A Scalable Non-Blocking Concurrent Hash Table Implementation
with Incremental Rehashing

David R. Martin Richard C. Davis

December 15, 1997

Abstract

Highly concurrent systems often require high-throughput shared data structures to achieve
high performance. Traditional lock-based implementations suffer from the problems of con-
voying, priority inversion, and deadlock. Furthermore, locks introduce overhead in the common
case. Non-blocking concurrent data structures have been proposed to solve all of these problems,
as they allow concurrent atomic updates without using locks.

There exist general methods to transform any lock-based data structure into a lock-free, non-
blocking version. However, these methods invariably yield low performance implementations.
Common practice is to design a custom lock-free version of the data structure. We present
a fully non-blocking concurrent hash table implementation with incremental rehashing. Our
fault model allows a thread to suspend or die at any point in our code without compromising
the consistency of the table. Furthermore, our design is portable and is shown to achieve high
throughput on workloads with high contention.

Two implementation notes are of interest. First, we use open addressing rather than the tra-
ditional bucket-and-chain data structure. This design choice was critical in enabling a relatively
simple design and proving it correct. Second, our strong fault model requires garbage collection.
Even a weaker fault model would benefit greatly from garbage collection, as it greatly simplifies
analysis.

1 Introduction

Highly concurrent systems often require high throughput of certain data structures. For example,
task queues, priority queues, and hash tables are ubiquitous data structures that are often the
target of contention. Traditional locks can be used to enforce mutual exclusion and implement
atomic operations on concurrent data structures. However, lock-based implementations have many
problems.

First, the optimal granularity of locking depends on the dynamic level of concurrency. If the level
of concurrency is very low, then a single root-level lock may be sufficient. If the level is very high,
then fine-grain locking would be more appropriate. Fine-grained locking trades space for supporting
more concurrency. Even if this trade-off is acceptable, the overhead of acquiring and releasing the
lock is always present and could be significant.

Apart from overhead, there are at least three other significant problems associated with lock-based
synchronization [8]:

1. Convoying is the queuing of threads behind a lock that is currently held by another thread.
If convoys form, then they can persist after the lock has been passed. This creates hot-spots
and reduces concurrency.

2. Priority inversion arises when a low-priority thread holds a lock that is required by a
high-priority thread. The priority of the high-priority thread is effectively reduced to the
low-priority thread’s priority.

3. Deadlock arises when a thread is blocked on a lock that will never be released. This may
occur because locks were not acquired in a partial order; it may occur because a thread that
acquired a lock did not release it (i.e. a bug); or it may occur because a thread died while
holding a lock, and the thread package was not able to release it.

Some of these problems can be solved by better thread and synchronization implementations. For
example, priority inversion could be fixed with priority inheritance. Some deadlock cases could be
eliminated by better thread cleanup or deadlock analysis tools. However, No amount of thread
package re-engineering could fix convoying or all deadlock cases. Lock-free synchronization can
solve all of these problems. Furthermore, it has the potential to be faster in the common case, as
the overhead of acquiring and releasing locks is eliminated.

The benefits of lock-free synchronization are clear, but they do come at a cost. Lock-free concurrent
programming is not as well understood as lock-based concurrent programming. Programming
languages such as Modula-3 [5] and Java [2] have made lock-based programming quite painless as
far as correctness is concerned. Consequently, the technique of lock-free synchronization is relevant
only when complexity can be traded for performance. Highly-concurrent systems such as databases
and web servers may we willing to make this trade-off.

There are two classes of lock-free data structures. A lock-free implementation can be either non-
blocking or wait-free. According to [13],

e A data structure is non-blocking if some thread will always complete its operation in finite
time, regardless of the actions of other threads.

e A data structure is wait-free if every non-faulty thread is guaranteed to complete its operation
in finite time.

Clearly the wait-free property is more desirable, but it usually requires much overhead. Non-
blocking implementations are often sufficient; if supplemented with exponential back-off, they can
be made as robust as a wait-free implementation.

2 Background

There are well-known methods for transforming any lock-based data structure implementation into
a wait-free implementation [7]. These methods invariably yield low performance implementations,
since they are oblivious to application-specific concurrency. Without knowledge about how a data
structure is used by an application, an automatic method must be conservative with respect to
what sort of concurrency is possible by the application. Consequently, these methods result in
much copying that may not be strictly necessary.

For example, there is a trivial way to modify any data structure to enable lock-free atomic updates:
Add a root pointer to the data structure; an atomic operation is performed by first copying the
entire data structure, making a modification, and swapping the root pointer. It is trivial to prove
that this method is correct, but it suffers from two major problems. First, it is usually infeasible for
every operation to copy the entire data structure. Second it does not allow concurrent operations.

Since memory allocation and copying are expensive operations on computers, any extraneous al-
location or copying could cripple a data structure’s performance. Consequently, common practice
is to design lock-free concurrent data structures manually, so that application-specific concurrency
can be leveraged to eliminate unnecessary copying.

Designing and coding such data structures is quite difficult. There is no programming language sup-
port for lock-free structures. Furthermore, highly concurrent systems are highly non-deterministic,
and as a result, difficult to debug. These problems can be overcome by following some strict design
rules and maintaining certain invariants. A design not proven correct has very little chance of being
correct.

A building block for atomicity is required. Assuming an atomic memory primitive such as compare-
and-swap (as provided by the x86 and Sparc v9 [14] architectures) or load-linked/store-conditional
(as provided by the MIPS [10] and Alpha [12] architectures), one can build restartable atomic
sequences [3]. For the purposes of building lock-free structures, any update must be structured as
a restartable atomic sequence of code such that the update either completes atomically or can be
safely aborted at any instruction in the sequence.

An additional constraint on the instruction set architecture is that in order to more safely provide
atomicity, the atomic memory primitive must operate on a data type that is larger than the address
type. This leaves room for a version, so that both a pointer and an associated version can be updated
atomically. With a 32-bit pointer and a 32-bit version, this is a satisfactory solution to the ABA
problem [13].

An important invariant to maintain is one of linearizability [6]. A concurrent object is linearizable
if it appears to all threads as if the operations of all threads were executed in some linear sequence.
This definition is nearly identical to the definition of sequential consistency in a multiprocessor
system.

Memory allocation, and especially reclamation, is very difficult in a concurrent lock-free system. If a
thread can suspend at any time for any amount of time with pointers stored in private variables, then
objects referenced by those pointers may not be deleted elsewhere in the program. A weaker fault

model that prohibits threads from evaporating enables reference counting as a solution. Effectively,
the data structure performs its own lock-free allocation and reference counting garbage collection.
This solution is attempted in [13] in a lock-free linked-list algorithm. A stronger fault model that
allows thread evaporation precludes reference counting as a viable solution, since reference counts
could not be maintained consistently. It is a direct consequence of our fault model that a language
with garbage collection is a requirement. The ideal system for lock-free design would include a
lock-free concurrent allocator and garbage collection.

The literature contains several implementations of simple lock-free concurrent data structures such
as stacks and queues [11]. More interesting data structures such as lists [13], binary trees [13], and
priority queues [9] can be found. Tt is not clear, however, if the designs for these more complex
data structures are feasible, as experimental results are either not emphasized or not present. This
paper presents the design, implementation, and experimental analysis of a lock-free concurrent hash
table.

3 Design

Our hash table borrows many of the general ideas mentioned in section 2, and takes advantage
of some interesting properties of open addressed hash tables and garbage collection. This section
details our approach to correctness, fault-tolerance, and scalability.

3.1 General Lock-Free Design

The restartable atomic sequence is an effective technique for performing non-blocking atomic op-
erations on a shared object. It allows one to atomically move an object between consistent states,
where the transition cannot be accomplished directly with a 64b atomic memory primitive. A level
of indirection is introduced to enable arbitrarily large atomic updates. In this context, such an
atomic update has this general structure:

1. Save a copy of the root pointer in a local variable Root ;.

2. Create an deep copy of all that Root,;; points to, and save the new root pointer in a local
variable Root ., .

3. Modify the local replica (Root .,) as needed for the update.

4. Perform a compare-and-swap (CAS) on the real root, providing the old value as Root 4, and
the new value as Root,.,,. This CAS will fail if the root pointer is no longer equal to Root ;4
(i.e. if there has been any intervening update since this thread copied the root pointer into
Root 414 in Step 1).

Because of the ABA problem, any pointer involved in such a CAS operation should be tagged with
a version. The ABA problem arises when pointers are not tagged. Imagine that between steps 1

and 4 that the thread is suspended. While the thread is suspended, there are two atomic updates
by other threads. The first such update is guaranteed to change the value of the root pointer (from
A to B), since the new copy of the data structure is obtained from the memory allocator. However,
the old copy that is swapped out by the CAS may be reclaimed by the allocator and re-allocated in
the second intervening atomic update (back to A). When the original thread resumes, there have
been two intervening atomic updates, but the root pointer has the same value as when the thread
was suspended. The CAS should clearly fail in this case. The solution is to attach a version to each
susceptible pointer, which is incremented by each atomic update. Though this does not provably
remove the ABA problem, it clearly reduces the probability of an ABA occurrence a great deal.

This technique for atomic updates can be applied to the object as a whole, and though the imple-
mentation would be easily proved correct, it is often far too expensive to create a copy of the entire
object for each atomic update. The solution is to apply the technique at a finer granularity, taking
advantage of application-specific concurrency to reduce the amount of copying and allocation. It is
only with intimate knowledge of the structure of concurrency in the object that such optimizations
can be made, which is why automatic methods do not yield high performance implementations on
large concurrent objects.

We extend the method of tagged pointers slightly by adding additional state to a pointer. Not all
64 bits swapped with 64b atomic memory primitives need be used for a pointer and a tag. Since
32b pointers are currently sufficient for many applications, and since 32b versions are far more than
is needed, we can use some of the version bits for other purposes. Section 4 details these purposes.

3.2 Phases of Operation

The notion of phases is important in our design and our analysis of correctness. For example, we
wish to perform concurrent, incremental rehashing of the table. This involves moving from a state
where there is no rehashing, to a state where threads perform rehashing. The details are presented
in Section 4.6. The general mechanism we employ is an extension of the tagged pointer technique,
where we use one bit to make sub-structures immutable. This bit is initially zero, and all normal
table modifications use CAS and provide an old value where this bit is set to zero. Thus, when the
bit is set to one, any CAS attempts made by later table operations are guaranteed to fail. Since
CAS is the only way to update that sub-structure, it has been made immutable. This allows us
to freeze the state of pieces of the data structure so that we can reason about it’s contents during
concurrent table updates. Furthermore, there is never a need to copy an immutable structure.
Without this guarantee of immutability, optimizations that remove copying are more difficult to
analyze.

3.3 Synchronization and Portability

The 64-bit compare-and-swap instruction provides the functionality needed to implement restartable
atomic sequences with tagged pointers. We assume this operation is available. Since it can be
synthesized from load-linked/store-conditional, it is trivial to implement CAS on all important
architectures. If a lock-free data structure is to be portable, one must build upon commonplace

atomic memory primitives.

3.4 Fault Model & Garbage Collection

Because we are targeting this hash table at complex, highly concurrent applications with dynamic
workloads, we assume that any thread operating on the table can suspend at any time for any
amount of time, or even evaporate at any time. The use of restartable atomic sequences and
the absence of locks ensures that no suspended thread can prevent an active thread from making
progress. The one resource that a suspended thread does reserve, however, is memory.

Section 2 outlined a common solution to the problem of memory allocation in a lock-free object. If
one can assume that threads do not evaporate, then reference counting can be used to determine
when a piece of memory may be reclaimed. A lock-free object can thus perform its own memory
allocation and reclamation using reference counts. If, however, a thread never returns once sus-
pended (for example, because it is killed by an external agent after a time-out), then reference
counts cannot be maintained consistently, and some memory will never be reclaimed. A direct
consequence of this more powerful fault model is that garbage collection is required.

Once we made this observation, we were able to simplify our design dramatically, as memory alloca-
tion could be effectively ignored. Explicit memory allocation and reclamation is widely known to be
a source of bugs. Furthermore, it is generally accepted that reliable, fault-tolerant systems should
use garbage collection to guard against memory leaks. In these respects, our use of garbage collec-
tion is required by our assumptions, and is not simply a philosophical choice. Our implementation
is in C++, and we use the Boehm Conservative Collector for C/C++.

3.5 Open Addressing & Linearizability

The most common data structure used to implement a hash table is the bucket-and-chain structure,
where the table is an array of linked lists. If we used this approach, we would have to implement
concurrent lock-free linked-lists, which are fairly complex. We searched for a simpler alternative.

In the less common technique of open-addressing, all bindings are stored directly in an array. When
searching for (or inserting) a key, a probe sequence is generated for the key that is a permutation
of all slots in the array. The slots are visited in this order until either they key is found or until
an empty slot is found. As described in [4], open-addressed hash tables have several problems.
First, the table has a finite capacity, unlike the bucket-and-chain approach. Second, a slot left
by a deleted key cannot be entirely vacated, since subsequent searches must know to skip vacated
slots. Consequently, the number of slots visited in the probe sequence increases and performance
degrades with use.

In a lock-based open-addressed hash table, one could insert a new key into a vacated slot. However,
in a concurrent lock-free table, this causes problems for linearizability, and makes it difficult, if not
impossible, to maintain the invariant that a key is not replicated in the table. In our design, a key
is inserted into either an unused slot or a slot previously occupied by the same key; also, a vacated

slot contains the key that was deleted. Since the probe sequence of all threads operating on the
same key is the same, the key will always be found and will not be replicated in the table.

The open-addressed approach simplifies the analysis of correctness and linearizability. In fact, it
also simplifies the process of rehashing in much the same manner. Rehashing is the main reason
for leaving the keys in vacated slots. The details are discussed in sections 3.6 and 4.6. The open-
addressing solution has these benefits, but has costs as well. The finite capacity of the table and
the fact that deleted keys use table slots means that automatic rehashing is a requirement of
our implementation. It is fortuitous that automatic rehashing and resizing was one of our design
assumptions. It is workload-dependent how much additional rehashing is required of the open-
addressed approach.

3.6 Rehashing

Dynamic rehashing of the table is the most complicated part of the design. The requirement that
the table be scalable (to a large number of threads) precludes serializing the rehashing code. Since
the number of rehashes is likely to increase with the number of client threads, if the rehashing is
not parallelized across threads, Amdahl’s Law [1] dictates that rehashing time would limit speedup
quite severely. It follows that many threads must cooperatively rehash the table. Our implemen-
tation effectively parallelizes rehashing across all available threads, and even performs rehashing
incrementally (i.e. concurrently) with table operations.

It is instructive (at least for the authors) to recount the story of how we arrived at our solution. After
many failed ad-hoc designs of incremental and parallel rehashing, we (optimistically) suspected that
there might have been a fundamental limitation of the compare-and-swap primitive that conflicted
with our design goals, making our design impossible. This would indeed explain our failed designs!
We set out to prove our case. Such a proof required us to approach the problem from first principles
and to abstract the rehashing problem. We hoped that an abstract and formal representation of
the problem would enable us to prove some inconsistency among our axioms. Alas, we could not
prove that rehashing was impossible. In fact, in attempting to do so, we discovered in a surprisingly
lucid manner a solution to the problem after all. This is a testament to the subtlety of the issues
in designing complex lock-free objects. It is imperative to approach the problem in an abstract
context so that inconsistencies are clear and correctness is provable.

Rehashing is difficult because each entry must move atomically from one location in memory to a
new location (from the old table to the new table). In the abstract, rehashing a binding involves
moving the table between two consistent states: (1) the binding is in the old table and not in the
new; (2) the binding is in the new table and not in the old. Ideally, one would use an atomic
memory primitive that can operate on two distinct memory locations. Since such an operation is
not available, the table must pass through an intermediate state where the binding exists in both
tables. This appears to be fundamental.

Further complications are that threads must agree when rehashing should start, when it is hap-
pening, and when it is finished. In order to simplify reasoning about our design, we introduce the
notion of phases. As soon as some thread decides that rehashing should occur, it performs an oper-

ation that ensures that all threads will eventually enter the next phase of operation. Furthermore,
no thread enters the new phase until it is guaranteed that any thread still in the previous phase
cannot update the table in any harmful way. This is a sort of dynamic modularity that facilitates
analysis considerably.

The last detail is that rehashing should complete before another rehash is needed. This guarantee
is not fundamental to all implementations, but simplifies our implementation. Since rehashing is
performed incrementally by client threads (not by an asynchronous daemon thread), rehashing and
table updates are synchronized. The invariant that each client must rehash at least a constant
number of keys for each table update it performs ensures that rehashing will complete before the
table fills enough that rehashing is needed again.

3.7 Summary of Our Design

By approaching the problem from first principles and a set of basic assumptions, we have designed
a portable lock-free concurrent hash table with scalable incremental rehashing. Restartable atomic
sequences and tagged pointers are the general method employed for performing atomic operations.
Garbage collection not only simplifies our design (as it would any system), but actually enables our
strong fault model. Open addressing makes it easy to prove linearizability, and simplifies rehashing
in some subtle ways. The notion of phases modularized our design so that we could design a
more complex system, where rehashing is performed incrementally and concurrently with table
operations. Finally, all aspects of the implementation are fully parallelized, so that it scales to a
large number of concurrent threads.

4 Implementation

4.1 Interface

Figure 1 shows our implementation’s C4++ template class interface. The version numbers enable
a client to perform atomic read-modify-write updates to the table through optimistic concurrency
control.

4.2 Synchronization

Figure 2 shows the C prototypes for the atomic memory primitives that we assume. These functions
were implemented directly with the SPARC compare-and-swap-extended (casx) and compare-and-
swap (cas) instructions. In order to port our implementation to a new platform, it is only these
functions that need to be re-implemented.

template <class Ckey, class Cval>

class Ctable

{
// constructor provides a table stze hint
Ctable (uint uinumBindings);

// bind key to wal; sets wersion on success
// return false i1f the key ts already bound

bool insert (Ckey& key, /7 in
Cval& val, // in
u32%& version); // out

// remove key from table if version matches
// return false if the key is not bound or if version does not match
bool remove (Ckey& key, /7 in

u32 version); // in

// sets val and version on success
// return false if the key is not bound

bool lookup (Ckey& key, /7 in
Cval& val, // in
u32%& version); // out

// modifies existing binding if verston matches
// return false if the key is not bound or if version does not match

bool modify (Ckey& key, /7 in
Cval& val, // in
u32%& version); // out

Figure 1: Hash Table Interface. This is the C+4 template
class that defines the hash table interface.

extern bool casx (u64 oldVal, u64 newVal, u64d* p_mem);
extern bool cas (u32 oldVal, u32 newVal, u32* p_mem);

Figure 2: Atomic Memory Primitives. This is the C
interface that we use to access atomic memory primitive opera-
tions. The 32b CAS is used to implement an atomic increments
of 32b counters.

typedef union {

struct {
uint ptr : 325 // Cbinding*
uint ver : 283 // uint
uint state t 23 // eEntryState
uint rehashing : 1; // bool
uint copied : 1; // bool
} bits;
u64 all; // for alignment and comparisons
} Tentry;

Figure 3: Tagged Pointer. This 64b-aligned, 64b value is
what we use to store information about each binding in the
table. The hash table consists primarily of an array of these
entries.

4.3 Tagged Pointers

Figure 3 shows an example of a tagged pointer in the implementation. Since no more than 64b can
be modified atomically by the memory system, all of the fields must fit into 64b. The ptr field
is a pointer to the binding itself, which contains a copy of the key and value that were inserted
into the table. The ver field is the pointer tag, which is incremented by each atomic update to
the entry. The state field contains an enumerated type eEntryState that holds the state of the
entry: unused, vacated, or occupied. The purpose of the one bit rehashing and copied fields
are discussed in Section 4.6. In brief, the rehashing bit is set when rehashing has started, and
has the effect of making the entry immutable (until it is garbage collected). The copied bit is
conservatively set after the entry has been copied (i.e. rehashed) to the new table.

4.4 Open Addressing

Figure 4 shows the operation of an open-addressed hash table. An array is used to hold the bindings
stored in the table. When a thread needs to operate on a key, it searches through the array in a
permuted sequence called the probe sequence. The probe sequence is computed as a deterministic
function of the key. Consequently, concurrent inserts result in the key being inserted only once into
the table, since all threads examine the same sequence of array slots. Section 3.5 argues why this
data structure and algorithm is linearizable.

Each slot in the table contains the structure shown in Figure 3. When traversing the probe sequence,
a thread examines the state and contents of each slot. Figure 5 shows the actions taken when a
thread encounters each type of slot for each of the four table operations. Note that “fail” here
indicates that the operation fails, not that the CAS instruction fails: CAS failure results in a retry,
not a failure. Also note that deleted bindings leave their keys in the table. The importance of this
is revealed in Section 4.6.

10

Thread 1

(Insert A)
VA

. B IC D

I S o ¢

Thread 2

(Insert A)

Key
Unused
A Occupied
A Vacated

Figure 4: Open Addressing. Two threads concurrently
insert a new key into the table. Note that their probe sequences
are identical. Note also that deleted bindings leave their keys
in the table in vacated slots.

‘ Operation H Entry States ‘

‘ | unused | vacated(k) | vacated(k’) | occupied (k) | occupied(k’) |
insert (k) insert here | insert here skip fail skip
remove(k) fail fail skip change to vacated (k) skip
modify (k) fail fail skip modify slot skip
lookup(k) fail fail skip return contents skip

Figure 5: Table operations and open addressing.

11

4.5 The Hash Table Data Structure

V |SiridV IS

i \\\/_

Table' kev V = Version

Version Old

o—

S= Sate

Phase value r = Rehashing flag
- c = Copied Flag
Indirection

64-bit Root! Cel | Array of 64-bit Entries

Figure 6: The Hash Table Data Structure. See Section
4.5 for an explanation.

Figure 6 shows the data structure we used in our implementation. The open-addressed array of
Figure 4 is shown as the array of 64b entries. There is a 64b root which is a tagged pointer to the
entire object. A level of indirection between the root and the array will become useful in moving
between phases of rehashing (see Section 4.6). There is one structure not shown in Figure 6 that
contains conservative counters for the number of slots in each state. In reality, the “Old Table”
pointer in the figure would point to this object, which in turn contains a pointer to the array of
entries. This additional object is conceptually a header of the array of entries, and was omitted
from the figure for clarity.

It is important to note what portions of the data structure are 64b objects that may be modified
with atomic memory primitives. Each entry in the array of entries is such an object, as is the root
pointer.

4.6 Parallel Incremental Rehashing

Figure 7 shows the phases of rehashing. The general technique of using phases was introduced
in Section 3. This section describes the detailed operation of the table, and how atomic memory
primitives are used to move threads through the phases.

Phase I: Normal Operation

Concurrent updates are performed on the table. An operation must first gain access to the array
of entries. The root pointer is copied into a local variable. The structure it points to is examined
to ensure that (this copy of) the table is in the “normal” phase. If so, then slots are traversed as
per the computed probe sequence. When a target slot is selected, the 64b slot value is copied into
a local variable Slot,;;. A replacement slot Slot,.,, is constructed locally. A new entry is allocated
into which the new key and value are copied for an insert or modify. This pointer is then stored

12

Phase |: Normal Operation

o—> o—— ArcfBlirc ircCirc_ -

Normal
Phasell: Rehash Start

o—>= o—— AXclBlirc xccCirc -

Setup
Phaselll: Incremental Rehash

o— o——= AXcBExc X C g -

Phase IV: Normal Operation

rc Circ D ric ric ric

— :—\AMBM xie cixie_

Normal ric Circ Diric iric Airic__--

Figure 7: The Phases of Rehashing. Phases I and IV
correspond to normal table operation, when there is no need
for rehashing and no rehashing is occurring. Phase II is entered
when the need to rehash is discovered; all threads cooperate
in initializing data structures that will be needed in the next
phase. Phase III is when rehashing is performed concurrently
with table operations. Threads cooperatively copy bindings into
the new table. When all bindings have been copied from the old
table, rehashing is complete, and normal operation resumes.

13

into Slot,e,,. The version of Slot ¢, is set to one larger than the version in Slot,;;. The rehashing
and copied bits of both Slot,;; and Slot ., are set to zero. A compare-and-swap is then attempted
to swap Slot,., into the slot. This operation fails if the slot is different than Slot,.,. If the CAS
fails, then the operation begins completely anew at the root.

Phase II: Rehash Setup

As described in Section 4.8, conservative counters are maintained that record the number of slots
in each of the three states {unused,vacated,occupied}. Before every table operation, a thread
checks to see if rehashing should begin. If the number of unused slots is too low, or if the number of
occupied slots is too high, then rehashing should occur. If rehashing needs to be done, then some
thread will notice, and will set the number of unused slots to a large negative value. This effectively
puts the table in the “Rehash Setup” phase. From this point onward, all threads entering a table
operation will also decide that rehashing should occur.

There may be threads still operating on the table, however. Before the next phase can be entered,
the table must be modified so that all such threads will fail their table updates. This modification
is done during this phase by having all entering threads cooperatively set the rehashing bits in
the table entries. During this phase, there may still be table updates to slots whose rehashing bits
have not yet been set, but at the end of this phase, no updates to the old table will ever occur.

As soon as all rehashing bits have been set, some thread will notice. The process by which the bits
are set and by which a thread knows they are all set is the topic of Section 4.7.1. The transition
to Phase III is accomplished by some thread swapping in a new root that has the structure shown
in Figure 7. The exact mechanism for this swap is detailed in Section 4.7.2.

When some thread notices that all of the rehashing bits are set, it proceeds to allocate a new table.
A pointer to the new table is stored in a newly allocated indirection cell, along with a pointer to
the old table. A new root is then swapped in that points to this new indirection cell. Note that
since the old table is now immutable, there is no need to create a copy of it for the root swap.

Phase ITI: Incremental Rehashing

During this phase, rehashing occurs incrementally and concurrently with table updates. In order
to maintain consistency and guarantee that rehashing completes before it is needed again, all
operations on a key:

1. Guarantee that if the key is present in the table, it is copied to the new table before any
operation is performed.

2. Guarantee that some amount of rehashing is performed.

It is easy to ensure that one rehash finishes before the next begins, since any table operation can
consume at most one table slot.

The rehash of an entry involves inserting it into the new table. Tt is not removed from the old
table, since the old table is immutable. After the binding has been copied, the copied bit is set in

14

the old table. It is not possible to perform these two updates atomically, so the ordering is crucial.
Since the update of the rehashing flag occurs after the actual copy, it is a conservative measure
as to whether or not the binding has been copied. Consequently, it is acceptable for the thread to
evaporate before the bit is set so long as other threads can safely repeat the rehash. The safety
of repeated rehashes is ensured by not deleting a key from the table when a binding is removed.
Thus, a rehash-insert operation will fail if the key is in the new table, whether it is in an occupied
or a vacated slot.

Phase IV: Back to Normal Operation

As soon as all bindings have been moved to the new table, Phase IIl can come to an end. At this
point, no more rehash-insert operations can take place for the reasons detailed in the preceding
paragraph. Some thread will notice that there is no more rehashing work to be done. It will allocate
a new indirection object and set the fields as specified in Figure 7. This new view of the table is
then swapped into the root, and normal table operation resumes until the next rehash.

4.7 Implementation Subtleties

In the description of rehashing in Section 4.6, some implementation details were omitted for clarity.
Each is discussed in more detail in this section.

4.7.1 Rehash Setup

During Phase II of rehashing, all threads need to cooperate to set the rehash flags. Furthermore,
some thread needs to know when all of the flags are set. A simple linear sweep of the flags will be
functionally sufficient, but does not yield a scalable implementation. In order to have a scalable
implementation, the work performed by each thread must scale as n/t, and must be performed in
parallel (where n is the size of the table and ¢ is the number of active threads).

Assuming that the number of threads t < O(y/n), there is a simple solution. Divide the old table
into \/n chunks of size \/n. Have the threads examine the chunks in a random permuted order.
At each chunk, the first flag is examined. If it is set, then this chunk can be skipped. If the flag
is not set, then begin setting the flags in reverse order. With ¢ actively participating threads,
the total number of chunks examined is O(y/n/t), the total work per chunk is O(y/n), and so the
total amount of work performed per thread is O(n/t). Assuming that the random permuted order
eliminates any chances of convoying, this method should scale perfectly with ¢. If ¢ > y/n, then a
more sophisticated tree-based approach may be necessary.

4.7.2 Allocating the New Table

When moving from Phase II to Phase 111, it is necessary to allocate and install a new table. It is
harmless from a standpoint of correctness to allow more than one thread to attempt this allocation

15

and swap sequence, but it may be unacceptable from a memory allocation standpoint. Fortunately,
a simple solution is available.

The thread that sets rehashing bit zero is “elected” to perform the allocation and swap. As soon
as a thread succeeds in setting this bit, it raises its priority so that it is less likely to be descheduled.
It then proceeds to allocate the new table and attempt the root swap. As soon as it succeeds the
swap, it returns its priority to its previous value.

All other threads enter a spin-loop where they yield the processor if they find that the root has not
yvet changed. With this mechanism alone, if the elected thread died or was somehow descheduled, we
would have deadlock. Consequently, the threads that spin must time-out, perform the allocation,
and attempt the root swap.

In practice, we observe that this method performs in an exemplary manner. It has the desirable
properties of being very fast in the common case and of being correct in all cases, even when threads
die at inopportune moments.

4.7.3 Initializing the New Table

In Section 4.7.2, it is implied that the thread that allocates the new table also initializes it. This
event is also implicitly depicted in Figure 7. For the same reason that a single thread cannot simply
set all of the rehashing bits in Phase 11, having a single thread initialize the new table does not
yield a scalable implementation. This is easily mended by introducing a phase between Phases 11
and III where the new table is initialized. If the number of active threads is not too large, a similar
/n trick as that detailed in Section 4.7.1 may be used to initialize the table.

The modifications to the algorithm are as follows. The thread that swaps in the new table allocates
and initializes a /n-length auxiliary array that is a record of what chunks have been initialized in
the new array. The algorithm described in Section 4.7.1 is used to initialize the new table. When
this is complete, Phase 111 is entered as before. Again, if the assumption that the number of active
threads is < /n is not valid, then a tree-based approach could be substituted.

4.8 Conservative Measures

There are situations in the implementation where we would like to atomically update two disjoint
memory locations. Such problems can be solved by ordering the updates such that the state of the
table is conservative. The two examples are:

1. During normal table operation, we would like to maintain counters that keep a record of
how many table entries are in each state. These counters cannot possibly be maintained
consistently with the table, but we make the observation that the counters can be wrong if
they are wrong in the correct direction. For example, the counter that indicates how many
occupied slots are in the table can safely be too high. The worst that can happen is that a
rehash is triggered too soon. This will only occur in exceptional cases where threads repeatedly

16

evaporate at the most inopportune moments. This particular counter is incremented before
a binding is actually added and after a binding is deleted.

2. During Phase IIT of rehashing, threads need to know if an entry has been rehashed. The
copied bit is set after an entry has been rehashed. However, it is not possible to rehash
an entry and set the copied bit atomically. So long as the bit is set after the rehash, the
information is conservative. By ensuring that repeated rehash attempts are safe (see Section
4.6), consistency is maintained.

The notion of conservative sequences of atomic updates is important when implementing complex
atomic updates that cannot be implemented directly with the available atomic memory primitives.

4.9 Correctness

The preceding sections have argued in a disjoint manner that certain parts of the implementation
are correct. Figure 8 reiterates these points into a coherent argument of correctness by listing the
hash table’s phases of operation and the invariants maintained in each phase.

4.10 Implementation Extensions

There are a few areas in which we feel our implementation is somewhat deficient. This section
identifies these problems and proposes solutions.

e Incremental rehashing proceeds by incrementally rehashing chunks of the old table. In our
implementation, these chunks are of size O(y/n). Consequently, though the throughput of
table operations during rehashing is guaranteed to be non-zero (because it is incremental), it
is extremely low. It would be better to allow the rehash chunks to be some small constant
size and still retain scalable time bounds.

The difficultly is maintaining O(1) table operations during rehashing, since in order to check
that rehashing is complete, one must know that all rehash flags have been set. We suspect
that a tree-based approach could be employed to at least lower the cost of table operations
during rehashing to O(logn). If we could assume that threads are long-lived with respect to
table operations, then thread contexts may help in avoiding repeated work. If O(1) operations
during rehashing are important to clients, then an O(1) solution is required.

e We did not implement automatic rehashing to smaller sizes, but this is a trivial addition.

e It may be nice to add to the interface methods that force a rehash so that rehashing occurs
at opportune moments. A method that triggers an incremental rehash is trivial — it simply
needs to set the counter for the number of unused slots to a large negative value (see Section
4.6). A sequential rehash method is trivial by nature, since it would not have to worry about
atomicity. A version that concurrently rehashes the table and returns when rehashing has
completed is simple to add. A production system would surely include some assortment of
such methods.

17

Phase

Some threads are do-
ing this.

Old threads may try
this, but will fail.

Why they will fail.

Normal Any of the table opera- | Insert more than one en- | After some thread suc-
Operation tions. try with the same key | ceeds in inserting a key
(true in all phases). into a slot, all other
threads will pass that
slot in their probe se-
quence.
Perform non-atomic op- | All operations on entries
erations on a table entry | use CAS.
(true in all phases).
Rehash Setting rehashing bits | Modify entries with | All normal table oper-
Setup of some entries. rehashing set (true in | ations attempt a CAS
all phases). where the old value
is provided with a
rehashing bit set to
7ero.
Incremental || Copying entries from old | Copy an entry into the | Once a binding has been
Rehashing || to new table; setting | new table a second time. | inserted, its key is never

copied bits.

removed.

Modify the old table.

The old table is
mutable (all rehashing
bits are set).

im-

Perform a table opera-
tion on an entry that is
not yet in the new table.

Any entry is moved to
the new table before it

is operated upon.

Figure 8: Invariants. These demonstrate the correctness of

the implementation.

18

5 Results

lock-free, low contention —<—
lock-free, high contention -+--
lock-based, low contention -8--
lock-based, high contention -

Aggregate Throughput (Mops/sec)

Threads

Figure 9: Aggregate Throughput of Lock-Free and
Lock-Based Tables. Each thread performed 1M
lookup/modify iterations on a table with 10K entries. For the
low contention cases, threads randomly choose from all 10K
possible keys at each iteration. For the high contention cases,
threads randomly choose from only 10 of the 10K possible keys.

We tested and evaluated our implementation on a Sun Enterprise-5000 with 8 167 MHz UltraSPARC
processors. In order to evaluate the lock-free table, we implemented a low-overhead lock-based
table with per-bucket mutexes. We used the C+—+ language coupled with the Boehm conservative
collector!.

Figure 9 shows that the lock-free table consistently out-performs the lock-based table. When there
is little contention in the table, the lock-based code is approximately 10% faster. In the presence
of contention, the performance of the lock-based code degrades dramatically and irregularly, while
the performance of the lock-free code degrades quite gracefully.

Figure 9 shows performance with an ideal memory allocator. Unfortunately, we did not have avail-
able and did not implement a lock-free concurrent memory allocator, so the end-to-end performance
of the lock-free table is actually quite poor. Figure 10 shows how the performance of the lock-free

'The Hans-J. Boehm collector is a conservative garbage collector for C/C++. It can be found at Boehm’s
homepage: http://reality.sgi.com/employees/boehm_mti/.

19

Aggregate Throughput (Mops/sec)

T T T T T T T T T T
Ideal allocator <—
1k Boehm allocator —+--
SUN allocator -83--

B »ﬁr:—.:,—mirr:ﬁmf:’:t@:ittfgtjj
0 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 10 12 14 16
Threads

Figure 10: Effect of Allocation on Aggregate Through-
put. In all three cases, each thread performs 1M low con-
tention iterations as described in Figure 9.

20

table crumbles when it uses a lock-based allocator.

Both the Boehm allocator and the standard

SUN allocator use mutexes. It is important to note that lock-free is an end-to-end property. A

lock-free memory allocator is a prerequisite to building complex lock-free data structures that need
to perform dynamic allocation.

0.25 T T T T T T T T
0.2
o
[
]
)
Q
o
=3
= 0.15 -
5
Qo
<
j=)]
S
=
=
'_
%)
3 0.1
Q
c
©
<
S
@
=
0.05 -
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Figure 11 shows how garbage collection and rehashing affect instantaneous throughput.

Time (sec)

Figure 11: Effect of Rehashing and Garbage Collection
on Instantaneous Throughput. This graph shows the
instantaneous throughput as seen by a single thread operating
on the lock-free table with no other active threads. Most of the
spikes correspond to periodic garbage collections. The spikes at
1.0, 2.3, 4.3, and 5.55 seconds correspond to rehashing events.
Note how performance degrades from 0.6 to 1.0 seconds at which
point it increases after a rehash. It then decreases again until
the next rehash at 2.3 seconds. After the rehash at 5.55 seconds,
the table is big enough to absorb all new keys that are added,
so no more rehashing occurs; all remaining spikes are due to the
Boehm collector.

Even

though this shows a synthetic benchmark that stresses the allocator, only a few percent of execution
time can be attributed to garbage collection. Rehashing is even more infrequent, and consequently

costs very little.

21

6 Conclusion

Lock-free data structures often have better performance than lock-based structures, and they also
eliminate problems such as convoying, priority inversion, and deadlock. Thus, it is important
that highly concurrent applications have access to such data structures. We have implemented a
non-blocking hash table, which may be a useful building block for concurrent systems.

Though a concurrent hash table with dynamic rehashing is a complex data structure, the use of
open addressing and careful application of well-formed design methods makes it relatively easy
to reason about the correctness of our implementation. By providing incremental rehashing, our
implementation transparently rehashes the table concurrently with table operations. Our imple-
mentation is shown to scale well with the size of the table and the number of concurrent threads,
but since non-blocking is an end-to-end property, it relies on a non-blocking memory allocator. Be-
cause out fault model assumes that threads can evaporate, garbage collection is not only essential,
but is simplifies the design significantly.

References

[1] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. Proceedings of the AFIPS Spring Joint Computer Conference, pages 483-485,
April 1967.

[2] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley, 1996.

[3] Brian N. Bershad, David D. Redell, and John R. Ellis. Fast mutual exclusion for uniprocessors.
Fifth Symposium on Architectural Support for Programming Languages and Operating Systems,
October 1992.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
MIT Press, 1992.

[5] Samuel P. Harbison. MODULA-3. Prentice Hall, 1992.

[6] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, pages 463-492, 1990.

[7] Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems, pages 745-770, 1993.

[8] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. Proceedings of the 1993 International Symposium in Computer Ar-
chitecture, May 1993.

[9] Amos Israeli and Lihu Rappoport. Efficient wait-free implementation of a concurrent priority
queue. In Lecture Notes in Computer Science 725, pages 1-17. Springer Verlag, September
1993.

22

[10] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1991.

[11] Maged M. Michael and Michael L. Scott. Simple, fast, and practial non-blocking and blocking
concurrent queue algorithms. Proceedings of the 15th Annual ACM Symposium on Principles
of Distributed Computing, pages 267-276, May 1996.

[12] Richard L. Sites. Alpha Architecture Reference Manual. Digital Press, 1992.

[13] John D. Valois. Lock-free linked lists using compare-and-swap. Proceedings of the 1/th Annual
ACM Symposium on Principles of Distributed Computing, pages 214-222, 1995.

[14] David L. Weaver and Tom Germond. The SPARC Architecture Manual. Prentice Hall, 1994.

23

