
A Compositional Method for Verifying Software

Transactional Memory Implementations

Serdar Tasiran
Koç University, Istanbul, Turkey

stasiran@ku.edu.tr

Abstract. We present a compositional method for verifying software
transactional memory (STM) implementations and its application to the
Bartok STM. The method consists of two parts. The first is a generic,
manual proof of serializability at the algorithm level for lazy-invalidate,
write-in-place STM’s. The proof relies on three properties of program ex-
ecutions that the STM must ensure. The second part consists of proving
that the Bartok STM implementation guarantees these properties and
thus refines the algorithm-level description. We present a novel technique
for expressing the properties required of the STM implementation as as-
sertions in sequential programs that model certain interference scenarios.
This is a key benefit, as it allows these properties to be checked using
sequential program verification tools. Using our method, the Spec# lan-
guage and the Boogie verification tool, we were able to detect an error in
the published pseudo-code for the STM implementation and “challenge
bugs” extracted from earlier versions of the STM. We were also able to
prove correct the most recent version of the implementation.

1 Introduction

As multi-processor computing platforms become more commonplace, the need for
higher-level, compositional programming primitives for writing concurrent pro-
grams is becoming more pronounced. In this context, transactional memory (TM)
has received much recent interest[7]. A TM allows the programmer to designate
a code block as a transaction and ensures that the executions of transactions ap-
pear atomic and serialized to the programmer while, in reality, they are executed
highly concurrently.

As they find more widespread use, TM’s are likely to become integral parts
of execution platforms. The semantic specification of TM then becomes part
of the programming model. Therefore, verifying whether a TM implementation
satisfies its semantic specification is an important task. This paper presents a
technique for carrying out this task for software transactional memory (STM)
implementations.

STM implementations must provide high performance. This forces them to
maximize concurrent processing using intricate mechanisms for the detection
and management of conflicts between transactions. Industrial implementations
of STM’s may consist of several thousands of lines of highly-concurrent code. A
program may have an arbitrary number of concurrent threads, nested transac-
tions, and each transaction may consist of an arbitrarily long sequence of pro-
gram instructions. These make the proof of correctness for a TM implementation
a complex task.

In order to put our work in context, we view STM descriptions at two levels:
algorithm-level descriptions and actual implementations. Algorithm-level descrip-
tions fall into one of a few categories, e.g. eager vs. lazy invalidate STM’s, and
buffered vs. write-in-place STM’s. Previous work on verifying STM’s has focused
on verifying that these algorithm- or semantic-level descriptions ensure atomicity
and serializability. Our work has this component as well, but places the emphasis
on verifying that actual implementations (say in C or C#) are correct refinements
of the algorithm-level descriptions. We focus on this task because we believe this
part of STM development is more error-prone and the verification effort has to
be carried out separately for each STM implementation.

STM implementations are structured in a way [4] that reflects their correct-
ness argument – a fact we exploit when verifying a lazy-invalidate, write-in-place
STM. We separate the proof of serializability of the algorithm-level description,
which is generic and performed manually, from the proof that the implementa-
tion is a correct refinement of the algorithm-level description. In the algorithm-
level proof, we model a program composed with an abstract STM, and prove
that executions produced are serializable if the abstract STM satisfies certain
non-interference properties. The implementation-level proof consists of checking
whether these properties are satisfied by the STM implementation, which implies
correct refinement.

A novel contribution of our work is the statement of non-interference proper-
ties as assertions in simple sequential programs. These programs refer to a single
object and a transaction, and mimic potential interference from other transac-
tions. This provides two significant benefits. First, being able to use tools for
sequential programs for verifying STM’s is valuable since these tools are a lot
more mature and powerful. Second, rather than arbitrarily long and many trans-
actions acting on arbitrarily many objects, the sequential programs refer to one
object and one transactional access in a (model of the) concurrent environment.
This allowed us to use the Spec# language and the Boogie sequential program
verifier to easily handle all proof tasks.

We applied our technique to the Bartok STM implementation [5], part of
the Bartok runtime and the Singularity operating system developed at Microsoft
Research. Using our technique, we were able to detect a bug in published pseu-
docode for the Bartok STM and challenge bugs from earlier versions of Bartok.
Upon correcting the bugs, we were able to successfully complete the verification
task using less than ten minutes of CPU time.

Section 2 presents our model for programs that use write-in place, lazy-
invalidate transactions and the manual proof of correctness predicated on non-
interference properties of the STM implementation. Section 4 presents the Bartok
STM, our model for it, and the checking of the non-interference properties on
the Bartok STM implementation.

2 Modeling Programs with Transactions

We model programs using software transactions using a language we call OTFJ.
OTFJ is based on Transactional Featherweight Java (TFJ) [6] and is a simple lan-
guage that has all the essential features of imperative object-oriented programs

with multiple threads and transactions that are relevant to our work includ-
ing nesting of transactions. Non-transactional accesses are modeled by single-
expression transactions in order to provide strong atomicity [7]. The syntax of
OTFJ is given in Fig.1.

OTFJ differs from TFJ in that it also allows executions in which transactions
conflict, and allows transactions to abort and roll back explicitly. OTFJ syntac-
tically scopes transactions between a pair of onacid and commit statements and
disallows thread creation within transactions.

P ::= 0 | P | P | t[e]
L ::= class C {f; M}
M ::= m(x){e; }
s ::= x | s.f | s.m(s) | s.f := s | new C | lbl : onacid; s; commit | null
e ::= s | s; s | spawn s

v ::= r | v.f | v.m(v) | v.f := v

Fig. 1. OTFJ Syntax

P represents a process term, s an expression that is free of thread spawn’s
and e an expression that allows spawning of threads. Threads spawned consist
of a sequence of transactions. The symbol “;” is used to represent sequential
composition. TFJ has no primitive types – the only values in TFJ are references
and all references except null are created by the new C() construct. A process
term can be the empty process 0, or it is the parallel composition of two processes,
or a thread t running an expression e, represented by t[e].

In OTFJ, transactions are allowed to explicitly abort and roll back. They
are then automatically re-tried until they succeed. In TFJ, conflicting transac-
tions are simply not allowed to commit – the thread executing the transaction
terminates and this execution is not considered part of the program’s behavior.
OTFJ more closely models the behavior of a realistic STM implementation where
conflicts are experienced and need to be recovered from.

Read Field
τ = O4R(C(u))

κ = rd(r, ui) 〈S
′

, E
′

, C(u)〉 = read(S, r, E)
σ′ = Opn4Rd(σ, C(u)) fields(C) = f

S, σ, E r.fi
τ

−→ S, σ
′

, E r.fi
κ

−→ S
′

, σ
′

, E
′

ui

Successful Field Assignment
τ = O4U(C(r)) κ = wr(v.fi, r, r

′

)
〈S′, E′, C(r)〉 = read(S, v, E) σ′ = Opn4Wrt(σ, C(r))

OK2Wrt(σ, C(r) 〈E′′,S′′〉 = write(v 7→ C(r) ↓r
′

i , E′,S′)

S, σ, E v.fi := r
′ τ
−→ S, σ

′

, E v.fi := r
′ κ

−→ S
′′

, σ
′

, E
′′

r
′

Failed Field Assignment
τ = O4U(C(r)) 〈S′, E′, C(r)〉 = read(S, v, E)

σ
′

= Opn4Wrt(σ, C(r)) ¬OK2Wrt(σ, C(r)

S, σ, E v.fi := r
′ τ
−→ S, σ′, E r

′

Method Invocation
τ = O4R(C(r)) κ = rd(v, C(r))

〈S, E′, C(r)〉 = read(S, r, E)
σ′ = Opn4Rd(σ, C(r))
mbody(m, C) = (x, e)

S, σ, E r.m(r)
τ

−→ S, σ
′

, E r.m(r)
κ

−→ S
′

, σ
′

, E
′

[r/x, r/this]e

Object Creation
κ = xt(r, C(null)) r fresh

(S′, E′) = extend(S, r 7→ C(null), E)

S, σ, E new C()
κ

−→ S′, σ′, E′
r

Fig. 2. Semantics for local actions.

Semantics preliminaries: Each thread has a distinct thread label t ∈
ThLbl . The execution an onacid action by t starts a new transaction whose

context ends with the execution of a commit. Each transaction is given a unique
name l ∈ TrNames . Each transaction has a unique label l ∈ TransLbl , and, if
within a transaction with label l a new transaction with name l is started, the
new transaction has label l.l = l0l1...lkl. l/l

′
denotes that the label l is a

prefix of l

The semantics of an OTFJ program P is given by the set of executions and
traces that P can generate, denoted by Execs(P) and Traces(P), respectively.
Executions are sequences of actions, and traces are sequences of triples of the
form Pi Γi σi where Pi denotes a program, Γi denotes a program state and σi

denotes an STM state.

Plain
P = P

′′

| t[e]

S, σ, E e
τ

−→ S, σ
′

, E e
κ

−→ S
′

, σ
′

, E
′

e
′

P
′ = P

′′ | t[e′] Γ = (S, (t, E).t, E)

Γ ′ = (S′, (t, E).t, E′) inTrans(t, Γ, l)

P Γ σ
(t,l,τ)
=⇒ P Γ σ′ (t,l,κ)

=⇒ P
′ Γ ′ σ′

Spawn
P = P

′′ | t[E[spawn s]]
P
′ = P

′′ | t[E[null]] | t′[s]

t
′

fresh Γ
′

= spawn(t, t
′

, Γ)

P Γ σ
(t,null,spawn(t′))

=⇒ P
′

Γ
′

σ

Transaction Start
P = P

′′

| t[E[lbl : onacid; s]]
P
′ = P

′′ | t[E[lbl : s]]
l fresh σ′ = BgnTx(t, σ)

inTrans(t, l, Γ) Γ ′ = start(l, s, t, Γ)

P Γ σ
(t,l,newTr(t))

=⇒ P
′ Γ ′ σ′

Transaction Commit
E = E

′

.(l, s) : ρ inTrans(t, l.l, Γ)
ValidTx(l) P = P

′′ | t[E[lbl : r; commit;]]
P
′ = P

′′ | t[E[r]] OK2Cmt(t, σ)
σ′ = CmtTx(t, σ) Γ ′ = commit(t,E, Γ)

P Γ σ
(t,l.l,cmt)

=⇒ P
′ Γ ′ σ′

Transaction Rollback
τ = undoLLE(l) Γ = Γ

′′

.t,E E = E
′

.(l, s) : ρ
inTrans(t, l.l, Γ) P = P

′′ | t [E [lbl : r; commit]]
P
′ = P

′′ | t [E [lbl : s commit]] σi+1 = undoLast(σi, l)
〈Γ0, Γ1, ..., Γk〉, 〈α0, α1, ..., αk〉 = undo((Γ, t, ρ, l), 〈〉, 〈〉)

P Γ σ
τ

=⇒ P Γ σ0
α0
=⇒ P Γ0 σ0

τ
=⇒ P Γ0 σ1

α1
=⇒ P Γ1 σ1...

τ
=⇒ P Γk−1 σk

αk=⇒ P Γk σk

(t,l.l,undo)
=⇒ P

′ Γk σk

Thread Death
P = P

′ | t[r] Γ = t, E.Γ ′

P Γ σ
(t,null,kill)

=⇒ P
′

Γ
′

σ
′

Fig. 3. Semantics for global actions.

Actions: An action is a triple of the form α = (t, l, κ) where t is the thread
performing the action, α is perfomed in the context a transaction labelled by l

and κ is the kind of the action. We define ownerTx (α) = l to be the (label of)
the transaction as part of which α is executed.

The semantics of actions (Fig.s 2-4) model a sequentially-consistent interleav-
ing of actions by OTFJ threads along with an associated STM implementation
that determines which transactions are allowed to commit and how actions are
undone when a transaction is being rolled back. Local actions (Fig.2) consist
of field read and assignment (write) accesses, method invocation and object cre-
ation. OTFJ has call-by-value semantics: Before a method is invoked, all parame-
ters are evaluated. Global actions (Fig.3) include local actions (Plain), spawning
a new thread, starting, committing and rolling back transactions, and the com-
pletion of a thread that has no more computation to perform. The semantics of
some action kinds refer to predicates (Fig 4) which describe how the program
and STM state is updated in response to these actions. The STM implementa-
tion state and predicates that refer to it are left unspecified. inTrans(t, Γ, l) is
a predicate that evaluates to true iff at program state Γ , thread t is executing a
transaction with label l.

Read
E = E′.(l, s) : ρ

S(r) = C(r) E′′ = E′.(l, s) : (ρ.r
rd
7→ C(r))

read(S, r, E) = 〈S′, E′′, C(u)〉

Non-Det. Failed Read
E = E′.(l, s) : ρ

r
′
fresh E′′ = E′.(l, s) : (ρ.r

rd
7→ r

′)

read(S, r, E) = 〈S′, E′′, 〉

Write
S(v) = C(r′)

S′ = S[v 7→ C(r)] E = E′.(l, s).ρ

E′′ = E′.(l, s).ρ.v
wr
7→ C(r′).v

wr
7→ C(r)

write(v 7→ C(r), E,S) = 〈E′′,S′〉

Extend
S′ = S[v 7→ C(null)] E = E′′.(l, s).ρ

E′ = E′′.(l, s).ρ.v
wr
7→ ⊥.v

wr
7→ C(null)

extend(S, r 7→ C(null), E) = (S′, E′)

Start
Γ = t, E.Γ ′ Γ ′′ = t, (E.(l, s) : 〈〉).Γ ′

Γ
′′

= start(l, s, t, Γ)

Spawn
Γ = t, E.Γ

′

Γ
′′

= t
′

, 〈〉 . Γ
′

spawn(t, t
′

, Γ) = Γ
′′

Undo Empty Log
Γ = t, E.Γ ′ E = E′.(l, s) : 〈〉 Γ ′′ = t, E′.Γ ′

〈Γ0, Γ1, ..., Γp, Γ ′′〉, 〈α0, α1, ..., αp, ε〉 =
undo((Γ, t, l, 〈〉), 〈Γ0, Γ1, ..., Γp〉, 〈α0, α1, ..., αp〉)

Undo Last Log Read Entry
Γ = t, E.Γ

′

E = E
′

.(l, s) : ρ.r
rd
7→ C(r) E

′′

= E
′

.(l, s) : ρ

Γ ′′ = t, E′′.Γ ′ Γ̃ = undo(Γ ′′, t, ρ, l)

〈Γ0, Γ1, ..., Γp, Γ̃ 〉, 〈α0, α1, ..., αp, ε〉 =

undo((Γ, t, ρ.r
rd
7→ C(r), l), 〈Γ0, Γ1, ..., Γp〉, 〈α0, α1, ..., αp〉)

Undo Last Log Write Entry
Γ = t, E.Γ ′

E = E′.(l, s) : ρ.r
wr
7→ C(r).r

wr
7→ C

′(r′) E′′ = E′.(l, s) : ρ

Γ ′ = (S, (t, E)) S′ = S[r 7→ C(r)] Γ ′′ = (S′, (t, E))

Γ ′′′ = t.E′′.Γ ′′ Γ̃ = undo(Γ ′′′, t, ρ, l)

〈Γ0, ..., Γp, Γ̃ 〉, 〈α0, ..., αp, (t, l, wr(r, C
′

(r′), C(r).r))〉 =

undo((Γ, t, ρ.r
wr
7→ C(r).r

wr
7→ C

′

(r), l), 〈Γ0, ..., Γp〉, 〈α0, ..., αp〉)

Commit Top-Level Transaction
Γ = t, E.Γ ′ E = (l, s) : ρ E′ = 〈〉 Γ̃ = t, E′.Γ ′

commit(t,E, Γ) = Γ̃

Commit Nested Transaction
Γ = t, E.Γ ′

E = E
′

.(l
′

, s
′

) : ρ
′

, (l, s) : ρ E
′′

= E
′

.(l
′

, s
′

) : ρ
′

.ρ

Γ ′′ = t, E′′.Γ ′ Γ̃ = commit(t, E′′, Γ ′′)

commit(t,E, Γ) = Γ̃

Fig. 4. Semantics for predicates.

Program and STM states: A program state Γ is described as a tuple Γ =
(S, (t, E)) where S is the central, shared store and (t, E) is a sequence of pairs of
threads t and corresponding thread environments E . The shared store is a partial
map that specifies the object bindings for all references, i.e., for each reference r,
r 7→ C(ū) or r 7→ null. We write S(r) = C(ū) if in the current store, the reference
r refers to an object C(ū). S[r 7→ C(ū)] represents a store that is the same as S
except the reference r now refers to an object C(ū). OTFJ is dynamically typed.
A thread environment E is a sequence of transaction environments E = 〈(l0, ρ0),-
(l1, ρ1), ..., (ln, ρn)〉 where thread t is in the process of executing the innermost
transaction with label l = l0l1...ln. For each transaction with name li, the
transaction log ρi contains the sequence of read and write accesses performed by
the transaction with name li . In the rules in Figure 2, E e

α
−→ E ′; e′ represents

the program taking the action α as a result of which the expression e evaluates
to e′ and the transaction environment changes from E to E ′.

Executions and traces: Formally, an execution ξ of an OTFJ program P

is a sequence of reductions satisfying specifications given in Fig. 3. An execution
ξ is represented by a partial map ξ : N 7→ ThLbl × TransLbl × Kind . ξ(i) is the
action α = (ti, l, κi). We informally write an execution along with the trace it

corresponds to as follows ξ = P0 Γ0 σ0
α0=⇒ P1 Γ1 σ1

α1=⇒ ...Pn−1 Γn−1 σn−1
αn−1
=⇒

Pn Γn σn. The program state trace that the execution ξ of program P gives rise
to is denoted by ProgTrace(ξ, P) = 〈Γ0, Γ1, ..., Γn〉. The semantics of an OTFJ
program P is the set of (ξ,ProgTrace(ξ, P)) pairs that P gives rise to according to
the rules described above.

Discussion: The OTFJ semantics makes explicit using the predicates and
STM state transformer functions in Fig. 4 the interaction between the program
and the STM implementation. Most of the internal mechanics of the STM is not
modeled in the OTFJ semantics, e.g., the STM state σ is left unspecified, but
the commit action is conditional on the OK2Cmt predicate on the STM state,
and the STM state changes in reaction to read, write accesses, and commit and
undo actions. This way of modeling the program-STM interaction facilitates the
modular correctness proof described in this paper.

3 Algorithm-Level Correctness Proof

3.1 Defining Correctness

We call a transaction with label l completed in ξ if l occurs in ξ and ξ contains
either a commit or undo (roll-back) action for l. We call commit and undo actions
completion actions. An execution ξ = (t0, l0, α0), (t1, l1, α1), ..., (tn, ln, αn), is
serial iff for all i, j, and k such that 0 ≤ i < j < k ≤ n and li = lk ∈ CompLbls(ξ)
it is the case that lj/lk. In words, actions comprising completed or rolled-back
transactions are either contiguous or interleaved with actions of transactions
nested inside them. An execution is said to be conflict-free if it does not contain
an undo action.

Given an execution ξ and a thread identifier t, let ξ|t denote the subsequence
of actions of ξ which are performed by t, and let ξ �t be the subsequence of
ξ|t obtained by removing actions by transactions that are eventually undone

within ξ. Two executions ξ and ξ̃ of a program P are said to be equivalent if
they (i) start at the same state, (ii) have the same set of thread identifiers, (iii)
their corresponding program state traces ProgTrace(ξ) and ProgTrace(ξ̃) have

the same end state and (iv) if for each t ∈ Tid , ξ|t = ξ̃

∣

∣

∣

t
. These two executions

are said to be equivalent modulo undo’s if for each t ∈ Tid , ξ �t= ξ̃ �t. The
composition of a program P with a given STM implementation is said to be
serializable iff every execution ξ that the program-STM implementation pair can
produce is equivalent to a serial execution ξ̃. The program-STM composition
is purely serializable iff every execution ξ produced by it is equivalent modulo
undo’s to a serial, conflict-free execution ξ̂ of P.

We define the write set and the read set of a transaction log ρ as follows.
WrSet(ρ) consists of references such that r ∈ WrSet(ρ) iff there exists some

C(u) for which (r
wr
7→ C(u)) ∈ ρ. Similarly, let RdSet(ρ) is defined as follows:

r ∈ RdSet(ρ) iff there exists some C(u) for which (r
rd
7→ C(u)) ∈ ρ. We overload

the definition of write set such that for a committing innermost transaction with
label l.l, letting ρcmt be the transaction log for l.l when the commit action is
executed, WrSet(l.l) = WrSet(ρcmt) and RdSet(l.l) = RdSet(ρcmt). Enclosing
transactions have the nested transactions logs appended to them at commit time,
i.e. WrSet(l

′
) ⊆ WrSet(l) iff l

′
/l.

The Exclusive Writes (EW) Property: Consider an execution ξ = P0Γ0
t0=⇒

α0P1 Γ1
t1=⇒ α1...Pn−1 Γn−1

tn−1
=⇒ αn−1Pn Γn where αn−1 = cmt , or αn−1 = undo

for a transaction with label l.l, and Γn−1 = (Sn−1, t, E .t, E), and the log of

the transaction l.l is such that E = E ′.(l, s).ρ. For each v in WrSet(ρ), let
FirstWrite(ξ, v, l) be the smallest i for which αi = wr(v, x, y), ti = t and
inTrans(t, l.l, Γi).

An execution ξ̃ is said to have the exclusive writes (EW) property iff for
every such prefix ξ of ξ̃ and every v ∈ WrSet(ρ), whenever there is a write action
αj = wr(v, x′, y′) where FirstWrite(ξ, v, l) ≤ j ≤ n, the thread performing αj

satisfies inTrans(tj , l1, Γj) for a transaction label l1 such that l.l/l1. In words,
if there is another write action between a write action in a transaction and the
corresponding commit or undo action, then the write action needs to belong to
either this transaction or another transaction nested within this one.

The Valid Reads (VR) Property: Consider an execution ξ = P0 Γ0 σ0
α0=⇒

P1 Γ1 σ1
α1=⇒ ...Pn−1 Γn−1 σn−1

αn−1
=⇒ Pn Γn σn where αn−1 = cmt and Γn−1 =

(Sn−1, t, E.t, E), for all i, αi is performed by ti, and the log ρ of the com-
mitting transaction l.l is such that E = E ′.(l, s).ρ. For each r in RdSet(ρ),
let FirstRead(ξ, r, l) be the smallest i for which αi = rd(r, x) , ti = t, and
inTrans(t, l.l, Γi−1). An execution ξ̃ is said to have the valid reads (VR) prop-
erty iff for every prefix ξ of ξ̃ of the form above and every r ∈ RdSet(ρ), the

following condition holds: There is no other transaction l
′
performed by another

thread t 6= tn−1 such that αq is the completion action of l
′
(q = ∞ if l

′
is not

completed in ξ) r ∈ WrSet(l
′
), p = FirstWrite(ξ, r, l

′
) and the intervals [p, q]

and [FirstRead(ξ, r, l, n − 1] intersect.

The Correct Undo’s (CU) Property: Consider an execution ξ̃ = P0Γ0
t0=⇒

α0P1 Γ1
t1=⇒ α1...Pn−1 Γn−1

tn−1
=⇒ αn−1Pn Γn where for some k < n, αk−1 =

undo for a transaction label l.l. Let FirstWrite be the first index for which
inTrans(ti, l.l, Γi). Let Γn = (Sn, (t′, E ′)). An execution ξ is said to have the
correct undo’s (CU) property iff for each prefix ξ̃ of ξ of the form above, for
each reference v ∈ WrSet(l.l) it is the case that Γi−1(v) = Γn(v). In words, the
object referred to by v must be the same right before the transaction with label
l.l modifies it and right after the rollback of l.l is completed.

Serialization order: For a given execution ξ, we define a serialization order
on all completed transactions TransLbl . This is a total order that corresponds to
the order of commit or undo actions in ξ. More formally, for a transaction label
l, let SerIndex (ξ, l) = i such that αi is either the commit or the undo action for

transaction l. Then l � ξl
′
iff SerIndex(ξ, l) ≤ SerIndex (ξ, l

′
).

Lemma 1. Consider an execution ξ with the VR and EW properties. ξ = P0Γ0
t0=⇒

α0P1 Γ1
t1=⇒ α1...Pn−1 Γn−1

tn−1
=⇒ αn−1Pn Γn where ξ ∈ Execs(P) and ti 6= ti+1

and, if both αi and αi+1 are performed by transactions, the completion action of
the transaction performing αi+1 comes before that of the transaction performing
αi+1.

Let ξ′ = α0, α1, ..., αi−1, αi+1, αi, αi+2, αi+3...αn, i.e. ξ′ is the same as ξ ex-
cept that actions αi and αi+1 are swapped. Then, ξ′ is a legal execution of P and
ξ and ξ′ are equivalent.

Theorem 1. If all executions of a program P have the VR and EW properties,
then every execution ξ of P is serializable and is equivalent to a serial execution
ξsr which preserves the serialization order of ξ.

Theorem 2. If every execution ξ of a program P has the VR, EW, and correct
undo’s properties, then every execution ξ of P is purely serializable. ξ is equivalent
modulo undo’s to a serial, conflict-free execution ξ̂ of P.

The proofs of Theorems 1 and 2 are given in the Appendix.

4 Verifying the Bartok STM Implementation

The Bartok STM is a write-in-place, lazy-invalidate STM implementation. The
EW, VR and CU properties capture the reasoning by which this style of STM
guarantees pure serializability. EW, VR and CU are properties of executions,
whereas an STM maintains some auxiliary execution history data with each ob-
ject based on which it aims to ensure the EW, VR and CU properties. The
key challenge in verifying an STM implementation is ensuring that this conflict-
detection mechanism based on object-local and thread-local data manages inter-
transaction interference properly.

In Section 4.1, we give an overview of the Bartok STM implementation, and,
in Section 4.2, we describe how we formally relate executions produced by the
Bartok runtime to executions produced by OTFJ programs. Then, in Sections 4.4-
4.6, we prove lemmas on Bartok executions. These lemmas together constitute
a sufficient condition for a Bartok execution mapped to an OTFJ execution
satisfying the EW, VR and CU properties, i.e. purely serializable.

4.1 Modeling the Bartok STM

The description in this section is aimed at illustrating the verification-related
aspects of the Bartok STM. For a more accurate description , see [5]. In the
Bartok STM, each thread has an associated data structure called the transac-
tion manager. Transaction managers are responsible for managing the interaction
between threads. Each object is augmented with extra fields we refer to as the
“STM metadata”. STM metadata is invisible to the programmer. Transaction
managers do not modify programmer-visible data except when a transaction is
rolled back.

The object metadata is represented in the STM Word and the STM Snapshot.
These two store the state of the object which consists of (i) whether the object is
currently open for write (“owned”) by a transaction, (ii) the owner transaction,
and (iii) the version number of the object. The version number is an (unbounded)
integer counter incremented by transactions updating an object. Reads and up-
dates to a STM Snapshot-STM Word pair are guaranteed to be atomic.

The beginning of a transaction is marked by a call to the “DTMStart” function.
Before fields of an object are read, the “DTMOpenForRead” (See pseudocode in the
Appendix.) function must be called with the appropriate arguments. Similarly,
before object fields are written to, the “DTMOpenForUpdate” function must be
called. The STM implementation is notified of object fields updated during a

transaction using the DTMLogFieldStore function which appends to an undo log
an entry with the old and updated value of the field.

To complete a transaction, the “DTMCommit” function is called. To record and
manage conflicts, the transaction managers keep logs of read and write accesses
performed by the transaction. When “DTMCommit” is called, the transaction man-
ager first calls “ValidateRead” for each object in the read log to ensure that no
other concurrent transaction has opened the object for write during the timespan
from OpenForRead to ValidateRead. If all ValidateRead calls return success-
fully, then the transaction manager executes CloseSTMWord for all objects in the
write log of the transaction. Each object becomes available for conflict-free read
and write access after CloseSTMWord successfully completes and increments the
version number of the object. For a successfully-committing transaction, the first
successful ValidateRead execution constitutes the commit point of the transac-
tion [5]. For transactions that detect a conflict in one of the ValidateRead calls
or experienced a conflict during one of the OpenForUpdate calls, the transaction
is rolled back. The rolling back of the log is modeled by repeated calls to the
UndoLastLogEntry function.

4.2 Modeling Bartok STM Executions

Modeling Bartok STM Executions: The OTFJ semantics has built into it
an idealized, high level of granularity STM that supports the following atomic
actions: Opn4Rd, Opn4Wrt, cmt , and undoLLE . In OTFJ semantics, these actions
correspond to atomic transitions in STM state and in Fig. 3, these actions are
denoted by τ and distinguished from actions that transform the program state
and the program.

To model Bartok STM implementations, we provide a lower-level semantics,
TFJ-Bk, for OTFJ programs composed with the Bartok STM implementation.
TFJ-Bk is different from OTFJ semantics in two regards. First, each of the ac-
tions marked by a τ in the OTFJ semantics is replaced by a finite sequence
ε = ε0, ε1, ε2, ..., εk of actions by the same thread executing the action. Actions
marked by εi model the actions in the execution of the functions OpenForRead,
OpenForUpdate, DTMCommit and UndoLastLogEntry.

4.3 Reducing the Set of TFJ-Bk Executions

We first reduce the set of TFJ-Bk executions that we need to be concerned
with using partial order reductions. We say two actions in a TFJ-Bk execution
are dependent if they are performed by the same thread or they both refer to the
same variable and at least one of them modifies this variable. Actions that are not
dependent are called independent. An execution ξBk

1 is partial-order equivalent to
ξBk
2 if ξBk

2 is obtained from ξBk
1 by a sequence of swaps of consecutive independent

actions.
In order to be able to apply partial-order reductions to more executions, in the

same manner as Qadeer et al. [3], we abstract the Bartok STM implementation
in two ways: First, the compare-and-swap (CAS) operation is replaced by an ND-
CAS operation. An ND-CAS operation can only succeed when a CAS operation
can, but can fail non-deterministically even when the CAS would have succeeded.

CheckNOWS()
1 Havoc(obj); // state and metadata

2 OpenForUpdate(Tx_good, obj);
3 assume(ExclusiveOwner(Tx_good, obj));

4 assume(Tx_bad != Tx_good);
5 OpenForUpdate(Tx_bad, obj);
6 assert(ExclusiveOwner(Tx_good, obj));

7 assert(Tx_bad.invalid);

CheckUndoLogEntry()

1 obj_1 = obj.clone();
2 Update_k(logEntry_k)
3 Undo_k(logEntry_k)

4 assert(obj.Equals(obj_1));

CheckVRS()

0 interferedWith = false;
1 InterfereWith(Tx, obj);

2 OpenForRead(Tx,obj);
3 InterfereWith(Tx, obj);
4 if (*) OpenForUpdate(Tx,obj);

5 InterfereWith(Tx, obj);
6 ValidateRead(Tx,obj);

7 assert(interferedWith <==> Tx.invalid);

InterfereWith (Transaction Tx, Object obj)
1 while (*) {

2 Tx_bad = non-deterministically
3 chosen transaction

4 assume(Tx_bad != Tx);
5 if (*) OpenForUpdate(Tx_bad, obj);
6 if (*) CloseSTMWord(Tx_bad, obj);

7 if (line 5 or 6 succeed)
8 interferedWith = true;

Fig. 5. The assertion checks for proving the NOWS and VRS properties.

A failing ND-CAS is independent of all actions by other threads. Second, read
field actions in transactions that lead to failed ValidateRead’s can read arbitrary
non-deterministic values. Observe that OTFJ has this non-determinism built into
its semantics as well. These abstractions are valid since they only add to the set
of possible behaviors and we focus exclusively on safety properties. They are
conceptual devices for simplifying the analysis in order to make more actions
independent of each other – the actual STM is not modified.

Lemma 2. Each Bartok STM execution is partial-order equivalent to one where
all actions corresponding to any particular execution of one of the following
functions appear consecutively: DTMStart, DTMOpenForRead, DTMOpenForUpdate,
CloseSTMWord, ValidateRead. We call such executions coarse atomic.

The proof of the lemma is left to the Appendix.
The lemma allows us to consider thread interleavings at the level of the func-

tions listed. If we can prove that all coarse-atomic Bartok STM executions satisfy
the conditions we are after, then we have proved the same for all Bartok STM
executions. In the rest of this paper, we restrict our attention to coarse atomic
Bartok STM executions.

4.4 Verifying the “Exclusive Writes” Property

Consider a Bartok STM execution ξBk in which transaction tx performs a write
access to a field of object o, and in which the i-th action of ξBk is the represen-
tative action of an OpenForUpdate of object o by transaction tx, and the j-th
action of ξBk is either the representative action of a CloseSTMWord executed on
o by tx. We refer to the interval [i, j] as the write span of object o in tx, denoted
by WriteSpan(ξBk, tx, o).

We prove that the Bartok STM guarantees the following non-overlapping
write spans (NOWS) property: Let WriteSpan(ξ, tx, o) = [i, j]. Then ξ does not
have as its j-th action for any i < j < k the representative action of a successful
OpenForUpdate of o by another transaction tx′ executed by another thread, i.e.,
write spans of an object in two different transactions do not overlap.

Expressing the NOWS property as a sequential Spec# assertion:
We modeled the Bartok STM in the Spec# language and used the Boogie veri-
fication tool for sequential Spec# programs. One novel contribution of this pa-
per is the statement of non-interference requirements in the form of assertion

checks in sequential Spec# programs. This approach is illustrated in the code
for CheckNOWS in Fig. 5. Here, Tx good successfully opens object obj for update.
ExclusiveOwner(Tx good, obj) is a propositional formula which states that
Tx good is exclusive owner of obj according to the STM Word for obj. Lemma 2 al-
lows us to consider only coarse atomic thread interleavings in which an OpenForUpdate

must run in its entirety before control switches to another thread. Tx bad models
the first potential offending transaction by another thread that attempts to per-
form an OpenForUpdate within the write span of obj in Tx good. It is sufficient
to consider this scenario because only transactions that already have an object
open for update attempt to modify the STM metadata using CloseSTMWord. The
interaction of the threads running Tx good and Tx bad is mimicked CheckNOWS,
where actions implementing the function calls in lines 2 and 5 manipulate pro-
gram and STM state in exactly the same way as two distinct C# threads running
these functions. Using Boogie, this assertion check was verified in under a minute.

4.5 Verifying the “Valid Reads” Property
Consider a Bartok STM execution ξBk where tx reads a field of object o, and in
which the i-th action is the representative action of an OpenForRead of object o
by transaction tx, and the j-th action is the representative action of a successful
ValidateRead executed on o by tx. The interval [i, j] is the read span of o by
tx, denoted by ReadSpan(ξ, tx, o). Let tx and tx′ be two transactions performed
by two different threads in an execution ξBk and let tx perform a read access
to o that is successfully validated and let tx′ perform a write access to fields
of o. Then ReadSpan(ξ, tx, o) and WriteSpan(ξ, tx′, o) do not intersect. This is
referred to as the valid read spans (VRS) property.

Representing the VRS property as a sequential assertion check: The
modeling of possible interference scenarios in the VRS property is more compli-
cated than that for NOWS. In CheckVRS in Fig. 5, Tx represents the transaction
that has object obj open for read. Before Tx runs ValidateRead on obj, an ar-
bitrary number of other threads can run OpenForUpdate and CloseSTMWord on
obj and Tx itself can open obj for write. The function InterfereWith models
an arbitrary sequence of such interfering actions by other transactions. CheckVRS
models interference by other threads as a sequential program. For every sequence
of actions that Tx and an arbitrary number of other interleaved offending threads
and transactions perform, there is a corresponding behavior of the sequential pro-
cedure CheckVRS where Tx bad in each execution of the loop in InterfereWith

is chosen appropriately.
Experience: While checking the VRS property, we found out that it did

not hold of our model, which was based on the pseudo-code published in [5] and
augmented with features extracted from the C# code for Bartok. One possible
interleaving of offending threads was not covered in ValidateRead and a trans-
action that should have been invalidated was not (See Appendix for details).
Closer examination of the current version Bartok STM code revealed that the
implementation code was structured differently and did not contain this error.
We were also provided “challenge bugs” – bugs that existed in earlier versions.
We were provided two such challenge bugs and both of these bugs were detected
as assertion violations in CheckVRS.

In order for Boogie to complete the verification task, we had to provide
pre- and post-conditions for InterfereWith, which required a post-condition
for the while loop in InterfereWith. The loop post-condition stated that if
interferedWith is set to true, then the version number of obj is increased in
the loop. With the proper corrections, CheckVRS was shown to be free of as-
sertion violations. Boogie runs for both succeeding and failing assertion checks
completed in under five minutes.

4.6 Verifying the “Correct Undo’s” Property

We sketch the verification of this property. More details are available in the Ap-
pendix. The verification builds on the NOWS and VRS properties, which, along
with the abstraction of allowing reads in rolled-back transactions to return arbi-
trary values imply that for an object in the write set of a rolled back transaction
Tx, no write accesses are performed by another thread while Tx is being rolled
back, and all reads during this time (since they conflict with Tx) are allowed to
return arbitrary values. Therefore, all accesses by other threads to objects owned
by Tx during rollback can be commuted to the right of transaction Tx. This re-
sults in a completely serial execution of the undo function in the Bartok STM.
We say such executions have the serial undo (SU) property. For serially executed
rollback operations, the OTFJ semantics and the Bartok implementation code
are identical in structure and are easily proven to be equivalent.

4.7 Putting it All Together

So far we have proven that every Bartok STM execution is partial-order equiva-
lent to a coarse atomic Bartok STM execution ξBk that has the NOWS, VRS, SU
and correct undo’s properties. To relate such a a ξBk to an OTFJ execution ξ, we
perform the following steps. We denote the resulting transformation h(ξBk) = ξ.

– For successfully committing transactions, insert a commit action immediately
after the last action belonging to the first successful ValidateRead in ξ.

– For every transaction l.l that aborts and rolls back, insert a τ = undoLLE (ll)
immediately before every write action to a program variable performed in the
context of the transaction rollback. Insert the action (t, l.l, undo) immedi-
ately after the last such write to a program variable.

– Group any sequence of actions ε = ε0, ε1, ε2, ..., εk performed by a single
thread as part of a single STM function into a single atomic action.

Note that h leaves intact all actions acting on programmer-visible variables.

Theorem 3. For every Bartok STM execution ξBk satisfying the NOWS, VRS,
SU, and correct undo’s properties, h(ξBk) is an OTFJ exceution that has the EW,
VR and correct undo’s properties. Therefore, h(ξBk) is purely serializable.

The proof of Theorem 3 is given in the Appendix. Theorem 3 implies that the
checks performed on the Bartok STM are sufficient to prove correctness, i.e.,
that every sequence of reads and updates of programmer-visible variables in a
Bartok STM execution could have been produced by a purely serializable OTFJ
execution.

5 Previous Work
Earlier work on verifying TM’s has mostly concentrated on the top, algorithmic-
level. Jagannathan et al. [6], Moore et al. [8], Abadi et al. [1] have explored
conditions under which a finer-grained small-step semantics for TM’s is a cor-
rect refinement of a coarse-grained, serial semantics for programs using TM’s.
These studies are similar to the top-level proof we present in Section 3. Our
work takes this small-step semantics as a starting point and checks that the TM
implementation satisfies it.

Cohen et al. [2] write an abstract model for a TM (the specification module)
and an algorithm-level model (the implementation module) in TLA+. They then
either deductively verify correctness or apply model checking for limited con-
figurations, i.e., a small number of transactions, number of instructions in each
transaction, etc. This work can be seen as a way to partly automate our top-level
proof while applying it to different styles of STM’s. The emphasis in our work, on
the other hand, is the mechanical verification that the algorithm-level description
is correctly implemented in STM code.

6 Conclusion
We presented a technique that makes possible modular verification of whether
an STM implementation is a correct refinement of its algorithm-level description,
which is separately shown to be serializable. We applied the technique to the Bar-
tok STM implementation and were able to detect subtle implementation bugs.
While we applied this approach to only one STM style and one particular imple-
mentation, we believe that it can be applied to other STM styles as well. Future
work includes generalization of the technique to other STM algorithms, investi-
gation of abstract interpretation techniques to automate more of the mechanical
proof, and a formalization of the STM-garbage collector interface.

References

1. M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory
and automatic mutual exclusion. POPL ’08: 35th ACM Symp. on Principles of
Programming Languages, pp. 63–74, 2008. ACM.

2. A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck. Verifying cor-
rectness of transactional memories. 7th Int.l Conf. on Formal Methods in Computer-
Aided Design (FMCAD), pp. 37–44. Nov. 2007.

3. C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for atomicity. In ISSTA
’04: ACM Intl. Symp. on Software Testing and Analysis, pp. 221–231, 2004.

4. K. Fraser and T. Harris. Concurrent programming without locks. ACM Trans.
Comput. Syst., 25(2):5, 2007.

5. T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions.
PLDI ’06: 2006 ACM Conf. on Programming language design and implementation,
pp. 14–25, 2006. ACM.

6. S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object calculus.
Sci. Comput. Program., 57(2):164–186, 2005.

7. J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2006.
8. K. F. Moore and D. Grossman. High-level small-step operational semantics for

transactions. 35th ACM Symp. on Principles of Programming Languages. Jan 2008.

Appendix

void DTMOpenForUpdate(tm_mgr tx,

object obj) {

// ** Atomic STM Metadata Read **
word stm_word = GetSTMWord(obj);

if (!IsOwnedSTMWord(stm_word)) {
entry -> obj = obj;

entry -> stm_word = stm_word;
entry -> tx = tx;

word new_stm_word =
MakeOwnedSTMWord(entry);

// ** Atomic compare and swap **

// ** of STM Metadata **
if (OpenSTMWord(obj, stm_word,

new_stm_word)) {

// Open succeeded:

// Advance our log pointer
entry ++;

} else {
// Open failed
BecomeInvalid(tx);

}
} else if (tx ==

GetOwnerFromSTMWord(stm_word)) {
// Object already open for

// update by current transaction
} else {

// Object already open for

// update by another transaction: abort
BecomeInvalid(tx);

}
}

void CloseUpdatedObject(tm_mgr tx,
object obj,

update_entry *entry) {
word old_stm_word = entry -> stm_word;

word new_stm_word =
GetNextVersion(old_stm_word);

CloseSTMWord(obj, new_word);

}

void ValidateReadObject(tm_mgr tx, object obj,

read_entry *entry) {
snapshot old_snapshot = entry -> stm_snapshot;

// ** Atomic STM Metadata Read **
snapshot cur_snapshot = GetSTMSnapshot(obj);

word cur_stm_word = SnapshotToWord(cur_snapshot);

if (old_snapshot == cur_snapshot) {
if (!IsOwnedSTMWord(cur_stm_word)) {

// V1: Snapshot unchanged, no conflict
} else if (GetOwnerFromSTMWord(cur_stm_word) == tx) {

// V2: Opened by us for update before read
} else {

// V4: Opened for update by another tx

BecomeInvalid(tx);
}

} else { // Snapshots mismatch: slow-path test on STM word

word old_stm_word = SnapshotToWord(old_snapshot);
if (!IsOwnedSTMWord(old_stm_word)) {

if (old_stm_word == cur_stm_word) {

// V1: OK: STM word inflated during the transaction
} else if (!IsOwnedSTMWord(cur_stm_word)) {

// V5: Conflicting update by another tx
BecomeInvalid(tx);

} else if (GetOwnerFromSTMWord(cur_stm_word) == tx) {

// We opened the object for update...
update_entry *update_entry =

GetEntryFromSTMWord(cur_stm_word);
if (update_entry -> stm_word !=

SnapshotToWord(old_snapshot)) {
// V5: ...but another tx opened and closed the
// object for update before we opened it

BecomeInvalid(tx);
} else { } // V3: No intervening access by another tx

} else { BecomeInvalid(tx);} // V5: The object was
// opened by another tx

} else if (GetOwnerFromSTMWord(cur_stm_was) == tx) {

// V2: Opened by us for update before read
} else {

// V4: STM word unchanged, but previously open for
// update by another transaction

BecomeInvalid(tx);
}

}

}

Fig. 6. Pseudocode for some functions in the Bartok STM implementation.

Pseudocode for certain Bartok STM functions is provided in Fig. 6

6.1 Proofs of Theorems and Lemmas

Proof. (Theorem 1): For a given execution ξ of program P, we will prove the
existence of such an ξsr by induction on m = |CompLbls(ξ)|, the number of

labels of completed transactions. We will prove that each such ξ is equivalent to
a serial execution ξsr where transactions occur in the same serialization order as
ξ.

For m = 0, the claim is trivially true. Suppose the claim holds for m = q

and consider an execution ξ with q + 1 completed transactions. Let ξq be the
prefix of ξ up to and including the q-th completion action. Then ξ = ξq . ξsf for
some execution suffix ξsf. By the inductive hypothesis, ξq is equivalent to a serial
execution ξsr

q . Then ξ is equivalent to an execution ξ• = ξsr
q .ξsf.

Let αi and αj , the i-th and j-th actions in ξ• be the q-th and q + 1-st com-
pletion actions in ξ• executed by threads ti and tj. Note that the serialization
order, therefore, the order of completion actions in ξ and ξ• are the same by the
inductive hypothesis.

Let us write ξ• as ξ• = ξ(0,i) . αi . ξ(i,j) . αj . ξ(j,∞). All actions in ξ(i,j) not exe-
cuted by tj must have their completion actions later than αj , i.e., not in ξ•. This
is the case regardless of whether ti = tj. By the lemma above, all such actions
can be commuted to the right of αj while preserving their relative order. Thus ξ•

is equivalent to an execution of the form ξ•,sr = ξ(0,i).αi.ξ
′
(i,j).αj .ξ

′.ξ(j,∞), where,

by construction, ξ′(i,j) is the subsequence of ξ(i,j) consisting of actions executed

by tj as part of the transaction completing at αj and ξ′ contains (in the same
order) all other actions in ξ(i,j). By construction, ξ•,sr is serial and preserves the
serialization order in ξ.

Proof. (Theorem 2): Let ξ be as stated in the theorem. By Theorem 1, ξ is
equivalent to a serial execution ξsr . Since ξsr is an execution of P, ξsr also has the
valid undo’s property. It is straightforward to see from the semantics of a serially-
executed transaction that is rolled back that it does not modify the program or
the program state. Therefore, in any serial execution ξsr, any execution fragment
from the execution of an onacid action to the corresponding undo can be removed
to yield another legal serial execution ˜ξsr of the same program. By repeated
application of this fragment removal procedure, one obtains a serial, conflict-free
(i.e. no undo’s) execution ξ̂ that is equivalent modulo undo’s to ξsr.

Proof. (Lemma 2):
Each of the methods listed performs a single atomic (CAS) operation of a sin-

gle STM Word or a single read and later a compare-and-swap of a single STM Word.
All of the rest of the actions performed by the function are thread-local variable
accesses, which can be commuted to be adjacent to any action in the function. We
designate as the representative action either the successful CAS operation, or, in
functions where the CAS fails, the earlier read operation. In either case, using the
abstract semantics for TFJ-Bk, all actions in the function can be commuted so
they are adjacent to the representative action in the execution. For functions that
execute a single CAS operation, all other actions are independent from all others
performed by other threads. Therefore, they can all be moved towards the CAS
operation to yield an equivalent execution. For functions which first perform a
read and then a CAS, there are two cases to consider. In case the CAS succeeds,
there are no writes to the STM Word between the read and the CAS, thus, the

preceding argument applies and all actions in the function can be moved towards
the CAS. In case the CAS fails, since the failing ND-CAS operation commutes
with all actions from other threads, all actions can be moved towards the initial
atomic read to yield a coarse atomic execution.

Proof. (Theorem 3): The key difference between the Bartok STM and OTFJ ex-
ecutions is that certain atomic OTFJ actions τ were implemented as sequences
of actions ε = ε0, ε1, ε2, ..., εk in the Bartok STM. But the NOWS, VRS and cor-
rect undo’s properties and the partial-order equivalences described in this section
allow us to conclude that for each Bartok STM execution with the NOWS, VRS
and correct undo’s properties, there is an equivalent Bartok STM execution where
all the actions in a sequence of the form ε = ε0, ε1, ε2, ..., εk appear consecutively.
By grouping such sequences into single atomic actions and observing that the
STM-state transformer predicates are left unspecified for OTFJ, we conclude
that every such h(ξBk) is an OTFJ execution.

It is straightforward to see that if a Bartok STM execution ξBk has the NOWS
property, then h(ξBk) has the exclusive writes property. In h(ξBk), the commit ac-
tion following a write comes before the CloseSTMWord action, therefore, all write
actions happen in the write span of a transaction. The NOWS property implies
that write spans do not overlap as required by the exclusive writes property.
Since h inserts a commit action right before the first successful ValidateRead,
the VRS property implies the VR property for the corresponding OTFJ execu-
tion in a straightforward manner. The argument presented later in the appendix
for undo operations similarly implies that h(ξBk) has the correct undo’s property.

6.2 The Bug in the STM Pseudocode

While checking the VRS property on the Bartok STM implementation, we found
out that it in fact did not hold of our model, which was based on the pseudo-
code published in [5] and augmented with features extracted from the C# code
for Bartok. One possible interleaving of offending threads was not covered in
ValidateRead and a transaction that should have been invalidated was not.
Cases V1-V5 of ValidateRead in Fig. 6 omitted a possibility. In the omitted
case, another transaction (Tx other) has obj open for write when Tx executes
DTMOpenForRead and Tx other runs CloseSTMWordbefore Tx runs ValidateRead.
In this interleaving, case V2 is executed erroneously whereas the transaction Tx

should have been invalidated. Closer examination of the current version Bartok
STM code revealed that the implementation code was structured differently and
did not contain this particular error.

6.3 Verifying the “Correct Undo’s” Property of the Bartok STM

Consider a Bartok STM execution ξBk and a transaction tx that is rolled back
in ξBk. Since all executions of undoLLE within tx for all objects o in the write
set of tx are contained in the write span of o, no other object performs a write
access to o or o’s STM metadata during the lifetime of tx. We will transform

ξBk to another partial-order equivalent Bartok STM execution ˜ξBk in which all
actions implementing the transaction rollback appear consecutively. Because of
abstraction (ii), undoLLE actions modifying an object o commute with read
actions that fall in the write span of tx because these transactions that these
read actions belong to will eventually fail. Then, all of these read actions can be
moved to after the last action by transaction tx.

The abstraction and equivalence argument above allows us to only consider
Bartok STM executions in which transactions that are rolled back perform the
entire roll-back of the log uninterrupted by other threads, in a sequential manner.

We now state and prove the correct undo last log entry property for Bartok
STM executions (see Fig. 6). The following sequence of Bartok STM actions,
when executed without interference by other threads, leaves the STM and pro-
gram state unchanged: perform a field update, add the corresponding entry to
the tail of the log, undo the field update, remove the entry from the tail of the
log. This property is checked in a straightforward manner by the code in Fig. 6.
Repeated applications of this property enable us to prove that the state of the
transaction manager Tx and all objects in the write set of Tx are the same right
before Tx starts in ξBk and right after Tx performs the first CloseSTMWord. This
valid Bartok undo’s property in a straightforward manner implies the correct
undo’s property for OTFJ programs.

Every write performed by a transaction is entered into the “update log”. The
update log is a linked list that stores the updates in chronological order. Each log
entry corresponds to an object and its field and stores the old and new values of
the field. When a transaction is being rolled back, the log is traversed from the tail
toward the head. For each entry, the stored old value of the field is written into the
object. Since the exclusive writes property ensures that this operation is carried
out uninterfered by other threads, the proof obligation becomes a sequential one.
The assertion checked in Figure 6 implies that adding a field update to the tail of
the update log and then undoing it leaves all interesting program and STM state
unchanged. By applying this lemma inductively for an arbitrary-length update
log, we infer that the state of an object o modified by this transaction tx before
the transaction starts and right after tx releases control of o are the same.

