Proving That Non-Blocking Algorithms Don’t Block

Alexey Gotsman Byron Cook

University of Cambridge Microsoft Research

Abstract

A concurrent data-structure implementation is considered non-
blocking if it meets one of three following liveness criteria: wait-
freedom, lock-freedom, or obstruction-freedom. Developers of non-
blocking algorithms aim to meet these criteria. However, to date
their proofs for non-trivial algorithms have been only manual
pencil-and-paper semi-formal proofs. This paper proposes the first
fully automatic tool that allows developers to ensure that their algo-
rithms are indeed non-blocking. Our tool uses rely-guarantee rea-
soning while overcoming the technical challenge of sound reason-
ing in the presence of interdependent liveness properties.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification

Keywords Formal Verification, Concurrent Programming, Live-
ness, Termination

1. Introduction

Non-blocking synchronisation is a style of multithreaded program-
ming that avoids the blocking inherent to lock-based mutual ex-
clusion. Instead, alternative synchronisation techniques are used,
which aim to provide certain progress guarantees even if some
threads are delayed for arbitrarily long. These techniques are pri-
marily employed by concurrent implementations of data structures,
such as stacks, queues, linked lists, and hash tables (see, for ex-
ample, the java.util.concurrent library). Non-blocking data
structures are generally much more complex than their lock-based
counterparts, but can provide better performance in the presence of
high contention between threads [38].

An algorithm implementing operations on a concurrent data
structure is considered non-blocking if it meets one of three com-
monly accepted liveness criteria that ensure termination of the op-
erations under various conditions:

Wait-freedom [15]: Every running thread is guaranteed to com-
plete its operation, regardless of the execution speeds of the
other threads. Wait-freedom ensures the absence of livelock and
starvation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’09, January 18-24, 2009, Savannah, Georgia, USA.
Copyright © 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

Viktor Vafeiadis

Microsoft Research

Matthew Parkinson
University of Cambridge

Lock-freedom [23]: From any point in a program’s execution,
some thread is guaranteed to complete its operation. Lock-
freedom ensures the absence of livelock, but not starvation.

Obstruction-freedom [16]: Every thread is guaranteed to com-
plete its operation provided it eventually executes in isolation.
In other words, if at some point in a program’s execution we
suspend all threads except one, then this thread’s operation will
terminate.

The design of a non-blocking algorithm largely depends on which
of the above three criteria it satisfies. Thus, algorithm developers
aim to meet one of these criteria and correspondingly classify the
algorithms as wait-free, lock-free, or obstruction-free (e.g., [14, 16,
25]). To date, proofs of the liveness properties for non-trivial cases
have been only manual pencil-and-paper semi-formal proofs. This
paper proposes the first fully automatic tool that allows developers
to ensure that their algorithms are indeed non-blocking.

Reasoning about concurrent programs is difficult because of the
need to consider all possible interactions between concurrently exe-
cuting threads. This is especially true for non-blocking algorithms,
in which threads interact in subtle ways through dynamically-
allocated data structures. To combat this difficulty, we based our
tool on rely-guarantee reasoning [18, 29], which considers every
thread in isolation under some assumptions on its environment and
thus avoids reasoning about thread interactions directly. Much of
rely-guarantee’s power comes from cyclic proof rules for safety;
straightforward generalisations of such proof rules to liveness prop-
erties are unsound [1]. Unfortunately, in our application, we have to
deal with interdependencies among liveness properties of threads in
the program: validity of liveness properties of a thread can depend
on liveness properties of another thread and vice versa. We resolve
this apparent circularity by showing that (at least for all of the al-
gorithms that we have examined) proofs can found that layer non-
circular liveness reasoning on top of weak circular reasoning about
safety. We propose a method for performing such proofs by repeat-
edly strengthening threads’ guarantees using non-circular reason-
ing until they imply the required liveness property (Section 2). We
develop a logic that allows us to easily express these layered proofs
for heap-manipulating programs (Sections 3 and 4) and prove it
sound with respect to an interleaving semantics (Section 6).

In addition, we have found that the rely and guarantee condi-
tions needed for proving algorithms non-blocking can be of a re-
stricted form: they need only require that certain events do not hap-
pen infinitely often. This allows us to automate proving the liveness
properties by a procedure that systematically searches for proofs in
our logic with relies and guarantees of this form (Section 5).

Using our tool, we have automatically proved a number of the
published algorithms to be formally non-blocking, including chal-
lenging examples such as the HSY stack [14] and Michael’s linked
list algorithm [25]. Proofs for some of the verified algorithms re-
quire complex termination arguments and supporting safety prop-
erties that are best constructed by automatic tools.

2. Informal development

We start by informally describing our method for verifying liveness
properties and surveying the main results of the paper.

Example. Figure 1 contains a simple non-blocking implemen-
tation of a concurrent stack due to Treiber [33], written in a C-
like language. A client using the implementation can call several
push or pop operations concurrently. To ensure the correctness of
the algorithm, we assume that it is executed in the presence of a
garbage collector (see [17, Section 10.6] for justification). We also
assume that single word reads and writes are executed atomically.
The stack is stored as a linked list, and is updated by compare-and-
swap (CAS) instructions. CAS takes three arguments: a memory
address, an expected value and a new value. It atomically reads the
memory address and updates it with the new value when the ad-
dress contains the expected value; otherwise, it does nothing. In C
syntax this might be written as follows:

int CAS(WORD *addr, WORD v1, WORD v2) {
atomic {
if (*addr == v1) { *addr = v2; return 1; }
else { return 0; }
}
}

In most architectures an efficient CAS (or an equivalent operation)
is provided natively by the processor.

The operations on the stack are implemented as follows. The
function init initialises the data structure. The push operation (7)
allocates a new node x; (ii) reads the current value of the top-of-the-
stack pointer S; (iii) makes the next field of the newly created node
point to the read value of S; and (iv) atomically updates the top-of-
the-stack pointer with the new value x. If the pointer has changed
between (i) and (iv) and has not been restored to its initial value,
the CAS fails and the operation is restarted. The pop operation is
implemented in a similar way.

Liveness properties of non-blocking algorithms. Notice that a
push or pop operation of Treiber’s stack may not terminate if
other threads are continually modifying S: in this case the CAS
instruction may always fail, which will cause the operation to
restart continually. Thus, the algorithm is not wait-free. However, it
is lock-free: if push and pop operations execute concurrently, some
operation will always terminate.

We note that an additional requirement in the definitions of the
liveness properties given in Section 1 is that the properties have
to be satisfied under any scheduler, including an unfair one that
suspends some threads and never resumes them again: in this case
the remaining threads still have to satisfy the liveness properties.
The properties form a hierarchy [10]: if an algorithm is wait-free,
it is also lock-free, and if it is lock-free, it is also obstruction-
free. Note also that even the weakest property, obstruction-freedom,
prevents the use of spinlocks, because if a thread has acquired a
lock and is then suspended, another thread may loop forever trying
to acquire that lock.

We first describe our approach for verifying lock-freedom.

Reducing lock-freedom to termination. 'We show that the check-
ing of lock-freedom can be reduced to the checking of termina-
tion in the spirit of [36]. Consider a non-blocking data structure
with operations op,,...,op,,. Let op be the command that non-
deterministically executes one of the operations on the data struc-
ture with arbitrary parameters:

op =

if (nondet()) op;; else if (nondet()) op,; ... else op,;

Q2.1

struct Node { void init() {

value_t data; S = NULL;
Node *next; }

};

Node *S; value_t pop() {

Node *t, *x;
void push(value_t v) { do {
Node *t, *x; t = 8S;
x = new Node(); if (t == NULL) {
x->data = v; return EMPTY;
do { }
t =8S; X = t->next;
x->next = t; } while(!CAS(&S,t,x));
} while(!CAS(&S,t,x)); return t->data;
} }

Figure 1. Treiber’s non-blocking stack

We denote non-deterministic choice with nondet(). The definition
of lock-freedom of the data structure requires that for all m in any
(infinite) execution of the data structure’s most general client C'(m)
defined below, some operation returns infinitely often:
C(m) = | while (true) { op }
i=1

We now show that this is the case if and only if for all k£ the
following program C’ (k) terminates:

k
C'(k)= || op 2.2)
i=1
The proof in the “only if” direction is by contrapositive: a non-
terminating execution of C’ (k) can be straightforwardly mapped to
an execution of C(k) violating lock-freedom in which the while
loops make at most one iteration executing the same operations
with the same parameters as in C’(k). For the “if” direction note
that any infinite execution of C'(m) violating lock-freedom has
only finitely many (say, k) operations started: those that complete
successfully, those that are suspended by the scheduler and never
resumed again, and those that do not terminate. Such an execution
can then be mapped to a non-terminating execution of C’(k), in
which the operations are completed, suspended or non-terminating
as above.
Thus, to check lock-freedom of an algorithm, we have to check
the termination of an arbitrary number of its operations running in
parallel.

Rely-guarantee reasoning and interference specifications. We
prove termination of the program C’ (k) using rely-guarantee rea-
soning [18, 29]. Rely-guarantee avoids direct reasoning about all
possible thread interactions in a concurrent program by specifying
arelation (the guarantee condition) for every thread restricting how
it can change the program state. For any given thread, the union of
the guarantee conditions of all the other threads in the program (its
rely condition) restricts how those threads can interfere with it, and
hence, allows reasoning about this thread in isolation.

The logic we develop in this paper uses a variant of rely-
guarantee reasoning proposed in RGSep [35]—a logic for reason-
ing about safety properties of concurrent heap-manipulating pro-
grams, which combines rely-guarantee reasoning with separation
logic. RGSep partitions the program heap into several thread-local
parts (each of which can only be accessed by a given thread) and the
shared part (which can be accessed by all threads). The partition-
ing is defined by proofs in the logic: an assertion in the code of a
thread restricts its local state and the shared state. Additionally, the

partitioning is dynamic, meaning that we can use ownership trans-
fer to move some part of the local state into the shared state and
vice versa. Rely and guarantee conditions are then specified with
sets of actions, which are relations on the shared state determin-
ing how the threads change it. This is in contrast with the original
rely-guarantee method, in which rely and guarantee conditions are
relations on the whole program state. Thus, while reasoning about
a thread, we do not have to consider local states of other threads.

For example, using RGSep we can prove memory safety (no
invalid pointer dereferences) and data structure consistency (the
linked list is well-formed) of Treiber’s stack [34]. The proof con-
siders the linked list with the head pointed to by the variable S to be
in the shared state. When a push operation allocates a new node x,
it is initially in its local state. The node is transferred to the shared
state once it is linked into the list with a successful CAS instruction.
The proof specifies interference between threads in the shared state
with three actions, Push, Pop, and Id, with the following informal
meaning: Push corresponds to pushing an element onto the stack
(a successful CAS in push); Pop to removing an element from the
stack (a successful CAS in pop); and Id represents the identity ac-
tion that does not change the shared state (a failed CAS and all the
other commands in the code of the threads).

Proving lock-freedom. Using the splitting of the heap into local
and shared parts and the interference specification for Treiber’s
stack described above, we can establish its lock-freedom as follows.
As we showed above, it is sufficient to prove termination of a fixed
but arbitrary number of threads each executing a single push or
pop operation with an arbitrary parameter. The informal proof of
this (formalised in Section 4) is as follows:

1. No thread executes Push or Pop actions infinitely often.
This is because a Push or Pop action corresponds to a success-
ful CAS, and once a CAS succeeds, the corresponding while
loop terminates.

II. The while loop in an operation terminates if no other thread
executes Push or Pop actions infinitely often.
This is because the operation does not terminate only when its
CAS always fails, which requires the environment to execute
Push or Pop actions infinitely often.

Hence, every thread terminates.

The above proof uses rely-guarantee reasoning: it consists of
proving several thread-local judgements, each of which establishes
a property of a thread under an assumption about the interfer-
ence from the environment. Properties of a parallel composition of
threads are then derived from the thread-local judgements. This is
done by first establishing the guarantee provided by Statement I and
then using it to prove termination of the operations. This pattern—
establishing initial guarantees and then deriving new guarantees
from them—is typical for proofs of lock-freedom. We now con-
sider a more complicated example in which the proof consists of
more steps of this form.

Hendler, Shavit, and Yerushalmi [14] have presented an im-
proved version of Treiber’s stack that performs better in the case of
higher contention between threads. Figure 2 shows an adapted and
abridged version of their algorithm. The implementation combines
two algorithms: Treiber’s stack and a so-called elimination scheme
(partially elided). A push or a pop operation first tries to modify
the stack as in Treiber’s algorithm, by doing a CAS to change the
shared top-of-the-stack pointer. If the CAS is successful then the
operation terminates. If the CAS fails (because of interference from
another thread), the operation backs off to the elimination scheme.
If this scheme fails, the whole operation is restarted.

The elimination scheme works on data structures that are sepa-
rate from the list implementing the stack. The idea behind it is that

two contending push and pop operations can eliminate each other
without modifying the stack if pop returns the value that push is
trying to insert. An operation determines the existence of another
operation it could eliminate itself with by selecting a random slot
pos in the collision array, and atomically reading that slot and
overwriting it with its thread identifier MYID. The identifier of an-
other thread read from the array can be subsequently used to per-
form elimination. The corresponding code does not affect the lock-
freedom of the algorithm and is therefore elided in Figure 2. The
algorithm implements the atomic read-and-write operation on the
collision array in a lock-free fashion using CAS'. This illus-
trates a common pattern, when one lock-free data structure is used
inside another.

An RGSep safety proof of the HSY stack would consider the
data structures of the elimination scheme shared and describe in-
terference on the shared state using the actions introduced for
Treiber’s stack and two additional actions: Xchg (which denotes
the effect of the successful operation on the collision array de-
scribed above) and Others (which includes all the operations on
the other data structures of the elimination scheme). Given this in-
terference specification, the informal proof of lock-freedom of the
algorithm is as follows: in a parallel composition of several threads
each executing one push or pop operation,

I. No thread executes Push or Pop actions infinitely often.

II. push and pop do not execute the Xchg action infinitely often if
no other thread executes Push or Pop actions infinitely often.
This is because a thread can only execute Xchg infinitely
often if its outer while loop does not terminate. This can only
happen if some other thread executes Push or Pop infinitely
often.

III. push and pop terminate if no other thread executes Push,
Pop, or Xchg actions infinitely often.
This is because in this case both inner and outer while loops
eventually terminate.

From Statements I and II, we get that no thread executes Push,
Pop, or Xchg actions infinitely often. Hence, by Statement III every
thread terminates.

The above proof is done in a layered style, i.e., starting from the
weak guarantee provided by Statement I and strengthening it using
already established guarantees until it implies termination. This is
informally illustrated in Figure 3 for the case of two operations (op1
and op2) running in parallel. The validity of the property of Thread
1 in the middle layer depends on the validity of the counterpart
property of Thread 2 and vice versa. However, it is unsound to
remove the upper layer of Figure 3 and justify the guarantee in the
middle layer by circular reasoning, i.e., by observing that a thread
satisfies the guarantee if the other thread does.

We have found that the proof method described above was
applicable in all of the examples of lock-free algorithms that we
have considered. In the next two sections we develop a logic for
formalising proofs following the method.

Automating lock-freedom proofs. The above informal proofs of
lock-freedom use guarantee conditions of a restricted form that
specifies two sets of actions: those that a thread can execute and
those that it cannot execute infinitely often. We have found that
guarantee conditions of this form were sufficient to prove lock-
freedom for all the examples we considered. This observation al-
lows us to automate proving lock-freedom of an algorithm by sys-
tematically searching for termination proofs for a program consist-

!'Such an operation could be implemented with an atomic exchange instruc-
tion. The reason for implementing it with CAS is that in some architectures
the atomic exchange instruction is either not available or slow.

struct Node {
value_t data;
Node *next;

};

Node *S;

int collision[SIZE];

void push(value_t v) {

Node *t, *x;

x = new Node();

x->data = v;

while (1) {
t =8;
x->next = t;
if (CAS(&S,t,x)) { return; }
// Elimination scheme
Y/
int pos = GetPosition();
// 0 < pos < SIZE-1
int hisId = collision[pos];
while (!CAS(&collision[pos],hisId,MYID)) {

hisId = collision[pos];

}
Y/

value_t pop() {
Node *t, *x;
while (1) {

t = 8S;

if (t == NULL) {
return EMPTY;

}

X = t->next;

if (CAS(&S,t,x)) {
return t->data;

}

// Elimination scheme

VI

int pos = GetPosition();

// 0 < pos < SIZE-1

int hisId = collision[pos];

while (!CAS(&collision[pos],hisId,MYID)) {
hisId = collision[pos];

}

Y/

Figure 2. The HSY non-blocking stack

opy OPo

Thread 1 does not
execute Push or
Pop infinitely often

Thread 2 does not
execute Push or
Pop infinitely often

Thread 2 does not
execute Push, Pop, or
Xchg infinitely often

Thread 1 does not
execute Push, Pop, or
Xchg infinitely often

Thread 1 terminates Thread 2 terminates

Figure 3. An informal proof argument where an arrow from state-
ment A to statement B means that A is used as a rely condition
while establishing the guarantee B.

ing of an arbitrary number of the algorithm’s operations running
in parallel: we search for proofs that follow the pattern described
above and use rely and guarantee conditions of the restricted form.
Our proof search procedure performs a forward search, construct-
ing proof graphs like the one in Figure 3 top-down. It is able to con-
struct proofs that the programs C’ (k) terminate for all k at once,
because our guarantee conditions are such that if several threads
satisfy a guarantee, then so does their parallel composition. We now
informally describe the procedure using the HSY stack as the run-
ning example (the details are provided in Section 5).

Consider a program consisting of an arbitrary number of the al-
gorithm’s operations running in parallel. First, using existing tools
for verifying safety properties of non-blocking algorithms [6], we
can infer a splitting of the program state into local and shared
parts and a set of actions describing how the operations change the
shared state ({Push, Pop, Xchg, Others, Id} for the HSY stack).
The set defines the initial guarantee provided by every operation
in the program that ensures that the operation changes the shared
state only according to one of the actions. Note that if several opera-
tions satisfy this guarantee, then so does their parallel composition.
Hence, while checking a property of an operation in the program,
we can rely on its environment satisfying the guarantee. The guar-
antee, however, is too weak to establish termination of the oper-
ations. We therefore try to strengthen it by considering every ac-
tion in turn and attempting to prove that no operation executes the
action infinitely often in an environment satisfying the guarantee.
In our running example, we will be able to establish that the op-
erations do not execute the actions Push and Pop infinitely often
(but not Xchg and Others). Again, if several operations satisfy the
guarantee strengthened in this way, then so does their parallel com-
position. Hence, we can check properties of the operations in the
program assuming that their environment satisfies the guarantee.
An attempt to prove their termination in this way fails again, and
we have to strengthen the guarantee one more time. Namely, we
try to prove that the operations do not execute the remaining ac-
tions Xchg and Others infinitely often. In this case, the available
guarantee is strong enough to prove that the Xchg action is not exe-
cuted infinitely often. Finally, the strengthened guarantee allows us
to establish termination of the operations.

Proving obstruction-freedom and wait-freedom. Obstruction-
freedom of an operation ensures its termination in an environ-
ment that eventually stops executing. Therefore, when proving
obstruction-freedom, infinite behaviours of the environment are ir-
relevant and the necessary environment guarantee can always be

Values = {...,—-1,0,1,...}
Vars = {z,y,...,&x,&y,...}
Heaps = Locs —g, Values

Locs = {1,2,...}
Stores = Vars — Values
3} = Stores x Heaps

Figure 4. Program states 3

represented by a safety property. For example, the operations of
Treiber’s stack guarantee that they modify the shared state accord-
ing to one of the actions Push, Pop, and Id. To prove obstruction-
freedom of a push or pop operation?, it is thus sufficient to prove
its termination in an environment that executes only finitely many
such actions. This is true because, as in the proof of lock-freedom,
in such an environment the CAS in the code of the operation
will eventually succeed. In general, we can automatically check
obstruction-freedom by checking termination of every operation
in the environment satisfying the safety guarantee inferred by the
safety verification tool and the additional assumption that it exe-
cutes only finitely many actions. We describe this in more detail in
Section 5.

To the best of our knowledge, loops in all practical wait-free
non-blocking algorithms have constant upper bounds on the num-
ber of their iterations. For example, Simpson’s algorithm [32] con-
sists of straight-line code only, and the number of loop iterations
in the wait-free £ ind operation of a non-blocking linked list [37] is
bounded by the number of distinct keys that can be stored in the list.
For this reason, termination of operations in wait-free algorithms
can be justified by considering only safety properties guaranteed by
operations’ environment. The automatic check for wait-freedom is
similar to the one for obstruction-freedom (see Section 5).

3. Specifying liveness properties

Our logic for reasoning about liveness properties is a Hoare-style
logic, which combines ideas from rely-guarantee reasoning and
separation logic. It generalises a recent logic for reasoning about
safety properties of non-blocking algorithms, RGSep [35]. As any
Hoare logic, ours consists of two formal systems: an assertion
language and a proof system for Hoare triples. In this section, we
describe the assertion language, define the form of judgements in
our logic, and show how to specify wait-freedom, lock-freedom,
and obstruction-freedom in it. The next section presents the logic’s
proof system.

Programming language. We consider heap-manipulating pro-
grams written in the following simple programming language.
Commands C' are given by the grammar

C = C1;Cy | if (e) Cy else C | while (e) C' | x = new()
|x = e|x = xe1 | *e1 = ez | delete e | atomic C'

where e ranges over arithmetic expressions, including non-
deterministic choice nondet (). The command atomic C' exe-
cutes C in one indivisible step. Programs consist of initialisa-
tion code followed by a top-level parallel composition of threads:
Co; (Chl-- - [|Cr).

To avoid side conditions in our proof rules, we treat each pro-
gram variable x as a memory cell at the constant address &x. Thus,
any use of x in the code is just a shorthand for *(&x). Similarly, we
interpret field expressions x->next as *(x + offset_of _next).In
our examples, we also use other pieces of C syntax.

Assertion language. Let p, g and r be separation logic assertions:

p,q,rii=emp |e1— ez | pxq|false | p=q|Tzp]|...

2This example is used here for illustrative purposes only: obstruction-
freedom of Treiber’s stack follows from its lock-freedom.

Separation logic assertions denote sets of program states X repre-
sented by store-heap pairs (Figure 4). A store is a function from
variables to values; a heap is a finite partial function from locations
to values. We omit the standard formal semantics for most of the as-
sertions [30]. Informally, emp describes the states where the heap
is empty; e1 — ez describes the states where the heap contains a
single allocated location at the address e; with contents e2; p*q de-
scribes the states where the heap is the union of two disjoint heaps,
one satistying p and the other satisfying q. The formal semantics of
the assertion p * ¢ is defined using a partial operation - on 3 such
that for all (¢1, k1), (t2, h2) € 2

(t1,h1) - (t2,h2) = (t1,h1 W h)

ift1 = t2 and hq Who is defined, and (¢1, h1) - (t2, h2) is undefined
otherwise. Then

u € [p*q] & Jur,us. u=wur -u2 Aus € [p] Auz € [q]

As we argued in Section 2, while reasoning about concurrent
heap-manipulating programs it is useful to partition the program
state into thread-local and shared parts. Therefore, assertions in our
logic denote sets of pairs of states from X. The two components
represent the state local to the thread in whose code the assertion
is located and the shared state. We use the assertion language of
RGSep [35], which describes the local and shared components with
separation logic assertions and is defined by following grammar:

P,Q:=p|[p]| P*Q |true|false | PVQ|PAQ|3z.P

An assertion p denotes the local-shared state pairs with the local
state satisfying p; @ the pairs with the shared state satisfying
p and the local state satisfying emp; P * @ the pairs in which
the local state can be divided into two substates such that one
of them together with the shared state satisfies P and the other
together with the shared state satisfies). The formal semantics
of P x Q is defined using a partial operation x on X2 such that for
all (11, 51), (I2, 52) € ¥?

(l1,51) % (I2,82) = (1 - l2, 51)

if s1 = s2 and l; - I2 is defined, and (1, s1) * (I2, s2) is undefined
otherwise. Thus,

o €[P*Q] < Jo1,02.0 =01 x02 Ao € [P] Ao2 € [Q]

Note that by abuse of notation we denote the connectives inter-
preted by - and % with the same symbol . It should be always clear
from the structure of the assertion which of the two connectives is
being used. We denote global states from > with small Latin let-
ters (u, [, s), and local-shared state pairs from £? with small Greek
letters (o).

Judgements. The judgements in our logic include rely and guar-
antee conditions determining how a command or its environment
change the shared state. These represent languages of finite and
infinite words over the alphabet 32 of relations on shared states
and are denoted with capital calligraphic letters (R, G, . ..). A word
in any of the languages describes the sequences of changes to the
shared state. Thus, relies and guarantees can define liveness proper-
ties. This generalises the RGSep logic, in which rely and guarantee
conditions define safety properties and are therefore represented
with relations on the shared state. Our proof system has two kinds
of judgements:

e R,G F {P} C {Q}: if the initial state satisfies P and the
environment changes the shared state according to R, then
the program is safe (i.e., it does not dereference any invalid
pointers), changes the shared state according to G, and the final
state (if the program terminates) satisfies Q.

* R,(G1,G2) F {P} C1||C2 {Q}: if the initial state satisfies P
and the environment changes the shared state according to R,
then the program C||C: is safe, C changes the shared state
according to Gq, C> changes the shared state according to Ga,
and the final state (if both threads terminate) satisfies (). Dis-
tinguishing the guarantee of each thread is crucial for liveness
proofs done according to the method described in Section 2.

The informal definition of judgements’ validity given above as-
sumes a semantics of programs that distinguishes between the lo-
cal and the shared state. We sketch how such a semantics can be
defined later in this section. In Section 6 we give formal definitions
of the semantics and the notion of validity, and relate them to the
standard ones, which consider the program state as a whole.

Specifying rely and guarantee conditions. As noted above, a rely
or a guarantee condition defines sequences of atomic changes to
the shared state. We describe each such change with the aid of
actions [35] of the form p ~» g, where p and ¢ are separation logic
assertions. Informally, this action changes the part of the shared
state that satisfies p into one that satisfies g, while leaving the rest
of the shared state unchanged. Formally, its meaning is a binary
relation on shared states:

[p~ gl = {(s1- 50,82 50) | 51 € [p] A s2 € [q]}

It relates some initial state s; satisfying the precondition p to a
final state so satisfying the postcondition ¢. In addition, there may
be some disjoint state so that is not affected by the action.

For example, we can define the three actions used in the proof of
lock-freedom of Treiber’s stack mentioned in Section 2 as follows:

&S8—y ~ &Sz * x—Node(v,y) (Push)
&S—1x * x—Node(v,y) ~ &S—y x x—Node(v,y) (Pop)
emp ~ emp (Id)

Here x+—Node(v, y) is a shortcut for z+—v * (z + 1)—y. Recall
that the algorithm is assumed to be executed in the presence of a
garbage collector. Hence, the node removed from the list by Pop
stays in the shared state as garbage.

In our examples, we syntactically define rely and guarantee con-
ditions using linear temporal logic (LTL) with actions as atomic
propositions. Let False and True be the actions denoting the re-
lations () and ©.2 respectively. We denote temporal operators “al-
ways”, “eventually”, and “next” with O, <, and O, respectively.
Their semantics on infinite words is standard [22]. The semantics
on finite words is defined as follows [20]: for m > 0

51...5m':O‘I/ = m22:>52...5m|:\1/

Note that here O is the weak next operator: it is true if there is
no next state to interpret its argument over. For example, OR,
where R C X2, denotes the language of words in which every
letter is from R (including the empty word), -0O0< R denotes words
which contain only finitely many letters from R (including all finite
words), and COFalse denotes exactly all finite words. We specify
termination of a command by requiring that it satisfy the guarantee
OOFalse, i.e., we interpret termination as the absence of infinite
computations. This is adequate for programs in the language intro-
duced above, since they cannot deadlock.

The semantics of triples in our logic makes no assumptions
about the scheduler. In particular, it can be unfair with respect
to the command in the triple: the guarantee condition includes
words corresponding to the command being suspended and never
executed again. For this reason, all rely and guarantee conditions in
this paper are prefix-closed, i.e., for any word belonging to a rely

or a guarantee all its prefixes also belong to it. Additionally, we
require that relies and guarantees represent nonempty languages.

Splitting states into local and shared parts. 'We now informally
describe the split-state semantics of programs that splits the pro-
gram state into local and shared parts (formalised in Section 6).

We partition all the atomic commands in the program into those
that access only local state of the thread they are executed by and
those that can additionally access the shared state. By convention,
the only commands of the latter kind are atomic blocks. For
example, in the operations of Treiber’s stack, all the commands
except for CASes access only the local state. Further, we annotate
each atomic block with an action p ~ ¢ determining how it
treats the shared state, written atomicp~., C. These annotations
are a part of proofs in our logic. For the logic to be sound, all
the judgements used in a proof of a program have to agree on
the treatment of the shared state. We therefore require that the
same annotation be used for any fixed atomic block throughout
the proof.

In the split-state semantics the command atomic,.q C exe-
cutes as follows: it combines the local state of the thread it is exe-
cuted by and the part of the shared state satisfying p, and runs C on
this combination. It then splits the single resulting state into local
and shared parts, determining the shared part as the one that satis-
fies q. The new shared state is thus this part together with the part
of the shared state untouched by C'. For the splittings to be defined
uniquely (and for our logic to be sound), we require that p and ¢ in
all annotations be precise assertions [28]. An assertion 7 is precise
if for any state u there exists at most one substate sat, (u) satisfy-
ing r: u = saty(u) - rest, (u) for some rest,(u). The assertions in
all the actions used in this paper are precise.

Let CASa(addr, v1, v2) be defined as follows:

if (nondet())
atomica {

assume (*addr == v1); *addr = v2; return 1;
}
else
atomiciy { assume (*addr !'= v1); return 0; }

where the assume command acts as a filter on the state space of
programs—e is assumed to evaluate to 1 after assume(e) is ex-
ecuted. The above definition of CAS is semantically equivalent
to the definition in Section 2, but allows different action anno-
tations for the successful and the failure cases. We annotate the
CAS commands in the push and pop operations of Treiber’s stack
as CASpysh (&8, t, x) and CASpop (&S, t, x), respectively. Similarly,
we annotate the CAS in the inner loop of the HSY stack as
CASxchg (&collision[pos], hisId, MYID).

Specifying wait-freedom, lock-freedom, and obstruction-freedom.
A non-blocking data structure is given by an initialisation routine
init and operations op,, ..., op,, on the data structure. We require
that the initialisation routine satisfy the triple

old, OTrue - {} init {Inv}

for some data structure invariant Inv restricting only the shared
state: the routine creates an instance of the data structure in the
shared state when run in isolation (i.e., in the environment that
does not change the shared state). For Treiber’s stack an invariant
maintained by all the operations on the data structure is that S
points to the head of a linked list. We can express this in our
assertion language using an inductive predicate assertion Iseg(x, y)
of separation logic that represents the least predicate satisfying

Iseg(2,y) < (¢ = y A emp)
V (3z. z # y A x—Node(, z) * Iseg(z,y))

Thus, Iseg(x, NULL) represents all of the states in which the heap
has the shape of a (possibly empty) linked list starting from location
z and ending with NULL. The invariant can then be expressed as

Inv = [Jz. &S — w * Iseg(x, NULL) * true] 3.D

In our logic, we can express the liveness properties of non-
blocking algorithms we introduced before as follows. Wait-
freedom of an operation op; is captured by the triple

R, OOFalse - {Inv} op, {true} (3.2)

which ensures termination of the operation under the interfer-
ence from the environment allowed by the rely condition R.
Obstruction-freedom of an operation op; can be expressed as

R A OOFalse, OOFalse - {Inv} op, {true} (3.3)

Here R describes the allowed interference from the operation’s
environment, and the conjunct COFalse ensures that eventually all
the threads in the environment will be suspended. As we showed in
Section 2, lock-freedom can be reduced to proving termination of
several operations run in isolation, which is ensured by the validity
of the triples

old, ©OFalse F {Inv} C' (k) {true} (3.4)

for all k, where the program C’(k) is defined by (2.2).

Note that obstruction-freedom and wait-freedom are directly
compositional properties and can thus be specified for every op-
eration separately. The specification of lock-freedom considers all
operations at once, however, as we show in the next section, we can
still reason about lock-freedom in a compositional way.

4. Compositional proof system for liveness and
heaps

To reason about judgements of the form introduced in the previ-
ous section we need (i) a method for proving thread-local triples
(i.e., those giving a specification to a single thread) and (ii) a proof
system for combining thread-local triples into triples about paral-
lel compositions. We describe an automatic method for proving
thread-local triples in Section 5 (the THREADLOCAL procedure
and Figure 7). In this section, we present the second component—a
compositional proof system for reasoning about liveness properties
of heap-manipulating programs, shown in Figure 5. We explain the
proof rules by example of formalising the informal proofs of lock-
freedom from Section 2. In Section 5 we show how to construct
such proofs automatically, and in Section 6 we prove the proof rules
sound with respect to an interleaving semantics.

We first introduce two operations on languages used by the
rules. Let £(A) denote the language of all finite and infinite words
over an alphabet A. We denote the concatenation of a finite word
a € L(A) and a word (either finite or infinite) 3 € L£(A) with
af3. The safety closure CL(G) of a language G C L(A) is the
smallest language defining a safety property that contains G [2].
In the setting of this paper, where all the languages considered are
prefix-closed, CL(G) can be defined as the set of words « such that
every prefix of v is in G:

CLG) ={a e L(A) |VB,y.a =Py = BT}

For two words o, 8 € L(A), we denote the set of their fair
interleavings with «||8 (we omit the standard definition [4]). We
lift this to languages G1,G2 C L(A) as follows:

Gil|G2 = J{allB | a € Gi A B € Ga}

4.1 Proving lock-freedom of Treiber’s non-blocking stack

We start by proving termination of any two operations with arbi-
trary parameters (which we denote with op,; and op,,) running in

R|ICL(G2),G1 F {P1} C1 {Q1}
R||CL(G1),Ga = {P2} Ca {Q2}

PAR-C
R, (91792) |—{P1*P2} CIHCQ {Q1 *Qz} AR
R,GF{P}C{Q}
P =P /7{,27% IQQQ : Q=Q CONSEQ
R,G' H{P'}C{Q"}
7—\’,7 (ghgg) I {P1 * Pg} C1||02 {true}
R|G2,G1 - {P1} C1 {Q1}
RIG1,G5 F{P} C2{Q2} PAR-NC
R, (ngé) F {Pl * Pz} CIHCQ {Ql * QQ}
R,(G1,G2) F (P} Crl[C2 (@} o
R,G1]|G2 = {P} C1||C2 {Q}
R.G H{P'}C{Q'}
R".G"F{P"} C{Q"} Cons

R/ ﬂR//,J’ N g“// - {P/ A P”} C {Q/ A Q”}

Figure 5. Proof rules for reasoning about liveness properties of
heap-manipulating programs. G denotes either G or (G1,G2) de-
pending on whether the triple distinguishes between the guarantees
provided by the different threads. In the latter case operations on
(G1, G2) are done componentwise.

parallel and consider the general case later. To prove this, we have
to derive the triple

old, OCOFalse - {Inv} op,; ||op,, {true} 4.1
for the data structure invariant /nv defined by (3.1).

Statement I. Formally, the statement says that every thread has to
satisty the guarantee

G = O(Push V Pop V Id) A =0<¢(Push Vv Pop)

where the actions Push, Pop, and Id are defined in Section 3. The
first conjunct specifies the actions that the thread can execute, and
the second ensures that it cannot execute the actions Push and Pop
infinitely often. In order to establish this guarantee, we do not have
to make any liveness assumptions on the behaviour of other threads;
just knowing the actions they can execute (Push, Pop, and Id) is
enough. We therefore use the rule PAR-C to establish G. It is a
circular rely guarantee rule [1] adapted for reasoning about heaps.
It allows two threads to establish their guarantees simultaneously,
while relying on the safety closure of the other thread’s guarantee
that is being established. Note that without the safety closure the
circular rules like this are unsound for liveness properties [1]. Note
also that pre- and postconditions of threads in the premises of the
rule are *-conjoined in the conclusion: according to the semantics
of the assertion language, this takes the disjoint composition of the
local states of the threads and enforces that the threads have the
same view of the shared state. It is this feature of our proof rules
that allows us to reason modularly in the presence of heap.
Applying PAR-C with G1 = G2 = G and R = CL(G), we get:

CL(G)|ICL(G), G I {Inv} op;; {true}
CL(G)|ICL(G), G I {Inv} op,, {true} 4.2
CL(G),(G,G) - {Inv = Inv} op,; ||op,, {true * true}

Taking the safety closure of G removes the second conjunct repre-
senting the liveness part of G:

CL(G) = T(Push \V Pop V Id)

Additionally, CL(G)||CL(G) = CL(G), so that the premises sim-
plify to triples

CL(9),G F {Im} op; {true}, j € {il,i2} 4.3)

which ensure that the thread does not execute Push and Pop actions
infinitely often, provided the environment executes only actions
Push, Pop, and Id. We show how to discharge such triples in
Section 5. Their proof would formalise the informal justification
of Statement I given in Section 2 and would use the annotations at
atomic blocks introduced in Section 3 to determine the splitting of
states into local and shared parts.

Since Inv restricts only the shared state, Inv * Inv < Inv, hence,
the conclusion of (4.2) is equivalent to

CL(9),(G,G) F {Inv} op,, ||op,, {true} 4.4)

Since G C CL(G), we can then apply a variation on the rule of con-
sequence of Hoare logic, CONSEQ, which allows us to strengthen
the rely condition to G:

G,(G,9) = {Inv} op,, [lop,, {true} 4.5

Statement II. Termination is captured by the guarantee GOFalse,
which says that eventually the program does not execute any tran-
sitions. To prove this guarantee, we use the non-circular rely-
guarantee rule PAR-NC, which allows the first thread to replace
its guarantee with a new one based on the already established
guarantee of the other thread, and vice versa. Note that the first
premise need only establish the postcondition true, since the post-
condition Q1 * Q2 of the conclusion is implied by the other two
premises. Applying PAR-NC with R = G1 = G» = G and
Gi = G5 = OOFalse, we get:

G,(G,G) - {Inv} op;; [|op;, {true}
G||G, OOFalse - {Inv} op;; {true}
G||G, OOFalse - {Inv} op,, {true}
G, (COFalse, OOFalse) F {Inv} op,,||op,, {true}

(4.6)

We have already derived the first premise. Since G||G = G, we need
to discharge the following thread-local triples (again postponed to
Section 5):

G, OOFalse - {Inv} op; {true}, j € {il,i2} 4.7

‘We no longer need to distinguish between the guarantees of the
two threads in the conclusion of (4.6). Hence, we use the rule PAR-
MERGE, which merges the guarantees provided by the threads into
a single guarantee provided by their parallel composition:

G, (©OFalse, ©COFalse) - {Inv} op,,|lop,, {true}
G, (COFalse)||(COFalse) F {Inv} op,, |lop,, {true}

The conclusion is equivalent to

G, OOFalse - {Inv} op,, ||op;5 {true} 4.8

from which (4.1) follows by CONSEQ. This proves termination of
the two operations.

Arbitrary number of operations. We can generalise our proof
to an arbitrary number of operations as follows. First, note that
applying PAR-MERGE on (4.4), we get:

CL(G),G F {Inv} op,,||op,s {true} 4.9)

Hence, the proof for two operations establishes (4.9) and (4.8)
given (4.3) and (4.7), i.e., it shows that the parallel composition
op; |lop,» preserves the properties (4.3) and (4.7) of its constituent
operations. Note that this derivation is independent of the particular
definitions of op,; and op,, satisfying (4.3) and (4.7).

This allows us to prove by induction on k that

CL(G),G + {Inv} opyy | lopy, {true)
G, OOFalse - {Inv} op,4|| - . . ||op,; {true} (4.10)

is derivable in our proof system for any £k > 1. For £k = 1
the triples are established by (4.3) and (4.7). For the induction
step, we just repeat the previous derivation with op,; replaced by
0P; || - - - [lop;, and op;, replaced by op; . 1)-

Applying CONSEQ to (4.10), we get (3.4), which entails lock-
freedom of Treiber’s stack.

Note that instead of doing induction on the number of threads,
we could have formulated our proof rules for & threads. To simplify
the presentation, we chose the minimalistic proof system.

4.2 Proving lock-freedom of the HSY non-blocking stack

The action Xchg used in the informal proof of lock-freedom of the
HSY stack (Section 2) can be formally defined as follows:

0 <4 < SIZE—1Acollision[i]—_ ~» collision[i]—_
(Xchg)

The abridged data structure invariant is:

Jz. &S +— x * Iseg(z, NULL) * true
Inv = « @SZE-1 s (s
so collision[i] — _*...

(We elided some of the data structures of the elimination scheme.)
We now formalise the informal proof from Section 2 for two
operations op,; and op,, running in parallel.

Statement I. The statement requires us to establish the guarantee
G = O(Push V Pop V Xchg V Others V Id) A =0 (Push V Pop)

where Others describes the interference caused by the elimination
scheme (elided). As before, we can do this using PAR-C. Given the
thread-local triples (4.3) with the newly defined op,,, op,,, G, and
Inv, we can again derive (4.5) and (4.9), where

CL(G) = O(Push V Pop V Xchg V Others V Id)

Statement II. Now, provided that a thread satisfies the guarantee
G, we have to prove that the other thread satisfies the guarantee

G’ = 0(Push Vv Pop V Xchg Others V Id) A ~0OXchg
To this end, we use the non-circular rely-guarantee rule PAR-NC:
G,(G,9) - {Inv} op;;[[op,, {true}
GG, g’ i {Inv} op;, {true}
Glg,g' F {Im} op,, {true}
G,(g',G") - {Inv} op,, [lop;, {true}
We thus have to establish the following thread-local triples:
G,G"F {Inv} op; {true}, j € {il,i2} 4.11)

We can now use the conjunction rule, CONJ, to combine the guar-
antees G and G’ into a single guarantee G":

G,(G,9) F {Inv} op;, ||op;, {true}
G,(G',G") F {Inv} op,, |lop,, {true} (4.12)
G, (G",6") F {lnv} op; |lop;, {true}

where
G" = GAG' = a(Push vV Pop V Xchg vV Others V Id)
A =0 (Push V Pop V Xchg)
This combines Statements I and II. Applying CONSEQ, we get:
G",(G",6") F {Inv} op;;[|op;, {true}

procedure LOCKFREE(init, op)
(Inv,G1) == SAFETYGUARANTEE(init, op)
Gy =10
do
= 0G1 A OCG>
if THREADLOCAL(G, OOFalse - {Inv} op {true})
return “Lock-free”
GY = Gs
for each A € (G1 \ G%) do
if THREADLOCAL(G, ~OCA F {Inv} op {true})
Go =G U {A}
while G3 # G2
return “Don’t know”

Figure 6. Proof search procedure for lock-freedom

Thus, we have strengthened the guarantee G of Statement I to the
guarantee G

Statement I11. Finally, we can formalise Statement III by apply-
ing the rule PAR-NC to establish termination:

G",(¢",G") F {Inv} op;, |lop;, {true}
G"||G", OOFalse - {Inv} op,, {true}
G"||g", ©OFalse & {Inv} op,, {true}

G", (OOFalse, OOFalse) + {Inv} op,, ||op,, {true}

provided we can establish the thread-local triples
G", OOFalse |- {Inv} op, {true}, j € {il,i2} (4.13)
By PAR-MERGE we then get:
G", ©OFalse - {Inv} op,, |lop,, {true} (4.14)
which proves the termination of the two operations.

Arbitrary number of operations. From the conclusion of (4.12),
by PAR-MERGE we get:

G,G" F {Inv} op,, ||op,, {true} (4.15)

Thus, the above derivation establishes (4.9), (4.15), and (4.14)
given (4.3), (4.11), and (4.13). As before, this allows us to prove
by induction on k that the following triples are derivable in our
logic for any k£ > 1:

CL(G),G = {Inv} op,y || - .- [lop;, {true}
G,G" = {Inv} op;y||...[lop;; {true}
G",OOFalse - {Inv} op,, || . ..]|lop;, {true}

The last one implies lock-freedom of the HSY stack.

5. Automation

In this section we describe our automatic prover for liveness prop-
erties of non-blocking concurrent algorithms. Our tool’s input is
a liveness property to be proved and a program in a C-like lan-
guage consisting of the code of operations op,, ..., op,, of a non-
blocking algorithm, together with a piece of initialisation code
init. We remind the reader that we denote with op the command,
defined by (2.1), that non-deterministically executes one of the op-
erations op, on the data structure. We first describe how our tool
handles lock-freedom.

Proving lock-freedom via proof search. Recall that to prove
lock-freedom, we have to prove termination of the program C’ (k)

defined by (2.2) for an arbitrary k. All rely and guarantee condi-
tions used in the examples of such proofs in Section 4 had a re-
stricted form OA1 A -O0O A2, where A and A, are sets (disjunc-
tions) of actions and Az C Aj. Here A; is the set of all actions
that a thread can perform, whereas A, is the set of actions that the
thread performs only finitely often. In fact, for all the non-blocking
algorithms we have studied, it was sufficient to consider rely and
guarantee conditions of this form to prove lock-freedom.

We prove termination of C’(k) by searching for proofs of
triple (3.4) in our proof system in the style of those presented in
Section 4 with relies and guarantees of the form 0A; A ~OC As.
There are several ways in which one can organise such a proof
search. The strategy we use here is to perform forward search as
explained informally in Section 2.

Figure 6 contains our procedure LOCKFREE for proving lock-
freedom. It is parameterised with two auxiliary procedures, whose
implementation is described later:

® SAFETYGUARANTEE(init, op) computes supporting safety
properties for our liveness proofs, namely, a data structure in-
variant /nv such that

old, OTrue - {} init {Inv} 5.1)

and an initial safety guarantee provided by every operation,
which is defined by a set of actions G1 = {A1,...,An} such
that

0G1,0G: F {Inv} op {Inv} (5.2)

THREADLOCAL(R, G F {Inv} op {true}) attempts to prove
the thread-local triple R, G F {Inv} op {true} valid. The no-
tion of validity of thread-local triples used by THREADLOCAL
corresponds to the informal explanation given in Section 3 and
is formalised in Section 6.

LOCKFREE first calls SAFETYGUARANTEE to compute the
data structure invariant Inv and the safety guarantee OG1. In our
proofs of liveness properties, rely and guarantee conditions are
then represented using LTL formulae with actions in G as atomic
propositions. A side-effect of SAFETYGUARANTEE is that it an-
notates atomic blocks in op with actions from Gy as explained in
Section 3. These annotations are used by the subsequent calls to
THREADLOCAL, which ensures that all thread-local reasoning in
the proof of lock-freedom uses the same splitting of the program
state into local and shared parts.

Having computed the safety guarantee, we enter into a loop,
where on every iteration we first attempt to prove termination of
op using the available guarantee. If this succeeds, we have proved
lock-freedom. Otherwise, we try to strengthen the guarantee 0G1 A
-0 2 by considering each action in G \ G2 and trying to prove
that it is executed only finitely often using the current guarantee as
arely condition. If we succeed, we update the guarantee by adding
the action to the set of finitely executed actions Gs. If we cannot
prove that any action from G \ G is executed only finitely often,
we give up the search and exit the loop.

This procedure scales because in practice the set of actions G1
computed by SAFETYGUARANTEE is small. This is due to the fact
that actions p ~ ¢ are local in the sense that p and ¢ describe only
the parts of the shared state modified by atomic blocks.

It is possible to show that a successful run of LOCKFREE con-
structs proofs of triples (3.4) for all k. We can construct the proofs
for any number of threads uniformly because the guarantees G used
in them are such that G||G = G. The construction follows the
method of Section 4. The only difference is that the proofs con-
structed by LOCKFREE first apply the rule PAR-C to triples (5.2)
with G = G2 = 0OG:. Since CL(OG1) = OGh, this establishes
the initial safety guarantee 0OG'1, which is then strengthened using

R,G + {Inv} op {true}

(Automata-theoretic framework [36])

v

Fair termination of (op||asyncR)||sync G

v
(SMALLFOOTRG [6])

v

Abstract transition system

(Translation to arithmetic programs [3, 21] >
v

Equiterminating arithmetic program

v

(TERMINATOR with fairness [8])

Valid/Don’t know

Figure 7. The high-level structure of the THREADLOCAL proce-
dure for discharging thread-local triples

the rule PAR-NC. In the proofs of Section 4, these two steps were
performed with one application of the rule PAR-C.

We now describe the two auxiliary procedures used by LOCK-
FREE—SAFETYGUARANTEE and THREADLOCAL.

The SAFETYGUARANTEE procedure. 'We implement the proce-
dure using the SMALLFOOTRG tool for verifying safety properties
of non-blocking algorithms [6]. SMALLFOOTRG computes a data
structure invariant and an interference specification by performing
abstract interpretation of the code of init and op over an abstract
domain constructed from RGSep formulae. This abstract interpre-
tation is thread-modular, i.e., it repeatedly analyses separate threads
without enumerating interleavings using an algorithm similar to the
one described in [12]. For the invariant and interference specifica-
tions computed by SMALLFOOTRG to be strong enough for use in
liveness proofs, its abstract domain has to be modified to keep track
of the lengths of linked lists as described in [21].

RGSep judgements can be expressed in our logic by triples with
rely and guarantee conditions of the form O A, where A is a set of
actions. SMALLFOOTRG proves the validity of RGSep judgements
that, when translated to our logic in this way, yield (5.1) and (5.2).

The THREADLOCAL procedure. We prove a thread-local triple
R,G + {Inv} op {true} using a combination of several existing
methods and tools, as shown in Figure 7. For technical reasons,
in this procedure we assume that R and G consist of only infi-
nite words and op has only infinite computations. This can always
be ensured by padding the finite words in R and G with a special
dummy action and inserting an infinite loop at the end of op exe-
cuting the action. To prove the triple R, G - {Inv} op {true}:

e We first represent R and —G as Biichi automata, whose tran-
sitions are labelled with actions from the set G1 computed by
SAFETYGUARANTEE and apply the automata-theoretic frame-
work for program verification [36]. This reduces proving the
triple to proving that the program (op||asyncR)]|syne—G termi-
nates when run from states satisfying the precondition /nv un-
der the fairness assumptions extracted from the accepting con-
ditions of the automata for R and —G. Here op||asyncR is the
asynchronous parallel composition interleaving the executions
of op and the automaton R in all possible ways. The pro-
gram (0P |lasync R)||sync—G is the synchronous parallel compo-

sition of op||asyneR and the automaton —G synchronising on ac-
tions of op. Intuitively, fair infinite executions of the program
(op|fasyncR) ||syne—G correspond to the executions of op in an
environment satisfying the rely R that violate the guarantee G.
Its fair termination implies that there are no such executions.

To check fair termination of (0p||asyncR)||sync =G, We analyse
it with the abstract interpreter of SMALLFOOTRG [6], which
produces an abstract transition system over-approximating the
program’s behaviour. The interpreter uses the annotations at
atomic blocks computed by SAFETYGUARANTEE to choose
the splitting of the heap into local and shared parts.

e Using the techniques of [3, 21], from this transition system
we then extract an arithmetic program (i.e., a program with-
out the heap with only integer variables), whose fair termina-
tion implies fair termination of (op||async R)||sync=G. The arith-
metic program makes explicit the implicit arithmetic infor-
mation present in the heap-manipulating program that can be
used by termination provers to construct ranking functions. For
example, it contains integer variables tracking the lengths of
linked lists in the original program.

Finally, we run a termination prover (TERMINATOR with fair-
ness [8]) to prove fair termination of the arithmetic program.

We note that proofs of thread-local statements may be more
complicated then the ones in the examples of Section 2, which were
based on control-flow arguments. For example, for Michael’s non-
blocking linked list algorithm [25] they involve reasoning about
lengths of parts of the shared data structure. Furthermore, the
proofs may rely on complex supporting safety properties that en-
sures that the data structure is well-formed. Automatic tool support
is indispensable in constructing such proofs.

Proving obstruction-freedom and wait-freedom. As we showed
in Section 2, proving obstruction-freedom or wait-freedom of an
operation in a non-blocking algorithm usually requires only safety
guarantees provided by the operation’s environment. In our tool, we
use the guarantee (G inferred by SAFETY GUARANTEE. Namely,
we prove obstruction-freedom of an operation op; by establishing
triple (3.3) with R = OG1 via a call to

THREADLOCAL(OG1 AOOFalse, OOFalse = {Inv} op, {true})

We can prove wait-freedom of an operation op; by establishing
triple (3.2) with R = 0OG via a call to

THREADLOCAL(OG:, ¢OFalse - {Inv} op, {true})

Experiments. Using our tool, we have proved a number of non-
blocking algorithms lock-free and have found counterexamples
demonstrating that they are not wait-free. The examples we anal-
ysed include a DCAS-based stack, Treiber’s stack [33], the HSY
stack [14], a non-blocking queue due to Michael and Scott [26] and
its optimised version due to Doherty et al. [9], a restricted double-
compare single-swap operation (RDCSS) [13], and Michael’s non-
blocking linked list [25]. In all cases except Michael’s algorithm
the tool found a proof of lock-freedom in less then 10 minutes.
Verification of Michael’s algorithm takes approximately 8 hours,
which is due to the unoptimised arithmetic program generator and
the inefficient version of the termination prover that we currently
use.

We have also tested our tool by proving the obstruction-freedom
of the above lock-free algorithms. (Obstruction-free algorithms that
are not lock-free typically traverse arrays, handling which is be-
yond the scope of the shape analysis that we use.) Additionally, we
have checked that the deletion operation of a linked list algorithm
by Vechev and Yahav [37, Figure 2] is not obstruction-free (as ob-
served by the authors), even though it does not use locks.

We do not report any results for wait-free algorithms in this
paper. Operations consisting of straight-line code only are trivially
wait-free. Proving termination of wait-free £ ind operations in non-
blocking linked lists mentioned in Section 2 requires tracking the
keys stored in the list, which is not handled by our shape analysis.

6. Semantics and soundness

We give semantics to programs with respect to labelled transi-
tion systems with states representing the whole program heap. The
proof of soundness of our logic with respect to this global seman-
tics is done in two steps. We first show that, given a transition sys-
tem denoting a program, we can construct another transition system
operating on states that distinguish between local and shared heap,
according to the informal description given in Section 3. Interpre-
tation of judgements in this split-state semantics is straightforward.
We then relate the validity of judgements in the split-state seman-
tics to the standard global notion of validity. The results in this sec-
tion do not follow straightforwardly from existing ones, however,
the techniques used to formulate the split-state semantics and prove
the soundness theorems are the same as for the RGSep logic [35].

6.1 Global semantics

We represent denotations of programs as a variant of labelled tran-
sition systems (LTS).

DEFINITION 1 (LTS). A labelled transition system (LTS) is a
quadruple S = (3, T, ®,T), where

® X is the set of non-erroneous states of the transition system,

o T ¢ Xisadistinguished error state (arising, for example, when
a program dereferences an invalid pointer),

o & C 3 is the set of final states, and

e T’ is the set of transitions such that every T € T' is associated
with a transition function fr : ¥ — P(X)U{T}, where P(X)
is the powerset of 3.

DEFINITION 2 (Computation of an LTS). A computation of an
LTS (X, T,®,T) starting from an initial state uo € X is a maxi-
mal sequence ug, u1, . . . of states u; € XU {T } such that for all i
there exists a transition T € T such that w41 = T if f-(uwi) = T
and ui1 € fr(u;) otherwise.

Given a thread C in the programming language of Section 3,
we can construct the corresponding LTS [C] in the following
way. Let us assume for the purposes of this construction that the
program counter of the thread is a memory cell at a distinguished
address &pc, implicitly modified by every primitive command.
As the set of states X of the LTS we take the one defined in
Figure 4. The final states are those in which the program counter
has a distinguished final value. Every atomic command in the
thread, including atomic blocks, corresponds to a transition in the
LTS. Conditions in if and while commands are translated in the
standard way using assume commands. The transition functions
are then just the standard postcondition transformers [30, 5].

The denotation of a parallel composition of threads is the paral-
lel composition of their denotations, defined as follows.

DEFINITION 3 (Parallel composition of LTSes). The paral-
lel composition of two LTSes S1 = (X, T,®1,71) and
So = (B, T, o, Ts), where Ty N Ty = (), is defined as the LTS
SlHSQ = (E, T, NP2, Th W Tg).

As follows from Definitions 2 and 3, the parallel composition
interleaves transitions from two LTSes on the same memory X
without any fairness constraints. Note that we can always satisfy
Th N Ty = () by renaming transitions appropriately.

6.2 Split-state semantics

We now show that given an LTS we can construct a split LTS that
distinguishes between the local and the shared state. To this end,
we assume a labelling function 7 that maps each transition in an
LTS to either Local for operations that only access the local state,
or Shared(p ~ g) for operations that access both the local and
the shared state. Note that for a program C' we can construct such a
labelling ¢ from the annotations we introduced in Section 3: com-
mands outside atomic blocks are mapped to Local and annotations
at atomic blocks give the parameters of Shared.

Given a labelling 7 for an LTS (32, T, ®,T'), we can define the
corresponding split LTS as (X2, T,® x X, T"), where T” consists
of fresh copies of transitions 7’ for every transition 7 € 7T'. The
program counter of a thread is always in its local state, hence,
the set of states of the split LTS in which it has the final value is
® x X. The transition functions for the split LTS are defined as
follows. If m(7) = Local, then 7’ executes 7 on the local state and
preserves the shared state: f./(I,s) = fr(I) x {s}if f~(I) # T,
and f,/(l,s) = T otherwise. If w(7) = Shared(p ~ ¢), then the
execution of 7’ follows the informal description of the execution of
atomic blocks in Section 3:

f7/-’ (l,s)=
U{(restq(u), satq(u) - resty(s)) | u € fr(I-satp(s))}

if sat,(s) is defined, f-(I - satp(s)) # T, and satq(u) is defined
forall u € f-(I - saty(s)); otherwise, 7’ faults: £,/ (I,s) = T.

6.3 Validity in the split-state semantics

To define validity of triples in the split-state semantics, we have
to define the meaning of interleaving computations of a split LTS
(X2, T,® x X, T) with actions of an environment changing the
shared state according to a rely condition R C £(%?). We repre-
sent these computations with traces o € L(X? x (52 U {T}) x
({e} UT)). The first two components of every letter in a trace de-
fine how the state of the LTS changes. The third component defines
if the change was made by a transition of the LTS (7 € T') or the
environment (e). We require that the environment does not change
the local state and does not fault, i.e., all e-letters in a trace are of
the form ((I, s), (I, s'), e).

We often need to project a trace o without error states to a word
that records how the shared state is changed by a particular set of
transitions U C {e} U T. We define such a projection o]y €
L(%?) as the image of o under the following homomorphism

h:¥? x 2 x ({e}UT) — L(Z?)

(s,8"), TEU;
g, otherwise

h((1,s),(l',s"),T) =

where ¢ is the empty word. We write a| o if «v is a nonempty trace
and its last letter is of the form (o', o, 7) for some o’ and 7.

DEFINITION 4 (Traces). For a rely condition R C L(X?) and a
split LTS S = (X2, T,® x X,T), the set tr(S, R, 00) of traces of
S executed in an environment satisfying R starting from an initial
state oo € X2 is defined as the set of traces o € L(X? x (Z2 U
{T}) x ({e} UT)) of the following two forms:

e finite or infinite traces o« = (09,01,70)(01,02,71) . .., where
0i # T, alie; €ER, and if 7 # e, then 011 € fr,(0:); and

o finite traces a = [B(on, T,Tn) for some 3 = (00,01,70)
(01,02,71) ... (On-1,0n,Tn—1) such that Bley € TR,
fra(on) =T, and if s # e fori < n, then ci11 € fr,(04).

The first case in this definition corresponds to safe traces, and
the second to unsafe traces, i.e., those in which both the program

and its environment stop executing after the program commits a
memory fault (the treatment of the later case relies on R being
prefix-closed). Note that, since we assume that the scheduler is
possibly unfair, the set of traces in this definition includes those
in which S is preempted and is never executed again. Hence, the
set of projections | 7 of traces o € tr(S, R, o¢) on the transitions
of the LTS S, representing the guarantee condition provided by S,
is prefix-closed.

Let Fo(C), respectively F¢(C), be the *-conjunction over all
the threads in a program C' of formulae &pc — pc,, respectively
&pc — pcg, where pc is the program counter of the thread, pc,
is its initial value, and pc, is the final one. Note that Fy(C') and
F¢(C) do not restrict the shared state.

DEFINITION 5 (Validity).
R,GEA{P}C{Q} &

Voo € [P * Fo(C)]. Va € tr(S, R, 00). Vo.
(alo=0#T)A (safety)
(aloAho € (P xX)=0€[Qx*Fe(C)]) A (correctness)
(alr € G)

where S = (X2, T,® x X, T) is the split LTS constructed out of
the LTS [C] using the labelling 7c.
R,(G1,G2) E {P} C1C2 {Q} &

VYoo € |[P * F0(01||Cz)]] Va € tI’(S1||SQ,R, O’o). Vo.
(alo=>0#T)A (safety)
(aloAo e (21N P2) X X) = 0 € [Q* Fr(Ci]|C2)]) A

(correctness)

(guarantee)

(guarantee)

(alr, € G1) A (alr, € G2)

where S1 = (22, T,®1 x B, T1) and So = (52, T, 82 x X, T)
are the split LTSes constructed out of the LTSes [C1] and [C-]
using the labellings mc, and mc,, respectively.

THEOREM 1. The proof rules in Figure 5 preserve validity.

COROLLARY 1. If R,G + {P} C {Q} is derived from valid
thread-local triples using the rules in Figure 5, then R,G E

{P}C{Q}).

6.4 Soundness

We now relate the notion of validity with respect to a split LTS to
validity with respect to the global LTS used to construct the split
one. For a closed program (i.e., a program executing in isolation),
we can formulate a global notion of validity of triples without rely
and guarantee conditions as follows.

DEFINITION 6 (Validity with respect to a global LTS). For p,q C
Y and a command C such that [C] = (X, T,®,T) we define
= {p} C {q} iffor all uo € p and for any computation uo,u1,. ..
of [C] we have w; # T, and if the computation is finite and
ending with a state w € O, then u € q. We define |= [p] C [q]
if E {p} C {q} and every computation of [C] starting from a
state in p is finite.

THEOREM 2. Let [C] = (%, T,®,T) and S = (>, T,® x
3, T") be a corresponding split LTS with respect to any labelling
wco. Then

* R,G = {P} C{Q} implies

E ([P Fo(O)])} C {v([Q * Fr(C)D)},
o I[fR,OOFalse = {P} C {Q} implies

E ([P = Fo(O)D] € h([Q + Fr (O],

where v(P) = {l-s | (l,s) € P} for any assertion P.

Theorem 2 and Corollary 1 show that the provability of
triple (3.4) from valid thread-local triples in the proof system of
Section 4 implies that the program C’(k) terminates, and hence,
the corresponding algorithm is lock-free. Similar soundness results
can be formulated for obstruction-freedom and wait-freedom.

7. Related work

Our proof system draws on the classical circular and non-circular
rely-guarantee rules for shared-variable concurrency [18, 29, 1]
to achieve compositionality, and on separation logic (specifically,
RGSep—a combination of rely-guarantee and separation logic [35,
11, 34]) to achieve modular reasoning in the presence of heap.
Its technical novelty over previous rely-guarantee proof systems
lies in our method of combining applications of circular and non-
circular rules using judgements that distinguish between guarantees
provided by different threads in a parallel composition.

Colvin and Dongol [7] have recently proved the most basic non-
blocking algorithm, Treiber’s stack [33], to be lock-free. They did
this by manually constructing a global well-founded ordering over
program counters and local variables of all the threads in the al-
gorithm’s most general client. Unfortunately, their method requires
each operation to have at most one lock-free loop, which rules out
more modern non-blocking algorithms, such as the HSY stack and
Michael’s list algorithm. Moreover, because their well-founded or-
dering is over the whole program, their method is non-modular and
does not scale to the more realistic examples of the kind we con-
sider in Section 5. In contrast, our method is modular, both in the
treatment of threads and heaps. We can reason about every thread
separately under simple assumptions about its environment that do
not consider parts of the heap local to other threads. Furthermore,
our method is fully automatic.

Kobayashi and Sangiorgi [19] have recently proposed a type-
based method for checking lock-freedom in 7-calculus. Their pro-
gramming model and the notion of lock-freedom are different
from the ones used for non-blocking data structures, which makes
their results incomparable to ours. Moore [27] presents a proof of
a progress property for a non-blocking counter algorithm in the
ACL2 proof assistant. His proof is thread-modular, but the algo-
rithm considered is extremely simple. McMillan [24] addresses the
issue of circular dependencies among a class of liveness properties
in the context of finite-state hardware model checking. He takes a
different approach from ours to resolving the circularities by doing
induction over time.

8. Conclusion

Wait-freedom, lock-freedom, and obstruction-freedom are the es-
sential properties that make “non-blocking algorithms” actually
non-blocking. We have proposed the first fully automatic tool that
allows their developers to verify these properties. Our success was
due to choosing a logical formalism in which it was easy to ex-
press proofs about non-blocking algorithms and then observing that
proofs of the liveness properties in it follow a particular pattern.
We conclude by noting some limitations of our tool; lifting
these presents interesting avenues for future work. First, we prove
the soundness of our logic with respect to an interleaving seman-
tics, which is inadequate for modern multiprocessors with weak
memory models. It happens that even proving safety properties of
programs with respect to a weak memory model is currently an
open problem. Moreover, the published versions of concurrent al-
gorithms assume a sequentially consistent memory model. In fact,
most of non-blocking algorithms are incorrect when run on mul-
tiprocessors with weak memory models as published: one has to
insert additional fences or (on x86) locked instructions for them
to run correctly. In the future, we hope to address this problem,

building on a recent formalisation of weak memory model seman-
tics [31]. Second, our tool can currently handle only list-based algo-
rithms, because we use an off-the-shelf shape analysis. We believe
that the methods described in this paper should be applicable to
more complicated data structures as well, provided the necessary
shape analysis infrastructure is available.

The above-mentioned limitations notwithstanding, this paper
presents the first successful attempt to give modular proofs of
liveness properties to complex heap-manipulating concurrent pro-
grams.

Acknowledgements. We would like to thank Josh Berdine, Mike
Dodds, Tim Harris, Michael Hicks, Andreas Podelski, Moshe
Vardi, Eran Yahav, and the anonymous reviewers for comments and
discussions that helped to improve the paper.

References

[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans.
Program. Lang. Syst., 17(3):507-534, 1995.

[2] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett.,
21(4):181-185, 1985.

[3] J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic
termination proofs for programs with shape-shifting heaps. In
CAV’06: Conference on Computer Aided Verification, volume 4144
of LNCS, pages 386—400. Springer, 2006.

[4] S. D. Brookes. Full abstraction for a shared-variable parallel
language. Inf. Comput., 127(2):145-163, 1996.

[5] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract
separation logic. In LICS’07: Symposium on Logic in Computer
Science, pages 366-378. IEEE, 2007.

C. Calcagno, M. J. Parkinson, and V. Vafeiadis. Modular safety
checking for fine-grained concurrency. In SAS’07: Static Analysis
Symposium, volume 4634 of LNCS, pages 233-248. Springer, 2007.

[6

—

[7

—

R. Colvin and B. Dongol. Verifying lock-freedom using well-founded
orders. In ICTAC’07: International Colloquium on Theoretical
Aspects of Computing, volume 4711 of LNCS, pages 124-138.
Springer, 2007.

B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Y. Vardi.
Proving that programs eventually do something good. In POPL’07:
Symposium on Principles of Programming Languages, pages 265—
276. ACM, 2007.

S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal
verification of a practical lock-free queue algorithm. In FORTE’ 04:
Conference on Formal Techniques for Networked and Distributed
Systems, volume 3235 of LNCS, pages 97—114. Springer, 2004.

[8

—_

[9

—

[10] B. Dongol. Formalising progress properties of non-blocking
programs. In ICFEM’06: Conference on Formal Engineering
Methods, volume 4260 of LNCS, pages 284-303. Springer, 2006.

[11] X. Feng, R. Ferreira, and Z. Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In
ESOP’07: European Symposium on Programming, volume 4421 of
LNCS, pages 173—188. Springer, 2007.

[12] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular
shape analysis. In PLDI’07: Conference on Programming Language
Design and Implementation, pages 266-277. ACM, 2007.

[13] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word
compare-and-swap operation. In DISC’02: Symposium on Distributed
Computing, volume 2508 of LNCS, pages 265-279. Springer, 2002.

[14] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack
algorithm. In SPAA’04: Symposium on Parallelism in Algorithms and
Architectures, pages 206-215. ACM, 2004.

[15] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124-149, 1991.

[16] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free syn-

chronization: Double-ended queues as an example. In ICDCS’03:
International Conference on Distributed Computing Systems, pages
522-529. IEEE, 2003.

[17] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann, 2008.

[18] C. B. Jones. Specification and design of (parallel) programs. In IFIP

Congress, pages 321-332. North-Holland, 1983.

[19] N. Kobayashi and D. Sangiorgi. A hybrid type system for lock-

freedom of mobile processes. In CAV’08: Conference on Computer
Aided Verification, volume 5123 of LNCS, pages 80-93. Springer,
2008.

[20] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

In Conference on Logics of Programs, volume 193 of LNCS, pages
196-218. Springer, 1985.

S. Magill, J. Berdine, E. M. Clarke, and B. Cook. Arithmetic
strengthening for shape analysis. In SAS’07: Static Analysis
Symposium, volume 4634 of LNCS, pages 419-436. Springer, 2007.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, Berlin, 1992.

H. Massalin and C. Pu. A lock-free multiprocessor OS kernel
(Abstract). Operating Systems Review, 26(2):108, 1992.

K. L. McMillan. Circular compositional reasoning about liveness.
In CHARME’99: Conference on Correct Hardware Design and
Verification Methods, volume 1703 of LNCS, pages 342-345.
Springer, 1999.

M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA’02: Symposium on Parallelism in Algorithms
and Architectures, pages 73-82. ACM, 2002.

M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC’96:
Symposium on Principles of Distributed Computing, pages 267-275.
ACM, 1996.

J. S. Moore. A mechanically checked proof of a multiprocessor
result via a uniprocessor view. Formal Methods in System Design,
14(2):213-228, 1999.

P. W. O’Hearn. Resources, concurrency and local reasoning. Theor.
Comput. Sci., 375(1-3):271-307, 2007.

A. Pnueli. In transition from global to modular temporal reasoning
about programs. In Logics and Models of Concurrent Systems, pages
123-144. Springer, 1985.

J. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS’02: Symposium on Logic in Computer Science,
pages 55-74. IEEE, 2002.

S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge,
T. Braibant, M. Myreen, and J. Alglave. The semantics of x86
multiprocessor machine code. This volume.

H. Simpson. Four-slot fully asynchronous communication mecha-
nism. /EE Proceedings, 137(1):17-30, 1990.

R. K. Treiber. Systems programming: Coping with parallelism.
Technical Report RJ 5118, IBM Almaden Research Center, 1986.

V. Vafeiadis. Modular fine-grained concurrency verification. PhD
Thesis, University of Cambridge Computer Laboratory, 2008.

V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee
and separation logic. In CONCUR’07: Conference on Concurrency
Theory, volume 4703 of LNCS, pages 256-271. Springer, 2007.

M. Vardi. Verification of concurrent programs—the automata-
theoretic framework. Ann. Pure Appl. Logic, 51:79-98, 1991.

M. T. Vechev and E. Yahav. Deriving linearizable fine-grained
concurrent objects. In PLDI'08: Conference on Programming
Languages Design and Implementation, pages 125-135. ACM, 2008.

I. William N. Scherer, D. Lea, and M. L. Scott. Scalable synchronous
queues. In PPoPP’06: Symposium on Principles and Practice of
Parallel Programming, pages 147-156. ACM, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

