
 

A Generic Library of Problem Solving Methods for 
Scheduling Applications

ABSTRACT 
In this paper we describe a generic library of problem-
solving methods (PSMs) for scheduling applications. 
Although, some attempts have been made in the past at 
developing libraries of scheduling methods, these only 
provide limited coverage: in some cases they are specific to 
a particular scheduling domain; in other cases they simply 
implement a particular scheduling technique; in other cases 
they fail to provide the required degree of depth and 
precision. Our library is based on a structured approach, 
whereby we first develop a scheduling task ontology, and 
then construct a task-specific but domain independent 
model of scheduling problem-solving, which generalises 
from specific approaches to scheduling problem-solving. 
Different PSMs are then constructed uniformly by 
specialising the generic model of scheduling problem-
solving. Our library has been evaluated on a number of 
real-life and benchmark applications to demonstrate its 
generic and comprehensive nature.  

Categories and Subject Descriptors 
I.2.8 Problem solving, control methods, and search 

General Terms 
Algorithms, Theory, Design 

Keywords 
Scheduling, Ontologies, Problem-solving methods, 
Knowledge acquisition, and Knowledge reuse  

INTRODUCTION 
Scheduling is a hard problem both in theory and in practice. 
As a first approximation, we can say that scheduling deals 
with the assignment of jobs and activities to resources 
within a specific time window. Theoretical approaches to 
scheduling strive to search for an optimal solution; 
however, these approaches suffer from combinatorial 

complexity that can be proved NP-hard [5]. The complex 
nature of the scheduling task has attracted attention from 
researchers in artificial intelligence for many years and 
several intelligent scheduling systems were developed in 
the 80s and 90s [13]. However, these systems tend to be 
domain specific and not easily reusable across scheduling 
domains. 
In this paper we describe a comprehensive library of 
problem-solving components for scheduling, which aims 
both at providing practical, engineering support to build 
scheduling applications, as well as a principled framework 
to analyse and compare alternative approaches to 
scheduling. This work is based on the knowledge modelling 
paradigm [10] [17] that moves away from implementation-
level analysis of knowledge-based systems (e.g., forward-
chaining vs. backward-chaining behaviours of rule-based 
systems) to focus on the knowledge embodied by a 
performance system (e.g., how a diagnostic system 
discriminates between hypotheses on the basis of clinical 
tests). In parallel with this attention to knowledge-level 
reasoning, knowledge modelling has traditionally focused 
on generic knowledge components [1] [3] [10] [17], in an 
attempt to provide a more robust basis to the analysis and 
engineering of knowledge-based systems. The generic 
reasoning methods defined by knowledge modelling 
researchers are often called Problem-Solving Methods 
(PSMs) [1] [10]. A PSM can be seen as the abstract 
reasoning process underlying a KBS, and can be used to 
provide model-based templates to direct the knowledge 
acquisition (KA) process [18] and to support robust and 
maintainable applications by reuse [9] [10]. PSMs are 
usually categorised into the following two types: task-
specific PSMs, which tackle specific classes of generic 
tasks like diagnosis, design, parametric design, etc. [1] [3] 
[10]; and task-independent PSMs, which do not subscribe 
to any particular task, but rather provide reasoning steps in 
terms of a generic paradigm, such as search [12].  
The scheduling library proposed in this paper subscribes to 
the Task-Method-Domain-Application (TMDA) [10] 
knowledge modelling framework. This can be seen as a 
four-tier architecture, whereby we first formalise the 
scheduling task by means of the appropriate task ontology, 
and then we develop a generic model of scheduling 
problem-solving (henceforth gen-model), by instantiating 
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the search paradigm and in terms of the appropriate 
concepts in the task ontology. In total, seven knowledge-
intensive PSMs were developed in our library by reusing 
the high-level tasks from gen-model. These are meant to 
cover all the validation activities carried out during 
scheduling problem-solving, such as completion, constraint 
violation, requirement violation, and optimisation.  
Our library has been validated on a various real-life and 
benchmark applications to confirm its generic nature and its 
practical utility.  
The content of the paper is organised as follows. The next 
section describes the main components in the scheduling 
task ontology. Then in the subsequent two sections, we 
describe the construction of gen-model and various PSMs 
in our library. Then we describe an evaluation of our library 
in a particular application from space scheduling domain. 
Finally, we compare our work with existing approaches and 
re-iterate the main results from our research. 

GENERIC TASK ONTOLOGY FOR 
SCHEDULING TASK 
The task ontology formalises the nature of a scheduling 
task independent of any particular applications domains or 
the way problems can be solved. The task ontology and the 
rest of the library are specified by using Operational 
Conceptual Modelling Language (OCML) [10].  

Formal Specification of the Scheduling Task 
In our task ontology, the scheduling task is formalised in 
terms of the ten-dimensional space {J, A, R, C, Req, Tr, P, 
Cf, Sc, Cr}. These parameters are described as follows: 
•  Jobs, J = {j1, …., jM}. A set of jobs to be assigned to a 

set of resources for their execution. 
•  Activities, A. For each job, jm, there are N uniquely 

associated activities. The set of all such activities is 
denoted as, Ajm = {ajm1, …., ajmN}.    

•  Resources, R = {r1, …., rI}. A set of resources to which 
the jobs and activities can be assigned for their 
execution. The constraint and requirement specific 
knowledge relevant to the resources must be obeyed 
while assigning the jobs and activities over resources. 

•  Constraints, C = {c1, …., cL}. A set of constraints that 
must not be violated by a solution schedule. The 
typical examples of the constraints in scheduling can 
be a limited capacity of resources, a temporal 
precedence among jobs, due date of jobs, etc.  

•  Requirements, Req = {req1, …., reqK}. A set of 
requirements that describe the desired properties of a 
solution schedule. For instance, in the manufacturing 
domain, to execute the milling operation a ‘milling-
machine-A’ must be present along with other tools.  

•  Schedule time range, Tr. The time horizon in which the 
schedule takes place. It is represented in terms of a 
start time and an end time. 

•  Preferences, P = {p1, …., pT}. A set of criteria for 
choosing among competing solution schedules. Each 

preference defines a partial order over the set of 
solution schedules. The preferences are deemed to be 
the choice points to choose the specific resources, 
although two resources have the same function. 

•  Cost function, Cf. A function that computes the cost of 
a solution schedule.  

•  Schedule, Sc = {s1, …., sW}. A schedule, Sc, represents 
all possible schedules those can be generated as an 
output by the task ontology. Each schedule, say, Sw is a 
set of quadruples of the form: {<jm, ajmN, ri, jtrm,n,i>}, 
where jm is a job, ajmN is an Nth activity associated with 
jm, rk is a resource, and jtrm,n,i is a job time range 
associated with the assignment of jm and ajmN to 
resource ri. The job time range is represented in terms 
of the earliest and latest start and end time, and each 
jtrm,n,i is a sub-interval of Tr.  

•  Solution criterion, Cr. A mapping from Sw to {True, 
False}, which determines whether a candidate schedule 
is a solution. The minimal set of conditions imposed by 
a solution criterion on a schedule Sw is, Ssol ⊆ Sw, 
usually requires Sw to be correct, complete, consistent, 
and feasible. See below for the definitions of these 
properties. More restrictive solution criteria may 
impose optimality condition based on the application-
specific preferences and cost function.  

Below we define various criteria to check the validity of a 
schedule. 
•  A schedule, say Sw, is correct, if the pair jm, ajmN in a 

schedule appears no more than once.  
•  A schedule, say Sw, is complete, if for each activity 

ajmN in A, associated with job jm in a schedule, there 
exists a quadruple ‘q’ in Sw, such that q = <jm, ajmN, ri, 
jtrm,n,i >. In other words, all the jobs and activities in a 
schedule are assigned to the resources and time ranges. 

•  A schedule, say, Sw, is consistent, if it does not violate 
any applicable constraints, C ∪ Sw ⊬ ⊥. 

•  A schedule, say Sw, is feasible, if it satisfies all the 
applicable requirements, Sw ⊨ Req.  

•  A solution schedule, say Ssol-opt, is optimal, if no other 
solution schedule has a lower cost than that of Ssol-opt.  

A more detailed discussion of the task ontology component 
of our library can be found in [11].  

GENERIC MODEL OF PROBLEM-
SOLVING 
At the problem-solving level, we subscribe to search as our 
fundamental problem-solving mechanism. While the task 
ontology developed in the previous section aims at 
formalising the scheduling task, here, we develop the 
generic method ontology that provides the vocabulary 
necessary to characterise the search based problem-solving 
behaviour of the scheduling task. 

During problem-solving, the set of all schedules, Sc, is 
realised in terms of the schedule-space, and each schedule-
state, sw-state, in a schedule-space has a unique association 



 

with a corresponding schedule, sw. We define the relation 
state-transition that enables a scheduling agent to transit 
from an initial schedule state to the goal state. The 
transition through the schedule-space is achieved by 
applying the schedule-extension-resource-operator and the 
schedule-extension-time-range-operator that assign jobs to 
the resources and time ranges respectively. Both the 
operators are defined as a subclass of the class schedule-
extension-operator. The following box shows the OCML 
definition of the schedule-space and the schedule-state. 
(def-class Schedule-Space () ?x 
 ((associated-with-task :type scheduling 
                        :cardinality 1) 
  (has-states :type set :cardinality 1))   
 :constraint (=> (member ?s  
                  (the ?set (has-states ?x ?set))) 
                             (schedule-state ?s))) 
 
(def-class Schedule-State () ?s 
 ((has-schedule-model :type schedule) 

While constructing a schedule, it can be imagined that an 
assignment of one job may depend upon other jobs, and 
therefore, it may affect their assignments. To make such a 
job dependency explicit, we construct the job-dependency 
network by defining the following types of relations: job-
depends-on, job-affects, and job-assignable. The first 
relation says that any job j1 may depend on any other job j2 
while constructing a schedule. The second relation is an 
inverse of the first relation, which states that, the 
assignment of job j1 may affect any other job j2 that 
depends on it. Finally, the last relation states that, if a job is 
an unassigned one, then it is a potential candidate for the 
assignment. The function all-assignable-jobs retrieve all 
the unassigned jobs in a schedule. The following box shows 
the OCML definitions of the relation job-depends-on, job-
affects, and the function all-assignable-jobs.  
(def-relation JOB-DEPENDS-ON (?j1 ?j2) 
 :constraint (and (job ?j1) (job ?j2))) 
 
(def-relation JOB-AFFECTS (?j1 ?j2) 
 :constraint (and (job ?j1) (job ?j2))  
 :iff-def (job-depends-on ?j1 ?j2)) 
 
(def-function ALL-ASSIGNABLE-JOBS (?js ?sc) 
 :body (setofall ?x  
                 (and (member ?x ?js) 
                      (unassigned-job ?x ?sc) 
                      (job-assignable ?x ?sc)))) 

Our method ontology comprises about 47 definitions. 
Although, this method ontology is still very coarse-grained; 
it provides an initial basis to characterise a generic model 
of scheduling problem-solving. 

Generic Problem-Solving Model of Scheduling 
Gen-model decomposes the top-level scheduling task 
hierarchically into a number of (-sub) tasks and proposes (-
sub) methods to achieve these tasks. These tasks and 
methods represent the inferences that are necessary to 
execute the reasoning actions for constructing a schedule. 
Such a breakdown is not only instrumental in identifying all 
the generic tasks required to characterise the scheduling 
task, but also provides a generic base structure for the entire 
library. The problem-solving process in gen-model is 

initialised by invoking the method independent control 
regime Gen-schedule-control. The following box shows an 
informal specification of the Gen-Schedule-Control. 
Generic-Task Gen-Schedule-Control 
Inputs: Schedule-operators, Scheduling-task 
Output: Schedule-state 
Control: Schedule-space 
Goal: "State that satisfy goal of Scheduling-task" 
Subtasks: Generate-Space, Choose-Schedule-State, 
          Schedule-from-State 
Body: Generate-Space (scheduling-task)  
                      -> Schedule-space 
       Repeat 
        Choose-Schedule-State  
        (Schedule-space)-> Schedule-state 
         IF "Choose-schedule-state fails" 
          then Return () -> fails 
           else 
            IF "Schedule-state that satisfies a   
                goal" 
             then Return () -> Success 
              else 
               do Schedule-from-State  
                  (schedule-state) 

Gen-schedule-control takes as an input the list of schedule-
extension-operators and the scheduling task, and first it 
invokes the task generate-space for constructing the 
schedule-space associated with the scheduling task. Having 
created the schedule-space, the task new-schedule-state is 
invoked to create a root state associated with the schedule-
space. Within the task new-schedule-state first we apply the 
downstream consistency enforcement heuristic [16]. This 
heuristic propagates earliest start time of the jobs to avoid 
violation of the downstream cascading constraints. The 
complexity of this heuristic is linear, and, in the absence of 
resource conflict, guarantees backtrack-free search. Each 
newly generated state is evaluated by the task evaluate-
schedule-state. It is crucial to remember that these 
evaluation criteria are independent of each other. The 
following mechanisms describe the methods used to 
evaluate a schedule state.  
•  Evaluate-completeness: checks whether a schedule 

associated with a state is already completed;  
•  Evaluate-consistency: checks whether any of the 

constraints associated with a state are violated; 
•  Evaluated-feasibility: checks whether all the 

requirements imposed on a state are maintained;  
•  Evaluate-cost: this calculates a cost of a state by using 

the cost-function from the scheduling task ontology.  
•  Evaluate admissibility: checks whether a current, 

consistent state lays on a solution path. For this we 
implemented the following look ahead heuristics: full 
looking ahead and partial looking ahead [6]. The 
former heuristic checks the compatibility between the 
value requirements (i.e., resources and time ranges) of 
any two unassigned jobs as well as between an 
unassigned job with assigned and currently selected 
job. The latter heuristic checks the compatibility of the 
value requirements between any two unassigned jobs. 

Having evaluated a schedule state, the following two tasks 
are invoked: choose-schedule-state and schedule-from-



 

state. The former task provides a default criterion to select 
a correct state by using the method that subsumes the 
following conditions: a) a state that does not violate any 
constraints; b) a state that satisfies all the requirements; and 
c) a state that provides a maximal extension to a schedule.  
The task schedule-from-state provides a method specific 
control regime for gen-model, which is achieved by the 
generic method generate-new-state-successor. This method 
takes as an input the state selected by the task choose-
schedule-state, and expands it iteratively by applying the 
schedule-extension-operators. The operator selection in 
gen-model is achieved based on the context and the focus 
knowledge. The context in gen-model is to extend a partial 
schedule and the focus is one of the unassigned jobs. 
However, it is crucial to remember that the different PSMs 
in our library specialise the notions of context and focus.  
Once a correct context is abstracted, then all the foci (i.e., 
unassigned jobs) are collected in terms of the task, collect-
state-foci. Selection of a correct focus (i.e., a job) is one of 
the most important tasks in scheduling, as it improves the 
efficiency of a schedule construction by reducing undue 
backtracking. The task propose-schedule-from-context is a 
high-level control regime that selects a focus by calling the 
task select-schedule-focus. We have developed seven 
alternative methods that select a correct job judiciously 
based on different circumstances in scheduling. All these 
methods are constructed by using the job selection 
heuristics, both from the existing scheduling literature and 
from the real-world domain. To elicit the heuristics from 
the real-world scheduling domain, we conducted KA 
interviews with a scheduler in a steel-manufacturing plant 
in the UK, and their natural language description is given 
below: 
1) If two jobs say, ji and jk, are conflicting with each other 

for their resource requirements then a job with the 
earliest due-date is selected; 

2) The jobs that are consuming bottleneck resources are 
always given priority, as it provides better control 
maintaining the global stability of a schedule; 

3) A job with least number of activities is selected first; as 
such jobs guarantee to finish early with less chances of 
conflict among their values.  

If an application fails to provide information to select the 
candidate focus, then the focus is selected by subscribing to 
the method that is constructed based on the dynamic search 
rearrangement (DSR) [4]. A focus selection preference 
among different applications is determined by the relation 
schedule-focus-order. Having selected the candidate focus, 
the tasks collect-focus-operators and sort-focus-operators 
are invoked that first collects and then sorts all schedule-
extension-operators applicable to the selected focus. 
Finally, the selected focus is assigned to the resources and 
time ranges by the tasks generate-value-from-focus and 
propose-schedule-from-focus. Once an assignment of the 
current focus is completed, then the task new-schedule-
state is invoked to repeat an entire cycle until all the jobs 

are assigned. A Gen-model consists of 135 reusable 
definitions that can be instantiated by the domain specific 
knowledge, and more importantly all the PSMs in our 
library are constructed simply by reusing these definitions. 

THE PROBLEM-SOLVING METHODS  
Here, we describe how the different PSMs in our library are 
engineered by reusing the tasks in gen-model. Because all 
the PSMs are constructed uniformly by specialising 
generate-new-state-successor, it allows us to compare and 
contrast their knowledge requirements. Our library 
comprises of the following seven PSMs: Hill-Climbing, 
Propose & Backtrack (P&B) [15], Propose & Revise (P&R) 
[9], Propose & Exchange (P&E) [14], Propose & Genetic-
Exchange (P&GE), which is a variation of P&E and based 
on genetic algorithms, Propose & Restore-feasibility 
(P&Rf) that deals with the requirement violations (RV), 
and Propose & Improve (P&I) [10], which aims at 
optimising a schedule. These PSMs covers and reason 
about all the areas necessary to validate the scheduling task: 
completion, constraint violation (CV), RV, optimisation.  

Engineering of Propose & Genetic-Exchange 
In this section, we show how P&GE is engineered by 
reusing gen-model. Because the propose phase of P&GE is 
derived uniformly from gen-model; we focus our discussion 
on the construction of Genetical-Exchange phase.  
To enable fixing the CVs within the Genetical-Exchange 
phase, we define the new type of operator genetical-
operator. This operator takes as an input the set of flawed 
assignments and generates as an output the set of 
assignments in which the CVs are fixed. The control 
regime for P&GE named generation-of-P&GE is 
developed by refining the method specific control regime 
of gen-model on various dimensions. The following box 
shows an informal specification of generation-of-P&GE.  
Decomposition-Method Generation-of-P&GE 
Inputs: Schedule-state 
Output: Successor-state 
Control: Schedule-space 
Subtasks: Generate-New-State-Successor 
          Initial-Crossover Final-Crossover 
Tackles: Schedule-from-State 
Body: If “Schedule-state violates requirements”  
       then Return () -> Nothing 
        else 
         If “Schedule-state is a solution” 
          then Return () -> Schedule-state 
           else 
            do  
             Generate-New-State-Successor  
             (Schedule-state,  
              Schedule-context = :Extend) 
             If “Schedule state violates  
                 constraints”  
              then Initial-Crossover 
                   (schedule-state) 
               else  
                do  
                 Final-Crossover (schedule-state) 

Analogous to gen-model, the propose phase of the P&GE 
method first extends an incomplete schedule by invoking 
the task generate-new-state-successor in the extend context 
and by selecting one of the unassigned jobs as the focus. 



 

The state selection policy of P&GE select that schedule 
state which gives maximal extension to a schedule, violate 
no constraints, and has a minimum cost. If any constraints 
are violated during schedule construction, then they are 
ignored until a complete schedule is devised. Then the task 
initial-crossover is invoked in the genetical-exchange 
context where the focus is one of the CVs. This task is 
achieved by the new method default-initial-crossover, 
which is a local improvement strategy. It takes as an input 
the set of complete but inconsistent assignments generated 
during schedule extension, and then, it perform exchanges 
among the assignments of the jobs that are involved in the 
CVs to produce a schedule with either no or at least less 
number of CVs. At the end of each iteration, the task initial 
crossover invokes the relation schedule-violates-constraint 
from the task ontology to check if any improvement is 
achieved in a schedule. If the CVs cannot be fixed with the 
limited efforts, then the new task final-crossover is invoked 
that tries to fix the CVs globally. The new method default-
crossover is defined to achieve the task final-crossover. It 
is an exhaustive loop that takes as an input partially 
corrected set of assignments by the task initial-crossover, 
and to improve the performance of a schedule globally by 
optimising the CVs the body of this method calls itself until 
all the CVs are fixed. The body of this method collects all 
the outstanding CVs as the foci. A focus selection is 
achieved by the new method select-candidate-constraint, 
which achieves the task select-schedule-focus from gen-
model. The candidate focus during P&GE is selected by 
complying with the application-specific knowledge, but if 
an application fails to provide enough knowledge to 
achieve a focus selection, then the first CV in the list of 
collected foci is selected non-deterministically as the 

candidate focus. In compliance with the selected focus, all 
the genetical-operators are collected by defining the new 
method genetical-operator-collection, which achieves the 
task collect-focus-operators from gen-model. The 
following box shows the OCML definition of genetical-
operator-collection. 
The order over an application of all the selected genetic-
operators is determined by instantiating the relation 
schedule-operator-order. The first operator from the sorted 
list is selected and applied to exchange the assignment of 
the job(s) involved in the selected focus. This process is 
repeated exhaustively until either a schedule with no CVs is 
devised, or no further removal of the CVs is possible, that 
is to say a schedule is optimised. Finally, the last task that 
is invoked in the body of the task final-crossover is the 
evaluate-fitness-function. This task evaluates the quality of 
a schedule for the tardiness of the jobs. Following formula 
shows the evaluation function used to check job tardiness:  
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Generally speaking, all the PSMs in our library are 
developed by specialising the method specific control 
regime of gen-model, the notions of operator, context, and 
focus. On average, less than two dozen definitions were 
required to be defined to engineer each new PSM. Table 1 
shows a synoptic description of all the PSMs in our library. 
The row ‘problem-solving knowledge’ represents the type 
of problem-solving knowledge required by a PSM to 
achieve its functionality. The row ‘global properties’ 
represents the different validation areas of the scheduling 
task that can be tackled by the application of a PSM.

Table 1. Synoptic description of the PSMs in the library.
Knowledg

e 
Requireme

nt

Gen-
Model

Hill-
Climbing

P&B P&R P&Rf P&I P&E P&GE

State 
selection

CV: no, 
SC: max

CV: no, 
SC: max, 
Cost: min

CV: no, sc: 
max

SC: max, 
CV: min, 
Cost: min

SC: max, 
RV: min, 
Cost: min

CV: no, 
SC: max, 
Cost: min

SC: max, 
CV: min, 
Cost: min

SC: max, 
CV: no, 

Cost: min
Context Extend Extend Extend Extend, 

Revise
Extend, 

Feasibility
Extend, 
Improve

Extend, 
Exchange

Extend, 
Genetical-
Exchange

Focus Job Job Job Job, cv Job, rv Job, most 
expensive 

job

Job, cv Job, cv

Operators Schedule 
extension 
operator

Schedule 
extension 
operator

Schedule 
extension 
operator

Schedule 
extension 
operator, 

fixes

Schedule 
extension 
operator, 

feasibility-
operator

Schedule 
extension 
operator, 

improveme
nt-

operator

Schedule 
extension 
operator, 

Exchange-
operator

Schedule 
extension 
operator, 
Genetical-
operator

Problem 
solving 

knowledge

Focus & 
operator 
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available 
values

Uses a 
detailed 

cost 
function

Preference 
knowledge 

for the 
available 
values

Operator 
cost, fixes 

& 
available 
values

Operator 
cost, 

feasibility-
operator & 
available 
values

Focus , 
operator 
selection, 
available 
values & 

cost 
function 

Operator 
cost, 

exchange-
operator & 
available 
values

Operator 
cost, 

genetical-
operator & 
available 
values

Global 
properties

Complete Local 
optimality

Complete 
& optimise 

operator 
selection

Complete 
& 

consistent

Complete 
& feasible

Complete 
& optimal

Complete, 
consistent 
& globally 

optimal 

Complete, 
consistent 
& globally 

optimal 



 

EVALUATION STUDY  
The main purpose of our evaluation study is to validate the 
generic nature of our library. It consists of three steps: 1) 
instantiating classes from the task ontology with application 
specific knowledge to formalise an application; 2) selecting 
and configuring a domain-independent PSM to devise a 
valid schedule; and 3) evaluating the performance of an 
application and the extent to which a selected PSM satisfied 
the need of an application. In total, our library has been 
validated on the five applications consisting of real-life and 
benchmark applications from the following domains: space 
scheduling, resource allocation, manufacturing scheduling, 
and joint scheduling. Because space precludes, here, we 
discuss only the satellite-scheduling application in detail. 

Satellite-scheduling application 
The satellite-scheduling application is from the domain of 
space scheduling. It exemplifies the complex nature of the 
scheduling application due to the non-monotonic nature of 
the constraints and varying degrees of requirements. 

Construction of a Task Model 
The satellite-scheduling application consist of the 
assignment of 5 satellites over 3 antennas to ensure 
communication among them at different times during a 
period of 24 hrs. In accordance with the task ontology the 
satellites are modelled as the jobs, the antennas as the 
limited supply resources, and the communications within 
each satellite as the activities. They are formalised by 
defining the following application-specific classes: 
satellite-job, antenna-resource, and satellite-
communication. In extension to these concepts, the 
attributes of each satellite, antenna, and communication 
activity, such as job-time-range, availability period, and 
duration are modelled by defining their application-specific 
classes. The following box shows how Nimbus-1 satellite is 
formalised in terms of the OCML definitions.  
(def-class SATELLITE-JOB (job)) 
 
(def-class NIMBUS-1-JOB (satellite-job)) 
 
(def-instance nimbus-1 nimbus-1-job 
 ((requires-resource ‘(low-range-antenna)) 
  (has-activity ‘(nimbus-1-communication)) 
  (has-time-range nimbus-1-time-range) 
  (has-duration 60-minute-duration))) 

A satellite-scheduling application is formulated based on 
the following constraints and requirements elicited from the 
application: the antenna visibility constraints states that 
each antenna has a limited visibility period to communicate 
with the assigned satellites and all the communication 
activities within each satellite must be completed by 
complying with the visibility period of antennas. The 
Number of communications requirement states that each 
satellite must have at least four communication slots per 
day. The Communication duration requirement states that 
the duration of each communication slot must be of fifteen 
minutes. Finally, the communication gap requirement states 
that the gap between any two communication slots for a 
given satellite should not be greater than five hours. 

Construction of a schedule  
Because the primary objective of the satellite-scheduling 
application was to construct a complete and a consistent 
schedule, we applied the P&B method from the library. We 
defined the following two operators: satellite-resource-
operator and satellite-time-range-operator to assign 
antennas and time ranges to the satellites respectively. 
These operators are defined as a subclass of schedule-
extension-resource-operator and schedule-extension-time-
range-operator respectively. The satellite-resource-
operator is defined by complying with application-specific 
knowledge which ensures that the appropriate antennas are 
assigned to the satellites, and it also makes sure that the 
‘number of communication’ constraint imposed on each 
satellite is maintained as well. The following box shows the 
OCML definition of satellite-resource-operator defined to 
assign Nimbus-1 satellite to Low-Range-Antenna. The 
operators for the other satellites can be realised on the same 
lines. 
 (def-instance NIMBUS-1-TO-LOW-RANGE-ANTENNA   
               satellite-resource-operator 
  ((applicable-to-jobs '(setofall  
                         ?x (nimbus-1-job ?x)))  
   (has-costs 6)  
   (has-body (lambda (?x ?schedule) 
                     (the ?low-range-antenna 
                     (and (handles-job  
                           ?low-range-antenna ?x) 
                          (has-activity  
                           ?x ?nimbus-1-comm) 
                          (= (length  
                              ?nimbus-1-comm) 
                              4)))))))) 
 
(tell (SCHEDULE-OPERATOR-ORDER  
       nimbus-1-to-low-range-antenna 
       nimbus-1-to-time-range)) 

Each operator has a specific cost associated with it, which 
represents the cost incurred by the assignment of each 
satellite. The cost associated with each operator is 
represented by the slot has-costs in the definition of 
operators. We define a new function satellite-state-cost-
function to calculate the cost incurred by the assignment of 
each satellite, and the cost of a schedule is calculated by 
defining an application specific satellite-cost-function. 
The P&B method is configured based on the focus and the 
operator selection knowledge. Because the satellite-
scheduling application did not provide any concrete 
knowledge for selecting the candidate focus, we subscribed 
to the method job-selection-based-on-lowest-degrees-of-
freedom from gen-model. This method is constructed by 
using the DSR heuristic, and in each iteration it selected a 
satellite that is left with the least number of antennas and 
time ranges for its assignment. The total number of 
antennas associated with each satellite is represented by 
instantiating the relation possible-resource-for-job. Having 
selected the focus, all the operators that can be applied to 
achieve the assignment of the selected focus are collected. 
The order over their application is determined by 
instantiating the relation schedule-operator-order as shown 
in the above box while definition ‘Nimbus-1-to-Low-
Range-Antenna’ operator. The same process is iterated 



 

until all the satellites are assigned. A complete schedule for 
the application is constructed by generating 509 schedule 
states. Due to the correct focus selection policy, the 
schedule is constructed without any backtracking and 
therefore 100% efficiency is achieved. By the completion 
of a schedule, the aggregate cost of a schedule is the three-
element vector (000 120 000). Although, the schedule 
generated by P&B was of a ‘good’ quality (by good quality 
we mean that a schedule violated no constraints and all the 
requirements are maintained), it was not an optimal one 
and, therefore, we tried the hill climbing method to try and 
optimise the cost of a schedule. 
Analogous to the P&B method, the hill climbing method 
could not achieve an optimal schedule solution. The main 
reason behind this is that the assignments of the satellites 
Nimbus-1 and Nimbus-2 were competing with each other, 
and consequently their assignments were leading towards a 
schedule state with the same cost. The hill climbing method 
did not have enough competence to choose a schedule state 
that could lead towards an optimal solution.  
Finally, we applied the P&I method to devise an optimal 
schedule. The propose phase of the method first devised a 
complete schedule, and having constructed a complete 
schedule, the improve phase is invoked to optimise the cost. 
Within the improve phase, the satellite-improvement-
operators are defined such that they can optimise a 
schedule by improving the cost of the assignment of the 
most expensive satellite(s). We used the class job-cost-
function for calculating the cost associated with the 
assignment of each satellite, and the most expensive 
satellite is selected as the candidate focus. First all the 
assigned satellites from the propose phase are collected as 
the candidate foci and then they are sorted according to the 
cost of their assignments. Because the assignment of 
Nimbus-1 and Nimbus-2 satellites was competing with 
each other, obviously these two satellites levied highest 
cost, and therefore, we decided to swap the order in which 
they perform their communication with the respective 
antennas. The Nimbus-1 satellite is selected as a candidate 
focus and the time window of Nimbus-1 is swapped with 
Nimbus-2 satellite by applying the satellite-improvement-
operator. Because of the change in their execution order, 
the ‘locking period performance’ between the satellites and 
their respective antennas was improved by 10%. As a 
result, the cost achieved by the P&I method is the three-
dimensional vector (000 108 000). Because no benchmark 
application existed against which we could have checked 
our cost, we tried to optimise the cost of the application 
schedule as much as possible. 

COMPARISON WITH RELATED WORK 
Here, we compare our work with the following existing 
libraries of scheduling: the domain-specific library of 
scheduling [7], the constraint-based resource scheduler 
(ILOG) [8], and the CommonKADS library [17]. 
The major difference between our approach over that of 
Hori and Yoshida’s [7] is that, we subscribe to a top-down 

approach of schedule construction. It starts with the generic 
template (i.e., gen-model) whose components can be reused 
and refined by a configuration process to construct more 
specialised PSMs. As opposed to our approach, their library 
follows a bottom-up approach whereby all the problem-
solvers are constructed by identifying and subscribing to 
the knowledge requirements of the production scheduling 
domain. Such a type of domain specificity restricts the 
possible reusability of their library within a single domain 
of scheduling. Another important difference between these 
two approaches is that, while the PSMs in their library can 
cover and reason about only completion and CV issues of 
scheduling, but fail to provide any accountability for the 
RV and optimality. In contrast to their approach, our library 
provides a comprehensive repertoire of PSMs that tackles 
all the validation areas of scheduling. Moreover, the gen-
model component of our library offers a much richer and 
quicker way to construct a new PSM simply by reusing its 
high-level tasks and by specialising the notions of context, 
focus, state selection and operator construction knowledge. 
This uniformity allows us to compare and contrast the 
knowledge requirements of these PSMs. Because, the ‘gen-
model’ component is absent in their library architecture, it 
does not offer a modularity for constructing a new PSM. 
From a scheduling perspective their library discusses only 
two job selection criteria, i.e. earliest start time and down to 
the due-date, as compared to the broad job-selection criteria 
propose in our library. The job selection heuristic that deals 
with the assignment of the jobs and activities over the 
bottleneck resources is consistent with [2]. 
The ILOG framework subscribes to the CS approach as 
their problem-solving technique, in contrast with the 
knowledge-intensive approach of our library. In spite of the 
uniform approach to modelling, CS fails to provide a fine-
grained epistemological framework required to analyse 
various knowledge-intensive tasks involved in the schedule 
construction process. It is essentially an implementation 
technique. Because their library subscribes to CS, it aims at 
constructing sophisticated but domain-independent 
algorithms, but such domain independence fails to support 
the important function of KA. Another primary difference 
between these two approaches is that, ILOG focuses on the 
resource allocation class of the scheduling task as 
compared to the generic class of the scheduling task tackled 
by our library.  
CommonKADS is a comprehensive methodology which 
also tackles the assignment and scheduling tasks. However, 
their library does not provide a clean separation between 
the problem-solving structure and the domain description. 
In other words, the problem-solvers in the CommonKADS 
library are directly associated with the domain-specific 
knowledge. In our viewpoint, it makes it difficult to 
abstract the generic components associated with PSMs for 
their reuse. More importantly, the CommonKADS library 
comprises of only one method, i.e. P&R. As a result, the 
CommonKADS library tackles only the completion and CV 
issues of scheduling, but does not have any accountability 



 

for validating the RV and optimisation issues. In contrast 
with the CommonKADS library, our library comprises a 
wide range of seven different PSMs that allow us to tackle 
all the validation areas of scheduling. Moreover, the library 
framework of CommonKADS is opaque, as it fails to 
provide the required level of detail to construct a new PSM. 
In contrast with CommonKADS, our library provides a 
wide range of methods for selecting and evaluating a 
schedule state by considering different scenarios, various 
job selection heuristics that help to improve the efficiency 
of a schedule construction, etc. Finally, our library offers a 
much richer framework to construct a new PSM simply by 
reusing the generic tasks developed in gen-model and by 
specialising the notions of context, focus, and state 
selection policy.  

CONCLUSION 
In this paper we have proposed a generic library of PSMs 
for the scheduling task. It is based on the TMDA 
knowledge modelling framework and follows a top-down 
approach. Because our library has drawn from the various 
KBS technologies, like ontologies, PSMs, search, and KA, 
our organisation not only allows construction of different 
PSMs quickly, but also provides a way to compare and 
contrast their knowledge requirements. Our work is 
important for scheduling research both from theoretical and 
engineering perspectives. Theoretically, it exhibits a nice 
integration of the various techniques that have been 
developed in the scheduling research and also provides an 
insight into the various components which can be used in 
scheduling. From the engineering perspective, our library 
offers a support for the rapid construction of scheduling 
applications from different domains. Because our library 
provides a comprehensive repertoire of seven different 
PSMs, it allows us to cover and reason about all the 
validation areas that are crucial to the scheduling task, such 
as completion, constraint violation, requirement violation, 
and optimization. Finally, our library now has hundreds of 
reusable definitions, and it has been validated on a number 
of real-life and benchmark applications to confirm its 
generic nature. 
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