in
uence the other.The object-oriented paradigm in general, and encapsulation and information hidingin particular prohibit that a method directly accesses the implementation of anothermethod or hidden instance variables of a di�erent class. However, content couplingmay occur if the programmer uses features of some object-oriented languages whichbreak the information hiding property. For example, the friend option in C++ [13]allows to access hidden, i.e., private or protected in C++ parlance, instance variablesof di�erent object classes.2. commonCoupling is rated common if methods communicate via an unstructured, global,shared data space. Common coupling is better than content coupling since allimplicit communication channels are collected in the common area. Nevertheless,it is still a pathological form of coupling since the number of possible connectionsbetween methods is polynomial, and the locality principle of good software designis not considered at all.Encapsulation and information hiding prohibit common coupling. We are also notaware of any object-oriented language which supports an unstructured, globallyvisible data space. We rate coupling based on the use of pool variables in Smalltalk[17] as external (see below) since these variables provide for a structured, shareddata space with varying visibility.3. externalExternal coupling improves common coupling by structuring the global, shared dataspace. However, the locality principle is still violated, thus most de�ciencies ofcommon coupling remain. 7



Encapsulation and information hiding also prohibit external coupling between me-thods of di�erent classes. Nevertheless, it may occur in object-oriented systemsbased on languages which provide globally visible variables. For example, publicinstance variables in C++ [13] and Trellis/Owl [51], and pool variables in Smalltalk[17].And what happens to methods of the same class? We may �nd external couplingin the interaction between methods of the same class as they may access the sameinstance variables which are used similar to global variables in modules. Passingof data may be implemented through these shared instance variables instead ofusing explicit parameters. Note, in general, we do not consider the passing ofinformation between di�erent invocations of methods of the same object in instancevariables as external coupling. That's what instance variables have been inventedfor. Coupling is rated as external, however, if instance variables do not representthe state of the object. Such instance variables contain transient data, i.e., datawhich is only relevant during the execution of a method and is not relevant at thenext invocation of a method. Such data may be reinitialized at each invocationfrom outside. Transient data should be represented by local variables of the methodand passed to other methods as parameters. Like global data in modules transientdata in instance variables should be avoided. We de�ne the set of instance variablesof an object class as being minimal if and only if they contain data representingthe (static) state of an object of that class. Methods of such a class cannot beexternal coupled to each other. Note, methods of di�erent classes, which also donot inherit from each other, may use public instance variables of these classes forpassing transient data, which is an even worse form of external coupling. Both kindsof external coupling can and should be avoided.Example: Consider the de�nition of an object class EMPLOYEE (note, we assumethat the object classes STRING and DATE have been de�ned elsewhere):class EMPLOYEE fSTRING* name; /* all instance variables are private */STRING* address;int socialSecurityNumber;DATE* birthDate;int age;DATE* hireDate;void computeAge (); /* private method */public;
oat computeSalary ();g;void computeAge () fage = today - birthDateg;
oat computeSalary () f...g; 8



The method computeSalary, which has to know the age of the employee tocompute his or her salary, has to call the private method computeAge beforeaccessing the instance variable age. Thus, the instance variable age representstransient data and the calling method is external coupled to the method com-puteAge. To avoid external coupling computeAge has to return the computedage as return value to the calling method. 2For external coupled methods we further distinguish methods and instance variablesimplemented at the same class from those implemented at a classes C and a super-class C 0 of C. We de�ne the coupling from method m to method m0 as inheritedexternal� if m implemented at C and m0 de�ned at C exchange data through instancevariables inherited from C 0 (instead through explicit parameters). This kindof coupling particularly occurs if the class from which information is inheritedhas external coupled methods.� if m implemented at C 00 and m0 de�ned at C, communicate via public instancevariables inherited by C from C 0, where C 6= C 00 and C is neither a superclassnor a subclass of C 00.It is obvious that inherited external coupling betweenmethods is worse than externalcoupling between methods as it further complicates maintenance. Since inheritedvariables are directly accessed, inherited external coupling not only uses instancevariables to pass transient data but it also breaks encapsulation and informationhiding between an object class and its superclasses [52].Example: Assume for the example above that the object class EMPLOYEE is a sub-class of PERSON, from which it inherits the instance variables name, birthDate,age and the method computeAge. Then the coupling from method computeSa-lary de�ned at EMPLOYEE to method computeAge de�ned at PERSON is ratedinherited external since they communicate via the inherited instance variableage. Thus the coupling from computeSalary to computeAge is even worse than inthe previous example. 24. controlMethods are control coupled if they communicate exclusively via parameter passing,which implies that they are not content, common, or external coupled, but onemethod controls the internal logic of the other method. With control inversion, theworst form of control coupling, the called method determines the future executionsequence of the calling method.Control coupling is not prohibited by object-oriented concepts. Therefore, interac-tion between methods of the same as well as of di�erent classes may be controlcoupled. Control coupling should be avoided since the change of the implementa-tion of a method may cause hidden changes to the behavior of the control coupledmethods. Although control coupling is not prohibited by the object-oriented para-digm, polymorphism and dynamic binding aid in avoiding control coupling. Instead9



of passing a 
ag which controls method execution, polymorphism and dynamic bin-ding can be employed.5. stampTwo methods are stamp coupled if, in analogy to classical coupling, they are notcontrol coupled but whole data structures are passed as parameters although onlyparts of the data structure would su�ce. The essence of stamp coupling is as follows:a method depends on some externally de�ned data structure and has to be changedif this data structure changes, although the change would otherwise not in
uencethe method. Stamp coupling has to be rephrased for object-oriented systems sincethere exist two kinds of stamp coupling.The �rst kind of stamp coupling is similar to the classical de�nition of stamp cou-pling. According to that de�nition, a method depends on the domain of its pa-rameters. The domain of a parameter may either be an object class, or a basicdata type, or a complex data type based on type constructors such as tuple, array,and set. Depending on the domain of the parameter, either basic data values, orcomplex data values, or objects may be passed as parameters. If a complex datavalue is passed as parameter stamp coupling occurs if already parts of the complexdata value would su�ce. This case is analogous to the classical de�nition of stampcoupling. If objects are passed as parameters a similar problem may occur. Werecall that an object may again consist of (references to) other objects. Such an ob-ject is also called composite object since it is constructed out of component objects.Thus we have to investigate the question whether the object passed as parameteror merely some of its components are relevant for a method. If an object is passed,and the method uses just some of the object's components but not the object itself,we classify this interaction as stamp coupled. If the object passed as parameter isused as a whole, we call it data coupling (see below).To improve stamp coupling to data coupling an object should be replaced by itscomponents whenever possible, in particular, if only some but not all of its compo-nents are necessary. Note, that there are rare cases where the replacement of anobject by its components may leave extensibility more di�cult. Such a situationoccurs if only some components of an object are currently needed by some methodm but the object is extended with an additional component in the future and thiscomponent is also requested by m. If the object would have been passed as para-meter no change of the interface of m would have been necessary. However, thereexist other solutions without the above mentioned problem. For example, adding anew method with the appropriate parameters is just one possible solution.Example: Consider the class EMPLOYEE as de�ned above with the additional in-stance variable sales, and another object class SALES-STATISTICS with the in-stance variable accummulatedSales, and the method addSale with the input para-meter being an employee object. However, the method addSale should not takean employee object as parameter, which leads to stamp coupling, but the valueof the relevant instance variable sales of a particular employee, which wouldlead to data coupling. 210



The second kind of stamp coupling uncovers dependencies between a method and thedomain of instance variables of the same class. The de�nition of instance variablesis external for a method. At �rst sight it may look strange to consider interactionbetween methods and instance variables. However, it leads to rules for a betterorganization of methods. The value of an instance variable is either a basic datavalue, or a complex data value, or a reference to some object depending on thedomain of the instance variable. If a method directly accesses an instance variablealthough it needs only parts of its value, the method has to be changed if the domainof this instance variable is changed, e.g., due to optimization purposes.The key idea for improving this kind of stamp coupling is to distinguish betweenmethods which directly access instance variables, i.e., the internal data structureof a class, and methods which do not. It is good design to hide the internal datastructure whenever possible { not only from the outside of an object class butalso from methods inside of the object class. Therefore, we suggest to design readmethods and write methods, called access methods, for each instance variable anduse these methods as only means to access these variables. If the internal datastructure of an object class is changed only the access methods have to be updated,too.Example: Consider the class MATRIX with the methods accessElement and multipli-cation. The coupling between the method multiplication and the implementationof the matrix's data structure is lower if the method accesses the elements ofthe matrix by the access operation accessElement, and it is higher if multiplicationdirectly accesses the instance variables. Considering the former, if the repre-sentation of the matrix is changed, e.g., for sparse matrices, only the accessmethods have to be changed but not the multiplication method. 2The idea of restricting the access to instance variables via explicit access methodsis not new. It has already been advocated as important object-oriented designguideline [23, 57], and it is realized in some object-oriented languages, such asTrellis/Owl [51]. Note, that there exist design rules in the area of software reuse [40]leading to a factoring out of methods from some object class if they do not directlyaccess instance variables of that class. This might increase, however, interactioncoupling between classes. Thus there is some trade-o� between various design goalsand the designer has to decide which goal to prefer on a case by case basis.Here again we have to take inheritance of methods and instance variables into ac-count. Stamp coupling between a method and inherited instance variables is calledinherited stamp coupling. It is worse than stamp coupling between a method andinstance variables de�ned within the same class. This is due to the commonly accep-ted understanding that directly accessing inherited instance variables in subclassesbreaks encapsulation and information hiding [52].6. dataTwo methods are data coupled if they communicate only by parameters and theseparameters are relevant as a whole. Data coupling is the best form of coupling11



whenever two methods have to interact. Data coupled methods minimize main-tenance e�ort due to a great restriction of change propagations.7. no direct couplingThe theoretical optimum of interaction coupling is no direct coupling, i.e., twomethods do not (directly) depend on each other, and thus also their object classesare not interaction coupled. A change in one method does not directly demand achange in the other method, and hence no change in that method's object class isnecessary.3.2 Component couplingAs opposed to interaction coupling where object classes and methods are involved compo-nent coupling concerns only object classes. The component relationship between classesis de�ned by the use of a class as domain of some instance variable of another class (cf.Section 2). In the context of component coupling we extend this notion of componentand de�ne the object class C 0 to be a component of the object class C if and only if C 0appears in C. C 0 appears in C if and only if:1. C 0 is the domain of an instance variable of C, or2. C 0 is the domain of a parameter (input or output) of a method of C, or3. C 0 is the domain of a local variable of some method of C, or4. C 0 is the domain of a parameter (input or output) of some method invoked withina method of C.Whereas component coupling reveals the coupling from a class C to a class C 0 duringcompile time it might happen during run-time that C is component coupled with anysubclass of C 0. We call this kind of coupling potential coupling. If C is componentcoupled with C 0 then C is potentially component coupled with all subclasses of C 0. Note,component coupling in languages like Smalltalk needs some special consideration1. Sinceprimitives in Smalltalk like integers and booleans are also object classes practically everyclass is component coupled to primitives. However, since primitives are very stable oneshouldn't care too much that an object class is component coupled and thus dependenton primitives.Of course, component coupling usually implies interaction coupling. In interactioncoupling, however, we focused on how much information is exchanged between methodsand classes, respectively, and on how complex this information is. With component cou-pling we will analyze how explicit the coupling between classes is.The �rst case of component relationship given above is realized via instance variables.It is made explicit in object-oriented languages at the class level, but only in the imple-mentation part and not in the speci�cation part of a class de�nition. Coupling of the1We are grateful to David Monarchi who pointed this out to us.12



second case is made explicit in the speci�cation part of a class de�nition by specifyingthe signatures of the methods. Component coupling of the third case is based on localvariables. It is only explicit within a method through the declaration of local variablesbut it is not explicit at the class level. The fourth case is even worse. For example, incascading messages, the object returned by a method is used immediately as receiver ofanother message. The object class of this receiver might not even be declared anywherein the actual class.Based on these considerations we de�ne the following degrees of component couplingfrom worst (highest) to best (lowest).1. hiddenThe coupling between two classes C and C 0 is rated hidden if C 0 shows up neitherin the speci�cation nor in the implementation of C, although an object of C 0 is usedin the implementation of a method of C.To give examples of situations where hidden coupling is likely to occur we refer tothe cascading message problem stated above. A similar problem is encountered ifthe return value of a method invocation is immediately used as input parameter inanother method invocation. Most languages do not require that the class of thisobject is declared anywhere within the actual class.Hidden coupling causes problems since this coupling between classes is implicit.We compare hidden coupling with the use of global variables in procedure-orientedsystems, which is responsible for common coupling between modules. Consider achange of a class in a maintenance process, e.g., the change of the signature of amethod. In the presence of hidden coupling the programmer has to search throughall implementations of all methods of all classes to detect where this change mayhave in
uence, and where this change has to be propagated to, respectively.A possibility to avoid hidden coupling is to disallow the use of cascading messages,for example, suggested implicitly by the Law of Demeter [30, 31], and to disallowthe use of return values as parameters if their domains are not declared. A lessrestrictive way to overcome hidden coupling is to declare all those classes in thespeci�cation part of the actual class de�nition.Example: Consider the class EMPLOYEE as de�ned above with the additional in-stance variable involvedInProject, which references the project for which an em-ployee is currently working, and the additional method numberColleagues, whichreturns the number of colleagues in the current project. The implementationof numberColleagues may be given as follows:int numberColleagues () freturn (involvedInProject->getProjectMembers->count - 1)gThe coupling between the classes EMPLOYEE and SEThEMPLOYEE*i is hiddensince the latter neither shows up in the speci�cation nor in the implemen-tation of the former although the method count is invoked on an object of13



class SEThEMPLOYEE*i. This object is returned by the method getProjectMem-bers invoked on the project object which is referenced by the instance variableinvolvedInProject. Improvements of this implementation in terms of couplingproperties are demonstrated in the next examples. 22. scatteredWe rate two classes C and C 0 as scattered coupled, if C 0 is used as domain inthe de�nition of some local variable or instance variable in the implementation ofC yet C 0 is not included in the speci�cation of C. To detect whether C and C 0are component coupled it is necessary to check the implementation of classes toget the domains of instance variables, and even worse to check the implementationof all methods to detect the domains of local variables. If a class is changed theimplementations of all other classes have to be checked in order to discover whichclasses may be in
uenced.Example: Consider the previous examplewhere the classes EMPLOYEE and SEThEM-PLOYEE*i are hidden coupled due to the implementation of the method num-berColleagues. The implementation may be improved by disallowing cascadingmessages as follows:int numberColleagues () fSEThEMPLOYEE*i * projectMembers;projectMembers = involvedInProject->getProjectMembers;return (projectMembers->count - 1)gBy introducing local variables and disallowing cascading messages the couplingbetween the classes EMPLOYEE and SEThEMPLOYEE*i can be improved fromhidden to scattered. 23. speci�edWe rate two classes C and C 0 as speci�ed coupled if C 0 is included in the speci�cationof C whenever it is a component of C. Speci�ed coupling overcomes the problemsof hidden and scattered coupling by specifying all related component classes ofsome class in a single place. Thus it is possible to determine whether two classesare coupled without browsing through the whole implementation. Browsing theimplementation might be even impossible if the source code is not available.In most object-oriented languages only the signatures of the methods provided bysome class C are shown in the speci�cation of C. This set of methods provided byC is also called su�ered interface of C. Those classes which are used as domains ofinput parameters and return values of the methods of C are the only ones whichare speci�ed coupled with C. We suggest that in addition to the su�ered interfacealso the required interface becomes part of the speci�cation of a class. The requiredinterface of some class C comprises all classes which are used as components of C.Specifying which methods of the component classes are invoked further narrows therequired interface and thus lowers the degree of coupling.14



Example: In the previous example the classes EMPLOYEE and SEThEMPLOYEE*iare scattered coupled. We may improve their coupling property to speci�edcoupling by changing the speci�cation of EMPLOYEE as follows:class EMPLOYEE fsu�ered interface: /* corresponds to public in C++ */int computeSalary ();int numberColleagues ();...required interface: /* not available in C++ */SEThEMPLOYEE*i* class PROJECT::getProjectMembers ();int class SEThEMPLOYEE*i::count ();...g; 2There exist several object-oriented speci�cation languages which provide mecha-nisms to specify the required interface, e.g., collaborators in [58], uses relationshipin [5, 21], calling relationships in [24], and invocation diagrams in [25]. However,we know of only one object-oriented language, Modula-3 [8], which supports su�e-red and required interface speci�cations by export and import declarations at themodule level.4. nilThe theoretical optimum is no direct component coupling between classes and thusno interaction coupling. It is an advantage to recognize that two classes are com-pletely independent such that one class can be maintained without any knowledgeof the other class.3.3 Inheritance couplingSimilar to component coupling inheritance coupling only concerns object classes. Twoclasses are inheritance coupled if one class is a direct or indirect subclass of the other.Inheritance is one of the most important features of object-oriented methods and langua-ges. It supports reuse both through subclassing, i.e., specialization, and through factoringout, i.e., generalization, of common information from independent classes into a commonsuperclass. At a �rst glance it seems contradictory to use inheritance for gaining betterreusability and to have the goal of low coupling. The key idea to resolve this seemingcontradiction is twofold. Firstly, inheritance may be used to lower coupling in an object-oriented system through factoring out. Given a class D which invokes the same methodmon objects of class C 0 and C 00, D is component coupled with C 0 and C 00. If the method mis factored out into a common superclass C of C 0 and C 00 and not overridden in C 0 and C 00,respectively, D is component coupled with C only. Thus the coupling is improved sincethe number of classes with whichD is coupled has been reduced. Secondly, there exist dif-ferent degrees of inheritance coupling. We will show that the lowest degree of inheritance15



coupling (besides no coupling) coincides with better reusability. Furthermore, conside-ring inheritance coupling is necessary for improving the overall quality of the system tobe implemented. Since it is possible to gain good interaction and component couplingproperties by sacri�cing the quality of the inheritance hierarchy, inheritance coupling hasto be considered, too.Inheritance coupling is also di�erent from interaction coupling and component couplingin that it does not only exhibit the coupling property between subclasses and superclassesbut implicitly also the coupling property between an interaction coupled object classand the inheritance hierarchy. The meaning is the following: if class D is interactioncoupled to some class C being the root of an inheritance hierarchy and the inheritancehierarchy is changed, e.g., subclasses are added, and inherited instance variables andmethods are modi�ed, the degree of inheritance coupling reveals to which extent changesin the inheritance hierarchy might impose changes in D (for a detailed discussion of theinterdependencies of the various coupling dimensions see Section 3.4).In the following we discuss the various degrees of inheritance coupling from worst(highest) to best (lowest). Note, we assume for simplicity and without loss of generalitythat access methods for each instance variable exist. Thus any change to an instancevariable in some subclass is re
ected by the corresponding change of the signature and/orimplementation of the access methods.1. modi�cationModi�cation coupling is the worst case of inheritance coupling since in additionto de�ning new information the inherited information is changed arbitrarily or iseven deleted. Depending on the kind of modi�cation we further distinguish betweensignature modi�cation and implementation modi�cation:(a) signature modi�cationThe coupling between subclass C 0 and superclass C is rated signature modi-�cation if not only the implementation but also the signature of an inheritedmethod is changed without any restriction, or inherited methods are deleted inC 0. The relationship between C 0 and C is a pure implementation relationship,i.e., the use of inheritance is solely for code reuse. An inheritance hierarchybased on signature modi�cation is di�cult to maintain and to extend since itsoon may become very complex. What counts even worse is the fact that itimpairs polymorphism and strong typing in interaction related classes. Assumeclass D which invokes a method m on an object of class C. Assume further-more that the signature of m is changed in subclass C 0 of C arbitrarily. Dueto polymorphic variables it might happen at run-time that D invokes m on anobject of class C 0. This object, however, assumes another invocation of m dueto signature modi�cation and issues a run-time type error. We conclude thatinheritance coupling based on signature modi�cation should be avoided in anycase.If only a part of the class de�nition of class C is to be used in class C 0 the twoclasses should not be inheritance coupled but C 0 should be component coupled16



to C via an instance variable of C 0 with the domain of the instance variablebeing class C.Example: Consider class STACK inheriting from class ARRAY. Since ARRAYis only used to implement STACK's internal data structure, and since themethods of ARRAY are semantically not meaningful when used with a stack(e.g., the method putAt of ARRAY does not exist for a stack) the methods ofARRAY are only inherited for private use but are deleted from the su�ered,i.e., public interface of STACK. Thus STACK and ARRAY are signature modi-�cation coupled. To improve their coupling the de�nition of STACK shouldinclude an instance variable a with domain ARRAY instead of inheritingfrom ARRAY. 2(b) implementation modi�cationThe coupling between subclass C 0 and superclass C is rated implementationmodi�cation if the implementation of an inherited method is changed withoutany restriction. This degree of inheritance coupling is better than the previousone since neither the signature of a method is changed arbitrarily nor aremethods deleted. Nevertheless, implementation modi�cation coupling shouldalso be avoided since the semantics of a method may be changed completely insubclasses, and thus the semantics of methods invoking the inherited methodmay be changed implicitly, too.2. re�nementRe�nement coupling is much better than modi�cation coupling since in addition tode�ning new information the inherited information is only changed due to prede�nedrules. Depending on the kind of re�nement we further distinguish between signaturere�nement and implementation re�nement:(a) signature re�nementThe coupling between subclass C 0 and superclass C is rated signature re�-nement if they are not modi�cation coupled and if the signature of at leastone inherited method m is changed in C 0 due to some prede�ned rule withoutchanging the intended semantics of m. Signature re�nement may adhere tothe covariant rule or to the contravariant rule [7, 34] of subclassing. In thecovariant rule, domains of input parameters and of the return value may bereplaced by subclasses. In the contravariant rule, domains of input parametersmay be replaced by superclasses and the domain of the return value may bereplaced by a subclass. In general, signature re�nement based on the covariantstyle should be avoided since it may also break polymorphism and strong ty-ping in interaction related classes [34]. However, there are situations where thesemantics of the problem domain is best described in terms of inheritance ba-sed on the covariant style. In such situations the polymorphic use of variablesand methods should be avoided to avoid run-time type errors.Example: Consider parts of the de�nition of object class PERSON and ofsubclass EMPLOYEE of PERSON:17



class PERSON f[0..120] age; /* for simplicity we assume */... /* the existence of an enumeration type [0..120] */public; /* and [15..65] */[0..120] getAge ();void setAge ([0..120] a);...gclass EMPLOYEE : public PERSON f[15..65] age;...public;[15..65] getAge ();void setAge ([15..65] a);...gSince employees may only be active from 15 to 65 (at least in Austria) thesubclass EMPLOYEE of class PERSON re�nes the signatures of the inheritedaccess operations of age according to the covariant style. Thus, EMPLOYEEand PERSON are signature re�nement coupled based on the covariant style.2(b) implementation re�nementThe coupling between subclass C 0 and superclass C is rated implementationre�nement if the signatures of the inherited methods are not changed at all,and the implementation of at least one inherited method m is changed in C 0due to some prede�ned rules such that the intended semantics of m is kept.This kind of inheritance coupling might become necessary if the implemen-tation of an inherited method has to be re�ned in some subclass. Languagefeatures which support implementation re�nement are, for example, SUPER ofthe language Smalltalk [17], inner of the language Beta [29], and before andafter daemons of the language CLOS [27]. SUPER is used in the changed im-plementation of an inherited method to invoke the method's implementationde�ned in the superclass. Whereas the concept SUPER does not enforce imple-mentation re�nement the inner concept and the before and after daemons doenforce it. inner is used in the original implementation of some method m tospecify the place in the code where a future re�nement of m has to be placed bythe compiler. Thus, if m is invoked on an object of some subclass not only themost re�ned code but also the code de�ned in the superclasses gets executed.Similar holds true for before and after daemons. As the name already suggests,they may be speci�ed in subclasses to re�ne the implementation of m givenin some superclass. If m is invoked on an object of some subclass all beforedaemons get executed up to the original implementation of m and before theoriginal implementation is executed. After the original implementation hasbeen executed all after daemons get executed in the reverse order of the before18



daemons.Note, there exist object-oriented languages, such as Ei�el [39], where it is possibleto change the implementation of a method arbitrarily, and at the same time tore�ne the signature of the same or another method. These languages exhibit bothimplementation modi�cation coupling and signature re�nement coupling.3. extensionInheritance coupling between a subclass and its superclass is rated extension coupledif the subclass only adds methods and instance variables but neither modi�es norre�nes any of the inherited ones. Extension coupling is the best kind of inheritancecoupling (besides no inheritance coupling at all). Extension coupling is achieved ifthe superclass is semantically a generalization of its subclasses and the methods ofthe superclass can be invoked on objects of the subclasses without inspecting the(intermediate) subclasses.Example: Assume that EMPLOYEE is an extension coupled subclass of PERSON.Then, all methods de�ned at PERSON can be used for employee objects wi-thout checking whether they have been modi�ed or re�ned in the de�nition ofEMPLOYEE. 24. nilIf there is no inheritance relationship between two classes their inheritance couplingis rated nil.3.4 Interplay of the three coupling dimensionsSo far, we have investigated interaction coupling, component coupling, and inheritancecoupling in isolation. In this subsection we reveal the interplay of the three couplingdimensions. In particular, we show by means of an illustrative example how additionalcoupling relationships are derived from given ones taking transitive method invocationsinto account.We recall that interaction coupling and component coupling describe a similar pheno-menon. Interaction coupling reveals the kind of interaction between methods and objectclasses. Component coupling investigates how explicit this interaction is speci�ed. Interms of the interplay with inheritance coupling it is thus su�cient to choose one out ofinteraction coupling or component coupling to be investigated in more detail. We havechosen interaction coupling.The interplay of interaction coupling and inheritance coupling becomes most relevantduring run-time. Due to inheritance, overriding, and polymorphic variables additionalinteraction couplings between methods and between object classes, respectively, are de-rived. For computing all derived couplings during compile time a global analysis of thegiven code is required, a feasible but tedious and cumbersome task. However, we willshow the relevance of such an analysis by means of an example further below.For a precise description of the problem, we introduce the following three predicates:19
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m_C’Figure 1: Inheritance relationship and interaction relationship1. The predicate implements (C;m) holds if class C implements method m. The im-plementation may de�ne a new method or override an inherited method.2. The predicate isa(C 0; C) holds if C 0 is a direct subclass of C. The predicateisa+(C 0; C) denotes the transitive closure, and the predicate isa�(C 0; C) denotesthe transitive and re
exive closure of isa(C 0; C).3. The predicate invokes(C;m;C 0;m0) is true, if method m implemented at C invokesmethod m0 on an object referenced by a variable with static class C 0.We have de�ned direct interaction relationship informally in Section 2. Now, we givea formal de�nition based on the predicates implements, isa, and invokes. Note, icw standsfor interaction-coupled-with.The predicate icw (C;m;C 0;m0) between object class C and its method m and objectclass C 0 and its method m0 holds, if there exists a class Ĉ 0 such that invokes(C;m; Ĉ 0;m0)holds, and implements(C 0;m0) holds, and either(i) isa�(C 0; Ĉ 0) holds, or(ii) isa+(Ĉ 0; C 0) holds and for all �C 0, such that isa+(Ĉ 0; �C 0) and isa+( �C 0; C 0) hold, thepredicate implements ( �C 0;m0) does not hold.An indirect interaction relationship between methods m and m0 of the classes C andC 0 holds, if m0 implemented at C 0 may be invoked by some method m00 which has beeninvoked by method m, implemented at C. We extend the predicate icw in that respect.The predicate icw (C;m;C 0;m0) holds if there exists a class C 00 such that icw (C;m;C 00;m00)and icw (C 00;m00; C 0;m0) hold.To demonstrate the applicability and usefulness of the introduced predicates considerthe example in Figure 1. It depicts the inheritance relationships of the object classes A,B, B 0, B 00, C, and C 0 as well as their interaction relationships due to method invocations.All coupling predicates which may be deduced from Figure 1 are summarized in Table 1.20



From { To Predicates & Derivationsimplements(A;m A)implements(B;m B)implements(C;m C)implements(B 00;m B)implements(C 0;m C)implements(C 0;m C 0)A�B invokes(A;m A;B;m B)B � C invokes(B;m B;C;m C)B0 �B isa(B 0; B)B00 �B isa(B 00; B)B00 �C 0 invokes(B 00;m B;C 0;m C 0)C 0 � C isa(C 0; C)A�B invokes(A;m A;B;m B) ^ implements(B;m B) ^ isa�(B;B) =)icw(A;m A;B;m B)B � C invokes(B;m B;C;m C) ^ implements(C;m C) ^ isa�(C;C) =)icw(B;m B;C;m C)B00 �C 0 invokes(B 00;m B;C 0;m C 0) ^ implements(C 0;m C 0) ^ isa�(C 0; C 0) =)icw(B 00;m B;C 0;m C 0)A�B 0 no couplingA�B 00 invokes(A;m A;B;m B) ^ isa�(B00; B) ^ implements(B 00;m B) =)icw(A;m A;B 00;m B)B � C 0 invokes(B;m B;C;m C) ^ isa�(C 0; C) ^ implements(C 0;m C) =)icw(B;m B;C 0;m C)B0 � C no couplingB0 � C 0 no couplingB00 �C no couplingA� C icw(A;m A;B;m B) ^ icw(B;m B;C;m C) =) icw(A;m A;C;m C)A� C 0 1. icw(A;m A;B 00;m B) ^ icw(B 00;m B;C 0;m C) =)icw(A;m A;C 0;m C 0)2. icw(A;m A;B;m B) ^ icw(B;m B;C 0;m C) =)icw(A;m A;C 0;m C)Table 1: Coupling predicatesWe do not discuss each entry in Table 1 but restrict our attention to the most in-teresting one, the derived coupling between A and C 0. It reveals that A is interactioncoupled with C 0 via method m A following di�erent invocation paths and thus invokingdi�erent methods on C 0. On one hand, A is interaction coupled with C 0 via B and B 00.This case occurs when m A invokes m B on a member object of B 00. As a consequence,the implementation of m B at class B 00 gets executed which invokes the method m C 0 ofclass C 0 in turn. On the other hand, A is interaction coupled with C 0 via B and C. Thatcase occurs when m A invokes m B on an instance of B which in turn invokes m C ona member object of C 0. Since m C is rede�ned at C 0 the implementation of m C givenat class C 0 gets executed. The lessons learned from this example are twofold. Firstly,the transitive closure of interaction coupling and inheritance coupling together leads to acomplex graph where it is not obvious at �rst sight which object classes are interaction21



coupled with each other. Secondly, due to overriding and polymorphic variables it mayoccur that there exist several di�erent invocation paths between two methods. Thus thesame two objects of two classes may exhibit di�erent run-time behavior at di�erent timesalthough initially the same method is invoked.Summarizing, it is very important to conduct a global analysis of the classes of anobject-oriented system in terms of coupling properties whenever possible since it mayreveal hidden couplings which may cause problems when maintaining or extending thesystem at hand.4 CohesionCohesion has been de�ned in the realm of procedure-oriented systems [53] as \the degreeof connectivity among the elements of a single module". Cohesion has been recognizedas one of the most important software quality criteria. Modules with strong cohesion, inparticular with functional cohesion, are easier to maintain, and furthermore, they greatlyimprove the possibility for reuse. A module has strong cohesion if it represents exactly onetask of the problem domain, and all its elements contribute to this single task. Elementsof a module are statements, subfunctions, and possibly other modules. We recall thatthe object-oriented counterparts of a module are methods and classes. The elements of amethod are statements, local variables, and also instance variables since they are accessedeither directly or via access functions in the methods. Next to methods also object classeshave to be analyzed. The elements of an object class are methods and instance variables.Thus we have to distinguish the cohesion of a method from the cohesion of an objectclass. For the latter, we further distinguish the cohesiveness between elements directlyde�ned within the same class from the cohesiveness between inherited and directly de�nedelements. Thus the following kinds of cohesion may be de�ned for object-oriented systems:� method cohesion� class cohesion� inheritance cohesionIn the sequel we study each of the cohesion relationships in turn.4.1 Method CohesionWhat has been stated in the realm of coupling also holds true for cohesion. Since methodsequal modules to a very high degree - both bracket pieces of code implementing somefunctionality - we adopt the various degrees of classical cohesion [53, 59] to describemethod cohesion. In contrast to coupling we do not even have to change the variousnotions of classical cohesion considerably. In the following, the seven degrees of classicalcohesion adapted for method cohesion are summarized from worst to best. For a detaileddiscussion the interested reader is referred to the original paper [53].22



1. coincidentalThe elements of a method have nothing in common besides being within the samemethod.2. logicalThe elements with similar functionality, such as input/output handling and errorhandling, are collected in one method.3. temporalThe elements of a method have logical cohesion and are performed at the same time.4. proceduralThe elements of a method are connected by some control 
ow.5. communicationalThe elements of a method are connected by some control 
ow and operate on thesame set of data.6. sequentialThe elements of a method have communicational cohesion and are connected by asequential control 
ow.7. functionalThe elements of a method have sequential cohesion, and all elements contributeto a single task of the problem domain. Functional cohesion is the best form ofmethod cohesion since it fully supports the principle of locality and thus minimizesmaintenance e�orts.For the discussion of class cohesion and inheritance cohesion we assume that all me-thods have functional cohesion. The reason is, that in order to determine class/inheritancecohesion we have to investigate the relationship between methods and instance variables.Low cohesive methods which access most of the instance variables could fake a high degreeof class/inheritance cohesion.4.2 Class CohesionClass cohesion describes the binding of the elements de�ned within the same object class,not considering inherited instance variables and inherited methods. Since ignoring inheri-tance an object class resembles an abstract data type, and since the cohesion of abstractdata types has been analyzed in detail by Embley and Wood�eld in [14] we build ourclassi�cation of various degrees of class cohesion on that of [14] and rede�ne their de�-nitions according to the idiosyncracy of object-oriented systems. Abstract data types inprocedure-oriented systems provide functionality to other abstract data types or to mo-dules which are not abstract data types. In contrast, code in object-oriented systems isin general a method bound to a class. Thus for procedure-oriented systems with abstract23



data types we have to argue which functionality we factor out to abstract data typeswhereas in object-oriented systems we have to consider which methods are assigned towhich classes. A further crucial di�erence between abstract data types in the notion ofEmbley and Wood�eld and classes is implied by the concept of object identity. Whereasa single abstract data type can export di�erent domains an object class describes exactlyone set of objects where each object is uniquely identi�ed by some system-de�ned objectidenti�er. Depending on the cohesiveness of a class its objects represent a single, seman-tic meaningful data abstraction or several, more or less related data abstractions. In thefollowing we discuss the various degrees of class cohesion from worst, i.e., lowest, to best,i.e., highest.1. separableThe cohesion of a class is rated separable if its objects represent multiple unrelateddata abstractions combined in one object. This is often the case if the instancevariables and methods of a class can be partitioned into two or more sets such thatno method of one set uses instance variables or invokes methods of a di�erent set.In particular, the cohesion of an object class is rated separable if there is a methodwhich does neither access any instance variable nor invokes any method of the class,or there is an instance variable which is not referenced by any of the class' methods.A class with separable cohesion should be split into several classes each representinga single data abstraction, i.e., a single semantic concept.Example: Consider the object class EMPLOYEE as de�ned above with the followingextension:class EMPLOYEE f...int computeCompanyRevenue (SEThPROJECT*i* p);...g;The method computeCompanyRevenue takes all projects of a company as inputparameter and computes the accumulated revenue of that company. It neitheraccesses any instance variable of EMPLOYEE nor does it invoke any other me-thod of EMPLOYEE. Thus the cohesion of EMPLOYEE is of separable strength.To improve its cohesion the method computeCompanyRevenue should be factoredout into a di�erent object class, e.g., into class COMPANY. 2Note: Using syntactical criteria for partitioning an object class into disjunctivesets of instance variables and methods to detect separable cohesion is a useful aidbut not applicable in some cases. For example, if the de�nition of an object classconsists solely of n instance variables and their access methods the object classmight syntactically be partitioned into n disjunctive subsets although it representsa single semantic concept. Contrarily, if a method print is de�ned that prints thevalues of all instance variables, pure syntactical analysis will classify the cohesionof the class as not separable, although it might combine one or more unrelated dataabstractions. 24



2. multifacetedThe cohesion of a class is rated multifaceted if its objects represent multiple relateddata abstractions, accessed at least by one method. Separable cohesion can often bedetected by a syntactical analysis of the class de�nition. For multifaceted cohesion,however, we must always look at the semantics of a class and its elements. Similarto separable cohesive classes a multifaceted class covers di�erent semantic concepts.Yet, at least one method references instance variables or invokes methods of thedi�erent semantic concepts, such that the cohesion of the corresponding class cannotbe rated separable. A semantic analysis is necessary for determining multifacetedcohesion. Well-known data modeling concepts like well-formed entity-relationshipmodeling [35], and data normalization [1, 12, 20] may be used for that purpose. Tobe able to apply data normalization theory we adapt the de�nition of multifacetedcohesion as follows. The cohesion of a class is rated multifaceted if the set of instancevariables of the class interpreted as relation schema is not in second normal form. Toput it in other words, the instance variables describe two ore more semantic concepts.Thus, they are only dependent on part of the user-de�ned key. However, they are notseparable since a method de�ned on several instance variables exists. A multifacetedclass should either be split into several classes each of which representing exactlyone semantic concept with the set of instance variables being at least in secondnormal form, or some instance variable(s) should be moved to a class referenced byanother instance variable. The method which leads to multifaceted cohesion shouldbe assigned to and possibly reimplemented in one of the newly created classes. Itdepends on the problem domain to which class the method should be assigned.Example: Consider object class REORDER:class REORDER fITEM* reorderedItem;COMPANY* reorderedFrom;int discount;int quantity;...public:bool expectedRevenue ();...g;The method expectedRevenue computes the revenue expected by determiningthe di�erence between the price of an item and the discount given by thecompany and by multiplying this di�erence with the quantity of the reordereditem.If we interpret the set of instance variables as attributes of a relation schemaattributes recordedItem and recorderedFrom form the key of this relation schema.Assume, the discount given depends only on the company, i.e., it is the samefor all items. Thus, the second normal form is violated. This de�nition ofREORDER has multifaceted cohesion. To improve its cohesion the instancevariable discount should be moved to class COMPANY:25



class COMPANY fSTRING* name;real discount;...public:real discount ();...g; 23. non-delegatedThe cohesion of a class is rated non-delegated if it is neither separable nor multifa-ceted and if one method uses instance variables which describe only a component ofthe respective class. Hence, we may again use data normalization theory to detectnon-delegated cohesion like we did for the analysis of multifaceted cohesion. Forthis purpose, we also adapt the de�nition of non-delegated cohesion as follows. Thecohesion of an object class is rated non-delegated if the set of instance variablesinterpreted as relation schema is not in third normal form. To put it in other words,there exist instance variables which do not describe the whole data abstraction re-presented by the class but only a component of it. To overcome non-delegatedcohesion the \non delegated" methods and instance variables should be delegatedto the component classes on which they are actually de�ned.Example: Consider again the object class EMPLOYEE:class EMPLOYEE fSTRING* name;DATE* birthDate;PROJECT* involvedInProject;EMPLOYEE* managerOfProject;...public:
oat computeSalary ();bool managerIncomeHigherThanAverageInProject ();...g;If we interpret the set of instance variables as attributes of a relation schema theattribute name is the key of this relation schema. The attributes birthDate andinvolvedInProject depend directly on the attribute name. However, the attributemanagerOfProject depends directly on the project referenced by involvedInProjectand transitively on name, thus the third normal form is violated. This de�-nition of EMPLOYEE has non-delegated cohesion. To improve its cohesion theinstance variable managerOfProject and the method managerIncomeHigherThanA-verageInProject should be delegated to the object class PROJECT:class PROJECT fEMPLOYEE* managerOfProject;26



SEThEMPLOYEE*i* membersOfProject;DATE* startDate;DATE* expectedEndDate;...public:bool managerIncomeHigherThanAverageInProject ();SEThEMPLOYEE*i* getProjectMembers ();...g; 2Unfortunately, it is not always as obvious as in the example above where to placemethods. The placement of methods also raises several questions concerning thevisibility and the possible invocation of methods. If a method is delegated to acomponent class because it mainly uses instance variables of that component class wehave to consider if and how this method is visible to clients of the inspected class, i.e.,the class under consideration. One way to organize the invocation of the delegatedmethod is that clients of the inspected class receive a handle to the componentobject, thus, they are able to directly invoke the method on the component object.This solution might not always be desirable since it means that the inspected classexhibits parts of its implementation, i.e., its components. Furthermore, this solutionmay increase the number of classes the clients of the inspected class have to interactwith. Thus the component coupling between a client class and the component classmay be made worse.Another possibility to organize the invocation of the components' methods is to hidethe component structure completely from the client classes and to let them accessthe methods of the component classes through so called propagation methods ofthe inspected class. This solution is recommended by the Law of Demeter fromLieberherr et al. [30, 31, 32, 33]. The law states that a method m of some classC may only invoke methods of such classes which are used as domains of instancevariables of C, or as domains of input parameters of m. Objects which are newlycreated within m may also be the receivers of messages. Essentially, the law prohi-bits method invocation on objects which have been returned by some other method.One goal of the Law of Demeter is to decrease the coupling between di�erent objectclasses by restricting the object classes with which a speci�c class may commu-nicate. However, the decrease of component coupling is traded for an increase ofinteraction coupling between the client classes and the inspected class and betweenthe inspected class and the component class, respectively. For each method of thecomponent class which should be visible to the client class a propagation methodhas to be implemented at the inspected class. The client class calls the propaga-tion method, which calls the corresponding method in the component class in turn.Besides the increase of interaction coupling, propagation methods also introducetramp data, i.e., data which is passed from the client class via the inspected classto the component class without being used in the inspected class at all. Trampdata increases interaction coupling between the client class and the inspected class27



since a change of the de�nition of this data implies a change of the inspected classalthough the data is not used.At �rst sight there exists a contradiction between the Law of Demeter and thegoal to avoid non-delegated cohesion. Whereas the former introduces propagationmethods, i.e., non-delegated methods, to reduce component coupling, the latterfactors out non-delegated methods to component classes to increase class cohesionand { as side-e�ect { to reduce interaction coupling. A solution to overcome thisdilemma is to consider the situation from a semantic point of view. If the componentstructure describes a relationship between conceptually di�erent objects, as revealedby semantic data modeling, it is favorable to reveal the component hierarchy in orderto avoid propagation methods with tramp data. But, if the component structureis mainly an implementation detail, the solution with propagation methods is moreappropriate.4. concealedThe cohesion of a class is rated concealed if it neither has separable, nor multifaceted,nor non-delegated cohesion, but there exists some useful data abstraction concealedin the data abstraction represented by the class. In modules, concealed cohesionresembles a piece of inline code which can be factored out to a subroutine or function.In analogy, a class with concealed cohesion includes some instances variables andreferencing methods which may be regarded as a class of its own. Factoring out ofsuch parts has two advantages. Firstly, the structure of the inspected class becomesmore intuitive and more concise, thus increasing the class' cohesion. Secondly, itpermits the new class being reused as component in other classes as well.Factoring out such a concealed class implies that the instance variables factored outare replaced by one instance variable referencing an object of the new class. Allmethods of the inspected class referencing only factored out instance variables arefactored out, too. For some methods, one has to decide whether to place them inthe new class or to leave them in the inspected class according to the discussionabove about non-delegated cohesion.Example: Consider again the object class EMPLOYEE with the instance variablesname, jobPro�le, dayOfBirth, monthOfBirth, and yearOfBirth, and dayOfHire, mon-thOfHire and yearOfHire. The instance variables describing various dates maybe factored out to a new class DATE with the instance variables day, month,and year. The respective instance variables of the class EMPLOYEE are thenreplaced by two instance variables birthDate and hireDate. 2Candidates for new classes are on one hand instance variables with complex domains,and on the other hand sets of instance variables which are often used together inmethods but rarely used together with other instance variables. Some kind of clusteranalysis may exhibit candidates. When creating a new class we have to keep in mindthat the class should have the best cohesion characteristic possible.5. model 28



Model cohesion is the highest degree in our classi�cation. The cohesion of a classis rated model if the class represents a single, semantically meaningful conceptwithout containing methods which should be delegated to other classes and withoutcontaining concealed classes.It is interesting to note that a semantically similar notion, informational strength,has been already de�ned by Myers [44] in the realm of module-oriented systems.There, a module is interpreted as implementation of an abstract data type. Takingthe classical function-oriented notion of cohesion a bit further Myers de�nes a mo-dule to have informational strength if all its functions have functional cohesion andthey work on the same set of data.4.3 Inheritance CohesionWhereas class cohesion only inspects the binding of the newly de�ned elements within aclass, inheritance cohesion also takes the inheritance hierarchy into account. It describesthe binding of the newly de�ned elements together with the inherited elements. Since thelatter are transitively inherited from direct and indirect superclasses inheritance cohesionevaluates not only the cohesion of an immediate class-superclass relationship but inspectsthe whole inheritance hierarchy. Inheritance cohesion is strong if this hierarchy is a gene-ralization hierarchy in the sense of conceptual modeling, and it is weak if the inheritancehierarchy is merely used for code sharing among otherwise unrelated classes.Since the aim for each newly de�ned subclass is to exhibit a single semantic conceptwe may use the same classi�cation for inheritance cohesion as it was de�ned for classcohesion.5 OutlookIn this paper we introduced a comprehensive taxonomy of coupling and cohesion charac-teristics of object-oriented systems. In contrast to the classical notion of coupling andcohesion being based on a single concept, the module, there are two subjects of inter-est, methods and object classes, in the realm of object-oriented systems. In addition,the important concept of inheritance considerably in
uencing the structure of an object-oriented system has to be taken into account. This leads to three interrelated dimensionsof coupling and cohesion, respectively: interaction coupling, component coupling, and in-heritance coupling, as well as method cohesion, class cohesion, and inheritance cohesion.The goal of the paper has been to de�ne qualitative criteria for coupling and cohesionto improve the quality of object-oriented systems. The paper deliberately did not aimat metrics and quantitative criteria. The reason is not at all that these aspects are notimportant. However, it is our �rm belief that at the current state of art of object-orientedquality assessment it is very important to uncover the various aspects of quality criteria.Once these criteria are commonly accepted, metrics and automatic quality assessors maybe developed. Furthermore, the paper deals only with coupling and cohesion properties.Software quality, however, does not depend exclusively on these two properties but on29



various other factors like method fan-in/fan-out, and reuse via inheritance and polymor-phism, to mention just a few. To reach a comprehensive assessment of software quality allfactors have to be considered. In case of con
icting goals individual, problem dependentdecisions have to be taken. Finally, we did not take any performance considerations intoaccount when de�ning the various degrees of coupling and cohesion. The reason is thatcoupling and cohesion are criteria for evaluating object-oriented designs in the �rst place.The designs may be tuned during implementation for performance reasons.Further research expands mainly into three areas. Firstly, a comprehensive analysis ofexisting object-oriented design guidelines concerning their in
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