Java theory and practice: Introduction to nonbloglalgorithms http://www.ibm.com/developerworks/jAlmary/j-jtp04186/index.htn

Java theory and practice: Introduction to
nonblocking algorithms

Look Ma, no locks!

Level: Advanced

Brian Goetz frian@gquiotix.com), Principal Consultant, Quiotix

18 Apr 2006

Java™ 5.0 makes it possible for the first timeawadop nonblocking algorithms in the Java
language, and theava. uti | . concurr ent package uses this capability extensively.
Nonblocking algorithms are concurrent algorithiest ttherive their thread safety not from locks, but
from low-level atomic hardware primitives suchcaspare-and-swap. Nonblocking algorithms can
be extremely difficult to design and implement, they can offer better throughput and greater
resistance to liveness problems such as deadlatkriority inversion. In this installment dava
theory and practice, concurrency guru Brian Goetz illustrates how savef the simpler

nonblocking algorithms work.

When more than one thread accesses a mutable leaadllihreads must use synchronization, or edseesvery
bad things can happen. The primary means of synidation in the Java language is thenchr oni zed
keyword (also known asitrinsic locking), which enforces mutual exclusion and ensurestti®asctions of one
thread executing stynchr oni zed block are visible to other threads that later exe@synchr oni zed block
protected by the same lock. When used properlginsit locking can make our programs thread-saié|dzking
can be a relatively heavyweight operation when tisgufotect short code paths when threads frequeatitend
for the lock.

In "Going atomic,"we looked &attomic variables, which provide atomic read-modify-write operatidos safely
updating shared variables without locks. Atomidalales have memory semantics similar to that o#tilel
variables, but because they can also be modifimaiaally, they can be used as the basis for loek-roncurrent
algorithms.

A nonblocking counter

Count er in Listing 1 is thread-safe, but the need to ukech irks some developers because of the perfocman
cost involved. But the lock is needed because imerd, though it looks like a single operation,hisrshand for
three separate operations: fetch the value, addiooiheand write the value out. (Synchronizatisraiso needed

on theget Val ue method, to ensure that threads callijgg Val ue see an up-to-date value. Simply ignoring the
need for locking is not a good strategy, thoughyrdevelopers seem disturbingly willing to convinhemselves
that this approach is acceptable.)

When multiple threads ask for the same lock astme time, one wins and acquires the lock, andttiers
block. JVMs typically implement blocking by suspérgithe blocked thread and rescheduling it latbe T
resulting context switches can cause a signifiderdy relative to the few instructions protectedisy lock.

Listing 1. A thread-safe counter using synchronizabn

pubTlic final class Counter {
private long value = 0;

pubTlic synchronized Tong getvalue() {
return value;
}

pubTlic synchronized Tong increment() {
return ++value;

1->7 25.01.2008 00:3

Java theory and practice: Introduction to nonbloglalgorithms http://www.ibm.com/developerworks/jAlmary/j-jtp04186/index.htn

Nonbl ocki ngCount er in Listing 2 shows one of the simplest nonbloclkatgprithms: a counter that uses the
conpar eAndSet () (CAS) method ofAt oni cl nt eger . Theconpar eAndSet () method says "Update this
variable to this new value, but fail if some oth@ead changed the value since | last looked." (Geeg

atomic" for more explanation of atomic variables @ampare-and-set.)

Listing 2. A nonblocking counter using CAS

pubTic class NonblockingCounter {
private AtomicInteger value;

public int getvalue() {
return value.get();
3

public int increment() {
int v;
do {
v = value.get();
}

while (!value.compareAndset(v, v + 1));
return v + 1;

The atomic variable classes are caligmmic because they provide for fine-grained atomic upslaf numbers
and object references, but they are also atontiteirsense that they are the basic building bloakadnblocking
algorithms. Nonblocking algorithms have been thgjextt of much research and study for over 20 yearhave
only become possible in the Java language as af 9.&v

Modern processors provide special instructionsafomically updating shared data that can deteetfartence
from other threads, arabnpar eAndSet () uses these instead of locking. (If all we wantedd was increment
the counterAt oni cl nt eger offers methods for incrementing, but they are daseconpar eAndSet () just
like Nonbl ocki ngCount er.increnment().)

The nonblocking version has several performanceartdges over the lock-based version. It synchreraza
finer level of granularity (an individual memoryckation) using a hardware primitive instead of thé&lJdocking
code path, and losing threads can retry immediaéther than being suspended and reschedulediridre f
granularity reduces the chance that there willdgention, and the ability to retry without beingsdheduled
reduces the cost of contention. Even with a fele®CAS operations, this approach is still likedybie faster than
being rescheduled because of lock contention.

Nonbl ocki ngCount er may be a simple example, but it illustrates adelaracteristic of all nonblocking
algorithms -- some algorithmic step is executedasfadively, with the knowledge that it may havebredone if
the CAS is not successful. Nonblocking algorithmes aften calleaptimistic because they proceed with the
assumption that there will be no interferencentéiference is detected, they back off and retryhé case of the
counter, the speculative step is the incrementfet¢hes and adds one to the old value in the st the value
will not change while the update is being computei.is wrong, it has to fetch the value agaidaerdo the
increment computation.

A nonblocking stack

A less trivial example of a nonblocking algorithelConcur r ent St ack in Listing 3. Thepush() andpop()
operations irConcur r ent St ack are both structurally similar foncr enent () in Nonbl ocki ngCount er,
speculatively doing some work and hoping that theeulying assumptions have not been invalidatedwithe
comes time to "commit" that work. Tipeish() method observes the current top node, construntsvanode to
be pushed on the stack, and then, if the topmate has not changed since the initial observatistalls the new
node. If the CAS fails, it means that another ttrieas modified the stack, so the process starta.aga

2->7 25.01.2008 00:3

Java theory and practice: Introduction to nonbloglalgorithms http://www.ibm.com/developerworks/jAlmary/j-jtp04186/index.htn

Listing 3. Nonblocking stack using Treiber's algorihm

pubTic class ConcurrentStack<E> {
AtomicReference<Node<E>> head = new AtomicReference<Node<E>>();

public void push(E item) {
Node<E> newHead = new Node<E>(item);
Node<E> oldHead;
do {
oldHead = head.get();
newHead.next = oldHead;
} while (!head.compareAndset(oldHead, newHead));

}

public E pop() {

Node<E> oldHead;
Node<E> newHead;
do {

oldHead = head.get();

if (oldHead == null)

return null;

newHead = oldHead.next;
} while (!head.compareAndset(oldHead,newHead));
return oldHead.item;

}

static class Node<E> {
final E item;
Node<E> next;

public Node(E item) { this.item = item; }

Performance considerations

Under light to moderate contention, nonblockingoallpms tend to outperform blocking ones becausstmbthe
time the CAS succeeds on the first try, and thalpgfor contention when it does occur does nobive thread
suspension and context switching, just a few mmtions of the loop. An uncontended CAS is leggasive
than an uncontended lock acquisition (this statérnas to be true because an uncontended lock #eouis
involves a CAS plus additional processing), andraended CAS involves a shorter delay than a coetiock
acquisition.

Under high contention -- when many threads are gimgnon a single memory location -- lock-based atgms
start to offer better throughput than nonblocking®because when a thread blocks, it stops pouadihg
patiently waits its turn, avoiding further contemti However, contention levels this high are uncempas most
of the time threads interleave thread-local comjtawith operations that contend for shared dgitang other
threads a chance at the shared data. (Contentiels lihis high also indicate that reexamining yalgorithm
with an eye towards less shared data is in ordée)graph ifGoing atomic" was somewhat confusing in this
regard, as the program being measured was so isticgdly contention-intensive that it appeared tloaks were
a win for even small numbers of threads.

A nonblocking linked list

The examples so far -- counter and stack -- ang sietple nonblocking algorithms and are easy tmWwlonce
you grasp the pattern of using CAS in a loop. Forarsophisticated data structures, nonblockingréfguos are
much more complicated than these simple examplesuse modifying a linked list, tree, or hash talale
involve updating more than one pointer. CAS enabtemic conditional updates on a single pointet,rmi on
two. So to construct a nonblocking linked listgetrer hash table, we need to find a way to updatéipte
pointers with CAS without leaving the data struetur an inconsistent state.

Inserting an element at the tail of a linked ligtitally involves updating two pointers: the "tgibinter that

3->7 25.01.2008 00:3

Java theory and practice: Introduction to nonbloglalgorithms http://www.ibm.com/developerworks/jAlmary/j-jtp04186/index.htn

4->7

always refers to the last element in the list dred"hext" pointer from the previous last elemenim newly
inserted element. Because two pointers need tpdated, two CASes are needed. Updating two poiiriers
separate CAS operations introduces two potent@lpms that need to be considered: what happehe ffrst
CAS succeeds but the second fails, and what happansther thread attempts to access the list éetvthe first
and second CAS.

The "trick" to building nonblocking algorithms faontrivial data structures is to make sure thaga structure
is always in a consistent state, even betweerirtieethat a thread starts modifying the data stnecéind the time
it finishes, and to make sure that other threadgenot only whether the first thread has firdhts update or is
still in the middle of it, but also what operationsuld be required to complete the update if th&t thread went
AWOL. If a thread arrives on the scene to find dla¢a structure in the middle of an update, it daip” the
thread already performing the update by finishimgyupdate for it, and then proceeding with its aparation.
When the first thread gets around to trying tostinits own update, it will realize that the worlnis longer
necessary and just return because the CAS wilttite interference (in this case, constructiverfierence)

from the helping thread.

This "help thy neighbor" requirement is needed &kenthe data structure resistant to the failuredif/idual
threads. If a thread arrived to find the data stmecin mid-update by another thread and just waitatil that
thread finished its update, it could wait foreviethe other thread fails in the middle of its ogema. Even in the
absence of failure, this approach would offer gmenformance because the newly arriving thread wbaic to
yield the processor, incurring a context switchyait for its quantum to expire, which is even veors

Li nkedQueue in Listing 4 shows the insertion operation for Miehael-Scott nonblocking queue algorithm,
which is implemented b@oncur r ent Li nkedQueue:

Listing 4. Insertion in the Michael-Scott nonblockihng queue algorithm

pubTic class LinkedQueue <E> {
private static class Node <E> {
final E item;
final AtomicReference<Node<E>> next;

Node(E item, Node<E> next) {
this.item = item;
this.next = new AtomicReference<Node<E>>(nhext);

}

private AtomicReference<Node<E>> head
= new AtomicReference<Node<gE>>(new Node<tE>(null, null));
private AtomicReference<Node<E>> tail = head;

pubTlic boolean put(E item) {
Node<E> newNode = new Node<E>(item, null);
while (true) {
Node<E> curTail = tail.get(Q);
Node<E> residue = curTail.next.get(Q);
if (curTail == tail.get()) {
if (residue == null) /* A */ {
if (curTail.next.compareAndset(null, newNode)) /* C */ {
tail.compareAndset(curTail, newNode) /* D */ ;
return true;
}
} else {
tail.compareAndset(curTail, residue) /* B */;
}

Like many queue algorithms, an empty queue congfsissingle dummy node. The head pointer alwaystpdo
the dummy node; the tail pointer always pointsitbes the last node or the second-to-last nodeurgig
illustrates a queue with two elements under nocuoatitions:

25.01.2008 00:3

Java theory and practice: Introduction to nonbloglalgorithms http://www.ibm.com/developerworks/jAlmary/j-jtp04186/index.htn

5->7

Figure 1. Queue with two elements in quiescent st
Tail

Head \

As Listing 4 shows, inserting an element involves inter updates, both of which are done with CA&ihg
the new node from the current last node on the g€y and swinging the tail pointer to point to theav last
node (D). If the first of these fails, then the geestate is unchanged, and the inserting threadgemtil it
succeeds. Once that operation succeeds, the orserttonsidered to have taken effect, and othreatls can see
the modification. It still remains to swing theltpointer to point to the new node, but this taak be considered
"cleanup" because any thread that arrives on teescan tell whether such cleanup is heeded angskhow to
do it.

Crumimy o - 1 o - 2]

The queue is always in one of two states: the npwnguiescent, staté&igure 1 andrigure 3) or the

intermediate state (Figure 2). The queue is irgtliescent state before an insertion operation #edtae second
CAS (D) succeeds; it is in the intermediate stéter ghe first CAS (C) succeeds. In the quiescéatesthe next
field of the link node pointed to by the tail isvalys null; in the intermediate state, it is alwags-null. Any

thread can tell which state the queue is in by @imgt ai | . next to null, which is the key to enabling threads
to help other threads "finish" their operation.

Figure 2. Queue in intermediate state during inserbn, after the new element is added but before theil
ointer is updated

Tail

Head \

The insertion operation first checks to see ifgbeue is in the intermediate state before attemptinnsert a
new element (A), as shown liisting 4. If it is, then some other thread museatly be in the middle of inserting
an element, between steps (C) and (D). Rathentfagtrfor the other thread to finish, the currenetid can
"help" it out by finishing the operation for it logoving the tail pointer forward (B). It keeps chiexkthe tail
pointer and advancing it if necessary until theuguis in the quiescent state, at which point itloagin its own
insertion.

Dummy| &7 | 1 o 2 T 3 |e

The first CAS (C) could fail because two threads @ntending for access to the current last elewiethie
queue; in this case, no change has taken effatiamnthreads that lose the CAS reload the tailtpoiand try
again. If the second CAS (D) fails, the insertihgead does not need to retry -- because anotheadhras
completed the operation for it in step (B)!

Figure 3. Queue in quiescent state again after thail pointer is updated
Tail

Head \

Nonblocking algorithms under the hood

Dummy o - 1 o - 2 o 3

If you dive into the JVM and OS, you'll find nonblang algorithms everywhere. The garbage colleasas them
to accelerate concurrent and parallel garbageatile the scheduler uses them to efficiently sciethreads
and processes and to implement intrinsic lockindMustang (Java 6.0), the lock-basychchr onousQueue

25.01.2008 00:3

Java theory and practice: Introduction to nonbloglalgorithms http://www.ibm.com/developerworks/jAlmary/j-jtp04186/index.htn

algorithm is being replaced with a new nonblockiegsion. Few developers uSgnchr onousQueue directly,
but it is used as the work queue for thread pootstucted with the

Execut or s. newCachedThr eadPool () factory. Benchmark tests comparing cached threadl p
performance show that the new nonblocking synchusmpieue implementation offers close to three titnes
speed over the current implementation. And furthmarovements are planned for the release followihgtang,
codenamed Dolphin.

Summary

Nonblocking algorithms tend to be far more compécathan lock-based ones. Developing nonblocking
algorithms is a rather specialized discipline, darmén be extremely difficult to prove their corteess. But many
of the advances in concurrent performance acrass\dsions come from the use of nonblocking atgors, and
as concurrent performance becomes even more inmpoebepect to see more nonblocking algorithms used
future releases of the Java platform.

Resources

Learn

e "Going atomic" (developerWorks, Brian Goetz, Noveni@)4): Describes the atomic variable classes
added in Java 5.0 and the compare-and-swap operatio

e "Scalable Synchronous Queues" (ACM SIGPLAN SymposiarRrinciples and Practice of Parallel
Programming, William N. Scherer lll, Doug Lea, avitthael L. Scott, March 2006): Describes the
construction and performance advantages of theSygw hr onous Queue implementation in Java 6.

e "Simple, Fast, and Practical Non-Blocking and BlagkConcurrent Queues" (Maged M. Michael and
Michael L. Scott, Symposium on Principles of Distriied Computing, 1996): Details the construction of
the nonblocking linked queue algorithm illustratedListing 4 of this article.

e Java Concurrency in Practice (Addison-Wesley Professional, Brian Goetz, Timeflsj Joshua Bloch,
Joseph Bowbeer, David Holmes, and Doug Lea, Ju@6)26. how-to manual for developing concurrent
programs in the Java language, including constrgaind composing thread-safe classes and programs,
avoiding liveness hazards, managing performanaktesiing concurrent applications.

e The Java technology zone: Hundreds of articles tadaery aspect of Java programming.

Get products and technologies
e JDK 5.0 Update 6: Get the latest update of JDK 5.0.

Discuss
¢ Participate in the discussion forum.

o developerWorks blogs: Get involved in the develgyerks community.

About the author

Brian Goetz has been a professional software dpeelfor over 18 years. He is a Principal Consulgr@uiotix,
a software development and consulting firm locateldos Altos, California, and he serves on sev@G® Expert
Groups. Brian's booklava Concurrency In Practice , will be published in early 2006 by Addison-Wesl8ee

6->7 25.01.2008 00:3

Java theory and practice: Introduction to nonbloglalgorithms http://www.ibm.com/developerworks/jAlmary/j-jtp04186/index.htn

Brian'spublished and upcoming articles in popular induptriglications.

7->7 25.01.2008 00:3

