
Using a scheduling domain ontology to
computeuser-orientedexplanations

Stephen F. Smith1, Gabriella Cortellessa2, David W. Hildum1, Christian M. Ohler1

1 The Robotics Institute Carnegie Mellon University
5000 Forbes Avenue - Pittsburgh PA 15213

{sfs,hildum,ohler}@cs.cmu.edu

2 ISTC-CNR National Research Council of Italy
Viale Marx 15, I-00137 Rome, Italy

corte@istc.cnr.it

Abstract. One broad source of difficulty in transitioning automated planning and
scheduling theories and algorithms into practical application systems is the need to
integrate with user decision-making processes. Both user acceptance of system deci-
sions in successful problem solving episodes and effective user involvement in circum-
stances where the system reaches a problem solving impasse require that the system
be comprehensible, and this requirement, in turn, implies that the system be capable
of explaining its decisions in user-understandable terms. Unfortunately, most current
work in explanation instead forces users to understand the system’s underlying search
models. In this paper, we consider this problem of bridging the gap between user and
system models in the context of a constraint-based scheduling system. Previous work
has proposed the use of a scheduling domain ontology as a basis for translating user
problem specifications into internal system models. Here we propose the complemen-
tary use of a domain ontology as a means of computing user-oriented explanations of
system decisions. We focus specifically on the problem of explaining temporal con-
straint conflicts that may arise in the course of either solving a given scheduling prob-
lem or integrating new state information with a previously computed schedule. The
central idea is to use domain ontology knowledge (1) to isolate those constraints that
are meaningful to and can be manipulated by the user, and (2) to identify various con-
straint relaxation options that the user might consider to resolve the conflict at hand.
Using theCOMIREM planner/scheduler [10] as a reference model, we show examples
of how this approach can generate effective user-level explanations of constraint con-
flicts from low-level descriptions of detected cycles in a temporal constraint graph.
Along the way, we discuss the broader implications from the standpoint of mixed-
initiative scheduling system design.

1 Introduction

One major obstacle to the practical application of new planning and scheduling theories and
algorithms is the gap between these automated models and human planning and schedul-
ing processes. Although there are certainly some exceptions, total automation of decision-
making is not an appropriate goal in most practical domains. More typically, it is the case

Amedeo Cesta
In L. Castillo, D. Borrajo, M. A. Salido & A. Oddi (Eds), "Planning, Scheduling, and Constraint Satisfaction: From Theory to Practice", IOS Press, 2005



that experienced users and automated planning/scheduling technologies bring complemen-
tary problem-solving strengths to the table, and the goal is to synergistically blend these com-
bined strengths. Often the scale, complexity or general ill-structuredness of practical domains
overwhelms the solving capabilities of automated planning and scheduling technologies, and
some sort of problem decomposition and reduction is required to achieve solver tractabil-
ity. Likewise, human planners often have deep knowledge about a given domain which can
provide useful strategic guidance, but they are hampered by the complexity of grinding out
detailed plans/schedules. In such cases, successful technology application requires effective
integration of user and system decision-making. However, this is complicated by the fact that
users do not reason about plans and schedules at the level of search spaces and temporal con-
straint graphs; the system must somehow bridge the gap between user and system models and
representations.

Research into the design of mixed-initiative planning and scheduling systems is con-
cerned fundamentally with solving this general problem of interfacing a user with the au-
tomated system and placing a user into the problem-solving loop. One basic issue concerns
mechanisms for specifying planning and scheduling problems to the automated system, i.e.,
for translating user specifications of domain constraints and objectives into internal system
models. However, to effectively close the loop and actually involve the user in the plan-
ning/scheduling process, a second, somewhat inverse issue must be addressed: that of ex-
plaining system results in user-comprehensible terms. Human planners tend to be skeptical
of automated systems in general, and an ability on the system’s part to provide user-level
rationalization of generated plans and schedules can promote user acceptance. Perhaps even
more important to effective mixed-initiative planning and scheduling behavior is an ability
to provide explanatory support in the event of system failure. As suggested above, the ex-
perienced human user often possesses deeper knowledge of strategic decision options that is
outside of system models. She could manage unforeseen situations and retract specific con-
straints to recover from system failure, if properly informed of the specifics of the impasse
that the automated system has encountered. Most current systems provide no guidance in
such cases, and force the user to diagnose the problem at the level of the system’s internal
model.

In this paper, we consider this latter issue of explaining situations of solution failure
in user-oriented terms. We focus specifically on the problem of explaining temporal con-
straint conflicts encountered by a constraint-based scheduling system. In contrast to previ-
ous work on explanation in Constraint Satisfaction Problem Solving (CSP) domains which
operates at the level of individual decision variables and constraints, we propose use of a
scheduling domain ontology to compute higher-level explanations. The reference system for
our work isCOMIREM, a web-based mixed-initiative problem solver [10]. We demonstrate
how COMIREM’s ontology can be used to isolate user-relevant constraints in a given con-
flict situation and provide guidance in exploring resolution options. Before describing our
approach, we first review relevant aspects of theCOMIREM ontology and problem solver and
then briefly summarize prior work in explanation.

2 COMIREM : A Mixed-Initiative Planner/Scheduler

COMIREM is a web-based system devoted to the problem of interactive and dynamic allo-
cation of resources to activities over specific time intervals. The system is based on a CSP
paradigm and promotes a problem solving process that combines the actions of the auto-



mated solver and the human planner.COMIREM is composed of two main modules, named
respectivelyAutomated SolverandInteraction Module. The first is devoted to modeling do-
main entities through a CSP representation and provides the algorithm to solve the problem.
It models the domain through theOZONE scheduling domain ontologywhich allows a user-
interpretable description of an application domain to be mapped to application system func-
tionalities [9]. Domain objects and features are represented in terms of entities very close to
the human representation level of abstraction, and can be easily presented to the user through
the module devoted to the user-system interaction. The Interaction Module directly interacts
with the user, and allows her to take part in the process of finding a solution via advanced
interactive facilities. It represents the communication channel between the user and the auto-
mated solver and a means to exploit various features of the automated system. Major aspects
of theCOMIREM architecture are summarized in the subsections below.

2.1 The UnderlyingOZONE Scheduling Ontology

The main primitives for constructing domain models inCOMIREM derive from theOZONE

Ontology [9]. Considered originally as a vehicle for high-level specification of scheduling
problems, entities in the ontology can be broadly subdivided intoActivities, Resources and
Constraints:

• Activities. An activity represents a process that can be executed over a certain time inter-
val. Execution of an activity requires resources. InCOMIREM activities can be organized
hierarchically into multi-level activity networks.

• Resources. A resource is an entity that supports or enables the execution of activities.
Resources are generally in finite supply and their availability constrainswhenandhow
activities execute. An important objective of scheduling is to make efficient use of re-
sources that support multiple competing activities. Two types of resources are modeled in
COMIREM: single and multi-capacity resources.

• Constraints. Generally speaking, a constraint restricts the set of values that can be as-
signed to a variable.COMIREM provides the means to model three types of constraints:
(a) temporal constraints, which constrain the start times and/or end times of one or more
activities; (b)resource constraints: which require sequentialization of activities compet-
ing for the same resources; (c)causal constraints: which define what conditions must be
met before an activity can be executed.

2.2 The Automated Solver

COMIREM utilizes an opportunistic constraint-posting scheduling procedure to allocate re-
sources to activities over time, relying on a planning sub-procedure as necessary to determine
appropriate resource reconfiguration actions.COMIREM takes as input an initialplan sketch
that specifies, at some level of abstraction, the actions necessary to accomplish certain end
goals for a given scenario. For example, to rescue people from an embassy in a foreign capi-
tal, an initial plan describing necessary actions such as securing the local airport, transporting
rescuers to the airport, etc. is provided by the human planner, together with any associated
causal dependences and temporal constraints. Starting from this initial plan, the scheduling



procedure tries to feasibly allocate resources to input activities. In some cases, feasible as-
signment entails the generation of resource support plans (e.g., for “positioning” an aircraft
to the location where it is needed), such planning subproblems are solved dynamically as
specific resource assignments are considered. If successful, the procedure returns a detailed
plan, where each activity is assigned the resources it requires and is designated to execute in
a specified finite time interval. Due to its interactive nature, the system can exploit human-
planner knowledge and decision making, and in fact promotes a mixed-initiative problem
solving process. Through the Interaction Module it is possible to either generate a solution
automatically or iteratively build a solution through astep by stepmixed-initiative procedure
that interleaves human choices with system calculation of consequences.

2.3 Mixed-Initiative Problem Solving inCOMIREM

As just mentioned,COMIREM provides a user with two options: (a) automatically generate
a solution to the problem; (b) iteratively build a solution. In the first case a user decides to
completely entrust the system with the task of finding a solution. In the second case, the
system provides constraint checking and option generation support for user decisions. When
an initial plan is loaded,COMIREM performs a temporal feasibility check, and creates new
activities as necessary to carry out entailed supporting actions. A visual representation of the
problem and its main features is provided to the user through a graphical spreadsheet-style
model. For each unassigned activity in the plan,COMIREM maintains the current set of fea-
sible allocation options and presents them to the user through the Interaction Module. At any
time and in any order, the user can manually specify resource assignments for particular activ-
ities. Whenever a user allocates a resource to a given activity, the impact of the user’s choice
is reflected in the plan and the system updates the set of possible options available for other
pending decisions. At any point in the process, the automatic algorithm can be invoked to
make all remaining assignments and produce a complete solution. Both activity and resource
attributes can also be edited to change the constraints and requirements of the problem. The
system provides a general ability toundoany user action (or sequence of actions) previously
taken, providing a flexible framework for what-if analysis.

The interaction module inCOMIREM can be seen as an intelligent blackboard that allows
a user to reason incrementally on a solution, providing both (1) visualization functionalities
to inspect problem and domain features and (2) interactive services to involve a user in the
problem solving. The ambitious idea behindCOMIREM is to capture different skills that a
user and an automated system can apply to the resolution process. Typically an automated
algorithm is better suited to conducting repetitive search steps that are not possible for a
human user, while a user typically has more specific knowledge about the target domain that
is difficult to formalize in general terms to be used by an algorithm. The development of
principles for mixed-initiative interaction [2, 3] represents a key to the development of more
powerful problem solving environments.

2.4 Explanation as a means to foster mixed-initiative problem solving

Among the numerous aspects involved in the development of mixed-initiative systems, one
important requirement is the need to maintain continuous communication between the user
and the automated problem solver. Current interactive systems are usually lacking with re-
spect to providing such a continuity. System failures that may be encountered in finding a



solution typify this sort of deficiency. Typically, when a planning/scheduling system fails
during the problem solving, or when the solution is found to be inconsistent due to intro-
duction of new world state information, the user is not properly supported and left alone to
determine the reasons for the break (e.g., no solution exists, the particular algorithm did not
find a solution, there was a bug in the solver etc.).

This leads to an interruption in the problem solving process that could be otherwise used
as an event to determine a shift in theinitiative. A conflicted situation might, for example,
be resolved by a user who has a deeper knowledge of the domain and/or agrees to slightly
change the problem in order to obtain a solution. Obviously in transferring the initiative to the
user, a system should inform her about the reasons of the failure or problem encountered to
ease and promote her participation. On this subject the concept ofexplanationis becoming of
increasing interest in many different research communities. Our interest in this paper focuses
on the use of explanation withinCOMIREM as a means to explain and inform a user about the
reasons underlying system search failures and solution inconsistencies.

3 Explanation and CSPs

As already mentioned current work on explanation in CSP forces users to understand the sys-
tem’s underlying search model and reasoning in terms of variables and constraints that are
usually not comprehensible for the final users. The CSP paradigm is a powerful means for
representing and solving problems but it is far from users’ models. In order to provide use-
ful information a translation from the low level technicality to the high level human model
is necessary. In classical constraint programming, an explanation is a set of constraints jus-
tifying propagation events generated by the solver (e.g., value removal from the domain of
a certain variable, bound update, contradiction). In [6, 5] two kinds of explanation are in-
troduced: (a) contradiction explanationand (b) eliminating explanation. The former is a
subset of the current problem constraints, which if left alone, leads to a contradiction. It is
composed of two parts, a subset of the original constraints, and a subset of the decision con-
straints introduced so far in the search. The latter, is an implication justifying the removal of
a value from the domain of a variable. A very similar approach to this problem is the notion
of justificationintroduced by Bessier [1]. A justification is an additional piece of information
that is stored each time a value is deleted from a variable’s domain. One general approach to
computing explanations, then, is to make explicit the knowledge that the solver has while, for
example, removing a value from a domain or dealing with an inconsistency. In this way, each
time an event is generated (e.g., a value removal), the corresponding explanation is computed
within the propagation code of the constraints and thetraceof the solver reasoning is used
as an explanation. Computation of explanations in this manner assumes that the basic CSP
model is understandable, and neglects the issue of finding effective ways to present them to a
naive user. In [11] the explanation problem is investigated and the need of designing effective
ways to organize and present it to the user is highlighted. A crucial aspect in the presentation
problem is one of finding effective ways to structure and present the information in order to
enhance a user’s ability to understand and possibly solve an occurred problem. In [7] a set
of tools for providing user-friendly explanations in an explanation based constraint program-
ming system is introduced. The basic hypothesis this work relies on is that all aspects of a
constraint-based application can be represented in a hierarchical way. The implicit hierar-
chy that appears when encoding the problem is used to group constraints into “user-friendly
boxes” which are used to add structured information while posting the constraints. In partic-



ular a textual representation of the set of constraints is introduced in the system which is used
as a user-comprehensible explanation when a conflict arises.

4 Using theOZONE ontology to computeuser-orientedexplanations

In this section, we outline an approach to translating system-level explanations into a more
user-comprehensible and user-actionable form via the use of an underlying domain ontol-
ogy. Our previous work has argued the use of a scheduling domain ontology to facilitate user
construction of an executable system model in a given application domain [9]. Here we con-
sider its complementary use in driving the generation of user-oriented explanations. We fo-
cus specifically on the problem of explaining temporal constraint conflicts withinCOMIREM.
Our idea is to use theCOMIREM domain ontology knowledge (1) to compute the set of con-
straints that form the explanation, (2) to identify various constraint relaxation options that
the user might consider to resolve the conflict, and (3) to provide content for generating
user-understandable explanations of conflicts and possible resolving actions. Figure 1 illus-
trates the layers of a domain model inCOMIREM. The first layer in the picture models the

Figure 1: Domain Modeling inCOMIREM

constraints of the target domain in terms ofactivities, resourcesandconstraintsusing the
scheduling ontology described in Section 2.1. This level of description provides an abstrac-
tion of the low level CSP representation used internally, that can be reasonably considered to
be closer to the human model of the domain.

The second layer shows how this translation is implemented withinCOMIREM. The prob-
lem is represented internally as a Simple Temporal Problem (STP) constraint network [4] and
the core scheduling procedure relies on an incremental STP constraint network solver. Plan-
ning/scheduling decisions generally correspond to the introduction of new constraints into the
network (e.g., a sequencing constraint between two activities that require the same resource)
or the adjustment of one or more existing constraints (e.g., refinement of an activity’s dura-
tion, modification of an anchor). In either case, constraint propagation updates the bounds
of affected nodes and checks for negative cycles in the resulting network. The lack of any
such cycle ensures continued temporal feasibility of the plan. Otherwise aconflict has been
detected, and either backtracking or some amount of constraint relaxation is necessary.

The intermediate level in Figure 1 represents a level of description in anOZONE domain
model that captures various temporal constraints using a construct in the ontology called a



temporalon. A temporalon [8] designates a temporal constraint between two time points. Two
basic types of temporalons are definable. The first type istemporalon-activity, in which case
the temporalon represents the temporal characteristics of an activity. Its two time points des-
ignate the activity’s start and end, and the distance constraint (i.e., lower-bound, upper-bound
pair) defines the activity’s duration. The second basic type istemporalon-link, used to specify
temporal relations between activities (e.g., Activity A must precede Activity B), or to desig-
nate absolute temporal restrictions (e.g., Activity A cannot start earlier than t1). Temporalons
of this form either link the start/end points of distinct activities or link the start/end point
of a single activity to an absolute time origin. Temporalons are specialized into a hierarchy
of different types, each of which models and captures a particular aspect of the scheduling
domain (e.g.,due-datetemporalon,release-datetemporalon,move-activitytemporalon, etc.).
There is a one-to-one correspondence between the set of temporalons defined in the domain
model and the temporal constraints contained in the underlying STP constraint network.

It is possible to notice some similarity between the user-friendly boxes introduced in [7]
and temporalons. In [7], an assumption is made according to which each problem can be
represented as a hierarchy of constraints. When this hierarchy of constraints is posted, some
amount of information (user-friendly boxes) is coded into the system which can be reused to
present explanation to the user. WithinCOMIREM the extension of theOZONE ontology based
on temporalons, provides an analogous categorization and gives information at a higher level
of abstraction about the constraints involved in a conflict. The temporalon layer is indeed
domain oriented and its embedded knowledge can be integrated, interpreted and translated
to support human intelligible explanations. The ontology used inCOMIREM represents an
attempt to capture different aspects of the domain and represent them through the use of
domain entities close to a human model of the world. This effort previously made to model
scheduling domains and problems (user→ systemtranslation) grants us useful structures that
can be reused when the contrary translation is needed (user← systemtranslation).

4.1 A filtering classification to compute the explanation set

Within a COMIREM domain model, we can distinguish several categories of temporalons.
Some temporalons represent input constraints that have been imposed by the user (e.g., Ac-
tivity A must end by t2). Others represent inherent properties of the domain theory defined
by the scheduling domain ontology (e.g., the fact that a “move activity” decomposes into a
“load”, “travel”, “unload” sequence of finer level activities). Still others designate decisions
that the automated solver has taken (e.g., use resource R first for activity A and then for ac-
tivity B). Although all temporal constraints look identical at the level of the STP constraint
network, the sets of constraints falling into each of the above categories have different impli-
cations from the standpoint of conflict explanation and resolution. For example, constraints
relating to the structural characteristics of a hierarchical domain model, though likely to be
identified as contributing constraints in a detected conflict, are not really relevant to under-
standing the conflict at the user-level. Alternatively, constraints directly attributable to user
decisions are clearly relevant and may be retractable if they are found to be problematic.
In general, one obvious pre-requisite to generating meaningful, actionable explanations is to
first isolate the subset of those constraints returned by the STP cycle detector that are relevant
to user decision-making. We call this subset theexplanation set.

To make this notion more precise, we classifyCOMIREM temporalon subtypes into three
main categories:



• Problem constraints.They derive directly from the user’s specification of the problem
and represent user requirements. Since these constraints originated from the user, they
represent one set of constraints that she may be willing to compromise when faced with
anover-constrainedproblem. Temporalons falling into this category include various user-
specifiable activities (moveandpaired-event1 temporalons), timing restrictions (release-
date, due-date, estand lft temporalons), and various activity to activity synchronization
constraints (before, same-startandsame-finishtemporalons).

• Structural constraints.These constraints either model physically motivated causal depen-
dencies in the ontology’s domain theory that cannot be relaxed, or express structural tem-
poral relationships between activities residing at different levels in hierarchical activity
networks (activity-subactivity, demand-activitytemporalons, etc.).

• Search constraints. These are constraints introduced by the search algorithm in the course
of solving the problem (sequencingtemporalon), and of course can also be retracted in
the event of a conflict.

Given this categorization, our approach to determining the explanation set for a given con-
flict is straightforward. Upon detection of a cycle, the STP network solver returns two pieces
of information: the set of constraints (temporalons) involved in the cycle, and a magnitude
m indicating the amount by which some temporal constraint (or combination of constraints)
must be relaxed to resolve the inconsistency. The first filtering step simply removes allstruc-
tural temporalonsfrom the set of constraints returned by the STP cycle detector. The resulting
subset is then further pruned by eliminating those temporalons that cannot be feasibly relaxed
(e.g., would result in an activity with a negative duration). The remaining temporalons con-
stitute the explanation set and are used to characterize the conflict to the user.

4.2 Conflict resolution options

A temporal constraint conflict detected in the temporal network can be resolved by modifying
the bounds of one or more temporalons in the explanation set (using the magnitudem reported
with the original conflict). Given the domain level typing of temporalons, the low level ac-
tion of modifying temporalon bounds can be mapped directly to higher-level, user-oriented
actions (i.e.,conflict resolution options). For each temporalon contained in the explanation
set, information captured in the domain ontology is used to compute a type-specific set of
possible resolution options. The union of all computed options is then presented to the user.

5 Examples of conflict explanation and resolution options

To illustrate the basic conflict explanation procedure just described consider the following
two examples.

Example 1 Figure 2(a) shows an example of a temporal conflict discovered during feasibil-
ity checking of an input plan inCOMIREM. The computed duration Dur(MH-60), of amove
activity from location B to location A using resource (helicopter) MH-60 is greater than the
difference between the latest finish time and the earliest start time constraints on the activity.

1a paired-event is an activity that takes place at one location.



The solver detects the inconsistency and returns the set of involved temporalons along with
the conflict magnitudem.

(a) Example 1 (b) Example 2

Figure 2: Two examples of possible temporal constraints conflicts

In this example, there are three conflicting temporalons: amovetemporalon, arelease-date
temporalon and adue-datetemporalon. Since all belong to theproblem constraintscategory
(see Section 4.1) and each can be feasibly relaxed, no filtering is possible and this conflict set
becomes the explanation set. Relevant resolutions are computed for each temporalon and the
results are shown in Table 1.

explanation set explanation resolution options
Temporal inconsistency is due to:choose an option:

move duration of activity move(A,B) 1 override computed duration
2 use a faster resource

release-date release-date constraint 3 deploy earlier
due-date due-date constraint 4 delay engagement

Table 1: Explanation and resolution options for the conflict of Example 1

Example 2 Figure 2(b) shows a conflict due to an attempt to assert conflicting sequencing
constraints between two move activitiesmove1, from location B to location A andmove2

from location D to location C (i.e., bothmove1 beforemove2 andmove2 beforemove1).
Given the hierarchical structure of move activities, the cycle detector actually returns a cy-
cle with sixteen temporalons, in particular 8 structural temporalons, 2 move temporalons, 4
paired-event2 and 2beforetemporalons. The higher complexity of this example (16 tempo-
ralons against 3) highlights the general difficulty in providing a user with a comprehensible
explanation. Using the classification, the eight structural temporalons are first eliminated from
the explanation set. Subsequently, both the four paired-event and the two move temporalons
are eliminated since none can be feasibly relaxed. Table 2 shows the final explanation set and
the generated resolution options.

6 Conclusions

One potential source of difficulty in transitioning automated planning and scheduling theories
and tools into practice is the gap between the user and system’s models. Bridging this gap re-

2paired-event temporalons derive from the decomposition of a move activity into a “load”, “travel” and
“unload”sequence of activities.



explanation set explanation resolution options
Temporal inconsistency is due to:choose an option:

before move1(A,B) before move2(C,D) 1 relaxbeforeconstraint
before move2(C,D) before move1(A,B) 2 relaxbeforeconstraint

Table 2: Explanation and resolution options for the conflict of Example 2

quires a system to translate information from internal algorithmic representations into higher
level descriptions that are more comprehensible to the user. In this paper we considered the
problem of closing the loop with the user in situations where the automated solver reaches an
impasse, so that initiative can be redirected back to the user and cooperative problem solv-
ing can continue. We focused specifically on the problem of explaining temporal constraint
conflicts, and using theCOMIREM planner/scheduler as a reference model, proposed the use
of a scheduling domain ontology as a means of generating user-oriented explanations. We
showed a couple of explanation generation examples, which give preliminary evidence of the
potential of our approach.

Acknowledgments

Stephen F. Smith, David Hildum and Christian Ohler were funded in part by the Department of Defense Ad-
vanced Research Projects Agency (DARPA) under contract F30602-00-2-0503 and the CMU Robotics Institute.
Gabriella Cortellessa’s work is partially supported by ASI (Italian Space Agency) under projects ARISCOM
and SACSO. This work has been developed during her visit at the CMU Robotics Institute as a visiting student
scholar.

References

[1] C. Bessiere. Arc consistency in dynamic constraint satisfaction problems. InProceedings AAAI’91, 1991.

[2] Mark Burstein and Drew McDermott. Issues in the development of human-computer mixed-initiative
planning. In B. Gorayska and J.L. Mey, editors,Cognitive Technology, pages 285–303. Elsevier, 1996.

[3] R. Cohen, C. Allaby, C. Cumbaa, M. Fitzgerald, K. Ho, B. Hui, C. Latulipe, F. Lu, N. Moussa, D. Pooley,
A. Qian, and S. Siddiqi. What is initiative? In S. Haller, S. McRoy, and A. Kobsa, editors,Computational
Models of Mixed-Initiative Interaction, pages 171–212. Kluwer Academic Publishers, 1999.

[4] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.Artificial Intelligence, 49:61–95, 1991.

[5] N. Jussien and V. Barichard. The PaLM system: explanation-based constraint programming. InPro-
ceedings of TRICS: Techniques foR Implementing Constraint programming Systems, a post-conference
workshop of CP 2000, pages 118–133, Singapore, September 2000.

[6] Narendra Jussien. e-constraints: explanation-based constraint programming. InCP01 Workshop on User-
Interaction in Constraint Satisfaction, Paphos, Cyprus, 1 December 2001.

[7] Narendra Jussien and Samir Ouis. User-friendly explanations for constraint programming. InICLP’01
11th Workshop on Logic Programming Environments, Paphos, Cyprus, 1 December 2001.

[8] S. Smith and H. Hildum. Interacting with freon: A quick overview. Technical report, Carnegie Mellon
University.

[9] S. F. Smith and M. A. Becker. An ontology for constructing scheduling systems. InWorking Notes of
1997 AAAI Symposium on Ontological Engineering, Palo Alto, CA, March 1997. AAAI Press.

[10] S.F. Smith, D.W. Hildum, and D.A. Crimm. Interactive Resource Management in the Comirem Planner.
In IJCAI-03 Workshop on Mixed-Initiative Intelligent Systems, Acapulco Mexico, August 2003.

[11] Richard Wallace and Eugene Freuder. Explanation for Whom? InCP01 Workshop on User-Interaction in
Constraint Satisfaction, Paphos, Cyprus, 1 December 2001.




