
Modular Verification of a Non-Blocking Stack

Matthew Parkinson
Computer Laboratory,

University of Cambridge
Cambridge CB3 0FD, UK

matthew.parkinson@cl.cam.ac.uk

Richard Bornat
School of Computer Science

Middlesex University
London NW4 4BT, UK
R.Bornat@mdx.ac.uk

Peter O’Hearn
Department of Computer Science

Queen Mary, University of London
London E1 4NS, UK

ohearn@dcs.qmul.ac.uk

Abstract
This paper contributes to the development of techniques for the
modular proof of programs that include concurrent algorithms. We
present a proof of a non-blocking concurrent algorithm, which pro-
vides a shared stack. The inter-thread interference, which is essen-
tial to the algorithm, is confined in the proof and the specification to
the modular operations, which perform push and pop on the stack.
This is achieved by the mechanisms of separation logic. The ef-
fect is that inter-thread interference does not pollute specification
or verification of clients of the stack.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Program Verification—correctness proofs, formal methods
validation; F.3.1 [Logics and meanings of programs]: Specifying,
Verifying and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Separation Logic, Concurrency, Non-blocking

1. Introduction
Concurrent separation logic [11, 4] is a program resource logic
based on the notion that separate parts of a program that depend
on separated resources can be dealt with independently. Dijkstra’s
advice [5] on the design of concurrent programs was to limit in-
terference to (rare) moments of synchronisation. So far, proofs in
concurrent separation logic have followed this advice, considering
the resources of separate threads independently, and at synchronisa-
tion points temporarily adding the resources owned by a semaphore
or some other unit of mutual exclusion. This has led to pleasingly
modular proofs of some well-known problems: for example, paral-
lel merge sort, pointer-transferring buffers, and the classic readers-
and-writers [11, 1, 2].

But synchronisation using units of mutual exclusion is not the
only way of controlling interaction between threads, and in multi-
processor concurrent programming it is widely criticised for ef-
ficiency reasons because threads may often have to wait to gain
exclusive access to the unit. In so-called ‘non-blocking’ concur-
rency, threads attempt to make concurrent changes to shared data
structures, looping and trying again if a particular attempt fails to
achieve the desired result. It is beyond the scope of this paper to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

judge if and when such mechanisms are to be preferred to mutual
exclusion techniques.

Previously, the most effective formal treatment of non-blocking
concurrency has been as ‘interference’ in the rely-guarantee ap-
proach [9, 12]. Each thread must specify properties which it guar-
antees to preserve in interaction with the shared data, and other
properties which it relies on other threads to preserve. The guaran-
tee must be preserved by each action of the thread, and if neces-
sary it is possible to appeal to the rely conditions in showing that
the guarantee holds. ‘Interference’ between threads thus floods the
proof of every client: every single instruction in every single thread
must ensure the guarantees of its thread, because every specifica-
tion must include those guarantees.

We show in the proof below that in separation logic interference
may be contained even in non-blocking concurrency. We equip a
shared data structure with an invariant, and we provide operations
on the data structure as procedures. We allow non-blocking inter-
action by allowing concurrent executions of the procedures in con-
current threads. The procedures have conventional pre- and post-
conditions which do not involve the invariant. Within the bodies
of the procedures the invariant is exposed, and the proof engages
with it. Even though those proofs may be horrible, their horrors are
confined, and we can consider threads as independent when outside
those procedures.

Non-blocking concurrent algorithms rely for their correctness
on certain hardware properties. They all rely on the atomic nature
of single-word access to the store: that is, that reads and writes to
any particular single-word location are effectively serialised and
cannot overlap or be reordered. As in our example, many also rely
on aCAS (compare and swap) instruction that canatomicallyread a
location, compare its value with some previously-determined value
and, if equal, overwrite it with a new value. An atomic access to the
data structure (a single read or write of a single-word value, or a
singleCAS) is treated as a unit of mutual exclusion: we temporarily
add the resources described by the invariant, prove the effect of the
atomic operation, re-establish the invariant, and once again separate
ourselves from it.

2. Concurrent Separation Logic
We simplify the Brookes/O’Hearn presentation [11, 4] by using a
single invariant rather than a set indexed by resource names. We
refer readers to those descriptions, and give here only the differ-
ences of our usage. We make use of procedure-call specifications
{Q} f(x) {R} and an invariant for the data structure shared be-
tween threads. Then

Γ; I `
˘
Q

¯
C

˘
R

¯

means that with procedure specificationsΓ, and a shared-data in-
variant satisfyingI, the commandC satisfies the specification
{Q}C {R}.

The shared data structure can only be validly accessed within
atomic operations, and to do so brings the invariant temporarily
into play.

Γ; emp `
˘
Q ? I

¯
C

˘
R ? I

¯
Γ; I `

˘
Q

¯
atomic{C}

˘
R

¯
(1)

C must be executed in mutual exclusion with other ‘atomic’ com-
mands. In principle this might be achieved by the mechanisms of
transactional memory [8, 6], but in this paper we rely on the se-
rialisation properties of the hardware:C must invoke at most one
single-word read or write in the shared data structure governed by
I, or be aCAS instruction. Semantically we rely on Brookes’ proof
of soundness, which enables us to treat the shared data structure
as a single ‘resource’ and use a version of separation logic’s CCR
rule.1

Parallel composition requires that we satisfy pre-conditions sep-
arately, and guarantees that the post-conditions are separate on ter-
mination. The data-structure invariant is shared between the two
parallel compositions, just like named resource invariants in con-
current separation logic.

Γ; I `
˘
Q1

¯
C1

˘
R1

¯
Γ; I `

˘
Q2

¯
C2

˘
R2

¯
Γ; I `

˘
Q1 ? Q2

¯
C1‖C2

˘
R1 ? R2

¯
(2)

The bodies of module procedures can make use of the invariant; the
rest of the program cannot. We state the module rule for a single
procedure definition; extension to several procedures is obvious.
Note that the invariant is not incorporated into the pre- and post-
conditions ofCf : atomic instructions insideCf can make use of the
invariant, but the procedure body is not itself treated as an atomic
instruction.2

Γ; I `
˘
Qf

¯
Cf

˘
Rf

¯
Γ, {Qf}f(xf){Rf}; emp `

˘
Q

¯
C

˘
R

¯
Γ; emp `

˘
Q ? I

¯
module f(xf) = Cf in C

˘
R ? I

¯
(3)

In order to construct our invariant we have had to make some
use of permissions [1].E 7→ F can be read as a total permission
for the heap cell at locationE – i.e. permission to read, write and
dispose. It can be split into a collection of read-only permissions,
which can then be given to separate threads, enabling read-only
sharing. In this paper we require only that the invariant shares some
permissions with each thread, so that we can split a total permission
into two read permissions, one for the invariant and one for the
thread:

E 7→ F ⇐⇒ E r7−→ F ? E r7−→ F (4)

To read a heap cell we only need a read permission:

{E = N ∧N r7−→ M}x := [E] {N r7−→ M ∧ x = M}

1 It follows thatatomic{atomic{ . . . }} would fail to terminate.
2 In this rule we have usedemp as the invariant formula outside the proof
of Cf . It would be possible to take a more general approach: the module
rule can be derived from a version of the make-named-resource rule

Γ; I1 ? I2 `
˘
Q

¯
C

˘
R

¯
Γ; I1 `

˘
Q ? I2

¯
C

˘
R ? I2

¯
and the resource-weakening rule

Γ; I1 `
˘
Q

¯
C

˘
R

¯
Γ; I1 ? I2 `

˘
Q

¯
C

˘
R

¯
Note that these two rules can be combined to give the standard separation-
logic frame rule.

pop() {
local t,n;
while(true) {
t = TOP;
if (t == nil) break;

H[tid] = t;
if (t != TOP)

continue;

n = t->tl;
if (CAS(&TOP,t,n))

break;
}

H[tid] = nil;

return t
}

push (b) {
local t,n;

for(n=0; n<=THREADS; n++)
if (H[n] == b)

return false;

while(true) {
t = TOP;
b->tl = t;
if (CAS(&TOP, t, b))
break;

}

return true

}

Figure 1. Source for non-blocking stack. The hazard pointer code
is highlighted. For compactness of the presentation we use afor
loop in push to perform thescan operation from Michael’s algo-
rithm.

If a read permission is in the invariant, any thread can read a
shared cell in an atomic operation, but only the thread that has the
matching permission can write it (also in an atomic operation).

3. Specification of the algorithm
Michael’s algorithm, shown in figure 1, implements a shared stack,
with operationspush andpop. In [10], Michael proves the correct-
ness of the stack algorithm using hazard pointers.

We can see this as a simple implementation of a storage alloca-
tor for fixed-size heap records:pop is a kind ofmalloc or cons,
push a kind of free, the stack a kind of freelist. We can give
separation-logic safety specifications for his operations, allowing
for the possibility thatpop will not work on an empty stack and,
because of the vagaries of his mechanism, thatpush might fail:

Method Pre-condition Post-condition
pop() emp (ret 7→) ∨ (ret = nil ∧ emp)

push(x) x 7→ (ret ∧ emp) ∨ (¬ret ∧ x 7→)

Note that this specification need say nothing about the way that
push andpop are implemented. A client is completely insulated
from those details.

3.1 A client

Because the interface presented by the stack is somewhat inconve-
nient, and to demonstrate that the client is insulated from the inter-
ference used in the stack, we show how to build a simple memory
manager.

We require analloc mechanism, which works even if the stack
is empty. We presume that the records on the heap are single-cell
records, which originated from the system memory allocatornew.
Alloc triespop, and if that fails, uses the (perhaps much slower)
new.˘
emp

¯
alloc() {
local y;
y=pop();
if (y==nil) y=new();
return y;

}˘
ret 7→

¯
We present a brief sketch ofalloc’s verification:˘
emp

¯

y=pop();˘
(y = nil ∧ emp) ∨ y 7→

¯
if (y==nil) {˘

emp
¯

y=new();˘
y 7→

¯
}˘
y 7→

¯
Verification is trivial depending only on the specification ofpop
and the axiom{emp} y=new(); {y 7→ }. The point is that we
can make these proof steps without any reference to the complex
interference that we will need to account for when proving the
module procedures, illustrating the sense in which interference is
contained.

We require afree which does not bother us ifpushing fails.
This is not hard: we can keep a local listfl of the elementsfreed
which have not yet beenpushed, and each time we callfree, try to
push the lot. Specification requires a list predicate for our single-
cell records.

list(x)
def
= (x = nil ∧ emp) ∨ (∃n · (x 7→ n ? list(n))) (5)

˘
x 7→

¯
free(x) {
local y;
y = fl;
[x] = y;
fl = pushall(x);

}˘
emp

¯

˘
list(l)

¯
pushall(l) {
local n;
if(l==nil) return l;
n = [l];
n = pushall(n);
if(push(l)) return n;
else { [l] = n; return l; }

}˘
list(ret)

¯
Free uses the local freelistfl, in a straightforward use of

separation-logic’s hypothetical frame rule: the body has precondi-
tion x 7→ ? list(fl) and postconditionemp ? list(fl). Verifica-
tion of pushall is straightforward, depending only on the specifi-
cation ofpush.

An essential point is that verification ofalloc, free and
pushall does not have to consider the non-blocking stack be-
yond the specifications ofpush andpop. The proof is completely
isolated from the complexity of the interference that goes on inside
those operations.

3.2 Without hazard pointers

Michael assumes a fixed population of threads. Each thread has its
own local variables, named in lower caset, n, b, etc. They share
the stack through a global variable namedTOP, which can be read
atomically (e.g. int=TOP) and is written in atomic CAS instruc-
tions otherwise involving local variables (e.g. inCAS(&TOP,t,b)).

Michael describes first an algorithm in which the highlighted
code of figure 1 is elided. In this algorithm,push(b)works reliably
and need not return a success/fail result (i.e. it has postcondition
emp): if it finds a stack whose head is pointed to byt, it atomically
replaces it with one whose head is pointed to byb. Pop is flawed,
however: the fact that the head of the stack is pointed to byt does
not imply that there is a second element pointed to by a value
n which was previously found in the cell pointed to byt. By
removing the top of the stack, modifying what comes below and
then replacing the original top element, another thread can destroy
the TOP/n association in the temporal interval betweenn=t->tl
and if CAS(&TOP,t,n): see figure 2. Michael refers to this as
the ABA problem: a stack may be in state A (witht on top), then
change to state B (some other stack), then revert to state A (t on

TOP

t n

(1)

TOP

t n

(2)

TOP

t n

(4)

TOP

t n

(3)

Figure 2. ABA problem for stack algorithm without hazard point-
ers. A thread begins topop an element from the stack. It readst
andn, (1), but is then preempted. Another threadpops two ele-
ments from the stack, (2), andpushes the first element back onto
the stack, (3). The original thread is rescheduled and attempts its
CAS, which succeeds and destroys the data-integrity of the stack,
(4).

top again) yet we know nothing else about this second A-state other
than the fact that the variableTOP stores the same value as before.

3.3 Stack using hazard pointers

To fix the ABA problem, Michael adds a global arrayH of ‘haz-
ard pointers’. He assumes a fixed collection of numbered threads:
threadi alone writes to elementH[i] of the array, but all threads
can read the elements written by others. In figure 1 we assume that
each thread stores its number in a local variabletid. The global
array is, in fact, a heap record pointed to byH, and for readability
we writeH[E] instead of[H+E].

Before pushing a cell, a thread scansH to see if the cell is
recorded as a hazard pointer by some other thread: if it is, the
push is delayed (return false); if not, then thepush proceeds,
eventually returningtrue. Beforepopping a cell, a thread puts its
address into its own element ofH; then (and this is crucial!) checks
that the cell is still on top of the stack before going on to read its tail
and execute a CAS, clearing the hazard pointer before it returns.

The effect is remarkable: the algorithm works, and it can be
implemented on any machine that provides CAS. It is a challenge
to produce a formal proof in a program logic; in separation logic
we can exploit the essential modularity of the algorithm, confining
use of the invariant to the bodies ofpush andpop.

4. The proof
The effectiveness of the hazard-pointer array in Michael’s algo-
rithm derives from the following temporal property:

Between execution ofH[i]=t and assignment of another
value toH[i], the cell pointed to byt will not be re-
moved from the stack and subsequently re-inserted.

(†)

It is a subtle property: removal alone is possible; insertion alone
is possible; insertion followed by removal is possible; only removal
followed by insertion is prohibited. It is this property which dictates
the testt==TOP in pop: if we know that at some instant the cell is
on top of the stack then, becauseH[i] = t, we know that it will not
be re-inserted until we changeH[i]; it follows that if theCAS finds
it on top of the stack, then it has not been reinserted and the ABA
problem is averted. Apushing thread can ignore hazard settings
that are madeafter it haspopped a cellb from the stack, so it can

1 pop() {
2 local t,n;
3 while(true) {
4 atomic{ t = TOP; }
5 if (t == nil) break;

6 atomic{ H[tid] = t; H’[tid] = Req; }

7 atomic{ if (TOP != t) continue;

8 else H’[tid] = Tail(t->tl);

9 }
10 atomic{ n = t->tl;

11 if (H’[tid]!=Tail(n)) { H’[tid]=Left; }
12 }
13 atomic{ if (CAS(&TOP,t,n)) break; }
14 }

15 atomic{ H[tid] = nil; H’[tid] = Unset;}
16 return t;
17 }

1 push (b) {
2 local t,n;
3 for(n=0; n≤THREADS; n++) {
4 atomic{

5 if (H[n] == b) { G[tid] = Unset; return false;}

6 G[tid] = NotHaz(b,{0, . . . , n});
7 }
8 }
9 while(true) {

10 atomic{ t = TOP; }
11 b->tl = t;

12 atomic{ if (CAS(&TOP, t, b)) { G[tid] = Unset; break;} }

13 }
14 return true;
15 }

Figure 3. Algorithm with explicit atomicity assumptions and additional (highlighted) code to manipulate auxiliary state, which represent
the informal temporal property

certainly ignore any assignments that occur after it has begun to
scan the arrayH.

Clearly, the algorithm is over-cautious in the sense that apopper
uses the atomic testt==TOP as a surrogate for the more general
property ‘t is somewhere in the stack’, and apusher takes note of
hazard-pointer settings that occur after itpopped a cell but before
it began topush – but these are merely efficiency considerations.

We also need to know a property of the stack:pushing and
popping other cells does not affect the tail-value of cells already
in the stack.

Once a cell is inserted into the stack, itstail value will
not be altered until it is removed.

(‡)

In order to be able to express these properties in our invariant we
consider a hazard pointer to be in one of four states:

(Unset) H[tid] = nil;

(Req) H[tid] = b but b has not been observed in the stack;

(Tail(k)) while H[tid] = b, b has been observed in the stack with
tail k;

(Left) while H[tid] = b, b has been observed in the stack, but is
now known not to be in the stack.

If a hazard pointer is inTail(k) or Left state, it ought not to be
pushed: we call such an entry aconfirmed hazard. UnsetandReq
states merely help deductions. We record these states in an auxiliary
arrayH’, and we use additional code inpop, shown in figure 3, to
manipulate this array.

When we initially set a hazard pointer (line 6) its status isReq,
because we have not observed the cell in the stack while it was
hazard-pointered. If the atomic test on line 7 fails, we know that
t = TOP, and hence the value was in the stack whileH[tid] = t,
so we record the tail-value of the cell (instantaneously, it is an
auxiliary assignment) inH’.

When we performn = t->tl on line 10, we may find that
t->tl has changed: that is only possible ift has left the stack (sec-
ond temporal property(‡)), and then (because of the first temporal
property (†)) it will not come back till we alterH[tid], so theCAS
will be certain to fail: we record that fact by alteringH’. On line 15
we nullify our hazard pointer entry.

In order to become a confirmed hazard (stateTail() or Left) a
cell must be observed in the stack. A cell that is beingpushed is

not in the stack:3 therefore, during thepush operation, no thread’s
hazard pointer can change fromReq to Tail(). So a thread that
is popping can assign that cell’s address to itsH entry and it will
not matter to apushing thread that has gone past that entry in its
hazard search: it cannot possibly becomeTail() unless there is a
successfulCAS in push, and it cannot becomeLeft unless it first
becomesTail().

For thepusher we need yet another auxiliary arrayG to capture
that reasoning, with valuesUnset, if we are not currently trying to
push a value, andNotHaz(b, S), if we are trying topush b, andb is
not a confirmed hazard for the set of threadsS. In figure 3, we add
the necessary code topush.

4.1 The Invariant

Next we relate the informal temporal restrictions and the auxiliary
state added in figure 3 in an invariant. We useT for the set of thread
identifiers{0, . . . , THREADS}. We useh andh′ as a mathematical
representation of the contents of the arraysH andH’.

The hazard-pointer arrayh and hazard-status arrayh′ restrict
each nodey of the stack with tailz as follows

RNode(y, z, h, h′)
def
= y 7→ z

∧ ∀i ∈ T · (h(i) = y) ⇒ (h′(i) = Tail(z) ∨ h′(i) = Req)

If y is hazard for threadi, h(i) = y, andy is in the stack then its
status is eitherTail(z) or Req: it cannot beLeft or Unset. We can
then apply this restriction to every element of the stack, represented
as a list starting fromy, as:

RList(y, h, h′)
def
=

(y = nil∧emp)∨∃z.
`
RNode(y, z, h, h′) ? RList(z, h, h′))

´
Next we consider howG restricts the hazard pointer and status

arrays. We want to record, for each threadi, two facts about the
cell it might bepushing: (1) it is not a confirmed hazard for any
of the threads whose hazard-pointers have already been checked in

3 This is a consequence of separation logic’s separation principle: if all
threads start with separated resources and the shared data structure has
a separated invariant, and if all threads communicate only with atomic
commands, then separation will be preserved.

the for-loop; (2) it is not in the stack, and no other thread ispushing
the same cell.

Here we begin to play with permissions: crucially, we do not
give G’s total permission to the invariant, only a read permission.
This allows the invariant to depend upon the value ofG, but does not
give permission to any thread to modifyG in an atomic operation.
We give the other read permission forG[i] to threadi: that thread
can then, in an atomic operation, modify that entry ofG. Hence
threadi can depend on the value ofG[i] even outside an atomic
block.

When pushing the cell pointed to byb, we should have preferred
in the invariant to describe invariant properties of the stack and
then to say also∧ ¬(b 7→ ? true) – the cell does not appear
anywhere in the stack. But this is not enough to guarantee that the
same cell cannot somehow be pushed by another thread (perhaps
permission could be passed behind the scenes). We need to know
that any thread that has got part-way through thepushing process
actually owns the cell it is pushing. To do this we have used two
more kinds of permission:

E 7→ F ⇐⇒ E w7−−→ F ? E e7−→ (6)

A w permission allows writing (and reading, but we shall not need
to appeal to that); ane permission allows nothing, but ensures that
the cell pointed to exists in the heap. We cannot have two existence
permissions to the same cell:4

E e7−→ ? E′ e7−→ ⇒ E 6= E′ (7)

Threadi, pushing the cell pointed to byb, givesb e7−→ to the
invariant and keepsb w7−−→ for itself: it has lost total permission and
so no rogue thread can begin to push a cell and then pass the cell to
another thread that successfullypushes it.

HCons(h, h′)
def
=

~i∈T ·

0@(G[i] r7−→ Unset) ∨

∃b, S ·
„

(G[i] r7−→ NotHaz(b, S) ? b e7−→)
∧ ∀j ∈ S · (h(j) = b ⇒ h′(j) = Req)

«1A
This has a particularly useful property:

∀b, i, h, t · HCons(h, h′) ? b 7→ x

⇒ HCons(h[i 7→ b], h′[i 7→ Tail(x)]) ? b 7→ x (8)

We combine theRList(TOP, h, h′) and HCons(h, h′) predi-
cates into the algorithm’s invariant. In addition, we also give a con-
crete representation to the auxiliary stateh andh′. Note that in each
case we give only a read permission to the invariant: it may depend
upon the whole array but only threadj can alterH[j] or H’[j].

Inv
def
= ∃h, h′·

0@(~j∈T · H[j] r7−→ h(j) ? H’[j] r7−→ h′(j)) ?
HCons(h, h′) ? RList(TOP, h, h′) ?
∀i ∈ T · h(i) = nil ⇔ h′(i) = Unset

1A
4.2 The actual proof

Finally we present some details of the proof. In particular, we show
how our informal reasoning earlier can be given formally, using the
invariant and auxiliary state. In what follows we use the shorthand:
E

.
= E′ to meanE = E′ ∧ emp. Additionally, for compactness,

we use Hoare’s rule for jumps (break, continue andreturn),
for example in a loop with invariantI and exit conditionX, break
has pre-conditionX and post-conditionfalse andcontinue has
pre-conditionI and post-conditionfalse. The outline of the proof

4 Permissions models require that there is no zero permission and that total
permission is a maximum. We have given only the axioms that are required
in our proof.

is given in figure 4. We discuss the four marked atomic commands
in the rest of this sections.

In (a), updating the hazards status requires

h(tid) = t ∧HCons(h, h′) ? t 7→ n

⇒ HCons(h, h′[tid 7→ Tail(n))]) ? t 7→ n

This holds because of (8).
In (b) we case split on whethert is still in the stack. Ift is in

the stack, we can use the following to prove the condition in theif
will never hold.

h(tid) = t ∧ h′(tid) = Tail(a)∧
RList(y, h, h′) ∧ (t 7→ x ? true) ⇒ x = a

If t is not in the stack, then we do not have permission to read the
location, so we must use the empty read rule:

{emp}x=[E];{emp} (9)

This allows us to perform a racy read on a location, but we know
nothing aboutx’s value afterwards. This is really capturing the
algorithm’s optimism as we do the read, but will fail later when
we get to the CAS. However, we know it is valid to set the status to
Left from the following property:

h(tid) = t ∧ RList(TOP, h, h′) ∧ ¬(t 7→ ? true)

⇒ RList(TOP, h, h′[tid 7→ Left])

This holds by induction on the definition ofRList(x, h, h′), and
because− ∧ ¬(t 7→ ? true) distributes over?.

In (c), we case-split on the hazards status. If the status isLeft
we know the CAS will fail, because of the following implications:

H[tid] r7−→ t ? H’[tid] r7−→ Left? Inv ⇒ TOP 6= t

If the status isTail(n) and the CAS fails, then the proof holds
trivially. If the CAS succeeds, then the proof follows from the
following implication:

h(tid) = t ∧ h′(tid) = Tail(n) ∧ RList(t, h, h′) ∧ t 6= nil

⇒ t 7→ n ? RList(n, h[tid 7→ (t, Tail(n))])

In (d), if the CAS succeeds we require

HCons(h, h′) ? G[tid] r7−→ NotHaz(b, T)

⇒ ∀i ∈ T · h(i) = b ⇒ h′(i) = Req

to know the value being pushed it not a confirmed hazard, and

b 7→ t ? RList(t, h, h′) ? (∀i ∈ T · h(i) = b ⇒ h′(i) = Req)

⇒ RList(b, h, h′)

to know that it is valid to add it to the stack.

5. Conclusions and Future work
We do not claim to have made the first proof of Michael’s algo-
rithm; nor do we claim that our proof is simple; nor do we claim to
have proved everything that is important, such as absence of live-
lock.

We have formally contained the inter-thread interference within
the operations on the shared stack, as Michael clearly intended it to
be contained. Modularity is essential for scalability of proof, and
interference containment is an important kind of modularity. We
are not aware of a proof of a non-blocking algorithm in another
logic which provides such modularity. In all other proofs we have
seen, the possibility of interference floods into specifications and
proofs that do not have anything to do with it.

˘
H[tid]

r7−→ nil ? H’[tid]
r7−→ Unset̄

pop() {
local t,n;˘
H[tid]

r7−→ nil ? H’[tid]
r7−→ Unset̄

while(true) {
I =

˘
H[tid]

r7−→ ? H’[tid]
r7−→

¯
X =

˘
I ? (t

.
= nil ∨ t 7→)

¯˘
H[tid]

r7−→ ? H’[tid]
r7−→

¯
atomic{ t = TOP; }˘
H[tid]

r7−→ ? H’[tid]
r7−→

¯
if (t == nil) break;˘
H[tid]

r7−→ ? H’[tid]
r7−→ ∧ t 6= nil

¯
atomic{ H[tid] = t; H’[tid]=Req; }˘
H[tid]

r7−→ t ? H’[tid]
r7−→ Req̄

atomic{ if (TOP != t) continue;
else H’[tid]=Tail(t->tl);

}

9=; (a)

˘
H[tid]

r7−→ t ? H’[tid]
r7−→ Tail()

¯
atomic{ n = t->tl;
if (H’[tid]!=Tail(n)) {H’[tid] = Left};

}

9=; (b)

˘
H[tid]

r7−→ t ? (H’[tid]
r7−→ Tail(n) ∨ H′[tid]

r7−→ Left)
¯

atomic{ if (CAS(&TOP,t,n)) break; }

o
(c)˘

H[tid]
r7−→ ? H’[tid]

r7−→
¯

}˘
H[tid]

r7−→ ? H’[tid]
r7−→ ? (t

.
= nil ∨ t 7→)

¯
atomic{ H[tid] = nil; H’[tid]=Unset; }˘
H[tid]

r7−→ nil ? H’[tid]
r7−→ Unset? (t

.
= nil ∨ t 7→)

¯
return t;

}˘
H[tid]

r7−→ nil ? H’[tid]
r7−→ Unset? (ret

.
= nil ∨ ret 7→)

¯

˘
G[tid]

r7−→ Unset? b 7→
¯

push (b) {
local t,n;˘
G[tid]

r7−→ Unset? b 7→
¯

for (n = 0; n≤THREADS; n++) {
(G[tid]

r7−→ NotHaz(b, {0, . . . , n− 1}) ? b
w7−−→ ∧ n > 0)

∨(G[tid]
r7−→ Unset? b 7→ ∧ n = 0)

ff
atomic{
if (H[n] == b)

{ G[tid] = Unset; return false; }
G[tid] = NotHaz(b, {0, . . . , n})

}˘
G[tid]

r7−→ NotHaz(b, {0, . . . , n}) ? b
w7−−→ ∧ (n + 1 > 0)

¯
}˘
G[tid]

r7−→ NotHaz(b, T) ? b
w7−−→

¯
while(true) {I =

˘
G[tid]

r7−→ NotHaz(b, T) ? b
w7−−→

¯
atomic{ t = TOP; }˘
G[tid]

r7−→ NotHaz(b, T) ? b
w7−−→

¯
b->tl = t;˘
G[tid]

r7−→ NotHaz(b, T) ? b
w7−−→ t

¯
atomic{
if CAS(&TOP, t, b) then
{ G[tid] = Unset; return true; }

}

9>>=>>; (d)

˘
G[tid]

r7−→ NotHaz(b, T)
¯

}
}˘
G[tid]

r7−→ Unset? (ret
.
= true) ∨ (b 7→ ∧ ret = false

¯

Figure 4. Outline proof

The stack operations can be used by only considering the pre-
and post-conditions. This is similar to linearisability [7], which
allows concurrent linearisable operations to be considered like
atomic actions. We do not require an operation to be linearisable to
reason purely by its pre- and post-condition.

In this paper, we have not attempted to show more than the
safety of certain operations, that they do not leak memory and that
they preserve the invariant of the shared stack. We are investigating
adding liveness rules to separation logic to capture properties such
as obstruction/lock/wait-freedom.

Finally, we intend to explore the combination of mechanisms
from rely/guarantee and temporal logic with those of separation
logic. The aim is a logic which exploits separation logic’s modular-
ity but provides a simpler treatment of interference than is possible
in that logic alone; hopefully, for example, that would reduce the
use of auxiliary state in proofs.

Acknowledgments We should like to thank the East London
Massive, Bart Jacobs, Rok Strnisa and Viktor Vafeiadis for feed-
back on this work. This work was supported by the EPSRC (Bor-
nat, O’Hearn and Parkinson), the Royal Academy of Engineering
(Parkinson) and Intel Research Cambridge.

References
[1] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson.

Permission accounting in separation logic. InProceedings of POPL,
pages 259–270, 2005.

[2] R. Bornat, C. Calcagno, and H. Yang. Variables as resource in
separation logic. InProceedings of MFPS XXI. Elsevier ENTCS,

May 2005.

[3] P. Brinch Hansen, editor.The Origin of Concurrent Programming.
Springer-Verlag, 2002.

[4] S. Brookes. A semantics for concurrent separation logic. Invited
paper, inProceedings of CONCUR, 2004.

[5] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys,
editor, Programming Languages, pages 43–112. Academic Press,
1968. Reprinted in [3].

[6] T. Harris, S. Marlow, S. Peyton-Jones, and M. P. Herlihy. Composable
memory transactions. InProceedings of PPOPP, 2005.

[7] M. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects.ACM Trans. Program. Lang. Syst., 12(3):463–
492, 1990.

[8] M. P. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. InISCA ’93: Proceedings of
the 20th annual international symposium on Computer architecture,
pages 289–300, 1993.

[9] C. B. Jones. Specification and design of (parallel) programs. InIFIP
Congress, pages 321–332, 1983.

[10] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504,
2004.

[11] P. W. O’Hearn. Resources, concurrency and local reasoning. To
appear inTheoretical Computer Science; preliminary version in
CONCUR’04.

[12] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving
correctness of highly-concurrent linearisable objects. InProceedings
of PPoPP, pages 129–136, 2006.

