
Creating Domain Speci�c Libraries�

a methodology� design guidelines�

and an implementation

Marcel Becker� Jorge L� D��az�Herreray

Robotics Institute Software Engineering Institute

Carnegie Mellon University Carnegie Mellon University

Pittsburgh� PA� ��	�
 Pittsburgh� PA� ��	�
�
��

Abstract
In this paper we present an approach for build�

ing libraries of reusable software components that
addresses the tension between design�with�reuse and
design�for�reuse� The approach is based on a hierar�
chical model that assumes four levels of reusability�
The design guidelines for developing components ac�
cording to this methodology are summarized and an ap�
plication demonstrating how the products of a domain
analysis technique can be mapped into this hierarchical
model is described�

The application is a reactive scheduling architecture
for manufacturing operations� and the domain analy�
sis technique selected is the Feature Oriented Domain
Analysis���� developed by the Software Engineering In�
stitute at Carnegie Mellon University� The main ob�
jective of the paper is to establish the connection be�
tween the domain analysis products and the di�erent
reusable levels identi	ed by the proposed methodology�

� Introduction
The software reuse process includes activities re�

lated to the identi�cation of the desired components
for a speci�c application� the detection of the availabil�
ity of such components� and the analysis of the nec�
essary adaptation to incorporate the components into
the new system under development� From a pragmatic
point of view� the basic thrust of reuse is the capabil�
ity to integrate a coherent working system of inter�
connected software components� a process known as
Design�with�Reuse� or DwR for short� This presup�
poses the existence of component libraries for which
components are acquired and incorporated in a pro�
cess known as Design�for�Reuse� or DfR for short�
These two complementary reuse processes have con�
�icting goals��	� From a DfR perspective� the compo�
nents should be created aiming at providing similar

�This work is sponsored by the Robotics Institute� Carnegie

Mellon University and Conselho Nacional de Pesquisa e Desen�

volvimento Tecnol�ogico� Bras��lia� Brazil�
yThis work is sponsored by the U�S� Department of Defense�

functionality to a number of di
erent but related ap�
plications� That is� the objective of DfR is to provide
a �exible component� The emphasis here is on cre�
ativity�
From a DwR perspective� the needed components�

providing a very speci�c functionality� should be se�
lected from a stock of reusable software components�
The objective of DwR is to save time and e
ort by re�
trieving an existing component rather than developing
it anew� The emphasis is on understanding�
Seen under this perspective� DfR and DwR con�ict

in at least the following two ways�

�� The DfR view of a library is one of many heav�
ily parameterized components� whereas the DwR
view of a library is one of a few ready�to�use com�
ponents�

�� When developing for reuse� the designer knows
the component� but not the context in which it
will be used
 the need for �exibility breeds com�
plexity� In contrast� when developing with reuse�
the designer knows the context of usage� but not
the component
 the need for understanding de�
mands simplicity�

Independent of the perspective considered� the
identi�cation of the needed components requires a spe�
cial analysis of the application domain� By domain�
in this context� we mean the set of systems or applica�
tions that share some functionality� The identi�cation
of commonalities across similar software systems as
well as the dimensions along which the systems di
er
is one of the preconditions to achieve successful soft�
ware reusability� An analysis process called domain
analysis is one of the techniques that can be applied
to meet this requirement���	�
In this paper� we concern ourselves with the use

of domain analysis techniques and the application of
component design guidelines to address this con�ict
directly� Although there are other aspects associated
with the reuse process� as illustrated in Figure �� we
deal here only with issues related to source�code com�
ponents�

Figure �� �a� The two main phases of software
reuse� Design�for�Reuse �DfR� and Design�with�Reuse
�DwR�� �b� Con�icting goals between DfR and DwR�

� Di�erentiating Components
Resolving the con�icting goals of DfR and DwR re�

quires several steps� each one of them giving rise to
di
erent component levels� This approach works by
isolating dimensions of the software not strictly neces�
sary to the problem�s requirements� and highlighting
the fundamental role of strict layering in the organi�
zation of component libraries�
We propose a library organization based on a lay�

ered collection of components� Figure � summarizes
the proposed library organizational model� Two fun�
damental component layers are identi�ed� each parti�
tioned into two levels� thus yielding a library struc�
ture with four levels� This simpli�es both complex
systems interactions and software construction� and
achieves the e
ect of di
erentiating components� from
the more general� simple� and smaller to the more spe�
ci�c� sophisticated� and bigger� These layers explicitly
exploit design techniques known to be useful for DfR
from those useful for DwR� the two top layers� grouped
under the heading Outer Core� support DwR
 and the
two bottom layers� grouped under the heading Inner
Core� emphasize DfR� The bridge between the Inner

and Outer core is established by the two intermediate
layers� Each level has di
erent reuse goals� and each
requires di
erent techniques�

Components Library

Inner Core Level
Supports DfR

Outer Core Level
Supports DwR

Domain
Independent
Layer

Domain Features
Layer

Domain Architecture
Layer

Domain
Information
Layer

Figure �� The Reuse Levels� The lower layer �inner
core� emphasizes Design�for�Reuse� it builds up the
functionality that will be reused� The upper layer
�outer core� emphasizes Design�with�Reuse� it nar�
rows the scope of the components down to the context
of the reusing application� Intermediate layers bridge
the gap between DfR and DwR�

��� The Inner Core
The inner core is driven primarily by DfR consider�

ations� supported basically by abstract data types and
abstract state machines �ADT�ASM� concepts� Com�
ponents at this level typically represent bindings to
domain�independent components� allowing interaction
and interoperability among all the components� The
inner core also collects the most basic domain�speci�c
components �typically a semantic net of interrelated
data structures�� The inner core is further divided
into two layers or levels of components as follows�

Layer �� Domain�Independent �Bottom or In�
nermost� Components

This level of reuse has been known for a long
time in the form of fundamental structures and
algorithms� More recent is the emphasis on mak�
ing fundamental algorithms and data structures
available under the form of software components
�e�g�� Booch Components ��	� GRACE ��	��

In this level it is also convenient to include
even more complex components� such as language
bindings for standard global domain concepts�
The di�culty with the more complex components
comes from the variety of nuances people read
into the concepts represented by the components�

The result is a combinatorial explosion of func�
tionality� For example� user interface manage�
ment components o
er data types by the dozen�
windows� icons� widgets� buttons� scroll bars� etc��
and literally hundreds of operations�

So instead of considering the domain overall as
the basis for reuse� we take each one of the data
types as a component in its own right� Then the
design issues become similar to those for algo�
rithms and data structures�

Layer �� Domain Information �Intermediate�
Components

In this layer� the components still represent fairly
elementary concepts� but they are linked to spe�
ci�c contexts� i�e�� domain concepts� They typi�
cally contain the description of the speci�c data
structures that correspond to abstraction of do�
main entities and their inter�relations �in the
form of an entity�relationship diagram or seman�
tic net�� These components serve as the bridge
between the inner core and outer core� Domain
analysis techniques �see below� detect the rele�
vant domain concepts� their variances and unifor�
mity�

The di�culty in this layer comes from the particu�
lar characteristics of a given domain� A collection
of relatively small class hierarchies would help the
designer more than a single large hierarchy�

��� The Outer Core
The outer core is driven by DwR considerations�

The outer core represents the backbone of the software
architecture� and thus must be capable of providing
sockets into which we can plug domain�speci�c compo�
nents� At this level� reuse is seen as more than just ac�
quiring code
 it consists of reusing designs� The com�
ponents are collections of abstract components con�
nected in ways that represent abstract� semi��nished
domain designs and applications generated by con�
crete versions of these abstract designs� The compo�
nents can be organized using techniques such as frame�
works and toolkits���	�

Layer �� Domain Features �Intermediate�
Components

This type of reusable software is made of inter�
mediate components that are neither a simple
data structure nor a complete subsystem� Au�
thors have coined many terms to describe means
for reducing the gap between low�level� unspeci�c
notions and high�level� specialized concepts� e�g��
mediation and glue���	� To conjure the image of a
software factory� another nomenclature could be
semi�	nished domain�speci	c components� The
artifacts at this level are ready for incorporation
into an application� wherein they will material�
ize as �nished components� The organization of
these components can borrow� for example� from
frameworks���	 or Domain Speci�c Software Ar�
chitectures �DSSA� technology���	�

Typical activities involved in this level of design
include grouping several abstract data types to�
gether� choosing a subset of an abstract data
type�s operations� providing common values for
parameters� making inherited operations directly
visible� making interfaces match� reconciling be�
haviors� etc� Such domain�speci�c software com�
ponents make certain assumptions about the
functionality the system will implement � they
represent the features provided by the system for
a particular application domain�

Layer 	� Domain Architecture �Top or Outter�
most� Components

Finally� after these intermediate steps� the appli�
cations import the domain features components
and make them usable by �lling in the last param�
eters� Application developers and domain spe�
cialists negotiate the format of the semi��nished
components� The domain experts delve into their
toolbox represented by the basic features to build
the bu
ering layer the applications will use�

Generation� such as generic instantiation� is the
typical activity of this level� This is particularly
supported by the notion of toolkits ���	� Usually
toolkits are built on top of frameworks�

Design�with�reuse bene�ts from the dent the
lower levels have made into the complexity of the
components�

� Creating a Domain Speci�c
Reusable Library

This section summarizes the domain analysis per�
formed in order to create a library of reusable com�
ponents to be applied in the construction of a reac�
tive scheduling system for production environments�
The objective of the analysis process is to identify
the required domain objects and functionalities and
to map these requirements into the di
erent compo�
nent library layers identi�ed in the previous section�

��� Feature Oriented Domain Analysis
Domain analysis identi�es� collects� organizes� and

represents most of the relevant information needed to
design reusable components� it identi�es the scope of
the application� the objects of the domain� the di
er�
ent needed functionalities and how they vary across
applications in a domain� The information is obtained
from the study of the features and development his�
tory of existing applications� knowledge provided from
domain experts� and the underlying theory�
The number of publications on domain analysis has

greatly increased over the last ten years and several
methodologies are currently available� A review of
some domain analysis methods is presented in ���	
and an extensive domain analysis bibliography can
be found in ��	� Among the available methodolo�
gies� the Feature Oriented Domain Analysis ���� �	
developed by the Software Engineering Institute at
Carnegie Mellon University� was a natural selection
since the development group provided full support�

The feature�oriented concept is based on the em�
phasis this method places on �nding the features or
functionalities usually expected or desired in applica�
tions for a given domain� The analysis process� ac�
cording to the selected methodology� is characterized
by three basic phases� and each phase has speci�c pro�
cedures and products�
Figure � shows the three main phases of the Feature

Oriented Domain Analysis methodology� the inputs
needed at each phase� the �nal products� and how each
phase maps into the design layers identi�ed in section
�� More details about this mapping will be discussed
in the next sections�
The validation of the domain analysis is discussed

in ���	� The domain model products should represent
the relevant information about the objects and func�
tionality of a family of similar systems in a domain�
Validation of the model is obtained by reproducing
known applications through the selection of speci�c
features and building of a prototype system� Varia�
tions between the prototype behavior and expected re�
sults indicate problems in the description of the model�
The �nal validation is the system implementation� In
the current analysis� the prototype has not been im�
plemented yet but the products have been partially
validated by presenting the products to experts in the
�eld of reactive scheduling�

��� The Reactive Scheduling Problem
This subsection brie�y introduces the reactive

scheduling problem and the system architecture� Al�
though a detailed description of the reactive schedul�
ing domain is out of the scope of this paper� some
background information is useful for the sake of clar�
ity� The system architecture is based on a hierarchical
reactive scheduling model proposed by Morton���	�
The objective of a scheduling system� in a general

sense� is to assign resources to operations or activities
�or vice�versa� in order to obtain a desired output over
time� The type and characteristics of activities and
resources vary from application to application� The
schedule can be considered the representation of the
state of the constraints imposed on the processing of
the activities�
To make the concepts clear� consider the scenario

of scheduling manufacturing operations in a factory�
In this particular application� a sequence of operations
has to be processed on a set of machines or work areas�
The output of these operations is a set of products or
parts� The objective of the production is to satisfy an
external demand for some particular type and quan�
tity of products� The demand is represented as an or�
der� establishing a release date �the date the demand
is available to the system�� a due date� �the date the
demand is expected to be satis�ed�� a product to be
produced� and the quantity of the product� Each prod�
uct de�nes a set of operations whose processing should
follow a �xed sequence� Each operation requires a
certain amount of resource capacity over time� The
assignment of operations to resources should respect
capacity and precedence constraints and be guided by
a set of preferences�
Scheduling systems can be classi�ed according to

di
erent dimensions� Two dimensions that are par�
ticularly useful for the present work are related to
the schedule representation and the schedule gener�
ation strategy� According to the �rst dimension� the
schedule generated can have di
erent formats� It can
range from representations that precisely specify the
start and end times of each operation on each resource
�interval�based schedule� to representations that as�
sign only a relative importance to each operation
�price�based schedule� and determine start and end
times by simulating or actually executing the sched�
ule� In the second case� operations are processed ac�
cording to resource availability and an agent called a
dispatcher is responsible for releasing operations to re�
sources according to the sequence established by this
priority list�
Concerning the schedule generation strategy� sys�

tems can range from pure generative o
�line schedulers
to pure reactive real time schedulers� Pure generative
scheduling systems make decisions based on a static
model of the system
 that is� they usually work under
the assumption that resources are always operational
during their availability interval� and that nothing will
go wrong during the actual execution of the schedule�
On the other extreme� pure reactive scheduling system
makes decisions on real time� at each decision point�
the current state of the system guides the scheduling
process�
To obtain a coordinated behavior� practical pro�

duction environments usually require some kind of ad�
vanced plan� At the same time� however� these envi�
ronments are subject to a number of disruptions like
machine breakdowns and operations delays� These
disruptions or uncertainties will invalidate the ad�
vanced plan� Therefore� the solution of the schedul�
ing problem must provide some kind of mechanism to
generate schedules that account for these disruptions
in advance or that repair the schedule as disruptions
occur� Solutions that incorporate generative and re�
active components in the same system are common�
In these systems� a basic schedule is generated by an
o
�line component� When the schedule is executed� if
con�icts are identi�ed� a repair action is generated�
The architecture to be implemented using the

reusable components assumes the existence of a gen�
erative component external to the system� and an in�
ternal reactive component� the initial sequence of ac�
tivities and resource assignments is established by an
o
�line external scheduler
 once this schedule is gen�
erated� a priority or price is computed for each op�
eration� The priority list is then used by a real�time
dispatcher to send operations to be executed� As dis�
ruptions occur� an analysis process is triggered� Ac�
cording to the output of the analysis� a certain kind
of reaction is performed to repair the schedule� The
detailed description of the architecture can be found
in ��� �	�

� Context Analysis
The �rst phase of the domain analysis methodology

is the Context Analysis� The purpose of this phase is
to de�ne the scope of the domain� This phase identi�es
the sources of input� the desired output� and the data

Phase Inputs Activities Products Layer

Context
Analysis

Domain
Modeling

Architectural
Modeling

Operating Environment
Standards

Application Domain
Knowledge

Information
Modeling

Information
Model

Features
Context Model

Domain Technology
Context Model
Features Model
Information Model
Requirements

Functional Model

Behavioral Model

Implementation
Technology,
Context Model,
Features Model,
Information Model,
Design Information

Architectural
Modeling

Structured
Executive

Subsystem
Model

Domain
Independent
Layer

Domain
Features
Layer

Domain
Information
Layer

Domain
Architecture
Layer

Domain
Features
Layer

Context
Analysis

Features
Analysis

Functional
Analysis

Context
Model

Features
Model

Figure �� Domain Analysis � Feature Oriented Domain Analysis Methodology

storage requirements� Once the scope is de�ned� the
relations between the external and internal elements
are analyzed and the variability of these relations are
evaluated�
Becker in ��	 analyzed some knowledge�based reac�

tive systems and Smith in ���	 made a much more com�
plete survey of knowledge�based production systems�
Armed with this information� we were able to iden�
tify commonalities and di
erences in the systems and
it was also possible to establish the scope of the sys�
tem and the interactions between a reactive scheduling
system and its external environment�
The Context Model is composed of a Structure Di�

agram and a Context Diagram� The Structure Di�
agram is an informal block diagram in which the ap�
plication is placed relative to lower� higher� and peer�
level domains� The utility of the Structure Diagram
is to relate the current application� a generic reac�
tive scheduling system� to other applications in the
domain� Figure � shows the system components in
relation to the other pieces of software used to im�
plement the system� Notice that this is the structure
diagram required by the domain analysis methodol�
ogy� The levels identi�ed in this diagram are not the
reusable layers identi�ed in �gure �� It is possible�
and in fact desirable� to map these levels into the four
reusable layers previously identi�ed� In section ��� the
mapping from domain structures levels into reusability
layers is made explicit�
Figure � presents the Context Diagram for the

scheduling problem� The closed boxes in the diagram
represent external agents or external source of data

the open boxes represent internal data depositories

Level 4
Domain
Architecture

Level 3
Domain
Utilities

Level 2
Common
Utilities

Level 1
Hardware Sun Sparc Station

Unix or Sun−OS
Allegro−Common Lisp 4.1
Ada

Ada−CLOS Interface
Xlib−Motif Graphical Libraries

Real−Time Services

Data Management

Opis Framework Constraint/Operation/Resource Representation

Blackboard Control Architecture

Off−Line Schedule Generator
Real−Time Dispatcher

Mid−Reactive Scheduler
Major Reactive Scheduler

Price Calculation
Conflict Analysis

Reaction Analysis

Figure �� Context Model� Structure Diagram

and the arrows represent data �ow�

� Domain Modeling

The next phase of the domain analysis is the Do�
main Modeling� The is the most important phase for
the identi�cation of components at the di
erent lev�
els of the reuse library� The purpose here is to iden�
tify the di
erences and commonalities that character�
ize the applications in a domain� The three products
of the domain modeling are� the Information Model�
the Feature Model� and the Functional and Behav�
ioral Models� These products for the domain under

Resource Description
 (Static)

Order Data
(Static and Dynamic)

Tecnological Constraints
(Static) (Static and Dynamic)

UserOrder Status

Factory Status

Scheduling
Schedule Representation

(Dynamic)
Operations

Managerial Objectives/Preferences

Constraints on orders and resources

Ord
er

s

(R
es

ou
rc

e R
eq

uire
m

en
ts)

Operations

Resource Status

Resource
Capacity

Update Resource

Capacity

O
peration Info Remove/add Operations

Remove /Add Resources

Remove/Add Constraints

Preferences

Scheduler

Sc
he
du
le

Or
de
rs

Price
Update

Figure �� Context Model� Context Diagram

study are too large to be included in this paper� but
a summary of them is provided�

��� Information Model
The Information Model captures the domain

knowledge and data requirements essential for the de�
velopment of applications in a domain� This model
can be represented as an entity�relationship diagram
that speci�es the objects to be manipulated by the
application and how they relate to each other� The
entities provide the needed information for the design
of components in library layer � � Domain Informa�
tion Components� The relationships between entities
specify the requirements for components in layer � �
Algorithms and Data Structure�
The internal representation of objects used by the

system is based on the OPIS���	 representation� OPIS
design is object�oriented and uses a class hierarchy to
represent resources and operations� As described in
���	 and ���	� its class library can be divided into three
main groups�

Base Classes� are usually not instantiable��

Specialized Classes� are instantiable�

�A technical report containing the entire products is

available�
�These classes are preferably implemented as abstract

classes� CLOS� however� does not provide a mechanism to avoid

direct instantiation of any class�

Mixin Classes� provide common functionality to
di
erent objects�

Figure � shows the relation between the three basic
class types� From an entity�relationship perspective�
the specialized classes de�ne the entities of the system
and the base classes and mixin classes de�ne� in a
sense� the relationship among them�
In a scheduling system� six base classes can be iden�

ti�ed� These base classes correspond to the domain
entities and provide the components for library layer
�� The base classes are�

Demand� represents the input or order introduced
into the system�

Product� speci�es the kind of services provided�

Operation� is the focus of the scheduling system� op�
erations are the entities processed to satisfy the
demand�

Resource� represents the entity to be reserved over
time to process the operations�

Preference� represent the static knowledge about
the system operation� Preferences are used to
guide scheduling decisions�

Mixin Classes Base Classes

Specialized Classes

Instances

Instantiation

Manufacturing
Operation

Instantiation

Drilling
Machine

Instantiation

Inheritance

Aggregate Operation ResourceAggregate

Inheritance Inheritance

Manufacturing
Resource

Drilling
Operation

Figure �� Class Hierarchy

Scheduler� represents the abstraction of the set of
functional elements that manipulate demands� re�
sources� operations� and preferences to produce
the �nal schedule�

From the model described above it is possible to
de�ne a semantic network specifying the data struc�
tures and functionality needed in library layer �� How�
ever� additional elements must be provided to support
the functions speci�ed� For example� since operations
have start and end times and resources are allocated
over time� some kind of mechanism for time services
and for manipulating allocation intervals must be pro�
vided� time services� representation for time intervals�
doubly�linked lists� binary trees� search and sort algo�
rithms� and graphical libraries for interface construc�
tion are some of the components needed� As these
components do not depend on any kind of domain
speci�c information� they de�ne the components in
library layer �� the domain independent layer�

��� Feature Model
The Feature Analysis identi�es the services pro�

vided by the system and how these services di
er
across applications within the domain� The �nal prod�
uct of this phase� the Feature Model � is a hierarchical
graphical representation of the features� The Feature
Model provides the elements to design the components
at layer ��
According to the Feature Oriented methodology�

three distinct groups of features are considered�

Display Features� These features specify how the
system operation is seen by the user� For a
scheduling system� these features include graphs�
reports� gantt charts� and tables�

Operational Features� These features specify the
general functionality the system should have� The
top�level operational features include�

Input� ability of the system to receive informa�
tion from the external world�

Schedule� ability of the system to assign opera�
tions to resources �or vice�versa�� over time�

Dispatch� capability of the system of actually
executing the schedule generated�

React� ability of the system to correct the sched�
ule decisions while the schedule is executed�

Context Features� This set of features identi�es the
dimensions along which the operational and dis�
play features show room for adaptability� The
top�level context features are�

Application Domain� the kind of operations
and resources used in the application do�
main are an important factor to determine
the kind of behavior of the system�

Objective�Function� the managerial objectives
de�nes the scheduling and reaction strate�
gies as well as the price calculation methods�

Level of Abstraction� resources and opera�
tions can be aggregated at di
erent levels
of abstraction like machines that can be ag�
gregated in work areas� or ships that can be
aggregated in �eets�

Schedule Type� the schedule can be price�based
or interval�based�

Strategy� di
erent types of strategy can be es�
tablished for scheduling �generative or reac�
tive� resource or operation based� etc�� reac�
tion� dispatch� analysis� etc�

Con
ict� con�icts can di
er according to type�
size� and importance�

The context features specify the interface be�
tween components in layers � and �� To il�
lustrate this notion� consider the base classes
operation and resource de�ned as components
in library layer �� As it was mentioned before�
base classes cannot be instantiated� In level ��
the specialized classes manufacturing�operation�
manufacturing�resource� transport�operation�
and transport�resource are created as sub�classes
of the corresponding base classes� The context feature
responsible for the di
erentiation of the components
in this example is the application domain� In the ap�
pendix a more detailed example illustrating this situ�
ation is presented�

��� Functional Model
The Functional Analysis identi�es the control

structure and data �ow necessary to implement the
services described in the feature analysis� The product
of the Functional Analysis� the Functional and Behav�
ioral Model� captures functional commonalities and
parameterizes variability� This model speci�es how

the components at layer � can be parameterized to
provide the speci�c functionality described in the Fea�
ture Model�
Once specialized classes and methods have been de�

�ned at layer � of the component library� instances
of the specialized classes can be created at layer �
and methods can be combined to provide the required
functionality� The components of the application�
layer �� are speci�ed based on the operational features�
and parametrized based on the context features� For
example� a scheduling method de�ned at layer � can be
a combination of several di
erent search strategies de�
�ned at layer �� The context feature Application Do�
main establishes the type of operations and resources
that will be used by the scheduling methods
 the con�
text feature Objective Function establishes the search
strategy that should be selected to generate the sched�
ule
 the context feature schedule type determines if
time bound intervals should be propagated each time
a decision is made or if a price computation method
should be triggered�
Notice that the context features identify the spe�

cialization from base classes to specialized classes and
also guide the class selection for instantiation� This
ambiguity in the role of the context features is one of
the problems we found in using the Feature Oriented
methodology� although it helps the identi�cation of
the desired functionality �operational features� and its
variability �context features�� it does not provide a
means of directly relating them� The connection be�
tween the di
erent phases is also left unspeci�ed� the
methodology does not provide any information on how
the operational features should manipulate the objects
de�ned in the information model or how to use the
feature model to generate the functional model�
To implement the general system behavior de�

scribed before� �ve semi��nished components can be
identi�ed� These �ve components and respective func�
tionality are�

Top�Level Manager� problem�solving agents coor�
dination�

Real�Time Dispatcher� scheduled operations exe�
cution�

Con
ict Analyzer� con�ict and reaction analysis�

Reaction Agent� schedule repair� The size of the
reaction is a function of the con�ict characteris�
tics�

Price Calculation� priority list computation� The
priorities de�ne the operation sequence for exe�
cution�

The general behavior of the system can be seen in
the Functional Diagram presented in �gure �� The
Functional Diagram represents the activity �ow of the
system� The larger boxes represent the architectural
components in layer � of the library� Each of these
components is implemented by the composition of in�
stances of semi��nished components from layer �� The

small boxes �except the �idle� boxes� represent in�
stances of layer � components� For example� when or�
ders are introduced� the Read�Orders element should
be able to read the input and generate the internal
representation of these orders� The Read�Orders func�
tionality is obtained by the instantiation of two semi�
�nished components� one that will read the orders
introduced in the system and other that will translate
the input read into the internal representation� The
semi��nished component that generates the internal
representation for the input is the Order Instantiator��

This element corresponds to an instance of the class
Instantiator described in library layer � as a special�
ization of the corresponding layer � base class� Notice
that the �nal instantiated component hides the inner
lower level relations�
The orders and respective operations are then sent

to the element in charge of schedule generation and
price computation� The layer � component Gener�
ate Schedule is obtained by the instantiation of three
semi��nished components� the schedule generation el�
ement corresponds to an instance or a combination
of instances of semi��nished components identi�ed as
problem�solvers
 the price computation is performed
by a price calculation instance that is parameterized
by the objective function that the scheduler is trying
to optimize
 the dispatch list is then generated by an
instance of a dispatch list generator�
The output of the Generate�Schedule element is a

priority list that is sent to the real�time dispatcher�
The real�time dispatcher is a component in layer �
that will use one or more of the dispatch algorithms
de�ned in layer � and� like the Schedule Instantiator�
will modify instances of the specialized classes for re�
sources and operations� Di
erent dispatch algorithms
are used depending on the set of context features se�
lected for this particular application� The dispatcher
operates in a cycle� and as con�icts are detected� they
are sent to the element in charge of mid�size correc�
tions� If the mid�size reaction cannot solve the prob�
lem� a global repair is performed�

� Domain Library Implementation
Architectural Modeling is the last phase of the Fea�

ture Oriented methodology� The product of this phase
is a software solution in the form of a high�level de�
sign of the application� Instead of presenting architec�
tural modeling as speci�ed by the methodology� this
subsection presents how the components de�ned in li�
brary layers �� �� and � can be used to generate an
application at layer ��
As it was said before� it is possible to map the prod�

ucts of the di
erent phases of the methodology to the
design levels of the components� Figure � shows how
the Structure Diagram of �gure � maps into the four
design layers of the components� The CommonUtility

�Do not confuse the Order Instantiator with the instanti�

ation of semi��nished components� From the scheduling sys�

tem point of view� the Order Instantiator is a component re�

sponsible for creating instances of operations and demands�

From the library perspective� it is an instance of a semi��nished

component�

Read_Orders Generate_Schedule

Dispatch_OperationsPerform_Major_Reaction

Idle Idle

Idle

Read_input

Gen_Orders

Generate_Schedule

Compute_Prices

Gen_Dispatch_List

Send_Operations

Receive_Status

Analyze_Conflict

Local_Repair

Idle

Global_Reaction

Recompute_Prices

Gen_Dispatch_List

Repair
Action

Perform_Mid_Reaction

Idle

Analyze_Conflict

Perform_Repair

Medium
Conflict

Large
Conflcit

Large
Conflict

Conflict

Small_Conflict

Dispatch_List_Ready

Operations_Introduced

Orders_Ready

New_Prices

Schedule_Repaired Schedule_Repaired

No_Conflict

Figure �� Functional Model� Functional Diagram

level of the Structure Diagram corresponds to library
layer � � Domain Independent Components� The com�
ponents at this layer provide the most basic services
like time manipulation routines� balanced trees� dou�
bly linked lists� and graphical libraries� These data
structure de�nitions and respective manipulation rou�
tines can be found in public software repositories or in
several textbooks�

Blackboard Control Architecture

Opis Framework − Operations, Resources, Demands

Real−Time Services

Real Time Dispatcher Mid−Reactive Scheduler

Major Reactive Scheduler

Layer 4
Domain
Architecture
Layer

Layer 3
Domain
Features
Layer

Layer 2
Domain
Information
Layer

Balanced Tree
Doubly Linked Lists
Basic Time Services

Ada/Clos Interface

Xlib−Motif−CLIM Graphical Libraries

Layer 1
Domain
Independent
Layer

Framework Specialization − Operations, Resources, Demands

Reaction Analysis
Off−Line Scheduler Generator

Price Calculation Routines

Dispatch Algorithms

Conflict Analysis

Figure �� Design Levels for Reusable Components

The Domain Utility level in the Structure Diagram
corresponds to library layer � � Domain Information

Layer� At this layer there are routines to imple�
ment the control cycle� the instantiation of external
demands into internal orders� the time bound prop�
agation mechanism� and the basic representation for
demands� products� operations� and resources� The
components at this level can be implemented from
scratch based on the Information Model or can be re�
trieved from existing systems by using re�engineering
approaches��� �	�
The Domain Architecture level of the Structure Di�

agram maps into layers � and �� At layer � is the
specialization of the framework for the speci�c appli�
cation domain� Operations and resources are special�
ized so that they ful�ll the needs of speci�c require�
ments� In layer � there are also the domain dependent
algorithms for con�ict and reaction analysis as well as
dispatch heuristics�
Library layer � corresponds to the application that

uses the components de�ned in layer �� All the el�
ements at the topmost layer are implemented by se�
lecting� instantiating� and coordinating the functions
provided by the features de�ned in layer ��

	 Conclusions
This paper deals with several di
erent issues re�

lated to software reusability� The de�nition of these
issues clari�es the objectives for the designer� Instead
of aiming for a universal remedy� we suggest that reuse
entails a fundamental con�ict between the intentions
of the original component designer and the reusing de�

veloper� This con�ict can be resolved only by applying
a step�wise reduction to the gap separating design�for�
reuse from design�with�reuse� Design techniques play
an important role in shaping the static structure of
the resulting component library�
The approach presented here is based on the propo�

sition that the formalization of the software library
static structure serves to bridge the gap between the
component library and the software architecture�
The �rst contribution of the present work is the

testing and validation of a domain analysis methodol�
ogy as a useful tool for the identi�cation of commonal�
ities and di
erences among related applications for the
same kind of domain� The second contribution is the
construction of the mapping from the output products
of the Feature Oriented Methodology to a design tech�
nique for reusable components that establishes several
levels of reusability� The third contribution is the val�
idation of the design technique as an e�cient mecha�
nism for the generation of domain dependent reusable
software components�
Validating the concept by applying it in a profes�

sional environment and collecting the opinions of the
users is one avenue for further work�
Parallel to these contributions to the software en�

gineering �eld� there are the contributions related to
scheduling and knowledge�based applications� The by�
products of using these two methodologies are a bet�
ter understanding of the scheduling domain and a li�
brary of reusable components for the implementation
of scheduling systems to be used in di
erent applica�
tions�
The Feature Oriented Methodology has been a use�

ful tool for the identi�cation of the desired system
functionalities and the dimensions along which they
can vary� The main di�culty we found was how to
establish the link between the di
erent phases� The
methodology does not specify how to generate a func�
tional model or the architectural model from the fea�
ture and informationmodel� To deal with these issues�
the solution was to adapt the products of the Feature
Oriented methodology so they could be used as an
input to the design phase of another methodology�
We have been also looking at speci�cation lan�

guages that allow domain description in higher level
structured languages� The time when a programming
language possess features for enforcing guidelines is
not near� and it might never be� Management and
engineering practices must compensate for this lack of
language support� Enforcing the use of components
from the next lower layer in the model is one rule that
management has to supervise� Con�guration manage�
ment tools can provide desirable features like mak�
ing di
erent bodies available for a given speci�cation�
Standard naming schemes and powerful library man�
agement tools are other approaches for reducing reuse
di�culties�
As it was mentioned before� the library of compo�

nents resulting from the analysis described has been
partially implemented by re�engineering parts of ex�
isting scheduling systems� Considering the architec�
ture described in section ���� we are currently working
on the implementation of some components at layer

� and �� namely the analysis and price computation
agents� The current system implementation is in Com�
mon Lisp Object System���	 but we are considering
the re�implementation of the entire system in Ada�X
since CLOS does not allowed the layering of compo�
nents� The results of the domain analysis is also being
currently used to re�engineer another scheduling sys�
tem for vehicle movement control�

Acknowledgments
Many thanks to Shalom Cohen and James Withey

of the SEI for their expert advice and coaching on the
use of the Feature Oriented Domain Analysis method�
ology and also to Ora Lassila from CIMDS for his help
and suggestions�

References
��	 V�R� Basili� �Reusing existing software�� Tech�

nical Report UMIACS�TR�����
� Dept� of Com�
puter Science� University of Maryland� College
Park� MD� Oct �����

��	 M�A� Becker� �Revision of reactive scheduling ar�
chitectures�� Working Paper� Robotics Institute�
Carnegie Mellon University� Pittsburgh �����

��	 M�A� Becker� �A price�based reactive schedul�
ing architecture�� Working Paper� Robotics In�
stitute� Carnegie Mellon University� Pittsburgh
�����

��	 G� Booch� �Software Components with Ada��
Benjaming�Cummings� Menlo Park� CA� �����

��	 E�V� Berard� �GRACE Software Components��
EVB Software Engineering� Frederick� MD�
�����

��	 G� Caldiera and V�R� Basili� �Reengineering ex�
isting software for reusability�� Technical Report
UMIACS�TR������� Dept� of Computer Science�
University of Maryland� College Park� MD� Feb
�����

��	 S�G� Cohen� J�L� Stanley� A�S� Peterson� and
R�W� Krut� �Application of feature�oriented do�
main analysis to the army movement control do�
main�� SEI����TR�
�� Software Engineering In�
stitute� Carnegie Mellon University� Pittsburgh�
PA� June �����

��	 J�L� D��az�Herrera� M� Schumacher� and
M�A� Becker� �Institutionalizing Software Reu�
se� bridging the gap between Design�with�reuse
and Design�for�reuse�� Submitted for publication�
�����

��	 J�A� Hess� W�E� Novak� P�C� Carrol� S�G� Cohen�
R�R� Holibaugh� K�C� Kang� and A�S� Peterson�
�A domain analysis bibliography�� SEI����SR���
Software Engineering Institute� Carnegie Mellon
University� Pittsburgh� PA� June ���

���	 R�E� Johnson and B�Foote� �Designing Reusable
Classes�� Journal of Object�Oriented Program�
ming� June�July� pp ����� �������

���	 K�C� Kang� S�G� Cohen� J�A� Hess� W�E� No�
vak� and A�S� Peterson� �Feature�oriented do�
main analysis� Feasibility study�� SEI����TR�
��
Software Engineering Institute� Carnegie Mellon
University� Pittsburgh� PA� Nov� �����

���	 R�W� Krut Jr� �Integrating ��� tool support into
the Feature Oriented Domain Analysis Method�
ology�� SEI����TR���� Software Engineering In�
stitute� Carnegie Mellon University� Pittsburgh�
PA� July �����

���	 O� Lassila� �Object Oriented Description of
OPIS�� Internal Report� Robotics Institute�
Carnegie Mellon University� July ���

���	 Levy Ripken� Proceedings of the ���� Ada�
Europe conference� pp �������

���	 E� Mettala� and M�H� Graham� �The Do�
main�Speci�c Software Architecture Program��
CMU�SEI��
�SR��� ADA
��

�� Software En�
gineering Institute� Carnegie Mellon University�
Pittsburgh PA� �����

���	 T� Morton� Heuristic Scheduling Systems� GSIA�
Carnegie Mellon Univ�� Pittsburgh�PA� July
�����

���	 S�F� Smith� � The OPIS framework for modeling
manufacturing systems�� Technical Report CMU�
RI�TR������� The Robotics Institute� Carnegie
Mellon University� December �����

���	 S�F� Smith� �Knowledge�based production man�
agement� approaches� results and prospects��
Production Planning and Control� vol� �� no� ��
pp� ������� �����

���	 S�F� Smith and O� Lassila� �Con�gurable systems
for reactive production management�� Working
Paper� CIMDS� Robotics Institute� Carnegie
Mellon University� Pittsburgh� PA� Aug� ���

���	 G�L� Steele Jr��Common Lisp �nd Edition� Digital
Press� �����

Appendix
 Components in CLOS
In a scheduling system� two basic entities are opera�

tions and resources� In CLOS �Common Lisp Object
System �� these two entities can be de�ned as�

�defclass operation ��
��duration�
�start�time�
�end�time�
�resource ��

�defclass resource ��
��resource�capacity�
�scheduled�operations�
�unscheduled�operations��

From the context features presented in section ���
it is possible to see that the application domain is a di�
mension along which the components should di
er� In
the manufacturing domain� to compute the duration of
an operation� it is important to consider the duration
of the machine setup� The representation of resources
should also keep a record of incomplete operations due
to machine or operator failures� In the transportation
domain� it would be useful to represent the origin and
destination of each operation� and the transportation
resource should also specify the velocity and location
of the resource� In level �� the classes operation and
resource are specialized for the manufacturing and
transportation domain as�

�defclass manufacturing�operation
�operation�
��setup�duration���

�defclass transport�operation
�operation�
��origin�
�destination���

�defclass manufacturing�resource
�resource�
��incomplete�operations���

�defclass transport�resource
�resource�
��velocity�
�location���

The same can be done with methods or functions�
Using still the same example� consider the duration of
the operations�
For the base class operation the method

operation�duration reads the value of the duration
directly from the slot duration� For manufacturing�
operations� however� it is necessary to add the setup
duration to the duration of the operation itself� A
method to do this could be written as�

�defmethod operation�duration
��op manufacturing�operation��
�� �setup�duration op��duration op���

Where duration is a method that will compute
the individual duration of the operation represented
by op�
In the transportation domain� the duration of the

trip is a function of the distance between origin and
destination and the velocity of the resource�

�defmethod operation�duration
��op transport�operation��
�let ��resource �operation�resource op���

�� �distance�between
�origin op��destination op��
�velocity resource����

Where distance�between is a function which�
given two locations� returns the distance between
them and operation�resource is the method that
reads the value of the slot resource of the operation�

