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Abstract

It is common for computing systems to replicate content
among groups of nodes. The shared need is for memory-
to-memory data transfers from a sender to a set of re-
ceivers: reliable multicast. Yet although this pattern was
recognized long ago, we still lack a simple, fast, solu-
tion to the problem. Our new RDMC protocol runs on
RDMA unicast, and uses parallel block-dissemination to
achieve high levels of concurrency. Data moves not just
on network links from source to receivers but also in-
ner links between the receivers, minimizing delay and
increasing throughput. Although very basic, RDMC still
has useful guarantees: data is kept in the sender’s or-
der and is not lost, duplicated or corrupted. RDMC is
extremely fast relative to existing options, and in many
cases even outperforms specialized solutions such as
MPI over Infiniband, a popular HPC library.

1 Introduction

Our work targets datacenter and compute-cluster appli-
cations that spread data among participants. The pat-
tern is common: MapReduce replicates data as input
to parallel tasks. Parallelized machine-learning systems
iteratively exchange large files of model parameters as
they converge. Gaming and immersive virtual reality
systems continuously exchange updates to the state, fi-
nancial systems distribute market data to client comput-
ing platforms, intelligent vision systems capture large
amounts of data from sensors (videos, lidar, etc) and then
distribute it to compute nodes which in turn may need to
distribute their outputs to the robotic systems involved in
navigation. VOIP systems generate video streams that
must be continuously replicated on video server nodes.

Today, such systems are built over a diversity of popu-
lar technologies that include distributed filesystems, key-
value stores, event notification and software atomic mul-
ticast, but existing realizations of these technologies lack

an efficient low-level data replication capability, despite
the pervasiveness of the data replication pattern. Repli-
cation also facilitates fault-tolerance and data durability,
and permits cloud-hosted systems to scale up and handle
huge numbers of clients. The common denominator is a
need to reliably move what may be huge amounts of data,
typically memory mapped, from one source to a poten-
tially large number of destinations. We believe that with
a more powerful multicast solution, such systems would
be simplified. They wouldn’t all need to reimplement the
same functionality, and would benefit because a standard
module can be heavily optimized.

Our new RDMA Multicast (RDMC), is a user-space
library built along the lines of other contemporary user-
level multicast libraries, such as Orchestra [16], which
includes a general-purpose multicast subsystem called
Cornet, or the MPI HPC package. Both leverage RDMA:
Cornet runs on TCP, but TCP itself increasingly ties into
RDMA (for example with Intel’s iWarp). The MVPA-
PICH version of MPI is tightly optimized for Infiniband.
But we wanted to create a more general, free-standing
module, suitable for any setting offering RDMA unicast.

RDMC is accessed through a simple library API that
can be used directly, dropped into the kernel, or inte-
grated with higher-level replication solutions. Used di-
rectly, RDMC is a multicast, but it can also be combined
with existing memory-mapped file system layers to im-
plement a replicated sharable memory segment with file-
system naming, sharing and protection functionality. To-
day RDMC runs node-to-node, but with further work it
should be possible to integrate directly with video cap-
ture devices, NetFPGA cards, or NVRAM file systems.

This paper focuses on the memory-to-memory case
and shows that for a transfer from one source to a small
number of replicas RDMC achieves performance close
to line rate speeds. We have experimented with as many
as 512 receivers and even at this scale, multicasts still run
at a substantial fraction of the optical unicast line rate.

The paper is organized as follows. We begin in Sec-

1



tion 2 with an analysis of the options, leading to a precise
statement of the goals for the RDMC library and clar-
ity concerning tradeoffs that arise. Section 3 describes
and explains the architecture of the RDMC protocol, and
Section 4 presents our experimental work. A more thor-
ough discussion of prior work appears in Section 5.

2 Problem Statement

Reliable multicast is an old problem, widely studied in
the 1990’s when server replication was a major need, but
has been pushed off to the side in most modern data cen-
ters. We see several reasons for this. First, many re-
liable multicast solutions support sophisticated models,
such as state machine replication (Paxos) or virtual syn-
chrony. Not all systems need these models, and they can
be costly. For example, RDMC is so much faster than
our own Isis2 virtual synchrony library1 that we don’t
include the side-by-side comparison here.

A second issue is that reliable multicast has generally
been viewed as an end-to-end functionality, best imple-
mented in the application layer. For example, although
every modern operating system supports IP multicast, the
protocol lacks flow control, loss detection, or retransmis-
sion. The majority of today’s systems implement mul-
ticast as a series of unicast transfers. This is how Cor-
net works: Cornet is implemented over TCP, but because
TCP is often mapped to RDMA, is capable of reaching
very high data transfer rates. On the other hand, Cornet
is intended for movement of memory-mapped files in the
Spark system, a version of Hadoop, and it would not be
trivial to adapt it for uses such as publish-subscribe mes-
saging or streaming video and real-time television broad-
casts. Our work seeks to be general, useful in any dis-
tributed system that stores and computes with large data
sets and exhibits a replication pattern, moving data from
a memory-mapped region in a source node to memory-
mapped targets either on a one-time basis or repeatedly.

The need on which we focus is increasingly recog-
nized as a bottleneck. For example, Chowdhury et al.
found that data replication can be performance limiting
in Hadoop with even a few hundred megabytes of repli-
cated data [16]. They also argue that replicated data must
become available with minimal latency and as close to
simultaneously as possible: if some compute tasks start
while others must wait, scheduling of the entire parallel
system can become unbalanced.

These considerations lead us to argue that it is time to
revisit reliable multicast, but not in the elaborate forms
seen in higher level packages. Rather, our goal here is to
offer as minimal a mechanism as possible.

1isis2.codeplex.com

2.1 Issues with the IPMC Abstraction

It is instructive to consider the failings of IP multicast
(IPMC). IPMC is broadly supported yet rarely used in
today’s operating systems, primarily because IPMC has
a number of design flaws. For RDMC to become widely
used, it will be important that we not repeat the same
mistakes.

IPMC was originally intended to provide a cheap and
scalable way to replicate data, discover services, and to
promote the style of anonymous communication we now
associate with publish-subscribe. It runs in the IP stack,
fragmenting outgoing data into 1500 byte IPv4 packets,
and offers best-effort reliability [17]. On IPv4, a message
size limit of 64KB is hard-wired into the protocol.

The core problem is that IPMC is unreliable: packets
can be dropped on the sender (even after the send has
reported success), in the network, or on any subset of
the receivers. For example, we tested IPMC on the same
high-speed cluster used to evaluate RDMC in Section 4,
sending messages of size 4 to 64KB in groups of various
sizes, and counting even a single loss to a single receiver
as an unreliable outcome. With a standard 1G Ethernet,
IPMC bandwidth could easily approach .96Gb/s, but loss
rates varied from .75% for groups of 2-4 members with
1KB messages to as much as 1.8% for 16KB payloads
with groups of more than 8 receivers. With a 20Gb/s
NIC and 16KB packets, bandwidth rose to 4.3 Gb/s but
reliability dropped to 77% for 16 receivers, and with 64
receivers, to to 68%. Later we will see that RDMC can
reach 25Gb/s with 2 receivers and 10Gb/s with 64, with
perfect reliability.

Why is IPMC so ineffective? As noted, IPMC runs in
the UDP protocol stack in the kernel, copying data be-
tween user space and kernel memory. IPMC packets will
be dropped if a fragment fails to arrive in time, just as
for UDP, or if the receiver socket overflows. At mod-
ern network data rates, no amount of kernel buffering is
adequate to soak up a burst of IPMC or UDP packets ar-
riving at the full speed of the optical layer. Further, net-
work routers and even the kernel itself drop IP packets
as a way to signal overload. This is effective when using
TCP, which senses packet drop and adjusts its window
sizes accordingly, but IPMC has no end-to-end logic and
no windowing or flow control of any kind.

IPMC can also cause serious problems in the network,
overloading a datacenter’s switches, routers and NICs
even in the absence of heavy traffic, as a side-effect of the
way such devices are implemented. The issue is that the
IPMC address space allows 224 class-D addresses (and
more with IPv6). These devices make routing decisions
at optical line rates, and cannot afford a table lookup.
Instead, they use a Bloom filter: they maintain a set of
bitmaps for each link, and use a scheme in which the
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IPMC address is hashed to a set of bits. When a new
member joins an IPMC group the corresponding bits are
set for links routing to it, and when a packet is sent,
each device can hash the IPMC target address, test the
bits, and make a forwarding decision in just a few clock-
cycles. But these Bloom filters have limited size. Thus if
enough IPMC addresses are in use, with recipients scat-
tered around the network, the Bloom filters become satu-
rated. The network will then forward every IPMC packet
on every link, and cause it to be received by every ma-
chine, leading to a multicast storm that overloads end-
hosts and triggers widespread loss [15, 28]. Not surpris-
ingly, IPMC is disabled in many datacenters (for exam-
ple, Amazon AWS tunnels IPMC over a TCP-based re-
flection service).

In what follows, we argue that our RDMC design deci-
sions offer a constructive response to every one of these
IPMC limitations. IPMC mirrored the properties of a
failure-prone generation of hardware and software, but
as that hardware is phased out, it is time to consider dep-
recating IPMC in favor of a solution like RDMC.

2.2 Background on RDMA

Although we have assumed that most readers are familiar
with the basics of RDMA, it may be helpful to offer some
details about the assumptions made by RDMC, since the
RDMA hardware space has recently become very active,
particularly with the evolution of RDMA from its origins
in the Infiniband environment to the newer positioning of
RDMA over optical Ethernet (i.e. RoCE).

All RDMA technologies are reliable, in the sense that
the optical layer should very rarely lose or corrupt data,
and any such problem would be detected and trigger an
exception. In practice, an RDMA transfer will be reli-
able unless the hardware fails, or the sender or receiver
crashes. Taken jointly, one has a weak end-to-end guar-
antee: if there are no crashes or hardware faults, then an
RDMA transfer will result in the data reaching the re-
ceiver intact. Conversely, if some component does fail,
then until a reset occurs, that RDMA connection cannot
be used. Thus some healthy endpoint will eventually re-
ceive an exception or notice a timeout. Notice that failure
sensing is somewhat weak; this is because a NIC and its
receive queue could remain active for a while even if the
end-host system has crashed.

A modern RDMA network moves data directly at opti-
cal line rates, which is quickly exceeding the speed that a
CPU core can touch memory (RDMA runs at 20Gb/s to-
day but will soon ramp to 100, 200, 400 and then 1Tb/s;
in our testbed, memcpy runs at just 30Gb/s). The most
basic and universal capability is for an RDMA-capable
NIC to simply transfer data directly to and from host
memory using DMA. To avoid the need for interrupts,

the NIC typically monitors a set of outgoing transfer
queues, onto which the host places send requests, each
giving an address (or a scatter-gather address list) and a
transfer size, then sets up a DMA send and transfers the
whole object. On receipt, the NIC matches the transfer
to one of the receive queues and drops the data directly
where it is desired. The NIC then enqueues a comple-
tion event which the end-host picks up either in a polling
loop, or via an interrupt.

The potential scope of RDMA is expanding with In-
tel’s promotion of iWarp, a technology that drops the
TCP stack directly into hardware. The intent is that
one or both endpoints can use iWarp; if both do so, the
TCP connection is seamlessly transformed to use RDMA
transfers. This, though, poses non-trivial technical chal-
lenges: TCP is byte-oriented whereas end-to-end RDMA
is feasible only if the source and receiver use identical
buffer sizes.

The pace of development in RDMA networks is also
evident in the growing range of APIs, including the origi-
nal Verbs library (providing both bulk DMA copying and
direct remote byte-level data manipulation), several map-
pings of TCP to the RDMA layer, UDP and UDP multi-
cast implemented over RDMA, and the open-source Data
Plane Developer’s Kit (DPDK). To encourage a match of
sender and receiver buffer sizes, several packages run at
the socket layer and more or less mimic UDP, but with
much stronger reliability. For our work, we use just
one RDMA feature: reliable zero-copy unicast transfers,
which are available across a full spectrum of hardware.

RDMA solutions generally lose substantial perfor-
mance unless a thread is dedicated to poll (via busy-wait)
the send and receive queues. The problem is that al-
though most devices offer interrupts on I/O completion
events, those interrupts would be fielded by the kernel,
and by the time a user-level thread could be awakened it
is likely that tens of thousands of instructions will have
executed, causing microseconds of delay. At the speeds
of an RDMA transfer, this can be a substantial issue, par-
ticularly if the user-level thread will be involved in relay-
ing data, as occurs in our protocol.

A further issue relates to group membership. Some de-
vices need a preestablished “connection” between each
sender and receiver pair before communication can be
performed, and resetting such connections after a failure
is tricky. Designing a protocol that can robustly tolerate
failures of some members while others continue to oper-
ate is problematic. Our solution to this involves treating
each group configuration as a distinct session, with asso-
ciated connections only while the membership remains
unchanged.

A final hardware issue relates to the way RDMA NICs
track the state of send and receive queues, but especially
the latter. For speed, an RDMA NIC will typically cache
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active queues; when an incoming transfer is initiated, this
permits the NIC to rapidly find the best matching queue,
determine whether a receive memory region has been
posted on it, and agree to accept the incoming transfer.
But NIC memory is of limited size, hence it is important
to bound the number of concurrent sessions, an issue that
emerged as a problem in the FaRM RDMA Key-Value
store [19].

2.3 Reliability

In light of our desire to offer a reliable multicast prim-
itive for RDMA, the question arises of what reliability
should mean for RDMC. Our overarching approach is
to view RDMC as a reliable but asynchronous channel:
normally, we can trust it to be reliable, but rarely, when
something does fail in a way that it can sense, an asyn-
chronous notification should occur either on one of the
receivers or in the sender. In adopting this model, we
basically mirror the reliability of RDMA unicast, but ex-
tended to the multicast case.

While these guarantees are strong, they are still much
weaker than those of atomic multicast closely integrated
with group membership, for example in the virtual syn-
chrony model [13]. The issue is that RDMC failures re-
sult in a complex situation, partly because the NIC might
not realize that a receiver node has actually crashed, and
partly because the RDMC protocol relays data, hence
the failure of a relaying process will disrupt receipt even
if the sender and some receivers remain healthy. Our
design opts for minimal overhead, leaving it to higher
level applications to strengthen the RDMC guarantees
if desired, but without creating a need for higher level
buffering of data, end-to-end acknowledgements, flow
control, retransmission logic, message stability detection
and garbage collection.

With this in mind, we still had several possibilities.
One option is to implement some form of asynchronous
reliability notification. The sender and receivers would
see two events. The first would simply be a notification
of successful completion of the send or receive action;
the second notification would report on success or fail-
ure of the transfer as a whole to the full set of partici-
pants. However, to carry this out, RDMC would need
some form of internal acknowledgement mechanism.

The second, less elaborate, would omit the second
notification, leaving the application to clean up in the
(very infrequent) case where a relaying node fails and
disrupts the transfer for downstream nodes. The normal
mode would just be a success. Abnormal cases would
be sensed by the end-point applications themselves: a
receiver might timeout because its upstream data source
failed; a sender or relaying node might timeout trying to
send to a receiver that never posts a receive buffer (the

void create_group(group_number , root ,

members , notifications_callback)

void destroy_group(group_number)

void send_message(group_number ,

data , size)

void post_receive_buffer(group_number ,

data , size)

Figure 1: RDMC library interface

timeout is under application control).
A third option would be to hard-wire RDMC to keep

trying until each multicast has reached all the receivers
“healthy enough” to accept the data, giving up only if
there is no copy of the message to resend. This is what
Isis2 does: if a multicast reaches any receiver, it will
reach every non-failed receiver. But this would delay
garbage collection of pending messages until some form
of end-to-end acknowledgement occurs. Even if such
an acknowledgement could be generated in 10ms, at the
data rates we anticipate hundreds of megabytes or giga-
bytes of data might need to be retained.

We opted for the second option: if a set of nodes par-
ticipates in a transfer and something goes wrong, the ap-
plication will sense the issue. This approach is remark-
ably inexpensive, yet adequate for the majority of higher
level purposes outlined above. Of course, end-to-end
logic would be needed when using RDMC in support of
a strong consistency model.

3 System Design

Our design of the RDMC system reflects the problem
space and basic design decisions outlined above. RDMC
provides a simple interface to applications that allows
them to hand-off memory directly to the network hard-
ware, bypassing any copying in the kernel, without need-
ing to worry about network-layer details such as re-
assembly of data blocks.

Figure 1 shows the interface that applications use to
interact with RDMC. Before any send or receive can
take place, the application must determine group mem-
bership using an out of band mechanism and then call
create_group locally on each node: our protocol re-
quires that every participant know the current member-
ship. Within a group, only one node (designated as the
“root”) is allowed to send data. However, the application
is free to create multiple groups with identical member-
ship but different senders. We do not provide a way to
change a group’s membership or root as this can easily
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Figure 2: Overall system design of RDMC.

be accomplished by destroying and then recreating the
group.

The create_group function does not require any
communication and thus is a very inexpensive operation.
All the sender needs to do is to record the group mem-
bership and initialize a few internal data structures. A
notification callback is registered; RDMC uses it when
reporting send or receive completion events and (infre-
quently) failures.

Sending a multicast is straightforward: a user-level
process simply calls send_message with the group
number and the memory segment it wishes to transfer,
and gets an upcall when the multicast is locally complete.
The only constraints are that before the first send, all
recipients must have completed group creation and any
previous multicasts to the group must have completed lo-
cally.

The transfer of messages is accomplished by a se-
ries of RDMA reliable unicasts between the user-level
memory at the sender and the recipients. Internally, the
RDMC library handles breaking the message into some
number of fixed sized blocks and relaying of data by in-
termediate recipients. When the multicast is locally com-
plete, an upcall from the RDMC library on each member
notifies them that data has arrived in their application’s
memory.

Given this high-level design, the most obvious and im-
portant question is what algorithm to use for constructing
a multicast out of a series of point-to-point unicasts. The
naive solution of transmitting the entire message from
the sender to each recipient in turn does not scale well
because at any point only one node is using any of its
incoming or outgoing bandwidth. A significantly faster
technique would be to construct a binomial tree in which
once a node receives a message, it starts relaying it to
other recipients that do not have it. However this method
is also wasteful if implemented in such a way that a node
cannot begin relaying until it has the entire message: half
the nodes wouldn’t receive the message until the last step

and thus contribute no outgoing bandwidth at all.
To do better, we must divide the message into blocks

that can be sent independently. Ganesan and Seshadri
[20] analyze several different algorithms for coopera-
tively transmitting a multicast by using unicast transfers
that do exactly this. Although they find that random-
ized scatter-gather-like algorithms perform very well in
expectation, the overheads associated with negotiating
which blocks should be sent to whom turns out to be
prohibitive in the high-line-rate world of RDMA net-
works. However, under the assumption that each block
takes the same amount of time to transfer between any
two nodes (which is nearly true for RDMA), they were
able to prove that a deterministic binomial pipeline al-
gorithm is guaranteed to complete in the fewest possible
number of steps.

This scheme operates by dividing the memory seg-
ment to be broadcast into blocks and then sending blocks
along edges of a hypercube. At each step, every node
with a block sends to another node that does not have that
block. Since we are working with a hypercube, in its sim-
plest form the algorithm only works on group sizes that
are powers of 2. However, by assigning pairs of nodes to
some vertices of the hypercube (in a manner we describe
below), it can be used with any number of nodes.

The binomial pipeline proceeds in three stages, each
of which are further divided into steps. During every
step, all nodes with at least one block send across par-
allel edges of the hypercube.

At the start of the first stage the sender transfers one
block of the segment to a receiver. In the next step,
the sender transfers a different block to another receiver,
while the first receiver simultaneously sends its block on
to a third receiver. This pattern continues until all nodes
have a single block.

Now that all nodes have a block, the second stage can
be much more efficient. Previously we were wasting
most of the network capacity because at each step ev-
ery node was either a sender or a receiver but not both.
In this stage, the sender continues to sequentially send
blocks while all other nodes trade the highest numbered
blocks they have.

Once the sender runs out of blocks, the algorithm en-
ters the third stage. The sender repeatedly sends the last
block, while the rest of the nodes continue to trade blocks
in every step. Once the last block reaches every node, the
multicast will be complete. If the number of receivers is
a power of 2, every replica will be finalized simultane-
ously, which is beneficial in staged computations [16].

The progression of the binomial pipeline for a group
of 8 nodes is illustrated in Figure 3, and contrasted with
a more traditional binomial tree broadcast. It is worth
noting that if the binomial pipeline is run with only a
single block, it will produce a binomial tree.
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Figure 3: (Left) A standard binomial tree multicast, with the entire data object sent in each transfer. (Center) A
binomial pipeline multicast, with the data object broken into three blocks, showing the first three rounds of the protocol.
In this phase, the sender sends a different block in each round, and receivers forward the blocks they have to their
neighbors. (Right) The final two rounds of the binomial pipeline multicast, with the earlier sends drawn as dotted
lines. In this phase, the sender keeps sending the last block, while receivers exchange their highest-numbered block
with their neighbors.

When the group size is not a power of 2, we assign
a pair of recipient nodes to some of the vertices of the
hypercube so that the number of vertices is the nearest
smaller power of 2. Note that when the group size is one
less than a power of 2, all nodes except the sender are
paired. In each step, vertices representing a single node
proceed in the same way as if no nodes were paired. For
vertices that represent a pair of nodes, the node having
the highest numbered block sends in that step (if both
have the same highest block, then any one node sends).
The node not sending in that step receives the block sent
to the vertex (if both are not sending, then any one re-
ceives). If the node(s) not sending also has a block that
its partner does not have, it sends that to its partner. This
ensures that the nodes sharing a vertex have at most one
block difference with their partner at the end of every
step. We run an extra step at the end to allow these
nodes to exchange blocks that their partner does not have.
Thus, we achieve the optimal algorithm for any group
size, as shown by Ganesan and Seshadri. RDMC makes
no effort to synchronize the transfer-completion upcalls
simultaneously in this case, hence some occur one block-
transfer-time before others. However, this is still close to
simultaneous.

3.1 Evaluating Other Algorithms

RDMC can support a family of algorithms within a sin-
gle framework. As part of our work, we implemented
several other options, then compared them with the bi-
nomial pipeline for a variety of different message sizes.
Later we will discuss these experiments, but the bottom
line is that we found the binomial pipeline to indeed
dominate other choices. It turns out that direct compar-

isons can be deceptive. For example, in one of our ex-
periments, where we transferred 256 MB objects, chain
replication was competitive with the binomial pipeline,
but it turns out that for 64 MB multicasts (not included
here for reasons of space), this would not have been the
case: chain replication actually lags in groups with as
few as 16 nodes and by 256 nodes it is down to 40% of
our throughput. Chain replication is also the worst case
for delivery skew, and is very sensitive to slow links.
Nonetheless, if topology data were readily available, it
might make sense to use chain replication between the
racks of a fat-tree network, and the binomial pipeline
within racks. RDMC already uses a hybrid solution for
very small sends. As we will see later, the binomial
pipeline imposes about 50us of overhead, which is negli-
gible for large sends (where the optical line data transfer
time might be 10’s or even 100’s of milliseconds), but
excessive for very small ones. Accordingly, we imple-
mented a special-purpose solution (discussed below) op-
timized for very small transfers. It reduces overhead by
a factor of 50, but cannot be used for large objects.

3.2 Architecture Details

We implemented RDMC as a userspace library that runs
on top of PSM, a QLogic API that offers optimized ac-
cess to just the RDMA unicast operation and pushes less-
commonly used functionality of the standard Verbs API
(like native multicast) into software, though all the fea-
tures we use can be emulated efficiently on any RDMA
hardware supporting unicast and scatter-gather opera-
tions. PSM is nearly identical to the more broadly sup-
ported DPDK standard, hence our code would also run
on any NIC supporting DPDK, or on any NIC support-
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ing RDMA through the full verbs library. And although
RDMC runs at the user level, the module could certainly
be used within the kernel or hypervisor, dropped into the
controller of an NVM storage unit, or embedded directly
into the network hardware, all of which would drastically
reduce scheduling latency and decrease overhead.

The question now arises of how the sender should sig-
nal its intentions at the start of a large transfer, since any
single RDMC group can transport messages of various
sizes. Here, we took advantage of an RDMA feature
that uses 64-bit tags to filter sends. Every send and re-
ceive buffer has an associated tag, while receive buffers
also have a mask that control which bits of the tags are
compared. A given receive buffer is considered for an in-
coming transfer from a send buffer only if the non-zero
masked bits of both tags match. In our solution, we post
a range of buffers for different kinds of control messages,
using tags to ensure that the right one is chosen for each
message type. Since control messages are small and in-
frequent, the memory overhead required to keep these
buffers posted at all times is low. On a platform where
tags are not available, this mechanism could be imple-
mented by setting aside some receive queues and then
using scatter-gather operations to pass this same infor-
mation side by side with data.

Interaction between the library and the user process
takes place by way of function calls into the library
code and upcalls back to the user process. For exam-
ple, RDMC upcalls in the receiver communicate the size
of an incoming message, allowing the receiver to post a
suitable size of message buffer. This allows for efficient
and low latency communication between the two with-
out requiring that the receiver repeatedly poll the RDMC
library. Additional upcalls occur as each received multi-
cast is completed.

3.3 Initialization

Before an application can participate in RDMC trans-
fers, it must go through a setup process. During this
stage, RDMC exchanges connection information with all
other nodes that may participate and prepares any inter-
nal datastructures, and also posts receive buffers for all
possible control messages. Finally, we start a polling
thread that repeatedly checks the RDMA receive queue
for incoming messages, and the send queue for comple-
tion notifications. Although the hardware supports inter-
rupts, we don’t use them due to concerns about delay.
Instead, our polling thread runs rapidly while a trans-
fer is underway and for a short period after it ends (to
ensure fast response if an application streams data), but
then slows down (using a thread-level sleep) if nothing is
going on.

3.4 Send Protocol

The send protocol relies on the binomial pipeline al-
gorithm described previously, without any extra control
messages. It is worth mentioning, however, that it is ex-
tensible and can easily support any other deterministic
block dissemination algorithm. This is possible because
receivers anticipate the blocks they are about to receive
and only post a buffer for the next one they expect. And
because RDMA transfers are constrained to only occur
into pre-registered buffers, no message will be delivered
out of order. By doing so we sharply reduce the amount
of NIC resources used by any one multicast, addressing
the concern mentioned in Section 3, where we noted that
today’s NICs exhibit degraded performance if the num-
ber of concurrently active receive buffers exceeds NIC
caching capacity. RDMC is not at risk of overwhelming
the NIC by having too many concurrently active receive
queues: We only need a few per group, and do not antici-
pate having huge numbers of concurrently active groups.

Because the binomial pipeline is deterministic, each
node knows which blocks it will receive and in which
order in each active group. Furthermore, except in one
case we’ll address later, the first block a receiver gets
does not actually depend on how large the message is.
This means when a receiver joins a group, it is able to
immediately register a receive buffer for the first block
that it expects to receive.

Each block (including the first) includes a tag in which
we encode the total number of blocks in the message.
Thus, when the initial block of a message arrives it con-
tains all the information necessary to conduct the remain-
der of the transfer, allowing us to send variable sized
messages in the same group without any advanced coor-
dination and virtually no overhead. One pitfall we must
address is if the first block would be beyond the end of
the message. In that situation we “forge” the index of
the true first block to match what we expected and then
correct it on the receiver.

It would be natural to design the system so that before
sending data, some form of prepare to receive message
would be transmitted, giving receivers time to post re-
ceive memory. However, this simple pattern is actually
surprisingly slow because at RDMA data rates, it might
consume more time than is needed to send the message
itself. Yet we do want the application to allocate and
manage memory: memory allocated by the OS on behalf
of the application would need to be zeroed for reasons of
security. Accordingly, we recommend that the receiver
application post memory adequate for a first block as
soon as the group is set up; when the block is received
we do an upcall to notify the application of the incom-
ing transfer size, but can already start forwarding the re-
ceived block. Meanwhile, the receiver posts space ade-
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quate for the whole incoming transfer. Although the first
block of incoming message bytes won’t be contiguous
with the remainder of the memory segment, RDMC can
use mremap to efficiently relocate it there, grabbing the
first block that was posted as a new first block for the next
incoming transfer, and so forth. Our scheme does waste
space for small messages, but gains on performance.

Once a receiver has gotten its first block, it posts re-
ceive buffers for the remainder of the message, and then
adheres to the chosen algorithm to complete the remain-
der of the send. After the receiver is done receiving all
the blocks of a message and relaying them as necessary,
RDMC issues an upcall back to the user process to signal
completion.

Note that because our solution involves relaying by the
participants, delay would have a highly amplified perfor-
mance impact. In our current system, where CPU speeds
are more or less matched to the optical network speeds
and we can busy-wait for receive completions, this issue
is minimized. But as optical network bandwidths rise
by a factor of 500 over the next decade, our current ap-
proach will start to lag. Further, our test environment
allows us to run on dedicated nodes. If RDMC were
deployed in virtualized cloud settings, the much larger
scheduling delays inevitable in any coresidency situation
will distort performance. This leads us to believe that in
the long run, the RDMC protocol or a similar mechanism
will need to be implemented in hardware. For example,
the RDMA standard could be extended to allow an en-
queued receive request to have an associated next action.
The hardware itself could then potentially receive an in-
coming message but immediately reenqueue it for output
to a neighbor, notifying the application that the data is
available only after all the relaying is completed.

4 Experiments

4.1 Experimental Setup
We conducted all experiments on the Sierra cluster at
Lawrence Livermore National Laboratory. The cluster
consists of 1,944 nodes of which 1,856 are designated
as batch compute nodes. Each is equipped with two 6-
core Intel Xeon EP X5660 processors and 24GB mem-
ory. The clock speed is 2.8GHz; while system memory
bandwidth is 256Gb/s, memcpy achieves just 30Gb/s.
They are all connected by an Infiniband fabric which is
structured as a two-stage, federated, bidirectional, fat-
tree. The NICs are 4x QDR QLogic adapters each op-
erating at a 40 Gb/s line rate (20 Gb/s each direction).
The Sierra cluster runs TOSS 2.2 which is a modified
version of Red Hat Linux.

The cluster employs batch scheduling for jobs, and
this creates an issue that should be noted: nodes within

the cluster but not used by our experiment will be pro-
cessing real workloads and generating unrelated network
traffic. The reason this is a problem is that although we
do have exclusive access to the nodes we are assigned
(any cores not used by our tests will be idle), the clus-
ter uses a fat-tree network and hence does not have full
bisection bandwidth. As a result, our experiments com-
pete with other network traffic, particularly at large scale,
and we have no control over this, although we can esti-
mate the degree to which it is occurring. MPI, which
is popular at LLNL, has an advantage in this sense: the
LLNL scheduler is optimized for MPI jobs and selects
node layouts that work especially well for it, particular
at very large scale.

Our experiments depart in some ways from what
might be seen in a general purpose, multi-tenant, cloud
setting: Sierra is not a virtualized environment. On the
other hand, application-layer access to RDMA is not
yet common in commercial clouds. As this situation
changes, one option is to link our framework directly into
a hypervisor in an analogous fashion to the traditional
network stack; another would be to run at a virtualized
level and simply ride out the resulting scheduling delays.
We hope to carry out further experiments in such envi-
ronments to see what impact this would have.

With the exception of the concurrent sends experi-
ment, we always select the lowest numbered node in
our job to be the sender. The sender generates a ran-
dom block of data, and we measure the time from when
the send is submitted to the library and when all clients
get an upcall indicating that the multicast has completed.
Bandwidth is computed as the message size divided by
the total time spent, regardless of the number of re-
ceivers. Thus, when we report a 5Gb/s throughput for
a group of 512 receivers in Figure 5, we mean that all
512 receive identical replicas of the transmitted 5Gb ob-
ject about one second after it was sent, and do so nearly
simultaneously.

4.2 Microbenchmarks

The placement of nodes relative to the physical network
topology impacts the achievable bisection bandwidth,
which we measure and report here: before each test the
lowest rank node measures the time it takes to concur-
rently send and receive a single large message to each of
the other nodes in the test. The median is taken to be
the bisection bandwidth for that experiment. However,
as noted above, we have no control over node layout rel-
ative to the physical Sierra network, and for many runs
ended up with more transfers that traverse the three clus-
ter routers than is ideal. This creates link stress: these
links can sometimes, but not always, have sharply lower
performance (on Sierra, 5.8Gb/s bidirectional), whereas
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(a) Measurements for groups of 4 nodes. (b) Measurements for groups of 16 nodes.

Figure 4: Multicast bandwidth across a range of block sizes for message sizes between 4 and 256 megabytes.

links within a rack tend to have a much higher perfor-
mance (almost 20Gb/s). But while we were able to mea-
sure this phenomenon, RDMC does nothing about it: dy-
namically discovering topology and bandwidth and then
selecting the optimal block-transfer pattern ideal for a
particular topology would be daunting.

4.3 Results

In Figures 4a and 4b we examine the impact of block
size on bandwidth for a range of message sizes. Notice
that increasing the block size initially improves perfor-
mance, but then a peak is reached. This result is actu-
ally to be expected as there are two competing factors.
All block transfers involve a certain amount of latency,
so increasing the block size actually increases the rate
at which information moves across links (with diminish-
ing returns as the block size grows larger). However, the
overhead associated with the binomial pipeline algorithm
is proportional to the amount of time spent transferring
an individual block. There is also additional overhead
incurred when there are not enough blocks in the mes-
sage for all nodes to get to contribute meaningfully to
the transfer.

Figure 5 shows the bandwidths for various sizes of
multicasts across a range of group sizes. With a group
size of 2 (the degenerate case with 1 sender and 1 re-
ceiver) we actually get 134% of the bisection bandwidth
for nodes in the same rack. This is possible because the
sender is not using any of its incoming bandwidth.

Message size has a very large impact on overall band-
width. As we saw earlier, when selecting a block size we
must balance the number of blocks with the bandwidth
possible when sending a block. For messages under tens
of megabytes, these two factors directly conflict and we
are unable to pick any size that will get extremely high

overall bandwidth.
As group size gets larger, we unsurprisingly get de-

graded performance. Notice however, that even with 512
nodes the time spent distributing a large file is only sev-
eral times what it would take to send it across any single
link. With groups this large, we inevitably included more
and more slow (5.8Gb/s) links in our overlay, and by the
time groups reach size 128, those slow links apparently
limit our transfer speeds.

Although RDMC is probably most interesting in the
case of large transfers, we have also tuned the protocol
to do well for smaller ones. Figure 6 shows the result-
ing performance. We have not shown the correspond-
ing numbers for MPI over Infiniband, which achieves ex-
tremely low delays for tiny objects but appears to use a
non-RDMA feature of Infiniband to achieve this. Specif-
ically, Infiniband supports direct remote memory access
(one processor can directly write to the memory of an-
other, as on a NUMA shared-memory machine), and
we suspect that MPI on Infiniband uses this feature, but
only for small objects. This is feasible because the MPI
model is one of gang-scheduled HPC applications where
each replica knows the memory layout of all the others,
unlike in our target setting, where source and destina-
tion could be different programs. We would recommend
that RDMC users who expect to stream huge numbers of
small objects consider buffering the sends, then transmit-
ting smaller numbers of large messages; the network uti-
lization for that pattern is far better. There are, of course,
some applications that might not be able to do this (high-
frequency trading systems for which minimal latency is
critical come to mind), but we believe that the tradeoffs
embodied in our solution are a good balance that matches
well with what we anticipate will be the more common
use cases.

Figure 8 compares the performance of RDMC bino-
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mial pipeline multicasts to that of several others, includ-
ing MPI on Infiniband (shown as MPI_Bcast), as well as
several others we implemented within the RDMC frame-
work. Sequential send is the naive algorithm introduced
earlier where none of the receivers help with relaying,
while binomial tree is the slightly better one where re-
ceiviers begin relaying once they have the whole mes-
sage. The chain replication scheme uses the method
described in [27], in which blocks are relayed along a
chain.The only experiment not run using RDMC itself
was the MPI_Bcast; this data was measured using the
OSU Micro Benchmarks software package using MVA-
PICH 1.2, a version optimized for QLogic hardware.

Our algorithm outperforms the others for large trans-
fers in small to medium sized groups, achieving higher
bandwidth and lower latency. However, once the group
size becomes large (128 replicas or more depending on
the message size) MPI has better performance. Several
factors apparently contribute to the MPI advantage in this
case, most notably its integration with the LLNL cluster
scheduler and node layout algorithm.

Finally, Figure 9 compares cases where we created
several groups using the same processes, and then initi-
ated concurrent multicasts from different roots. This was
surprisingly hard to set up: the LLNL computers have
almost synchronized clocks, but even so, the transfers
performed here were so short that we do not know how
much concurrency was actually achieved on the wire.
The main takeaway is that while contention seems to
slightly reduce performance, the impact is minor.

We omit head to head comparison with user-space
multicast libraries such as the various Paxos libraries [1],
the Isis2 group communication system [9], or the Or-
chestra Cornet library [16]. All of those run over the IP
network stack, and the Paxos libraries additionally log
messages to nonvolatile storage in support of the Paxos
durability property, hence comparison would involve an
apples to oranges scenario heavily biased in favor of
RDMC, which offers orders of magnitude speedup rel-
ative to any system of this kind.

4.4 Discussion

When Ganesan and Seshadri examined tree and chain
topologies for performing multicast in [20] they found
them to be unfeasibly slow over TCP/IP. They attributed
the suboptimal performance to the fact that these highly
structured topologies can allow a single lagging node to
slow down the entire send for everyone. The binomial
pipeline algorithm (which they recognized as theoreti-
cally optimal) is more susceptible to this phenomenon
because each node is responsible for the transfer to all of
its neighbors in the hypercube.

As we have seen, this proves to be much less of an

Figure 5: Bandwidth of a multicast for several message
sizes.

issue for RDMA than for TCP/IP over Ethernet. With
RDMA we are able to achieve low latency, zero-copy,
reliable transfers directly into user-space memory on the
receiver, with no copying, which is important because
memcpy peaks at 30Gb/s and is not likely to rise as
quickly as optical network speeds will scale up. By con-
trast, thanks to hardware support for reliable sends we are
able to consistently get upwards of 17 Gb/s bidirectional
bandwidth (more than 85% of the line rate) per link by
doing reliable point-to-point sends, and this should track
the evolution of optical network speeds.

While the simple chain-replication scheme can some-
times be quite fast, it has terrible delivery skew and is
very sensitive to slow links. With the binomial pipeline
algorithm, we are able to transform these fast point-to-
point send speeds into very efficient multicasts for large
objects. The algorithm is able to take advantage of both
the incoming and outgoing bandwidth from all the nodes
in the group, not just some of them. As a result, when
the block size is small compared to the message size, the
theoretical time for the transfer is only slightly more than
the time it would take to send the entire message between
two nodes.

In fact, for small groups, overheads can be so low that
the total time taken to replicate an object can be less than
it would take to perform a unicast transfer over the slow-
est link. This can happen even when that link is only
slower by a few tenths of a Gb/s.

Our scheme is also cache-friendly, which is not the
case for traditional IPMC-based mechanisms or end-user
multicast libraries, in which data touching and copying
are common events. While it is difficult to precisely
measure such effects, in the aftermath of a transfer us-
ing those classical options, the L2 processor cache will
be heavily contaminated with data sent or received dur-
ing the multicast, causing small CPU stalls as application
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Figure 6: Estimated delay from when a small message is
sent to when it is received when using our main multicast
algorithm. For small objects, these delays are excessive,
motivating us to support the specialized small-send code
path evaluated in Figure 7. For large sends, overhead is
not a concern because optical line-rate transfer time can
reach 10’s or even 100’s of ms.

logic resumes execution. The zero-copy RDMA transfer
shouldn’t have any deleterious impact on cache perfor-
mance at all.

Finally, notice that in Figure 5, achieved bandwidth is
highest in the unicast case, where the hardware can ac-
tually outperform its 20Gb/s specification, then is fairly
stable for replication groups of up to 8 nodes (a 1-level
hypercube). Performance tails off for very large scenar-
ios, but even then achieves a high percentage of the pos-
sible unicast speed. In our current experiments, the limit-
ing factor is almost surely topology, and could be avoided
by minimizing the load placed on shared, higher-latency
links. We believe this is best done in the job scheduler
that selects nodes on which the application should run, as
seems to occur when the LLNL scheduler launches MPI
jobs.

But there is a second and deeper factor at work,
namely the scheduling delays associated with relaying
that concerned Ganesan and Seshadri. Here we point to
a queuing theory analysis reported by Basin et al. in [7],
where the cumulative effect of small delays for multicast
overlays constructed from TCP links was explored. The
analysis is somewhat TCP-specific and is carried out in
a simpler binary-tree topology, but it predicts that above
some threshold size, any overlay structure at risk of link-
level forwarding delays would be expected to exhibit per-
formance that degrades in the group size. In effect, as
the number of nodes below a given sender increases, the
probability rises that a relaying delay will occur some-
where in the forwarding tree and back up to cause a de-
lay at the sender. We run on a more complex tree, with

Figure 7: RDMC includes a specialized code path that
reduces delays for small sends. As seen in this plot, delay
drops 50-fold relative to that seen in Figure 6. However,
this method cannot be used for large objects.

a different protocol, and using a more complex chunking
mechanism, yet an analogous result probably still applies
in our setting.

5 Related Work

Reliable multicast is an area rich in software libraries
and systems. Pure communications solutions include
Isis2, Spread, Totem, Horus, Transis and the Isis Toolkit
[4, 5, 9, 12, 18, 26]. Durable state machine implemen-
tations include Paxos, Chubby, Rambo, Zookeeper and
Corfu [1,3,6,14,21–23]. However, the RDMC primitive
presented here focuses on a very low level data repli-
cation abstraction, whereas these all provide stronger
of application-level consistency guarantees. For exam-
ple, most pure communication systems offer managed
group membership views, often synchronized with re-
spect to multicast delivery (“view synchrony”) and com-
bined with various multicast ordering guarantees, sup-
porting application-layer models such as virtual syn-
chrony [10, 11, 13] or state machine replication [25].
The persistent versions also offer durable, totally ordered
event logging and can guarantee coherence across dis-
ruptive server failure and recovery sequences. Our hope
would be that all of these systems could benefit from
RDMC, and that some might also be simplified by mov-
ing to our solution.

RDMC per se is better viewed as a next generation al-
ternative to the IPMC abstraction [17]. Fundamentally,
we see IPMC as a product of the time period within
which it was offered; RDMC is a closer fit to a new
generation of hardware, and can support a very similar
API. On the other hand, IPMC supports an anonymous
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Figure 8: Bandwidth achieved by alternative algorithms
across a range of group sizes for 256 MB multicasts.
Chain Send and Binomial Pipeline have similar perfor-
mance in this particular scenario. However, Binomial
Pipeline is far more robust, as explained in Section 3.1.

Figure 9: Average bandwidth for concurrent multicasts
by distinct senders.

style of communication, in which a publisher of data uses
IPMC to send to an unknown and anonymous group of
subscribers, which also makes it useful as a kind of Inter-
net anycast protocol, used to seek a member of a service,
or rendezvous. RDMC does not support either style of
use. For these reasons we do not think IPMC should be
completely eliminated.

We are not the first to ask how RDMA should be ex-
ploited in the operating system. The early RDMA work
grew out of the classic paper by Von Eicken and Vogels
[29], which introduced the zero-copy option and repro-
grammed a network interface to demonstrate its benefits.
VIA, the virtual interface architecture then emerged; its
“Verbs” API extended the UNet idea to support hardware
from Infiniband, Myranet, QLogic and other vendors.
Verbs, though, is awkward, and this has spawned a num-
ber of other options: the QLogic PSM subset of RDMA,
Intel’s iWarp, which offers RDMA through a TCP-like
abstraction implemented in the hardware (RDMA over

converged Ethernet, or RoCE), socket-level offerings
such as the Chelsio WD-UDP [2] embedding, etc.

Despite the huge number of products, it seems reason-
able to assert that the biggest success to date has been the
MPI platform integration with Infiniband RDMA, which
has become the mainstay of High Performance Com-
puting (HPC) communications. MPI only uses a subset
of RDMA functionality, hence a modern RDMA imple-
mentation will often have a stripped-down core (PSM or
a similar library), on which Verbs and the full RDMA
stack is implemented in software. UDP and UDP multi-
cast on RDMA are also supported on such platforms.

Our core argument here comes closer to the ones made
in recent operating systems papers, such as FaRM [19],
Arrakis [24] and IX [8]. In these works, the operating
system is increasingly viewed as a control plane, with
the RDMA network treated as an out of band technol-
ogy for the data plane that works best when minimally
disrupted. RDMC is less ambitious than these other so-
lutions, focusing on a bare-bones reliable multicast ab-
straction, and on achieving the absolute lowest over-
heads we can. However, because RDMC is a software
library and highly portable, it could easily be used in a
wide range of settings. As RDMC becomes integrated
with OS features such as file systems and memory shar-
ing, its ultimate impact could be very broad. Further, if
reliable RDMA multicast hardware becomes available,
RDMC could easily leverage it, and applications built on
the abstraction would port to the new hardware without
change. In contrast, today’s mix of solutions has yielded
a plethora of highly tuned, fragile systems.

6 Conclusion

Our paper introduces RDMC: a new reliable memory-
to-memory multicast implemented over RDMA unicast.
Performance is very high when compared with the most
widely used general-purpose options, and even exceeds
that of a speciality solution such as MPI over Infiniband
when replicating large objects to as many as 128 servers
(although MPI wins in even larger scenarios, and is also
faster for high rates of very small sends). RDMC is
quite general and could replace IPMC in many settings
where today, IPMC is the only multicast option avail-
able. It takes the form of a library and can be linked
into user space or dropped into the kernel. We believe
that it could dramatically accelerate and yet also sim-
plify a wide range of important applications, and also im-
prove utilization of datacenter computing infrastructures.
We are making the RDMC code base available for free,
open-source download at http://rdmc.codeplex.com.
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