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Java™ 5.0 makes it possible for the first time to develop nonblocking algorithms in the Java
language, and the java.util.concurrent package uses this capability extensively. 
Nonblocking algorithms are concurrent algorithms that derive their thread safety not from locks, but 
from low-level atomic hardware primitives such as compare-and-swap. Nonblocking algorithms can 
be extremely difficult to design and implement, but they can offer better throughput and greater 
resistance to liveness problems such as deadlock and priority inversion. In this installment of Java 
theory and practice, concurrency guru Brian Goetz illustrates how several of the simpler 
nonblocking algorithms work.

When more than one thread accesses a mutable variable, all threads must use synchronization, or else some very
bad things can happen. The primary means of synchronization in the Java language is the synchronized
keyword (also known as intrinsic locking), which enforces mutual exclusion and ensures that the actions of one
thread executing a synchronized block are visible to other threads that later execute a synchronized block 
protected by the same lock. When used properly, intrinsic locking can make our programs thread-safe, but locking
can be a relatively heavyweight operation when used to protect short code paths when threads frequently contend
for the lock.

In "Going atomic,"we looked at atomic variables, which provide atomic read-modify-write operations for safely
updating shared variables without locks. Atomic variables have memory semantics similar to that of volatile
variables, but because they can also be modified atomically, they can be used as the basis for lock-free concurrent
algorithms.

A nonblocking counter

Counter in Listing 1 is thread-safe, but the need to use a lock irks some developers because of the performance
cost involved. But the lock is needed because increment, though it looks like a single operation, is shorthand for
three separate operations: fetch the value, add one to it, and write the value out. (Synchronization is also needed
on the getValue method, to ensure that threads calling getValue see an up-to-date value. Simply ignoring the 
need for locking is not a good strategy, though many developers seem disturbingly willing to convince themselves
that this approach is acceptable.)

When multiple threads ask for the same lock at the same time, one wins and acquires the lock, and the others
block. JVMs typically implement blocking by suspending the blocked thread and rescheduling it later. The
resulting context switches can cause a significant delay relative to the few instructions protected by the lock.

Listing 1. A thread-safe counter using synchronization
                
public final class Counter {
    private long value = 0;

    public synchronized long getValue() {
        return value;
    }

    public synchronized long increment() {
        return ++value;
    }
}
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NonblockingCounter in Listing 2 shows one of the simplest nonblocking algorithms: a counter that uses the
compareAndSet() (CAS) method of AtomicInteger. The compareAndSet() method says "Update this
variable to this new value, but fail if some other thread changed the value since I last looked." (See "Going
atomic" for more explanation of atomic variables and compare-and-set.)

Listing 2. A nonblocking counter using CAS
                
public class NonblockingCounter {
    private AtomicInteger value;

    public int getValue() {
        return value.get();
    }

    public int increment() {
        int v;
        do {
            v = value.get();
        }
         while (!value.compareAndSet(v, v + 1));
        return v + 1;
    }
}

The atomic variable classes are called atomic because they provide for fine-grained atomic updates of numbers 
and object references, but they are also atomic in the sense that they are the basic building blocks for nonblocking
algorithms. Nonblocking algorithms have been the subject of much research and study for over 20 years but have
only become possible in the Java language as of Java 5.0.

Modern processors provide special instructions for atomically updating shared data that can detect interference
from other threads, and compareAndSet() uses these instead of locking. (If all we wanted to do was increment
the counter, AtomicInteger offers methods for incrementing, but they are based on compareAndSet() just 
like NonblockingCounter.increment().)

The nonblocking version has several performance advantages over the lock-based version. It synchronizes at a
finer level of granularity (an individual memory location) using a hardware primitive instead of the JVM locking
code path, and losing threads can retry immediately rather than being suspended and rescheduled. The finer
granularity reduces the chance that there will be contention, and the ability to retry without being descheduled
reduces the cost of contention. Even with a few failed CAS operations, this approach is still likely to be faster than
being rescheduled because of lock contention.

NonblockingCounter may be a simple example, but it illustrates a basic characteristic of all nonblocking
algorithms -- some algorithmic step is executed speculatively, with the knowledge that it may have to be redone if
the CAS is not successful. Nonblocking algorithms are often called optimistic because they proceed with the
assumption that there will be no interference. If interference is detected, they back off and retry. In the case of the
counter, the speculative step is the increment -- it fetches and adds one to the old value in the hopes that the value
will not change while the update is being computed. If it is wrong, it has to fetch the value again and redo the
increment computation.

A nonblocking stack

A less trivial example of a nonblocking algorithm is ConcurrentStack in Listing 3. The push() and pop()
operations in ConcurrentStack are both structurally similar to increment() in NonblockingCounter, 
speculatively doing some work and hoping that the underlying assumptions have not been invalidated when it
comes time to "commit" that work. The push() method observes the current top node, constructs a new node to
be pushed on the stack, and then, if the topmost node has not changed since the initial observation, installs the new
node. If the CAS fails, it means that another thread has modified the stack, so the process starts again.
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Listing 3. Nonblocking stack using Treiber's algorithm
                
public class ConcurrentStack<E> {
    AtomicReference<Node<E>> head = new AtomicReference<Node<E>>();

    public void push(E item) {
        Node<E> newHead = new Node<E>(item);
        Node<E> oldHead;
        do {
            oldHead = head.get();
            newHead.next = oldHead;
        } while (!head.compareAndSet(oldHead, newHead));
    }

    public E pop() {
        Node<E> oldHead;
        Node<E> newHead;
        do {
            oldHead = head.get();
            if (oldHead == null) 
                return null;
            newHead = oldHead.next;
        } while (!head.compareAndSet(oldHead,newHead));
        return oldHead.item;
    }

    static class Node<E> {
        final E item;
        Node<E> next;

        public Node(E item) { this.item = item; }
    }
}

Performance considerations

Under light to moderate contention, nonblocking algorithms tend to outperform blocking ones because most of the
time the CAS succeeds on the first try, and the penalty for contention when it does occur does not involve thread
suspension and context switching, just a few more iterations of the loop. An uncontended CAS is less expensive
than an uncontended lock acquisition (this statement has to be true because an uncontended lock acquisition
involves a CAS plus additional processing), and a contended CAS involves a shorter delay than a contended lock
acquisition.

Under high contention -- when many threads are pounding on a single memory location -- lock-based algorithms
start to offer better throughput than nonblocking ones because when a thread blocks, it stops pounding and
patiently waits its turn, avoiding further contention. However, contention levels this high are uncommon, as most
of the time threads interleave thread-local computation with operations that contend for shared data, giving other
threads a chance at the shared data. (Contention levels this high also indicate that reexamining your algorithm
with an eye towards less shared data is in order.) The graph in "Going atomic" was somewhat confusing in this 
regard, as the program being measured was so unrealistically contention-intensive that it appeared that locks were
a win for even small numbers of threads.

A nonblocking linked list

The examples so far -- counter and stack -- are very simple nonblocking algorithms and are easy to follow once
you grasp the pattern of using CAS in a loop. For more sophisticated data structures, nonblocking algorithms are
much more complicated than these simple examples because modifying a linked list, tree, or hash table can
involve updating more than one pointer. CAS enables atomic conditional updates on a single pointer, but not on
two. So to construct a nonblocking linked list, tree, or hash table, we need to find a way to update multiple
pointers with CAS without leaving the data structure in an inconsistent state.

Inserting an element at the tail of a linked list typically involves updating two pointers: the "tail" pointer that
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always refers to the last element in the list and the "next" pointer from the previous last element to the newly
inserted element. Because two pointers need to be updated, two CASes are needed. Updating two pointers in
separate CAS operations introduces two potential problems that need to be considered: what happens if the first
CAS succeeds but the second fails, and what happens if another thread attempts to access the list between the first
and second CAS.

The "trick" to building nonblocking algorithms for nontrivial data structures is to make sure that the data structure
is always in a consistent state, even between the time that a thread starts modifying the data structure and the time
it finishes, and to make sure that other threads can tell not only whether the first thread has finished its update or is
still in the middle of it, but also what operations would be required to complete the update if the first thread went
AWOL. If a thread arrives on the scene to find the data structure in the middle of an update, it can "help" the
thread already performing the update by finishing the update for it, and then proceeding with its own operation.
When the first thread gets around to trying to finish its own update, it will realize that the work is no longer
necessary and just return because the CAS will detect the interference (in this case, constructive interference)
from the helping thread.

This "help thy neighbor" requirement is needed to make the data structure resistant to the failure of individual
threads. If a thread arrived to find the data structure in mid-update by another thread and just waited until that
thread finished its update, it could wait forever if the other thread fails in the middle of its operation. Even in the
absence of failure, this approach would offer poor performance because the newly arriving thread would have to
yield the processor, incurring a context switch, or wait for its quantum to expire, which is even worse.

LinkedQueue in Listing 4 shows the insertion operation for the Michael-Scott nonblocking queue algorithm,
which is implemented by ConcurrentLinkedQueue:

Listing 4. Insertion in the Michael-Scott nonblocking queue algorithm
                
public class LinkedQueue <E> {
    private static class Node <E> {
        final E item;
        final AtomicReference<Node<E>> next;

        Node(E item, Node<E> next) {
            this.item = item;
            this.next = new AtomicReference<Node<E>>(next);
        }
    }

    private AtomicReference<Node<E>> head
        = new AtomicReference<Node<E>>(new Node<E>(null, null));
    private AtomicReference<Node<E>> tail = head;

    public boolean put(E item) {
        Node<E> newNode = new Node<E>(item, null);
        while (true) {
            Node<E> curTail = tail.get();
            Node<E> residue = curTail.next.get();
            if (curTail == tail.get()) {
                if (residue == null) /* A */ {
                    if (curTail.next.compareAndSet(null, newNode)) /* C */ {
                        tail.compareAndSet(curTail, newNode) /* D */ ;
                        return true;
                    }
                } else {
                    tail.compareAndSet(curTail, residue) /* B */;
                }
            }
        }
    }
}

Like many queue algorithms, an empty queue consists of a single dummy node. The head pointer always points to
the dummy node; the tail pointer always points to either the last node or the second-to-last node. Figure 1
illustrates a queue with two elements under normal conditions:
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Figure 1. Queue with two elements in quiescent state

 

As Listing 4 shows, inserting an element involves two pointer updates, both of which are done with CAS: linking
the new node from the current last node on the queue (C) and swinging the tail pointer to point to the new last
node (D). If the first of these fails, then the queue state is unchanged, and the inserting thread retries until it
succeeds. Once that operation succeeds, the insertion is considered to have taken effect, and other threads can see
the modification. It still remains to swing the tail pointer to point to the new node, but this task can be considered
"cleanup" because any thread that arrives on the scene can tell whether such cleanup is needed and knows how to
do it.

The queue is always in one of two states: the normal, or quiescent, state (Figure 1 and Figure 3) or the 
intermediate state (Figure 2). The queue is in the quiescent state before an insertion operation and after the second
CAS (D) succeeds; it is in the intermediate state after the first CAS (C) succeeds. In the quiescent state, the next
field of the link node pointed to by the tail is always null; in the intermediate state, it is always non-null. Any
thread can tell which state the queue is in by comparing tail.next to null, which is the key to enabling threads
to help other threads "finish" their operation.

Figure 2. Queue in intermediate state during insertion, after the new element is added but before the tail 
pointer is updated

 

The insertion operation first checks to see if the queue is in the intermediate state before attempting to insert a
new element (A), as shown in Listing 4. If it is, then some other thread must already be in the middle of inserting
an element, between steps (C) and (D). Rather than wait for the other thread to finish, the current thread can
"help" it out by finishing the operation for it by moving the tail pointer forward (B). It keeps checking the tail
pointer and advancing it if necessary until the queue is in the quiescent state, at which point it can begin its own
insertion.

The first CAS (C) could fail because two threads are contending for access to the current last element of the
queue; in this case, no change has taken effect, and any threads that lose the CAS reload the tail pointer and try
again. If the second CAS (D) fails, the inserting thread does not need to retry -- because another thread has
completed the operation for it in step (B)!

Figure 3. Queue in quiescent state again after the tail pointer is updated

 

Nonblocking algorithms under the hood

If you dive into the JVM and OS, you'll find nonblocking algorithms everywhere. The garbage collector uses them
to accelerate concurrent and parallel garbage collection; the scheduler uses them to efficiently schedule threads
and processes and to implement intrinsic locking. In Mustang (Java 6.0), the lock-based SynchronousQueue
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algorithm is being replaced with a new nonblocking version. Few developers use SynchronousQueue directly,
but it is used as the work queue for thread pools constructed with the
Executors.newCachedThreadPool() factory. Benchmark tests comparing cached thread pool
performance show that the new nonblocking synchronous queue implementation offers close to three times the
speed over the current implementation. And further improvements are planned for the release following Mustang,
codenamed Dolphin.

Summary

Nonblocking algorithms tend to be far more complicated than lock-based ones. Developing nonblocking
algorithms is a rather specialized discipline, and it can be extremely difficult to prove their correctness. But many
of the advances in concurrent performance across Java versions come from the use of nonblocking algorithms, and
as concurrent performance becomes even more important, expect to see more nonblocking algorithms used in
future releases of the Java platform.
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Java Concurrency in Practice (Addison-Wesley Professional, Brian Goetz, Tim Peierls, Joshua Bloch, 
Joseph Bowbeer, David Holmes, and Doug Lea, June 2006): A how-to manual for developing concurrent 
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