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Abstract

We present a proof calculus and method for the static vetiifica
of assertions and procedure specifications in shared-nyecoor

current programs. The key idea in our approach is to use atom-

icity as a proof tool and to simplify the verification of agsams
by rewriting programs to consist of larger atomic actiong jko-
pose a novel, iterative proof style in which alternating afab-
straction and reduction is exploited to compute larger &amade
blocks in a sound manner. This makes possible the verifitatio
assertions in the transformed program by simple sequemil
soning within atomic blocks, or significantly simplified disation
of existing concurrent program verification techniqueshsas the
Owicki-Gries or rely-guarantee methods. Our method fadtds a
clean separation of concerns where at each phase of the gireof
user worries only about only either the sequential propsar the
concurrency control mechanisms in the program. We implégaen
our method in a tool calledeb. We demonstrate the simplicity and
effectiveness of our approach on a number of benchmarksdncl
ing ones with intricate concurrency protocols.

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Software/Program Verification — assertion checkersrestir
ness proofs, formal methods; F.3Llofics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs
— assertions, invariants, pre- and post-conditions, nt@chhver-
ification; D.1.3 Programming Techniques]: Concurrent Program-
ming — parallel programming

General Terms Languages, Theory, Verification

Keywords Concurrent Programs, Atomicity, Reduction, Abstrac-
tion

1. Introduction

This paper is concerned with the problem of statically yéni the
(partial) correctness of shared-memory multithreadedynaros.
This problem is undecidable and, in theory, no harder thaiptbb-
lem of verifying single-threaded programs. In practicewéeer,
it is significantly more difficult to verify multithreaded pgrams.
For single-threaded programs, the undecidability of progwer-
ification is circumvented by the use of contracts—pre-cionk,
post-conditions, and loop invariants— to decompose théleno
into manageable pieces. These contracts need to refer e t
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locally visible part of the program state, and can usuallystaged
with little difficulty. Reasoning about multithreaded prams, on
the other hand, requires significantly more intellectuédréf For
example, invariant-based reasoning [1, 21] requires foh diae'
of the program an annotation that is guaranteed to be stable u
der interference from other threads. Writing such a spetifio is
challenging because of the need to consider the effect dralhd
interleavings. The resulting annotations in each threadaodten
non-local and complicated because they refer to the prisite
of other threads. The rely-guarantee approach [16] previdere
flexibility in specifying the interference from the enviment but
the complexity of the required annotations is still sigraifit

The fundamental difficulty in reasoning about multithredde
programs is the need to reason about concurrent executiiomeef
grained atomic actions. In this paper, we introduce antiterap-
proach to proving assertions in multithreaded programsediat
circumventing this difficulty. In our approach, in each stéghe
proof, we rewrite the program by locally transforming iteraic
actions to obtain a simpler program. Each rewrite perforne af
two different kinds of transformations—abstraction anduaion.
Abstraction replaces an atomic action with a more relaxethat
action allowing more behaviors. Abstraction transformasi in-
clude making shared variable reads or writes non-detestignand
prefacing atomic statements with extra assertions. Rextuft8]
replaces a compound statement consisting of several atmtidns
with a single atomic action if certain non-interference ditions
hold. This transformation has the effect of increasing ttamglar-
ity of the atomic actions in the program. Abstraction anducgin
preserve or expand the set of behaviors of the program, sasha
sertions proved at the end of a sequence of transformatiensibd
in the original program.

While reduction and abstraction have been studied in isolat
the iterative and alternating application of abstractiod @eduction
is a distinguishing and essential aspect of our method.ratton
and reduction are symbiotic. Reduction creates coarsaegtac-
tions from fine-grained actions and allows a subsequentabst
tion step to summarize the entire calculation much as pdieon
tions and post-conditions summarize the behavior of a piaee
in a single-threaded program. Conversely, suitably abistiga an
atomic action allows us to reason that it does not interfeite w
other atomic actions, and later application of reductianable to
merge it with other actions. The examples in Sections 2 arfmb& s
that the combined iterative application of these techrédgse sur-
prisingly powerful proof method able to prove intricate eydes
correct by a sequence of simple transformations and fewtanno
tions. In most cases, we are able to simplify the program gimso
that assertions in the final program can be validated by psel
quential reasoning within a single abstract atomic actiorather
cases, the atomic actions in the program become large erfough

1For brevity, we use the word “line” to refer to the granulaof atomically
executed statements.



a straightforward application of existing techniques sasltrely-
guarantee reasoning.

Another distinguishing feature of our approach is the pmksi
ity of introducing assertions at any point during the segeeof
transformations while deferring their proof until latethen large
enough atomic blocks make their proof easy. In our framewamk
notating any atomic statement with any assertion is a vatignam
abstraction. The interpretation is that the action is redeso that if
the assertion is violated, the execution is made to “go wi'ohg-
notating an action with an assertion, e.g. one that indéctat it
is not simultaneously enabled with another action, may lerfaio-
ther reduction steps. In other proof methods, when an aaditi
assertion is introduced, one is forced to prove that it isdvahd
preserved under interference by other threads. In our apprave
use the introduced assertion without first proving it ance thi-
ther proof steps that simplify the program. Yet, the sousdnaf
our method is not compromised as long as all assertions avegr
eventually.

We have implemented our verification method in a tool called
QED. Our tool accepts as input a multithreaded program written
in an extension of the Boogie programming language [2] and a
proof script containing a sequence of proof commands. Afproo
command is used for one of two purposes. First, it may proaide
high-level tactic for rewriting the input program using abstion,
reduction or a combination of the two. Second, it may provide
a concise specification of the behavior of the current varsib
the program; common specifications include locking prawoeod
data invariants. After executing each step in the proopscgeD
allows the user to examine the resulting program, intertiept
proof, and give new commands. The tool automatically geasra
the verification conditions justifying each step of the graod
verifies them using 3 [6], a state-of-the-art solver for satisfiability-
modulo-theories.

We have evaluatedeD by verifying a number of multithreaded
programs with varying degree of synchronization compiexit
These examples include programs using fine-grained lockirty
non-blocking data structures. We have found that the iteratp-
proach embodied iRED provides a simple and convenient way of
communicating to the verifier the programmer’s understagaif
the computation and synchronization in the program. Thefpro
in our method are invariably simpler and more intuitive tliha
proofs based on existing approaches.

To summarize, this paper makes the following contributions

e A novel proof technique for multithreaded programs, based
upon rewriting of the input program iteratively using abstr
tion and reduction, producing in the limit a program that ban
verified by sequential reasoning methods.

e A tool QED that implements our proof method using a set of
intuitive, concise, and machine-checked proof commands.

e Evaluation of our technique and tool on a variety of small to
medium-sized multithreaded programs.

2. Motivating examples

In this section, we provide an overview of our method using se
eral examples. We begin by illustrating reduction and aleson
and, in Section 2.1, present a nontrivial interaction betwgaem.

In these examples, each line of code performs at most onestte

a global variable. For example, we split the increment of Fig-

ure 1 and the assignment ©fusize t0 currsize (lines 15-16) in
Figure 4 into multiple lines. We usg (x) andwhile(x) to denote
nondeterministic choice. The statemehtsume e andassert e
cause the execution to block or go wrong, respectively, eival-
uates tofalse; otherwise, they are equivalent to a skip statement.

void inc() { void inc() {

int t; int t;
acquire(lock); [havoc t; x := x+1];
t = x; }
t = t+l;

X = t;
release(lock);

}

Figure 1. Lock-based atomic increment

The statememtavoc x assighs a hondeterminstic value of proper
domain.

Reduction produces a single atomic action from the secplenti
composition of two atomic actions if either the first actisrairight
mover or the second action is a left mover. An act®reommutes
to the right of X if the effect of thread: executingR followed
by a different thread. executing actionX' can be “simulated” by
first threadu executingX followed by thread executingR. If R
commutes to the right of all actions in the program, it is daid
be right mover. Common cases whekds a right mover are iR
and X do not conflict (i.e., read or write any common variables), if
R is non-deterministic (i.e. independent of the programejtor if
R disablesX. A left mover is defined similarly. Lock acquires are
right movers and lock releases are left movers. Accessescb |
variables and race-free accesses to shared variables taredia
and left movers.

In Figure 1, the procedurinc on the left is a lock-based imple-
mentation for atomically incrementing a shared variablEhrough
an iterative application of reduction, our method can tiams the
body of this procedure into a single atomic action as showthen
right and indicated by square brackets.

In Figure 2, the procedurawc on the left uses theas (Compare-
And-Swap) primitive for a lock-free implementation of thanse
behaviorcas(x,t,t+1) atomically compares the value ofvith ¢,
writing t+1 into x and returningtrue if the two are identical, and
leavingx unchanged and returningise if the two are different.
Note that this program has conflicting accesses tbat are si-
multaneously enabled, and is consequently more difficuéson
about than the previous version. However, through an iteraip-
plication of abstraction and reduction, our method cangasasily
show that this procedure atomically incremesit¢éhe sequence of
transformations are shown from left to right in Figure 2.

First, we perform a simple transformation (as in [10]) the¢ls
out the last iteration of the loop, thereby arriving at thesien
of inc in Figure 2(b). Next, we argue that it is a valid abstraction
to replace the read af in t x With havoc t Since this only
increases the set of possible behaviors. We do not expext thi
abstraction to lead to additional assertion violationseitie result
of the read action is later verified loys (x,t,t+1); reading a value
other than the actual value af would simply lead to a failed
CAS operation. We also abstract each unsuccessful execution of
CAS(x,t,t+1) inside the loop with the statemesitip to arrive at
the version ofinc in Figure 2(c).

In the version ofinc in Figure 2(c), every operation except for
the last one accesses only local state and is consequerttyabo
right and a left mover. Therefore, we can use reduction to-sum
marize the entire loop with a singtavoc t statement to arrive at
the version ofinc in Figure 2(d). Finally, we reduce the resulting
sequential composition to arrive at a single atomic actiothie
version ofinc in Figure 2(e).

Figure 3(a) shows procedusad, a client ofinc. Proceduredd
has a parameter required to be at leadt and callsinc repeat-
edly in a loopn times. Once the procedurec has been trans-
formed into an atomic increment af we can reason abouatd
by replacing the call tanc with an atomic increment of to ob-



void inc() {

void inc() {

void inc() {

int t; int t; int t;
while (true) { while (%) { while (%) {
t = x; t = x; havoc t;
if (CAS(x,t,t+1)) assume x!=t; skip;
break; } }
} t 1= x5 havoc t;
[assume x==t; [assume x==t;
x = t+1]; x := t+1];
} } }
(a) (b) (c)

void inc() { void inc() {

int t; int t;
havoc t;
[havoc t;
x = x+1];
havoc t;
[assume x==t;
x = t+1];
} }
@ (e)

void add(int n) {
while (0<n) {

Figure 2. Lock-free atomic increment

void add(int n)
while (0<n) {

x+1];
n-1;

inc(); [x :=
n :=n-1; n :=
¥ }
} }

(a) (b)

{ void add(int n) {
[assert 0<=n;
X x+n;
n 01;

(c)

Figure 3. Client of inc

tain the version in Figure 3(b). In this version, every actather
than the atomic increment accesses only local variablesedter,
atomic increments commute with each other. Therefore yeser
tion in the second version ahc is both a right and a left mover.
Consequently, the entire loop is reducible to a single at@uiion.
Now, using purely sequential reasoning techniques and bingr
an appropriate invariant for the loop4ad, we perform abstraction
on this atomic action. The resulting atomic action is semalty
equivalent to the body of the versionafd in Figure 3(c).

2.1 A device cache

We have illustrated abstraction and reduction using a ciidle

of small examples. We now demonstrate the symbiotic natfire o
these two techniques using a larger and nontrivial exanhpléne
following, in order to make it easier to follow the proof step
sentences that constitute a proof step are indicate(Shy (S2),

etc.

Device cache operation:Procedureread in Figure 4 reads a
number of bytes from a device's physical storage, modeled by
the variabledevice. Client threads calkead to request to read
(up to) size bytes fromdevice into the output parametemffer,
starting from indextart in the deviceread returns the number of
bytes it was able to read (possibly less tkage) from the device
in the output parametasytesread. In order to make subsequent
requests t@ead faster, the implementation aéad caches the bytes
read into an (unbounded) memory bufteiche. In this example,
the typeint is the set of non-negative integers. The reader can
informally assume that all integers are initializedtdnitial states
will be treated more formally later in the paper. The vargabl
device, cache and buffer are all integer-indexed maps starting
from 0.

The variablecurrsize stores the number of bytes from the de-
vice that are already available in the cache. When thereramegh
bytes in the cache (lines 2-4§¢ad jumps toCOPY_TO_BUFFER tO
copy the contents ofache to buffer (lines 18-22). In this case, the
number of bytes read is the same as the number of bytes reduest
by the client.

If the cache does not contain all the bytes requested, thiere a
two possibilities:

e |finline 5 a thread observesiewsize > currsize, this means
another thread is in the process of copying bytes from thiedev
to the cache as will be explained below. In this cassn read

the portion ofcache betweer) andcurrsize (lines 18-21). If
bytesread < size at return, the client threatdmay retry later
for the rest of the bytes.

Otherwise, thread reads the missing bytes from the device
into the cache. The driver allows only one thread to read from
the device and write to the cache. This is implemented by
the following synchronization policy. The first thread ttat
tempts to read from the device sets the variablesize to
start + size (line 9), and then performs the actual read by
jumping to READ_DEVICE (line 11). While newsize is greater
than currsize, No other thread attempts to access the section
of cache anddevice betweencurrsize andnewsize. AS ex-
plained above, during this period, another thread can read t
portion of cache between0 and currsize. The thread that
jumped tOREAD_DEVICE SetScurrsize tOnewsize (lines 14-17),
which makes the recently read bytes from the device availabl
for further calls tcread by all threads.

Synchronization mechanisms:This example uses two differ-

ent mechanisms to synchronize the client threads.

e A lock protects accesses tirrsize and newsize, thereby
allowing us to reduce the code blocks from lines 1-10 and
lines 14-17 into atomic actior(§1) This increased granularity
of atomicity also allows us to introduce and prove the irssatri
currsize <= newsize.

e Only one thread at a time is allowed to updatesize, make
the jump toREAD_DEVICE from line 10, and updateache.
We capture this synchronization by introducing an abstract
lock variableal that is associated with the locking predicate
currsize < newsize.

= Acquiring al: The lockal is available to a thread in a state
where currsize newsize. A thread increasesewsize
(line 9), making the locking predicatgue, to acquireal.

= Releasingal: A thread setgurrsize t0 newsize (line 15—
16), making the locking predicafalse to releasel.

Thus, the locka is acquired just before the jumpRrEAD_DEVICE
and held during the execution of lines 11-17.

Specification: We would like to verify that if the input pa-

rameters oRead satisfyo <= start & 0 <= size at entry, then
the output parameters @kad satisfy (forall x:int. start <=



procedure Read (start : int, size : int) procedure Read (start : int, size : int)
returns (buffer : [intlint, bytesread : int) returns (buffer : [intlint, bytesread : int)
{ {

var i, j, tmp : int; var i, j, tmp : int;
1 acquire(); A [if (%) {
2 1 := currsize; havoc i, size;
3 if (start + size <= i) { assume (size == 0 || start + size <= currsize);
4 release(); goto COPY_TO_BUFFER; goto COPY_TO_BUFFER;
5 } else if (newsize > i) { } else {
6 size := (start <= i) ? i - start : O; i := currsize;
7 release(); goto COPY_TO_BUFFER; assume newsize <= i && i < start + size;
8 } else { newsize := start + size;
9 newsize := start + size; goto READ_DEVICE;
10 release(); goto READ_DEVICE; }]

} // end if

READ_DEVICE: READ_DEVICE:
11 while (i < start + size) { B while (i < start + size) {
12 cache[i] := devicel[il; C [assert currsize <= i; cache[i] := devicel[il];
13 i=1+ 1; D i=1+ 1;

} }
14 acquire(); E [tmp := newsize;
15 tmp := newsize; currsize := tmpl;
16 currsize := tmp;
17 release();

COPY_TO_BUFFER: COPY_TO_BUFFER:
18 j := 0; F j:=0;
19 while(i < size) { G while (j < size) {
20 buffer[j] := cachelstart + jl; H [assert start + j < currsize; buffer[j] := cache[start + j11;
21 joi=3+1; I joi=3+1;
22 bytesread := size; return; J Dbytesread := size; return;
} }

Figure 4. Original device cache program Figure 5. Transformed device cache program

x && x < start + bytesread ==> buffer[x] == device[x]) at does not commute to the right of the atomic action in lined 74-

exit. This task is straightforward Head executes without any in-
terference. Our goal in the following is to convert the enbody of
Read into an abstract atomic action that is strong enough toyerif
the aforementioned property.

Verification: We will argue that lines and actions that access
shared variables are of the desired mover types in ordelow ab
to convert the body okead into an atomic action. We will argue
that

e the update otache at line 12 is a right movefS2), and
e the read okache at line 20 is a left movef{S3)

Note thatuffer is a local variable andevice is immutable, so the
only possible conflict among these lines could be due to thiahle
cache. The execution of line 12 is not simultaneously enabled in
two different threads because of the logk The argument that
line 12 does not conflict with line 20 requires the introdometi
of assertions just prior to the execution of these actioreseé
assertions are shown on lines C and H in Figure 5; they ar&ebec
atomically with the execution of the action (shown by sunding
square brackets). These assertions capture why the upthtea

of cache do not conflict: from a state in which both hold, the update
and read access different indicescathe!

The transformation of line 12 and line 20 in Figure 4 into
line C and line H in Figure 5 introduces a dependency on the
variablecurrsize because of the assertion annotations. Therefore,
we must also argue that lines C and H commute to the right dnhd le
respectively of the action updatingrrsize on line E. Due to the
abstract locka1, line C is not enabled simultaneously with line E.
Also, line H commutes to the left of line E when executed from a
state satisfying the already proved invariaiitrsize <= newsize.

We now show how to transform the atomic action in lines 1-
10 of Figure 4 into a right mover. In its original form, thistian

To see this, consider the scenario where lines 1-10 are &decu
by a thread: from a state in whichturrsize < (start + size)

< newsize; consequentlyize is reduced to eithey or currsize-
start. Suppose that this were followed by another threatecut-
ing the action in lines 14-17 and increasiagrsize t0 newsize.
Clearly, this scenario is not equivalent to one in whickxecutes
first followed byt, since in this casewould not modifysize.

To transform lines 1-10 into a right mover, we perform two ab-
stractions to get the action shown on line A in Figure 5. We &ibs
stract the check at line 5 of Figure 4 to a non-determinigicision
and enable lines 6-7 to run even wheftrsize == newsize (S4).
This causes a thread to return fewer bytes thiare even though it
could jump toreAD_DEVICE and read all bytes it needs frofavice.
The second abstraction is to update the variable nondetermin-
istically to a value less than or equal to that assigned bytlge
inal program in the case when control jumpsctPY_TO_BUFFER
(S5) This allows the code to read fewer than the number of bytes
available to it in the cache. This abstraction is justifiatteithe
additional behavior in the transformaead (Figure 5) might have
occurred if the call had taken place while an updateaehe was
being executed by another thread. This abstraction is afsdfrom
the point of view of proving that theuffer contains a valid snap-
shot ofdevice for the firstbytesread bytes. The transformexkad
in Figure 5 can now be reduced into an atomic action, because
lines A-D are right movers and lines F-J are left movu88). Fi-
nally, we can prove the relevant condition about output patars
at exit using purely sequential reasoning techniques.

We introduce and verify the invariaiforall x:int. 0 <= x
< currsize ==> cache[x] == device[x]) once the code in Fig-
ure 5 has been converted into a single atomic aq®¥). A proof
of Read in Owicki-Gries at the line-level granularity would reggir
all introduced invariants to be included in the annotatiaseveral



Atomic: «
Stmt: s
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Figure 6. The language

lines. In addition, it would require facts about global edles es-
tablished at assignments and conditional checks to be gatga
through the annotations in subsequent lines. Our methodhaan
dle this example much more simply by introducing invariasush
as those in{S7)when atomic blocks are large enough.

3. Preliminaries

A program P is represented by a tuple = (Var, Main, Body).

We refer to elements of the tuple using dotted notation ,(e.g.
P.Main) and omit reference t@® when clear from the context.
Var is the set of uniquely-named global variables. The program

gate and the transition predicate of a gated action may tefire
current thread id through the special variablé € Var. When the
gated actionp > 7 is being executed by a thread: T'd, ¢ is sub-
stituted fortid in both ¢ andr. To represent the creation of new
threads by the parallel composition statement, we make fuseoo
functionsleft, right : Tid — Tid. We assume thdeft andright
together define a tree ov@tid with t,,.:, being the root of the tree.

A state of P is a tuple(o, d) whereo is the current store, and
is the dynamic statement representing a partially exequrtagtam.
We express a feasible state transition derivable from teeatipnal
semantics in Figure 7, 881, d1) — (o2, d2), whered;, andd; are
dynamic statements. We denote the transitive closureofith
—™. The program starts with an arbitrary store and the dynamic
statement, i, : P.Main.

Let ¢[t/tid] and T[t/tid] be formulas obtained by substitut-
ing ¢ for tid in ¢ and T, respectively.o E ¢[t/tid] states that
[t/ tid] is satisfied given the valuation of the variableginSim-
ilarly, (o1,02) E 7[t/tid] states that[t/tid] is satisfied given the

heap is modeled by using a map similarly to ESC/Java [11] and Valuation of unprimed variables im and primed variables inr.

Boogie [2]. The statemenit/ain is the body of the progranBody

is a map from procedure names to statements to be executed whe

a procedure is called.

We will denote with(¢ > 7)[t] the gated actiop[t/tid] > 7[t/tid)].
The semantics of a gated action ¢ > 7 is given in the rules
atomic anderror We call transitions obtained fromromic and

Figure 6 shows the language that we use to describe pro- ERRORatomic transitions of the programatowmic states that if the

grams formally. In our language, we express each atomieratait
(Atomic) with a gated action p > 7. The store predicate is the
gate of the action. If executed at a state that violageghe action
“goes wrong”. From states that satigfy the set of state transitions
allowed by this gated action are described by transitiodipater.
Statements{tmt) are either procedure callg(()) or are built from
atomic statements by sequential ¢r parallel (|) composition,
non-deterministic choiceX) or looping (). We model argument
passing using global variables, so a calptis simply denoted by
p()-
We sometimes express transition predicates in the compact n
tation: (7)u = 7 A A,eyam (2" = z) whereM is list of vari-
ables written by and z” is a variable that refers to the value of
z after the transition described by is taken. For example, we
can express the Boogie statemesisume e, assert e andx :=
e (wheree is an expression angdis a variable) with the gated ac-
tionstrue > (e)g, e> (true)y andtrue > (x' = e)y, respectively.
Atoms(s), the set of all gated atomic actionsdnis computed
recursively as follows:

Atoms(o> T
Atoms(s©

g {7}
Atoms(s1; s2)

)

)

Atoms(s)

Atoms(s1) U Atoms(s2)
Atoms(s1) U Atoms(s2)

Atoms(si||s2 Atoms(s1) U Atoms(sz2)

Atoms(p()) 0

We extend the definition ofdtoms to programs as follows:
Atoms(P) = Atoms(Main) U Atoms(Body(p))

Atoms(s10s2

peDom(Body)

3.1 Execution semantics

The program state evolves over time as threads execute geted
tions. Each thread has a unique identifier from aBet. t,,qin iS

a distinguished thread id that runs the statenfernit/ain, i.e., the
program body. The operational semantics of our programiaimg
guage is given in Figure 7.

To represent the fact that a statemerg Stmt is executed by
athreadt € Tid, we use thelynamic statement ¢ : s. The state-
mentsskip anderror are also dynamic statements representing a
program that has terminated normally and with an asserima-v
tion, respectively. The semantics only allows dynamicestents

current store satisfieg[t/tid], the store is modified atomically
consistent withr[t/tid] and the current dynamic statement be-
comesskip. OtherwisegrroRstates that the executigoes wrong,
where the store does not change but the statement beeoraes

An execution of s is a sequence of feasible transition steps
(o1,t : s) — (02,d2) — -+ — (0on,dn), wheret is a thread
id from Tid. An execution igerminating if it ends inskip or error.
An execution ishlocking if it cannot be extended. Clearly, any
terminating execution is also a blocking execution. An exien
succeeds if it ends in skip and fails (or goes wrong) if it ends
in error. In the following, we defineGood(t, s, ¢) as the set of
pre- and post-store pairs associated with succeeding &xeswf
s executed by threatlfrom stores satisfying. Bad(t, s, ) is the
set of pre-stores associated with failing executions. Bdym

Good(t, s, p)
Bad(t, s, )

{(01702) | o1 F e, (017t : S) —" (027Skip)}
{o1 |01 E ¢, Joa. (01, : 5) =" (02,error)}

A statement may go wrong from ¢ if there exists a failing run
of s from ¢, i.e.3t € Tid. Bad(t, s, ) # (0. A programP may
gowrong from ¢ if P.Main may go wrong fromp.

o|v represents the projection efto the set of variable¥” C
Var. The projections ofGood and Bad to V are defined as as
follows:

Goodlv(t, s, ¢)
Badlv(t, s, ¢)

{(o1lv,02|v) | (01,02) € Good(t,s, o)}
{o1lv [ o1 € Bad(t,s,¢)}
The definitions of Good and Bad are also extended to pro-

grams:Good (P, ¢) andBad (P, ) are shorthands fo&ood (tmain ,
P.Main, p) and Bad (tmain, P.Main, @), respectively.

4. The proof method

In our approach, a proof of a program is performed by a segquenc
of steps each of which modifies the current proof context.pgrbef
context consists of the current progratmand a store predicate.

A proof contextP,Z specifies a set of executions &f that start
from stores satisfyin@. Z not only constrains initial stores from
which P is run, but also is an invariant guaranteed to be preserved
by every atomic transition aP. We give a formal definition of in

(Dynamic) to be executed, so, before being executed, each static Section 4.1. A proof step is denotdd,Z: --» P2, Z>. The core

statement must be labeled by the id of the executing threld. T

proof rules are given in Figure 8.



(o1, d1) — (02, d2)

Dynamic : d
E

skip | error | t:s | d;d | d|d
(I E;d| Elld]|dl|E

ATOMIC
o1 F p[t/tid] (o1,02) F 7[t/tid]

ERROR

o F —[t/tid)

FORK
u = left(t) w = right(t)

(o1,t: o> 7) — (02,skip)

(o,t: o> T) — (0,error)

(o,t: (s1]]82)) — (o, u: s1]|w : s2)

EVALUATE EVALUATE-ERROR
(o1,t:81) — (02,t: s2) s2 # error (o1,t:8) — (o2,error) LABEL
(o1, E[t : s1]) — (02, E[t : s2]) (o1, E[t : s]) — (o2, error) (o,t:(s1; s2)) = (o,t:s15t: 82)
PROGCALL

SEQUENTIAL Body(p) =3 CHOOSEFIRST CHOOSESECOND
(o,skip; t:s) — (o,t:s) (o,t:p() — (o,t:8) (o,t:(s10s82)) — (0,t:s1) (o,t:(s1082)) — (0,t: s2)
LOOP-SKIP LOOP-ITER JOIN-FIRST JOIN-SECOND
(0,t: s°) — (o, skip) (o,t:89) = (o,t:s;5t:8°) (o,skip || t:s) — (o,t:5) (o,t: s skip) — (o,t:s)

Figure 7. The operational semantics

P1,1y --» P2, 1o

AUX-ANNOTATE

Atoms(P) = {p' > 1i,..
E(p' A7) = Va.3d . 3

p'om HI et T
E (" AT{") = Va.3d . 13

et}

P,T --» P[Var — Var U{a}, o' o1 — o'orl, ...

L REDUCECHOICE

INVARIANT
EZo =11 PF I a,¢ Var
P, 7y —-s P, 1o
SIMULATE REDUCESEQUENTIAL
TFa < az ag =T P, ITFa;:R or P,IF as:
P,T--» Plag — az], T P,T --» Plag;az — a1 o az],T
REDUCELOOP
P, IFa:m m € {R,L} p>THT

E ¢ = 7[Var/Var'] Ik (ppToa) 2> T
P, T --» P[a® — o> 7], T

P,Z --» Plo1Oag — a1 @ o], T

EXPAND-PARALLEL

a3 = aq [left(tid)/tid] a4 = ag[right(tid)/tid]
P,T --» Plai||ag — (as; as)0(aa; as3)],Z

Figure 8. The core proof rules of our method

Each proof step is governed by a proof rule which either rtesri
the program or changes the program invariant. A rewritd’af
denotedP[x — y] where an element of the program is replaced
with another elemeny of the same type. A rewrite may modify
Var by adding new variables to it, or may replace statements in
Main or Body by others.

A program isproved correct by a sequence of proof steps
P, true --» Py,Z1 --» P2, I5--- --» P,, T, if the final program
P,, is one in which all the gated actions avalidated. A gated
actionp>7 isvalidated by showing thaf,, = ¢ is a valid formula.
SinceZ, is an invariant ofP,,, no execution ofP,, starting from a

1. Bad(P1,3X.7Z>2) C Bad|v(P2,Z2)
2. For each (01,02) € Good(P1,3X.T5) :
(8) o1 € Bad|v(P2,Z2),0r
(b) (01,02) € Good|v(P2,Z2))

PrROOF skeTcH We prove that for each executidty of P; start-

ing from a storer; in Z; and ending in states, there exists a “wit-
ness” executiorf, of P, from o, that leads tar» or goes wrong.

To obtain £, we provide in each case a sequence of local trans-
formations toF;. Each transformation is either the swap of two
adjacent actions justified by their mover types, or the @pieent

state inZ,, causes an assertion violation. The soundness theoremof an action by a more abstract one. The correctness of the exe

(Theorem 1 below) asserts that in this case the initial EogP
cannot go wrong starting from a state7p.

Soundness. The following lemma states that the application of
each core proof rule given in Figure 8 preserves the sousdrfes
assertion checking, i.e., failing runs of the original prg are
preserved after an application of any rule. In addition, niegv
program “simulates” succeeding runs of the original progfeom

a stores as long as the former does not go wrong fremi\e give

a proof outline for Lemma 1 below. The complete proofs aremiv
in our technical report [8].

LEMMA 1 (Preservation)Let P1,7Z; --» P2, 7, be a proof step.
Let V = P;.Var and X = P,.Var\P;.Var. Then the following
hold:

cution transformations are justified by the antecedenteeptoof
rules. |

The following theorem generalizes the lemma to an arbitrary
number of proof steps and states the soundness of our proof
method.

THEOREM1 (Soundness).et Pi,true --» --- --» P, 7,
be a sequence of proof steps. Let V. = P;.Var and X
Py.Var\P1.Var. If P,, cannot go wrong fromZ,,, then P; cannot
gowrong fromZ,, and Good(P1,3X.Z,) C Good|v(Pn,Zn).

The P, Z: notation implicitly requires thaf; be an invariant of
program P, . Furthermore, any transformatidby, Z; --» P2, 75
has the property th&t, = Z;. This connection betweefy andZ,
becomes significant while proving Theorem 1.



In the rest of this section, we present the proof rules of our
system, which are the building blocks of the higher-levedgbr
tactics presented in Section 5. We anticipate that moss us&ED
will reason at the level of these higher-level, combinegstén this
section, we have made an attempt at motivating each proabsul
providing forward pointers to Section 5.

4.1

The second component of the proof contéxtis a store predicate
that specifies the stores from which each executioR pfeserves
7 for each atomic transition aP. A gated actiony > T preserves

7, denotedp > 7 + Z, if from stores satisfyind@, ¢ > 7 either goes
wrong or preserves at the post-store, i.e(p A7) = (Z = Z').
Here, for a store predicatg, the store predicaté’ is obtained by
replacing each free occurrence of eact Var with v'. ThenZ is
aninvariant of a programP, denotedP + Z, if all gated actions
in Atoms(P) preserveZ. Each proof starts from the proof context
P, true. New program invariants are introduced by strengthening
the current invariant by usingivarianT.

Invariants

4.2 Auxiliary variables

The rule aux-anNOTATE adds a fresh auxiliary variable to the
program and replaces each gated actidm 7 in P with a new
gated actiony’ > 7. We require thaty® > 7 preserves the current
invariant. The new action; specifies how: is updated by the gated
action (or left unmodified) for each value afin the current state,
but preserves the effect af on other variables. In particular, the
introduction of auxiliary variables cannot cause an actmhlock
at a states if the original action did not. This proof rule is typically
used to annotate gated actions with synchronization irdition;
see Section 5.2 for details.

4.3 Simulation

The simulation relation, defined in this section, enables decide
when siMULATE can replace a gated action with another. IZet
be a store predicatex; > 7 simulates p1 > 71 from Z, denoted
T+ p1>711 =X w2 b 1o, if the following two conditions hold:

1.':IA<p2:><,01
22EINp2 ATL = T2

The first condition above states that wheneyer- 7, goes wrong
fromZ, so doesp, > 2. The second condition states that whenever
2 > T2 does not go wrong frord, it simulates succeeding runs of
p1 > 711 fromZ.

Common ways of rewriting a gated actign >, to 2> are
strengthening the gate, i.e2x = ¢1 andm, = 72, or weakening
the transition predicate, i.er; = 72 and g1 = 2. In both
cases, the new action is an abstraction of the old one. Whde t
former adds extra failing behaviors to the gated action kjiray
new assertions for the pre-store, the latter adds extreesdow
behaviors.

Borrowing assertions. A special case of the simulation proof rule
is the annotation of gated actions with assertions. Whentedga
actionp; > 71 is annotated with an assertiah it is transformed
to the gated actiofip: A ) > 71. We use assertions to enable later
applications of the simulation rule. Consider the case wivee
would like to replacep; > 71 with 2 > 72 but it is not the case that
T+ p1>7m = 212 because the invariafitis not strong enough.
Instead of having to strengtheh by reasoning about the entire
program, we simply express our belief about the programe stat
whene, > 71 is reached using an assertign The new simulation
checkZ F (o1 A) > 71 < (92 A1) > 12 is more likely to pass.
We often insert assertions to express beliefs about synization
mechanisms; see Section 5.2 for details.

Our method allows program transformations to proceed while

the verification of the introduced assertion is deferredterlproof
stages. Borrowing assertions in this manner (instead ofipgo
them right away) is a powerful tool, since in the transfornpeo-
gram with larger atomic actions, validation of assertioas often
be done automatically.
Validating gated actions. Another special case ofiMULATE
is using the invariant to validate gated actions, i.e. prguiheir
their gates (assertions) are valid. We use the followingyddrule
RELAX for the purpose of proving and eliminating the gates.

RELAX
FI=o

P,T --> Plo>T — truen>7],7

A program is proved correct when all the gatesdabms(P)
are replaced withrue. The rule emphasizes the fact that validating
assertions ip > 7, in essence, is nothing more than sequential rea-
soning where the invariant is used as the pre-conditionsichdirge
the assertions in sequential code represented. byere,y is ob-
tained by propagating the assertions in the sequential tmtiee
beginning of the code block using weakest preconditions [7]

4.4 Reduction

LEFT-MOVER
a=p>T
Vt,u € Tid. V3 € Atoms(P) :
(t #u) = (Z+ (Blu] o aft]) X (aft] o Blu]))
P, TFep>T1:L

RIGHT-MOVER
o =trued> (P AT)
Vt,u € Tid. V3 € Atoms(P) :
(t#u) = T+ (aft] o Blu]) X (Blu] o aft]))
P, ITFe>T1:R

Figure 9. Right and left movers

Our reduction rules are based on Lipton’s theory [18]. Fagir
shows how we determine whether an action is a right or a lefiemo
using the judgmenf’, Z + s : m. These judgments are used for
reducing sequential composition, nondeterministic ahoioops,
and parallel composition.

The rulesLerT-mover andriGHT-MoVER define the mechanism
by which we label atomic actions in the program as a left datrig
mover. These rules correspond to performing a pairwise apmm
tativity check with all other atomic actions and are perfechau-
tomatically by QeD. The ruleLerT-MOVER is straightforward; an
actionp 7 is a left mover if it commutes to the left of every action
in the program. The ruleicHT-MOVER is similar; however, to es-
tablish whether > 7 is a right mover, we check the commutativity
of true > (p A 7) to the right of actions in the program. We have
introduced this asymmetry deliberately to increase théicgpl-
ity of the RiGHT-MOVER rule in the case when the program contains
blocking actions. To see why this was needed, observe that-an
tion ¢ > 7 that may go wrong cannot commute to the right of an
actionf3 that blocks.

Sequential composition. The REDUCESEQUENTIAL makes use
of the o operator defined in terms afip(7, ), the (sequential)
weakest-precondition op with respect to the transition. It is

applicable toas; s if either oy is a right mover oras is a left

mover.



P1,Ty --» P2, 1o

INLINE-CALL
Body(p) = s

P,T --» P[p() — s],Z

REDUCE-RECURSIVE
M = {p1, ..., pn } is closed under call
There exists an annotation functietmnot where for eactp; € M : Annot(p;) = (mq, i, i)
Vpi € M : pibTi b T P,Z, Annot = Body(p;) : m; P,Z, Annot = {pi, Ti } pi Finalizable(pi, vi)

P,T --» P[Body(p1) + @1 >7T1,..., Body(pn) — ¢n > 1], T

Figure 10. Rules for procedures

P1BTIOP2> T2 = (p1 AWp(T1,¥2)) > (T1 0T2) BOTH-MOVER SUP-MOVER
wp(r,p) = VVar'.7t= ¢ P,ITrs:L P, TFs:R P,IFs:n nCm
Tiore = 3IVar”.m[Var”/Var'] A e[ Var” [ Var] PIFs:B PIks:m
Nondeterministic choice. TheRebuce-croicemakes use of the ATOMIC-NON-MOVER %;;gg”(?);’i?(m’ o 7)
@ operator defined as follows. -
P, ITFe>T1: A P, ZFp():m
Pp1bTIDpabTm = (p1 Ap2)>(T1V T2)

COMBINE-MOVERS LOOP-MOVER

Loops. RrebuceLoorreduces a loop” to a single gated action 71 si:m P Iksy:n ec{;,0} PIFs:m

o> 7. Intuitively, ¢ is a predicate that is true at the beginning of the
loop andr specifies a relation between the beginning of the loop
and the end of any iteration. The conditions needed to aydy t ‘ Definitions ofrm; n, mOn, m||n, andm®
rule are the following: 1)p > 7 preserves the current invariant, 2)

P, ITF sy es:men P,Il—so:mo

the body of the loop is a right or left mover, and@}> ~ simulates
by zero or more iterations of the loop body

Parallel composition. We reduce parallel statements composed

of gated actions to sequential compositions using thressrdihe

first rule ExPAND-PARALLEL eliminates the parallel composition by

explicitly enumerating the two possible interleavings loé gated
actions. The following derived rulespucePrPARALLEL-1/11 exploit
the gated actions being right/left movers to directly efiaie the
parallel composition.

REDUCEPARALLEL-I
P,ZTFa;:L or P,ZFaz:R
a3 = aq[left(tid)/tid] aq = az|right(tid)/tid]

P,Z --» Plau]|a2 — a3;oul], T

REDUCE-PARALLEL-II
P,ZTFa;:R or P, ZF az:L
a3 = aq[left(tid)/tid] aq = az|right(tid)/tid]

P,Z --» Plau]|a2 — aa;as],T

4.5 Procedures

In this section, we show how our proof method deals with proce

dures. The rules are given in Figure 10. The mieNe-cALL IS

particularly simple; it simply inlinesBody(p) at the call site. All
the other rules discussed previously can be used to trangfor
body of a procedure iteratively making it smaller and simptethe

limit, the procedure body could be transformed to a singbendat

action. Once the procedure body has been simplified enoucdm i
be inlined at call sites without any significant increasehia pro-
gram size.

The ruleinLINE-CALL is inadequate if there is recursion in the

program. In this case, we use the proof relepucERECURSIVE

which takes a set of procedures that are closed under the call
relation and gives a mechanism whereby the body of each whetho
in M is replaced by a gated action. To break circular dependgncie

REDUCE-RECURSIVE requires an annotation functioAnnot that

m;n|B[R[L]A][mOn|[B[R[LTA][m|[n[B]R[L]A]]m®

B |B|R|LJA B |B|R|L|A|| B |B|R|L{A|| B |B
R |R{R|AJA R [R|RJAJA]| R |R[R|-|-|| R |R
L |L|-|Lj- L |L|A[L|A]| L |L|-|L{-|| L |L
A TA]-TAT- A TATATATAT] A JAT-T-1-11 A T-

Figure 11. Rules for deciding movers

provides a specification for each procedpren M and for each
loop occurring in g; as explained later in this section.

To define the procedure specifications provided4mnot, we
must first introduce two new mover types—atomic non-mover (
and both-mover §). The partial orderC defines a lattice over
movers as specified as followB: C L C AandB C R C A
Figure 11 extends the judgmeRtZ + s : m to all statements and
all mover types [12]. The symbet indicates that no conclusion
about the mover type can be reached and rules in Figure 1bttann
be applied. The ruleaLL-moveRr allows us to use the mover type
annotation for the body of a procedure at the call site. We cal
the statement atomic if P,Z + s : m is proved for any mover
m C A. The functionAnnot is defined as follows:

e For eachp; € M, Annot(p;) returns a tuple(m;, @i, 7:),
wherem; € {A,L,R,B} specifies the mover type of the
body of p;, andy; and; are the pre-condition and the post-
condition of p;, respectively. If the ruleREDUCERECURSIVE
succeeds, then it is sound to replace the body of each pracedu
pi € M with ¢; > 7. While ¢; is a store predicate for the
call point of the procedurer; is a transition predicate and
specifies a relationship between the call and return poihts o
the procedure. For soundness of thebuceRECURsIVETUlE,
we require that every execution pf from ¢, can be extended
to a blocking execution. We express this requirement ugiag t
predicateFinalizable(pi, p;). We currently assume that the
programmer has ensured that this requirement is met andtdo no
provide a mechanical check for it in our tool. This condition



is similar to a termination requirement, in fact, termipati
is a sufficient condition for being finalizable. We leave the
mechanization of this check to future work.

e For each loops® in the body of a procedure; € M,
Annot(s°) returns a store predicate. ¢ is a loop invariant
for s©.

The above specifications are written only for loops and proce
dures that are proved to be atomic as requirefHyUCERECURSIVE
Therefore, the problem of deriving these specificationeéssame
as providing loop invariants and procedure specificatianssé-
quential code.

Given an annotation functiondnnot, REDUCE-PROCEDURE
checks each proceduge in three phases. First, it checks that the
specification ofp; indicates an action that preserves the invari-
ant. In the rule, this is described by the conditipne 7; + Z.
Second, it checks that given the mover types for procedures i
Annot, the body ofp; in P conforms to its mover type pro-
vided by Annot. In the statement of the rule, this is expressed
with the conditionP,Z, Annot - Body(p;) : m;. The rules in
Figure 11 are used in this phase; for brevity, we have elitied t
implicit argumentAnnot to all the judgments. Third, it verifies
that the body ofp; implements the specification described by the
pre-conditionp; and the post-condition;. This is described by the
condition P,Z, Annot + {¢i,7:}p:. Formally, P,Z, Annot +
{wi, i }p: if for all t € Tid, the following two conditions hold:
1) (o1,02) E 7; for all (o1,02) € Good(t, Body(pi), i), and
(2) Bad(t, Body(pi), pi) = 0.

The third requirement described above is verified by geimgrat
a verification condition (VC) and checking its validity ugian au-
tomatic theorem prover. Since the bodymgfis atomic, checking

whetherp; implements its specification requires sequential reason-

ing only. We use a VC generation technique based on weal@st pr
conditions, similar to that implemented in the Boogie verifi2].

To handle the use of the parallel composition operator wifio-
cedure bodies, we define the weakest precodition [pd. with re-
spect to a post-storg as follows:

wp(si||s2, ©) = wp(si[left(tid)/tid], wp(s2[right(tid)/tid], ¢))
Notice that the weakest precondition for the parallel cositpm is
similar to the one for the sequential composition [2]. Siadés. is
part of a procedure body that has been proved to be atamijs;
is atomic as well. The correctness of the weakest preconddf
parallel composition crucially depends on this observatio

5. Implementation with high-level tactics

The proof rules introduced in Section 4 are low-level rulestt
are the building blocks of proofs. In this section, we wilepent
higher-level, more intuitive-to-use proof tactics: caargrained
proof rules built out of lower-level ones. Figure 12 sumreesithe
tactics, their usage and the low-level rules justifyingdpglication
of the tactic. By construction, each tactic preserves thmdoess
of assertion checking.

We implemented our proof method in an interactive tool chlle
QED. QED uses the Boogie framework [2] as its front end and
forwards the validity checks to the3 SMT solver [6]. Our tool
accepts as input a multithreaded program written in an sidan
of the Boogie programming language [2] and a proof scripe Th
transformed program after the application of each prooé i
tactic is available for the user to examine. If required, tbel
automatically generates the verification conditions nemsgsto
prove the antecedents of proof rules and checks them u=3ng
The commands are rejected if this check fails.

Proof strategy. We view a proof of a concurrent program as a
sequence of steps, each applying a tactic presented iretttiss.
We have found the proof strategy sketched below to be a gaod st

while exist unverified assertions :
while not done{ do reduction withreduce stmt/loop/proc }
eliminate assertions wittheck
if exist unverified assertions :
repeat{ do abstraction witlabstract or mutex }
repeat{ introduce a specification witimvariant, annot }

In each iteration we first apply reduction and then verify as-
sertions. When there are still unverified assertions, webdtrac-
tion and introduce specifications, which allows reductimoltain
coarser atomic actions at the next iteration. In the follaysec-
tions we elaborate on the operations of the tactics reféaratiove
and give examples of how these tactics are used during tloé ipro
Section 2.1.

51

The tacticinvariant ¢ introduces a new invariant into the proof
context. The current invariarf is replaced with the conjunction

7 A. The tactic fails to change the invariant if any gated acition

Atoms(P) does not preserve A 1.

The tacticsannot pre, annot post and annot inv allow us to
introduce specifications for loops and procedures. Theifsgec
tions can be introduced partially, where newly introducedcs
ifications are conjoined with the existing specificationisTal-
lows the annotation function referred to in Section 4.5 todee
fined partially while the proof progresses. Whienot pre p, ¢
adds a new pre-condition, an assertignannot post p, 7 adds a
new post-conditionr to the specification of proceduype The tactic
annot mover p, m (needed foREDUCE-PROCEDURE specifies that
the body ofp is of mover typen. The tactié annot inv s©, » adds
a loop invarianty to the specification of the loog" .

Example: The specification foread in Figure 4 is introduced
in step S7 by the tacticsannot pre Read,0 <= start && 0 <=
size and annot post Read,(forall x:int. start <= x && x <
start + bytesread ==> buffer[x] == device[x]).

Introducing invariants and specifications

5.2 Abstraction

Abstraction is applied by adding either extra transitionextra
assertions to a gated action. We use #betract tactic for the
former by having a gated action read or write a nondeteriiinis
value from/to a variable. The tactioutex is used for the latter
to infer extra assertions to the gated actions using synctation
information.

Read and write abstractions. A read abstraction is performed
by the tacticabstract read z, ¢ > 7. It makes the gated actigp >

7 read a nondeterministic value from at the beginning of the
action thus making the operation of the action independént o
the initial value ofz when its execution starts. For this purpose,
abstract read z, ¢ > T replaces the given actiopg > 7 with the
following:

P, T --» Ple>{T)m— p>T|,T
- > (Fz.T)Mm if zeM
o= p>(z=2"AJzm)y if z&M

A write abstraction is performed through the taetbstract write
z,p > 7. It makes the gated actiop > 7 write a nondeter-
ministic value toz at the end of the action. For this purpose,
abstract write z, ¢ > T replaces the given actiop > 7 with the
following:

2|n our implementation, we assign each statement a uniqiel"laThe
tactics that require a statement as a parameter are givelaktekeof the
statement.



Tactic

Usage

Low-level rules

invariant v

annot pre p,

annot post p, T

annot mover p, m
annot inv 59, ¢
reduce stmt

reduce loop a©, o> 7
reduce proc p1, ..., Pn

Add a new invariant to the proof context.

Introduce a pre-condition specification to a procedure.

Introduce a post-condition specification to a procedure.

Specify that the body of procedupes of mover typem.

Introduce a loop invariant specification to a loop.

Apply reduction iteratively on the program body and procedundies.
Reduce the loop to its previously given specification.

Reduce the procedures to their previously given specificatand do inlining.

INVARIANT

REDUCE-SEQUENTIAL/CHOICE/PARALLEL
REDUCELOOP
REDUCEPROCEDUREINLINE-CALL

inline p  Inline the body of the procedureat all call sites. INLINE-CALL
abstract read z,o>7  Abstract the value of at the entry of the actiop > 7. SIMULATE
abstract write z, o> 7  Abstract the value of at the exit of the actiop > 7. SIMULATE
assert 1, p>7  Add new assertion by strengthening the gate of the actionr SIMULATE
mutex ¢, 71, ...,z Add assertions for a mutual exclusion access policy fortesz , ..., z, AUX-ANNOTATE, INVARIANT, SIMULATE
check p  Validate assertions in the procedure body using sequeartaysis and’. RELAX
Figure 12. The high-level proof tactics.
thread anda stores0. The operation of the tactic includes 1) by
P, T --» Plp>{(T)u+ p>7],T AUX-ANNOTATE, adding a to the set of program variables, 2) by
T o= (3" T)muge INVARIANT, adding the invariarnt, and then 3) by annotating gated

By the definition of simulation, both read and write absiat
are sound by construction. We do not allow abstractionsvib&tte
the program invariart.

Example: We do two read abstractions in our running example.

First, in stepS4, we abstract the read aéwsize for the action
corresponding to the branch of the statement at lines 5-7 of
Figure 4. This allowgead to take this branch even thougbwsize
==currsize holds, as a result, reading from the cache the available
bytes (fewer than the initially requestedze) and returns them,
although it could have fetched all the requested bytes fremce.

Second, in stef35 we abstrackize at the beginning of the ac-
tion that spans lines 3-7 of Figure 4 (after reducing the first
branches of.f to a single atomic action byebucecHoicg). This
allows Read to return fewer bytes than the origingze. The as-
sumption(size == 0 || start + size <= i) obtained from the
condition ofif guarantees that the abstraction leayes: still in
the safe bounds.

These two abstractions allow us to prove that the branches of
if are all right-movers and reduce the entire statement tortke o
given at line 1 of Figure 5. Notice that, neither abstractioeaks
the specification okead and each corresponds to a behavior that
could have occurred in a different interleaving. a

Adding assertions. We use the tactiassert 1, p > 7 to add the
assertiorp to the gated action to yield A ¢ > 7. In the following,
we describe a tactic that, using hints about mutual exafusjm-
chronization in the program, infers appropriate assestfongated
actions.

The tacticmutex ¢, z1, ..., z, takes a store predicat¢ and a
set of program variables, ..., z, € Var. The hint communicated
through this tactic is thap specifies a mutual exclusion condition
that holds at all the program states from which a gated actiads
from or writes to a variable;. In this regard,¢ can be thought
of as a high-level description of a locking discipline thande
implemented by any program variables. The tactic autoraldtic
adds to the program a fresh auxiliary variahlewith domain
Tid U{0}3, and generates the following invariant oviéir U {a}:

A

= (a#0) =9

7 associates the auxiliary variable with Intuitively, ¢ is true
whenever it is acquired and stores the id of the thread that
acquired¢, and ¢ is false whenevek is not acquired by any

3We assume thdt is not an element of"id, and represents “no thread”.

actions as follows:

1. Replace every gated actian> 7 such thate (o A 7) =
(= A @) with o> (T A (a’ = tid)).

Replace every gated actign> T such that (9 A 7) = —¢’
with (p A (a = tid)) > (7 A (o’ = 0)).

. Replace every gated actign> 7 such thats (p A7) = (¢ <&
¢ ) with o> (7 A (a’ = a)).

Replace every gated actiqr> 7 that read from or write to the
variablez; with (¢ A (a = tid)) > 7.

2.

4,

The above operations are justified by the rules-ANNOTATE
and simMuLATE. The assertionw = tid is the key to showing that
actions annotated with = tid are movers in later reduction steps
because they are non-conflicting.

Example:

1. The application ofmutex in our running example of Sec-
tion 2.1 (in stepS1) expresses the fact thaéwsize andcurrsize

are protected by a variableck, which is modified byacquire
andrelease primitives. We used the tactidutex lock == true,
currsize,newsize. The assertiom = tid were added to the lines
accessingurrsize andnewsize betweenacquire andrelease.

2. In order to reduce the code in Figure 5 into one atomic ac-
tion, it is crucial to prove that the lines betwergaDp_DEVICE and
COPY_TO_BUFFER commute over each other. This enabled the reason-
ing in S2andS3 In fact, only one thread can execute these lines.
Recall that the synchronization mechanisnrdad allows only the
thread that establishesrrsize < newsize toaccess the device. In
order to prove that this is the case and to use this fact indetkic-
tions, we use the tactidutex currsize < newsize, device. AS a
result, the assertion = tid is added to the actions spanning the
block of code between the labeisap_DEVICE andCoPY_TO_BUFFER.

|

5.3 Reduction

Reducing statements. The tacticreduce stmt is used to compute
coarser atomicities in the program by iteratively applyieduction
rules in Figure 8.

Example: In our running example, we apphgeduce stmt twice.

The first reduction (in stef$1), after using themutex tactic as
described in Section 5.2, combines branches ofithstatement
between lines 3-4, 5-7 and 9-10 of Figure 4 to separate atomic
blocks, each having the code at line 1-2 at the beginningnThe
it merges the branches of to a single atomic action. In addition,



the block at lines 14-17 is also reduced to a single actiayuréi5
shows the state of the program at this point. The second tieduc

(in stepS6), using the assertions at lines 3 and 8 reduces the loops
as described below and combines the entire body into a single
action. m]

Reducing loops. The tactic reduce loop is used to reduce
an entire loop to a gated action given with the same tactic.
reduce loop s© ¢ > 7 USESREDUCELOOP to reason about possi-
bility of reducings® to ¢ > 7.

Example: The loops in our running example at lines B-D and
G-l of Figure 5 are reduced to single actions using the tac-
tic reduce loop. After stepsS2 and S3 the body of the first
loop is a right-mover, and the body of the latter is a left-gov
We use the specificationicurrsize <= i) >( ((i <= i’) &&
forall x:int. ((i’-1) <= x <= start + size)==>(cache’ [x]

== device[x])) )(i,cache) fOr the first loop and(start + i <
currsize) D( (i <= i’) && forall x:int. ((i’-1) <= x <=
size)==>(buffer’ [x] cache[start + x]) >(Lbuﬁer) for the
latter. Notice that, these gated actions specify the capftiom
device t0 cache and fromcache to buffer properly. In addition,
these actions are right- and left- movers themselves, andsed
later in thereduce stmt tactic. O

Reducing procedures. For the cases where the body of a pro-
cedure is small, we provide the tacticline p, which replaces
all the calls top with its body after doing proper substitutions
for formals. In other cases, the tactieduce proc p1, ..., pn IS
used to eliminate calls to the procedurgs ..., p,, Which are
closed under callreduce proc does the checks specified in the
rule REDUCE-PROCEDUREWhere M = {p1, ...p, }, and the existing
specifications for loops and procedures given as describ&e¢-
tion 5.1 define the annotation functiotmnot. The tactic fails if a
procedure or loop does not implement its given specificatbothe
body of a procedure is not of the given mover type. If all theaks
pass, it replaces all the calls pa, ..., p,, with their corresponding
specifications.

Example: Suppose that the loops at lines B-D and F-I of Fig-
ure 5 are implemented as separate procedures, and the leags a
placed with the callgopy_from device(start,size) andbuffer
copy_from_cache(start,size), respectively. In this case, we
could still reduce the bodies of the procedutesy_from_device
and copy_from_cache, the loops, to single actions by reduction. In
this case, the specifications to be inlined at the call siteszd will

be similar to the loop specifications given above while desuy
reduce loop ONRead. O

6. Experience

In this section we present our experience with several baadk
algorithmé. We were able to prove the benchmarks, except for the
non-blocking stack, using our togleD. All the proof steps driven

by high-level tactics were fully mechanize@gD required only

a few seconds to finish each proof. We have generated and ver
fied the verification conditions for the non-blocking stackma-
ally; currently, we are trying to mechanize this proof aslw@ur
experience with the benchmarks is summarized in the foligwi
conclusions:

e Our proofs did not require complicated global invariantatth
capture possible interference at each interleaving plvistead,
we attempted to achieve the correct level of atomicity by rea
soning locally about the effect of synchronization on indiial

4We will use pseudocode for brevity; the verified versions bé t
benchmarks in the Boogie programming language can be found a
http//home.ku.edu.tr/~tel mas/popl09bench.tar.gz

actions. The iterative use of reduction and abstractiononas
cial in this endeavor.

e The benchmarks, while operating with fine-grained concur-
rency, ensure a coarse level of atomicity through a variéty o
sophisticated synchronization protocols. We were abléucap
these protocols with few uses of abstraction throughatkert,
mutex andrwlock tactics.

¢ In many benchmarks, after aggressive use of reduction and ab
straction, the atomic blocks obtained were large enoughato t
global program invariants stated for the transformed ogr
were almost as simple as invariants for sequential programs

In the remainder of this section, we discuss the proof of each
benchmark at a high level.

6.1 Purity benchmarks

apply_£f()

1 var x, fx :
2 acquire(m);
3 x := z;

4 release(m);
5 while(true) {

int;

6 fx := f(x);

7  acquire(m);

8 if(x ==1z) {

9 z := fx; release(m);
10 break;

11} else {

12 x := z; release(m);
13}

14 }

Figure 13. Optimistic concurrency control using transaction retry

We verified the examples in [10], thereby demonstratingabat
approach generalizes existing work on enforcing atomtbityugh
abstractions. We were able to handle all the examples bylsimp
applications ofabstract read andabstract write on variables that
are accessed but left unmodified in the pure blocks. Consider
example (Figure 13) from Section 5 of [10]. This program sead
a shared variable in one critical section, performs a long com-
putationf on its value, and then attempts to writes back the result
into z in another critical section. The tactienlitex m==true, z ”
allows the code block 2-4 and both branches ofithetatement to
be proved atomic. The reads ofat line 3 and 12 are unnecessary
for correctness and could therefore be abstracted.

Notice that the loop in this example and other examples in
this section contain thereak statement. Such loops cannot be
translated directly to the loop statement in Figure 6. kdtef
rewriting the programs to eliminatereak, we provide the user
tactics to hoist the final, successful iteration out of thepldn this
particular example, we hoist the successfubranch at lines 8-10
out of the loop. This is a sound operation since every tertimnga
execution of the loop contains these lines once at the encypply
similar transformations to the loops in other examplesylvelow.

The rest of the loop after the above transformation does not
touch global variables, and also implements a simple “skip”
eration. Thus this portion of the program is a both-movenahy
we apply reduction and convert the bodyagp1ly_f into a single
atomic action that assigigz) to z.

6.2 Multiset

Figure 14 shows a concurrent multiset of integers witfertPair
andpelete Operations. The implementation contains an array
cells for storing the multiset elements; thet field of the cell
stores the element and tked field indicates whether the value
stored inelt is valid. Procedurescq andrel acquire and release



FindSlot(x:int)
returns r:int

InsertPair(x:int, y:int)
returns r:bool

1 for (i=0; i<N; i++) { 1 i := FindSlot(x);
2 acqM[il); 2 if (i == -1) {
3 if (M[i].elt==nil && '(M[i]l.v1d)){ 3 r := false; return;
4  M[i].elt := x; rel(M[il); 4}
5 r := i; return; 5 j := FindSlot(y);
6 } else { rel(M[il); } 6 if (j == -1) {
7} r := -1; return; 7 M[i].elt = nil;
8 r := false; return;

Delete(x:int) 9}

returns r:bool 10 acq(M[il);
1 for (i=0; i<N; i++) { 11 acqM[j1);
2 acq(M[il); 12 M[i].vld = true;
3 if (M[i].elt==x && M[i].v1id){ 13 M[jl.vld = true;
4  M[i].elt:=nil; M[i].vld:=false; 14 rel(A[il);
5 rel(M[il; r := true; return; 15 rel(A[j1);
6 } else { rel(M[il); } 16 r := true; return;
7 } r := false; return;

Figure 14. The multiset data structure

(M[i].1ck), the lock of celli. In [9], we proved thatinsertPair
andpelete are atomic using an abstraction map frarto an ab-
stract specification variable representing the multiset contents.
The variables was required to abstract away from the concrete
values of the indices of into which multiset elements are stored.
Using our method, we transformed the bodieg®fertpPair and
Delete implementations to atomic actions, indicated by. .1,
given below. Thus, we replaced a proof based on abstractagm m
pings with a simpler, layered correctness proof that endis gé-
guential reasoning.

Delete(x:int)
returns r:bool {

InsertPair(x:int, y:int)
returns r:bool {

var i : int; var i,j : int;
[havoc ij; [havoc i,j;
if (%) { assume 0 <= i,j < N;
r := false; return; if (%) {
} else { r := false; return;
assume 0 <= i < N; } else {
assume M[i].elt == x; assume M[i].elt == nil;
assume M[i].v1d; assume M[j].elt == nil;
M[i].elt:=nil; M[j].vld:=false; assume !(M[i].v1d);
r := true; return; assume !(M[i].v1d);
il M[i].elt:=x; M[i].vld:=true;
} M[j].elt:=y; M[j].vld:=true;
r := true; return;
}H

}

We first proved the following specification f@rindsiot and
inlined the specification at call points imsertPair. This proof
required reasoning similar to the example in Figure 13: wistbd
the last iteration of the loop iRindS1ot, which allocates an empty
slot, outside and performed abstractions on the othetibeia The
abstractions were done on thes andvid fields ofM[il. Then we
used the tactic thutex (M[x].lck==true), M[x].elt, M[x].v1ld"
to reduce the code blocks between callad¢q andrel to atomic
actions, including the succeeding iteratiorFimdslot.

FindSlot (x:int)
returns r:int {
[havoc r;
if(x) {
r := -1; return;
} else {
assume (0 <= r < N && M[r].elt
M[i].elt := x; return;
}H
}

nil && !'(M[i].v1d));

Thetactic ‘mutex (M[x].elt != nil && 'M[x].v1d),M[x].elt,
M[x].v1d"” allowed us to capture the property that, orma@dsiot
returns an allocated slot, itat andvid fields are not modified
by other threads. This fact is essential for proving thatatoenic

actions spanning the blocks 1-3 and 5-91afertPair are right-
movers. Then we were able to merge the three atomic bloales(li
1-3, 5-9 and 10-16) innsertPair into a single atomic action.
We also introduced the invarianitorall x:int. 0 <= x && x

< N & M[x].vld ==> M[x].elt '= nil) at the very end of the
proof. It is crucial to introduce this invariant only aftéretbody of
InsertPair has been transformed into a single action because the
individual actions irtnsertPair do not preserve this invariant. The
correctness proof for a sequential multiset implementatiould
have required the same simple invariant.

6.3 Non-blocking algorithms

Our experience with the following collection of non-blongi al-
gorithms demonstrates that our method can also be usedifp ver
highly-concurrent algorithms from the literature.

rightpush(v) returns r:bool
1 while(true) {

2 k := oracle(right);

3 prev := A[k-1];

4 cur := A[k];

5 if(prev.val != RN &% cur.val = RN) {

6 if (k = MAX + 1) { r := false; return; }

7 if (CAS(&A[k-1], prev, <prev.val,prev.ctr+1>))
8 if (CAS(&A[k], cur, <v,cur.ctr+1>))

9 { r := true; return; }

10 ¥

11 }

Figure 15. Example operation of obstruction-free deque

Obstruction-free deque. The double-ended queue (deque)
from [14] provides four operations+ghtpop, rightpush, leftpop,

and leftpush— operation with similar designs, to insert/remove
elements to/from both ends of the queue. Figure 15 shows the
rightpush operation, which inserts an element into the right end
of the deque. After reading two consecutive array elemerliaés

3-4 to local variablegrev and cur, rightpush inserts the given
value v if cAs operations at lines 7-8 both succeed. Because of
the reads at lines 3-4, tteas operations cannot be proved to be
movers in the original program. We abstracted these reddg us
the “abstract read” tactic, which madeprev and cur point to ar-
bitrary elements. In addition, we abstracted the write @&t line

2, using the abstract write tactic. This abstraction does not affect
the correctness of the operation, since the functiertle can re-
turn any index from the deque; its purpose is to return theraph
index for having fewer failing attempts.

The above proof steps allowed us to reason about the operatio
of two consecutivecas operations. We then hoisted the part of
the loop body with the successfeds operations out of the loop.
Then it was easy, by using the specificationce$, to prove that
the remaining part of the loop was a skip operation. By adttileg
deque invariants indicated in the algorithm descriptiofiLi4], we
were able to prove that ths operations, which were hoisted out
of the loop, are left-movers in the abstracted program. ai® us
an atomic block that contains twms operations with the desired
behavior. We proved the other operations using a similarcau.

Non-blocking stack. Figure 16 shows thgop andpush oper-
ations from Michael’s non-blocking stack algorithm [19h& op-
erations make use of a hazard pointer per thread in orderve so
the well-known ABA problem. [22] gave a proof of this algbrib
using concurrent separation logic. Since the algorithrs disee-
grained concurrency, the proof in [22] required reasonimguain-
variants at each interleaving point throughout the codéndJsur
method, we performed a simpler proof that transforms thedsod
of pop andpush to the following atomic actions:



push(b:ref)
returns r:bool

pop()
returns r:ref

1 var t,n : ref; 1 var t : ref, n : int = 1;
2 while (true) { 2 while(n <= THREADS) {

3 t := TOP; 3  if (H[n] ==b) {

4  if(t == null) break; 4 r := false; return;
5 H[tid] := t; 5 }n:=n+1;

6 if(t != TOP) continue; 6 }

7 n := TL[t]; 7 while (true) {

8 if (CAS(&TOP, t, n)) break; 8 t := TOP;

9} 9 TL[b] := t;

10 H[tid] := null; 10  if (CAS(&TOP, t, b)) break;
11 r := t; return; 11 } r := true; return;

Figure 16. Michael’s algorithm with hazard pointers

pop() push(b:ref) {
returns r:ref { var m : ref, i : int;
var m, n : ref; [assert b != nil;
[havoc m,n; if (%) {
if (%) { r := false;
assume (TOP == nil); } else {
r := nil; t1[b] = TOP;
} else { TOP := b; r := true;
assume (m !'= nil && m == TOP); il

n := tl[m]; TOP i=m; )

1

¥

The proof of the non-blocking stack required the applicatid
11 tactics, in three of which we introduced invariants. Oroob
strategy was aimed at making the successful executiong afithe
at lines 7-8 ofpop and 9-10 ofpush atomic. We performed read
abstractions orrop at lines 4 and 6 ofop and 8 ofpush since
these reads do not affect correctness. For each loop, weetois
the loop iteration containing a successfu$ operation outside the
loop. There is an ownership protocol implicit in the use @&f $tack.
A thread should only push into the stack an element that itsown
The push operation transfers the ownership of the elemettiteto
stack. Ownership is transferred back to the thread that gemna
to pop that element from the stack. We used an auxiliary blia
owner , @ map from stack elements to thread ids, to capture this
ownership transfer protocol. We also introduced assesioio the
code to check that the ownership protocol is not being véolafs
with other examples, we delayed the introduction of invasaintil
the atomic actions in the program had become coarse enoligh; a
invariants were consequently fairly simple.

t=n; r

bakery(i:int)
choosingl[i]

[

1;
+ max (number [1]

2 number[i] := 1 + max(number[1],..., number [N]) ;

3 choosing[i] := 0;

4 for(i:=1; i<=N ; ++i) {

65 while(choosing[j] != 0) /*wait*/;

6 while(number[j] !'= 0 && (number[j]l,j)<(number[i], i))/*wait*/;
73}

8 c :=c+ 1;

9 assert ¢ == 1; // critical section

10 c :=c -1

11 number[i] := 0; return;

Figure 17. The bakery algorithm

The bakery algorithm. The bakery algorithm (Figure 17) pro-
vides non-blocking critical sections [17]. We encoded thgual
exclusion property by adding a global variakléhat counts the
number of threads in the critical section and adding thertisae:

== 1 in the critical section. We proved the property by obtaining
single action that spans the code between lines 1-7 thatideuh
only when (number[i],i) is greater thatnumber [k],k) for all x
different from i. We abstracted the waiting iterations of ther
loop, which allowed us to eliminate the loop from the code.afpe
plied themutex tactic twice. The first application encoded the fact

that thatchoosing [1]==0 prohibits the values afumber [i] that are
smaller thamumber [k] to be read by a different threadat line 6.
The second application of the mutex tactic modeled linesa-a&n
acquire for a conceptual lock, and line 11 as the releasewioitk.
This conceptual lock protectsso that the code between lines 8-10
is atomic and the assertion never fails.

7. Related work

In this section, we compare our work with other approaches fo
compositional verification of multithreaded programs. husshell,
our method is orthogonal and complementary to existing otith
that do not make direct use of reduction and abstraction sahel
sumes others that do.

In the Owicki-Gries approach [21], each potential interlea
ing point in a program must be annotated with an invariant tha
is valid under interference from other concurrently-exeuac-
tions. Rely-guarantee methods [25, 5, 4] make this approzmte
modular by obviating the need to consider each pair of cencur
rent statements separately. Instead, the guarantee andoradi-
tions of a thread provide a summary for transitions takenhisy t
thread and the transitions taken by environment threadpere
tively. Both these methods require the programmer to reabont
interleavings of fine-grained actions; consequently, dogiired an-
notations are complex. Concurrent separation logic [2Ga3]the
ability to maintain separation between shared and local ongm
dynamically. Similarly to our method, it enables sequéméason-
ing for multithreaded programs. By converting the origipdgram
into a simpler program that uses coarse-grained atomicres;tour
method enhances the applicability of all of these appraachighe
same time, our method can benefit from these approaches las wel
For example, the ability of concurrent separation logiceason
about dynamic ownership transfer of heap objects could ke us
ful for establishing that heap accesses are non-conflictivegeby
enabling the key step of reduction in our method. The same sym
biotic relationship applies to the approach in [15] wheretod
contracts and object invariants are used to specify sharidgwn-
ership constraints on Spec# objects.

Several verification approaches in the literature use rtemuas
a key ingredient [12, 24, 10, 23]. These approaches arergiffe
from ours in that (i) they are limited to simple synchroniaatdis-
ciplines and (ii) can only reason about commutativity ofesses
that are not simultaneously enabled. [13] addresses theaskise
by using auxiliary variables and access predicates to enaioler
application of reduction. In addition to regular lockingmitives,
[23] applies mover-analysis to non-blocking synchron@aprim-
itivesLL, sc andcas under certain execution patterns of these prim-
itives. As demonstrated in this paper, our method suppoiticate
synchronization mechanisms naturally, with moderate tatiom
burden. Further, our check for mover types is general anel tabl
deduce that certain simultaneously enabled accesses demft
stractions have been used as a mechanism to prove atomitiity i
work on purity [10, 23]. The abstraction step in our method-su
sumes purity and allows us to deduce pure code blocks through
simple variable abstractions.

8. Conclusion

We introduced a proof method that iteratively simplifies agpam

by rewriting it in terms of coarser-grained atomic actiovi¢hen
applied iteratively, reduction and abstraction enabldgh&mr use

of each other and significantly simplify programs. Our tQaD
automates the proof steps in our approach, and our experienc
suggests that our approach provides a useful strategy taliim
the verification of assertions in concurrent programs. feutuork
includes extending our framework to verify programs writia



C and Spec#, developing tactics to support more synchriboiza

idioms such as barriers and events, and applying our method t

larger verification problems.
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