Java theory and practice: Going atomic http://imww-128.ibm.com/developerworks/java/libra#gp11234

Java theory and practice: Going atomic

The new atomic classes are the hidden gems of java.util.concurrent

Level: Intermediate

Brian Goetz prian@quiotix.com), Principal Consultant, Quiotix

23 Nov 2004

Until JDK 5.0, it was not possible to write waie#, lock-free algorithms in the Java language
without using native code. The addition of the atowariable classes in java.util.concurrent changes
that situation. Follow along with concurrency exdgrian Goetz as he explains how these new
classes have enabled the development of highlplsieahonblocking algorithms in the Java
language.

Fifteen years ago, multiprocessor systems werdyhggiecialized systems costing hundreds of thousahd
dollars (and most of them had two to four processdroday, multiprocessor systems are cheap amdifpile
nearly every major microprocessor has built-in gupfor multiprocessing, and many support dozensundreds
of processors.

To exploit the power of multiprocessor systems lisppions are generally structured using multipleetds. But
as anyone whao's written a concurrent applicationtelh you, simply dividing up the work across nipie threads
isn't enough to achieve good hardware utilizatioyou must ensure that your threads spend mosieaftime
actually doing work, rather than waiting for morerkwto do, or waiting for locks on shared datacnes.

The problem: coordination between threads

Few tasks can be truly parallelized in such a watpaequireno coordination between threads. Consider a thread
pool, where the tasks being executed are genenal@pendent of each other. If the thread pool fedda

common work queue, then the process of removingeaés from or adding elements to the work queud beis
thread-safe, and that means coordinating accehs teead, tail, or inter-node link pointers. Andsithis
coordination that causes all the trouble.

The standard approach: locking

The traditional way to coordinate access to shiedds in the Java language is to use synchromizagnsuring
that all access to shared fields is done holdiegapropriate lock. With synchronization, you assused
(assuming your class is properly written) that valeier thread holds the lock that protects a gietmoEvariables
will have exclusive access to those variables,dnashges to those variables will become visibleth@othreads
when they subsequently acquire the lock. The dalenisi that if the lock is heavily contended (thie&réquently
ask to acquire the lock when it is already heldibgther thread), throughput can suffer, as conténde
synchronization can be quite expensive. (PubliziBerAnnouncement: uncontended synchronizatiomis n
quite inexpensive on modern JVMSs.)

Another problem with lock-based algorithms is tifia thread holding a lock is delayed (due to aeptaglt,
scheduling delay, or other unexpected delay), teeihread requiring that lock may make progress.

Volatile variables can also be used to store shaaddbles at a lower cost than that of synchrditrabut they
have limitations. While writes to volatile variablare guaranteed to be immediately visible to dfimerads, there
IS no way to render a read-modify-write sequencepafrations atomic, meaning, for example, thatlatie
variable cannot be used to reliably implement aem@tutual exclusion lock) or a counter.

Implementing counters and mutexes with locking

Consider the development of a thread-safe coutdasscwhich exposeget (), i ncrenent (), and
decrenent () operations. Listing 1 shows an example of how¢kdss might be implemented using locks
(synchronization). Note that all the methods, eyet() , need to be synchronized for the class to be dhsaée,
to ensure that no updates are lost, and thatraltls see the most recent value of the counter.

25.01.2008 00:4



Java theory and practice: Going atomic http://imww-128.ibm.com/developerworks/java/libra#gp11234

Listing 1. A synchronized counter class

public class SynchronizedCounter {
private int value;

pubTlic synchronized int getvalue() { return value; }
pubTlic synchronized int increment() { return ++value; }
public synchronized int decrement() { return --value; }

Thei ncrenent () anddecr enent () operations are atomic read-modify-write operatierie safely
increment the counter, you must take the curreloieyadd one to it, and write the new value odtagla single
operation that cannot be interrupted by anotheratthr Otherwise, if two threads tried to executerbeement
simultaneously, an unlucky interleaving of openasiovould result in the counter being incrementdg once,
instead of twice. (Note that this operation carbb@tchieved reliably by making the value instarargable
volatile.)

The atomic read-modify-write combination shows mipriany concurrent algorithms. The code in Listing 2
implements a simple mutex, and #requi r e() method is also an atomic read-modify-write operatiTo
acquire the mutex, you have to ensure that no seehelds it ¢ur Omer == nul | ), and then record the fact
that you own it¢ur Omer = Thr ead. current Thread()), all free from the possibility that another thitea
could come along in the middle and modify the Owner fi el d.

Listing 2. A synchronized mutex class

public class SynchronizedMmutex {
private Thread curowner = null;

pubTic synchronized void acquire() throws InterruptedException {
if (Thread.interrupted()) throw new InterruptedeException();
while (curowner != null)
waitQ;
curowner = Thread.currentThread();

}

public synchronized void release() {
if (curowner == Thread.currentThread()) {
curowner = null;
notify(Q;
} else
throw new ITlegalStateException("not owner of mutex");

The counter class in Listing 1 works reliably, amdhe presence of little or no contention will fgem fine.
However, under heavy contention, performance wiles dramatically, as the JVM spends more timdidga
with scheduling threads and managing contentiongaredies of waiting threads and less time doingwesk,

like incrementing counters. You might recall thags fromlast month's column showing how throughput can
drop dramatically once multiple threads contendaftwilt-in monitor lock using synchronization. \Whihat
column showed how the neReent r ant Lock class is a more scalable replacement for syncration, for
some problems there is an even better approach.

Problems with locking

With locking, if one thread attempts to acquir@eklthat is already held by another thread, theathwill block
until the lock becomes available. This approachduase obvious drawbacks, including the fact thatendn
thread is blocked waiting for a lock, it cannotatg/thing else. This scenario could be a disastéeiblocked
thread is a high-priority task (a hazard knowmprsrity inversion).

Using locks has some other hazards as well, sudeaiiock (which can happen when multiple lockssaspired
in an inconsistent order). Even in the absencenéids like this, locks are simply a relativelyrseagrained
coordination mechanism, and as such, are fairlgipeeight” for managing a simple operation such as

2->8 25.01.2008 00:4



Java theory and practice: Going atomic http://imww-128.ibm.com/developerworks/java/libra#gp11234

3->8

incrementing a counter or updating who owns a mutexould be nice if there were a finer-grainedcmenism
for reliably managing concurrent updates to indigildvariables; and on most modern processors, there

Hardware synchronization primitives

As stated earlier, most modern processors inclugpat for multiprocessing. While this supportcolrse,
includes the ability for multiple processors torghperipherals and main memory, it also generatijudes
enhancements to the instruction set to suppokeial requirements of multiprocessing. In patéiginearly
every modern processor has instructions for upgativared variables in a way that can either detegtevent
concurrent access from other processors.

Compare and swap (CAS)

The first processors that supported concurrencyiged atomic test-and-set operations, which gelyeoglerated
on a single bit. The most common approach takerubient processors, including Intel and Sparc @Eeaes, is
to implement a primitive callecbmpare-and-swap, or CAS. (On Intel processors, compare-and-swap is
implemented by the cmpxchg family of instructioRewerPC processors have a pair of instructionedé&lbad
and reserve" and "store conditional” that accorhglie same goal; similar for MIPS, except the fsstalled
"load linked.")

A CAS operation includes three operands -- a menoagtion (V), the expected old value (A), and avnvalue
(B). The processor will atomically update the lématto the new value if the value that is thereahas the
expected old value, otherwise it will do nothing €elither case, it returns the value that was atitication prior to
the CAS instruction. (Some flavors of CAS will ieatl simply return whether or not the CAS succeedler
than fetching the current value.) CAS effectivaedys"| think location V should have the value Aitifloes, put B
in it, otherwise, don't change it but tell me whalue is there now."

The natural way to use CAS for synchronizatioroissiad a value A from an address V, perform a stelb
computation to derive a new value B, and then us8 © change the value of V from A to B. The CA8ceds
if the value at V has not been changed in the nreant

Instructions like CAS allow an algorithm to execateead-modify-write sequence without fear of arothread
modifying the variable in the meantime, becausmdther thread did modify the variable, the CAS Maletect
it (and fail) and the algorithm could retry the ogtéon. Listing 3 illustrates the behavior (but petrformance
characteristics) of the CAS operation, but the #atiCAS is that it is implemented in hardware enelxtremely
lightweight (on most processors):

Listing 3. Codeillustrating the behavior (but not performance) of compare-and-swap

public class SimulatedCAs {
private int value;

public synchronized int getvalue() { return value; }

public synchronized int compareAndswap(int expectedvalue, int newvalue) {
int oldvalue = value;
if (value == expectedvalue)
value = newvalue;
return oldvalue;

Implementing counters with CAS

Concurrent algorithms based on CAS are cdlbeki-free, because threads do not ever have to wait foclka lo
(sometimes called a mutex or critical section, dejpgg on the terminology of your threading platfgri@ither
the CAS operation succeeds or it doesn't, buttireecase, it completes in a predictable amoutited. If the

CAS falils, the caller can retry the CAS operatiomaie other action as it sees fit. Listing 4 shdlwescounter

25.01.2008 00:4



Java theory and practice: Going atomic http://imww-128.ibm.com/developerworks/java/libra#gp11234

4->8

class rewritten to use CAS instead of locking:

Listing 4. Implementing a counter with compar e-and-swap

pubTlic class CasCounter {
private SimulatedCAS value;

pubTlic int getvalue() {
return value.getvalue();
}

public int increment() {
int oldvalue = value.getvalue(Q);
while (value.compareAndswap(oldvalue, oldvalue + 1) != oldvalue)
oldvalue = value.getvalue(Q;
return oldvalue + 1;

Lock-free and wait-free algorithms

An algorithm is said to bevait-free if every thread will continue to make progressna face of arbitrary delay (or
even failure) of other threads. By contradipck-free algorithm requires only thabme thread always make
progress. (Another way of defining wait-free istthach thread is guaranteed to correctly compsitegerations

in a bounded number of its own steps, regardlesisecdctions, timing, interleaving, or speed ofdliger threads.
This bound may be a function of the number of ttisda the system; for example, if ten threads execute the
CasCount er. i ncrenent () operation once, in the worst case each threachailé to retry at most nine
times before the increment is complete.)

Substantial research has gone into wait-free acidftee algorithms (also callegbnblocking algorithms) over
the past 15 years, and nonblocking algorithms haes discovered for many common data structures.
Nonblocking algorithms are used extensively atdperating system and JVM level for tasks such weathand
process scheduling. While they are more complicedechplement, they have a number of advantages ove
lock-based alternatives -- hazards like priorityersion and deadlock are avoided, contention sdepensive,
and coordination occurs at a finer level of grantyaenabling a higher degree of parallelism.

Atomic variable classes

Until JDK 5.0, it was not possible to write waie#, lock-free algorithms in the Java language withusing
native code. With the addition of the atomic valéalclasses in theava. uti |l . concurrent. atonic
package, that has changed. The atomic variablsedas! expose a compare-and-set primitive (sirtolar
compare-and-swap), which is implemented usingdlseett native construct available on the platform
(compare-and-swap, load linked/store conditionglirothe worst case, spin locks). Nine flavoratifmic
variables are provided in theava. uti | . concurrent. at on ¢ packageAt omi cl nt eger ;

At om cLong; At o cRef er ence; At om cBool ean; array forms of atomic integer; long; referenasg a
atomic marked reference and stamped referenceeslashich atomically update a pair of values).

The atomic variable classes can be thought ofgearalization of ol at i | e variables, extending the concept
of volatile variables to support atomic conditionampare-and-set updates. Reads and writes of @at@nables
have the same memory semantics as read and wegesato volatile variables.

While the atomic variable classes might look supitfy like theSynchr oni zedCount er example in Listing
1, the similarity is only superficial. Under thedth operations on atomic variables get turnedtimchardware
primitives that the platform provides for concuttrancess, such as compare-and-swap.

Finer grained means lighter weight

A common technique for tuning the scalability afancurrent application that is experiencing contenis to
reduce the granularity of the lock objects usedh&hopes that more lock acquisitions will go froomtended to

25.01.2008 00:4



Java theory and practice: Going atomic

5->8

http://imww-128.ibm.com/developerworks/java/libra#gp11234

uncontended. The conversion from locking to atovaigables achieves the same end -- by switchiray to
finer-grained coordination mechanism, fewer operatibecome contended, improving throughput.

Atomic variables in java.util.concurrent

Nearly all the classes in the@va. uti | . concurrent package
use atomic variables instead of synchronizatiahgeidirectly or
indirectly. Classes lik€oncur r ent Li nkedQueue use atomic
variables to directly implement wait-free algorithnand classes like
Concur r ent HashMap useReent r ant Lock for locking where
neededReent r ant Lock, in turn, uses atomic variables to
maintain the queue of threads waiting for the lock.

These classes could not have been constructeduwithe JVM
improvements in JDK 5.0, which exposed (to thexldsaries, but
not to user classes) an interface to access hasdesas!
synchronization primitives. The atomic variablesslas, and other
classes in java.util.concurrent, in turn exposs¢Heatures to user
classes.

Achieving higher throughput with atomic
variables

Last month, | looked at how theent r ant Lock class offered a s

The ABA problem
Because CAS basically asks "is the value
of V still A" before changing V, it is
possible for a CAS-based algorithm to be
confused by the value changing from A
*to B and back to A between the time V
was first read and the time the CAS on V
is performed. In such a case, the CAS
operation would succeed, but in some
situations the result might not be what is
desired. (Note that the counter and mutex
examples fronkisting 1 andListing 2
are immune to this problem, but not all
algorithms are.) This problem is called
the ABA problem, and is generally dealt
with by associating a tag, or version
number, with each value to be CASed,
and atomically updating both the value
and the tag. The
At omi ¢St anpedRef er ence class
provides support for this approach.

calability benefit over synchzation, and

constructed a simple, high-contention example bemack that simulated rolling dice with a pseudorando
number generator. | showed you implementationsditbtheir coordination with synchronization,

Reent r ant Lock, and fairReent r ant Lock, and presented the results. This month, I'll auutlzer
implementation to that benchmark, one that dgesri cLong to update the PRNG state.

Listing 5 shows the PRNG implementation using syosization, and the alternate implementation uSiAG.
Note that the CAS must be executed in a loop, saumay fail one or more times before succeedimggh is

always the case with code that uses CAS.

Listing 5. Implementing a thr ead-safe PRNG with synchronization and atomic variables

public class PseudoRandomUsingSynch implements PseudoRandom {
private int seed;

pubTlic PseudoRandomusingSynch(int s) { seed = s; }

public synchronized int nextInt(int n) {
int s = seed;
seed = Util.calculateNext(seed);
return s % n;

}

pubTlic class PseudoRandomusingAtomic implements PseudoRandom {
private final AtomicInteger seed;

pubTlic PseudoRandomUsingAtomic(int s) {
seed = new AtomicInteger(s);
3

pubTlic int nextInt(int n) {
for (5;) {
int s = seed.get();
int nexts = Util.calculateNext(s);
if (seed.compareAndsSet(s, nexts))
return s % n;

25.01.2008 00:4



Java theory and practice: Going atomic

http://imww-128.ibm.com/developerworks/java/libra#gp11234

The graphs in Figures 1 and 2 below are similahdse shown last month, with the addition of anolime for
the atomic-based approach. The graphs show throtigimprolls per second) for random number generatising
various numbers of threads on an 8-way UltrasphosBand a single-processor Pentium 4 box. The ntardde
threads in the tests are deceptive; these thredudlsitefar more contention than is typical, so trsipw the
break-even betwedReent r ant Lock and atomic variables at a far lower number ofatisethan would be the
case in a more realistic program. You'll see thamnéc variables offer an additional improvementove

Reent r ant Lock, which already had a big advantage over synchatioiz. (Because so little work is done in

each unit of work, the graphs below probably und¢esthe scalability benefits of atomic variablespared to
ReentrantLock.)

Figure 1. Benchmark throughput for synchronization, ReentrantL ock, fair L ock, and AtomicL ong on an
8-way Ultrasparc3

2y

12

- ,\ —+—SYNC
£08 LS —=— LOCK
8 o6 \ = . —» FAIR
s \\ ATOMIC

]
(

L]

Threads

Figure 2. Benchmark throughput for synchronization, ReentrantL ock, fair L ock, and AtomicLongon a
single-processor Pentium 4

0.8 \ —+— SYNC
| i
\ - —=— LOCK
06
\ FAIR
0.4 \\ ATOMIC
0.2

Mroughput

+% Y .
::I T T T T
2 4 a 16
Threads

Most users are unlikely to develop nonblocking athos using atomic variables on their own -- tlaeg more

25.01.2008 00:4



Java theory and practice: Going atomic http://imww-128.ibm.com/developerworks/java/libra#gp11234

likely to use the versions providedjimava. uti | . concurrent, such aoncurr ent Li nkedQueue. But
in case you're wondering where the performancethimidhese classes comes from, compared to thelogunes
in prior JDKSs, it's the use of the fine-grained;dveare-level concurrency primitives exposed throtighatomic
variable classes.

Developers may find use for atomic variables diyea$ a higher-performance replacement for shanedters,
sequence number generators, and other indeperfdetsvariables that otherwise would have to b&epted by
synchronization.

Summary

JDK 5.0 is a huge step forward in the developmé&high-performance, concurrent classes. By exposaw
low-level coordination primitives internally, andowiding a set of public atomic variable classeapw becomes
practical, for the first time, to develop wait-fréeck-free algorithms in the Java language. Thas#s in

java. util.concurrent are inturn built on these low-level atomic vat@facilities, giving them their
significant scalability advantage over previouss&s that performed similar functions. While yoymever use
atomic variables directly in your classes, theeegod reasons to cheer for their existence.

Resources

¢ Participate in the discussion forum.

e Read the complet#ava theory and practice series by Brian Goetz.

e Thepackage documentation for the java.util.concuratainic package is a good place to start for
understanding the atomic variable classes.

e Web sites like Wikipedia include definitions flack-free and wait-free synchronization.

e The C2 Wiki also offers definitions fovait-free andock-free synchronization.

e "Concurrent programming without locks" by Keir Fraaad Tim Harris summarizes the alternatives to
locking, including compare-and-swap, for buildirapcurrent algorithms.

e The WARPing Group (Wait-free techniques for realdiprocessing) sitsummarizes research in wait-free
algorithms.

e "More flexible, scalable locking in JDK 5.0" (devplyWorks, October 2004), examined the scalability
advantage oReent r ant Lock and introduced the random-number generation beadhosed in this
column.

e Doug Lea'Concurrent Programming in Java, Second Edition (Addison-Wesley Professional 1999) is a
masterful book on the subtle issues surroundingittdaded programming in Java applications.

¢ Find hundreds more Java technology resources aetiredoper\Works Java technology zone.

e Browse for books on these and other technical sopic

About the author

Brian Goetz has been a professional software dpgelor over 17 years. He is a Principal Consulér@uiotix,
a software development and consulting firm locateldos Altos, California, and he serves on sev@GP Expert

7->8 25.01.2008 00:4



Java theory and practice: Going atomic http://imww-128.ibm.com/developerworks/java/libra#gp11234

Groups. See Brianfaublished and upcoming articles in popular induptrilications.

8->8 25.01.2008 00:4



