
Testing Concurrent
Programs on Relaxed

Memory Models
Jacob Burnim, Koushik Sen, Christos Stergiou

Friday, January 15, 2010

Introduction

• Programmers assume sequential consistency

• High performance concurrent programs:

• synchronization libraries

• lock-free data structures

• Memory model related bugs

Friday, January 15, 2010

Relaxed Memory
Models

T2:
y = 1
b = x

T1:
x = 1
a = y

x = y = 0

a = b = 0 ?

Friday, January 15, 2010

Goals

• Testing tool that finds memory model bugs

• Provide a trace of the buggy execution

• Distinguish harmful from benign sequential
consistency violations

• Find bugs exhibited under rare conditions

• Work for different memory models

Friday, January 15, 2010

Our approach

• C/C++ programs using pthreads

• Operational semantics for memory models

• Simulate program under relaxed memory model

• Random testing, no guarantees

• Exhaustive search, a lot of non-determinism

Friday, January 15, 2010

Our approach
• Active Testing

• Two phases:

• Find potential sequential consistency violations

• Direct testing using potential violations

• Not random and scalable

• How to find potential violations?

• How to create the violations?

Friday, January 15, 2010

Sequential Consistency
• Trace is a sequence of loads and stores

• Program order e1→p e2

• same thread, e1 issued before e2

• Conflict order e1→c e2:

• same memory location, e1 or e2 is write

• e1 “happens before” e2 from main
memory perspective

• happens-before relation →hb =def →p ∪ →c

• A trace is sequentially consistent
iff →hb is acyclic

Friday, January 15, 2010

Technique Overview
• Phase I

• Execute program under sequential consistency

• Find potential hb cycle: e1, ... , en, e1 from trace

• Real cycle : e1→p e2 →c e3 ... en →c e1

• race edge: e1 ↔r e2 : can be e1→c e2 or e2 →c e1

• Potential : e1→p e2 ↔r e3 →p e4 ↔r e5 ... en↔r e1

• Successive pairs (ei, ei+1) in cycle alternate
between: program order & potential data races

Friday, January 15, 2010

Technique Overview
• Phase II

• Execute program on relaxed memory model
using biased random scheduler

• e1→p e2 ↔r e3 →p e4 ↔r e5 ... en↔r e1

• Resolve (e2, e3) race as e2 →c e3

• e3: delay execution

• load→pause thread

• store→buffer value

• e2: execute quickly, commit immediately
Friday, January 15, 2010

Memory Models
• Our tool intercepts loads & stores
• Can simulate any memory model

with operational semantics

• TSO: total store ordering (SPARC,~x86)
• store-load reordering

• PSO: partial store ordering (SPARC)
• TSO + store-store reordering

• PSLO: partial store load ordering
• PSO + loads reordered

before previous loads and stores

P WB M

P

WB

MWB

WB

P

WB

M

WB

SR

SR

TSO

PSO

PSLO

Friday, January 15, 2010

Example

thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

x = y = done = 0

Friday, January 15, 2010

Example

x=1 y=1

local=yif (x==0)if (done)

done=1p p

p p

c
c

c

T1:

T2:

thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

Friday, January 15, 2010

Example

x=1 y=1

local=yif (x==0)if (done)

done=1p p

p p

c
c

c

T1:

T2:

potential happens-before cycle
not real cycle in sequential consistent execution

thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

Friday, January 15, 2010

Example

x=1 y=1

local=yif (x==0)if (done)

done=1p p

p p

c

c

T1:

T2:

race edge

race edge can be ordered either way
depending on when x is committed

thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

Friday, January 15, 2010

Example

x=1 y=1

local=yif (x==0)if (done)

done=1p p

p p

c

c

T1:

T2:

c

race edge can be ordered either way
depending on when x is committed

thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

Friday, January 15, 2010

Example

x=1 y=1

local=yif (x==0)if (done)

done=1p p

p p

c

c

T1:

T2:

thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1: x=1;
3: done=1;
4: if (done) {
5: if (x==0) {

c

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

1→p 3 →c 4 →p 5 →c1

Potential:

Goal:

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

Friday, January 15, 2010

Example
thread1 {
1: x = 1;
2: y = 1;
3: done = 1;

thread2 {
4: if (done) {
5: if (x==0)
6: ERROR;
7: local = y;
8: }

1

thread1
addr x

Potential cycle is realizable.
SC violation is not benign

1→p 3 ↔r 4 →p 5 ↔r1 - PSO

1→p 3 →c 4 →p 5 →c1

Friday, January 15, 2010

Summary

• Testing tool that simulates program under
different memory models

• Active Testing

• Phase I: Examine sequential consistent
executions and find potential violations

• Phase 2: Execute program under relaxed
memory models, try to create violations
using biased scheduler

Friday, January 15, 2010

Benchmarks

• dekker, bakery: mutual exclusion algorithms

• msn: non-blocking queue

• ms2: two-lock queue

• lazylist: list-based concurrent set

• harris: non-blocking set

• snark: non-block double-ended queue

Friday, January 15, 2010

Benchmarks
• Manually constructed test harnesses

• dekker and bakery

• two threads access critical section 3 times

• assert never concurrently in critical section

• concurrent data structures

• multiple operations in parallel

• assert results are consistent with atomic run
of operations

Friday, January 15, 2010

Read-After-Delayed-Write Bug

 thread0:
 ...
1: flag0 = 1;
2: while (flag1)
3: if (turn) {
4: flag0 = 0;
5: while (turn)
6: ;
7: flag0 = 1;
8: }
 //critical section
9: turn = 1;
10:flag0 = 0;

 thread1:
 ...
11: flag1 = 1;
12: while (flag0)
13: if (!turn) {
14: flag1 = 0;
15: while (!turn)
16: ;
17: flag1 = 1;
18: }
 //critical section
19: turn = 0;
20: flag1 = 0;

Initially flag0 = flag1 = 0

cycle under TSO: 1→p 2 →c11→p12 →c 1

c c
pp

Friday, January 15, 2010

Results
Benchmark Cycles

predicted

Cycles ConfirmedCycles ConfirmedCycles Confirmed # of Bugs
TSO PSO PSLO

of Bugs
TSO PSO PSLO

of Bugs
TSO PSO PSLO

Estimated probability of
confirming a cycle

Estimated probability of
confirming a cycle

Estimated probability of
confirming a cycleBenchmark Cycles

predicted
TSO PSO PSLO TSO PSO PSLO TSO PSO PSLO

dekker 112 23 32 52 17 16 46 0.26 0.17 0.27

bakery 208 24 56 75 20 40 43 0.43 0.19 0.46

msn 350 0 79 93 0 77 89 - 0.13 0.15

ms2 74 0 2 1 0 2 1 - 0.56 0.24

lazylist 157 0 7 6 0 4 4 - 0.07 0.21

harris 93 0 7 23 0 3 10 - 0.09 0.22

snark 1677 0 268 201 0 142 75 - 0.13 0.14

Friday, January 15, 2010

Discussion

• No false warnings, but false negatives possible

• Fail to predict feasible cycle

• Fail to confirm feasible cycle

• Feasible cycles not classified as buggy

Friday, January 15, 2010

Related Work

• Random testing for concurrent bugs

• ConTest, CTrigger, Active Testing

• Program verification under relaxed models

• explicit state model checking (D.L.Dill)

• bounded model checking (Checkfence)

• Runtime monitoring algorithms (Sober)

Friday, January 15, 2010

Conclusions

• Our tool uses operational vs. axiomatic
semantics, easier to understand and debug

• Works with any memory model if
operational semantics are provided

• Quickly triggers real bugs even under rare
schedules or operation reorderings

Friday, January 15, 2010

Thank you

Questions?

Friday, January 15, 2010

