Testing Concurrent
Programs on Relaxed
Memory Models

Jacob Burnim, Koushik Sen, Christos Stergiou

Introduction

® Programmers assume sequential consistency
® High performance concurrent programs:

® synchronization libraries

® |ock-free data structures

® Memory model related bugs

Friday, January 15, 2010

Relaxed Memory
Models

Goals

® Testing tool that finds memory model bugs
® Provide a trace of the buggy execution

® Distinguish harmful from benign sequential
consistency violations

® Find bugs exhibited under rare conditions

® Work for different memory models

Friday, January 15, 2010

Our approach

® C/C++ programs using pthreads

® Operational semantics for memory models

® Simulate program under relaxed memory model
® Random testing, no guarantees

® Exhaustive search, a lot of non-determinism

Friday, January 15, 2010

Our approach

® Active Testing
® [wo phases:
® Find potential sequential consistency violations
® Direct testing using potential violations
® Not random and scalable
® How to find potential violations!

® How to create the violations?

Friday, January 15, 2010

Sequential Consistency

® Trace is a sequence of loads and stores

® Program order e|—, e
® same thread, e| issued before e;

® Conflict order ej— ez
® same memory location, el or e2 is write

® ¢l “happens before” e2 from main
memory perspective

® happens-before relation = pp =ger ?p U
® A trace is sequentially consistent

iff =np is acyclic

Friday, January 15, 2010

Technique Overview

® Phase |

Execute program under sequential consistency
Find potential hb cycle: ey, ..., en, €1 from trace

Real cycle :ej—2pe2 2ce3...en cej

race edge: e| «<>rez:can be ej2ce20r e; e

Potential :ej—2pe2 <>re3 2p e4 &1 €5 enere

® Successive pairs (e, ei+1) in cycle alternate
between: program order & potential data races

Friday, January 15, 2010

Technique Overview

® Phase |l

® Execute program on relaxed memory model
using biased random scheduler

® e 7pe2 €3 Pp €4 €5 Enre

® Resolve (e, e3) race as e; —ce3
® e3:delay execution

® |oad—pause thread
® store—buffer value

® ¢): execute quickly, commit immediately

Friday, January 15, 2010

Memory Models

TSO

® Our tool intercepts loads & stores
® Can simulate any memory model
with operational semantics PSO

® [50:total store ordering (SPARC, ~X86)ﬂ_’i
® store-load reordering

® PSO: partial store ordering (SPARC)
® TS50 + store-store reordering SRL

oz

PS LO

® PSLO: partial store load ordering
® PSO + |oads reordered
before previous loads and stores

Friday, January 15, 2010

threadl

Example

X =Yy = done = 0

thread?Z {

1

1: x = 1;

2:y =1
3: done

)
)

1.

)

4

5:
o:
/
3

1t (done) {

3

1f (x==0)
ERROR;
local = y;

Example

threadl { thread?2 {
1: x = 1; 4: 1f (done) {

2:y =1; 5: 1f (x==0)

3: done = 1; 6: ERROR;
/. local = y;
8: }

Tl x=1 — y=| — done=| \
P P \\\
\Tzz i

f (done) — if (x==0) = local=y

@

Friday, January 15, 2010

Example

threadl { thread?2 {

1: x = 1; 4: 1f (done) {

2:y =1; 5: 1f (x==0)

3: done = 1560 ERROR;
8

7; local = y;
Tlx=1— y=| —ngone=l\\
\T :

}
2: if (done)—if (x==0)— local=y
/

@

potential happens-before cycle
not real cycle in sequential consistent execution

Friday, January 15, 2010

Example

threadl { thread?2 {

1: x = 1; 4: 1f (done) {
2:y =1; 5: 1f (x==0)
3: done = 1; 6: ERROR;
local = y;

race edge

/:
8: }
Tlh:x=1 — y=| — done=I

P \
\TZ: if (done)—if (x==0)— local=y
/

@

race edge can be ordered either way
depending on when x is committed

Friday, January 15, 2010

Example

threadl { thread?2 {

1: x = 1; 4: 1f (done) {
2:y =1; 5: 1f (x==0)
3: done = 1; 6: ERROR;
local = y;

/:
8: }
Tlh:x=1 — y=| — done=I

P \
\\Tzz if (done)—if (x==0)— local=y
/

@

race edge can be ordered either way
depending on when x is committed

Friday, January 15, 2010

Example

threadl { thread?2 {

1: x = 1; 4: 1f (done) {
2:y =1; 5: 1f (x==0)
3: done = 1; 6: ERROR;
local = y;

/:
8: }
Tlh:x=1 — y=| — done=I

P N\
\TZ: if (done)—if (x==0)— local=y
/

@

|: x=1;
3:done=|;
4: if (done) {
5:if (x==0) {

Friday, January 15, 2010

Example

threadl { thread?2 {
1: x = 1; m> 4: if (done) {
2:y = 1; 5: 1f (x==0)
3: done = 1; 0: ERROR;
/: local = y;
8: }
Potential:
| 2?p3 <-4 2,5 < - PSO
Goal:

| =3 94 =, 5 >

Example

threadl { thread?2 {

1: x = 1; = 4: if (done) {

2:y = 1; 5: 1f (x==0)

3: done = 1; 0: ERROR;
/: local = y;
8: }

I_’p3 (_)r'4 _>p5(_)r'| 'PSO

Example

threadl { thread?2 {
=>1: x = 1; 4: if (done) {
2:y = 1; 5: 1f (x==0)
3: done = 1; 0: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’P5(_>r| 'PSO

Example

threadl { thread?2 {
| =>1: x = 1; 4: if (done) {
thread| 2 Y = 1, 5: 1f <X==®)
addr 3: done = 1; 6: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’P5(_>r| 'PSO

Example

threadl { thread?2 {
| 1: x = 1; 4: 1t (done) {
thread| @Z Y = 1, 5: 1f <X==®)
addr 3: done = 1; 6: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’P5(_>r| 'PSO

Example

threadl { thread?2 {
| 1: x = 1; 4: 1t (done) {
thread| 2. Y = 1, 5: 1f <X==®)
ddrx @ 3: done = 1; 6: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’P5(_>r| 'PSO

Example

threadl { thread?2 {
| 1: x = 1; =B 4: if (done) {
thread| 2.y =1; S: 1f (x==0)
addr x 3: done = 1; 6: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’P5(_>r| 'PSO

Example

threadl { thread?2 {
| 1: x = 1; => 4: 1f (done) {
thread| 2 Y = 1 ; 5: 1f <X==®>
addr x . _ .

o: ERROR;
/: local = y;
8.

Friday, January 15, 2010

Example

threadl { thread?2 {
| 1: x = 1; 4: 1t (done) {
thread| 2.y = 1; —> 5: 1f (x==0)
addr x 3: done = 1; 6: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’P5(_)r| 'PSO

Example

threadl { thread2 {
| 1: x = 1; 4: 1f (done) {
thread| 2.y =1; S: 1f (x==0)
addr x 3: done = 1; =>6: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’P5(_)r'| 'PSO

thread|
addr x

Example

threadl { thread?2 {

1: x = 1; 4: 1t (done) {

2:y = 1; 5: 1f (x==0)

3: done = 1; =»>6: ERROR;
/: local = y;
8: }

I_’p3 (_)r4_’p5(_)r| 'PSO

| 9p3 24 2,5
Potential cycle is realizable.
SC violation is not benign

Friday, January 15, 2010

Summary

® TJesting tool that simulates program under
different memory models

® Active Testing

® Phase |: Examine sequential consistent
executions and find potential violations

® Phase 2: Execute program under relaxed
memory models, try to create violations
using biased scheduler

Friday, January 15, 2010

Benchmarks

® dekker, bakery: mutual exclusion algorithms
® msn: non-blocking queue

® ms2: two-lock queue

® |azylist: list-based concurrent set

® harris: non-blocking set

® snark: non-block double-ended queue

Friday, January 15, 2010

Benchmarks

® Manually constructed test harnesses
® dekker and bakery
® two threads access critical section 3 times
® assert never concurrently in critical section
® concurrent data structures
® multiple operations in parallel

® assert results are consistent with atomic run
of operations

Friday, January 15, 2010

Read-After-Delayed-VVrite Bug

Initially flagd = flagl = 0

thread: threadl:
1: flagd = 1; <«S C,11: flagl =
Pl . Clg = 4o — - . ag lP
2: while (flagl)— —12: while (Flag@)
3: 1t (turn) { 13: 1t (Mturn) {
4 flagd = 0; 14 : flagl = 0;
5: while (turn) 15: while (!turn)
6: ; 16: ;
/. flagd = 1; 17: flagl = 1;
8: } 18: }
//critical section //critical section
9: turn = 1; 19: turn = 0;
10:flagd = 0; 20: flagl = 0;

cycle under TSO: | 2,2 =l 12,12 = |

Friday, January 15, 2010

Results

U P i);ﬁliz d Cycles Confirmed ng g;guggl_o EStL”;i;ifnfl:;Zaf;!rZ of

TSO | PSO |PSLO| TSO | PSO |PSLO| TSO | PSO |PSLO
dekker 112 23 | 32 | 52 |7 16 | 46 | 0.26 | 0.17 | 0.27
bakery 208 24 | 56 | 75 | 20 | 40 | 43 [043 | 0.19 | 0.46
msn 350 0 79 | 93 0 77 | 89 - 0.13 | 0.15
ms2 74 0 2 I 0 2 I - 0.56 | 0.24
lazylist |57 0 7 6 0 4 4 - 0.07 | 0.21
harris 93 0 7/ 23 0 3 10 - 0.09 | 0.22
snark 1677 0 | 268 | 201 0 142 | 75 - 0.13 | 0.14

Friday, January 15, 2010

Discussion

® No false warnings, but false negatives possible
® Fail to predict feasible cycle
® Fail to confirm feasible cycle

® Feasible cycles not classified as buggy

Friday, January 15, 2010

Related VWork

® Random testing for concurrent bugs
® ConTest, CTrigger, Active Testing

® Program verification under relaxed models
® explicit state model checking (D.L.Dill)
® bounded model checking (Checkfence)

® Runtime monitoring algorithms (Sober)

Friday, January 15, 2010

Conclusions

® Our tool uses operational vs. axiomatic
semantics, easier to understand and debug

® Works with any memory model if
operational semantics are provided

® Quickly triggers real bugs even under rare
schedules or operation reorderings

Friday, January 15, 2010

Thank you

Questions!

