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Abstract

Object-oriented system development is gaining wide attention both in research
environments and in industry. A severe problem encountered, however, is the quic-
kly increasing complexity of such systems and the lack of adequate criteria and
guidelines for “good” designs. To cope with this problem, it is imperative to bet-
ter understand the properties and characteristics of object-oriented systems. In
this paper, we extend the concepts of coupling and cohesion developed initially for
procedure-oriented systems to object-oriented systems. Coupling describes the in-
terdependency between methods and between object classes, respectively. Cohesion
describes the binding of the elements within one method and within one object
class, respectively. We introduce a comprehensive taxonomy of coupling and co-
hesion properties of object-oriented systems and provide guidelines for improving
these properties.
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1 Introduction

Building quality systems has been the driving goal of all software engineering efforts within
the last two decades. Among the key qualities a system should support are maintainability,
extendibility, understandability, and reusability [4, 37]. Object-oriented languages and



development environments go already a long way in providing features for building such
maintainable, extendible, understandable, and reusable systems. Among the features
which object-oriented languages support are encapsulation and information hiding, user-
defined classes, message passing, inheritance, and polymorphism [46]. Among the features
which development environments support are predefined class libraries and application
frameworks, standardized protocols, e.g., naming conventions, and development tools
such as browsers and inspectors [38, 47].

Object-oriented languages and development environments alone, however, are not a pa-
nacea for building object-oriented quality systems. For example, one problem encountered
is the quickly increasing complexity of object-oriented systems, which is due to the many
objects and inter-object relationships in such systems. Hence, what is needed in addition
to an object-oriented language and development environment are guidelines, check lists,
and metrics which help in the design and development of “good” object-oriented systems
- like they were essential for building “good” procedure-oriented systems.

There is an increasing awareness of this problem in the “object community”. Se-
veral guidelines and methods for object-oriented system development have emerged in-
dependently, e.g., [1, 20, 22, 23, 28, 31, 50, 57]. Recently, design metrics which take
the idiosyncratic features of object-oriented designs into account have also emerged [2,
9, 10, 18, 19, 41, 42, 43, 54, 55]. A common objective of these design metrics is that
they, besides others, try to quantify the coupling and cohesion properties of the object-
oriented system under investigation. For example, in [55] the authors identify complexity
measures which influence coupling and cohesion of object-oriented systems. Besides this
metric-centered view, the notions of coupling and cohesion have been re-discovered in
literature as design characteristics influencing properties of object-oriented quality sy-
stems [3, 5, 6, 11, 37, 49, 54]. Coupling and cohesion are the primary attributes that
led to procedure-oriented quality systems [48, 53]. There, coupling is a measure of the
interdependencies between different modules, and cohesion is a measure of the binding of
the elements within a single module. To be rated as well-designed, a procedure-oriented
system has to have low coupling properties in terms of few interdependencies between
modules and high cohesion properties in terms of strong bindings between the elements
within a single module. Since those days coupling and cohesion have been adapted to
Ada tasking [45] and abstract data type-based system development [14, 15]. As is stated
in [14], coupling and cohesion significantly influence maintainability, understandability,
and modifiability, and thus serve as a guide to the development of quality systems.

Despite of the growing awareness of coupling and cohesion and to the best of our
knowledge, there exists no thorough discussion of coupling and cohesion properties of
object-oriented systems in literature. The goal of this paper is to fill this gap. We intro-
duce a comprehensive taxonomy of coupling and cohesion properties of object-oriented
systems and provide guidelines for improving these properties. We consciously do not try
to quantify the various coupling and cohesion properties besides placing them on some
ordinal scale. This is due to the following reasons. Firstly, we do not try to reinvent
coupling and cohesion properties from scratch but adapt existing research in the area
of procedure-oriented systems and abstract data type-based systems. In that realm, no
quantifiable and computable metrics have been investigated. And secondly and most im-
portantly, so far there are no empirical results on the basis of which any coupling and



cohesion metric could be verified. Thus, it would not be serious to give numbers with no
experimental backing.

When adapting coupling and cohesion properties from procedure-oriented systems the
following considerations are in place. Firstly, as opposed to procedure-oriented systems
where the module is the only subject of interest, in object-oriented systems there exist
several subjects of interest, such as methods and object classes. Secondly, coupling and
cohesion properties of the various subjects of interest are not independent from each
other. For example, the coupling properties between methods of different object classes
highly influence the coupling properties between these object classes. The enhancement
of coupling and cohesion concepts for object-oriented systems is the main contribution of
this paper.

The research to be described has been motivated by the project MooD (Methods for
object-oriented Development) together with SIEMENS Austria, one of Austria’s major
software development companies. The aim of the project has been to provide a generic
object-oriented software life cycle model, which emphasizes software quality assurance

and reusability [16, 26].

The paper is organized as follows: In the next section we introduce the subjects of
interest in terms of coupling and cohesion characteristics of object-oriented systems. In
Section 3 we analyze coupling quality of various relationships between methods and bet-
ween object classes. Section 4 studies cohesion properties of methods and object classes,
and uncovers interdependencies between coupling and cohesion. Throughout Section 3
and Section 4 we elaborate to which extent existing guidelines improve coupling and
cohesion quality. Section 5 concludes the paper and points to further research.

2 Basic Concepts of Object-Oriented Systems

To be able to talk about coupling and cohesion of object-oriented systems we have to
identify the basic building blocks of such systems and their possible relationships in ad-
vance. One of the most widely used definitions of object-oriented languages and systems
stems from Peter Wegner [56], which we will use in this paper. There, an object-oriented
language should support the basic concepts of an object, an object class, and inheritance.

An object consists of a set of instance variables representing the internal state of the
object and a set of methods representing the external behavior of the object. To put it
in other words, an object is an encapsulation of state and behavior.

An object class can be seen as kind of template specifying state and behavior of a set
of similar objects, which are created as instances of an object class by some create me-
thod during run-time of a program. Object classes are the basic means of object-oriented
design and development. The definition of an object class is based on the principle of
encapsulation following the abstract data type approach and on the principle of informa-
tion hiding distinguishing between visible and hidden parts of an object class’ definition.
The visible part is called the specification or interface of an object class and in general
consists of a set of method specifications. The hidden part is called the implementation
of an object class and consists of the implementation of the methods and the definition



of the instance variables. We do not consider class variables and class methods in this
paper.

An object class may be related to other classes by an inheritance relationship, in which
case it inherits instance variables and methods from them. An object class C' related to
object class €’ by an inheritance relationship is called direct subclass of C'. An object
class C' is an indirect subclass of C' if there exists some class (' such that C' is a direct
subclass of ¢ and C is a direct or indirect subclass of (7. An object class (' is called
subclass of object class C’, if C'is a direct or indirect subclass of €. Conversely, an object
class (" is called superclass of object class C', if C' is a subclass of C'. Objects which are
instances of subclasses of €' are called members of C. Inheritance from a single direct
superclass is called single inheritance, and inheritance from multiple direct superclasses
is called multiple inheritance. The inheritance relationship is transitive, reflexive, and
anti-symmetric. The directed acyclic graph built up by the inheritance relationship is
called inheritance hierarchy. We deliberately use the term inheritance hierarchy instead
of the more precise term inheritance graph since it is commonly accepted in the literature.

Besides these basic concepts there are other principles of the object-oriented paradigm,
namely message passing and object identity [46], which must be considered when talking
about object-oriented quality systems. An object o communicates with an object o by
sending a message to o’. Adhering to the principle of information hiding message passing
is the only means to access and alter an object’s state. Message passing implies the second
kind of relationship, the interaction relationship. The interaction relationship is defined
for methods in the first place, and deduced for object classes for which the methods are
specified in turn. Since the inheritance relationship strongly interferes with the interaction
relationship some definitions are necessary before we are able to introduce the interaction
relationship.

We first define the notions of overriding, polymorphism, dynamic binding, and static
class. Overriding refers to the redefinition of inherited instance variables and methods in
subclasses. Polymorphism means that the same method may be invoked on objects of
different classes. Dynamic binding means that the binding between method invocation
and code to be executed takes place during run-time and depends on the actual class of the
object on which the method is invoked. The static class of a variable is the domain of this
variable defined at compile time. In contrast, the dynamic class of a variable is the actual
class of some object referenced by the variable during run-time. Due to polymorphism
a variable with the static class being object class ' may reference members of €' during
run-time. Due to overriding a method may have several signatures and implementations,
at most one of each for the class where it has been initially defined, and at most one of
each for every subclass. The signature of a method consists of the name of the method,
the names and domains of the input parameters, and the domain of the return value.
Changing a signature in some subclass comes up to changing the names, domains, and
the number of its parameters. We say, a method m is implemented at object class C if it
is initially defined at C, or its signature and/or implementation have been overridden at
C'. We further say that a method m is defined at object class (' if it is implemented at
C' or at one of the superclasses of '. Concerning the interaction relationship of a class
C' with other object classes we restrict our attention to those methods of C' which are
implemented at C'. Thus, an object class C is related to another object class C’ by an



interaction relationship concerning the methods m implemented at C' and m’ implemented
at C’ if in the implementation of m at ' the method m’ can be invoked on an object
referenced by a variable whose static class is either C”; or a superclass of C’; or a subclass
of €' and m is neither implemented at this subclass nor at any class in the superclass
chain between this subclass and C’.

Some explanations are in place. (1) We consider only direct interactions at first. The
transitive closure of the interaction relationship due to transitive method invocations will
be treated in section 3.4. (2) Our definition of interaction relationship takes static and
dynamic classes into account. Of course, the encountered interaction relationships are
potential relationships, which might occur but need not occur during run-time. This
is in line with the initial incentive that all possible relationships, and thus all possible
dependencies have to be investigated. (3) As a special case of the definition of interaction
relationship such a relationship may also exist between object classes which inherit from
each other. For example, a method m is implemented at ', a method m’ is implemented
at C', and C is a subclass of C’. Then, C is related to C’ by an interaction relationship
concerning m and m’ if in the implementation of m at C' the method m' is invoked on
an object referenced by a variable whose static class is either C’, or a superclass of ",
or a subclass of €' and a superclass of C' and m is not implemented at any class in the
superclass chain between this subclass and C’. (4) The interaction relationship has been
defined for object classes and methods together. For sake of simplicity, however, the
interaction relationship and thus interaction coupling will be discussed for methods in the
first place, and in a second step extended to object classes (cf. Section 3.1 and 3.4).

The third relationship which is relevant in terms of coupling properties is made possible
by the concept of object identity, which means that each object has a unique system-
maintained identifier, which does not change in time. Thus it is possible that an object
may reference other objects via its instance variables using the objects’ identifiers. These
objects again may reference other objects and so on. An object class C is related to
another object class C’ by a component relationship if C' is used as domain of some
instance variable of C'. Note, for the purpose of investigating coupling properties there is
no need to distinguish between componenent relationships in the more restricted sense,
such as part hierarchies, and component relationships in the general sense, such as general
references between independent objects. Contrary to the interaction relationship, we
consider only direct component relationships in this paper.

Based on the above analysis methods and object classes are identified as basic building
blocks when considering coupling and cohesion of object-oriented systems. Methods are
the basic means of invocation and thus, most similar to modules in procedure-oriented
systems. Note, in this paper the term module is used as in the original literature on cou-
pling and cohesion [53, 59] synonymous to procedure, subroutine, or similar programming
units. Object classes are the basic units of encapsulation and thus, basic building blocks
by definition. In contrast, we do not consider objects and their coupling and cohesion
characteristics. Remember that coupling and cohesion are primarily investigated in the
realm of object-oriented design, which implies modeling of object classes but not of indi-
vidual objects. Furthermore, it is not necessary to consider more complex building blocks
such as subsystems [58]. A subsystem consists of a set of object classes, which cooperate
to fulfill a certain functionality. Subsystems can be seen as more complex object classes,



usually without inheritance. Thus the discussion of coupling and cohesion characteristics
of object classes can be easily extended to subsystems by recursively applying the rules
defined for classes.

In the following sections we will deal with methods, object classes, and instance va-
riables. Whereas methods and object classes are the primary subjects of interest in terms
of coupling and cohesion properties, instance variables are necessary means to exhibit
these properties. We will use C++-style syntax [13] in our examples.

3 Coupling

Coupling has been defined the first time in the realm of procedure-oriented systems [53].
Stevens et al. define coupling as “the measure of the strength of association established
by a connection of one module to another. Strong coupling complicates a system, since a
module is harder to understand, change, or correct by itself if it is highly interrelated by
other modules. Complexity can be reduced by designing systems with the weakest possible
coupling between modules”. In the previous section we defined as the object-oriented
equivalent of a module a method. Similar to modules, methods are coupled by invocation
of each other and/or by sharing data. Thus they may have an interaction relationship
with each other (cf. Section 2). Next to methods, also object classes have to be analyzed
in terms of relationships with each other, and thus in terms of coupling properties. Object
classes may have component relationships and inheritance relationships with each other,
in addition to interaction relationships (cf. also Section 2). From these relationships three
different dimensions of coupling properties may be deduced in object-oriented systems,
which are:

e interaction coupling
e component coupling

e inheritance coupling

Each of these coupling dimensions induces that the behavior of a class ' depends on
the behavior of a class C’ if (' is related to C” by one of the relationships mentioned
before. Or, to put it in other words, C' has to have some information about C’ such that
in case (" changes, C' knows what to change, too. The degree of coupling can be described
as how much, how complex and how explicit this information has to be. On one end
of the scale, low coupling is described by a small, simple and explicit inter-relationship
between methods and between object classes. In general, low coupling correlates to good
software quality in terms of better maintainability and reusability. On the other end,
high coupling is described by a large, complex and implicit inter-relationship making
maintenance a nightmare and reuse even impossible. In the following we study each of
the coupling dimensions in turn.



3.1 Interaction Coupling

Methods are coupled by interaction in terms of invocation of each other and/or sharing
of data. Since interaction coupling is most similar to the classical definition of coupling
between modules we adopt the various degrees of classical coupling [53, 59] to describe
interaction coupling. In the following we analyze where interaction coupling in object-
oriented systems differs from the classical notion of coupling. The difference mainly stems
from two interrelated facts. Firstly, methods belong to object classes. This implies that
object classes may be interaction coupled, too. Secondly, interaction coupled methods
may belong to the same object class. This implies that we have to distinguish interaction
between different classes from interaction within a single class.

We consider all degrees of interaction coupling in turn - from worst to best - and
redefine them according to the idiosyncracy of object-oriented systems where necessary.

1. content

Content coupling is the worst form of coupling. It means that one method directly
accesses parts of the internal structure, i.e., the implementation of another method.
Thus one method has to know exactly all internals of the other methods, and any
change in one method may influence the other.

The object-oriented paradigm in general, and encapsulation and information hiding
in particular prohibit that a method directly accesses the implementation of another
method or hidden instance variables of a different class. However, content coupling
may occur if the programmer uses features of some object-oriented languages which
break the information hiding property. For example, the friend option in C++ [13]
allows to access hidden, i.e., private or protected in C++ parlance, instance variables
of different object classes.

2. common

Coupling is rated common if methods communicate via an unstructured, global,
shared data space. Common coupling is better than content coupling since all
implicit communication channels are collected in the common area. Nevertheless,
it is still a pathological form of coupling since the number of possible connections
between methods is polynomial, and the locality principle of good software design
is not considered at all.

Encapsulation and information hiding prohibit common coupling. We are also not
aware of any object-oriented language which supports an unstructured, globally
visible data space. We rate coupling based on the use of pool variables in Smalltalk
[17] as external (see below) since these variables provide for a structured, shared
data space with varying visibility.

3. external

External coupling improves common coupling by structuring the global, shared data
space. However, the locality principle is still violated, thus most deficiencies of
common coupling remain.



Encapsulation and information hiding also prohibit external coupling between me-
thods of different classes. Nevertheless, it may occur in object-oriented systems
based on languages which provide globally visible variables. For example, public
instance variables in C++ [13] and Trellis/Owl [51], and pool variables in Smalltalk
[17].

And what happens to methods of the same class? We may find external coupling
in the interaction between methods of the same class as they may access the same
instance variables which are used similar to global variables in modules. Passing
of data may be implemented through these shared instance variables instead of
using explicit parameters. Note, in general, we do not consider the passing of
information between different invocations of methods of the same object in instance
variables as external coupling. That’s what instance variables have been invented
for. Coupling is rated as external, however, if instance variables do not represent
the state of the object. Such instance variables contain transient data, i.e., data
which is only relevant during the execution of a method and is not relevant at the
next invocation of a method. Such data may be reinitialized at each invocation
from outside. Transient data should be represented by local variables of the method
and passed to other methods as parameters. Like global data in modules transient
data in instance variables should be avoided. We define the set of instance variables
of an object class as being minimal if and only if they contain data representing
the (static) state of an object of that class. Methods of such a class cannot be
external coupled to each other. Note, methods of different classes, which also do
not inherit from each other, may use public instance variables of these classes for
passing transient data, which is an even worse form of external coupling. Both kinds
of external coupling can and should be avoided.

Example: Consider the definition of an object class EMPLOYEE (note, we assume
that the object classes STRING and DATE have been defined elsewhere):

class EMPLOYEE {
STRING* name; /* all instance variables are private */
STRING* address;
int socialSecurityNumber;
DATE* birthDate;
int age;
DATE* hireDate;
void computeAge (); /* private method */
public;
float computeSalary ();

};

void computeAge () {
age = today - birthDate

};

float computeSalary () {

};



The method computeSalary, which has to know the age of the employee to
compute his or her salary, has to call the private method computeAge before
accessing the instance variable age. Thus, the instance variable age represents
transient data and the calling method is external coupled to the method com-
puteAge. To avoid external coupling computeAge has to return the computed
age as return value to the calling method. O

For external coupled methods we further distinguish methods and instance variables
implemented at the same class from those implemented at a classes (' and a super-
class C' of C'. We define the coupling from method m to method m’ as inherited
external

e if m implemented at C' and m’ defined at C' exchange data through instance
variables inherited from C’ (instead through explicit parameters). This kind
of coupling particularly occurs if the class from which information is inherited
has external coupled methods.

e if m implemented at " and m’ defined at C', communicate via public instance
variables inherited by C' from (", where C' # C" and (' is neither a superclass
nor a subclass of €.

It is obvious that inherited external coupling between methods is worse than external
coupling between methods as it further complicates maintenance. Since inherited
variables are directly accessed, inherited external coupling not only uses instance
variables to pass transient data but it also breaks encapsulation and information
hiding between an object class and its superclasses [52].

Example: Assume for the example above that the object class EMPLOYEE is a sub-
class of PERSON, from which it inherits the instance variables name, birthDate,
age and the method computeAge. Then the coupling from method computeSa-
lary defined at EMPLOYEE to method computeAge defined at PERSON is rated
inherited external since they communicate via the inherited instance variable
age. Thus the coupling from computeSalary to computeAge is even worse than in
the previous example. a

. control

Methods are control coupled if they communicate exclusively via parameter passing,
which implies that they are not content, common, or external coupled, but one
method controls the internal logic of the other method. With control inversion, the
worst form of control coupling, the called method determines the future execution
sequence of the calling method.

Control coupling is not prohibited by object-oriented concepts. Therefore, interac-
tion between methods of the same as well as of different classes may be control
coupled. Control coupling should be avoided since the change of the implementa-
tion of a method may cause hidden changes to the behavior of the control coupled
methods. Although control coupling is not prohibited by the object-oriented para-
digm, polymorphism and dynamic binding aid in avoiding control coupling. Instead



of passing a flag which controls method execution, polymorphism and dynamic bin-
ding can be employed.

. stamp

Two methods are stamp coupled if, in analogy to classical coupling, they are not
control coupled but whole data structures are passed as parameters although only
parts of the data structure would suffice. The essence of stamp coupling is as follows:
a method depends on some externally defined data structure and has to be changed
if this data structure changes, although the change would otherwise not influence
the method. Stamp coupling has to be rephrased for object-oriented systems since
there exist two kinds of stamp coupling.

The first kind of stamp coupling is similar to the classical definition of stamp cou-
pling. According to that definition, a method depends on the domain of its pa-
rameters. The domain of a parameter may either be an object class, or a basic
data type, or a complex data type based on type constructors such as tuple, array,
and set. Depending on the domain of the parameter, either basic data values, or
complex data values, or objects may be passed as parameters. If a complex data
value is passed as parameter stamp coupling occurs if already parts of the complex
data value would suffice. This case is analogous to the classical definition of stamp
coupling. If objects are passed as parameters a similar problem may occur. We
recall that an object may again consist of (references to) other objects. Such an ob-
ject is also called composite object since it is constructed out of component objects.
Thus we have to investigate the question whether the object passed as parameter
or merely some of its components are relevant for a method. If an object is passed,
and the method uses just some of the object’s components but not the object itself,
we classify this interaction as stamp coupled. If the object passed as parameter is
used as a whole, we call it data coupling (see below).

To improve stamp coupling to data coupling an object should be replaced by its
components whenever possible, in particular, if only some but not all of its compo-
nents are necessary. Note, that there are rare cases where the replacement of an
object by its components may leave extensibility more difficult. Such a situation
occurs if only some components of an object are currently needed by some method
m but the object is extended with an additional component in the future and this
component is also requested by m. If the object would have been passed as para-
meter no change of the interface of m would have been necessary. However, there
exist other solutions without the above mentioned problem. For example, adding a
new method with the appropriate parameters is just one possible solution.

Example: Consider the class EMPLOYEE as defined above with the additional in-
stance variable sales, and another object class SALES-STATISTICS with the in-
stance variable accummulatedSales, and the method addSale with the input para-
meter being an employee object. However, the method addSale should not take
an employee object as parameter, which leads to stamp coupling, but the value
of the relevant instance variable sales of a particular employee, which would
lead to data coupling. O

10



The second kind of stamp coupling uncovers dependencies between a method and the
domain of instance variables of the same class. The definition of instance variables
is external for a method. At first sight it may look strange to consider interaction
between methods and instance variables. However, it leads to rules for a better
organization of methods. The value of an instance variable is either a basic data
value, or a complex data value, or a reference to some object depending on the
domain of the instance variable. If a method directly accesses an instance variable
although it needs only parts of its value, the method has to be changed if the domain
of this instance variable is changed, e.g., due to optimization purposes.

The key idea for improving this kind of stamp coupling is to distinguish between
methods which directly access instance variables, i.e., the internal data structure
of a class, and methods which do not. It is good design to hide the internal data
structure whenever possible — not only from the outside of an object class but
also from methods inside of the object class. Therefore, we suggest to design read
methods and write methods, called access methods, for each instance variable and
use these methods as only means to access these variables. If the internal data
structure of an object class is changed only the access methods have to be updated,
too.

Example: Consider the class MATRIX with the methods accessElement and multipli-
cation. The coupling between the method multiplication and the implementation
of the matrix’s data structure is lower if the method accesses the elements of
the matrix by the access operation accessElement, and it is higher if multiplication
directly accesses the instance variables. Considering the former, if the repre-
sentation of the matrix is changed, e.g., for sparse matrices, only the access
methods have to be changed but not the multiplication method. O

The idea of restricting the access to instance variables via explicit access methods
is not new. It has already been advocated as important object-oriented design
guideline [23, 57], and it is realized in some object-oriented languages, such as
Trellis/Owl [51]. Note, that there exist design rules in the area of software reuse [40]
leading to a factoring out of methods from some object class if they do not directly
access instance variables of that class. This might increase, however, interaction
coupling between classes. Thus there is some trade-off between various design goals
and the designer has to decide which goal to prefer on a case by case basis.

Here again we have to take inheritance of methods and instance variables into ac-
count. Stamp coupling between a method and inherited instance variables is called
inherited stamp coupling. It is worse than stamp coupling between a method and
instance variables defined within the same class. This is due to the commonly accep-
ted understanding that directly accessing inherited instance variables in subclasses
breaks encapsulation and information hiding [52].

. data

Two methods are data coupled if they communicate only by parameters and these
parameters are relevant as a whole. Data coupling is the best form of coupling

11



whenever two methods have to interact. Data coupled methods minimize main-
tenance effort due to a great restriction of change propagations.

7. no direct coupling

The theoretical optimum of interaction coupling is no direct coupling, i.e., two
methods do not (directly) depend on each other, and thus also their object classes
are not interaction coupled. A change in one method does not directly demand a
change in the other method, and hence no change in that method’s object class is
necessary.

3.2 Component coupling

As opposed to interaction coupling where object classes and methods are involved compo-
nent coupling concerns only object classes. The component relationship between classes
is defined by the use of a class as domain of some instance variable of another class (cf.
Section 2). In the context of component coupling we extend this notion of component
and define the object class C’ to be a component of the object class €' if and only if ('
appears in C'. ' appears in ' if and only if:

1. " is the domain of an instance variable of C', or
2. C"is the domain of a parameter (input or output) of a method of C, or
3. (" is the domain of a local variable of some method of ', or

4. (' is the domain of a parameter (input or output) of some method invoked within

a method of C.

Whereas component coupling reveals the coupling from a class C' to a class C’ during
compile time it might happen during run-time that ¢ is component coupled with any
subclass of /. We call this kind of coupling potential coupling. If C' is component
coupled with €’ then C' is potentially component coupled with all subclasses of C’. Note,
component coupling in languages like Smalltalk needs some special consideration'. Since
primitives in Smalltalk like integers and booleans are also object classes practically every
class is component coupled to primitives. However, since primitives are very stable one
shouldn’t care too much that an object class is component coupled and thus dependent
on primitives.

Of course, component coupling usually implies interaction coupling. In interaction
coupling, however, we focused on how much information is exchanged between methods
and classes, respectively, and on how complex this information is. With component cou-
pling we will analyze how explicit the coupling between classes is.

The first case of component relationship given above is realized via instance variables.
It is made explicit in object-oriented languages at the class level, but only in the imple-
mentation part and not in the specification part of a class definition. Coupling of the

'We are grateful to David Monarchi who pointed this out to us.
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second case is made explicit in the specification part of a class definition by specifying
the signatures of the methods. Component coupling of the third case is based on local
variables. It is only explicit within a method through the declaration of local variables
but it is not explicit at the class level. The fourth case is even worse. For example, in
cascading messages, the object returned by a method is used immediately as receiver of
another message. The object class of this receiver might not even be declared anywhere
in the actual class.

Based on these considerations we define the following degrees of component coupling
from worst (highest) to best (lowest).

1. hidden

The coupling between two classes C' and C" is rated hidden if C" shows up neither
in the specification nor in the implementation of C', although an object of €' is used
in the implementation of a method of C'.

To give examples of situations where hidden coupling is likely to occur we refer to
the cascading message problem stated above. A similar problem is encountered if
the return value of a method invocation is immediately used as input parameter in
another method invocation. Most languages do not require that the class of this
object is declared anywhere within the actual class.

Hidden coupling causes problems since this coupling between classes is implicit.
We compare hidden coupling with the use of global variables in procedure-oriented
systems, which is responsible for common coupling between modules. Consider a
change of a class in a maintenance process, e.g., the change of the signature of a
method. In the presence of hidden coupling the programmer has to search through
all implementations of all methods of all classes to detect where this change may
have influence, and where this change has to be propagated to, respectively.

A possibility to avoid hidden coupling is to disallow the use of cascading messages,
for example, suggested implicitly by the Law of Demeter [30, 31], and to disallow
the use of return values as parameters if their domains are not declared. A less
restrictive way to overcome hidden coupling is to declare all those classes in the
specification part of the actual class definition.

Example: Consider the class EMPLOYEE as defined above with the additional in-
stance variable involvedInProject, which references the project for which an em-
ployee is currently working, and the additional method numberColleagues, which
returns the number of colleagues in the current project. The implementation
of numberColleagues may be given as follows:

int numberColleagues () {
return (involvedInProject->getProjectMembers->count - 1)
1

The coupling between the classes EMPLOYEE and SET(EMPLOYEE*) is hidden
since the latter neither shows up in the specification nor in the implemen-
tation of the former although the method count is invoked on an object of
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class SET(EMPLOYEE*). This object is returned by the method getProjectMem-
bers invoked on the project object which is referenced by the instance variable
involvedInProject. Improvements of this implementation in terms of coupling
properties are demonstrated in the next examples. a

2. scattered

We rate two classes €' and (7 as scattered coupled, if C” is used as domain in
the definition of some local variable or instance variable in the implementation of
C' yet C’ is not included in the specification of €. To detect whether C' and C’
are component coupled it is necessary to check the implementation of classes to
get the domains of instance variables, and even worse to check the implementation
of all methods to detect the domains of local variables. If a class is changed the
implementations of all other classes have to be checked in order to discover which
classes may be influenced.

Example: Consider the previous example where the classes EMPLOYEE and SET(EM-
PLOYEE*) are hidden coupled due to the implementation of the method num-
berColleagues. The implementation may be improved by disallowing cascading
messages as follows:

int numberColleagues () {
SET(EMPLOYEE*) * projectMembers;
projectMembers = involvedInProject->getProject Members;
return (projectMembers->count - 1)

}

By introducing local variables and disallowing cascading messages the coupling
between the classes EMPLOYEE and SET(EMPLOYEE*) can be improved from
hidden to scattered. O

3. specified

We rate two classes €' and C” as specified coupled if €7 is included in the specification
of ' whenever it is a component of C'. Specified coupling overcomes the problems
of hidden and scattered coupling by specifying all related component classes of
some class in a single place. Thus it is possible to determine whether two classes
are coupled without browsing through the whole implementation. Browsing the
implementation might be even impossible if the source code is not available.

In most object-oriented languages only the signatures of the methods provided by
some class ' are shown in the specification of C'. This set of methods provided by
C' is also called suffered interface of C'. Those classes which are used as domains of
input parameters and return values of the methods of (' are the only ones which
are specified coupled with . We suggest that in addition to the suffered interface
also the required interface becomes part of the specification of a class. The required
interface of some class C' comprises all classes which are used as components of C.
Specitying which methods of the component classes are invoked further narrows the
required interface and thus lowers the degree of coupling.
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Example: In the previous example the classes EMPLOYEE and SET(EMPLOYEE*)
are scattered coupled. We may improve their coupling property to specified
coupling by changing the specification of EMPLOYEE as follows:

class EMPLOYEE {

suffered interface: /* corresponds to public in C++ */
int computeSalary ();
int numberColleagues ();

required interface: /* not available in C4++ */
SET(EMPLOYEE*)* class PROJECT::getProjectMembers ();
int class SET(EMPLOYEE*)::count ();

a

There exist several object-oriented specification languages which provide mecha-
nisms to specify the required interface, e.g., collaborators in [58], uses relationship
in [5, 21], calling relationships in [24], and invocation diagrams in [25]. However,
we know of only one object-oriented language, Modula-3 [8], which supports suffe-
red and required interface specifications by export and import declarations at the
module level.

4. nil

The theoretical optimum is no direct component coupling between classes and thus
no interaction coupling. It is an advantage to recognize that two classes are com-
pletely independent such that one class can be maintained without any knowledge
of the other class.

3.3 Inheritance coupling

Similar to component coupling inheritance coupling only concerns object classes. Two
classes are inheritance coupled if one class is a direct or indirect subclass of the other.
Inheritance is one of the most important features of object-oriented methods and langua-
ges. It supports reuse both through subclassing, i.e., specialization, and through factoring
out, i.e., generalization, of common information from independent classes into a common
superclass. At a first glance it seems contradictory to use inheritance for gaining better
reusability and to have the goal of low coupling. The key idea to resolve this seeming
contradiction is twofold. Firstly, inheritance may be used to lower coupling in an object-
oriented system through factoring out. Given a class D which invokes the same method m
on objects of class C' and €', D is component coupled with C” and C”. If the method m
is factored out into a common superclass C' of C’ and C” and not overridden in C' and C”,
respectively, D is component coupled with (' only. Thus the coupling is improved since
the number of classes with which D is coupled has been reduced. Secondly, there exist dif-
ferent degrees of inheritance coupling. We will show that the lowest degree of inheritance
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coupling (besides no coupling) coincides with better reusability. Furthermore, conside-
ring inheritance coupling is necessary for improving the overall quality of the system to
be implemented. Since it is possible to gain good interaction and component coupling
properties by sacrificing the quality of the inheritance hierarchy, inheritance coupling has
to be considered, too.

Inheritance coupling is also different from interaction coupling and component coupling
in that it does not only exhibit the coupling property between subclasses and superclasses
but implicitly also the coupling property between an interaction coupled object class
and the inheritance hierarchy. The meaning is the following: if class D is interaction
coupled to some class C' being the root of an inheritance hierarchy and the inheritance
hierarchy is changed, e.g., subclasses are added, and inherited instance variables and
methods are modified, the degree of inheritance coupling reveals to which extent changes
in the inheritance hierarchy might impose changes in D (for a detailed discussion of the
interdependencies of the various coupling dimensions see Section 3.4).

In the following we discuss the various degrees of inheritance coupling from worst
(highest) to best (lowest). Note, we assume for simplicity and without loss of generality
that access methods for each instance variable exist. Thus any change to an instance
variable in some subclass is reflected by the corresponding change of the signature and/or
implementation of the access methods.

1. modification

Modification coupling is the worst case of inheritance coupling since in addition
to defining new information the inherited information is changed arbitrarily or is
even deleted. Depending on the kind of modification we further distinguish between
signature modification and implementation modification:

(a) signature modification

The coupling between subclass €7 and superclass C' is rated signature modi-
fication if not only the implementation but also the signature of an inherited
method is changed without any restriction, or inherited methods are deleted in
(. The relationship between €’ and C' is a pure implementation relationship,
i.e., the use of inheritance is solely for code reuse. An inheritance hierarchy
based on signature modification is difficult to maintain and to extend since it
soon may become very complex. What counts even worse is the fact that it
impairs polymorphism and strong typing in interaction related classes. Assume
class D which invokes a method m on an object of class C'. Assume further-
more that the signature of m is changed in subclass C’ of C' arbitrarily. Due
to polymorphic variables it might happen at run-time that D invokes m on an
object of class €. This object, however, assumes another invocation of m due
to signature modification and issues a run-time type error. We conclude that
inheritance coupling based on signature modification should be avoided in any
case.

If only a part of the class definition of class (' is to be used in class C’ the two
classes should not be inheritance coupled but C” should be component coupled
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to C via an instance variable of '/ with the domain of the instance variable
being class C.

Example: Consider class STACK inheriting from class ARRAY. Since ARRAY
is only used to implement STACK’s internal data structure, and since the
methods of ARRAY are semantically not meaningful when used with a stack
(e.g., the method putAt of ARRAY does not exist for a stack) the methods of
ARRAY are only inherited for private use but are deleted from the suffered,
i.e., public interface of STACK. Thus STACK and ARRAY are signature modi-
fication coupled. To improve their coupling the definition of STACK should
include an instance variable a with domain ARRAY instead of inheriting
from ARRAY. O

(b) implementation modification

The coupling between subclass C’ and superclass C' is rated implementation
modification if the implementation of an inherited method is changed without
any restriction. This degree of inheritance coupling is better than the previous
one since neither the signature of a method is changed arbitrarily nor are
methods deleted. Nevertheless, implementation modification coupling should
also be avoided since the semantics of a method may be changed completely in
subclasses, and thus the semantics of methods invoking the inherited method
may be changed implicitly, too.

2. refinement

Refinement coupling is much better than modification coupling since in addition to
defining new information the inherited information is only changed due to predefined
rules. Depending on the kind of refinement we further distinguish between signature
refinement and implementation refinement:

(a) signature refinement

The coupling between subclass €7 and superclass €' is rated signature refi-
nement if they are not modification coupled and if the signature of at least
one inherited method m is changed in C’ due to some predefined rule without
changing the intended semantics of m. Signature refinement may adhere to
the covariant rule or to the contravariant rule [7, 34] of subclassing. In the
covariant rule, domains of input parameters and of the return value may be
replaced by subclasses. In the contravariant rule, domains of input parameters
may be replaced by superclasses and the domain of the return value may be
replaced by a subclass. In general, signature refinement based on the covariant
style should be avoided since it may also break polymorphism and strong ty-
ping in interaction related classes [34]. However, there are situations where the
semantics of the problem domain is best described in terms of inheritance ba-
sed on the covariant style. In such situations the polymorphic use of variables
and methods should be avoided to avoid run-time type errors.

Example: Consider parts of the definition of object class PERSON and of
subclass EMPLOYEE of PERSON:
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class PERSON {

[0..120] age; /* for simplicity we assume */
/* the existence of an enumeration type [0..120] */
public; /* and [15..65] */

[0..120] getAge ();
void setAge ([0..120] a);

}

class EMPLOYEE : public PERSON {
[15..65] age;

public;
[15..65] getAge ();
void setAge ([15..65] a);

Since employees may only be active from 15 to 65 (at least in Austria) the
subclass EMPLOYEE of class PERSON refines the signatures of the inherited
access operations of age according to the covariant style. Thus, EMPLOYEE
and PERSON are signature refinement coupled based on the covariant style.
O

(b) implementation refinement

The coupling between subclass C’ and superclass C' is rated implementation
refinement if the signatures of the inherited methods are not changed at all,
and the implementation of at least one inherited method m is changed in C’
due to some predefined rules such that the intended semantics of m is kept.

This kind of inheritance coupling might become necessary if the implemen-
tation of an inherited method has to be refined in some subclass. Language
features which support implementation refinement are, for example, SUPER of
the language Smalltalk [17], inner of the language Beta [29], and before and
after daemons of the language CLOS [27]. SUPER is used in the changed im-
plementation of an inherited method to invoke the method’s implementation
defined in the superclass. Whereas the concept SUPER does not enforce imple-
mentation refinement the inner concept and the before and after daemons do
enforce it. inner is used in the original implementation of some method m to
specify the place in the code where a future refinement of m has to be placed by
the compiler. Thus, if m is invoked on an object of some subclass not only the
most refined code but also the code defined in the superclasses gets executed.
Similar holds true for before and after daemons. As the name already suggests,
they may be specified in subclasses to refine the implementation of m given
in some superclass. If m is invoked on an object of some subclass all before
daemons get executed up to the original implementation of m and before the
original implementation is executed. After the original implementation has
been executed all after daemons get executed in the reverse order of the before
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daemons.

Note, there exist object-oriented languages, such as Eiffel [39], where it is possible
to change the implementation of a method arbitrarily, and at the same time to
refine the signature of the same or another method. These languages exhibit both
implementation modification coupling and signature refinement coupling.

3. extension

Inheritance coupling between a subclass and its superclass is rated extension coupled
if the subclass only adds methods and instance variables but neither modifies nor
refines any of the inherited ones. Extension coupling is the best kind of inheritance
coupling (besides no inheritance coupling at all). Extension coupling is achieved if
the superclass is semantically a generalization of its subclasses and the methods of
the superclass can be invoked on objects of the subclasses without inspecting the
(intermediate) subclasses.

Example: Assume that EMPLOYEE is an extension coupled subclass of PERSON.
Then, all methods defined at PERSON can be used for employee objects wi-

thout checking whether they have been modified or refined in the definition of
EMPLOYEE. O

4. nil

If there is no inheritance relationship between two classes their inheritance coupling
is rated nil.

3.4 Interplay of the three coupling dimensions

So far, we have investigated interaction coupling, component coupling, and inheritance
coupling in isolation. In this subsection we reveal the interplay of the three coupling
dimensions. In particular, we show by means of an illustrative example how additional
coupling relationships are derived from given ones taking transitive method invocations
into account.

We recall that interaction coupling and component coupling describe a similar pheno-
menon. Interaction coupling reveals the kind of interaction between methods and object
classes. Component coupling investigates how explicit this interaction is specified. In
terms of the interplay with inheritance coupling it is thus sufficient to choose one out of
interaction coupling or component coupling to be investigated in more detail. We have
chosen interaction coupling.

The interplay of interaction coupling and inheritance coupling becomes most relevant
during run-time. Due to inheritance, overriding, and polymorphic variables additional
interaction couplings between methods and between object classes, respectively, are de-
rived. For computing all derived couplings during compile time a global analysis of the
given code is required, a feasible but tedious and cumbersome task. However, we will
show the relevance of such an analysis by means of an example further below.

For a precise description of the problem, we introduce the following three predicates:
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Figure 1: Inheritance relationship and interaction relationship

1. The predicate implements(C,m) holds if class C' implements method m. The im-
plementation may define a new method or override an inherited method.

2. The predicate isa(C’,C') holds if €' is a direct subclass of C'. The predicate
isat(C',C) denotes the transitive closure, and the predicate isa*(C’,C') denotes
the transitive and reflexive closure of isa(C’, C).

3. The predicate invokes(C,m,C’,m') is true, if method m implemented at C' invokes
method m’ on an object referenced by a variable with static class C".

We have defined direct interaction relationship informally in Section 2. Now, we give
a formal definition based on the predicates implements, isa, and invokes. Note, icw stands
for interaction-coupled-with.

The predicate icw(C, m,C’,m") between object class C' and its method m and object
class € and its method m’ holds, if there exists a class ¢’ such that invokes(C,m, C”, m’)
holds, and implements(C’,m’) holds, and either
(i) isa™(C", C”) holds, or
(ii) isa"’(é’, C') holds and for all C’, such that isa"’(é’, C') and isa™(C’,C') hold, the

predicate implements(C’,m') does not hold.

An indirect interaction relationship between methods m and m’ of the classes C' and
C" holds, if m’ implemented at C’ may be invoked by some method m” which has been
invoked by method m, implemented at C'. We extend the predicate tcw in that respect.

The predicate icw(C,m,C’,; m’) holds if there exists a class C” such that icw(C,m,C",m")
and icw(C",m"”,C",;m’) hold.

To demonstrate the applicability and usefulness of the introduced predicates consider
the example in Figure 1. It depicts the inheritance relationships of the object classes A,
B, B, B", C, and C’ as well as their interaction relationships due to method invocations.
All coupling predicates which may be deduced from Figure 1 are summarized in Table 1.
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From — To Predicates & Derivations

implements(A, m_A)
implements(B,m_B)
implements(C,mC')
implements(B",m_B)
implements(C’',m C)
implements(C’',m_C")
A-B invokes(A,m_A, B,m_B)
B-C invokes(B,m_B,C,m_(C)
B — B isa(B', B)
B"—B isa(B", B)
B -’ invokes(B",m_B,C" m_C")
C'—-C isa(C’,C)
A—B invokes(A,m_A, B,m_B) Nimplements(B,m_B) A isa*(B, B) =
icw(A,m_A, B,m_B)
B-C invokes(B,m_B,C,m_C) Nimplements(C,m_C) A isa*(C,C) =
icw(B,m-B,C,mL)
B -’ invokes(B", m_B,C’",m_C") N implements(C',m_C") N isa*(C', ') =
icw(B",m_B,C",m_C")
A-B no coupling
A—-B" invokes(A,m_A, B,m_B) N\ isa*(B", B) N implements(B",m_B) =
icw(A,m_A, B", m_B)
B-C invokes(B,m_B,C,m_C) A isa*(C',C) A implements(C',m_C) =
icw(B,m_-B,C',m_C)
B —-C no coupling
B -’ no coupling
B"-C no coupling
A-C icw(A,m_A, B,m_B) Nicw(B,m_-B,C,m_C) = icw(A,m_A,C,mL)
A= L. icw(A,m-A, B", m_B) Nicw(B",m_B,C',m () =
icw(A,m_A,C",m_C")
2. tew(A,m_A, B,m_B) Nicw(B,m_B,C'" m.(C) =
icw(A,m_A,C",m_C)

Table 1: Coupling predicates

We do not discuss each entry in Table 1 but restrict our attention to the most in-
teresting one, the derived coupling between A and C’. It reveals that A is interaction
coupled with €’ via method m_A following different invocation paths and thus invoking
different methods on C’. On one hand, A is interaction coupled with C’ via B and B”.
This case occurs when m_A invokes m_B on a member object of B”. As a consequence,
the implementation of m_B at class B” gets executed which invokes the method m_C’ of
class C' in turn. On the other hand, A is interaction coupled with C’ via B and C. That
case occurs when m_A invokes m_B on an instance of B which in turn invokes m_C' on
a member object of C’. Since m_C' is redefined at C’ the implementation of m_C' given
at class €' gets executed. The lessons learned from this example are twofold. Firstly,
the transitive closure of interaction coupling and inheritance coupling together leads to a
complex graph where it is not obvious at first sight which object classes are interaction
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coupled with each other. Secondly, due to overriding and polymorphic variables it may
occur that there exist several different invocation paths between two methods. Thus the
same two objects of two classes may exhibit different run-time behavior at different times
although initially the same method is invoked.

Summarizing, it is very important to conduct a global analysis of the classes of an
object-oriented system in terms of coupling properties whenever possible since it may
reveal hidden couplings which may cause problems when maintaining or extending the
system at hand.

4 Cohesion

Cohesion has been defined in the realm of procedure-oriented systems [33] as “the degree
of connectivity among the elements of a single module”. Cohesion has been recognized
as one of the most important software quality criteria. Modules with strong cohesion, in
particular with functional cohesion, are easier to maintain, and furthermore, they greatly
improve the possibility for reuse. A module has strong cohesion if it represents exactly one
task of the problem domain, and all its elements contribute to this single task. Elements
of a module are statements, subfunctions, and possibly other modules. We recall that
the object-oriented counterparts of a module are methods and classes. The elements of a
method are statements, local variables, and also instance variables since they are accessed
either directly or via access functions in the methods. Next to methods also object classes
have to be analyzed. The elements of an object class are methods and instance variables.
Thus we have to distinguish the cohesion of a method from the cohesion of an object
class. For the latter, we further distinguish the cohesiveness between elements directly
defined within the same class from the cohesiveness between inherited and directly defined
elements. Thus the following kinds of cohesion may be defined for object-oriented systems:

e method cohesion
e class cohesion

e inheritance cohesion

In the sequel we study each of the cohesion relationships in turn.

4.1 Method Cohesion

What has been stated in the realm of coupling also holds true for cohesion. Since methods
equal modules to a very high degree - both bracket pieces of code implementing some
functionality - we adopt the various degrees of classical cohesion [53, 59] to describe
method cohesion. In contrast to coupling we do not even have to change the various
notions of classical cohesion considerably. In the following, the seven degrees of classical
cohesion adapted for method cohesion are summarized from worst to best. For a detailed
discussion the interested reader is referred to the original paper [53].
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1. colncidental

The elements of a method have nothing in common besides being within the same
method.

2. logical

The elements with similar functionality, such as input/output handling and error
handling, are collected in one method.

3. temporal

The elements of a method have logical cohesion and are performed at the same time.

4. procedural

The elements of a method are connected by some control flow.

5. communicational

The elements of a method are connected by some control flow and operate on the
same set of data.

6. sequential

The elements of a method have communicational cohesion and are connected by a
sequential control flow.

7. functional

The elements of a method have sequential cohesion, and all elements contribute
to a single task of the problem domain. Functional cohesion is the best form of
method cohesion since it fully supports the principle of locality and thus minimizes
maintenance efforts.

For the discussion of class cohesion and inheritance cohesion we assume that all me-
thods have functional cohesion. The reason is, that in order to determine class/inheritance
cohesion we have to investigate the relationship between methods and instance variables.
Low cohesive methods which access most of the instance variables could fake a high degree
of class/inheritance cohesion.

4.2 Class Cohesion

Class cohesion describes the binding of the elements defined within the same object class,
not considering inherited instance variables and inherited methods. Since ignoring inheri-
tance an object class resembles an abstract data type, and since the cohesion of abstract
data types has been analyzed in detail by Embley and Woodfield in [14] we build our
classification of various degrees of class cohesion on that of [14] and redefine their defi-
nitions according to the idiosyncracy of object-oriented systems. Abstract data types in
procedure-oriented systems provide functionality to other abstract data types or to mo-
dules which are not abstract data types. In contrast, code in object-oriented systems is
in general a method bound to a class. Thus for procedure-oriented systems with abstract
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data types we have to argue which functionality we factor out to abstract data types
whereas in object-oriented systems we have to consider which methods are assigned to
which classes. A further crucial difference between abstract data types in the notion of
Embley and Woodfield and classes is implied by the concept of object identity. Whereas
a single abstract data type can export different domains an object class describes exactly
one set of objects where each object is uniquely identified by some system-defined object
identifier. Depending on the cohesiveness of a class its objects represent a single, seman-
tic meaningful data abstraction or several, more or less related data abstractions. In the
following we discuss the various degrees of class cohesion from worst, i.e., lowest, to best,
i.e., highest.

1. separable

The cohesion of a class is rated separable if its objects represent multiple unrelated
data abstractions combined in one object. This is often the case if the instance
variables and methods of a class can be partitioned into two or more sets such that
no method of one set uses instance variables or invokes methods of a different set.
In particular, the cohesion of an object class is rated separable if there is a method
which does neither access any instance variable nor invokes any method of the class,
or there is an instance variable which is not referenced by any of the class’ methods.
A class with separable cohesion should be split into several classes each representing
a single data abstraction, i.e., a single semantic concept.

Example: Consider the object class EMPLOYEE as defined above with the following
extension:

class EMPLOYEE {

int computeCompanyRevenue (SET(PROJECT*)* p);

};

The method computeCompanyRevenue takes all projects of a company as input
parameter and computes the accumulated revenue of that company. It neither
accesses any instance variable of EMPLOYEE nor does it invoke any other me-
thod of EMPLOYEE. Thus the cohesion of EMPLOYEE is of separable strength.
To improve its cohesion the method computeCompanyRevenue should be factored
out into a different object class, e.g., into class COMPANY. O

Note: Using syntactical criteria for partitioning an object class into disjunctive
sets of instance variables and methods to detect separable cohesion is a useful aid
but not applicable in some cases. For example, if the definition of an object class
consists solely of n instance variables and their access methods the object class
might syntactically be partitioned into n disjunctive subsets although it represents
a single semantic concept. Contrarily, if a method print is defined that prints the
values of all instance variables, pure syntactical analysis will classify the cohesion
of the class as not separable, although it might combine one or more unrelated data
abstractions.
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2. multifaceted

The cohesion of a class is rated multifaceted if its objects represent multiple related
data abstractions, accessed at least by one method. Separable cohesion can often be
detected by a syntactical analysis of the class definition. For multifaceted cohesion,
however, we must always look at the semantics of a class and its elements. Similar
to separable cohesive classes a multifaceted class covers different semantic concepts.
Yet, at least one method references instance variables or invokes methods of the
different semantic concepts, such that the cohesion of the corresponding class cannot
be rated separable. A semantic analysis is necessary for determining multifaceted
cohesion. Well-known data modeling concepts like well-formed entity-relationship
modeling [35], and data normalization [1, 12, 20] may be used for that purpose. To
be able to apply data normalization theory we adapt the definition of multifaceted
cohesion as follows. The cohesion of a class is rated multifaceted if the set of instance
variables of the class interpreted as relation schema is not in second normal form. To
put it in other words, the instance variables describe two ore more semantic concepts.
Thus, they are only dependent on part of the user-defined key. However, they are not
separable since a method defined on several instance variables exists. A multifaceted
class should either be split into several classes each of which representing exactly
one semantic concept with the set of instance variables being at least in second
normal form, or some instance variable(s) should be moved to a class referenced by
another instance variable. The method which leads to multifaceted cohesion should
be assigned to and possibly reimplemented in one of the newly created classes. It
depends on the problem domain to which class the method should be assigned.

Example: Consider object class REORDER:

class REORDER {
ITEM* reorderedltem;
COMPANY* reorderedFrom:;
int discount;
int quantity;

public:
bool expectedRevenue ();

};

The method expectedRevenue computes the revenue expected by determining
the difference between the price of an item and the discount given by the
company and by multiplying this difference with the quantity of the reordered
item.

If we interpret the set of instance variables as attributes of a relation schema
attributes recordedltem and recorderedFrom form the key of this relation schema.
Assume, the discount given depends only on the company, i.e., it is the same
for all items. Thus, the second normal form is violated. This definition of
REORDER has multifaceted cohesion. To improve its cohesion the instance
variable discount should be moved to class COMPANY:
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class COMPANY {
STRING* name;

real discount;

public:
real discount ();

3. non-delegated

The cohesion of a class is rated non-delegated if it is neither separable nor multifa-
ceted and if one method uses instance variables which describe only a component of
the respective class. Hence, we may again use data normalization theory to detect
non-delegated cohesion like we did for the analysis of multifaceted cohesion. For
this purpose, we also adapt the definition of non-delegated cohesion as follows. The
cohesion of an object class is rated non-delegated if the set of instance variables
interpreted as relation schema is not in third normal form. To put it in other words,
there exist instance variables which do not describe the whole data abstraction re-
presented by the class but only a component of it. To overcome non-delegated
cohesion the “non delegated” methods and instance variables should be delegated
to the component classes on which they are actually defined.

Example: Consider again the object class EMPLOYEE:

class EMPLOYEE {
STRING* name;
DATE* birthDate;
PROJECT* involvedInProject;
EMPLOYEE* managerOfProject;

public:
float computeSalary ();
bool managerlncomeHigherThanAveragelnProject ();

};

If we interpret the set of instance variables as attributes of a relation schema the
attribute name is the key of this relation schema. The attributes birthDate and
involvedInProject depend directly on the attribute name. However, the attribute
managerOfProject depends directly on the project referenced by involvedInProject
and transitively on name, thus the third normal form is violated. This defi-
nition of EMPLOYEE has non-delegated cohesion. To improve its cohesion the
instance variable managerOfProject and the method managerlncomeHigher ThanA-
veragelnProject should be delegated to the object class PROJECT:

class PROJECT {
EMPLOYEE* managerOfProject;
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SET(EMPLOYEE*)* membersOfProject;
DATE* startDate;
DATE* expectedEndDate;

public:
bool managerlncomeHigherThanAveragelnProject ();

SET(EMPLOYEE*)* getProjectMembers ();

a

Unfortunately, it is not always as obvious as in the example above where to place
methods. The placement of methods also raises several questions concerning the
visibility and the possible invocation of methods. If a method is delegated to a
component class because it mainly uses instance variables of that component class we
have to consider if and how this method is visible to clients of the inspected class, i.e.,
the class under consideration. One way to organize the invocation of the delegated
method is that clients of the inspected class receive a handle to the component
object, thus, they are able to directly invoke the method on the component object.
This solution might not always be desirable since it means that the inspected class
exhibits parts of its implementation, i.e., its components. Furthermore, this solution
may increase the number of classes the clients of the inspected class have to interact
with. Thus the component coupling between a client class and the component class
may be made worse.

Another possibility to organize the invocation of the components’ methods is to hide
the component structure completely from the client classes and to let them access
the methods of the component classes through so called propagation methods of
the inspected class. This solution is recommended by the Law of Demeter from
Lieberherr et al. [30, 31, 32, 33]. The law states that a method m of some class
C' may only invoke methods of such classes which are used as domains of instance
variables of (', or as domains of input parameters of m. Objects which are newly
created within m may also be the receivers of messages. Essentially, the law prohi-
bits method invocation on objects which have been returned by some other method.
One goal of the Law of Demeter is to decrease the coupling between different object
classes by restricting the object classes with which a specific class may commu-
nicate. However, the decrease of component coupling is traded for an increase of
interaction coupling between the client classes and the inspected class and between
the inspected class and the component class, respectively. For each method of the
component class which should be visible to the client class a propagation method
has to be implemented at the inspected class. The client class calls the propaga-
tion method, which calls the corresponding method in the component class in turn.
Besides the increase of interaction coupling, propagation methods also introduce
tramp data, 1.e., data which is passed from the client class via the inspected class
to the component class without being used in the inspected class at all. Tramp
data increases interaction coupling between the client class and the inspected class
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since a change of the definition of this data implies a change of the inspected class
although the data is not used.

At first sight there exists a contradiction between the Law of Demeter and the
goal to avoid non-delegated cohesion. Whereas the former introduces propagation
methods, i.e., non-delegated methods, to reduce component coupling, the latter
factors out non-delegated methods to component classes to increase class cohesion
and — as side-effect — to reduce interaction coupling. A solution to overcome this
dilemma is to consider the situation from a semantic point of view. If the component
structure describes a relationship between conceptually different objects, as revealed
by semantic data modeling, it is favorable to reveal the component hierarchy in order
to avoid propagation methods with tramp data. But, if the component structure
is mainly an implementation detail, the solution with propagation methods is more
appropriate.

4. concealed

The cohesion of a class is rated concealed if it neither has separable, nor multifaceted,
nor non-delegated cohesion, but there exists some useful data abstraction concealed
in the data abstraction represented by the class. In modules, concealed cohesion
resembles a piece of inline code which can be factored out to a subroutine or function.
In analogy, a class with concealed cohesion includes some instances variables and
referencing methods which may be regarded as a class of its own. Factoring out of
such parts has two advantages. Firstly, the structure of the inspected class becomes
more intuitive and more concise, thus increasing the class’ cohesion. Secondly, it
permits the new class being reused as component in other classes as well.

Factoring out such a concealed class implies that the instance variables factored out
are replaced by one instance variable referencing an object of the new class. All
methods of the inspected class referencing only factored out instance variables are
factored out, too. For some methods, one has to decide whether to place them in
the new class or to leave them in the inspected class according to the discussion
above about non-delegated cohesion.

Example: Consider again the object class EMPLOYEE with the instance variables
name, jobProfile, dayOfBirth, monthOfBirth, and yearOfBirth, and dayOfHire, mon-
thOfHire and yearOfHire. The instance variables describing various dates may
be factored out to a new class DATE with the instance variables day, month,
and year. The respective instance variables of the class EMPLOYEE are then
replaced by two instance variables birthDate and hireDate. a

Candidates for new classes are on one hand instance variables with complex domains,
and on the other hand sets of instance variables which are often used together in
methods but rarely used together with other instance variables. Some kind of cluster
analysis may exhibit candidates. When creating a new class we have to keep in mind
that the class should have the best cohesion characteristic possible.

5. model
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Model cohesion is the highest degree in our classification. The cohesion of a class
is rated model if the class represents a single, semantically meaningful concept
without containing methods which should be delegated to other classes and without
containing concealed classes.

It is interesting to note that a semantically similar notion, informational strength,
has been already defined by Myers [44] in the realm of module-oriented systems.
There, a module is interpreted as implementation of an abstract data type. Taking
the classical function-oriented notion of cohesion a bit further Myers defines a mo-
dule to have informational strength if all its functions have functional cohesion and
they work on the same set of data.

4.3 Inheritance Cohesion

Whereas class cohesion only inspects the binding of the newly defined elements within a
class, inheritance cohesion also takes the inheritance hierarchy into account. It describes
the binding of the newly defined elements together with the inherited elements. Since the
latter are transitively inherited from direct and indirect superclasses inheritance cohesion
evaluates not only the cohesion of an immediate class-superclass relationship but inspects
the whole inheritance hierarchy. Inheritance cohesion is strong if this hierarchy is a gene-
ralization hierarchy in the sense of conceptual modeling, and it is weak if the inheritance
hierarchy is merely used for code sharing among otherwise unrelated classes.

Since the aim for each newly defined subclass is to exhibit a single semantic concept
we may use the same classification for inheritance cohesion as it was defined for class
cohesion.

5 Outlook

In this paper we introduced a comprehensive taxonomy of coupling and cohesion charac-
teristics of object-oriented systems. In contrast to the classical notion of coupling and
cohesion being based on a single concept, the module, there are two subjects of inter-
est, methods and object classes, in the realm of object-oriented systems. In addition,
the important concept of inheritance considerably influencing the structure of an object-
oriented system has to be taken into account. This leads to three interrelated dimensions
of coupling and cohesion, respectively: interaction coupling, component coupling, and in-
heritance coupling, as well as method cohesion, class cohesion, and inheritance cohesion.

The goal of the paper has been to define qualitative criteria for coupling and cohesion
to improve the quality of object-oriented systems. The paper deliberately did not aim
at metrics and quantitative criteria. The reason is not at all that these aspects are not
important. However, it is our firm belief that at the current state of art of object-oriented
quality assessment it is very important to uncover the various aspects of quality criteria.
Once these criteria are commonly accepted, metrics and automatic quality assessors may
be developed. Furthermore, the paper deals only with coupling and cohesion properties.
Software quality, however, does not depend exclusively on these two properties but on
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various other factors like method fan-in/fan-out, and reuse via inheritance and polymor-
phism, to mention just a few. To reach a comprehensive assessment of software quality all
factors have to be considered. In case of conflicting goals individual, problem dependent
decisions have to be taken. Finally, we did not take any performance considerations into
account when defining the various degrees of coupling and cohesion. The reason is that
coupling and cohesion are criteria for evaluating object-oriented designs in the first place.
The designs may be tuned during implementation for performance reasons.

Further research expands mainly into three areas. Firstly, a comprehensive analysis of
existing object-oriented design guidelines concerning their influence on coupling and cohe-
sion quality will help in unifying and consolidating the various approaches to good designs.
Secondly, as soon as a common understanding of coupling and cohesion characteristics
is reached tools for (partially) automatic assessment of coupling and cohesion properties
will be developed. There is some confidence that these tools not only aid in designing
good object-oriented software but are a useful means when searching class libraries and
identifying related object classes [36]. Lastly, the long-term goal comprises the investiga-
tion of other quality criteria of object-oriented systems and their interdependencies with
the coupling and cohesion characteristics defined in this paper.
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