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Abstract
In this paper we present an approach for build�

ing libraries of reusable software components that
addresses the tension between design�with�reuse and
design�for�reuse� The approach is based on a hierar�
chical model that assumes four levels of reusability�
The design guidelines for developing components ac�
cording to this methodology are summarized and an ap�
plication demonstrating how the products of a domain
analysis technique can be mapped into this hierarchical
model is described�

The application is a reactive scheduling architecture
for manufacturing operations� and the domain analy�
sis technique selected is the Feature Oriented Domain
Analysis���� developed by the Software Engineering In�
stitute at Carnegie Mellon University� The main ob�
jective of the paper is to establish the connection be�
tween the domain analysis products and the di�erent
reusable levels identi	ed by the proposed methodology�

� Introduction
The software reuse process includes activities re�

lated to the identi�cation of the desired components
for a speci�c application� the detection of the availabil�
ity of such components� and the analysis of the nec�
essary adaptation to incorporate the components into
the new system under development� From a pragmatic
point of view� the basic thrust of reuse is the capabil�
ity to integrate a coherent working system of inter�
connected software components� a process known as
Design�with�Reuse� or DwR for short� This presup�
poses the existence of component libraries for which
components are acquired and incorporated in a pro�
cess known as Design�for�Reuse� or DfR for short�
These two complementary reuse processes have con�
�icting goals��	� From a DfR perspective� the compo�
nents should be created aiming at providing similar
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functionality to a number of di
erent but related ap�
plications� That is� the objective of DfR is to provide
a �exible component� The emphasis here is on cre�
ativity�
From a DwR perspective� the needed components�

providing a very speci�c functionality� should be se�
lected from a stock of reusable software components�
The objective of DwR is to save time and e
ort by re�
trieving an existing component rather than developing
it anew� The emphasis is on understanding�
Seen under this perspective� DfR and DwR con�ict

in at least the following two ways�

�� The DfR view of a library is one of many heav�
ily parameterized components� whereas the DwR
view of a library is one of a few ready�to�use com�
ponents�

�� When developing for reuse� the designer knows
the component� but not the context in which it
will be used
 the need for �exibility breeds com�
plexity� In contrast� when developing with reuse�
the designer knows the context of usage� but not
the component
 the need for understanding de�
mands simplicity�

Independent of the perspective considered� the
identi�cation of the needed components requires a spe�
cial analysis of the application domain� By domain�
in this context� we mean the set of systems or applica�
tions that share some functionality� The identi�cation
of commonalities across similar software systems as
well as the dimensions along which the systems di
er
is one of the preconditions to achieve successful soft�
ware reusability� An analysis process called domain
analysis is one of the techniques that can be applied
to meet this requirement���	�
In this paper� we concern ourselves with the use

of domain analysis techniques and the application of
component design guidelines to address this con�ict
directly� Although there are other aspects associated
with the reuse process� as illustrated in Figure �� we
deal here only with issues related to source�code com�
ponents�



Figure �� �a� The two main phases of software
reuse� Design�for�Reuse �DfR� and Design�with�Reuse
�DwR�� �b� Con�icting goals between DfR and DwR�

� Di�erentiating Components
Resolving the con�icting goals of DfR and DwR re�

quires several steps� each one of them giving rise to
di
erent component levels� This approach works by
isolating dimensions of the software not strictly neces�
sary to the problem�s requirements� and highlighting
the fundamental role of strict layering in the organi�
zation of component libraries�
We propose a library organization based on a lay�

ered collection of components� Figure � summarizes
the proposed library organizational model� Two fun�
damental component layers are identi�ed� each parti�
tioned into two levels� thus yielding a library struc�
ture with four levels� This simpli�es both complex
systems interactions and software construction� and
achieves the e
ect of di
erentiating components� from
the more general� simple� and smaller to the more spe�
ci�c� sophisticated� and bigger� These layers explicitly
exploit design techniques known to be useful for DfR
from those useful for DwR� the two top layers� grouped
under the heading Outer Core� support DwR
 and the
two bottom layers� grouped under the heading Inner
Core� emphasize DfR� The bridge between the Inner

and Outer core is established by the two intermediate
layers� Each level has di
erent reuse goals� and each
requires di
erent techniques�
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Figure �� The Reuse Levels� The lower layer �inner
core� emphasizes Design�for�Reuse� it builds up the
functionality that will be reused� The upper layer
�outer core� emphasizes Design�with�Reuse� it nar�
rows the scope of the components down to the context
of the reusing application� Intermediate layers bridge
the gap between DfR and DwR�

��� The Inner Core
The inner core is driven primarily by DfR consider�

ations� supported basically by abstract data types and
abstract state machines �ADT�ASM� concepts� Com�
ponents at this level typically represent bindings to
domain�independent components� allowing interaction
and interoperability among all the components� The
inner core also collects the most basic domain�speci�c
components �typically a semantic net of interrelated
data structures�� The inner core is further divided
into two layers or levels of components as follows�

Layer �� Domain�Independent �Bottom or In�
nermost� Components

This level of reuse has been known for a long
time in the form of fundamental structures and
algorithms� More recent is the emphasis on mak�
ing fundamental algorithms and data structures
available under the form of software components
�e�g�� Booch Components ��	� GRACE ��	��

In this level it is also convenient to include
even more complex components� such as language
bindings for standard global domain concepts�
The di�culty with the more complex components
comes from the variety of nuances people read
into the concepts represented by the components�



The result is a combinatorial explosion of func�
tionality� For example� user interface manage�
ment components o
er data types by the dozen�
windows� icons� widgets� buttons� scroll bars� etc��
and literally hundreds of operations�

So instead of considering the domain overall as
the basis for reuse� we take each one of the data
types as a component in its own right� Then the
design issues become similar to those for algo�
rithms and data structures�

Layer �� Domain Information �Intermediate�
Components

In this layer� the components still represent fairly
elementary concepts� but they are linked to spe�
ci�c contexts� i�e�� domain concepts� They typi�
cally contain the description of the speci�c data
structures that correspond to abstraction of do�
main entities and their inter�relations �in the
form of an entity�relationship diagram or seman�
tic net�� These components serve as the bridge
between the inner core and outer core� Domain
analysis techniques �see below� detect the rele�
vant domain concepts� their variances and unifor�
mity�

The di�culty in this layer comes from the particu�
lar characteristics of a given domain� A collection
of relatively small class hierarchies would help the
designer more than a single large hierarchy�

��� The Outer Core
The outer core is driven by DwR considerations�

The outer core represents the backbone of the software
architecture� and thus must be capable of providing
sockets into which we can plug domain�speci�c compo�
nents� At this level� reuse is seen as more than just ac�
quiring code
 it consists of reusing designs� The com�
ponents are collections of abstract components con�
nected in ways that represent abstract� semi��nished
domain designs and applications generated by con�
crete versions of these abstract designs� The compo�
nents can be organized using techniques such as frame�
works and toolkits���	�

Layer �� Domain Features �Intermediate�
Components

This type of reusable software is made of inter�
mediate components that are neither a simple
data structure nor a complete subsystem� Au�
thors have coined many terms to describe means
for reducing the gap between low�level� unspeci�c
notions and high�level� specialized concepts� e�g��
mediation and glue���	� To conjure the image of a
software factory� another nomenclature could be
semi�	nished domain�speci	c components� The
artifacts at this level are ready for incorporation
into an application� wherein they will material�
ize as �nished components� The organization of
these components can borrow� for example� from
frameworks���	 or Domain Speci�c Software Ar�
chitectures �DSSA� technology���	�

Typical activities involved in this level of design
include grouping several abstract data types to�
gether� choosing a subset of an abstract data
type�s operations� providing common values for
parameters� making inherited operations directly
visible� making interfaces match� reconciling be�
haviors� etc� Such domain�speci�c software com�
ponents make certain assumptions about the
functionality the system will implement � they
represent the features provided by the system for
a particular application domain�

Layer 	� Domain Architecture �Top or Outter�
most� Components

Finally� after these intermediate steps� the appli�
cations import the domain features components
and make them usable by �lling in the last param�
eters� Application developers and domain spe�
cialists negotiate the format of the semi��nished
components� The domain experts delve into their
toolbox represented by the basic features to build
the bu
ering layer the applications will use�

Generation� such as generic instantiation� is the
typical activity of this level� This is particularly
supported by the notion of toolkits ���	� Usually
toolkits are built on top of frameworks�

Design�with�reuse bene�ts from the dent the
lower levels have made into the complexity of the
components�

� Creating a Domain Speci�c
Reusable Library

This section summarizes the domain analysis per�
formed in order to create a library of reusable com�
ponents to be applied in the construction of a reac�
tive scheduling system for production environments�
The objective of the analysis process is to identify
the required domain objects and functionalities and
to map these requirements into the di
erent compo�
nent library layers identi�ed in the previous section�

��� Feature Oriented Domain Analysis
Domain analysis identi�es� collects� organizes� and

represents most of the relevant information needed to
design reusable components� it identi�es the scope of
the application� the objects of the domain� the di
er�
ent needed functionalities and how they vary across
applications in a domain� The information is obtained
from the study of the features and development his�
tory of existing applications� knowledge provided from
domain experts� and the underlying theory�
The number of publications on domain analysis has

greatly increased over the last ten years and several
methodologies are currently available� A review of
some domain analysis methods is presented in ���	
and an extensive domain analysis bibliography can
be found in ��	� Among the available methodolo�
gies� the Feature Oriented Domain Analysis ���� �	
developed by the Software Engineering Institute at
Carnegie Mellon University� was a natural selection
since the development group provided full support�



The feature�oriented concept is based on the em�
phasis this method places on �nding the features or
functionalities usually expected or desired in applica�
tions for a given domain� The analysis process� ac�
cording to the selected methodology� is characterized
by three basic phases� and each phase has speci�c pro�
cedures and products�
Figure � shows the three main phases of the Feature

Oriented Domain Analysis methodology� the inputs
needed at each phase� the �nal products� and how each
phase maps into the design layers identi�ed in section
�� More details about this mapping will be discussed
in the next sections�
The validation of the domain analysis is discussed

in ���	� The domain model products should represent
the relevant information about the objects and func�
tionality of a family of similar systems in a domain�
Validation of the model is obtained by reproducing
known applications through the selection of speci�c
features and building of a prototype system� Varia�
tions between the prototype behavior and expected re�
sults indicate problems in the description of the model�
The �nal validation is the system implementation� In
the current analysis� the prototype has not been im�
plemented yet but the products have been partially
validated by presenting the products to experts in the
�eld of reactive scheduling�

��� The Reactive Scheduling Problem
This subsection brie�y introduces the reactive

scheduling problem and the system architecture� Al�
though a detailed description of the reactive schedul�
ing domain is out of the scope of this paper� some
background information is useful for the sake of clar�
ity� The system architecture is based on a hierarchical
reactive scheduling model proposed by Morton���	�
The objective of a scheduling system� in a general

sense� is to assign resources to operations or activities
�or vice�versa� in order to obtain a desired output over
time� The type and characteristics of activities and
resources vary from application to application� The
schedule can be considered the representation of the
state of the constraints imposed on the processing of
the activities�
To make the concepts clear� consider the scenario

of scheduling manufacturing operations in a factory�
In this particular application� a sequence of operations
has to be processed on a set of machines or work areas�
The output of these operations is a set of products or
parts� The objective of the production is to satisfy an
external demand for some particular type and quan�
tity of products� The demand is represented as an or�
der� establishing a release date �the date the demand
is available to the system�� a due date� �the date the
demand is expected to be satis�ed�� a product to be
produced� and the quantity of the product� Each prod�
uct de�nes a set of operations whose processing should
follow a �xed sequence� Each operation requires a
certain amount of resource capacity over time� The
assignment of operations to resources should respect
capacity and precedence constraints and be guided by
a set of preferences�
Scheduling systems can be classi�ed according to

di
erent dimensions� Two dimensions that are par�
ticularly useful for the present work are related to
the schedule representation and the schedule gener�
ation strategy� According to the �rst dimension� the
schedule generated can have di
erent formats� It can
range from representations that precisely specify the
start and end times of each operation on each resource
�interval�based schedule� to representations that as�
sign only a relative importance to each operation
�price�based schedule� and determine start and end
times by simulating or actually executing the sched�
ule� In the second case� operations are processed ac�
cording to resource availability and an agent called a
dispatcher is responsible for releasing operations to re�
sources according to the sequence established by this
priority list�
Concerning the schedule generation strategy� sys�

tems can range from pure generative o
�line schedulers
to pure reactive real time schedulers� Pure generative
scheduling systems make decisions based on a static
model of the system
 that is� they usually work under
the assumption that resources are always operational
during their availability interval� and that nothing will
go wrong during the actual execution of the schedule�
On the other extreme� pure reactive scheduling system
makes decisions on real time� at each decision point�
the current state of the system guides the scheduling
process�
To obtain a coordinated behavior� practical pro�

duction environments usually require some kind of ad�
vanced plan� At the same time� however� these envi�
ronments are subject to a number of disruptions like
machine breakdowns and operations delays� These
disruptions or uncertainties will invalidate the ad�
vanced plan� Therefore� the solution of the schedul�
ing problem must provide some kind of mechanism to
generate schedules that account for these disruptions
in advance or that repair the schedule as disruptions
occur� Solutions that incorporate generative and re�
active components in the same system are common�
In these systems� a basic schedule is generated by an
o
�line component� When the schedule is executed� if
con�icts are identi�ed� a repair action is generated�
The architecture to be implemented using the

reusable components assumes the existence of a gen�
erative component external to the system� and an in�
ternal reactive component� the initial sequence of ac�
tivities and resource assignments is established by an
o
�line external scheduler
 once this schedule is gen�
erated� a priority or price is computed for each op�
eration� The priority list is then used by a real�time
dispatcher to send operations to be executed� As dis�
ruptions occur� an analysis process is triggered� Ac�
cording to the output of the analysis� a certain kind
of reaction is performed to repair the schedule� The
detailed description of the architecture can be found
in ��� �	�

� Context Analysis
The �rst phase of the domain analysis methodology

is the Context Analysis� The purpose of this phase is
to de�ne the scope of the domain� This phase identi�es
the sources of input� the desired output� and the data
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Figure �� Domain Analysis � Feature Oriented Domain Analysis Methodology

storage requirements� Once the scope is de�ned� the
relations between the external and internal elements
are analyzed and the variability of these relations are
evaluated�
Becker in ��	 analyzed some knowledge�based reac�

tive systems and Smith in ���	 made a much more com�
plete survey of knowledge�based production systems�
Armed with this information� we were able to iden�
tify commonalities and di
erences in the systems and
it was also possible to establish the scope of the sys�
tem and the interactions between a reactive scheduling
system and its external environment�
The Context Model is composed of a Structure Di�

agram and a Context Diagram� The Structure Di�
agram is an informal block diagram in which the ap�
plication is placed relative to lower� higher� and peer�
level domains� The utility of the Structure Diagram
is to relate the current application� a generic reac�
tive scheduling system� to other applications in the
domain� Figure � shows the system components in
relation to the other pieces of software used to im�
plement the system� Notice that this is the structure
diagram required by the domain analysis methodol�
ogy� The levels identi�ed in this diagram are not the
reusable layers identi�ed in �gure �� It is possible�
and in fact desirable� to map these levels into the four
reusable layers previously identi�ed� In section ��� the
mapping from domain structures levels into reusability
layers is made explicit�
Figure � presents the Context Diagram for the

scheduling problem� The closed boxes in the diagram
represent external agents or external source of data

the open boxes represent internal data depositories
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and the arrows represent data �ow�

� Domain Modeling

The next phase of the domain analysis is the Do�
main Modeling� The is the most important phase for
the identi�cation of components at the di
erent lev�
els of the reuse library� The purpose here is to iden�
tify the di
erences and commonalities that character�
ize the applications in a domain� The three products
of the domain modeling are� the Information Model�
the Feature Model� and the Functional and Behav�
ioral Models� These products for the domain under
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study are too large to be included in this paper� but
a summary of them is provided�

��� Information Model
The Information Model captures the domain

knowledge and data requirements essential for the de�
velopment of applications in a domain� This model
can be represented as an entity�relationship diagram
that speci�es the objects to be manipulated by the
application and how they relate to each other� The
entities provide the needed information for the design
of components in library layer � � Domain Informa�
tion Components� The relationships between entities
specify the requirements for components in layer � �
Algorithms and Data Structure�
The internal representation of objects used by the

system is based on the OPIS���	 representation� OPIS
design is object�oriented and uses a class hierarchy to
represent resources and operations� As described in
���	 and ���	� its class library can be divided into three
main groups�

Base Classes� are usually not instantiable��

Specialized Classes� are instantiable�

�A technical report containing the entire products is

available�
�These classes are preferably implemented as abstract

classes� CLOS� however� does not provide a mechanism to avoid

direct instantiation of any class�

Mixin Classes� provide common functionality to
di
erent objects�

Figure � shows the relation between the three basic
class types� From an entity�relationship perspective�
the specialized classes de�ne the entities of the system
and the base classes and mixin classes de�ne� in a
sense� the relationship among them�
In a scheduling system� six base classes can be iden�

ti�ed� These base classes correspond to the domain
entities and provide the components for library layer
�� The base classes are�

Demand� represents the input or order introduced
into the system�

Product� speci�es the kind of services provided�

Operation� is the focus of the scheduling system� op�
erations are the entities processed to satisfy the
demand�

Resource� represents the entity to be reserved over
time to process the operations�

Preference� represent the static knowledge about
the system operation� Preferences are used to
guide scheduling decisions�
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Scheduler� represents the abstraction of the set of
functional elements that manipulate demands� re�
sources� operations� and preferences to produce
the �nal schedule�

From the model described above it is possible to
de�ne a semantic network specifying the data struc�
tures and functionality needed in library layer �� How�
ever� additional elements must be provided to support
the functions speci�ed� For example� since operations
have start and end times and resources are allocated
over time� some kind of mechanism for time services
and for manipulating allocation intervals must be pro�
vided� time services� representation for time intervals�
doubly�linked lists� binary trees� search and sort algo�
rithms� and graphical libraries for interface construc�
tion are some of the components needed� As these
components do not depend on any kind of domain
speci�c information� they de�ne the components in
library layer �� the domain independent layer�

��� Feature Model
The Feature Analysis identi�es the services pro�

vided by the system and how these services di
er
across applications within the domain� The �nal prod�
uct of this phase� the Feature Model � is a hierarchical
graphical representation of the features� The Feature
Model provides the elements to design the components
at layer ��
According to the Feature Oriented methodology�

three distinct groups of features are considered�

Display Features� These features specify how the
system operation is seen by the user� For a
scheduling system� these features include graphs�
reports� gantt charts� and tables�

Operational Features� These features specify the
general functionality the system should have� The
top�level operational features include�

Input� ability of the system to receive informa�
tion from the external world�

Schedule� ability of the system to assign opera�
tions to resources �or vice�versa�� over time�

Dispatch� capability of the system of actually
executing the schedule generated�

React� ability of the system to correct the sched�
ule decisions while the schedule is executed�

Context Features� This set of features identi�es the
dimensions along which the operational and dis�
play features show room for adaptability� The
top�level context features are�

Application Domain� the kind of operations
and resources used in the application do�
main are an important factor to determine
the kind of behavior of the system�

Objective�Function� the managerial objectives
de�nes the scheduling and reaction strate�
gies as well as the price calculation methods�

Level of Abstraction� resources and opera�
tions can be aggregated at di
erent levels
of abstraction like machines that can be ag�
gregated in work areas� or ships that can be
aggregated in �eets�

Schedule Type� the schedule can be price�based
or interval�based�

Strategy� di
erent types of strategy can be es�
tablished for scheduling �generative or reac�
tive� resource or operation based� etc�� reac�
tion� dispatch� analysis� etc�

Con
ict� con�icts can di
er according to type�
size� and importance�

The context features specify the interface be�
tween components in layers � and �� To il�
lustrate this notion� consider the base classes
operation and resource de�ned as components
in library layer �� As it was mentioned before�
base classes cannot be instantiated� In level ��
the specialized classes manufacturing�operation�
manufacturing�resource� transport�operation�
and transport�resource are created as sub�classes
of the corresponding base classes� The context feature
responsible for the di
erentiation of the components
in this example is the application domain� In the ap�
pendix a more detailed example illustrating this situ�
ation is presented�

��� Functional Model
The Functional Analysis identi�es the control

structure and data �ow necessary to implement the
services described in the feature analysis� The product
of the Functional Analysis� the Functional and Behav�
ioral Model� captures functional commonalities and
parameterizes variability� This model speci�es how



the components at layer � can be parameterized to
provide the speci�c functionality described in the Fea�
ture Model�
Once specialized classes and methods have been de�

�ned at layer � of the component library� instances
of the specialized classes can be created at layer �
and methods can be combined to provide the required
functionality� The components of the application�
layer �� are speci�ed based on the operational features�
and parametrized based on the context features� For
example� a scheduling method de�ned at layer � can be
a combination of several di
erent search strategies de�
�ned at layer �� The context feature Application Do�
main establishes the type of operations and resources
that will be used by the scheduling methods
 the con�
text feature Objective Function establishes the search
strategy that should be selected to generate the sched�
ule
 the context feature schedule type determines if
time bound intervals should be propagated each time
a decision is made or if a price computation method
should be triggered�
Notice that the context features identify the spe�

cialization from base classes to specialized classes and
also guide the class selection for instantiation� This
ambiguity in the role of the context features is one of
the problems we found in using the Feature Oriented
methodology� although it helps the identi�cation of
the desired functionality �operational features� and its
variability �context features�� it does not provide a
means of directly relating them� The connection be�
tween the di
erent phases is also left unspeci�ed� the
methodology does not provide any information on how
the operational features should manipulate the objects
de�ned in the information model or how to use the
feature model to generate the functional model�
To implement the general system behavior de�

scribed before� �ve semi��nished components can be
identi�ed� These �ve components and respective func�
tionality are�

Top�Level Manager� problem�solving agents coor�
dination�

Real�Time Dispatcher� scheduled operations exe�
cution�

Con
ict Analyzer� con�ict and reaction analysis�

Reaction Agent� schedule repair� The size of the
reaction is a function of the con�ict characteris�
tics�

Price Calculation� priority list computation� The
priorities de�ne the operation sequence for exe�
cution�

The general behavior of the system can be seen in
the Functional Diagram presented in �gure �� The
Functional Diagram represents the activity �ow of the
system� The larger boxes represent the architectural
components in layer � of the library� Each of these
components is implemented by the composition of in�
stances of semi��nished components from layer �� The

small boxes �except the �idle� boxes� represent in�
stances of layer � components� For example� when or�
ders are introduced� the Read�Orders element should
be able to read the input and generate the internal
representation of these orders� The Read�Orders func�
tionality is obtained by the instantiation of two semi�
�nished components� one that will read the orders
introduced in the system and other that will translate
the input read into the internal representation� The
semi��nished component that generates the internal
representation for the input is the Order Instantiator��

This element corresponds to an instance of the class
Instantiator described in library layer � as a special�
ization of the corresponding layer � base class� Notice
that the �nal instantiated component hides the inner
lower level relations�
The orders and respective operations are then sent

to the element in charge of schedule generation and
price computation� The layer � component Gener�
ate Schedule is obtained by the instantiation of three
semi��nished components� the schedule generation el�
ement corresponds to an instance or a combination
of instances of semi��nished components identi�ed as
problem�solvers
 the price computation is performed
by a price calculation instance that is parameterized
by the objective function that the scheduler is trying
to optimize
 the dispatch list is then generated by an
instance of a dispatch list generator�
The output of the Generate�Schedule element is a

priority list that is sent to the real�time dispatcher�
The real�time dispatcher is a component in layer �
that will use one or more of the dispatch algorithms
de�ned in layer � and� like the Schedule Instantiator�
will modify instances of the specialized classes for re�
sources and operations� Di
erent dispatch algorithms
are used depending on the set of context features se�
lected for this particular application� The dispatcher
operates in a cycle� and as con�icts are detected� they
are sent to the element in charge of mid�size correc�
tions� If the mid�size reaction cannot solve the prob�
lem� a global repair is performed�

� Domain Library Implementation
Architectural Modeling is the last phase of the Fea�

ture Oriented methodology� The product of this phase
is a software solution in the form of a high�level de�
sign of the application� Instead of presenting architec�
tural modeling as speci�ed by the methodology� this
subsection presents how the components de�ned in li�
brary layers �� �� and � can be used to generate an
application at layer ��
As it was said before� it is possible to map the prod�

ucts of the di
erent phases of the methodology to the
design levels of the components� Figure � shows how
the Structure Diagram of �gure � maps into the four
design layers of the components� The CommonUtility

�Do not confuse the Order Instantiator with the instanti�

ation of semi��nished components� From the scheduling sys�

tem point of view� the Order Instantiator is a component re�

sponsible for creating instances of operations and demands�

From the library perspective� it is an instance of a semi��nished

component�
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level of the Structure Diagram corresponds to library
layer � � Domain Independent Components� The com�
ponents at this layer provide the most basic services
like time manipulation routines� balanced trees� dou�
bly linked lists� and graphical libraries� These data
structure de�nitions and respective manipulation rou�
tines can be found in public software repositories or in
several textbooks�
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Figure �� Design Levels for Reusable Components

The Domain Utility level in the Structure Diagram
corresponds to library layer � � Domain Information

Layer� At this layer there are routines to imple�
ment the control cycle� the instantiation of external
demands into internal orders� the time bound prop�
agation mechanism� and the basic representation for
demands� products� operations� and resources� The
components at this level can be implemented from
scratch based on the Information Model or can be re�
trieved from existing systems by using re�engineering
approaches��� �	�
The Domain Architecture level of the Structure Di�

agram maps into layers � and �� At layer � is the
specialization of the framework for the speci�c appli�
cation domain� Operations and resources are special�
ized so that they ful�ll the needs of speci�c require�
ments� In layer � there are also the domain dependent
algorithms for con�ict and reaction analysis as well as
dispatch heuristics�
Library layer � corresponds to the application that

uses the components de�ned in layer �� All the el�
ements at the topmost layer are implemented by se�
lecting� instantiating� and coordinating the functions
provided by the features de�ned in layer ��

	 Conclusions
This paper deals with several di
erent issues re�

lated to software reusability� The de�nition of these
issues clari�es the objectives for the designer� Instead
of aiming for a universal remedy� we suggest that reuse
entails a fundamental con�ict between the intentions
of the original component designer and the reusing de�



veloper� This con�ict can be resolved only by applying
a step�wise reduction to the gap separating design�for�
reuse from design�with�reuse� Design techniques play
an important role in shaping the static structure of
the resulting component library�
The approach presented here is based on the propo�

sition that the formalization of the software library
static structure serves to bridge the gap between the
component library and the software architecture�
The �rst contribution of the present work is the

testing and validation of a domain analysis methodol�
ogy as a useful tool for the identi�cation of commonal�
ities and di
erences among related applications for the
same kind of domain� The second contribution is the
construction of the mapping from the output products
of the Feature Oriented Methodology to a design tech�
nique for reusable components that establishes several
levels of reusability� The third contribution is the val�
idation of the design technique as an e�cient mecha�
nism for the generation of domain dependent reusable
software components�
Validating the concept by applying it in a profes�

sional environment and collecting the opinions of the
users is one avenue for further work�
Parallel to these contributions to the software en�

gineering �eld� there are the contributions related to
scheduling and knowledge�based applications� The by�
products of using these two methodologies are a bet�
ter understanding of the scheduling domain and a li�
brary of reusable components for the implementation
of scheduling systems to be used in di
erent applica�
tions�
The Feature Oriented Methodology has been a use�

ful tool for the identi�cation of the desired system
functionalities and the dimensions along which they
can vary� The main di�culty we found was how to
establish the link between the di
erent phases� The
methodology does not specify how to generate a func�
tional model or the architectural model from the fea�
ture and informationmodel� To deal with these issues�
the solution was to adapt the products of the Feature
Oriented methodology so they could be used as an
input to the design phase of another methodology�
We have been also looking at speci�cation lan�

guages that allow domain description in higher level
structured languages� The time when a programming
language possess features for enforcing guidelines is
not near� and it might never be� Management and
engineering practices must compensate for this lack of
language support� Enforcing the use of components
from the next lower layer in the model is one rule that
management has to supervise� Con�guration manage�
ment tools can provide desirable features like mak�
ing di
erent bodies available for a given speci�cation�
Standard naming schemes and powerful library man�
agement tools are other approaches for reducing reuse
di�culties�
As it was mentioned before� the library of compo�

nents resulting from the analysis described has been
partially implemented by re�engineering parts of ex�
isting scheduling systems� Considering the architec�
ture described in section ���� we are currently working
on the implementation of some components at layer

� and �� namely the analysis and price computation
agents� The current system implementation is in Com�
mon Lisp Object System���	 but we are considering
the re�implementation of the entire system in Ada�X
since CLOS does not allowed the layering of compo�
nents� The results of the domain analysis is also being
currently used to re�engineer another scheduling sys�
tem for vehicle movement control�
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Appendix
 Components in CLOS
In a scheduling system� two basic entities are opera�

tions and resources� In CLOS �Common Lisp Object
System �� these two entities can be de�ned as�

�defclass operation ��
��duration�
�start�time�
�end�time�
�resource ��

�defclass resource ��
��resource�capacity�
�scheduled�operations�
�unscheduled�operations��

From the context features presented in section ���
it is possible to see that the application domain is a di�
mension along which the components should di
er� In
the manufacturing domain� to compute the duration of
an operation� it is important to consider the duration
of the machine setup� The representation of resources
should also keep a record of incomplete operations due
to machine or operator failures� In the transportation
domain� it would be useful to represent the origin and
destination of each operation� and the transportation
resource should also specify the velocity and location
of the resource� In level �� the classes operation and
resource are specialized for the manufacturing and
transportation domain as�

�defclass manufacturing�operation
�operation�
��setup�duration���

�defclass transport�operation
�operation�
��origin�
�destination���

�defclass manufacturing�resource
�resource�
��incomplete�operations���

�defclass transport�resource
�resource�
��velocity�
�location���

The same can be done with methods or functions�
Using still the same example� consider the duration of
the operations�
For the base class operation the method

operation�duration reads the value of the duration
directly from the slot duration� For manufacturing�
operations� however� it is necessary to add the setup
duration to the duration of the operation itself� A
method to do this could be written as�

�defmethod operation�duration
��op manufacturing�operation��
�� �setup�duration op��duration op���

Where duration is a method that will compute
the individual duration of the operation represented
by op�
In the transportation domain� the duration of the

trip is a function of the distance between origin and
destination and the velocity of the resource�

�defmethod operation�duration
��op transport�operation��
�let ��resource �operation�resource op���

�� �distance�between
�origin op��destination op��
�velocity resource����

Where distance�between is a function which�
given two locations� returns the distance between
them and operation�resource is the method that
reads the value of the slot resource of the operation�


