
Automatic Inference of Memory Fences

Michael Kuperstein
Technion

Martin Vechev
IBM Research

Eran Yahav
IBM Research and Technion

Abstract—This paper addresses the problem of placing mem-
ory fences in a concurrent program running on a relaxed memory
model. Modern architectures implement relaxed memory models
which may reorder memory operations or execute them non-
atomically. Special instructions called memory fences are provided
to the programmer, allowing control of this behavior. To ensure
correctness of many algorithms, in particular of non-blocking
ones, a programmer is often required to explicitly insert memory
fences into her program. However, she must use as few fences as
possible, or the benefits of the relaxed architecture may be lost.
Placing memory fences is challenging and very error prone, as it
requires subtle reasoning about the underlying memory model.

We present a framework for automatic inference of memory
fences in concurrent programs, assisting the programmer in this
complex task. Given a finite-state program, a safety specification
and a description of the memory model, our framework computes
a set of ordering constraints that guarantee the correctness of
the program under the memory model. The computed constraints
are maximally permissive: removing any constraint from the so-
lution would permit an execution violating the specification. Our
framework then realizes the computed constraints as additional
fences in the input program.

We implemented our approach in a tool called FENDER and
used it to infer correct and efficient placements of fences for
several non-trivial algorithms, including practical concurrent
data structures.

I. INTRODUCTION

On the one hand, memory barriers are expensive
(100s of cycles, maybe more), and should be used
only when necessary. On the other, synchronization
bugs can be very difficult to track down, so memory
barriers should be used liberally, rather than relying
on complex platform-specific guarantees about limits
to memory instruction reordering. – Herlihy and

Shavit, The Art of Multiprocessor Programming [1].

Modern architectures use relaxed memory models in which

memory operations may be reordered and executed non-

atomically [2]. These models enable improved hardware per-

formance with respect to the standard sequentially consistent

model [3]. However, they pose a burden on the programmer,

forcing her to reason about non-sequentially consistent pro-

gram executions. To allow programmer control over those exe-

cutions, processors provide special memory fence instructions.

As multicore processors become increasingly dominant,

highly-concurrent algorithms emerge as critical components

of many systems [4]. Highly-concurrent algorithms are noto-

riously hard to get right [5] and often rely on subtle ordering of

events, an ordering that may be violated under relaxed memory

models (cf. [1, Ch.7]).

Finding a correct and efficient placement of memory fences

for a concurrent program is a challenging task. Using too

many fences (over-fencing) hinders performance, while using

too few fences (under-fencing) permits executions that violate

correctness. Manually balancing between over- and under-

fencing is very difficult, time-consuming and error-prone as

it requires reasoning about non sequentially consistent exe-

cutions (cf. [1], [6], [7]). Furthermore, the process of finding

fences has to be repeated whenever the algorithm changes, and

whenever it is ported to a different architecture.

Our Approach In this paper, we present a tool that auto-

matically infers correct and efficient fence placements. Our

inference algorithm is defined in a way that makes the de-

pendencies on the underlying memory model explicit. This

makes it possible to use our algorithm with various memory

models. To demonstrate the applicability of our approach,

we implement a relaxed memory model that supports key

features of modern relaxed memory models. We use our tool to

automatically infer fences for several state of the art concurrent

algorithms, including popular lock-free data structures.

Main Contributions The main contributions of this paper are:

• A novel algorithm that automatically infers a correct

and efficient placement of memory fences in concurrent

programs.

• A prototype implementation of the algorithm in a tool

capable of inferring fences under several memory models.

• An evaluation of our tool on several highly concur-

rent practical algorithms such as: concurrent sets, work-

stealing queues and lock-free queues.

II. EXISTING APPROACHES

We are aware of two existing tools designed to assist pro-

grammers with the problem of finding a correct and efficient

placement of memory fences. However, both of these suffer

from significant drawbacks.

CheckFence In [7], Burckhardt et al. present “CheckFence”, a

tool that checks whether a specific fence placement is correct

for a given program under a relaxed memory model. In terms

of checking, “CheckFence” can only consider finite executions

of a linear program and therefore requires loop unrolling. Code

that utilizes spin loops requires custom manual reductions.

This makes the tool unsuitable for checking fence placements

in algorithms that have unbounded spinning (e.g. mutual

exclusion and synchronization barriers). To use “CheckFence”

for inference, the programmer uses an iterative process: she

starts with an initial fence placement and if the placement is

111©2010 FMCAD Inc.

incorrect, she has to examine the (non-trivial) counterexample

from the tool, understand the cause of error and attempt to fix it

by placing a memory fence at some program location. It is also

possible to use the tool by starting with a very conservative

placement and choose fences to remove until a counterexample

is encountered. This process, while simple, may easily lead to

a “local minimum” and an inefficient placement.

mmchecker presented in [8] focuses on model-checking with

relaxed memory models, and also proposes a naive approach

for fence inference. Huynh et. al formulate the fence inference

problem as a minimum cut on the reachability graph. While

the result produced by solving for a minimum cut is sound, it is

often suboptimal. The key problem stems from the lack of one-

to-one correspondence between fences and removed edges.

First, the insertion of a single fence has the potential effect

of removing many edges from the graph. So it is possible that

a cut produced by a single fence will be much larger in terms

of edges than that produced by multiple fences. [8] attempts to

compensate for this by using a weighing scheme, however this

weighing does not provide the desired result. Worse yet, the

algorithm assumes that there exists a single fence that can be

used to remove any given edge. This assumption may cause a

linear number of fences to be generated, when a single fence

is sufficient.

III. OVERVIEW

In this section, we use a practically motivated scenario to

illustrate why manual fence placement is inherently difficult.

Then we informally explain our inference algorithm.

A. Motivating Example

Consider the problem of implementing the Chase-Lev work-

stealing queue [9] on a relaxed memory model. Work stealing

is a popular mechanism for efficient load-balancing used in

runtime libraries for languages such as Java, Cilk and X10.

Fig. 1 shows an implementation of this algorithm in C-like

pseudo-code. For now we ignore the fences shown in the code.

The data structure maintains an expandable array of items

called wsq and two indices top and bottom that can wrap

around the array. The queue has a single owner thread that can

only invoke the operations push() and take() which operate

on one end of the queue, while other threads call steal()

to take items out from the opposite end. For simplicity, we

assume that items in the array are integers and that memory is

collected by a garbage collector (manual memory management

presents orthogonal challenges [10]).

We would like to guarantee that there are no out of bounds

array accesses, no lost items overwritten before being read,

and no phantom items that are read after being removed. All

these properties hold for the data structure under a sequentially

consistent memory model. However, they may be violated

when the algorithm executes on a relaxed model.

Under the SPARC RMO [11] memory model, some oper-

ations may be executed out of order. Tab. I shows possible

reorderings under that model (when no fences are used) that

lead to violation of the specification. The column locations

1 t y p e d e f s t r u c t {
2 long s i z e ;
3 i n t ∗ap ;
4 } i t e m t ;
5
6 long top , bot tom ;
7 i t e m t ∗wsq ;

1 void push (i n t t a s k) {
2 long b = bot tom ;
3 long t = t o p ;
4 i t e m t∗ q = wsq ;
5 i f (b−t ≥ q→ s i z e −1){
6 q = expand () ;
7 }
8 q→ap [b % q→ s i z e]= t a s k ;

f e n c e (” s t o r e−s t o r e ”) ;
9 bot tom = b + 1 ;

10 }

1 i n t t a k e () {
2 long b = bot tom − 1 ;
3 i t e m t∗ q = wsq ;
4 bot tom = b ;

f e n c e (” s t o r e−l o a d ”) ;
5 long t = t o p ;
6 i f (b < t) {
7 bot tom = t ;
8 re turn EMPTY;
9 }

10 t a s k = q→ap [b % q→ s i z e] ;
11 i f (b > t)
12 re turn t a s k ;
13 i f (! CAS(& top , t , t + 1))
14 re turn EMPTY;
15 bot tom = t + 1 ;
16 re turn t a s k ;
17 }

1 i n t s t e a l () {
2 long t = t o p ;

f e n c e (” load−l o a d ”) ;
3 long b = bot tom ;

f e n c e (” load−l o a d ”) ;
4 i t e m t∗ q = wsq ;
5 i f (t ≥ b)
6 re turn EMPTY;
7 t a s k =q→ap [t % q→ s i z e] ;

f e n c e (” load−s t o r e ”) ;
8 i f (! CAS(& top , t , t + 1))
9 re turn ABORT;

10 re turn t a s k ;
11 }

1 i t e m t∗ expand () {
2 i n t news ize = wsq→ s i z e ∗ 2 ;
3 i n t∗ newi tems = (i n t ∗) m a l loc (news ize∗ s i z e o f (i n t)) ;
4 i t e m t ∗newq = (i t e m t ∗) m a l l o c (s i z e o f (i t e m t)) ;
5 f o r (long i = t o p ; i < bot tom ; i ++) {
6 newitems [i % news ize] = wsq→ap [i % wsq→ s i z e] ;
7 }
8 newq→ s i z e = news ize ;
9 newq→ap = newitems ;

f e n c e (” s t o r e−s t o r e ”) ;
10 wsq = newq ;
11 re turn newq ;
12 }

Fig. 1. Pseudo-code of the Chase-Lev work stealing queue [9].

Locations Effect of Reorder Needed Fence
1 push:8:9 steal() returns phantom item store-store

2 take:4:5 lost items store-load

3 steal:2:3 lost items load-load

4 steal:3:4 array access out of bounds load-load

5 steal:7:8 lost items load-store

6 expand:9:10 steal() returns phantom item store-store

TABLE I
POTENTIAL REORDERINGS OF OPERATIONS IN THE CHASE-LEV

ALGORITHM OF FIG. 1 RUNNING ON THE RMO MEMORY MODEL.

lists the two lines in a given method which contain memory

operations that might get reordered and lead to a violation.

The next column gives an example of an undesired effect

when the operations at the two labels are reordered. There

could be other possible effects (e.g., program crashes), but we

list only one. The last column shows the type of fence that

can be used to prevent the undesirable reordering. Informally,

the type describes what kinds of operations have to complete

before other type of operations. For example, a store-load

fence executed by a processor forces all stores issued by

that processor to complete before any new loads by the same

processor start.

112

Avoiding Failures with Manual Insertion of Fences To

guarantee correctness under the RMO model, the programmer

can try to manually insert fences that avoid undesirable

reorderings. As an alternative to placing fences based on

her intuition, the programmer can use an existing tool such

as CheckFence [7] as described in Section II. Repeatedly

adding fences to avoid each counterexample can easily lead

to over-fencing: a fence used to fix a counterexample may

be made redundant by another fence inferred for a later

counterexample. In practice, localizing a failure to a single

reordering is challenging and time consuming as a failure

trace might include multiple reorderings. Furthermore, a single

reordering can exhibit multiple failures, and it is sometimes

hard to identify the cause underlying an observed failure. Even

under the assumption that each failure has been localized to a

single reordering (as in Tab. I), inserting fences still requires

considering each of these 6 cases.

In a nutshell, the programmer is required to manually

produce Tab. I: summarize and understand all counterexamples

from a checking tool, localize the cause of failure to a single

reordering, and propose a fix that eliminates the counterexam-

ple. Further, this process might have to be repeated manually

every time the algorithm is modified or ported to a new

memory model. For example, the fences shown in Fig. 1

are required for the RMO model, but on the SPARC TSO

model the algorithm only requires the single fence in take().

Keeping all of the fences required for RMO may be inefficient

for a stronger model, but finding which fences can be dropped

might require a complete re-examination.

Automatic Inference of Fences It is easy to see that the

process of manual inference does not scale. In this paper, we

present an algorithm and a tool that automates this process.

The results of applying our tool on a variety of concurrent

algorithms, including the one in this section, are discussed in

detail in Section V.

B. Description of the Inference Algorithm

Our inference algorithm works by taking as input a finite-

state program, a safety specification and a description of

the memory model, and computing a constraint formula that

guarantees the correctness of the program under the memory

model. The computed constraint formula is maximally permis-

sive: removing any constraint from the solution would permit

an execution violating the specification.

Applicability of the Inference Algorithm Our approach is

applicable to any operational memory model on which we

can define the notion of an avoidable transition that can be

prevented by a local (per-processor) fence. Given a state, this

requires the ability to identify: (i) that an event happens out

of order; (ii) what alternative events could have been forced

to happen instead by using a local fence. Requirement (i) is

fairly standard and is available in common operational memory

model semantics. Requirement (ii) states that a fence only

affects the order in which instructions execute for the given

processor but not the execution order of other processors. This

R1 = R2 = X = Y = 0 ;

A:
A1 : STORE 1 , X
A2 : STORE 1 , Y

||
B :

B1 : LOAD Y, R1
B2 : LOAD X, R2

Fig. 2. A simple program illustrating relaxed memory model behavior

holds for most common models, but not for PowerPC, where

the SYNC instruction has a cumulative effect [12].

State Given a memory model and a program, we can build

the transition system of the program, i.e. explore all reachable

states of the program running on that memory model. A state

in such a transition system will typically contain two kinds

of information: (i) assignments of values to local and global

variables; (ii) per-process execution buffer containing events

that will eventually occur (for instance memory events or

instructions waiting to be executed), where the order in which

they will occur has not yet been determined.

Computing Avoid Formulae Given a transition system and

a specification, the goal of the inference algorithm is to infer

fences that prevent execution of all traces leading to states that

violate the specification (error states). One naive approach is

to enumerate all (acyclic) traces leading to error states, and try

to prevent each by adding appropriate fences. However, such

enumeration does not scale to any practical program, as the

number of traces can be exponential in the size of the transition

system which is itself potentially exponential in the program

length. Instead, our algorithm works on individual states and

computes for each state an avoid formula that captures all

the ways to prevent execution from reaching the state. Using

the concept of an avoidable transition mentioned earlier, we

can define the condition under which a state is avoidable. The

avoid formula for a state σ considers all the ways to avoid all

incoming transitions to σ by either: (i) avoiding the transition

itself; or (ii) avoiding the source state of the transition. Since

the transition system may contain cycles, the computation of

avoid formulae for states in the transition system needs to be

iterated to a fixed point.

Consider the simple program of Fig. 2. For this program,

we would like to guarantee that R1 ≥ R2 in its final state.

For illustrative purposes, we consider a simple memory model

where the stores to global memory are atomic and the only

allowed relaxation is reordering data independent instructions.

Fig. 3 shows part of the transition system built for the program

running on this specific memory model. We only show states

that can lead to an error state. In the figure, each state contains:

(i) assignments to local variables of each process (L1 and L2),

and the global variables G; (ii) the execution buffer of each

process (E1 and E2); (iii) an avoid formula which we explain

below.

The initial state (state 1) has R1 = R2 = X = Y = 0.

There is a single error state where R1 = 0 and R2 = 1
(state 9). The avoid formula for each state is computed as

mentioned earlier. For example, the avoid formula for state 2 is

computed by taking the disjunction of avoiding the transition

113

�
� ��������� �	
����	�

�����	
�
�	�
� ���
���������
���

�����

��
� ��������� �	
����	�

�����	
�
� �
� ��� �������
���

�� ����

�����������
���

��
� ��������� �	
����	�

�����	
�
�	�
� ���
��������� �

�� ����

������� ��� ����

!�
� ��������� �	
���� �

�����	
�
� �
� ��� ���������

�� ����

� ����� �������

"�
� ��������� �	
����	�

�����	
�
� �
� ��� ������� �

�� �����##��� ����

������� ��� ���� �����������
���

$�
� ��������� �	
����	�

�����
�
�	�
� ����������� �

�� ����

� �������������

%�
� ��������� �	
���� �

�����	
�
� �
� ��� �������

�� ����

������� ��� ���� � ����� �������

&�
� ��������� �	
����	�

�����
�
� �
� ��������� �

�� ����

� ������������� �����������
���

'���(()(�
� ��������� �	
���� �

�����
�
� �
� ���������

�� �����**��� ����

� ������������� � ����� �������

Fig. 3. A partial transition system of the program in Fig. 2. Avoidable
transitions are drawn with thicker lines.

A2 and avoiding the source state of the transition (state 1).

To check whether A2 is an avoidable transition from state

1, we check whether A2 is executed out of order, and what

are the alternative instructions that could have been executed

by A instead. We examine the execution buffer E1 of state

1 and find all instructions that precede A2. We find that

A2 is executed out of order, and that A1 could have been

executed to avoid this transition. So, we generate the constraint

[A1 < A2] as a way to avoid the transition A2. The meaning

of the constraint is that this transition can be avoided if A1 is

executed before A2. Since the source state (state 1) cannot be

avoided, the avoid formula for state 2 is just [A1 < A2]. The

constraint [B1 < B2] for state 3 is obtained similarly.

For state 5, there are two incoming transitions: B2 and

A2. Here, B2 is taken out of order from state 2 and hence

we generate the constraint [B1 < B2]. The constraint for

the parent state 2 is [A1 < A2], so the overall constraint

becomes [B1 < B2] ∨ [A1 < A2]. Similarly, we perform the

computation for transition A2 from state 3 which generates an

identical constraint. The final avoid formula for state 5 is thus

the conjunction of [B1 < B2]∨ [A1 < A2] with itself. In other

words, it is this exact formula. The transition from state 2 to

state 4 is taken in order. Therefore, the transition itself cannot

be avoided and the only way to avoid reaching 4 is through the

avoid formula of its predecessor, state 2. For the error state

9, the two incoming transitions do not generate constraints

as they are executed in-order. The overall constraint is thus

generated as conjunction of the constraints of the predecessor

states 7 and 8, and it is [B1 < B2] ∧ [A1 < A2].
Because our example graph is acyclic, a single pass over

the graph is sufficient. It is easy to check the formulas that

appear in Fig. 3 indeed correspond to a fixed point. Since there

is only one error state, the resulting overall constraint is the

avoid constraint of that error state: [A1 < A2] ∧ [B1 < B2].
Finally, this constraint can be implemented by introducing

a store-store fence between A1 and A2 and a load-load fence

between B1 and B2.

C. Memory Models
To demonstrate our fence inference algorithm on realistic

relaxed memory models, we define and implement the model

RLX that contains key features of modern memory models.

According to the categorization of [2], summarized in Fig. 4,

there are five such key features. The leftmost three columns

in the table represent order relaxations. For instance, W → R
means the model may reorder a write with a subsequent read

from a different variable. The rightmost columns represent

store atomicity relaxations - that is, whether a store can

be seen by a process before it is globally performed. Our

memory model supports four of these features, but precludes

“reading other’s writes early” and speculative execution of

load instructions.
The memory model is defined operationally, in a design

based on [13] and [14]. We represent instruction reordering

by using an execution buffer, similar to the “reordering box”

of [15] and the “local instr. buffer” of [14]. To support non-

atomic stores we, like [13], split store operations into a “store;

flush” sequence, and allow local load operations to read values

that have not yet been flushed. This allows us to talk about

the model purely in terms of reordering, without paying any

additional attention to the question of store atomicity.
Barring speculative execution of loads, RLX corresponds

to Sun SPARC v9 RMO and is weaker than the SPARC v9

TSO and PSO models. RLX is strictly weaker than the IBM

370. Since RLX is weaker than these models, any fences that

we infer for correctness under RLX are going to guarantee

correctness under these models.
Our framework allows to instantiate models stronger than

RLX, by disabling some of the relaxations in RLX. In fact, the

framework supports any memory model that can be expressed

using a bypass table (similar to [14] and the “instruction

reordering table” of [13]). This enables us to experiment with

fence inference while varying the relaxations in the underlying

memory model. In Section V, we show how different models

lead to different fence placements in practical concurrent algo-

rithms, demonstrating the importance of automatic inference.

IV. INFERENCE ALGORITHM

In this section, we describe our fence inference algorithm.

Due to space restrictions, the description is mostly informal.

The full technical details can be found in [16].

114

Relaxation W → R W → W R → RW R Others’ R Own
Order Order Order W Early W Early

SC �
IBM 370 �
TSO � �
PSO � � �
Alpha � � � �
RMO � � � �
PowerPC � � � � �

Fig. 4. Categorization of relaxed memory models, from [2].

A. Preliminaries

We define a program P in the standard way, as a tuple

containing an initial state Init, the program code Progi for

each processor, and an initial statement Starti. The program

code is expressed in a simple assembly-like programming lan-

guage, which includes load/store memory operations, arbitrary

branches and compare-and-swap operations. We assume that

all statements are uniquely labeled, and thus a label uniquely

identifies a statement in the program code, and denote the set

of all program labels by Labs.

Transition Systems A transition system for a program P is a

tuple 〈ΣP , TP 〉, where ΣP is a set of states, TP is a set of

labeled transitions σ
l−→ σ′. A transition is in TP if σ, σ′ ∈

ΣP and l ∈ Labs, such that executing the statement at l results

in state σ′. The map enabled : ΣP → P(Labs) is tied to the

memory model and specifies which transitions may take place

under that model.

Dynamic Program Order Much of the literature on memory

models (e.g. [11], [12], [17]) bases the model’s semantics on

the concept of program order, which is known a priori. This is

indeed the case for loop-free or statically unrolled programs.

For programs that contain loops, Shen et. al show in [13] that

such an order is not well defined, unless a memory model

is also provided. Furthermore, for some memory models the

program order may depend on the specific execution.

To accommodate programs with loops, we define a dynamic
program order. This order captures the program order at any

point in the execution. For a given state σ and a process p, we

write l1 <σ,p l2 when l1 precedes l2 in the dynamic program

order. The intended meaning is that in-order execution from

state σ would execute the statement at l1 before executing the

statement at l2.

B. An Algorithm for Inferring Ordering Constraints

Given a finite-state program P and a safety specification S,

the goal of the algorithm is to infer a set of ordering constraints

that prevent all program executions violating S and can be

implemented by fences.

Avoidable Transitions and Ordering Constraints The ordering

constraints we compute are based on the concept of an

avoidable transition — a transition taken by the program

that could have been prohibited by some fence. This captures

the intuition of a transition that was taken out of order. To

identify such transitions we use the dynamic program order:

a transition t = σ
lt−→ σ′ is avoidable if there exists some l1

such that l1 <σ,p lt.

With every pair of labels l1, l2 ∈ Labs we associate a

proposition [l1 ≺ l2]. We call such a proposition an ordering
constraint. We define a constraint formula as a proposi-

tional formula over ordering constraints. For each transition

t = σ
lt−→ σ′ we then define the formula prevent(t) =∨{[l1 ≺ lt] | l1 <σ,p lt}. Intuitively, prevent(t) is the

formula that captures all possible ordering constraints that

would prohibit the execution of t by the program. Note

that if t is not avoidable, this is an empty disjunction and

prevent(t) = false.

Algorithm 1: Fence Inference

Input: Program P, Specification S
Output: Program P’ satisfying S

1 compute 〈ΣP , TP 〉
2 avoid(Init)← false
3 foreach state σ ∈ ΣP \ {Init} do
4 avoid(σ)← true

5 workset← ΣP \ {Init}
6 while workset is not empty do
7 σ ← select and remove state from workset
8 ϕ← avoid(σ)
9 foreach transition t = (μ −→ σ) ∈ TP do

10 ϕ← ϕ ∧ (avoid(μ) ∨ prevent(t))
11 if avoid(σ) 	≡ ϕ then
12 avoid(σ)← ϕ
13 add all successors of σ in ΣP to workset

14 ψ ← ∧{avoid(σ) | σ � S}
15 return implement(P, ψ)

Inference The algorithm operates directly on program states.

For every state σ in the program’s transition system, the

algorithm computes a constraint formula avoid(σ) such that

satisfying it prevents execution from reaching σ. The com-

puted formula avoid(σ) captures all possible ways to prevent

execution from reaching σ by forbidding avoidable transitions.

The algorithm computes a fixed point of avoid constraints

for all states in the program’s transition system. First, we

build the transition system 〈ΣP , TP 〉 of the program. For

σ = Init, we initialize avoid(σ) to false. For all other states,

we initialize it to true. We then add all states to the workset.

The algorithm proceeds by picking a state from the workset,

and computing the new avoid constraint for the state. A state

can only be avoided by avoiding all incoming transitions (a

conjunction). To avoid the transition, we must (i) consider all

possible ways to avoid the transition from the predecessor state

(by using prevent(t)); or (ii) avoid the predecessor state, by

using its own avoid constraint. (see line 10 of the algorithm).

As shown in line 11 every such computation step requires

comparing two boolean formulas for equality. While in general

NP-hard, this is not a problem in practice due to the structure

of our formulas and their relatively modest size.

When a fixed point is reached, the algorithm computes

the overall constraint ψ by taking the conjunction of avoid

constraints for all error states. Any implementation satisfying

ψ is guaranteed to avoid all error states, and thus satisfy

115

the specification. Finally, the algorithm calls the procedure

implement(P,ψ) which returns a program that satisfies ψ.

Ensuring Termination In cases where the transition system

is an acyclic graph (e.g. transition systems for spinloop-

free programs), we can avoid performing the fixed point

computation altogether. If the states are topologically sorted,

the computation can be completed with a single linear pass

over the transition system. In the general case, we can show

the set of mappings between states and constraints forms a

finite lattice and our function is monotonic and continuous.

Thus convergence is assured.

Safety and Maximal Permissiveness Given a program P and a

specification S, the avoid formula ϕ computed by Algorithm 1

is the maximally permissive avoid formula such that all traces

of P satisfying ϕ are guaranteed to satisfy S. More formally,

we say a constraint formula admits a transition t = σ
lt−→ σ′ if

there exists an assignment α � ϕ so that every proposition of

the form v = [l1 ≺ lt] where l1 <σ,p lt we have �v�α = false.
Here �v�α is the value of proposition v in the assignment

α. We can lift this definition of admits from transitions to

program traces. Then if ϕ
= false it only admits traces that

satisfy S, but for any ψ
= ϕ such that ϕ⇒ ψ, there exists a

trace π of P that reaches σ such that ψ admits π, but σ � S.

C. Fence Inference

Our algorithm computes a maximally permissive constraint

formula ψ. We can then use a standard SAT-solver to get

assignments for ψ, where each assignment represents a set

of constraints that enforces correctness. Since for a set of

constraints C, a superset C ′ cannot be more efficiently imple-

mented, we need only consider minimal (in the containment

sense) sets.

An orthogonal problem is to define criteria that would allow

us to select optimal fences that enforce one of those sets. In

our work, we focus on a simple natural definition using set

containment: a fence placement is a set of program labels

where fences are placed and we say that a placement P1 is

better than P2 when P1 ⊆ P2.

Given a minimal assignment C for the formula ψ, for each

satisfied proposition [l1 ≺ l2], we can insert a fence either right

after l1 or right before l2, thus getting a correct placement of

fences. We can try this for all minimal assignments of ψ, and

select only the minimal fence placements. This procedure can

be improved by defining a formula ξ s.t. every proposition

in ψ is replaced with after(l1) ∨ before(l2). Here, after(l)
and before(l) map labels to a new set of propositions, so

that if l2 appears immediately after l1 in the program, then

after(l1) = before(l2). Then, our fence placements will be

the minimal assignments to ξ. This allows us to directly apply

a SAT-solver and consider fewer fence placements.

Of course this local approach will not guarantee a minimal

placement of fences because there can be many ways to

implement a constraint [l1 ≺ l2] aside from inserting a fence

immediately after l1 or before l2. For instance, if l1, ...l4 ap-

pear in this order in the program, and ψ = [l1 ≺ l4]∧ [l2 ≺ l3]

then we can implement ψ by a single fence between l2 and

l3. More precise and elaborate implementation strategies are

possible if the program’s control flow graph is taken into

account. However, in our experiments we found the simple

local fence placement strategy to produce optimal results.

V. EXPERIMENTS

We have implemented our algorithm in a tool called FENDER.

Our tool takes as input a description of a memory model, a

program and a safety specification. The tool then automatically

infers the necessary memory fences.

A. Methodology

We experiment with FENDER by varying the following:

(i) Input Algorithm - we experiment with five concurrent

data structures and one mutual exclusion algorithm.

(ii) Client Program - we experiment with clients of varying

size and complexity.

(iii) Memory Model - we experiment with 3 relaxed models

and the sequentially consistent model as a baseline.

(iv) Specification - in some benchmarks, there is more than

one reasonable specification.

(v) Bound on the execution buffer, when required.

Algorithms We applied our tool to various challenging state-

of-the-art concurrent algorithms:

• MSN: Michael&Scott’s lock-free queue [18].

• LIFO WSQ: LIFO idempotent work-stealing queue [19].

• Chase-Lev WSQ: Chase&Lev’s work-stealing queue [9].

• Dekker: Dekker’s mutual exclusion [20].

• Treiber: Treiber’s lock-free stack [21].

• VYSet: Vechev&Yahav’s concurrent list-based set [22].

Clients For each algorithm, we ran FENDER with several

clients. Our tool permits exhaustive exploration of bounded

clients that consist of a (bounded) sequence of initialization

operations followed by (bounded) sequences of operations

performed in parallel. A client typically consists of 2 or 3

processes, where each process invokes several data structure

operations. Below, we use the term “program” to refer to the

combination of an algorithm and a client.

Memory Models As noted earlier, our RLX model is equiv-

alent to SPARC RMO without support for speculation. Our

framework can instantiate stronger models, and in our exper-

iments, we infer fences under four memory models: RMO,

PSO, TSO, and as a reference, SC, the sequentially consistent

model. The models RMO, PSO and TSO implement three

different sets of relaxations as described in [2]. All three

implement the “read own writes early” relaxation. RMO

implements the W → R, W → W and R → RW relaxations.

PSO removes the R → RW relaxation and TSO additionally

removes the W →W relaxation.

Specification We consider safety specifications realized as

state invariants on the program’s final state. To write an

invariant, for most algorithms, we observed the results a

specification of sequential consistency would produce and

then write invariants that are implied by this specification. In

116

Initial Client |E| Time States Edges #C

State Bnd (sec.)

MSN empty e|d ∞ 0.83 1219 2671 2

empty e|e ∞ 1.78 4934 12670 1

empty ee|dd ∞ 5.21 24194 61514 3

empty ed|ed ∞ 13.05 86574 242822 2

empty ed|de ∞ 9.26 59119 167067 4

empty e|e|d ∞ 31.43 233414 653094 3

ChaseLev empty pppt(tpt|sss) ∞ 97.22 386283 1030857 -

WSQ empty tttt(ptt|sss) ∞ 255.5 1048498 2819355 -

empty pppt(ttp|sss) ∞ 90.28 281314 878880 -

empty tttt(tpp|sss) ∞ 355.95 1325858 4150650 -

empty tttp(tptp|ss) ∞ 37.98 280396 698398 -

”LIFO” 2/2 tp|ss ∞ 0.69 2151 3190 2

WSQ 2/2 tpt|ss ∞ 1.94 9721 16668 2

2/2 ptp|ss ∞ 11.41 89884 195246 3

2/2 ptt|ss ∞ 11.31 85104 198353 4

1/1 ptt|ss ∞ 4.07 23913 48997 4

Dekker - - 1 0.64 1388 2702 2

- - 10 2.13 7504 14477 2

- - 20 2.71 13879 26422 2

- - 50 5.99 33004 62257 2

Treiber empty p|t ∞ 1 71 93 2

empty pt|tp ∞ 1.02 3054 6190 2

empty pp|tt ∞ 0.6 1276 2250 2

VYSet empty ar|ra 10 1.98 4079 6247 2

empty aa|rr 10 4.56 20034 31623 2

empty ar|ar 10 2.19 6093 9905 2

empty aaa|rrr 10 7.98 41520 66533 2

TABLE II
EXPERIMENTAL RESULTS FOR THE RMO MODEL

this context, sequential consistency refers not to the memory

model, but to the high level specification that an algorithm

should satisfy. In some experiments we also used additional,

weaker specifications.

Bound on the Execution Buffer As recently shown in [23], the

reachability problem for weak memory models is, depending

on the model, either undecidable or non-primitive recursive

even for finite-state programs. To avoid this problem we add

a stronger condition and require the execution buffers to be

bounded. In four of our benchmarks this was the natural

behavior, and in the other two we’ve had to enforce a bound.

Experimental Setup Experiments were performed on an IBM

xSeries 336 with 4 Intel Xeon 3.8Ghz processors, 5GB

memory, running a 64-bit Red Hat Enterprise Linux. Tab. II

contains performance metrics for RMO, the most relaxed

memory model that we considered.

B. Results

A summary of our experimental results is shown in Tab. II.

For each data structure, several parallel clients were used. For

each client, the “Initial” and ”Client” columns represent the

initial state of the data structure and the operations performed

by the client respectively. “e” represents an enqueue operation,

“d” a dequeue, “p” put, “s” steal, “a” add and “r” remove. The

“|E|” column represents the bound on the length of execution

buffers, and “#C” the number of constraints in a minimal

solution to the avoid formula for that client. Since for Chase-
Lev the constraint formula was solved only for the conjunction

of all clients, individual “#C” values are not given. The “Time”

column shows the total analysis time. This includes the state

exploration time, the constraint inference time and the SAT-

solving time. Note that in all cases the solving component was

negligible.

In Tab. III we show a comparison of the performance of

FENDER for different memory models it supports. On average

the number of states for PSO was ≈ 4.5 times smaller and for

TSO ≈ 40 times smaller than for RMO.

Chase-Lev Work Stealing Queue For this data structure, we

ran an exhaustive set of clients with two bounds: (i) all

clients were of the form of 4 initializer operations, followed

by a parallel section with 5 > X > 3 invocations by

the owner, and 6 − X steal invocations by another process.

(ii) If a particular client’s state space exceeded 2.5 million

states, it was terminated and discarded. In Tab. II we show

representative clients that produced useful constraints. In those

experiments, FENDER inferred a set of 9 constraints which can

be implemented using the 6 fences of Fig. 1. In particular, the

fence between lines 9 and 10 in expand() also prevents the

reordering of the store on line 10 with the stores on lines 8 an

6. Under PSO, we are left with 6 constraints and 3 fences—all

of the fences in steal() are no longer needed. Even under

TSO, one fence still remains necessary—it is the store-load

fence between lines 4 and 5 in the take() operation.

Michael-Scott Queue For MSN FENDER inferred all 3 required

fences under RMO. The placement for this algorithm in [7]

contained 7 fences, however, 2 of these are the result of [7]

allowing extra speculation, and 2 are not required in our model

due to conservative memory allocation. Under PSO a single

fence was inferred, and under TSO no fences are required.

Idempotent Work-Stealing The reference placement in [19] is

phrased only in terms of constraints, and requires 5 constraints.

Under RMO, FENDER produced 4 constraints which are a

subset of those 5. The one constraint not inferred is, again,

only required because of possible speculation.

Dekker’s Algorithm It is well known that Dekker’s algorithm

requires a fence in the entry section and a fence at the end of

the section (to preserve semantics of critical section). In our

experiments, FENDER successfully inferred the required fences.

Under RMO and PSO both fences were inferred, and under

TSO, the tool inferred only the entry section fence. This is

consistent with the reference placement appearing in Appendix

J of [11].

C. Discussion

In our experiments, we observe that the fences inferred by

FENDER are quite tricky to get manually. For some of the

algorithms, there are known correct fence assignments, and

for these we show that FENDER derives all necessary fences

for our memory models with a small number of clients driving

the algorithm. For most of our benchmarks, a bound on the

execution buffer was not required. In the two cases where it

was required, all fences were obtained with a small bound.

A recurring theme in our results was that several

different maximally permissive constraint sets could be

117

Initial Client |E| RMO PSO TSO SC

Bound States Edges #C States Edges #C States Edges #C States Edges

MSN empty e|d ∞ 1219 2671 2 455 743 1 228 316 0 146 180

empty e|e ∞ 4934 12670 1 2678 6354 1 586 994 0 252 328

empty ee|dd ∞ 24194 61514 3 7025 13689 2 1724 2512 0 1029 1325

empty ed|ed ∞ 86574 242822 2 15450 35362 2 2476 3972 0 1538 2126

empty ed|de ∞ 59119 167067 4 11023 24362 2 2570 4010 0 1541 2073

empty e|e|d ∞ 233414 653094 3 51990 119050 2 9638 16822 0 4928 7632

Chase-Lev empty pppt(tpt|sss) ∞ 386283 1030857 - 74533 256613 - 12348 20004 - 4961 6740

WSQ empty tttt(ptt|sss) ∞ 1048498 2819355 - 124455 255390 - 6418 9380 - 3101 4069

empty pppt(ttp|sss) ∞ 281314 878880 - 66960 241814 - 10564 16317 - 4199 5700

empty tttt(tpp|sss) ∞ 1325858 4150650 - 361855 1080835 - 9878 13956 - 3473 4537

empty tttp(tptp|ss) ∞ 280396 698398 - 29573 54696 - 9197 14499 - 4760 6455

”LIFO” 2/2 tp|ss ∞ 2151 3190 2 882 1171 1 676 852 0 570 694

WSQ 2/2 tpt|ss ∞ 9721 16668 2 3908 5811 1 2256 3116 0 1410 1786

2/2 ptp|ss ∞ 89884 195246 3 31289 64133 3 4045 5688 0 2317 3007

2/2 ptt|ss ∞ 85104 198353 4 29920 62020 3 4130 5987 0 2198 2866

1/1 ptt|ss ∞ 23913 48997 4 9976 18002 3 2353 3269 0 1314 1654

Dekker - - 1 1388 2702 2 1388 2702 2 489 674 1 388 490

- - 10 7504 14477 2 7504 14477 2 2560 3750 1 388 490

- - 20 13879 26422 2 13879 26422 2 4845 7115 1 388 490

- - 50 33004 62257 2 33004 62257 2 11770 17210 1 388 490

Treiber empty p|t ∞ 71 93 2 71 93 2 43 48 0 36 38

empty pt|tp ∞ 3054 6190 2 3041 6167 2 407 609 0 392 482

empty pp|tt ∞ 1276 2250 2 1276 2250 2 325 407 0 270 323

VYSet empty ar|ra 10 4079 6247 2 4079 6247 2 1088 1308 0 1088 1308

empty aa|rr 10 20034 31623 2 20034 31623 2 1168 1411 0 1168 1411

empty ar|ar 10 6093 9905 2 6093 9905 2 1671 1968 0 1671 1968

empty aaa|rrr 10 41520 66533 2 41520 66533 2 3311 4072 0 3311 4072

TABLE III
EXPERIMENTAL RESULTS FOR DIFFERENT MEMORY MODELS

derived from the constraint formula. However, in all

cases, all of those sets represented one “natural” so-

lution. The reason for the appearance of those ap-

parently different solutions involves data dependencies.

1 STORE Z = 1
2 LOAD R = X
3 STORE Y = R

Consider the simple example program shown

on the right. Assume that the constraint

[l1 ≺ l3] must be enforced in any execution.

However, if [l1 ≺ l2] is enforced, then it is

impossible to reorder l3 with l1. Due to a data

dependency, l2 must come before l3, and we

get the order σ1
l2−→ σ2

l3−→ σ3
l1−→ σ4 in which the first

transition violates [l1 ≺ l2]. Thus, our constraint formula will

necessarily contain the disjunction [l1 ≺ l2] ∨ [l1 ≺ l3]. It is

an interesting question whether there exists an input algorithm

which permits several substantially different constraint sets.

As expected, when we ran the tool with more restricted

memory models, the number of required fences decreases. For

example, the move from PSO to TSO disables reordering of

independent stores and hence all constraints between stores to

different locations are not required.

VI. RELATED WORK

Earlier we discussed work directly related to fence infer-

ence, that is [7], [8]. Additional related work includes:

Explicit-State Model Checking The works closest to ours in

the way they explore the state space for a weak memory model

are [15] and [24]. Both describe explicit-state model checking

under the Sparc RMO model, but neither uses it for inference.

Delay Set Analysis A large body of work relies on the concepts

of delay set and conflict graph of [25] for reasoning about

relaxed memory models. In particular, the Pensieve project

[26], [27], [28] implements fence synthesis based on delay

set analysis. This kind of analysis is, however, necessarily

more conservative than ours since it prevents any potential
specification violations due to non-SC execution, and is not

appropriate for highly concurrent algorithms.

Verification Approaches In [29] and [30] algorithms are pre-

sented that can find violations of sequential consistency under

the TSO and PSO memory models. Those algorithms find

violations based purely on sequentially consistent executions,

thus making them very efficient. However, just like delay

set analysis, this is often needlessly conservative. Another

approach to verification is to try to establish a property which

ensures the program remains correct under relaxed models.

The most common such property is data-race freedom, as for

data-race free programs the “fundamental property of memory

models” [31] ensures that there can be no sequentially

inconsistent executions. In our work we deal with programs

that do not satisfy such properties. Further, none of those

works supports fence inference for programs that are found

to violate SC.

Inference of Synchronization In [32], [22], a semi-automated

approach is used to explore a space of concurrent garbage

collectors and linearizable data-structures. These works do not

support weak memory models. In [33] a framework similar to

ours is used to infer minimal synchronization. However the

technique used there enumerates traces explicitly, which does

not scale in our setting and thus cannot be applied as-is.

118

Effect Mitigation Several works have been published on

mitigating the effect of memory fences [34], [35] and making

synchronization decisions during runtime [36]. Those archi-

tectural improvements are complementary to our approach.

VII. SUMMARY AND FUTURE WORK

We presented a novel fence inference algorithm and demon-

strated its practical effectiveness by evaluating it on various

challenging state-of-the-art concurrent algorithms. In future

work, we intend to improve the tool’s scalability and add

support for more memory models. Another direction we intend

to pursue is memory model abstraction and fence inference

under abstraction. This will allow us to avoid bounding the

execution buffer and make our algorithm more suitable for

more general input programs.

VIII. ACKNOWLEDGEMENTS

We would like to thank Maged Michael for his valuable

comments and advice during the preparation of this paper.

REFERENCES

[1] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kauffman, Feb. 2008.

[2] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, pp. 66–76, 1995.

[3] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess program,” IEEE Trans. Comput., vol. 28, no. 9,
pp. 690–691, 1979.

[4] H. Sutter and J. Larus, “Software and the concurrency revolution,”
Queue, vol. 3, no. 7, pp. 54–62, 2005.

[5] M. M. Michael and M. L. Scott, “Correction of a memory management
method for lock-free data structures,” Tech. Rep., 1995.

[6] S. Burckhardt, R. Alur, and M. M. K. Martin, “Bounded model checking
of concurrent data types on relaxed memory models: A case study,” in
CAV, 2006, pp. 489–502.

[7] S. Burckhardt, R. Alur, and M. M. K. Martin, “CheckFence: checking
consistency of concurrent data types on relaxed memory models,” in
PLDI, 2007, pp. 12–21.

[8] T. Q. Huynh and A. Roychoudhury, “Memory model sensitive bytecode
verification,” Form. Methods Syst. Des., vol. 31, no. 3, 2007.

[9] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in SPAA,
2005, pp. 21–28.

[10] M. M. Michael, “Safe memory reclamation for dynamic lock-free objects
using atomic reads and writes,” in PODC, 2002, pp. 21–30.

[11] I. SPARC International, The SPARC architecture manual (version 9).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

[12] A. Adir, H. Attiya, and G. Shurek, “Information-flow models for shared
memory with an application to the powerpc architecture,” IEEE Trans.
Parallel Distrib. Syst., vol. 14, no. 5, pp. 502–515, 2003.

[13] X. Shen, Arvind, and L. Rudolph, “Commit-reconcile & fences (crf):
a new memory model for architects and compiler writers,” SIGARCH
Comput. Archit. News, vol. 27, no. 2, pp. 150–161, 1999.

[14] Y. Yang, G. Gopalakrishnan, and G. Lindstrom, “Umm: an operational
memory model specification framework with integrated model checking
capability,” Concurr. Comput. : Pract. Exper., vol. 17, no. 5-6, pp. 465–
487, 2005.

[15] S. Park and D. L. Dill, “An executable specification and verifier for
relaxed memory order,” IEEE Transactions on Computers, vol. 48, 1999.

[16] M. Kuperstein, M. Vechev, and E. Yahav, “Automatic inference of
memory fences: Technical report,” Technion, TR, 2010. [Online].
Available: http://www.cs.technion.ac.il/∼mkuper/autoinf.pdf

[17] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O. Myreen, and J. Alglave, “The semantics of x86-cc multiprocessor
machine code,” in POPL, 2009, pp. 379–391.

[18] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in PODC, 1996,
pp. 267–275.

[19] M. M. Michael, M. T. Vechev, and V. A. Saraswat, “Idempotent work
stealing,” in PPoPP, 2009, pp. 45–54.

[20] E. Dijkstra, “Cooperating sequential processes, TR EWD-123,” Techno-
logical University, Eindhoven, Tech. Rep., 1965.

[21] R. Treiber, “Systems programming: Coping with parallelism,” IBM
Almaden Research Center, Tech. Rep. RJ 5118, Apr. 1986.

[22] M. Vechev and E. Yahav, “Deriving linearizable fine-grained concurrent
objects,” in PLDI, 2008, pp. 125–135.

[23] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi, “On the
verification problem for weak memory models,” in POPL, 2010, pp.
7–18.

[24] B. Jonsson, “State-space exploration for concurrent algorithms under
weak memory orderings: (preliminary version),” SIGARCH Comput.
Archit. News, vol. 36, no. 5, pp. 65–71, 2008.

[25] D. Shasha and M. Snir, “Efficient and correct execution of parallel
programs that share memory,” ACM Trans. Program. Lang. Syst., vol. 10,
no. 2, pp. 282–312, 1988.

[26] J. Lee and D. A. Padua, “Hiding relaxed memory consistency with a
compiler,” IEEE Trans. Comput., vol. 50, no. 8, pp. 824–833, 2001.

[27] X. Fang, J. Lee, and S. P. Midkiff, “Automatic fence insertion for shared
memory multiprocessing,” in ICS, 2003, pp. 285–294.

[28] Z. Sura, C. Wong, X. Fang, J. Lee, S. Midkiff, and D. Padua, “Automatic
implementation of programming language consistency models,” LNCS,
vol. 2481, p. 172, 2005.

[29] S. Burckhardt and M. Musuvathi, “Effective program verification for
relaxed memory models,” in CAV, 2008, pp. 107–120.

[30] J. Burnim, K. Sen, and C. Stergiou, “Sound and complete monitoring
of sequential consistency in relaxed memory models,” Tech. Rep.
UCB/EECS-2010-31. [Online]. Available: http://www.eecs.berkeley.edu/
Pubs/TechRpts/2010/EECS-2010-31.html

[31] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun, “A theory
of memory models,” in PPoPP. ACM, 2007, pp. 161–172.

[32] M. T. Vechev, E. Yahav, D. F. Bacon, and N. Rinetzky, “Cgcexplorer:
a semi-automated search procedure for provably correct concurrent
collectors,” in PLDI, 2007, pp. 456–467.

[33] M. Vechev, E. Yahav, and G. Yorsh, “Abstraction-guided synthesis of
synchronization,” in POPL ’10, 2010.

[34] O. Trachsel, C. von Praun, and T. Gross, “On the effectiveness of
speculative and selective memory fences,” IPDPS, p. 15, 2006.

[35] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence:
performance-transparent memory ordering in conventional multiproces-
sors,” in ISCA, 2009, pp. 233–244.

[36] C. von Praun, H. W. Cain, J.-D. Choi, and K. D. Ryu, “Conditional
memory ordering,” in ISCA, 2006, pp. 41–52.

119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

