
 

 

 

 

 

 

 

 

Symptoms of Poor Software Design? 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

1. Rigid. 

2. Fragile. 

3. Immobility. 

4. Viscosity. 

5. Duplication of code. 

6. Needless Complexity. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

What is Rigid Software? 

• Rigid software is difficult to change, even in simple 
ways. 

• Software is rigid if a single change causes a series of 
subsequent changes in other areas of the application. 

• It makes it difficult for us to give a reasonable estimate 
of the work required 

• If you find yourself saying “It was more complicated 
than I thought”, chances are you are dealing with rigid 
software. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is Fragile Software? 

• Fragile software breaks in many places when a single 
change is made. 



• A single change introduces unexpected results in other 
areas of the application. 

• Fragile software usually needs to be redesigned, but 
usually nobody wants to do it or there is no time for 
redesign. 

• If it is not redesigned, they usually get worse the more 
you fix them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Immobile Software? 

• When there are parts of a design that could be useful in 
other systems, but there is too much risk in separating 
those parts from the original system. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Viscosity? 

• A Viscous project is one in which the design of software 
is difficult to preserve. 

• Viscosity comes in two forms: viscosity of the software 
and viscosity of the environment. 

• Some software changes preserve the current design, 
others are hacks. 

• When design preserving methods are more difficult to 
reuse than hacks, the viscosity of the software is high. 

• We to design software such that changes that preserve 
the design are easy to make. 

• Viscosity of the environment is the development 
environment is slow and inefficient. 

• Examples are long compile times and inefficient source 
control systems. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Duplication of Code? 

• Cut and paste 

• Usually results in the same code happening over and 
over again in slightly different forms. 

• Bugs found in redundant code, have to be fixed in 
every repetition. 

• This can be very frustrating, because each repetition 
can be slightly different and the fix is not always the 
same. 

• Code duplication can be fixed by introducing an 
abstraction, which will make the code easier to 
understand and maintain. 

 

 

 

 

 

 

 

 

 



 

 

 

Needless Complexity? 

• This is when the code contains elements that are not 
currently useful. 

• Usually happens when we try to put in facilities to 
anticipate some potential changes. 

• Some of the changes may pay off, many may not. 

• This results in software that carries the weight of many 
unused sections, which can make it difficult to 
understand. 

 

 

 

 

 

 

 

 



Some Object Oriented Principles that can help prevent 
symptoms of bad design. 

• Single Responsibility Principle. 

• Open/Close Principle. 

• The Dependency Inversion Principle. 

• Interface Segregation Principle. 

 

These principles are not a product of a single mind but 
represent the integration of a large number of software 
developers and researchers. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Single Responsibility Principle? 

• There should never be more than one reason for a class 
to change. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Open/Close Principle? 

• Software entities should be open for extension but 
closed for modification. 

• Open for extension – We can make the application 
respond to changes in requirements or new additions. 

• Closed for modification – Adding behavior does not 
result in changes in original code. 

 

 

 

 

 

 

 

 


