Safe and Efficient Supervised Memory Systems

Jayaram Bobba
Intel Corporation
jayaram.bobba@intel.com

Abstract

Supervised Memory systems use out-of-band met-
abits to control and monitor accesses to normal data
memory for such purposes as transactional memory and
memory typestate trackers. Previous proposals demon-
strate the value of supervised memory systems, but have
typically (1) assumed sequential consistency (while
most deployed systems use weaker models), and (2)
used ad hoc, informal memory specifications (that can
be ambiguous and/or incorrect). This paper seeks to
make many previous proposals more practical.

This paper builds a foundation for future supervised
memory systems which (1) operate with the TSO and
x86 memory models, and (2) are formally specified
using two supervised memory models. The simpler
TSO,;; model requires all metadata and data accesses to
obey TSO, but precludes using store buffers for super-
vised accesses. The more complex TSOg,, model
relaxes some ordering constraints (allowing store buffer
use) but makes programmer reasoning more difficult.

To get the benefits of both models, we propose Safe
Supervision, which asks programmers to avoid using
metabits from one location to order accesses to another.
Programmers that obey safe supervision can reason with
the simpler semantics of TSO,;; while obtaining the
higher performance of TSOg,,. Our approach is similar
to how data-race-free programs can run on relaxed sys-
tems and yet appear sequentially consistent. Finally, we
show that TSOg4,, can (a) provide significant perfor-
mance benefit (up to 22%) over TSO,;; and (b) can be
incorporated correctly and with low overhead into the
RTL of an industrial multi-core chip design
(OpenSPARC T2).

1. Introduction

Over the past decades, there has been sustained
interest in memory systems that dedicate a small portion
of their transistor budget to a few ‘out-of-band’ bits per
data block. These metabits enable software to efficiently
maintain metadata corresponding to program data and
use it to supervise (control and monitor) data operations.
We refer to this broad class of systems as supervised

978-1-4244-9435-4/11/$26.00 ©2011 IEEE

Marc Lupon
Universitat Politecnica de Catalunya
mlupon@ac.upc.edu

369

Mark D. Hill and David A. Wood
University of Wisconsin-Madison
{markhill,david} @cs.wisc.edu

memory systems (supervised systems, in short). This
work deals with enabling correct and efficient super-
vised systems.

Memory supervision forms the basis of many pro-
posals: unbounded transactional memory [6,7,9], log-
based architectures [11,12], deterministic shared mem-
ory [15], memory-typestate trackers [33,36,42,43],
information-flow tracking [34] and hardware-assisted
garbage collectors [13]. Supervised systems facilitate
the development of safe and efficient software, and are
increasingly attractive with the emergence of multi-core
architectures and their programmability challenges.

Current supervised system proposals demonstrate
exciting opportunities, but suffer from at least one of
two drawbacks that make it harder to incorporate them
into industrial systems.

® SC-centricity. Most existing proposals for super-
vised systems ignore memory consistency issues

[7,9,26,41,42,43]. They assume (either explicitly or

implicitly) a strict Sequentially Consistent (SC)

memory model. However, most deployed systems
implement weaker consistency models like TSO

[18] or x86 [19]. A supervised system that only

works with SC hardware is much less attractive.

® No formalism. The few proposals that address
relaxed memory systems do so informally on an ad
hoc basis [15,28,36]. It is well-known from existing
memory models research that such specifications
often lead to ambiguous interpretations and incor-
rect implementations.

We build a firm foundation for future supervised
systems by addressing the above two drawbacks. We
begin by studying two supervised systems originally
proposed for SC (empty/full-bits [5] and deterministic
multiprocessing [15]) and show that moving them to
TSO introduces both correctness and performance prob-
lems due to incorrectly reordered metabit reads, load
bypassing, and late exceptions. Rather than address
these issues for just these two systems, we propose a
general and formal solution. Thus, we seek to make
numerous previous supervised proposals more practical.

To this end, we define a supervised memory model
that unifies and formalizes the memory aspects of exist-
ing and future supervised systems, while conforming to

existing uses at an intuitive level. Specifically, it extends
data memory with per-location metabits, primitives to
read/write them, and higher-level supervised
loads/stores. A supervised load (store) atomically tests
metadata state, optionally generates an exception, per-
forms a data load (store), and optionally updates meta-
data state.

We propose two formal consistency models for
supervised memory—TSO,;; and TSOg,,. Both models
order data accesses with TSO [18] and then add con-
straints for metadata accesses. The simpler TSO,,
requires that all data and metadata accesses conform to
TSO, limiting the use of non-speculative store buffers
(because a supervised store includes a metadata load).
TS0, relaxes TSO,;; by allowing metadata accesses
to different locations to appear out of program order.
TSOgar, permits using store buffers, but makes the pro-
grammer’s job more complex.

Inspired by earlier work on memory models [2,17],
we propose safe supervision to resolve the tension
between the simplicity of TSO,;; and the performance of
TSOgara- While formally defining safe supervision is
subtle, its intuition follows common usage of many
supervised systems:

A program is safely supervised if a supervised oper-
ation to a memory location is only used to control access
to that memory location’s data.

For safely supervised programs, programmers can
“get their cake and eat it too:” (a) reason with simpler
TSO,;; and (b) run on faster TSOgy,, systems. This is
because safely supervised programs will not observe
any reorderings a TSOg,, system might do among
metadata accesses to different locations.

Using execution-driven full-system simulation of
two supervised systems—HARD [43] and TokenTM
[9], we show that TSOy,, can indeed provide significant
performance benefits (up to 5% for HARD and 22% for
TokenTM) over a TSOy;; implementation.

Moreover, since a high-level simulator-based study
alone can miss subtle but important implementation
issues, we implement TSOg,, in the RTL of the
OpenSPARC T2, a publicly-available industry-designed
multi-core system. We show that TSO4,, can be imple-
mented correctly, at low overhead, and delve into design
issues such as handling late store buffer exceptions.

This work makes three contributions to supervised
systems.

e Support for TSO. This paper is the first to closely
examine supervised systems in the context of the
widely-deployed TSO memory model (TSO is a
legal implementation of x86) and identify problems
with current proposals (Section 3).

370

e Formal Approach. We define supervised mem-
ory, a general memory model that supports a wide
range of supervised systems (Section 4). We take a
formal approach to specifying two relaxed super-
vised memory models (TSO,;; and TSOy,,). We
also specify a program property, safe supervision,
that enables reasoning with simpler TSO,;; while
achieving the performance of TSOg,,. We quantita-
tively demonstrate the performance potential of
TSOgya¢a With two case studies (Section 5).

Address Implementation Issues. We explore TSO-
data implementation issues with an RTL-level multi-
core design and demonstrate solutions that enable
the continued use of store buffers (Section 6).

2. Background

2.1. Supervised Systems

Memory supervision forms the basis of many pro-
posals. Unbounded transactional memory systems (e.g.,
[6,7,9]) store transactional read- and write-sets in meta-
data and use it to detect transactional conflicts on mem-
ory accesses. Deterministic shared-memory
multiprocessing [15] and interleaving-constrained mul-
tiprocessing [41] use metadata to track the last read-
ers/writer to a memory location and control interactions
between threads. Memory typestate trackers like HARD
[43] and empty/full-bits [3,5,27,33] store dynamic state
information about the data location. Dynamic informa-
tion-flow tracking [14,34,37] proposals use metadata to
trace ‘tainted’ data as they move through the memory
system. Hardware-assisted garbage collectors (e.g.,
Azul’s Pauseless GC [13]) keep garbage-collection
related state in metadata.

2.2. Architectural Support for Memory
Supervision

Hardware metabits have been proposed and imple-
mented as tagged memory architectures [16] since at
least 1957. Early tagged memory machines (e.g., BNL’s
MERLIN (circa 1957)) carried bits for identifying
memory types. Later machines like HEP [33] and Tera
[5] used tags to ease program synchronization.

More recently, Active Memory [21], MMP [39],
iWatcher [42] and SafeMem [28] propose mechanisms
for fine-grain access monitoring. While Active Memory
targets memory system simulation, MMP focuses on
memory protection. iWatcher and SafeMem seek to
facilitate software debugging. However, these proposals
do not support efficient metadata updates in hardware.
Memtracker [36] addresses this issue with the addition
of a software-programmable metadata transition table.
Log-based Architectures [11,12] enable decoupled
memory monitoring for security and debugging analy-

sis. While all the above proposals examine metadata
implementations, we examine memory supervision at a
more abstract level. Finally, past work addresses atomic-
ity of metadata operations in both tagged [36,37] and
decoupled [20,26] metadata implementations. We
assume such atomicity mechanisms and focus on mem-
ory ordering issues, instead.

2.3. Memory Models

Hardware-centric memory models like SC, TSO
and x86 define reorderings that are allowed or disal-
lowed by hardware. In contrast, programmer-centric
models [1,17] specify memory models in terms of a con-
tract between the programmer and hardware. If the pro-
gram(mer) provides certain information about memory
operations, hardware guarantees that the execution will
obey a simple model like SC.

Adve et al. [1,2] introduce the idea of data-race-
free programs as one such contract. Programmers iden-
tify memory operations as ‘data’ or ‘synchronization’
accesses. A data race occurs if, in an SC execution, two
data operations access the same location, at least one of
them is a write and they are not ordered by intervening
synchronization accesses. If a program is data-race-free,
then its executions on efficient systems like TSO would
still be equivalent to SC. Thus, programmer reasoning
about hardware models is greatly simplified. Recent
work to specify memory models for higher-level lan-
guages like Java and C++ has adopted the programmer-
centric approach [10,22]. We present hardware-centric
specifications in this work. Nevertheless, inspired by
data-race-freedom, we define a program property, safe
supervision, which could enable future programmer-
centric specifications.

3. Motivation

Most existing supervised systems proposals (e.g.
[7,9,26,41,42,43]) assume (either explicitly or implic-
itly) a stricter SC memory model. This section high-
lights three issues that arise when supervised systems
are implemented on prevalent non-SC systems and
motivates a formal approach for solving them.

3.1. TSO-lite, a simple TSO-consistent system
To present issues with weaker memory systems, we
introduce TSO-lite, a simplified TSO-consistent system
that abstracts away most implementation details except
the presence of private non-speculative store buffers.
Note that, throughout this paper store buffers refer to the
entity that holds stores that are retired and committed by
the processor and awaiting global memory ordering
(also known as senior stores). We choose TSO since it is
implemented by SPARC architectures, is formally spec-

371

ified, and represents a valid implementation of the x86
memory model (c.f., x86-TSO [31]).

The TSO-lite sys-
tem consists of a set of pc]
processors, a per-pro-
cessor store buffer and
shared memory
(Figure 1). It is a TSO-
consistent system that
executes and retires
instructions in program
order. TSO-lite places
stores in a store buffer
on retirement. When a
store reaches the head
of the store buffer, TSO-
lite issues it to the mem-
ory system and globally orders it. Loads can bypass
their value from the youngest entry in the store buffer, if
present. Otherwise they get the value from memory and
retire. Thus, younger loads can get reordered before
older stores in the global memory order. In addition to
regular data, memory also carries metabits. Supervised
systems typically require metabits to be accessed atomi-
cally along with regular memory operation
[20,26,36,37]. TSO-lite ensures atomicity by accessing
metabits (in global memory order) along with data
accesses (similar to [36,37]). This atomicity require-
ment leads to subtle correctness and implementation
issues.

Issue I1 (Incorrect Metabit-read Reordering). A
store reads its metabits along with data on reaching the
head of the store buffer. Thus, younger loads could read
their metabits from memory prior to the store’s metabit
read. This reordering can lead to correctness issues in
some supervised systems as explained in Figure 2.
Issue 12 (Load Bypass). Loads can bypass their data
value from the youngest matching store in the store
buffer. However, until this store reaches the head of the
store buffer, it cannot determine the correct metabit
state. Hence, the load cannot bypass metabits value and
has to stall until the matching store completes.

Issue I3 (Late Exception). When a store reads metabits
at the head of the store buffer, they might indicate a trap
to software. However, a precise exception is infeasible
since the processor could have retired instructions that
are younger than the trapping store. Figure 3 illustrates
these last two issues.

While we use the (arguably) naive TSO-lite system
to illustrate these issues, they arise in any system that
exposes store buffers to software. In particular, they
arise irrespective of whether the system uses a tagged or
decoupled metadata implementation.

pc [|

Store Buffer Processor

Metabits

Memory

C
Figure 1. TSO-lite

5 2
2 PCL ST 2,[A]
8 1 m LD [C],r1
£ 2 [0]
o)
Data Metabits E
%‘ A 0 Owned@P1 | | [[%
A2 IS
S8 1 Owned@P2 &
) c e Shared @P1.P2 Data Metabits
A 0 Owned@P1
B 1 Owned@P2
C 42 Shared@P1,P2

(a) DMP-ShTab on SC (b) DMP-ShTab on TSO-lite
Figure 2. Quanta Serialization in DMP-ShTab.
Deterministic shared memory multiprocessing (DMP) [15] ensures that given an input, a multi-threaded execution
always produces the same result. It divides execution into pre-determined chunks of instructions, known as quanta,
that communicate only at the end in a deterministic order. Efficient implementations like DMP-ShTab use metabits
to track data accesses and determine the first point of communication for each quantum. Quanta execute in parallel
as long as they do not communicate and serialize thereafter. Figure 2 (a) shows an example of a two-processor
DMP-ShTab execution on an idealized SC system. While processor P1 executes quantum Q1, P2 executes quan-
tum Q2. In the proposed system, they execute in parallel until they reach the accesses to shared locations B and A
respectively. DMP-ShTab blocks the processors and serializes their execution such that Q1 logically preceeds Q2.

Figure 2 (b) shows the DMP execution running on TSO-lite. As earlier, P1 blocks when it reaches the first shared
access (load to B). Meanwhile, P2 executes quantum Q2 and reaches its first shared access (store to A). The TSO-
lite system places the store in the store buffer and continues execution. P2 detects the need to block only when this
store reaches the head of the store buffer and reads the metabits. Meanwhile, P2 could execute the subsequent load
to B or not, leading to two possibilities. If P2 executes the load, it reads the value ‘42’ from memory (as shown in
the figure). If it does not, then it blocks and continues only after Q1 completes. In this case, P2’s read to B returns
‘1’ (the value written by P1’s store to B). Consequently, the two executions could diverge and the system is no
longer deterministic.

3.2. Existing Proposals for Non-SC Supervised
Systems

A few existing proposals make a commendable
effort to address relaxed memory systems [15,28,36,40].
However, they are either ad hoc or informal and hence
incomplete. We present some examples.
Incorrect Metabit-read Reordering (I1). The DMP
paper attempts to mitigate this issue by providing the
following guidance: “depending upon the consistency
model of the underlying hardware, threads must perform
a memory fence at the edge of a quantum” [15]. Unfor-
tunately, this statement is ambiguous and can be inter-
preted in many ways, both correct and incorrect. A valid
interpretation is that it suffices to insert a dynamic fence
at the end of every quantum, which can lead to non-
deterministic executions as shown in Figure 2. A correct
interpretation is to insert a fence at the first point of
communication for each quanta.lHowever, because any

1. Confirmed by DMP authors in a private communication as the
interpretation assumed in their work.

372

memory operation may result in communication, this
means that all stores during the parallel phase must be
followed by a fence, essentially eliminating any benefit
of the store buffer in the parallel phase (the store buffer
may be used as normal during the sequential phase).

Memtracker [36], another supervised system,
addresses weaker memory models with store buffers as
follows: “the simplest way to ensure correct behavior is
to flush the write buffer when there is a state update and
do the write directly to the cache.” While this is accurate
for all the uses presented in their work, it does not
address metabit-read reordering(I1).

Load Bypass (I12). To the best of our knowledge, none
of the existing proposals address this issue.

Late Exception (I3). While some older proposals [29]
tackle the late exception issue, modern supervised sys-
tem proposals have largely ignored it.

7 ST1,[A T T1,[A T1,[A

pe =1 STHAL e) STLIAL fpe () STHIAY
5 LD [B],r1 ‘_____ «| LDI[B], r1 LD [B], r1
S {r1 [o ST2[Cl |r1![1 [\NST2ICI |r1 [1 | [N\ST2[C]
] E=—%
& (2] 0 LD[Clr2 12 [D°] | LPICL2 |r2] 0 LD [C], r2
/M N
B T Load Bypass
é ,I Retry/Trap

Data Metabits Data Metabits Matabits

%‘ A 0 Full A 0 Full A 0 Full
E |B 1 None B 1 None B 1 None
= C 0 Empty C 0 Empty C 0 Empty

Figure 3. Empty/Full-bits on TSO-lite

Empty/full-bits [33] enable lightweight synchronization among different threads of execution. They represent
one of the three states—~None, Empty and Full and are used as follows: loads (consumers) to a Full location
complete and change the state to Empty. Similarly, stores (producers) to an Empty location complete and change
the state to Full. However, if a load encounters an Empty state or a store encounters a Full state, hardware does
not allow the memory operation to complete. It retries the operation for a fixed number of times before trapping
to user-level software for higher level actions. Finally, loads and stores to blocks with the state None proceed as
normal.

The figure illustrates the execution sequence of an empty/full-bits based program on the TSO-lite system with
one processor. As the processor executes memory operations, the state changes from the previous step are shown
in dashed circles. While the load to C runs into the Load Bypass (I12) issue, the subsequent draining of the store

buffer leads to the Late Exception (I3) issue.

3.3. Discussion

A naive solution to issue I1 is to prohibit store buff-
ers in the presence of memory supervision which can
lead to significant performance loss (as we show in
Section 5). On the other hand, permitting store buffers
can cause some (but not all) supervised systems to
exhibit incorrect execution. Which current and future
supervised systems can safely reorder metabit-reads and
thus use performance-enhancing store buffers? While a
few supervised systems (e.g., DIFT) that do not read
metabits as part of a store operation, trivially avoid this
problem, the answer is non-trivial for the rest. Section 4
seeks a formal answer.

Even if a supervised system can safely reorder met-
abit reads, designers still need to address issues 12 and
13. Based on their dynamic frequency, designers have to
pick solutions that minimize performance impact. We
present a quantitative analysis in Section 5 and demon-
strate low-cost solutions in Section 6.

4. Supervised Memory

We define a memory model that unifies and formal-
izes the memory aspects of existing supervised systems.

373

4.1. Definition

Supervised systems typically consist of three com-
mon components—metabits for storing metadata, mem-
ory operations that use metadata for data supervision
and finally, a mechanism to jump to software handlers
on encountering specific metadata values.

Supervised memory consists of a set of memory
locations. Each location A is a two-tuple <A.d, A.m>
with A.d representing the data value and A.m represent-
ing the corresponding metadata value. A memory access
is aread or write to a location’s data or metadata compo-
nent. Thus, an access to location A could be one of a
data read (Rp4), data write (Wy 4), metadata read
(R 1) or a metadata write (Wy).

To enable supervision of data accesses, supervised
memory provides higher-level memory operations.
Each operation consists of a set of accesses. In addition
to regular data operations like load and store, two super-
vised operations are provided: supervised loads (sLDy)
(defined in Figure 4) and supervised stores (sST,),
which are similar to supervised loads except that the
data read is replaced with a data write. Thus, a super-
vised operation can be viewed as an atomic compound
operation containing a metadata read access, a data
access and (possibly) a metadata write access. The
NEXT function is a programmable metadata transition

sLDp=>

Retry:
atomic {
cur, = Val[Rp nl
next, = NEXT(Oproag, CUry)
if (next, ==EXCEPTION) then
Jump to Handler
Ra.a
if (next, #cury)

Wa.m nRext,

}

Handler:

Figure 4. Supervised Load

function to efficiently update metadata in hardware.
Finally, EXCEPTION is a special metadata value which,
if read, transfers control to a user-level handler where
appropriate software-specified actions can be taken.
Control could optionally be transferred back to the
supervised operation. While not complete, we find the
above definition sufficient to formalize the shared mem-
ory aspect of a supervised system.

4.2. Consistency Models for Supervised
Memory

A memory consistency model is essential to accu-
rately specify the behavior of a shared-memory model
like supervised memory. We focus on hardware-centric
axiomatic specifications that are most accessible to
hardware designers. The memory model is specified as a
set of rules (axioms) that restrict the set of legal execu-
tions on a memory system.

Sequential consistency is widely accepted as the
simplest model, closest to programmer intuition of
shared-memory operation. However, it prohibits non-
speculative reordering of independent accesses (i.e.,
accesses to different memory locations) and conse-
quently, optimizations like store buffers. Thus, most
popular architectures (e.g., x86) do not implement SC.
On the other hand, TSO permits the use of private store
buffers. While systems that implement TSO can still
lead to non-intuitive behaviors, most programs (except
well-known corner cases like Dekker’s algorithm)
behave identically on both SC and TSO systems. Thus,
TSO axioms provide a good baseline model to explore
supervised memory models.

We now present informal definitions of two TSO-
based supervised memory models. Bobba’s thesis
(Appendix A, page 116 [8]) gives formal definitions.
4.2.1. TSOy;: A simple TSO-like memory model

An execution conforms to TSOy; if it obeys the
TSO axioms (Table 1) with respect to all accesses in a

Table 1. TSO axioms

Store Order|Total order on all write accesses

Atomicity |No intervening accesses for atomic operations

Termination | All write accesses eventually complete

Load Value |Read returns latest write from memory or store

buffer

Memory Barrier

No reordering across a barrier

ReadAny | Accesses cannot pass outstanding reads

(Reordering Axiom 1/2)

WriteWrite | Writes cannot pass outstanding writes

(Reordering Axiom 2/2)

374

supervised program. Hence, in a TSO,; execution, there
is (a) a total order on all writes, (b) reads are not reor-
dered with respect to earlier reads from the same proces-
sor, (c) writes are not reordered with respect to earlier
reads or writes from the same processor, and (d) reads
get their value from either the latest earlier write on the
same processor or the latest earlier write in the total
order.

Simple to reason about. Since TSO,;; restricts certain
memory access reorderings, it can prevent non-intuitive
behaviors. For example, consider the DMP example pre-
sented in Section 3.1. Since TSO,}; prohibits reordering
two metadata read accesses, it would prevent incorrect
metabit-read reordering (I1). Hence DMP on TSOy;
systems would not run into this correctness issue. More-
over, it is easy to see that programmers who are familiar
with the conventional TSO model can also reason about
TSSO,y

Whither performance? TSO,;;, though simple, can
introduce performance problems in real implementa-
tions. Since TSO,); prohibits reordering any two read
accesses, it prevents an independent supervised load
from passing a prior supervised store (both contain a
metadata read). In the absence of speculation, super-
vised loads have to stall until all outstanding supervised
stores complete, thus making store buffers ineffective.
Consequently, TSO,; implementations perform like SC
systems on programs with frequent supervised opera-
tions.

Fortunately, many supervised memory programs do
not seem to rely on all the ordering guarantees provided
by TSO,y;. We, in the same spirit as programmer-centric
models, observe that if we capture the orders that can
be safely ignored during an execution, we could
devise much more efficient models.

To help identify these unnecessary orders, we
examine some supervised memory executions that
would be illegal in a TSO,;; system but are nevertheless
semantically correct. The first example (Figure 5 (left))

Initial State: Final State:

A.d=0 A.m=Empty| TO Tl A'df 1 A.mempty
B.d=0 B.m=Empty @ B.d=2 B.m=Empty
=0 B. @ sSTrLIA] sST3B] O | rl=1 3=
2:(1) iii% (3 sLD [BL.r2| sLD [A]4@ | 1252 4=
©) m 0) ©)
R
TO Bm | RamWVad¥am| RBm®BdVEm
co co
R W, W
Tl m| BB VBAVBm| RamRadVam
Time = @ po ® @

Initial State: TO T1

Begin_Xact
A.d=0 A.m=Nong =
B.d20 B mNond (D sST r1,[A]sLD [B1,:3Q3)

Final State:
A.d=1 Am=W@TO0
B.d=0 B.m=R@T0

=1 13=0 (DsLD [B]s2sLD [A]r4@) | Fi=1 13=0

20 14=0 2=0 r4=0

re=0 ra= Commit_Xact

@ PO @
R. W,
TO| R m R Ba VB RamVadVam
cOo ¥ co
T1 RpmRBa | |Ram® ad
74
po ® @

0
= Program Order P
co

—= Conlflict Order

Figure 5. Non-TSO,; Executions

shows a program that uses empty/full-bits. In the pro-
gram, A and B can be viewed as one-entry queues. Each
thread places an element in one queue and picks a new
element from another queue. At the bottom, we show a
non-TSO,;; execution that, nevertheless, leads to a
semantically correct result with both threads reading the
latest values from the queues. Observe that metadata
accesses to A.m are only used to ensure that operation
@’s data write happens before @'s data read. Similarly,
accesses to B.m are used to only order data accesses
from @ and @. Thus, it is not wrong to order @‘s meta-
data read before . The second example (Figure 5
(right)) shows a transactional memory (TM) program
wherein one thread is executing a transaction while
another concurrently reads locations that are accessed
by the transaction. Metadata is used to carry the transac-
tion’s read- and write-set information and supervised
operations prevent conflicting accesses. We again,
observe that accesses to A.m and B.m are intended only
to control their corresponding data accesses.
4.2.2. Safe Supervision

To generalize these observations, we propose a pro-
gram property, Safe Supervision, that encapsulates the
ordering flexibility provided by supervised programs.

A program is safely supervised if a supervised oper-
ation to a memory location is only used to control access
to that memory location’s data. Bobba’s thesis provides
the formal definition (Appendix A.2.1, p. 122 [8]).

Since safely supervised programs use metadata to
control access to a memory location’s data (and not to
order access to other locations), hardware can safely
reorder metadata operations to one address with respect
to accesses to other addresses without this reordering
being observed by the programmer. Thus, safe supervi-
sion enables a precise specification to when hardware
can safely reorder metabit-reads (issue I1).

Which programs are safely-supervised? Safe supervi-
sion is a contract between supervised memory hardware
and supervised software (consisting both supervised
system software and the high-level program). We postu-
late (but do not formally prove) that most existing uses
of metabits like empty/full-bits, transactional memory,
MMP, Active Memory, tagged memory, memory
typestate trackers like HARD and Memtracker, and
hardware-assisted garbage collection obey safe supervi-
sion since metadata carries information related only to
its corresponding data location. However, exceptions
exist. Consider the DMP example in Section 3.1. Meta-
data accesses are used by the underlying supervised sys-
tem software to both track a location’s sharing status
and to detect the first non-private data access. This
“first-access’ requirement implies that a metadata read
relies on the completion of all previous metadata reads.
Hence, DMP programs are not safely-supervised. With
current supervised systems, in rare cases, high-level pro-
grammers (Figure 6) can explicitly choose to violate
safe supervision. Such programs forgo the performance
benefits of more relaxed memory models such as the
one we propose next.
4.2.3. TSOgata: An Efficient Memory Model
Informally, an execution conforms to TSOg,, if it
obeys TSO’s reordering axioms (Rows 6&7, Table 1)
with respect to data accesses and obeys the rest of the
axioms (Row 1-5, Table 1) for all the accesses. Hence,
in a TSOgy,, execution there is (a) a total order on all
writes, (b) data reads are not reordered with respect to
earlier data reads from the same processor, (c) data
writes are not reordered with respect to earlier data
reads or data writes from the same processor, and (d) all
reads get their value from either the latest earlier write
on the same processor or the latest earlier write in the
total order.

375

Good performance. TSOgy,, can be implemented effi-
ciently. Since TSOy,;, does not prohibit reordering inde-
pendent metadata reads, independent supervised loads
can pass supervised stores that are placed in store buff-
ers. Thus, implementations can effectively use store
buffers. It can be seen that TSOyg,,, is a strictly weaker
model than TSO,; since every TSO,-consistent execu-
tion is also a TSOgy,,-consistent execution and there
exist TSOgy,q,-consistent executions that are not TSO,-
consistent (Figure 5). By virtue of allowing more legal
executions, TSOy,, gives more flexibility to build effi-
cient hardware.
Whither simplicity? TSOg,,, is, however, potentially
trickier to reason about. Consider the empty/full-bits
based non safely-supervised program in Figure 6. Oper-
ation @ has to change the metadata to ‘Empty’ before
operation @ can complete. This is used to ensure that
operation @ happens before operation @. A TSOgy,,-
consistent execution need not enforce this order since
T1’s data read to A can pass its earlier metadata read to
B. Consequently, it leads to an incorrect execution. Note
that TSO,;; would prohibit such an execution since T1’s
reads would not be reordered.

Bobba’s thesis (Appendix A.3, p. 126 [8]) presents
a proof that for programs that obey the safe supervi-
sion property, TSOg,¢, = TSOyy, i.e., the program
would behave identically on both the systems. Similar to
data-race-freedom, software programmers that adhere to
safe supervision can reason about TSO,; systems and
yet get the performance of TSOgy,, systems.

5. Quantitative Case Studies

It is well-known that store buffers provide tangible
performance benefits in conventional systems. In this
section, we demonstrate the performance potential of
store buffers (facilitated by TSOg,,) for supervised sys-
tems using two previously-proposed safely-supervised
systems—HARD [43] and TokenTM [9].

5.1. Methodology

The performance benefit of store buffers depends
primarily on the supervised system of interest and the

Final State:
A.d=1 A.m=None

Initial State:
A.d=0 A.m=None TO T1

B.d=2 B.m=Full
B.d=0 B.m=Full (D STrL[A] | sSTr3.[B] @ |ri=1 13=0
gz(l) S;g (3 LD [BL.r2 | LD [Al.r4 @ |r2=0 r4=0
Time po
= ~
T0 Ad] R RpaWBm
co co
@ \ ©)
TI Rad R emVB.dVBm

po
Figure 6. Unsafe Supervision

specific core design. We use execution-driven full-sys-
tem simulation based on the Wisconsin GEMS toolset
[23] in conjunction with Virtutech Simics [38] for evalu-
ation. Table 2 gives the key system parameters for the
two supervised systems.

5.2. Hardware-Assisted Lockset-based Race
Detection (HARD)

Zhou et al. [43] propose HARD to efficiently detect
mutual exclusion bugs in multi-threaded software. It
uses the lock-set algorithm to catch violations of com-
mon locking paradigms. For instance, it ensures that all
accesses to a shared variable are protected by at least
one common lock. It does so by tracking the locks cur-
rently held by a thread (LockSet) and comparing them
against the set of locks used to protect the variable thus
far (CandidateSet). HARD tracks these lock-sets at
cache-block granularity and uses Bloom filters to effi-
ciently represent them in hardware. In order to identify
shared memory locations, it uses a simple finite state
machine that initializes blocks in private states and tran-
sitions them to shared states when they are accessed by
multiple threads.

To define HARD using supervised memory, we first
assign semantics to metadata. In this case, metadata
stores the sharing state of the location and its Candidate-

Table 2. Key Supervised System Parameters

HARD TokenTM
Core 8-core out-of-order, 4-wide, 32-entry instruction window, 8-core 1 IPC 1n-order
64-entry ROB, Fully pipelined functional units, 6-stage
integer pipeline, YAGS branch predictor, Store-set predictor
L1 Cache 4-way 32 KB split/private, 1 cycle uncontended latency
L2 Cache 8-way, 16MB unified/shared, 34 cycle uncontended latency
Interconnection Crossbar, 64 byte 14-cycle links
Coherence MESI directory protocol, Full-bit vector L2 Directory
Memory Controllers 4 on-chip memory controllers
Memory 4 GB 250-cycle response latency

376

1.4 14
[HARD_ALL
[] HARD_DATA
5 &
3 1.2 3 1.2
2 2
_"O’ %)
= B
£ £
5 1.0+ S 104
z z
0.8 - 0.8
APACHE JBB OLTP ZEUS

[TOKENTM_ALL
[C] TOKENTM_DATA

) G 4 & 4 RY |2 ¥,
e eno'?ze ””"de, Ibe‘?ns abj,%[b Scan aca[[.% aq,

Figure 7. Performance Benefit of TSO,, vs. TSO,): HARD (left) and TokenTM (right)

Set, if applicable. The NEXT function defines the transi-
tions between the metadata states. For instance, it
specifies that on a store to a ‘shared’ location with Can-
didateSet C (i.e., cur,, = Shared # C) by a thread with
LockSet L, the new metadata state, next,, = Modified #
C N L. Metadata states where the CandidateSet is empty
are defined to be EXCEPTION states. The exception
handler logs the memory location and the old Candida-
teSet for subsequent inspection by the programmer. It
then resets the metadata to avoid recurring exceptions
on this location. HARD is safely-supervised. The lock-
sets and the finite state machine are specific to a mem-
ory location and the exception handler only logs the
trapping memory location.

We build two versions of HARD—HARD,;; that
operates with the TSO,;; memory model and HARD
that operates with TSOg,,, using a 32-entry store buffer.
We model the full functionality of store buffers includ-
ing prohibiting load bypassing for supervised loads. We
do not model the cache overheads of metadata since the
overheads are similar for both TSOy,, and TSO,;; and
they are estimated to be small (0.1-2.6% by Zhou et al.
[43]). We evaluate the two implementations using the
Wisconsin commercial workload suite [4]. Since we are
unable to modify the source code, we use published pre-
diction techniques to identify lock acquisition and
release in the simulator [30].

5.3. TokenTM: Token-based Transactional
Memory

TokenTM is an unbounded hardware TM system
that uses memory tokens to enforce a per-location sin-
gle-writer/multiple-reader invariant. As a result, it
detects memory conflicts among concurrent speculative
transactions. Each memory location has T logical tokens
and TokenTM requires a thread to acquire one (T)
token(s) before it can read (write) a location. Memory
metabits carry information about which threads have

377

acquired tokens for the location thus far. Metabits are
also overloaded to perform TM version management,
wherein the thread acquiring T tokens also logs the loca-
tion’s old data value in a thread-private log.

To define TokenTM using supervised memory, we
first assign semantics to metadata. In this case, metadata
carries the acquired token information for the location.
The NEXT function enforces the TokenTM token acqui-
sition rules. It checks that a thread either has sufficient
tokens or can acquire the tokens to perform the memory
operation. For instance, on a store by thread t1 to a loca-
tion with all tokens available (i.e., cur,, = None Taken),
the new metadata state next,, = T tokens @ t1. However,
if the thread cannot acquire the required number of
tokens, the new metadata state would be an EXCEP-
TION state. This would invoke the TokenTM software
handlers that perform conflict resolution. TokenTM is
safely-supervised. It uses metadata to detect a conflict-
ing access on the current location. This information is
not used to infer the presence or absence of conflicts on
prior or later accesses.

We build two versions of TokenTM—TokenTM ,;;
that implements the TSO,;; memory model and TokenT-
M 4., that implements TSOg,, with a 32-entry store
buffer. We modify the source code obtained from the
authors of the original work to incorporate store buffers.
Our implementation drains the store buffers on a trans-
action commit. We evaluate the performance of the two
TokenTM implementations using the STAMP bench-
mark suite [24].

5.4. Results

Figure 7 shows the overall performance comparison
between the TSOg4,, and TSO,;; systems. Table 3 pre-
sents some behavioral characteristics of supervised sys-
tem programs. The first three rows give the percentage

Table 3. Supervised Operations Characteristics

HARD g, TokenTM g,
=
v g 5 2 £ 5
< =5 o N o O k= v 3 A S =
%Updates 15| 07| 04| 22| 97| 206 60| 16| 24| 20| 105] 58
%Exceptions <0.1]| <0.1 | <0.1 | <0.1 | <0.1 | <01 | 02| <0.1| <0.1] <0.1 | <0.1 | <0.1
%SupLoads 66.1 | 658 | 692 | 629 759 | 873 | 904 | 93.7 | 82.8 | 877 | 832 | 702
%SupLoadSBHit 41| 17| 43| 49| o1| o1| 02| <01] 01| 02]<01]| 03

of supervised operations that update metadata, that take
an exception and that are supervised loads respectively.

We focus on the three key issues—reordered met-
abit-reads, load bypass and late exceptions—that arise
in supervised systems on relaxed memory systems.
Incorrect Metabit-read reordering (I1). While
HARD,;; and TokenTM,;; do not reorder metabit-reads,
the safe supervision property enables HARDg,., and
TokenTM,;, to safely do so using store buffers. Since
TokenTM and HARD treat every memory operation as
supervised, this optimization is important for perfor-
mance. HARD,, exhibits a speedup ranging from 3%
in JBB to 5% in Apache over HARD,;; on the commer-
cial benchmarks (Figure 7 (left)). On the other hand,
TokenTMg,;, exhibits much higher speedups over
TokenTM,; ranging from 3% in Kmeans to 22% in Lab-
yrinth (Figure 7 (right)). TokenTMg,, achieves better
overall speedups than HARD,,, for two major reasons.
First, in-order cores used by TokenTM systems are more
sensitive to reordering issues than out-of-order cores.
Second, the use of store buffers reduces the conflict win-
dow for transactions in TokenTMg,,.

Overall, our results show that there exist super-
vised systems and core designs where TSOg,, pro-
vides significant performance over TSO,;.

Load Bypass (I12). The final row of Table 3 gives the
percentage of supervised loads that find a matching
store in the store buffers. Our results show that only a
small percentage of loads are stopped from bypassing
their values from the store buffers. Hence, their impact
on performance is likely to be small.

Late Exceptions (I3). A few supervised operations take
an exception (Table 3, row 2). Thus, while it is impor-
tant to handle late exceptions correctly, the performance
of exception handlers is not critical.

6. Implementation Case Study

In order to study supervised memory “end to end”
and to ensure that the above simulation studies did not
gloss over real implementation issues, we examined the
RTL on an industrial design, added key hardware com-

378

ponents and developed associated low-level trap han-
dlers. Here we highlight key findings of the study.

We choose the OpenSPARC T2 multi-core system
because it has a publicly available RTL model and
already implements TSO for data accesses. Each of
eight 8-thread cores has two integer pipelines, a float-
ing-point pipeline and a memory pipeline and can issue
instructions from at most two threads per cycle. It buff-
ers stores in a per-thread 8-entry store buffer (STB) and
issues them to the shared L2 cache in order. Loads
bypass values from the store buffer, if present.

Figure 8 illustrates the datapath of the load-store
unit (LSU) that executes and retires supervised opera-
tions. Two issues deserve particular mention. First, we
handle supervised loads that match an address in the
store buffer as a partial hit to avoid bypassing (Issue 12).
The load is stalled until the store completes. Second, we
handle metadata exceptions on supervised stores (issue
13) with a deferred trap and sparse restart [25] (similar
to Qiu et al. [29]). On a late exception, we architectur-
ally expose the incomplete stores in the store buffer to a
hypervisor-level trap handler. We re-use the existing
store buffer diagnostic interface (ASI_STB_ACCESS)
to read them out. To flexibly complete these operations
later, software needs the entire context of the store oper-

VA
(it |

PA

1dst_miss
load data (hit)
metadata

D$
Tag Array

D$
Data Array]

waysel

[

data return bypass to register file

raw bypass data

store data

A‘misq

store data

-7

Ll
Il
I

—®

store

4,;]4
—= loa

-2
<

fill data

ack/nack

1d misg

i

L2—>core

ack/nack

core—>L2

Figure 8. OpenSPARC Load-Store Unit (LSU)

ENTRY (dump_store_buffer)

/* %$gl contains HEAD of dump buffer */
GET_ERR_DFESR (%g4, %g3)

srlx %g4, DFESR_STB_INDEX_SHIFT, %g4
and %g4, DFESR_STB_INDEX_MASK, %g3

/* g3 contains TAIL of store buffer */
or %90, ASI_STB_FIELD_CURR_PTR, %gb5

ldxa [%g5]ASI_STB_ACCESS, %g4
/* g4 contains HEAD of store buffer */
loop:
/* Check for wrap-around */
cmp %93, 7
bg,pn %$xcc, wrap_around
nop

dump_entry:

or %93, ASI_STB_FIELD_DATA,
ldxa [%$g5]ASI_STB_ACCESS, %g2
/* Store Buffer data */

%95

stx %g2, [%gl+ERR_STB_DATA]
or %g3, ASI_STB_FIELD_MARKS, %g5
ldxa [%g5]ASI_STB_ACCESS, %g2

/* Store Buffer address and byte marks */

stx %g2, [%gl+ERR_STB_MARKS]

cmp %93, %g4 ! If (TAIL==HEAD) break;
bne %xcc, loop

inc %g3

Figure 9. Store Buffer Dump Handler

ation (e.g., virtual address and address space identifier).
Hence, we expand the store buffers to carry this addi-
tional information. Figure 9 shows an extract of the han-
dler code for reading out the contents of a store buffer.
The handler begins from the head of the buffer and
walks down to the tail; reading out and saving the con-
tents for subsequent execution. A subtle deadlock issue
arises if the stores in the handler use the same store
buffer entries (like normal ASI stores in SPARC).
Hence, we allocate a separate logical single-entry store
buffer for the handler code.

We make coarse estimates of implementation cost
using Synopsys Design Compiler [35] in conjunction
with its 90nm technology library (saed90nm) and Cacti
5.3 [32] for relative (not absolute) memory array com-
parisons, as Cacti is known to be pessimistic for small
memories. This study asks and answers the three follow-
ing questions.

Can we correctly handle supervised store
exceptions? Yes. As shown in Figure 9, the exception
handler uses ASI loads to access the store buffer entries
on an exception. Each access takes about 21 cycles.
Overall, the handler takes 203 cycles to read out half the
store buffer (4 entries).

Is it easy to add metabits to the existing design?
Possible. We widened the data paths and did not have to
change the control paths in the DRAM and L2 control-
lers. We modified 6 (of 50) design files for the DRAM
controller and 3 (of 8) files for the L2 controller.

379

Table 4. Memory Area (in mm?) in OpenSPARC T2

Module Base TSOgata | %Overhead
DRAM Controller 0.19 0.22 15.8%
L2 Bank 28.83 31.71 10.0%
L2 Controllers 0.21 0.21 <1%
L1 Data Bank 1.20 1.32 10%
Store Buffer RAM 0.06 0.17 83%
Other 52.93 52.93 0%

Total | 305.69 331.65 8.5%

Do metabits impose a significant area overhead? No.
In terms of area, the overhead mainly arises in the mem-
ory arrays. Table 4 presents their area for various mod-
ules in the base and TSOg,, designs. The biggest
memory array (the L2 data banks) incurs an overhead of
10%.

7. Conclusions and Future Work

This work builds a firm foundation for future super-
vised systems by addressing the two drawbacks of many
existing proposals: SC-centricity and no formalism. To
this end, we develop supervised systems that (1) operate
with the TSO (and thus x86) memory model, and (2) are
formally specified.

We also introduce a program property, safe supervi-
sion, whose intent is similar to data-race-freedom and
simplifies programmer reasoning about supervised sys-
tems. As one astute reviewer observed, safe supervision
restricts metadata use to be coherence-like (i.e., per-
address) rather than consistency-like (across address).

Future work could explore programmer-centric and
weaker hardware-centric models for supervised mem-
ory, tackle more supervised systems, and expand safe
supervision to cover a wider range of programs.

8. Acknowledgements

This work is supported in part by the U.S. National
Science Foundation (CNS-0551401, CNS-0720565 and
CNS-0916725), Sandia/DOE (#MSN123960
DOE890426), and University of Wisconsin (Kellett
award to Hill). Lupon’s visit to Wisconsin was sup-
ported by the Generalitat de Catalunya under grant
2009-BE2-00306. The views expressed herein are not
necessarily those of the NSF, Sandia, DOE, or GdC. Hill
and Wood have a significant financial interest in
Microsoft. Bobba was a PhD student at the University of
Wisconsin-Madison when this work was performed.

We thank Siddharth Barman, Arkaprava Basu, Dan
Gibson, Michael Swift, Amit Kumar, Greg Wright, and
the anonymous reviewers for their comments.

9.
(1]

References

Sarita V. Adve and Kourosh Gharachorloo. Shared Memory
Consistency Models: A Tutorial. I[EEE Computer, 29(12):66—
76, December 1996.

Sarita V. Adve and Mark D. Hill. Weak Ordering - A New

Definition. In Proc. of the 17th Annual Intnl. Symp. on Com-

puter Architecture, pages 2—14, May 1990.

Agarwal et al. The MIT Alewife machine: Architecture and

Performance. In Proc. of the 22nd Annual Intnl. Symp. on

Computer Architecture, pages 2—13, June 1995.

Alameldeen etal. Evaluating Non-deterministic Multi-

threaded Commercial Workloads. In Proc. of the 5th Work-

shop on Computer Architecture Evaluation Using Commer-

cial Workloads, pages 30-38, February 2002.

Alverson et al. The Tera computer system. In Proc. of the 4th

Intnl. Conf. on Supercomputing, pages 1-6, June 1990.

Baugh et al. Using Hardware Memory Protection to Build a

High-Performance, Strongly-Atomic Hybrid Transactional

Memory. In Proc. of the 35th Annual Intnl. Symp. on Comput-

er Architecture, June 2008.

Blundell et al. Making the fast case common and the uncom-

mon case simple in unbounded transactional memory. In

Proc. of the 34th Annual Intnl. Symp. on Computer Architec-

ture, June 2007.

Jayaram Bobba. Hardware Support for Efficient Supervised

and Transactional Memory Systems. PhD thesis, University

of Wisconsin-Madison, 2010. http://www.cs.wisc.edu/multi-
facet/theses/jayaram_bobba_phd.pdf.

Bobba et al. TokenTM: Efficient Execution of Large Trans-

actions with Hardware Transactional Memory. In Proc. of the

35th Annual Intnl. Symp. on Computer Architecture, June

2008.

[10] Hans-J Boehm and Sarita V. Adve. Foundations of the C++

Concurrency Memory Model. In Proc. of the SIGPLAN 2008

Conf. on Programming Language Design and Implementa-

tion, pages 68-78, June 2008.

Chen et al. Log-based architectures for general-purpose mon-

itoring of deployed code. In ASID ’06: Proc. of the 1st work-

shop on Architectural and System Support for improving soft-

ware dependability, pages 63-65, 2006.

Chen et al. Flexible Hardware Acceleration for Instruction-

Grain Program Monitoring. In Proc. of the 35th Annual Intnl.

Symp. on Computer Architecture, pages 377-388, June 2008.

[13] Click et al. The Pauseless GC Algorithm. In VEE ’05: Proc.
of the Ist Intnl. Conference on Virtual Execution Environ-
ments, pages 46-56, 2005.

[14] Dalton et al. Raksha: A Flexible Information Flow Architec-
ture for Software Security. In Proc. of the 34th Annual Intnl.
Symp. on Computer Architecture, June 2007.

[15] Devietti et al. DMP: Deterministic Shared Memory Multipro-
cessing. In Proc. of the 14th Intnl. Conf. on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 85-96, March 2009.

[16] Edward A. Fesutel. On the advantages of tagged architecture.
IEEE Transactions on Computers, 22(7):644-656, 1973.

[17] Gharachorloo et al. Memory Consistency and Event Ordering
in Scalable Shared-Memory. In Proc. of the 17th Annual Int-
nl. Symp. on Computer Architecture, pages 15-26, May 1990.

[18] Hangal et al. TSOtool: A Program for Verifying Memory
Systems Using the Memory Consistency Model. In Proc. of
the 31st Annual Intnl. Symp. on Computer Architecture, June
2004.

[19] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, Part 1, September 2009.

[20] Hari Kannan. Ordering Decoupled Metadata Accesses in
Multiprocessors. In Proc. of the 42nd Annual IEEE/ACM In-
ternational Symp. on Microarchitecture, December 2009.

[21] Alvin R. Lebeck and David A. Wood. Active Memory: A

New Abstraction for Memory System Simulation. ACM

Transactions on Modeling and Computer Simulation,

7(1):42-77, January 1997.

(2]

(3]

(4]

(3]
(6]

(71

(8]

[9]

(11]

[12]

380

[22] Manson et al. The Java Memory Model. In POPL ’05: Proc.
of the 32nd Symposium on Principles of Programming Lan-
guages, pages 378-391, 2005.

[23] Martin et al. Multifacet’s General Execution-driven Multi-
processor Simulator (GEMS) Toolset. Computer Architec-
ture News, pages 92-99, September 2005.

[24] Minh et al. STAMP: Stanford Transactional Applications for
Multi-Processing. In IISWC ’08: Proceedings of The IEEE
International Symposium on Workload Characterization,
September 2008.

[25] Mayan Moudgill and Stamatis Vassiliadis. Precise Interrupts.
IEEE Micro, 16(1):58-67, 1996.

[26] Vijay Nagarajan and Rajiv Gupta. Architectural Support for
Shadow Memory in Multiprocessors. In VEE '09: Proc. of the
2009 Intnl. Conference on Virtual Execution Environments,
pages 1-10, 2009.

[27] Gregory M. Papadopoulos and David E. Culler. Monsoon:
An explicit token-store architecture. In ISCA "98: 25 years of
the international symposia on Computer architecture (select-
ed papers), pages 398-407, 1998.

[28] Qin et al. SafeMem: Exploiting ECC-Memory for Detecting

Memory Leaks and Memory Corruption During Production

Runs. In Proc. of the 11th IEEE Symp. on High-Performance

Computer Architecture, February 2005.

Xiaogang Qiu and Michel Dubois. Tolerating Late Memory

Traps in ILP Processors. In Proc. of the 26th Annual Intnl.

Symp. on Computer Architecture, May 1999.

Ravi Rajwar and James R. Goodman. Speculative Lock Eli-

sion: Enabling Highly Concurrent Multithreaded Execution.

In Proc. of the 34th Annual IEEE/ACM International Symp.

on Microarchitecture, December 2001.

Sewell et al. x86-TSO: a rigorous and usable programmer’s

model for x86 multiprocessors. Commun. ACM, 53(7):89-97,

2010.

[32] Shyamkumar et al. CACTI 5.1. Technical Report HPL-2008-
20, Hewlett Packard Labs, 2008.

[33] Burton J. Smith. Architecture and Applications of the HEP
Multiprocessor Computer System. Society of Photo-optical
Instrumentation Engineers, 298:241-248, 1981.

[34] Suh et al. Secure Program Execution via Dynamic Informa-
tion Flow Tracking. pages 85-96.

[35] Synopsys. Synopsys Design Compiler Ultra. http://www.syn-
opsys.com/Tools/Implementation/RTLSynthesis/Pag-
es/DCUlItra.aspx, 2009.

[36] Venkataramani et al. MemTracker: Efficient and Program-
mable Support for Memory Access Monitoring and Debug-
ging. In Proc. of the 13th IEEE Symp. on High-Performance
Computer Architecture, pages 273-284, February 2007.

[37] Venkataramani et al. Flexitaint: A programmable accerelator
for dynamic taint propagation. In Proc. of the 14th IEEE
Symp. on High-Performance Computer Architecture, pages
173-184, February 2008.

[38] Virtutech Inc. Simics
tp://www.simics.com/.

[39] Witchel et al. Mondrian memory protection. In Proc. of the

10th Intnl. Conf. on Architectural Support for Programming

Languages and Operating Systems, pages 304-316, October

2002.

Xu et al. A Regulated Transitive Reduction (RTR) for Longer

Memory Race Recording. In Proc. of the 12th Intnl. Conf. on

Architectural Support for Programming Languages and Op-

erating Systems, pages 49-60, October 2006.

Jie Yu and Satish Narayansamy. A Case for an interleaving

constrained shared-memory multi-processor. In Proc. of the

36th Annual Intnl. Symp. on Computer Architecture, pages

325-336, June 2009.

Zhou et al. iWatcher: Efficient Architectural Support for

Software Debugging. In Proc. of the 31st Annual Intnl. Symp.

on Computer Architecture, pages 224-237, June 2004.

Zhou et al. HARD: Hardware-Assisted Lockset-based Race

Detection. In Proc. of the 13th IEEE Symp. on High-Perfor-

mance Computer Architecture, pages 121-132, February

2007.

[29]

(30]

(31]

Full System Simulator. ht-

(40]

[41]

[42]

[43]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

