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Abstract

An ontology can be seen as a reference model to
describe the entities which exist in an universe of
discourse and their properties. These entities may be
individuals, classes, relationships, and functions.  In
sum anything that may be useful to describe specific
models. In this paper we present a generic task
ontology for scheduling problems.  The ontology is
generic in the sense that it is both domain and
application independent.  We refer to it as a ‘task
ontology’ to emphasise that it describes the class of
scheduling tasks, independently of the various ways
by which these tasks can be solved. The proposed
task ontology has been successfully validated to
measure its knowledge capturing capability. Our aim
is to move beyond current brittle approaches to
system development to provide firm theoretical and
engineering foundations to various classes of
knowledge-based applications.
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1. Introduction
In generic terms the scheduling task can be
characterised as an assignment of time-
constrained jobs to time-constrained resources
within a pre-defined time framework, which
represents the complete time horizon of the
schedule.  An admissible schedule will have to
satisfy a set of hard and/or soft constraints
imposed on jobs or resources. The output of a
scheduling task is a legal schedule in
accordance with a given solution criterion (e.g.
complete, admissible) as compared to [17,21].
If we look at scheduling as a constructive design
process, we can say that its main building
blocks are time related activities [5].  These
activities may differ according to the target-
domain and depend on the level of granularity
of the application.  Unfortunately, this changing
nature of the target-domain increases the overall
cost and time required for developing the
application system.  In order to overcome this
serious bottleneck a need for reusable
components arises in system development [12].

Ideally, we would like to have components that
can efficiently be reused across wider domains
that can support both the acquisition of the
relevant scheduling knowledge and the system
development process.  Ontology can be viewed
as a conceptual information model describing
the various entities that exist in a particular
domain of discourse such as classes,
relationships, and functions [19].  In this paper
we present generic task ontology for scheduling.
We refer to it as a ‘task ontology’ to emphasise
that it describes the class of scheduling tasks
independently of the various ways by which
these tasks can be solved.  The task ontology is
generic in the sense that it is both domain and
application independent. In addition to these
engineering concerns, the role of the proposed
task ontology is also to provide a clear
specification of the class of scheduling
applications.  Although, scheduling has been
studied in detail by several authors [13,17,21],
and there have been some attempts at
developing ontologies for scheduling [1,10,18],
these ontologies tend to be fairly coarse-grained
and some times are committed to specific
domains.  The cost related issues are not usually
expressed, along with the various preference
criterions in the scheduling domain.  More
importantly none of the aforementioned
approaches provides the desired level of detail
and formalisation.
The aim of this paper is therefore to describe
our initial work aimed at putting scheduling on
firmer ontological foundations.  The paper is
organised as follows.  In the next section we
present the scheduling problem.  In 2.1 we
describe the main concepts in the scheduling
task ontology as a class along with its attributes.
In 2.2 we define the main axioms in the task
ontology.   In section 3 we briefly compare our
work with other approaches.  In section 4 we
describe the validation of the task ontology
carried out in two domains.  Finally, in section 5
we conclude the paper by reiterating the
contribution of this work and highlight some
issues that require further investigation.
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2. A Generic Specification of
Scheduling Task

A scheduling task can be represented as a
mapping from a seven-dimensional space {J, R,
HC, SC, Str, P, Cf} to the space of solutions for
the schedule {Ssol1, …. ,Ssoln}.  The components
of the scheduling task are specified as follows.

J = Jobs = a set of jobs that can be assigned to a
set of resources = {j1, …. ,jn};
R = Resources = a set of available resources to
which jobs can be assigned = {r1, …. ,rn};
Hc = Hard constraints = a set of hard constraints
which must not be violated by the schedule
solution = {hc1, …. ,hcn};
Sc = Soft constraints = a set of soft constraints
which can be relaxed if necessary to reach the
schedule solution = {sc1, …. ,scn};
Str = Schedule time-range = the complete time
horizon of the schedule = {str1, …. ,strn};
P = Preferences = a set of preferences which can
be used to define the criterion for choosing
among the competing schedule solutions say, S1
and S2 = {Pr1, …. ,Prn};
Cf = Cost function = is a function that computes
a cost to the final schedule solution.
In accordance with the above-mentioned inputs,
it is now possible to define the following types
of criterions for the schedule solution.
•  A schedule, say Si, is complete c, if all the

jobs are assigned to the available resources
by the completion of the schedule.

•  A schedule is minimally admissible min-a,
if all the sets of hard constraints are
satisfied.

•  A schedule is maximally admissible max-a,
if it is minimally admissible (it satisfy all
the hard constraints) and satisfies all the soft
constraints as well.

•  A schedule is legal, schedule-solution (Ssol),
if it is both complete and maximally
admissible.

•  A schedule solution say Ssol-d, is optimal
Cf (Ssol-d) < Cf (Ssol-r), iff no other schedule
has a lower cost than Ssol-d.  In other words
the cost of the final schedule solution, Ssol-d,
computed by applying the cost function, is
optimal to any other schedule solution Ssol-r.

A figure 1 and 2 depicts the generic inputs of
the scheduling task ontology with class and
relation diagram respectively.
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rounded corner indicate the relations and the
rectangles represent the classes in the task
ontology. In figure 2 the arrows between the
classes and relations represent the
argumentation among them.  For example, a
class schedule is maximally admissible
if it satisfies every hard constraint as well
as soft constraint.  We take the point of
view that scheduling is an assignment of jobs to
resources but the inverse of this assignment is
not always true, i.e. resources may remain
unassigned when a scheduling task is
completed. Our task ontology is based on a job
centred point of view [1,9,13,18].

2.1 The Scheduling Task Ontology
In this subsection we describe the major inputs
of the task ontology depicted in Figure 1 and 2
from the knowledge modelling perspective by
using the following structure.  First, we will
give the definition of the class, and then its
attributes in terms of slots (which represent the
binary relation) within those particular classes
[3].  The slots are represented as italics in the
definition of classes.  It is important to keep in
mind that all these slots are defined separately
as a class or a relation in the task ontology
depending upon the requirement.  Finally, we
will describe the main axioms developed in the
task ontology.
This scheduling task ontology comprises about
54 definitions, but the permitted space does not
allow us to discuss all these concepts in detail.
Here, we will discuss the major modelling
decisions taken while developing the task
ontology.  In doing so, we assume the existence
of a time ontology and other main base
ontologies [3].  The base ontologies provide the
definitions for a basic modelling concepts such
as tasks, relations, methods, roles, numbers, sets
etc.

Class JOB

Definition. A job represents the most abstract
class that involves various activity-ranges and
can be assigned to the resource for its execution.

Activity-Range:  this slot represents the fact that
every job can have a range of activities that need
to be performed in order to accomplish the job
(see class activity).

Suitable-Resource-Range: this slot explains that
the job has a set of suitable resource ranges on
which it can be assigned for its execution.

Time-Range: this slot inherits the values of the
class Job-time-range, which represents the
earliest and latest start and finish times of the job
along with the unit of time.
In the task ontology a distinct relation is defined,
called assigned-to-resource, which
actually models the assignment of a job to a
resource as an element of the class schedule
(shown by the double arrows in Figure 2).

Class JOB-TYPE

Definition. All the instances of a class job-type
are the subclasses of class job.  For instance, in
the manufacturing environment if the job is
machining then the job-type is drilling, milling
etc.

                          Subclass                          Instance
                             of                                         of

Figure 3. The representation of a job and job-type hierarchy.

Class ACTIVITY

Definition. The activity is something that
represents the various sets of operations for any
given job.  This offers the scope for the detailed
breakdown of job.  It is defined as follows, J =
{j1, …. ,jn}, where ji = {ai1, …. ,ain}.  For
example, if the job is drilling then its set of
activities could be the machine set-up, the
loading, the actual drilling operation and the
unloading of the job etc.

Fixed-Duration: this slot indicates that every
activity has a fixed duration for its execution.
The cumulative all these duration represents the
total duration of job.

Class RESOURCE

Definition. A resource represents the most
abstract class to which the jobs can be assigned
for their execution.

Handles-Job-Type:  the purpose of this slot is
twofold.  First, this slot explicitly represents the
type of job/s that resource can handle.  Second,
by giving the cardinality value it is capable of
handling n number of jobs {j1, ….,jn}, provided
that these jobs adheres to the resource-
availability axiom (see resource-availability
axiom by the end of this section).

Available-Duration:  this indicates the duration
of the resource for which it can be available to
perform the assigned job.
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In order to maintain the consistency of this
duration, the relation is established between the
job duration with that of the available duration of
resource.  This relation imposes the constraint
that the duration of the job must be less than that
of the available duration of the resource.

Competence:  it is a qualitative measure (yes/no)
of the resource competence, which shows if the
resource is competent to execute the assigned
job.

Class RESOURCE-TYPE

Definition All the instances of a class resource-
type are the subclasses of class resource e.g.
type of machine, type of transport vehicle, etc.

Class CONSTRAINT

Definition The class constraint has the same
definition for both hard and soft constraints.
These are modelled as distinctive subclasses of
class constraint.  The hard constraints are the
constraints that must not be violated under any
circumstances, where the soft constraints have to
be satisfied by the completion time of schedule.
For example, the due date (soft) constraint often
need to be relaxed for the couple of jobs due to
limited capacity of the production activity [21].
Both the constraints are applied on a job or a
resource through the class schedule, which
helps to satisfy both minimal as well as the
maximal admissibility conditions of a solution.

Has-Expression: such expression has a number
of advantages.  First, it allows us to reason about
the hard and soft constraints and to attach the
properties to them.  It also specialises the
constraints according to specific classes of the
scheduling applications.  In particular, this
expression is parameterised in terms of pairs of
job-resource, i.e. a job-assignment for a class
schedule.

Applicability-Condition: this condition gives us
the scope to maintain the truth status of the class
schedule.  This validates whether the hard and
soft constraints associated with jobs or resources
are satisfied by the schedule solution.
By using the above-mentioned has-
expression which states that the job has to
satisfy the both constraints is used for satisfying
the legal, schedule-solution condition.

Class JOB-TIME-RANGE

Definition. This class indicates the complete time
range of an individual job.  It is specified as a

start and end time for a particular job in terms of
the following slots, earliest start-time, earliest
end-time and latest start-time, latest end-time of
the job, along with the unit-of-time.  It indicates
the unit in which time is expressed.

Earliest-Start-Time: (in terms of a time-point),
this shows how early a particular job can start.

Latest-Start-Time: (in terms of a time-point), this
shows how late a particular job can start and still
not violate the given time-range of the schedule.

Earliest-End-Time: (in terms of a time-point),
this shows how early a particular job can finish.

Latest-End-Time: (in terms of a time-point), this
shows how late a particular job can finish.

Unit-of-Time:  this simply indicates the unit in
which the time is specified, e.g. second, hour etc.
We take the point of view that if the earliest and
latest of the start-time and the end-time are not
mentioned explicitly in the problem, then in such
cases the start-time and end-time will be used for
representing the allowed time-range of the job.

Class SCHEDULE-TIME-RANGE

Definition. This time-range represents the start
and end time of the schedule, which is the total
time horizon for which the schedule is
constructed.  The unit-of-time simply indicates
the unit in which the time is specified.

Start-Time: the start time of the schedule.

End-Time: the end time of the schedule.

Unit-of-Time: the unit of time.
In the task ontology a separate relation is
defined, called time-range-between-job-
and-schedule.  It is a binary relation between
the time-range of a job and a schedule.  This
relation imposed the constraint which states that
the start-time of the first job must be greater than
or equal to the start-time of the schedule and the
end-time of the last job must be less than or
equal to the end-time of the schedule.   Hence, it
avoids from overshooting a complete time
horizon of the schedule.  For example, if the
schedule starts at (9.00am hour); so the start-time
of the first job to be scheduled is either (9.00am
hour) or (9.01am hour).  Similarly, if a schedule
finishes at (6.00pm hour); the end of the last job
is either (6.00pm hour) or (5.59pm hour).

Class PREFERENCE

Definition. This class is represented by a
prefer-expression.  Such expression helps



in ranking the various schedule solutions
according to some criterion.  It is important to
keep in mind that the difference between the soft
constraint and preferences is rather conceptual
than formal.  It is expressed by means of a
prefer relation.  It is a binary relation that
defines the partial order preference over any two
schedules say, S1 and S2 depending upon the real
life preferences.  In our task ontology we choose
the optimum schedule based on the cost specific
preferences in scheduling.  This allows us to
reflect the impact of various real-life preferences
from a scheduling environment on the cost of a
final schedule such as, missing the deadline,
resource usage etc. The preference criterions
contribute to the axioms related to the cost while
calculating the cost of a final schedule solution.

Class COST-FUNCTION

Definition. This function simply calculates the
cost of a schedule in terms of various
preferences.  It also provides the global criterion
for ranking the different schedule solutions.

Domain / Range: As depicted in figure.1, the
domain of this cost-function is schedule and
the range of a cost-function is cost.  The cost is
represented as a set of either real numbers or
vectors.
The cost-function is constructed by subsuming
the preferences (see axiom definitions 3 and 4).

Class SCHEDULE

Definition. As indicated in the figure 1, a
schedule is represented as a set of job-
assignment pairs.  The set job-assignment is
represented in terms of set membership relation,
which is true for any elements of the set job-
assignment and false for any other set tuple.  The
set membership relation is modelled by using the
following membership-test.

Membership-Test: The schedule-membership test
of a class schedule is a binary relation between a
class job and a resource and it is true for pairs of
the form, (?job . ?resource), i.e. a job-
assignment in a schedule. The domain of a
schedule membership relation is a job to be
assigned and range is a resource to which it can
be assigned.  A class job-assignment is used in
order to model the pairs of the form (?job .
?resource).  Finally, a class job-assignment is
used for satisfying the sufficient and necessary
(IFF)-condition in a class schedule as indicated
in figure 1 by Is-A set of schedule arrow.

2.2 Axioms in the Task-Ontology
In the task ontology four axioms have been
defined which ensures the legality of the
scheduling task specification under any
circumstances.

1.  Resource-Availability:  this axiom states that
the same resources can not be assigned for
two different sets of jobs if their time-ranges
are overlapping with each other.  As
resources are assigned to specific set of jobs
in a schedule, then the resources are
unavailable for the other sets of jobs and
other relevant time periods must be generated
and associated with these resources for
assigning the next set of jobs.

2.  Constraints-Are-Either-Hard-Or-Soft: this
axiom states that the hard and soft constraints
are exhaustive subclasses of a class
constraint.  This gives us the scope to use
both of these constraints more efficiently
while satisfying the minimal and maximal
admissibility schedule solution conditions.

3.  Cost-Subsumes-Preferences:  this axiom
states that the cost-function that computes a
cost of the schedule, subsumes each of the
preferences say, {Pr1, …,Prn} in order to give
the cost of a schedule according to preference
specific criterions.  In other words the cost-
function must be constructed by combining
the preference specific cost criterions.  It is
not much of the knowledge acquisition issue
but specifying the preference specific
criterions and transforming its effect on the
cost of a final schedule.

4.  Cost-Preference-Consistency: this axiom
states that the cost-function should not
contradict any partial order expressed by the
preference class.  Also, the order over any
two schedules for selecting the preferential
schedule solution must be consistent with that
of the cost-function.

3. Related Work
Here, we compare our work with other three
scheduling task ontologies and try to explain the
major differences between these and our work.
The OZONE ontology [18] also provides a
generic perspective for building scheduling
systems.  There are some major differences
between our work and that of OZONE ontology.
The OZONE ontology takes into account the
external environmental factors in scheduling,



such as Demand, Product etc., where we are
mainly interested in the ‘core issues’ involved in
building scheduling systems.  More importantly,
there is no indication about the cost and
preference related issues.  Finally, ours is an
operational task ontology, which is formerly
specified by using the modelling language over
the OZONE one.
The CommonKADS [1] ontology and Job
Assignment ontology [10] gives the modelling
behaviour for the scheduling task.  The
fundamental difference between these two
approaches and ours is the level of granularity.
Their approach is characterised at a very abstract
level.  All the main concepts in these ontologies
are informally illustrated at some length, but
their definitions are not detailed.  For instance, in
CommonKADS the job assignment structure is
simply characterised as a set of job-assignment
tuples. This could obstruct the expressiveness of
the user.  As in ours it is modelled through the
class schedule, which provide the better control
over the behaviour of both job and resource.  In
CommonKADS there is no clear indication about
cost.  As in Job Assignment the cost as well as
the preference related issues are missing.  In
contrast to all the above three ontologies the
main purpose of our ontology is not only to
provide the conceptual framework but also the
practical reusable resource for modelling the
scheduling applications.

4. Validation
To evaluate the strength of our task ontology we
have tested it on two different domains: the
Office-allocation and the Satellite-scheduling
problems.
In the office-allocation problem there are number
of students (jobs) that need to go in given rooms
(resources), which was one of the main hard
constraints in the problem.  Each student has a
number of activities along with the duration of
each activity and each room is available for only
certain period of time.  The important preference
used for the usage of the specific rooms is; the
research students can share the double-size room
if the single-size room is not available.  Using
the preferences in this fashion gave us more
flexibility for using the available resources more
efficiently, instead of under-usage of the
resources.  Also, the students could stay in the
room for only a certain period of time without
violating the available duration of the room.  The
final schedule produced by using the task

ontology was of the form of a pair  {Student,
Room}, by maintaining all the constraints, time-
ranges and the preferences.
The Satellite-scheduling problem was mainly
chosen because one application hardly confirms
the generality of the task ontology.  In this
problem there were three satellites that
communicates with the available antennas such
as low-range-antenna, wide-range-antenna, and
metrological-antenna. The main hard-constraints
is of the various forms.  1) No two satellites can
communicate with the same type of antenna if
their time ranges overlap with each other.  2)
Every satellite must have at least four
communication slots; the gap between any two
communications with the same type of antennas
must be of two hours.  3) Antennas are of limited
resources and can communicate with the
assigned satellites for 15 minutes only.  The final
schedule produced by maintaining all the
constraints and the time-ranges is of the form
{Satellite . Antenna}, where satellite is a job and
the antenna is a resource on which it is assigned.
In the office-allocation problem mainly the time
element for the availability of the rooms was
added, which is not considered by the present
ontologies.  Additionally, in our task ontology
the jobs are broken down into the more detailed
level by specifying the number of activities that
can be involved in a particular job.  As opposed
to our approach the jobs are treated as an abstract
class without its further breakdown in [1], [10].
In our point of view our task ontology provides
the desired level flexibility from the
representational perspective.  Even though, these
two application domains appear on the extreme
of the application spectra, as one is from
resource-allocation as other is from the space
application.  They are successfully modelled by
using the task ontology.

5. Conclusion and Future Work
The proposed task ontology can now be seen as a
knowledge capturing tool in various domains.
This satisfies the important reusability aspect
discussed in section 1.  The reusability was
empirically tested as discussed in section 4.  The
given ontological framework provides a fairly
fine-grained structure that is needed to build the
scheduling systems.  This could help the user in
expressing their viewpoint more clearly on the
particular scenario.  The cost related axioms
ensure that an optimal solution is constructed by
subsuming the various preferences in scheduling



task specification.  The conflict between various
jobs for the usage of same resource depending
upon their time range overlap is tackled by the
resource-availability axiom.  As
discussed in section 1, this task ontology
provides firm theoretical and engineering
foundations for various classes of knowledge-
based applications.
In future we are planning to use this task
ontology as a major building block for building
the generic problem-solvers for understanding
the space of the scheduling behaviour.  In order
to accomplish the whole process successfully
this task ontology can be seen as an initial
building block.
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