

[image: C:\Scripts\PSAppDeployToolkit\Toolkit\AppDeployToolkit\AppDeployToolkitBanner.png]

[bookmark: _Toc415642626]Administrator Guide

http://psappdeploytoolkit.codeplex.com

	
Document Version 3.6.1

Contents
Administrator Guide	1
2	Overview	5
Introduction	5
Features	5
System Requirements and Support	5
Licensing	6
3	Toolkit Functionality	6
User Interface	6
Functions/Logic	7
Integration with SCCM	7
Help Console	8
4	Toolkit Components	8
Toolkit File Structure	8
Files	8
Directories	9
Toolkit User Interface	10
Installation Progress	10
Installation Welcome Prompt	11
Block Application Execution	12
Disk Space Requirements	13
Custom Installation Prompt	13
Installation Restart Prompt	14
Balloon tip notifications	15
Custom Dialog box	15
Logging	16
5	Toolkit Usage	17
Overview	17
Launching the Toolkit	17
Overview	17
Toolkit Parameters	18
Customizing the Toolkit	18
Example Deployments	19
Building an Adobe Reader installation with the PowerShell App Deployment Toolkit	19
Deploy the Adobe Reader installation using SCCM 2007 / SCCM 2012 package	21
Deploy the Adobe Reader installation using SCCM 2012 Application Model	24
Important Note regarding deferrals	30
An advanced Office 2013 SP1 installation with the PowerShell App Deployment Toolkit	31
6	Toolkit Variables	32
7	Toolkit Exit Codes	35
8	Toolkit Functions	36
Convert-RegistryPath	36
ConvertTo- NTAccountOrSID	37
Copy-File	37
Enable-TerminalServerInstallMode	38
Execute-MSI	38
Execute-Process	40
Execute-ProcessAsUser	41
Exit-Script	42
Disable-TerminalServerInstallMode	43
Get-FileVersion	43
Get-HardwarePlatform	44
Get-FreeDiskSpace	44
Get-IniValue	44
Get-InstalledApplication	45
Get- LoggedOnUser	46
Get-RegistryKey	46
Get-ScheduledTask	47
Get- ServiceStartMode	48
Get-UserProfiles	48
Get-WindowTitle	49
Install-MSUpdates	50
Install-SCCMSoftwareUpdates	50
Invoke-HKCURegistrySettingsForAllUsers	51
Invoke-RegisterOrUnregisterDLL (Alias: Register-DLL, Unregister-DLL)	52
Invoke-SCCMTask	52
New-Folder	53
New-Shortcut	53
Refresh-Desktop	54
Refresh-SessionEnvironmentVariables	55
Remove-File	55
Remove-Folder	56
Remove-MSIApplications	56
Remove-RegistryKey	57
Resolve-Error	58
Send-Keys	59
Set-ActiveSetup	60
Set-IniValue	61
Set-PinnedApplication	62
Set-RegistryKey	62
Set-ServiceStartMode	63
Show-BalloonTip	64
Show-DialogBox	65
Show-InstallationProgress	66
Show-InstallationPrompt	66
Show-InstallationRestartPrompt	68
Show-InstallationWelcome	68
Start-ServiceAndDependencies	71
Stop-ServiceAndDependencies	72
Test-Battery	73
Test-MSUpdates	73
Test-NetworkConnection	73
Test-PowerPoint	74
Test-ServiceExists	74
Update-GroupPolicy	75
Write-Log	75

[bookmark: _Toc415642627]Overview

[bookmark: _Toc415642628]Introduction
The PowerShell App Deployment Toolkit provides a set of functions to perform common application deployment tasks and to interact with the user during a deployment. It simplifies the complex scripting challenges of deploying applications in the enterprise, provides a consistent deployment experience and improves installation success rates.
The PowerShell App Deployment Toolkit can be used to replace your WiseScript, VBScript and Batch script wrappers with one versatile, re-usable and extensible tool.

[bookmark: _Toc415642629]Features

Easy To Use - Any PowerShell beginner can use the template and the functions provided with the Toolkit to perform application deployments.
Consistent - Provides a consistent look and feel for all application deployments, regardless of complexity.
Powerful - Provides a set of functions to perform common deployment tasks, such as installing or uninstalling multiple applications, prompting users to close apps, setting registry keys, copying files, etc.
User Interface - Provides user interaction through , customizable user interface dialog boxes, progress dialogs and balloon tip notifications that can all be branded with custom logo and banner.
Localized - The UI is localized in several languages and more can easily be added using the XML configuration file.
Integration - Integrates well with SCCM 2007/2012; provides installation and uninstallation deployment types with options on how to handle exit codes, such as supressing reboots or returning a fast retry code.
Updatable - The logic engine and functions are separated from per-application scripts, so that you can update the toolkit when a new version is released and maintain backwards compatibility with your deployment scripts.
Extensible - The Toolkit can be easily extended to add custom scripts and functions.
Helpful - The Toolkit provides detailed logging of all actions performed and even includes a graphical console to browse the help documentation for the Toolkit functions.

[bookmark: _Toc415642630]System Requirements and Support

The PowerShell App Deployment Toolkit has been developed (and tested) to work with a wide range of Operating Systems from Windows XP to Windows 8.1 (and the Windows Server equivalents) to provide enterprise-wide compatibility. The system requirements are as follows:
· PowerShell 2.0
· Windows NT 5.1 and above
While we have attempted to maintain this backwards compatibility through the lifecycle of the toolkit, the degree of testing performed across older Operating Systems such as XP and Vista is limited as the bulk of testing is performed on the latest OS versions. However, the toolkit has widespread adoption in the enterprise from SMEs to large multinationals so there is safety in numbers and the assurance that the toolkit has been put through its paces on hundreds of thousands of clients around the globe.
[bookmark: _Toc415642631]Licensing

The PowerShell App Deployment Toolkit is provided under the Microsoft Public License:
https://psappdeploytoolkit.codeplex.com/license
We have invested a lot of personal time in the creation and ongoing development, maintenance and support of this community tool – it is not part of our day jobs! Donations to the project are welcome, please visit the following page for details on making a contribution:
https://psappdeploytoolkit.codeplex.com/wikipage?title=Donate

[bookmark: _Toc415642632]Toolkit Functionality

[bookmark: _Toc415642633]User Interface
· An interface to prompt the user to close specified applications that are open prior to starting the application deployment. The user is prompted to save their documents and has the option to close the programs themselves, have the toolkit close the programs, or optionally defer. Optionally, a countdown can be displayed until the applications are automatically closed.
· The ability to allow the user to defer an installation X number of times, X number of days or until a deadline date is reached.
· The ability to prevent the user from launching the applications that need to be closed while the application installation is in progress.
· An indeterminate progress dialog with customizable message text that can be updated throughout the deployment.
· A restart prompt with an option to restart later or restart now and a countdown to automatic restart.
· The ability to notify the user if disk space requirements are not met.
· Custom dialog boxes with options to customize title, text, buttons & icon.
· Balloon tip notifications to indicate the beginning and end of an installation and the success or failure of an installation.
· Branding of the above UI components using a custom logo icon and banner for your own Organization.
· The ability to run in interactive, silent (no dialogs) or non-interactive mode (default for running SCCM task sequence or session 0).
· The UI is localized into several languages and more can be easily added using the XML configuration file.

[bookmark: _Toc415642634]Functions/Logic
· Provides extensive logging of both the Toolkit functions and any MSI installation / uninstallation.
· Provides the ability to execute any type of setup (MSI or EXEs) and handle the return codes.
· Mass remove MSI applications with a partial match (e.g. remove all versions of all MSI applications which match "Office")
· Perform SCCM actions such as Machine and User Policy Refresh, Inventory Update and Software Update
· Supports installation of applications on Citrix/Remote Desktop Session Host Servers
· Update Group Policy
· Copy / Delete Files
· Get / Set / Remove Registry Keys and Values
· Get / Set INI File Keys and Values
· Check File versions
· Pin or Unpin applications to the Start Menu or Task Bar
· Create Start Menu Shortcuts
· Register / Unregister DLL files
· Refresh desktop icons / environment variables
· Test network connectivity
· Test power connectivity
· Check whether a PowerPoint slideshow is running in fullscreen presentation mode

[bookmark: _Toc415642635]Integration with SCCM
· Handles SCCM exit codes, including time sensitive dialogs supporting SCCM's Fast Retry feature - providing more accurate SCCM Reporting (no more Failed due to timeout errors).
· Ability to prevent reboot codes (3010) from being passed back to SCCM, which would cause a reboot prompt.
· Supports the CM12 application model by providing an install and uninstall deployment type for every deployment script.
· Bundle multiple application installations to overcome the supported limit of 5 applications in the CM12 application dependency chain.
· Compared to compiled deployment packages, e.g. WiseScript, the Toolkit utilises the SCCM cache correctly and SCCM Distribution Point bandwidth more efficiently by using loose files.

[bookmark: _Toc415642636]Help Console
· A graphical console for browsing the help documentation for the toolkit functions.
[bookmark: _Toc363546217]
[bookmark: _Toc415642637]Toolkit Components
[bookmark: _Toc363546218]
[bookmark: _Toc415642638]Toolkit File Structure
[bookmark: _Toc415642639]Files
The toolkit is comprised of the following files:
Deploy-Application.ps1
Performs the actual install / uninstall and is the only file that needs to be modified, depending on your level of customisation.
Deploy-Application.exe
An optional executable that can be used to launch the Deploy-Application.ps1 script without opening a PowerShell console window. Supports passing command-line parameters to the script.
AppDeployToolkitMain.ps1
Contains all of the functions and logic used by the installation script. By Separating the logic from the installation script, we can obfuscate away the complex code and make enhancements independently of the installation scripts that contain per-application actions.
AppDeployToolkitConfig.xml	
Contains configurable options referenced by the AppDeployToolkitMain.ps1 script, such as MSI switches and User Interface messages, which are customizable and localized in several languages. This is intended to be a static file that is configured once, not on a per-application basis.
AppDeployToolkitExtensions.ps1
This is an optional PowerShell script that can be used to extend the toolkit functionality with custom functions. It is automatically dot-sourced by the AppDeployToolkitMain.ps1 script.
AppDeployToolkitHelp.ps1
This is a script that displays a help console to browse the functions included in the Toolkit and copy and paste examples in to your deployment script.
[image:]
[bookmark: _Toc363546219][bookmark: _Toc415642640]Directories

The Root folder contains the Deploy-Application.exe and Deploy-Application.ps1 files. The Deploy-Application.ps1 file is the only file that should be modified on a per-application basis.
The directories below contain the installation files and supporting files referenced by the toolkit.
AppDeployToolkit
Folder containing the toolkit dependency files.
Files	
Folder containing your main setup files, e.g. MSI
SupportFiles 		
Folder containing any supporting files such as files you need to copy to the target machine using the toolkit during deployment.

[bookmark: _Toc415642641]Toolkit User Interface

The user interface consists of several components detailed below. The user interface can be branded with a custom logo and banner.
All of the UI components include message text that is customizable in the AppDeployToolkitConfig.xml. The UI has been localised in 11 different languages: English, French, Spanish, Portuguese, German, Italian, Dutch, Swedish, Danish, Norweigan and Japanese. Additional languages can be easily added in the XML configuration file.
The language used by the Toolkit UI is selected automatically based on the language culture of the operating system, so the same AppDeployToolkitConfig file can be used in a multi-language environment.
The user interface can be suppressed by specifying the deploy mode parameter as follows:
Deploy-Application.ps1 -DeployMode "Silent"
[bookmark: _Toc415642642]Installation Progress
The installation progress message displays an indeterminate progress ring to indicate an installation is in progress and display status messages to the end user. This is invoked using the “Show-InstallationProgress” function.
[image:]
The progress message can be dynamically updated to indicate the stage of the installation or to display custom messages to the user, using the “Show-InstallationProgress” function.
[image:]

[bookmark: _Toc415642643]Installation Welcome Prompt
The application welcome prompt can be used to display applications that need to be closed, an option to defer and a countdown to closing applications automatically. Use the “Show-InstallationWelcome” function to display the prompts shown below.
[image:]
Welcome prompt with close programs option and defer option:
[image:]
Welcome prompt with close programs options and countdown to automatic closing of applications:
[image:]
Welcome prompt with just a defer option:
[image:]

[bookmark: _Toc415642644]Block Application Execution
If the block execution option is enabled (see Show-InstallationWelcome function), the user will be prompted that they cannot launch the specified application(s) while the installation is in progress. The application will be unblocked again once the installation has completed.

[image:]
[bookmark: _Toc415642645]Disk Space Requirements
If the CheckDiskSpace parameter is used with the Show-InstallationWelcome function and the disk space requirements are not met, the following prompt will be displayed and the installation will not proceed.
[image:]
[bookmark: _Toc415642646]Custom Installation Prompt	
A custom prompt with the toolkit branding can be used to display messages and interact with the user using the “Show-InstallationPrompt” function. The title and text is customizable and up to 3 customizable buttons can be included on the prompt as well as optional system icons, e.g.
[image:]

Additionally, the prompt can be displayed asynchronously, e.g. to display a message at the end of the installation but allow the installation to return the exit code to the parent process without waiting for the user to respond to the message.
 [image:]

[bookmark: _Toc415642647]Installation Restart Prompt
A restart prompt can be displayed with a countdown to automatic restart using the “Show-InstallationRestartPrompt”. Since the restart prompt is executed in a separate PowerShell session, the toolkit will still return the appropriate exit code to the parent process.
[image:]
[bookmark: _Toc415642648]Balloon tip notifications
Balloon tip notifications are displayed in the system tray automatically at the beginning and end of the installation. These can be turned off in the XML configuration.
[image:]
[image:]
[image:]
[bookmark: _Toc415642649]Custom Dialog box
A generic dialog box to display custom messages to the user without the toolkit branding using the function “Show-DialogBox”. This can be customized with different system icons and buttons.

[image:]
[image:]

[bookmark: _Toc356573540][bookmark: _Toc415642650]Logging

The toolkit generates extensive logging for all toolkit and MSI operations.
The default log directory for the toolkit and MSI log files can be specified in the XML configuration file. The default directory is <C:\Windows\Logs\Software>.
The toolkit log file is named after the application with _PSAppDeployToolkit appended to the end, e.g.
Oracle_JavaRuntime_1.7.0.17_EN_01_PSAppDeployToolkit.log
All MSI actions are logged and the log file is named according to the MSI file used on the command line, with the action appended to the log file name. For uninstallations, the MSI product code is resolved to the MSI application name and version to keep the same log file format, e.g.
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Install.log
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Repair.log
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Patch.log
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Uninstall.log

[bookmark: _Toc415642651]Toolkit Usage

[bookmark: _Toc415642652]Overview

The Deploy-Application.ps1 script is the only script you need to modify to deploy your application.
The Deploy-Application.ps1 is broken down into the following sections:
Initialization		e.g. Variables such as App Vendor, App Name, App Version
Pre-Installation		e.g. Close applications, uninstall or clean-up previous versions
Installation		e.g. Install the primary application, or components of the application
Post-Installation	e.g. Drop additional files, registry tweaks
Uninstallation		e.g. Uninstall/rollback the changes performed in the install section.

[bookmark: _Toc415642653]Launching the Toolkit

[bookmark: _Toc415642654]Overview

There are two ways to launch the toolkit for deployment of applications.
1. Launch "Deploy-Application.ps1" PowerShell script as administrator.
2. Launch “Deploy-Application.exe” as administrator. This will launch the “Deploy-Application.ps1” PowerShell script without opening a PowerShell command window. Note, if the x86 PowerShell is required (for example, if CAPICOM or another x86 library is needed), launch Deploy-Application.exe /32
Examples:

Deploy-Application.ps1
Deploy an application for installation
Deploy-Application.ps1 -DeploymentType "Uninstall" -DeployMode "Silent"
Deploy an application for uninstallation in silent mode
Deploy-Application.exe /32 -DeploymentType "Uninstall" -DeployMode "Silent"
Deploy an application for uninstallation using PowerShell x86, supressing the PowerShell console window and deploying in silent mode.
Deploy-Application.exe -AllowRebootPassThru
Deploy an application for installation, supressing the PowerShell console window and allowing reboot codes to be returned to the parent process.
Deploy-Application.exe "Custom-Script.ps1"
Deploy an application with a custom name instead of Deploy-Application.ps1.
Deploy-Application.exe -Command "C:\Testing\Custom-Script.ps1" -DeploymentType "Uninstall"
Deploy an application with a custom name and custom location for the script file.
[bookmark: _Toc363546257][bookmark: _Toc415642655]Toolkit Parameters

The following parameters are accepted by Deploy-Application.ps1:
-DeploymentType "Install" | "Uninstall" (default is install)
Specify whether to install or uninstall the application.
-DeployMode "Interactive" | "Silent" | "NonInteractive" (default is interactive)
Specify whether the installation should be run in Interactive, Silent or NonInteractive mode.
Interactive = Shows dialogs
Silent = No dialogs (progress and balloon tip notifications are supressed)
NonInteractive = Very silent, i.e. no blocking apps. NonInteractive mode is automatically set if it is detected that the process is not user interactive.
-AllowRebootPassThru $true | $false (default is false)
Specify whether to allow the 3010 exit code (reboot required) to be passed back to the parent process (e.g. SCCM) if detected during an installation. If a 3010 code is passed to SCCM, the SCCM client will display a reboot prompt. If set to false, the 3010 return code will be replaced by a “0” (successful, no restart required).
-TerminalServerMode $true | $false (default is false)
Changes to user install mode and back to user execute mode for installing/uninstalling applications on Remote Destkop Session Host/Citrix servers
-DisableLogging (switch parameter, default is false)
Disables logging to file for the script.
[bookmark: _Toc415642656]Customizing the Toolkit

Aside from customizing the “Deploy-Application.ps1” script to deploy your application, no configuration is necessary out of the box. The following components can be configured as required:
AppDeployToolkitConfig.xml - Configure the default UI messages, MSI parameters, log file location, whether Admin rights should be required, whether log files should be compressed, log style (CMTrace or Legacy), max log size, whether debug messages should be logged, whether log entries should be written to the console, whether toolkit should re-launch as elevated logged-on console user when in SYSTEM context, whether toolkit should fall back to SYSTEM context if failure to launch toolkit as user, and whether toolkit should attempt to launch as a non-console logged on user (e.g. user logged on via terminal services) when in SYSTEM context.
AppDeployToolkitLogo.ico - To brand the balloon notifications and UI window title bars with your own custom/corporate logo, replace the AppDeployToolkitLogo.ico file with your own .ico file (retaining the file name)
AppDeployToolkitBanner.png - To brand the toolkit UI prompts with your own custom/corporate banner, replace the AppDeployToolkitBanner.png file with your own .png file (retaining the file name). The file must be in PNG format and must be 450 x 50 in size.
CompressLogs (option in AppDeployToolkitConfig.xml) - One of the Toolkit Options in the AppDeployToolkitConfig.xml file is CompressLogs. Enabling this option will create a temporary logging folder where you can save all of the log files you want to include in the single ZIP file that will be created from this folder.
To enable the CompressLogs, set the follow option in AppDeployToolkitConfig.xml to True:
<Toolkit_CompressLogs>True</Toolkit_CompressLogs>
When set to True, the following happens:
· Both toolkit and MSI logs are temporally placed in $envTemp\$installName which gets cleaned up at the end of the install.
· At the end of the install / uninstall, the logs are compressed into a new zip file which is placed in the LogFolder location in the config file.
· The Zip file name indicates whether it is an Install / Uninstall and has the timestamp in the filename so previous logs do not get overwritten.
· If your package creates other log files, you can send them to the temporary logging FOLDER at $envTemp\$installName.
[bookmark: _Toc415642657]Example Deployments

[bookmark: _Toc415642658]Building an Adobe Reader installation with the PowerShell App Deployment Toolkit

In this example, we will build an Adobe Reader installation which provides the following benefits over using a standard MSI based SCCM deployment:
· The ability to defer the installation up to 3 times
· The ability to close any applications that could cause errors during the installation
· Verification that the required disk space is available
· Full removal of any previous version of Adobe Reader (to prevent issues sometimes seen when doing an MSI upgrade, i.e. Missing previous installation source files)
· Installation of any subsequent patches required after the base MSI installation
This example is provided as a script with the toolkit, in the “Examples” folder.
1. Copy the application source files in to the “Files” directory, e.g.
[image:]
2. Customize the Deploy-Application.ps1 script using the example code below
3. Install the application by running Deploy-Application.exe
4. Uninstall the application by running Deploy-Application.exe -DeploymentType "Uninstall"

Initialization

Populate these variables with the application and script details:
$appVendor = 'Adobe'
$appName = 'Reader'
$appVersion = '11.0.3'
$appArch = ''
$appLang = 'EN'
$appRevision = '01'
$appScriptVersion = '1.0.0'
$appScriptDate = '08/07/2013'
$appScriptAuthor = 'Your Name'

Pre-Install
Prompt the user to close the following applications if they are running and allow the option to defer the installation up to 3 times:
Show-InstallationWelcome -CloseApps 'iexplore,AcroRd32,cidaemon' -AllowDefer -DeferTimes 3
Show Progress Message (with the default message)
Show-InstallationProgress
Remove any previous versions of Adobe Reader
Remove-MSIApplications -Name 'Adobe Reader'

Installation

Install the base MSI and apply a transform
Execute-MSI -Action Install -Path 'Adobe_Reader_11.0.0_EN.msi' -Transform 'Adobe_Reader_11.0.0_EN_01.mst'
Install the patch
Execute-MSI -Action Patch -Path 'Adobe_Reader_11.0.3_EN.msp'

Post-Installation

No actions required here

Uninstallation

Prompt the user to close the following applications if they are running:
Show-InstallationWelcome -CloseApps 'iexplore,AcroRd32,cidaemon'
Show Progress Message (with a message to indicate the application is being uninstalled)
Show-InstallationProgress -StatusMessage "Uninstalling Application $installTitle. Please Wait..."
Remove this version of Adobe Reader
Execute-MSI -Action Uninstall -Path '{AC76BA86-7AD7-1033-7B44-AB0000000001}'

[bookmark: _Toc415642659]Deploy the Adobe Reader installation using SCCM 2007 / SCCM 2012 package

· Copy the installation files to a network location accessible by SCCM.
· Create a new Package:
[image:]
· Set the package source folder accordingly:
[image:]
· Accept the defaults for the rest of the package (or modify according to your environment)
· Distribute the content of the package to the relevant Distribution Points
· Create a new Program for the package:
[image:]
· Accept the defaults for the requirements of the program (or modify according to your environment)
· On the Environment page, ensure you use a combination of settings that allows the user to interact with the application. Failure to do so will result in the application installing silently:
[image:]
· Accept the defaults for the rest of the program (or modify according to your environment)

· Create a new Advertisement for the Package and set your target collection accordingly:
[image:]
· Set a recurring schedule for the Mandatory Assignment. This dictates how frequently the application should attempt to install. Additionally, ensure that “Rerun if failed previous attempt” is enabled. These settings are required when using the deferral system and ensure that if a user defers the install, the install will retry after the specified interval:
[image:]

· When prompted with the following dialog box, select Yes:
[image:]
· Accept the defaults for the rest of the advertisement (or modify according to your environment). The deployment should start on your target machines shortly.

[bookmark: _Toc415642660]Deploy the Adobe Reader installation using SCCM 2012 Application Model

· Copy the installation files to a network location accessible by SCCM.
· Create a new Application and manually specify the application information:
[image:]

· Populate the application details accordingly:
[image:]
· Populate the application catalog details if required
· Add a new Deployment Type and manually specify the deployment type information:
[image:]

· Populate the deployment type details accordingly:
[image:]
· Set the content location. Additionally, set the Install and Uninstall programs accordingly. They should be Deploy-Application.exe -DeploymentType "Install" and Deploy-Application.exe -DeploymentType "Uninstall" respectively:
[image:]

· Create a new detection rule. Specify the base MSI product code and modify the Version to be the same as the final version after all patches are installed:
[image:]
· On the User Experience page, ensure you use a combination of settings that allows the user to interact with the application. Failure to do so will result in the application installing silently:
[image:]
· Leave the requirements page blank (or modify according to your environment)
· Leave the software dependencies page blank (or modify according to your environment)
· Accept the defaults to create the Application
· Deploy the Application:
[image:]
· Select the relevant Distribution Points:
[image:]

· Configure deployment settings according to whether it should be a mandatory or app catalog based deployment:
[image:]
· Specify the deployment schedule:
[image:]
· Specify User notification settings. In order to prevent excess noise, we recommend only showing notifications for computer restarts:
[image:]
· Accept the defaults for the rest of the Deployment (or modify according to your environment)

[bookmark: _Toc415642661]Important Note regarding deferrals

The SCCM 2012 Application Model does not have the flexibility to schedule Mandatory Assignments on a recurring schedule like SCCM 2007 or SCCM 2012 packages do. Instead, this is determined by the frequency of Software Deployment evaluation cycle in the SCCM Agent Custom Settings. You can modify this to reduce the time from the default of once a day, however this may increase the load on your SCCM servers and clients, and is not configurable on a per application basis:
[image:]
[bookmark: _Toc415642662]An advanced Office 2013 SP1 installation with the PowerShell App Deployment Toolkit

This example is provided as a script with the toolkit, in the “Examples” folder. This provides a number of benefits over the standard Microsoft Office Setup Bootstrapper:
· A component based architecture so that core products can be installed, and subsequent components can be installed using the same package with different command-line switches
· The ability to defer the installation up to 3 times
· The ability to close any applications that could cause errors during the installation
· Verification that the required disk space is available
· Full removal of any previous version of Microsoft Office 2007, 2010 or 2013
· Installation of any subsequent patches required after the base installation
· Activation of Microsoft Office components
Note: Office requires a number of modifications in order to install. Please refer to Microsoft’s documentation on configuration. This installation script tries to take a lot of work out of the process for you, but you still need to know what you’re doing in order to set it up correctly.
The folder structure is laid out as follows:
· Files
· Office installation files should be placed here
· Office Configuration MSP created with the Office Customisation Tool should be placed in the “Config” subfolder and be named Office2013ProPlus.MSP. Modify the script accordingly if you wish to change. For a basic MSP, you should probably configure Access, Word, Excel and PowerPoint to be the only core applications to install. We can add everything else as components.
· Customised Config.xml file should be edited in “ProPlus.WW” subfolder. At a minimum, you should modify the settings as follows:
· <Display Level="none" CompletionNotice="no" SuppressModal="yes" NoCancel="yes" AcceptEula="yes" />
· Security updates and service pack extracted MSPs should be placed in the “Updates” subfolder
· SupportFiles
· Contains custom Config.XML files which are used to add specific components that might be considered unnecessary in a standard Office install, but could be added later using command-line switches
· Contains Office Scrub tools for Office 2007, 2010 and 2013

Once the folder structure is laid out correctly and the custom Deploy-Application.ps1 is added (as well as the AppDeployToolkit files themselves), the following command-lines are valid:
· Deploy-Application.exe
· Installs Office 2010 with core products
· Deploy-Application.exe -AddInfoPath
· Installs Office 2010 with core products and InfoPath
· Deploy-Application.exe -AddComponentsOnly -AddInfoPath
· Installs InfoPath to an existing Office 2013 installation

[bookmark: _Toc415642663]Toolkit Variables

The toolkit has a number of internal variables which can be used in your script. Outlined below are each of them:
	Variable
	Description

	Toolkit Name

	$appDeployToolkitName
	Short-name of toolkit without spaces

	$appDeployMainScriptFriendlyName
	Full name of toolkit including spaces

	Script Info

	$appDeployMainScriptVersion
	Version number of the toolkit

	$appDeployMainScriptMinimumConfigVersion
	Minimum version of the config XML file required by the toolkit

	$appDeployMainScriptDate
	Date toolkit was last modified

	$appDeployMainScriptParameters
	Contains all parameters and values specified when toolkit was launched

	Datetime and Culture

	$currentTime
	Current time when toolkit was launched

	$currentDate
	Current date when toolkit was launched

	$currentTimeZoneBias
	TimeZone bias based on the current date/time

	$culture
	Object which contains all of the current Windows culture settings

	$currentLanguage
	Current Windows two letter ISO language name (e.g. EN, FR, DE, JA etc)

	Environment Variables (path examples are for Windows 7 and higher)

	$envHost
	Object that contains details about the current PowerShell console

	$envAllUsersProfile
	%ALLUSERSPROFILE% (e.g. C:\ProgramData)

	$envAppData
	%APPDATA% (e.g. C:\Users\{username}\AppData\Roaming)

	$envArchitecture
	%PROCESSOR_ARCHITECTURE% (e.g. AMD64/IA64/x86)
This doesn't tell you the architecture of the processor but only of the current process, so it returns "x86" for a 32-bit WOW process running on 64-bit Windows.

	$envCommonProgramFiles
	%COMMONPROGRAMFILES% (e.g. C:\Program Files\Common Files)

	$envCommonProgramFilesX86
	%COMMONPROGRAMFILES(x86)% (e.g. C:\Program Files (x86)\Common Files)

	$envComputerName
	$COMPUTERNAME% (e.g. computer1)

	$envComputerNameFQDN
	Fully qualified computer name (e.g. computer1.conto.contoso.com)

	$envHomeDrive
	%HOMEDRIVE% (e.g. C:)

	$envHomePath
	%HOMEPATH% (e.g. \Users\{username})

	$envHomeShare
	%HOMESHARE%
Used instead of HOMEDRIVE if the home directory uses UNC paths.

	$envLocalAppData
	%LOCALAPPDATA% (e.g. C:\Users\{username}\AppData\Local)

	$envProgramFiles
	%PROGRAMFILES% (e.g. C:\Program Files)

	$envProgramFilesX86
	%ProgramFiles(x86)% (e.g. C:\Program Files (x86)
Only on 64 bit systems, is used to store 32 bit programs.

	$envProgramData
	%PROGRAMDATA% (e.g. C:\ProgramData)

	$envPublic
	%PUBLIC% (e.g. C:\Users\Public)

	$envSystemDrive
	%SYSTEMDRIVE% (e.g. C:)

	$envSystemRoot
	%SYSTEMROOT% (e.g. C:\Windows)

	$envTemp
	%TEMP% (e.g. C:\Users\{Username}\AppData\Local\Temp)

	$envUserName
	%USERNAME% (e.g. {username})

	$envUserProfile
	%USERPROFILE% (e.g. %SystemDrive%\Users\{username})

	$envWinDir
	%WINDIR% (e.g. C:\Windows)

	Domain Membership

	$IsMachinePartOfDomain
	Is machine joined to a domain (e.g. $true/$false)

	$envMachineWorkgroup
	If machine not joined to domain, what is the WORKGROUP it belongs to?

	$envMachineADDomain
	Root AD domain name for machine (e.g. <name>.<suffix>.contoso.com)

	$envLogonServer
	FQDN of %LOGONSERVER% used for authenticating logged in user

	$MachineDomainController
	FQDN of an AD domain controller used for authentication

	$envMachineDNSDomain
	Full Domain name for machine (e.g. <name>.conto.contoso.com)

	$envUserDNSDomain
	%USERDNSDOMAIN%. Root AD domain name for user (e.g. <name>.<suffix>.contoso.com)

	$envUserDomain
	%USERDOMAIN% (e.g. <name>.<suffix>.CONTOSO.<tld>)

	Operating System

	$envOS
	Object that contains details about the operating system

	$envOSName
	Name of the operating system (e.g. Microsoft Windows 8.1 Pro)

	$envOSServicePack
	Latest service pack installed on the system (e.g. Service Pack 3)

	$envOSVersion
	Full version number of the OS (e.g. {major}.{minor}.{build}.{revision})

	$envOSVersionMajor
	Major portion of the OS version number (e.g. {major}.{minor}.{build}.{revision})

	$envOSVersionMinor
	Minor portion of the OS version number (e.g. {major}.{minor}.{build}.{revision})

	$envOSVersionBuild
	Build portion of the OS version number (e.g. {major}.{minor}.{build}.{revision})

	$envOSVersionRevision
	Revision portion of the OS version number (e.g. {major}.{minor}.{build}.{revision})

	$envOSProductType
	OS product type represented as an integer (e.g. 1/2/3)

	$IsServerOS
	Is server OS? (e.g. $true/$false)

	$IsDomainControllerOS
	Is domain controller OS? (e.g. $true/$false)

	$IsWorkStationOS
	Is workstation OS? (e.g. $true/$false)

	$envOSProductTypeName
	OS product type name (e.g. Server/Domain Controller/Workstation/Unknown)

	$Is64Bit
	Is this a 64-bit OS? (e.g. $true/$false)

	$envOSArchitecture
	Represents the OS architecture (e.g. 32-Bit/64-Bit)

	Current Process Architecture

	$Is64BitProcess
	Is the current process 64-bits? (e.g. $true/$false)

	$psArchitecture
	Represents the current process architecture (e.g. x86/x64)

	PowerShell And CLR (.NET) Versions

	$envPSVersionTable
	Object containing PowerShell version details from PS variable $PSVersionTable

	$envPSVersion
	Full version number of PS (e.g. {major}.{minor}.{build}.{revision})

	$envPSVersionMajor
	Major portion of PS version number (e.g. {major}.{minor}.{build}.{revision})

	$envPSVersionMinor
	Minor portion of PS version number (e.g. {major}.{minor}.{build}.{revision})

	$envPSVersionBuild
	Build portion of PS version number (e.g. {major}.{minor}.{build}.{revision})

	$envPSVersionRevision
	Revision portion of PS version number (e.g. {major}.{minor}.{build}.{revision})

	$envCLRVersion
	Full version number of .NET used by PS (e.g. {major}.{minor}.{build}.{revision})

	$envCLRVersionMajor
	Major portion of PS .NET version number (e.g. {major}.{minor}.{build}.{revision})

	$envCLRVersionMinor
	Minor portion of PS .NET version number (e.g. {major}.{minor}.{build}.{revision})

	$envCLRVersionBuild
	Build portion of PS .NET version number (e.g. {major}.{minor}.{build}.{revision})

	$envCLRVersionRevision
	Revision portion of PS .NET version number (e.g. {major}.{minor}.{build}.{revision})

	Permissions/Accounts

	$CurrentProcessToken
	Object that represents the current processes Windows Identity user token. Contains all details regarding user permissions.

	$CurrentProcessSID
	Object that represents the current process account SID (e.g. S-1-5-32-544)

	$ProcessNTAccount
	Current process NT Account (e.g. NT AUTHORITY\SYSTEM)

	$ProcessNTAccountSID
	Current process account SID (e.g. S-1-5-32-544)

	$IsAdmin
	Is the current process running with elevated admin privileges? (e.g. $true/$false)

	$IsLocalSystemAccount
	Is the current process running under the SYSTEM account? (e.g. $true/$false)

	$IsLocalServiceAccount
	Is the current process running under LOCAL SERVICE account? (e.g. $true/$false)

	$IsNetworkServiceAccount
	Is the current process running under the NETWORK SERVICE account? (e.g. $true/$false)

	$IsServiceAccount
	Is the current process running as a service? (e.g. $true/$false)

	$IsProcessUserInteractive
	Is the current process able to display a user interface?

	$LocalSystemNTAccount
	Localized NT account name of the SYSTEM account (e.g. NT AUTHORITY\SYSTEM)

	$SessionZero
	Is the current process currently in session zero? In session zero isolation, process is not able to display a user interface. (e.g. $true/$false)

	Script Name and Script Paths

	$scriptPath
	Fully qualified path of the toolkit (e.g. C:\Testing\AppDeployToolkit\AppDeployToolkitMain.ps1)

	$scriptName
	Name of toolkit without file extension (e.g. AppDeployToolkitMain)

	$scriptFileName
	Name of toolkit file (e.g. AppDeployToolkitMain.ps1)

	$scriptRoot
	Folder that the toolkit is located in. (e.g. C:\Testing\AppDeployToolkit)

	$invokingScript
	Fully qualified path of the script that invoked the toolkit (e.g. C:\Testing\Deploy-Application.ps1)

	$scriptParentPath
	If toolkit was invoked by another script: contains folder that the invoking script is located in.
If toolkit was not invoked by another script: contains parent folder of the toolkit.

	App Deploy Script Dependency Files

	$appDeployLogoIcon
	Path to the logo icon file for the toolkit (e.g. $scriptRoot\AppDeployToolkitLogo.ico)

	$appDeployLogoBanner
	Path to the logo banner file for the toolkit (e.g. $scriptRoot\AppDeployToolkitBanner.png)

	$appDeployConfigFile
	Path to the config XML file for the toolkit (e.g. $scriptRoot\AppDeployToolkitConfig.xml)

	$appDeployToolkitDotSourceExtensions
	Name of the optional extensions file for the toolkit (e.g. AppDeployToolkitExtensions.ps1)

	$xmlConfigFile
	Contains the entire contents of the XML config file

	$configConfigVersion
	Version number of the config XML file

	$configConfigDate
	Last modified date of the config XML file

	Script Directories

	$dirFiles
	"Files" sub-directory of the toolkit

	$dirSupportFiles
	"SupportFiles" sub-directory of the toolkit

	$dirAppDeployTemp
	Toolkit temp directory. Configured in XML Config file option "Toolkit_TempPath". (e.g. Toolkit_TempPath\$appDeployToolkitName)

	Script Naming Convention

	$appVendor
	Name of the manufacturer that created the package being deployed (e.g. Microsoft)

	$appName
	Name of the application being packaged (e.g. Office 2010)

	$appVersion
	Version number of the application being packaged (e.g. 14.0)

	$appLang
	UI language of the application being packaged (e.g. EN)

	$appRevision
	Revision number of the package (e.g. 01)

	$appArch
	Architecture of the application being packaged (e.g. x86/x64)

	$installTitle
	Combination of the most important details about the application being packaged (e.g. "$appVendor $appName $appVersion")

	$installName
	Combination of any of the following details which were provided: $appVendor + '_' + $appName + '_' + $appVersion + '_' + $appArch + '_' + $appLang + '_' + $appRevision

	Executables

	$exeWusa
	Name of system utility that installs Standalone Windows Updates (e.g. wusa.exe)

	$exeMsiexec
	Name of system utility that install Windows Installer files (e.g. msiexec.exe)

	$exeSchTasks
	Path of system utility that allows management of scheduled tasks (e.g. $envWinDir\System32\schtasks.exe)

	RegEx Patterns

	$MSIProductCodeRegExPattern
	Contains the regex pattern used to detect a MSI product code.

	Registry Keys

	$regKeyApplications
	Array containing the path to the 32-bit and 64-bit portions of the registry that contain information about programs installed on the system.
'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall','HKLM:SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall'

	$regKeyLotusNotes
	Contains the registry path that stores information about a Lotus Notes installation.
'HKLM:SOFTWARE\Lotus\Notes','HKLM:SOFTWARE\Wow6432Node\Lotus\Notes'

	$regKeyAppExecution
	Contains the registry path where application execution can be blocked by configuring the ‘Debugger’ value.
'HKLM:SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options'

	$regKeyDeferHistory
	The path in the registry where the defer history for the package being installed is stored.
"$configToolkitRegPath\$appDeployToolkitName\DeferHistory\$installName"

	COM Objects

	$Shell
	Represents and allows use of the WScript.Shell COM object

	$ShellApp
	Represents and allows use of the Shell.Application COM object

	Log File

	$logName
	Name of the script log file: $installName + '_' + $appDeployToolkitName + '_' + $deploymentType + '.log'

	$logTempFolder
	Temporary log file directory used if the option to compress log files was selected in the config XML file:
$envTemp\$installName

	$logDirectory
	Path to log directory defined in XML config file

	$zipFileDate
	If option to zip the log files was selected, then append the current date to the zipped log file.

	$zipFileName
	Path where the zipped log files will be stored:
$configToolkitLogDir\$installName + '_' + $deploymentType + '_' + $zipFileDate + '.zip'

	$DisableScriptLogging
	Dot source this ScriptBlock to disable logging messages to the log file.

	$RevertScriptLogging
	Dot source this ScriptBlock to revert script logging back to its original setting.

	Script Parameters

	$deployAppScriptParameters
	Non-default parameters that Deploy-Application.ps1 was launched with

	$appDeployMainScriptParameters
	Non-default parameters that AppDeployToolkitMain.ps1 was launched with

	$appDeployExtScriptParameters
	Non-default parameters that AppDeployToolkitExtensions.ps1 was launched with

	Logged On Users

	$LoggedOnUserSessions
	Object that contains account and session details for all users

	$usersLoggedOn
	Array that contains all of the NTAccount names of logged in users

	$CurrentLoggedOnUserSession
	Object that contains account and session details for the current process if it is running as a logged in user. This is the object from $LoggedOnUserSessions where the IsCurrentSession property is $true.

	$CurrentConsoleUserSession
	Objects that contains the account and session details of the console user (user with control of the physical monitor, keyboard, and mouse). This is the object from $LoggedOnUserSessions where the IsConsoleSession property is $true.

	$RunAsActiveUser
	The active console user. If no console user exists but users are logged in, such as on terminal servers, then the first logged-in non-console user.

	$IsTerminalServerSession
	Is the current process running in a terminal services session? (e.g. $true/$false)

	Miscellaneous

	$dpiPixels
	DPI Scale (property only exists if DPI scaling has been changed on the system at least once)

	$runningTaskSequence
	Is the current process running in a SCCM task sequence? (e.g. $true/$false)

	$IsTaskSchedulerHealthy
	Are the task scheduler services in a healthy state? (e.g. $true/$false)

	$invalidFileNameChars
	Array of all invalid file name characters used to sanitize variables which may be used to create file names.

	$useDefaultMsi
	A Zero-Config MSI installation was detected.

[bookmark: _Toc415642664]Toolkit Exit Codes

The toolkit has a number of internal exit codes for any issues that may occur.
60000 - 68999	 Reserved for built-in exit codes in Deploy-Application.ps1, Deploy-Application.exe, and AppDeployToolkitMain.ps1
69000 - 69999	 Recommended for user customized exit codes in Deploy-Application.ps1
70000 - 79999	 Recommended for user customized exit codes in AppDeployToolkitExtensions.ps1
60001	An error occurred in Deploy-Application.ps1. Check your script syntax use.
60002	Error when running Execute-Process function
60003	Administrator privileges required for Execute-ProcessAsUser function
60004	Failure when loading .NET Winforms / WPF Assemblies
60005	Failure when displaying the Blocked Application dialog
60006	AllowSystemInteractionFallback option was not selected in the config XML file, so toolkit will not fall back to SYSTEM context with no interaction.
60007	Failed to export the schedule task XML file in Execute-ProcessAsUser function
[bookmark: _GoBack]60008	Deploy-Application.ps1 failed to dot source AppDeployToolkitMain.ps1 either because it could not be found or there was an error while it was being dot sourced.
60009	The -UserName parameter in the Execute-ProcessAsUser function has a default value that is empty because no logged in users were detected when the toolkit was launched.
60010	Deploy-Application.exe failed before PowerShell.exe process could be launched.
60011	Deploy-Application.exe failed to execute the PowerShell.exe process.

[bookmark: _Toc415642665]Toolkit Functions

[bookmark: _Toc415642666]Convert-RegistryPath
Synopsis : Converts the specified registry key path to a format that is compatible with built-in PowerShell cmdlets.
Description:
Converts the specified registry key path to a format that is compatible with built-in PowerShell cmdlets.
Converts registry key hives to their full paths. Example: HKLM is converted to "Registry::HKEY_LOCAL_MACHINE".
Parameter :
Key
Path to the registry key to convert (can be a registry hive or fully qualified path)
SID
The security identifier (SID) for a user. Specifying this parameter will convert a HKEY_CURRENT_USER registry key to the HKEY_USERS\$SID format.
Specify this parameter from the Invoke-HKCURegistrySettingsForAllUsers function to read/edit HKCU registry settings for all users on the system.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Convert-RegistryPath -Key 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}'
-------------------------- EXAMPLE 2 --------------------------
C:\PS>Convert-RegistryPath -Key 'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}'
[bookmark: _Toc415642667]ConvertTo- NTAccountOrSID
Synopsis : Convert between NT Account names and their security identifiers (SIDs).
Description:
Specify either the NT Account name or the SID and get the other. Can also convert well known sid types.
Parameter :
AccountName
	The Windows NT Account name specified in <domain>\<username> format.
Use fully qualified account names (e.g., <domain>\<username>) instead of isolated names (e.g, <username>) because they are unambiguous and provide better performance.
SID
The Windows NT Account SID.
WellKnownSIDName
Specify the Well Known SID name translate to the actual SID (e.g., LocalServiceSid).
To get all well known SIDs available on system: [enum]::GetNames([Security.Principal.WellKnownSidType])
WellKnownToNTAccount
Convert the Well Known SID to an NTAccount name
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> ConvertTo-NTAccountOrSID -AccountName 'CONTOSO\User1'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> ConvertTo-NTAccountOrSID -SID 'S-1-5-21-1220945662-2111687655-725345543-14012660'
-------------------------- EXAMPLE 3 --------------------------
C:\PS> ConvertTo-NTAccountOrSID -WellKnownSIDName 'NetworkServiceSid'
[bookmark: _Toc415642668]Copy-File
Synopsis : Copy a file to a destination path.
Description:
Copy a file to a destination path.
Parameter :
Path
Path of the file to copy.
Destination
Destination Path of the file to copy.
Recurse
Copy files in subdirectories.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Copy-File -Path "$dirSupportFiles\MyApp.ini" -Destination "$envWindir\MyApp.ini"
[bookmark: _Toc415642669]Enable-TerminalServerInstallMode
Synopsis : Changes to user install mode for Remote Desktop Session Host/Citrix servers
Description: Changes to user install mode for Remote Desktop Session Host/Citrix servers
Parameter :
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Enable-TerminalServerInstallMode
[bookmark: _Toc415642670]Execute-MSI
Synopsis : Executes msiexec.exe to perform the following actions for MSI & MSP files and MSI product codes: install, uninstall, patch, repair, active setup.
Description:
Executes msiexec.exe to perform the following actions for MSI & MSP files and MSI product codes: install, uninstall, patch, repair, active setup.
If the -Action parameter is set to "Install" and the MSI is already installed, the function will exit.
Sets default switches to be passed to msiexec based on the preferences in the XML configuration file.
Automatically generates a log file name and creates a verbose log file for all msiexec operations.
Expects the MSI or MSP file to be located in the "Files" sub directory of the App Deploy Toolkit. Expects transform files to be in the same directory as the MSI file.
Parameter :
Action
The action to perform. Options: Install, Uninstall, Patch, Repair, ActiveSetup.
Path (Alias: FilePath)
The path to the MSI/MSP file or the product code of the installed MSI.
Transform
The name of the transform file(s) to be applied to the MSI. The transform file is expected to be in the same directory as the MSI file.
Patch
The name of the patch (msp) file(s) to be applied to the MSI for use with the "Install" action. The patch file is expected to be in the same directory as the MSI file.
Parameters (Alias: Arguments)
Overrides the default parameters specified in the XML configuration file. Install default is: "REBOOT=ReallySuppress /QB!". Uninstall default is: "REBOOT=ReallySuppress /QN".
AddParameters
Adds to the default parameters specified in the XML configuration file. Install default is: "REBOOT=ReallySuppress /QB!". Uninstall default is: "REBOOT=ReallySuppress /QN".
LoggingOptions
Overrides the default logging options specified in the XML configuration file. Default options are: "/L*v".
LogName
Overrides the default log file name. The default log file name is generated from the MSI file name. If LogName does not end in .log, it will be automatically appended.
For uninstallations, the product code is resolved to the displayname and version of the application.
WorkingDirectory
Overrides the working directory. The working directory is set to the location of the MSI file.
SkipMSIAlreadyInstalledCheck
Skips the check to determine if the MSI is already installed on the system. Default is: $false.
PassThru
Returns ExitCode, STDOut, and STDErr output from the process.
ContinueOnError
Continue if an exit code is returned by msiexec that is not recognised by the App Deploy Toolkit.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Execute-MSI -Action Install -Path 'Adobe_FlashPlayer_11.2.202.233_x64_EN.msi'
Installs an MSI
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Execute-MSI -Action Install -Path 'Adobe_FlashPlayer_11.2.202.233_x64_EN.msi' -Transform 'Adobe_FlashPlayer_11.2.202.233_x64_EN_01.mst' -Parameters '/QN'
Installs an MSI, applying a transform and overriding the default MSI toolkit parameters
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Execute-MSI -Action Uninstall -Path '{26923b43-4d38-484f-9b9e-de460746276c}'
Uninstalls an MSI using a product code
-------------------------- EXAMPLE 4 --------------------------
C:\PS> Execute-MSI -Action Patch -Path 'Adobe_Reader_11.0.3_EN.msp'
Installs an MSP
[bookmark: _Toc415642671]Execute-Process
Synopsis : Execute a process with optional arguments, working directory, window style.
Description:
Executes a process, e.g. a file included in the Files directory of the App Deploy Toolkit, or a file on the local machine. Provides various options for handling the return codes (see Parameters).
Parameter :
Path (Alias: FilePath)
Path to the file to be executed. If the file is located directly in the "Files" directory of the App Deploy Toolkit, only the file name needs to be specified.
Otherwise, the full path of the file must be specified. If the files is in a subdirectory of "Files", use the "$dirFiles" variable as shown in the example.
Parameters (Alias: Arguments)
Arguments to be passed to the executable
WindowStyle
Style of the window of the process executed. Options: Normal, Hidden, Maximized, Minimized. Default: Normal.
Note: Not all processes honor the "Hidden" flag. If it it not working, then check the command line options for the process being executed to see it has a silent option.
CreateNoWindow
Specifies whether the process should be started with a new window to contain it. Default is false.
WorkingDirectory
The working directory used for executing the process. Defaults to the directory of the file being executed.
NoWait
Immediately continue after executing the process.
PassThru
Returns ExitCode, STDOut, and STDErr output from the process.
WaitForMsiExec
Sometimes an EXE bootstrapper will launch an MSI install. In such cases, this variable will ensure that that this function waits for the msiexec engine to become available before starting the install.
MsiExecWaitTime
Specify the length of time in seconds to wait for the msiexec engine to become available. Default: 600 seconds (10 minutes).
IgnoreExitCodes
List the exit codes to ignore.
ContinueOnError
Continue if an exit code is returned by the process that is not recognised by the App Deploy Toolkit. Default: $false (fail on error).
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Execute-Process -Path 'uninstall_flash_player_64bit.exe' -Parameters '/uninstall' -WindowStyle Hidden
If the file is in the "Files" directory of the App Deploy Toolkit, only the file name needs to be specified.
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Execute-Process -Path "$dirFiles\Bin\setup.exe" -Parameters '/S' -WindowStyle Hidden
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Execute-Process -Path 'setup.exe' -Parameters '/S' -IgnoreExitCodes '1,2'
[bookmark: _Toc415642672]Execute-ProcessAsUser
Synopsis : Execute a process with a logged in user account, by using a scheduled task, to provide interaction with user in the SYSTEM context.
Description:
Execute a process with a logged in user account, by using a scheduled task, to provide interaction with user in the SYSTEM context.
Parameter :
UserName
Logged in Username under which to run the process from. Default is: The active console user. If no console user exists but users are logged in, such as on terminal servers, then the first logged-in non-console user.
Path
Path to the file being executed.
Parameters
Arguments to be passed to the file being executed.
RunLevel
Specifies the level of user rights that Task Scheduler uses to run the task. The acceptable values for this parameter are:
- HighestAvailable: HighestAvailable: Tasks run by using the highest available privileges (Admin privileges for Administrators). Default Value.
- LeastPrivilege: Tasks run by using the least-privileged user account (LUA) privileges.
Wait
Wait for the process, launched by the scheduled task, to complete execution before accepting more input. Default is $false.
PassThru
Returns the exit code from this function or the process launched by the scheduled task.
ContinueOnError
Continue if an error is encountered. Default is $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Execute-ProcessAsUser -UserName 'CONTOSO\User' -Path "$PSHOME\powershell.exe" -Parameters '-Command `"C:\Test\Script.ps1`"; Exit `$LastExitCode' -Wait
Execute process under a user account by specifying a username under which to execute it.
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Execute-ProcessAsUser -Path "$PSHOME\powershell.exe" -Parameters '-Command `"C:\Test\Script.ps1`"; Exit `$LastExitCode' -Wait
Execute process under a user account by using the default active logged in user that was detected when the toolkit was launched.
[bookmark: _Toc415642673]Exit-Script
Synopsis : Exit the script, perform cleanup actions, and pass an exit code to the parent process.
Description:
Always use when exiting the script to ensure cleanup actions are performed.
Performs cleanup actions such as closing down dialogs and unblocking blocked applications.
Displays a balloon tip notification to indicate the setup is complete and whether it was a success or a failure.
Determines what exit code to pass to the parent process depending on the options specified in the deployment script, e.g.
If $AllowRebootPassThru is set to False, it will suppress any "3010" exit codes detected during the installation and instead pass the "0" exit code.
Parameter :
ExitCode
The exit code to be passed from the script to the parent process, e.g. SCCM
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Exit-Script -ExitCode 0
-------------------------- EXAMPLE 2 --------------------------
C:\PS>Exit-Script -ExitCode 1618
[bookmark: _Toc415642674]Disable-TerminalServerInstallMode
Synopsis : Changes to user execute mode for Remote Desktop Session Host/Citrix servers
Description:
Changes to user execute mode for Remote Desktop Session Host/Citrix servers
Parameter :
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Disable-TerminalServerInstallMode
[bookmark: _Toc415642675]Get-FileVersion
Synopsis : Gets the version of the specified file
Description:
Gets the version of the specified file
Parameter :
File
Path of the file
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Get-FileVersion -File "$envProgramFilesX86\Adobe\Reader 11.0\Reader\AcroRd32.exe"
[bookmark: _Toc415642676]Get-HardwarePlatform
Synopsis : Retrieves information about the hardware platform (physical or virtual)
Description:
Retrieves information about the hardware platform (physical or virtual)
Parameter :
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Get-HardwarePlatform
[bookmark: _Toc415642677]Get-FreeDiskSpace
Synopsis : Retrieves the free disk space in MB on a particular drive (defaults to system drive)
Description:
Retrieves the free disk space in MB on a particular drive (defaults to system drive)
Parameter :
Drive
Drive to check free disk space on
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Get-FreeDiskSpace -Drive "C:"
[bookmark: _Toc415642678]Get-IniValue
Synopsis : Parses an INI file and returns the value of the specified section and key.
Description:
Parses an INI file and returns the value of the specified section and key.
Parameter :
FilePath
Path to the INI file
Section
Section within the INI file
Key
Key within the section of the INI file
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Get-IniValue -FilePath "$envProgramFilesX86\IBM\Notes\notes.ini" -Section 'Notes' -Key 'KeyFileName'
[bookmark: _Toc415642679]Get-InstalledApplication
Synopsis : Retrieves information about installed applications.
Description:
Retrieves information about installed applications by querying the registry. You can specify an application name, a product code, or both.
Returns information about application publisher, name & version, product code, uninstall string, install source, location, date, and application architecture.
Parameter :
Name
The name of the application you want to retrieve information on. Performs a regex match on the application display name by default.
Exact
Specifies that the named application must be matched using the exact name.
WildCard
Specifies that the named application must be matched using a wildcard search.
ProductCode
The product code of the application you want to retrieve information on.
IncludeUpdatesAndHotfixes
Include matches against updates and hotfixes in results.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Get-InstalledApplication -Name 'Adobe Flash'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Get-InstalledApplication -ProductCode '{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}'
[bookmark: _Toc415642680]Get- LoggedOnUser
Synopsis : Get session details for all local and RDP logged on users.
Description:
Get session details for all local and RDP logged on users using Win32 APIs. Get the following session details: NTAccount, SID, UserName, DomainName, SessionId, SessionName, ConnectState, IsCurrentSession, IsConsoleSession, IsUserSession, LogonTime, IdleTime, DisconnectTime, ClientName, ClientProtocolType, ClientDirectory, ClientBuildNumber
Parameter :
Notes :
Description of ConnectState property:
	Value		 Description
	-----		 -----------
	Active		A user is logged on to the session.
	ConnectQuery	The session is in the process of connecting to a client.
	Connected	A client is connected to the session).
	Disconnected 	The session is active, but the client has disconnected from it.
	Down		The session is down due to an error.
	Idle		The session is waiting for a client to connect.
	Initializing 	The session is initializing.
	Listening 	The session is listening for connections.
	Reset		The session is being reset.
	Shadowing	This session is shadowing another session.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Get-LoggedOnUser
[bookmark: _Toc415642681]Get-RegistryKey
Synopsis : Retrieves value names and value data for a specified registry key or optionally, a specific value.
Description:
Retrieves value names and value data for a specified registry key or optionally, a specific value.
If the registry key does not contain any values, the function will return $null by default. If you need to test for existence of a registry key path, use the built-in Test-Path cmdlet.
Parameter :
Key
Path of the registry key
Value
Value to retrieve (optional)
SID
The security identifier (SID) for a user. Specifying this parameter will convert a HKEY_CURRENT_USER registry key to the HKEY_USERS\$SID format.
Specify this parameter from the Invoke-HKCURegistrySettingsForAllUsers function to read/edit HKCU registry settings for all users on the system.
ReturnEmptyKeyIfExists
Return the registry key if it exists but it has no property/value pairs underneath it. Default is: $false.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Get-RegistryKey -Key 'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Get-RegistryKey -Key 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\iexplore.exe'
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Get-RegistryKey -Key 'HKLM:Software\Wow6432Node\Microsoft\Microsoft SQL Server Compact Edition\v3.5' -Value 'Version'
[bookmark: _Toc415642682]Get-ScheduledTask
Synopsis : Retrieve all details for scheduled tasks on the local computer.
Description:
Retrieve all details for scheduled tasks on the local computer using schtasks.exe. All property names have spaces and colons removed.
Parameter :
TaskName
Specify the name of the scheduled task to retrieve details for. Uses regex match to find scheduled task.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Get-ScheduledTask
To display a list of all scheduled task properties.
-------------------------- EXAMPLE 2 --------------------------
C:\PS>Get-ScheduledTask | Out-GridView
To display a grid view of all scheduled task properties.
-------------------------- EXAMPLE 3 --------------------------
C:\PS>Get-ScheduledTask | Select-Object -Property TaskName
To display a list of all scheduled task names.
[bookmark: _Toc415642683]Get- ServiceStartMode
Synopsis : Get the service startup mode.
Description:
Get the service startup mode.
Parameter :
Name
Specify the name of the service.
ComputerName
Specify the name of the computer. Default is: the local computer.
ContinueOnError
Continue if an error is encountered. Default is: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Get-ServiceStartMode -Name 'wuauserv'
[bookmark: _Toc415642684]Get-UserProfiles
Synopsis : Get the User Profile Path, User Account Sid, and the User Account Name for all users that log onto the machine and also the Default User (which does not log on).
Description:
Get the User Profile Path, User Account Sid, and the User Account Name for all users that log onto the machine and also the Default User (which does not log on).
Please note that the NTAccount property may be empty for some user profiles but the SID and ProfilePath properties will always be populated.
Parameter :
ExcludeNTAccount
Specify NT account names in Domain\Username format to exclude from the list of user profiles.
ExcludeSystemProfiles
Exclude system profiles: SYSTEM, LOCAL SERVICE, NETWORK SERVICE. Default is: $true.
ExcludeDefaultUser
Exclude the Default User. Default is: $false.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Get-UserProfiles
Returns the following properties for each user profile on the system: NTAccount, SID, ProfilePath
-------------------------- EXAMPLE 2 --------------------------
C:\PS>Get-UserProfiles -ExcludeNTAccount 'CONTOSO\Robot','CONTOSO\ntadmin'
-------------------------- EXAMPLE 3 --------------------------
C:\PS>[string[]]$ProfilePaths = Get-UserProfiles | Select-Object -ExpandProperty 'ProfilePath'
Returns the user profile path for each user on the system. This information can then be used to make modifications under the user profile on the filesystem.
[bookmark: _Toc415642685]Get-WindowTitle
Synopsis : Search for an open window title and return details about the window.
Description:
Search for a window title. If window title searched for returns more than one result, then details for each window will be displayed.
Returns the following properties for each window: WindowTitle, WindowHandle, ParentProcess, ParentProcessMainWindowHandle.
Function does not work in SYSTEM context unless launched with "psexec.exe -s -i" to run it as an interactive process under the SYSTEM account.
Parameter :
WindowTitle
The title of the application window to search for using regex matching.
GetAllWindowTitles
Get titles for all open windows on the system.
DisableFunctionLogging
Disables logging messages to the script log file.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Get-WindowTitle -WindowTitle 'Microsoft Word'
Gets details for each window that has the words "Microsoft Word" in the title.
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Get-WindowTitle -GetAllWindowTitles
Gets details for all windows with a title.
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Get-WindowTitle -GetAllWindowTitles | Where-Object { $_.ParentProcess -eq 'WINWORD' }
Get details for all windows belonging to Microsoft Word process with name "WINWORD".
[bookmark: _Toc415642686]Install-MSUpdates
Synopsis : Installs all Microsft Updates in a given directory
Description:
Install all Microsft Updates of type ".exe", ".msu", or ".msp" in a given directory (recursively search directory).
Parameter :
Directory
Directory containing the updates
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Install-MSUpdates -Directory "$dirFiles\MSUpdates"
[bookmark: _Toc415642687]Install-SCCMSoftwareUpdates
Synopsis : Scans for outstanding SCCM updates to be installed and installs the pending updates
Description:
Scans for outstanding SCCM updates to be installed and installs the pending updates.
Only compatible with SCCM 2012 Client or higher. This function can take several minutes to run.
Parameter :
SoftwareUpdatesScanWaitInSeconds
The amount of time to wait in seconds for the software updates scan to complete. Default is: 180 seconds.
WaitForPendingUpdatesTimeout
The amount of time to wait for missing and pending updates to install before exiting the function. Default is: 45 minutes.
ContinueOnError
Continue if an error is encountered

Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Install-SCCMSoftwareUpdates
[bookmark: _Toc415642688]Invoke-HKCURegistrySettingsForAllUsers
Synopsis : Set current user registry settings for all current users and any new users in the future.
Description:
Set HKCU registry settings for all current and future users by loading their NTUSER.dat registry hive file, and making the modifications.
This function will modify HKCU settings for all users even when executed under the SYSTEM account.
To ensure new users in the future get the registry edits, the Default User registry hive used to provision the registry for new users is modified.
This function can be used as an alternative to using ActiveSetup for registry settings.
The advantage of using this function over ActiveSetup is that a user does not have to log off and log back on before the changes take effect.
Parameter :
RegistrySettings
Script block which contains HKCU registry settings which should be modified for all users on the system. Must specify the -SID parameter for all HKCU settings.
UserProfiles
Specify the user profiles to modify HKCU registry settings for. Default is all user profiles except for system profiles.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>[scriptblock]$HKCURegistrySettings = {
Set-RegistryKey -Key 'HKCU\Software\Microsoft\Office\14.0\Common' -Name 'qmenable' -Value 0 -Type DWord -SID $UserProfile.SID
Set-RegistryKey -Key 'HKCU\Software\Microsoft\Office\14.0\Common' -Name 'updatereliabilitydata' -Value 1 -Type DWord -SID $UserProfile.SID
}
Invoke-HKCURegistrySettingsForAllUsers -RegistrySettings $HKCURegistrySettings
[bookmark: _Toc415642689]Invoke-RegisterOrUnregisterDLL (Alias: Register-DLL, Unregister-DLL)
Synopsis : Register or unregister a DLL file.
Description:
Register or unregister a DLL file using regsvr32.exe. Function can be invoked using alias: 'Register-DLL' or 'Unregister-DLL'.
Parameter :
FilePath
Path to the DLL file
DLLAction
Specify whether to register or unregister the DLL. Optional if function is invoked using 'Register-DLL' or 'Unregister-DLL' alias.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Register-DLL -FilePath "C:\Test\DcTLSFileToDMSComp.dll"
Register DLL file using the "Register-DLL" alias for this function
-------------------------- EXAMPLE 2 --------------------------
C:\PS> UnRegister-DLL -FilePath "C:\Test \DcTLSFileToDMSComp.dll"
Unregister DLL file using the "Unregister-DLL" alias for this function
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Invoke-RegisterOrUnregisterDLL -FilePath "C:\Test\DcTLSFileToDMSComp.dll" -DLLAction 'Register'
Register DLL file using the actual name of this function
[bookmark: _Toc415642690]Invoke-SCCMTask
Synopsis : Triggers SCCM to invoke the requested schedule task id.
Description:
Triggers SCCM to invoke the requested schedule task id.
Parameter :
ScheduleID
Schedule Id.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Invoke-SCCMTask 'SoftwareUpdatesScan'
-------------------------- EXAMPLE 2 --------------------------
C:\PS>Invoke-SCCMTask
[bookmark: _Toc415642691]New-Folder
Synopsis : Create a new folder.
Description:
Create a new folder if it does not exist.
Parameter :
Path
Path to the new folder which should be created.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> New-Folder -Path "$envWinDir\System32"
[bookmark: _Toc415642692]New-Shortcut
Synopsis : Creates a new .lnk or .url type shortcut
Description:
Creates a new shortcut .lnk or .url file, with configurable options.
Parameter :
Path
Path to save the shortcut
TargetPath
Target path or URL that the shortcut launches
Arguments
Arguments to be passed to the target path
IconLocation
Location of the icon used for the shortcut
IconIndex
Executables, DLLs, ICO files with multiple icons need the icon index to be specified
Description
Description of the shortcut
WorkingDirectory
Working Directory to be used for the target path
WindowStyle
Windows style of the application. Options: Normal, Maximized, Minimized. Default is: Normal.
RunAsAdmin
Set shortcut to run program as administrator. This option will prompt user to elevate when executing shortcut.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>New-Shortcut -Path "$envProgramData\Microsoft\Windows\Start Menu\My Shortcut.lnk" -TargetPath "$envWinDir\system32\notepad.exe" -IconLocation "$envWinDir\system32\notepad.exe" -Description 'Notepad' -WorkingDirectory "$envHomeDrive\$envHomePath"
[bookmark: _Toc415642693]Refresh-Desktop
Synopsis : Refresh the Windows Exporer Shell, which causes the desktop icons and the environment variables to be reloaded.
Description:
Refresh the Windows Exporer Shell, which causes the desktop icons and the environment variables to be reloaded.
Parameter :
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Refresh-Desktop
[bookmark: _Toc415642694]Refresh-SessionEnvironmentVariables
Synopsis : Updates the environment variables for the current PowerShell session with any environment variable changes that may have occurred during script execution.
Description:
Environment variable changes that take place during script execution are not visible to the current PowerShell session.
	Use this function to refresh the current PowerShell session with all environment variable settings.
Parameter :
LoadLoggedOnUserEnvironmentVariables
If script is running in SYSTEM context, this option allows loading environment variables from the active console user. If no console user exists but users are logged in, such as on terminal servers, then the first logged-in non-console user.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Refresh-SessionEnvironmentVariables
[bookmark: _Toc415642695]Remove-File
Synopsis : Remove a file or all files recursively in a given path.
Description:
Remove a file or all files recursively in a given path.
Parameter :
Path
Path of the file to remove.
Recurse
Optionally, remove all files recursively in a directory.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Remove-File -Path 'C:\Windows\Downloaded Program Files\Temp.inf'
-------------------------- EXAMPLE 2 --------------------------
C:\PS>Remove-File -Path 'C:\Windows\Downloaded Program Files' -Recurse
[bookmark: _Toc415642696]Remove-Folder
Synopsis : Remove folder and files if they exist.
Description:
Remove folder and all files recursively in a given path.
Parameter :
Path
Path to the folder which should be removed.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Remove-Folder -Path "$envWinDir\Downloaded Program Files"
[bookmark: _Toc415642697]Remove-MSIApplications
Synopsis : Removes all MSI applications matching the specified application name
Description:
Removes all MSI applications matching the specified application name.
Enumerates the registry for installed applications matching the specified application name and uninstalls that application using the product code, provided the uninstall string matches "msiexec".
Parameter :
Name
The name of the application to uninstall. Performs a regex match on the application display name by default.
Exact
Specifies that the named application must be matched using the exact name.
WildCard
Specifies that the named application must be matched using a wildcard search.
Parameters (Alias: Arguments)
Overrides the default parameters specified in the XML configuration file. Uninstall default is: "REBOOT=ReallySuppress /QN".
AddParameters
Adds to the default parameters specified in the XML configuration file. Uninstall default is: "REBOOT=ReallySuppress /QN".
LoggingOptions
Overrides the default logging options specified in the XML configuration file. Default options are: "/L*v".
LogName
Overrides the default log file name. The default log file name is generated from the MSI file name. If LogName does not end in .log, it will be automatically appended. For uninstallations, by default the product code is resolved to the displayname and version of the application.
PassThru
Returns ExitCode, STDOut, and STDErr output from the process.
ContinueOnError
Continue if an exit code is returned by msiexec that is not recognized by the App Deploy Toolkit.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Remove-MSIApplications -Name 'Adobe Flash'
Removes all versions of software that match the name "Adobe Flash"
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Remove-MSIApplications -Name 'Adobe'
Removes all versions of software that match the name "Adobe"
[bookmark: _Toc415642698]Remove-RegistryKey
Synopsis : Deletes the specified registry key or value
Description:
Deletes the specified registry key or value
Parameter :
Key
Path of the registry key to delete
Name
Name of the registry key value to delete
Recurse
Delete registry key recursively.
SID
The security identifier (SID) for a user. Specifying this parameter will convert a HKEY_CURRENT_USER registry key to the HKEY_USERS\$SID format.
Specify this parameter from the Invoke-HKCURegistrySettingsForAllUsers function to read/edit HKCU registry settings for all users on the system.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Remove-RegistryKey -Key 'HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Remove-RegistryKey -Key 'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Run' -Name 'RunAppInstall'
[bookmark: _Toc415642699]Resolve-Error
Synopsis : Enumerate error record details.
Description:
Enumerate an error record, or a collection of error record, properties. By default, the details for the last error will be enumerated.
Parameter :
ErrorRecord
The error record to resolve. The default error record is the lastest one: $global:Error[0]. This parameter will also accept an array of error records.
Property
The list of properties to display from the error record. Use "*" to display all properties. Default list of error properties is: Message, FullyQualifiedErrorId, ScriptStackTrace, PositionMessage, InnerException
GetErrorRecord
Get error record details as represented by $_.
GetErrorInvocation
Get error record invocation information as represented by $_.InvocationInfo.
GetErrorException
Get error record exception details as represented by $_.Exception.
GetErrorInnerException
Get error record inner exception details as represented by $_.Exception.InnerException. Will retrieve all inner exceptions if there is more than one.

Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Resolve-Error
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Resolve-Error -Property *
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Resolve-Error -Property InnerException
-------------------------- EXAMPLE 4 --------------------------
C:\PS> Resolve-Error -GetErrorInvocation:$false
[bookmark: _Toc415642700]Send-Keys
Synopsis : Send a sequence of keys to one or more application windows.
Description:
Send a sequence of keys to one or more application window. If window title searched for returns more than one window, then all of them will receive the sent keys.
Function does not work in SYSTEM context unless launched with "psexec.exe -s -i" to run it as an interactive process under the SYSTEM account.
Parameter :
WindowTitle
The title of the application window to search for using regex matching.
GetAllWindowTitles
Get titles for all open windows on the system.
WindowHandle
Send keys to a specific window where the Window Handle is already known.
Keys
The sequence of keys to send. Info on Key input at: http://msdn.microsoft.com/en-us/library/System.Windows.Forms.SendKeys(v=vs.100).aspx
WaitSeconds
An optional number of seconds to wait after the sending of the keys
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Send-Keys -WindowTitle 'foobar - Notepad' -Key 'Hello world'
Send the sequence of keys "Hello world" to the application titled "foobar - Notepad".
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Send-Keys -WindowTitle 'foobar - Notepad' -Key 'Hello world' -WaitSeconds 5
Send the sequence of keys "Hello world" to the application titled "foobar - Notepad" and wait 5 seconds.
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Send-Keys -WindowHandle ([IntPtr]17368294) -Key 'Hello world'
Send the sequence of keys "Hello world" to the application with a Window Handle of '17368294'.
[bookmark: _Toc415642701]Set-ActiveSetup
Synopsis : Creates an Active Setup entry in the registry to execute a file for each user upon login.
Description:
Active Setup allows handling of per-user changes registry/file changes upon login.
A registry key is created in the HKLM registry hive which gets replicated to the HKCU hive when a user logs in.
If the "Version" value of the Active Setup entry in HKLM is higher than the version value in HKCU, the file referenced in "StubPath" is executed.
This Function:
- Creates the registry entries in HKLM:SOFTWARE\Microsoft\Active Setup\Installed Components\$installName.
- Creates StubPath value depending on the file extension of the $StubExePath parameter.
- Handles Version value with YYYYMMDDHHMMSS granularity to permit re-installs on the same day and still trigger Active Setup after Version increase.
- Copies/overwrites the StubPath file to $StubExePath destination path if file exists in 'Files' subdirectory of script directory.
- Executes the StubPath file for the current user as long as not in Session 0 (no need to logout/login to trigger Active Setup).
Parameter :
StubExePath
Full destination path to the file that will be executed for each user that logs in.
If this file exists in the 'Files' subdirectory of the script directory, it will be copied to the destination path.
Arguments
Arguments to pass to the file being executed.
Description
Description for the Active Setup. Users will see "Setting up personalised settings for: $Description" at logon. Default is: $installName.
Key
Name of the registry key for the Active Setup entry. Default is: $installName.
Version
Optional. Specify version for Active setup entry. Active Setup is not triggered if Version value has more than 8 consecutive digits. Use commas to get around this limitation.
Locale
Optional. Arbitrary string used to specify the installation language of the file being executed. Not replicated to HKCU.
PurgeActiveSetupKey
Remove Active Setup entry from HKLM registry hive. Will also load each logon user's HKCU registry hive to remove Active Setup entry.
DisableActiveSetup
Disables the Active Setup entry so that the StubPath file will not be executed.
ContinueOnError
Continue if an error is encountered.

Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Set-ActiveSetup -StubExePath 'C:\Users\Public\Company\ProgramUserConfig.vbs' -Arguments '/Silent' -Description 'Program User Config' -Key 'ProgramUserConfig' -Locale 'en'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Set-ActiveSetup -StubExePath "$envWinDir\regedit.exe" -Arguments "/S `"%SystemDrive%\Program Files (x86)\PS App Deploy\PSAppDeployHKCUSettings.reg`"" -Description 'PS App Deploy Config' -Key 'PS_App_Deploy_Config' -ContinueOnError $true
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Set-ActiveSetup -Key 'ProgramUserConfig' -PurgeActiveSetupKey
Deletes "ProgramUserConfig" active setup entry from all registry hives.
[bookmark: _Toc415642702]Set-IniValue
Synopsis : Opens an INI file and sets the value of the specified section and key.
Description:
Opens an INI file and sets the value of the specified section and key.
Parameter :
FilePath
Path to the INI file
Section
Section within the INI file
Key
Key within the section of the INI file
Value
Value for the key within the section of the INI file. To remove a value, set this variable to $null.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Set-IniValue -FilePath "$envProgramFilesX86\IBM\Notes\notes.ini" -Section 'Notes' -Key 'KeyFileName' -Value 'MyFile.ID'
[bookmark: _Toc415642703]Set-PinnedApplication
Synopsis : Pins or unpins a shortcut to the start menu or task bar.
Description:
Pins or unpins a shortcut to the start menu or task bar.
This should typically be run in the user context, as pinned items are stored in the user profile.
Parameter :
Action
Action to be performed. Options: 'PintoStartMenu', 'UnpinfromStartMenu', 'PintoTaskbar', 'UnpinfromTaskbar'.
FilePath
Path to the shortcut file to be pinned or unpinned
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Set-PinnedApplication -Action 'PintoStartMenu' -FilePath "$envProgramFilesX86\IBM\Lotus\Notes\notes.exe"
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Set-PinnedApplication -Action 'UnpinfromTaskbar' -FilePath "$envProgramFilesX86\IBM\Lotus\Notes\notes.exe"
[bookmark: _Toc415642704]Set-RegistryKey
Synopsis : Creates a registry key name, value, and value data; it sets the same if it already exists.
Description:
Creates a registry key name, value, and value data; it sets the same if it already exists.
Parameter :
Key
The registry key path
Name
The value name
Value
The value data
Type
The type of registry value to create or set. Options: 'Binary', 'DWord', 'ExpandString', 'MultiString', 'None', 'QWord', 'String', 'Unknown'. Default: String.
SID
The security identifier (SID) for a user. Specifying this parameter will convert a HKEY_CURRENT_USER registry key to the HKEY_USERS\$SID format.
Specify this parameter from the Invoke-HKCURegistrySettingsForAllUsers function to read/edit HKCU registry settings for all users on the system.
ContinueOnError
Continue if an error is encountered
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Set-RegistryKey -Key $blockedAppPath -Name 'Debugger' -Value $blockedAppDebuggerValue
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Set-RegistryKey -Key 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce' -Name 'Debugger' -Value $blockedAppDebuggerValue -Type String
[bookmark: _Toc415642705]Set-ServiceStartMode
Synopsis : Set the service startup mode.
Description:
Set the service startup mode.
Parameter :
Name
Specify the name of the service.
ComputerName
Specify the name of the computer. Default is: the local computer.
StartMode
Specify startup mode for the service. Options: Automatic, Automatic (Delayed Start), Manual, Disabled, Boot, System.
ContinueOnError
Continue if an error is encountered. Default is: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Set-ServiceStartMode -Name 'wuauserv' -StartMode 'Automatic (Delayed Start)'
[bookmark: _Toc415642706]Show-BalloonTip
Synopsis : Displays a balloon tip notification in the system tray
Description:
Displays a balloon tip notification in the system tray
Parameter :
BalloonTipText
Text of the balloon tip
BalloonTipTitle
Title of the balloon tip
BalloonTipIcon
Time in milliseconds to display the balloon tip. Default: 500.
BalloonTipTime
Time in milliseconds to display the balloon tip [Default 500]
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Show-BalloonTip -BalloonTipText 'Installation Started' -BalloonTipTitle 'Application Name'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Show-BalloonTip -BalloonTipIcon 'Info' -BalloonTipText 'Installation Started' -BalloonTipTitle 'Application Name' -BalloonTipTime 1000
[bookmark: _Toc415642707]Show-DialogBox
Synopsis : Display a custom dialog box with optional title, buttons, icon and timeout. Show-InstallationPrompt is recommended over this function as it provides more customization and uses consistent branding with the other UI components.
Description:
Display a custom dialog box with optional title, buttons, icon and timeout. The default button is "OK", the default Icon is "None", and the default Timeout is none.
Parameter :
Text
Text in the message dialog box
Title
Title of the message dialog box
Buttons
Buttons to be included on the dialog box. Options: OK, OKCancel, AbortRetryIgnore, YesNoCancel, YesNo, RetryCancel, CancelTryAgainContinue. Default: OK.
DefaultButton
The Default button that is selected. Options: First, Second, Third. Default: First.
Icon
Icon to display on the dialog box. Options: None, Stop, Question, Exclamation, Information. Default: None.
Timeout
Timeout period in seconds before automatically closing the dialog box with the return message "Timeout". Default: UI timeout value set in the config XML file.
TopMost
Specifies whether the message box is a system modal message box and appears in a topmost window. Default: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Show-DialogBox -Title 'Installed Complete' -Text 'Installation has completed. Please click OK and restart your computer.' -Icon 'Information'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Show-DialogBox -Title 'Installation Notice' -Text 'Installation will take approximately 30 mintues. Do you wish to proceed?' -Buttons 'OKCancel' -DefaultButton 'Second' -Icon 'Exclamation' -Timeout 600
[bookmark: _Toc415642708]Show-InstallationProgress
Synopsis : Displays a progress dialog in a separate thread with an updatable custom message.
Description:
Create a WPF window in a separate thread to display a marquee style progress ellipse with a custom message that can be updated.
The status message supports line breaks.
The first time this function is called in a script, it will display a balloon tip notification to indicate that the installation has started (provided balloon tips are enabled in the configuration).
Parameter :
StatusMessage
The Status Message to be displayed. The default status message is taken from the XML configuration file.
WindowLocation
The location of the progress window. Default: just below top, centered.
TopMost
Specificies whether the progress window should be topmost. Default: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Show-InstallationProgress
Uses the default status message from the XML configuration file.
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Show-InstallationProgress -StatusMessage 'Installation in Progress...'
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Show-InstallationProgress -StatusMessage "Installation in Progress...`nThe installation may take 20 minutes to complete."
-------------------------- EXAMPLE 4 --------------------------
C:\PS> Show-InstallationProgress -StatusMessage 'Installation in Progress...' -WindowLocation 'BottomRight' -TopMost $false
[bookmark: _Toc415642709]Show-InstallationPrompt
Synopsis : Displays a custom installation prompt with the toolkit branding and optional buttons.
Description:
Any combination of Left, Middle or Right buttons can be displayed. The return value of the button clicked by the user is the button text specified.
Parameter :
Title
Title of the prompt. Default: the application installation name.
Message
Message text to be included in the prompt
MessageAlignment
Alignment of the message text. Options: Left, Center, Right. Default: Center.
ButtonLeftText
Show a button on the left of the prompt with the specified text
ButtonRightText
Show a button on the right of the prompt with the specified text
ButtonMiddleText
Show a button in the middle of the prompt with the specified text
Icon
Show a system icon in the prompt. Options: Application, Asterisk, Error, Exclamation, Hand, Information, None, Question, Shield, Warning, WinLogo. Default: None.
NoWait
Specifies whether to show the prompt asynchronously (i.e. allow the script to continue without waiting for a response). Default: $false.
PersistPrompt
Specify whether to make the prompt persist in the center of the screen every 10 seconds. The user will have no option but to respond to the prompt - resistance is futile!
MinimizeWindows
Specifies whether to minimize other windows when displaying prompt. Default: $false.
Timeout
Specifies the time period in seconds after which the prompt should timeout. Default: UI timeout value set in the config XML file.
ExitOnTimeout
Specifies whether to exit the script if the UI times out. Default: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Show-InstallationPrompt -Message 'Do you want to proceed with the installation?' -ButtonRightText 'Yes' -ButtonLeftText 'No'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Show-InstallationPrompt -Title 'Funny Prompt' -Message 'How are you feeling today?' -ButtonRightText 'Good' -ButtonLeftText 'Bad' -ButtonMiddleText 'Indifferent'
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Show-InstallationPrompt -Message 'You can customise text to appear at the end of an install, or remove it completely for unattended installations.' -Icon Information -NoWait
[bookmark: _Toc415642710]Show-InstallationRestartPrompt
Synopsis : Displays a restart prompt with a countdown to a forced restart.
Description:
Displays a restart prompt with a countdown to a forced restart.
Parameter :
CountdownSeconds
Specifies the number of seconds to countdown to the system restart.
CountdownNoHideSeconds
Specifies the number of seconds to display the restart prompt without allowing the window to be hidden.
NoCountdown
Specifies not to show a countdown, just the Restart Now and Restart Later buttons. The UI will restore/reposition itself persistently based on the interval value specified in the config file.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Show-InstallationRestartPrompt -Countdownseconds 600 -CountdownNoHideSeconds 60
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Show-InstallationRestartPrompt -NoCountdow
[bookmark: _Toc415642711]Show-InstallationWelcome
Synopsis : Show a welcome dialog prompting the user with information about the installation and actions to be performed before the installation can begin.
Description:
The following prompts can be included in the welcome dialog:
a) Close the specified running applications, or optionally close the applications without showing a prompt (using the -Silent switch).
b) Defer the installation a certain number of times, for a certain number of days or until a deadline is reached.
c) Countdown until applications are automatically closed.
d) Prevent users from launching the specified applications while the installation is in progress.
Notes:
The process descriptions are retrieved from WMI, with a fall back on the process name if no description is available. Alternatively, you can specify the description yourself with a '=' symbol - see examples.
The dialog box will timeout after the timeout specified in the XML configuration file (default 1 hour and 55 minutes) to prevent SCCM installations from timing out and returning a failure code to SCCM. When the dialog times out, the script will exit and return a 1618 code (SCCM fast retry code).
Parameter :
CloseApps
Name of the process to stop (do not include the .exe). Specify multiple processes separated by a comma. Specify custom descriptions like this: "winword=Microsoft Office Word,excel=Microsoft Office Excel"
Silent
Stop processes without prompting the user.
CloseAppsCountdown
Option to provide a countdown in seconds until the specified applications are automatically closed. This only takes effect if deferral is now allowed or has expired.
ForceCloseAppsCountdown
Option to provide a countdown in seconds until the specified applications are automatically closed regardless of whether deferral is allowed.
PromptToSave
Specify whether to prompt to save working documents when the user chooses to close applications. Option does not work in SYSTEM context unless toolkit launched with "psexec.exe -s -i" to run it as an interactive process under the SYSTEM account.
PersistPrompt
Specify whether to make the prompt persist in the center of the screen every 10 seconds. The user will have no option but to respond to the prompt - resistance is futile!
BlockExecution
Option to prevent the user from launching the process/application during the installation
AllowDefer
Enables an optional defer button to allow the user to defer the installation.
AllowDeferCloseApps
Enables an optional defer button to allow the user to defer the installation only if there are running applications that need to be closed.
DeferTimes
Specify the number of times the installation can be deferred
DeferDays
Specify the number of days since first run that the installation can be deferred. This is converted to a deadline.
DeferDeadline
Specify the deadline date up until which the installation can be deferred.
Specify the date in the local culture if the script is intended for that same culture, e.g.
If the script is intended to run on EN-US machines, specify the date in the format "08/25/2013" or "08-25-2013" or "08-25-2013 18:00:00".
If the script is intended for multiple cultures, specify the date in the universal sortable date/time format, e.g. "2013-08-22 11:51:52Z"
The deadline date will be displayed to the user in the format of their culture.
CheckDiskSpace
If this parameter is specified without the RequiredDiskSpace parameter, the required disk space is calculated automatically based on the size of the script source and associated files.
RequiredDiskSpace
Specify required disk space in MB, used in combination with CheckDiskSpace.
MinimizeWindows
Specifies whether to minimize other windows when displaying prompt [Default is true]
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Show-InstallationWelcome -CloseApps 'iexplore,winword,excel'
Prompt the user to close Internet Explorer, Word and Excel.
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Show-InstallationWelcome -CloseApps 'winword,excel' -Silent
Close Word and Excel without prompting the user.
-------------------------- EXAMPLE 3 --------------------------
C:\PS> Show-InstallationWelcome -CloseApps 'winword,excel' -BlockExecution
Close Word and Excel and prevent the user from launching the applications while the installation is in progress.
-------------------------- EXAMPLE 4 --------------------------
C:\PS> Show-InstallationWelcome -CloseApps 'winword=Microsoft Office Word,excel=Microsoft Office Excel' -CloseAppsCountdown 600
Prompt the user to close Word and Excel, with customized descriptions for the applications and automatically close the applications after 10 minutes.
-------------------------- EXAMPLE 5 --------------------------
C:\PS> Show-InstallationWelcome -CloseApps 'winword.exe,msaccess.exe,excel.exe' -PersistPrompt
Prompt the user to close Word, MSAccess and Excel if the processes match the exact name specified (use .exe for exact matches).
By using the PersistPrompt switch, the dialog will return to the center of the screen every 10 seconds so the user cannot ignore it by dragging it aside.
-------------------------- EXAMPLE 6 --------------------------
C:\PS> Show-InstallationWelcome -AllowDefer -DeferDeadline '25/08/2013'
Allow the user to defer the installation until the deadline is reached.
-------------------------- EXAMPLE 7 --------------------------
C:\PS> Show-InstallationWelcome -CloseApps 'winword,excel' -BlockExecution -AllowDefer -DeferTimes 10 -DeferDeadline '25/08/2013' -CloseAppsCountdown 600
Close Word and Excel and prevent the user from launching the applications while the installation is in progress.
Allow the user to defer the installation a maximum of 10 times or until the deadline is reached, whichever happens first.
When deferral expires, prompt the user to close the applications and automatically close them after 10 minutes.
[bookmark: _Toc415642712]Start-ServiceAndDependencies
Synopsis : Start Windows service and its dependencies.
Description:
Start Windows service and its dependencies.
Parameter :
Name
Specify the name of the service.
ComputerName
Specify the name of the computer. Default is: the local computer.
SkipServiceExistsTest
Choose to skip the test to check whether or not the service exists if it was already done outside of this function.
SkipDependentServices
Choose to skip checking for and starting dependent services. Default is: $false.
PassThru
Return the System.ServiceProcess.ServiceController service object.
ContinueOnError
Continue if an error is encountered. Default is: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Start-ServiceAndDependencies -Name 'wuauserv'
[bookmark: _Toc415642713]Stop-ServiceAndDependencies
Synopsis : Stop Windows service and its dependencies.
Description:
Stop Windows service and its dependencies.
Parameter :
Name
Specify the name of the service.
ComputerName
Specify the name of the computer. Default is: the local computer.
SkipServiceExistsTest
Choose to skip the test to check whether or not the service exists if it was already done outside of this function.
SkipDependentServices
Choose to skip checking for and stopping dependent services. Default is: $false.
PassThru
Return the System.ServiceProcess.ServiceController service object.
ContinueOnError
Continue if an error is encountered. Default is: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Stop-ServiceAndDependencies -Name 'wuauserv'
[bookmark: _Toc415642714]Test-Battery
Synopsis : Tests whether the local machine is running on AC power or not
Description:
Tests whether the local machine is running on AC power and returns true/false. For detailed information, use -PassThru option.
Parameter :
PassThru
Outputs a hashtable containing the following properties:
IsLaptop, IsUsingACPower, ACPowerLineStatus, BatteryChargeStatus, BatteryLifePercent, BatteryLifeRemaining, BatteryFullLifetime
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Test-Battery
-------------------------- EXAMPLE 2 --------------------------
C:\PS>(Test-Battery -PassThru).IsLaptop
Determines if the current system is a laptop or not.
[bookmark: _Toc415642715]Test-MSUpdates
Synopsis : Test whether a Microsoft Windows update is installed
Description:
Test whether a Microsoft Windows update is installed
Parameter :
KBNumber
KBNumber of the update.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Test-MSUpdates -KBNumber 'KB2549864'
[bookmark: _Toc415642716]Test-NetworkConnection
Synopsis : Tests for an active local network connection, excluding wireless and virtual network adapters.
Description:
Tests for an active local network connection, excluding wireless and virtual network adapters, by querying the Win32_NetworkAdapter WMI class.
Parameter :
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Test-NetworkConnection
[bookmark: _Toc415642717]Test-PowerPoint
Synopsis : Tests whether PowerPoint is running in fullscreen slideshow mode.
Description:
Tests whether PowerPoint is running in fullscreen slideshow mode to see if someone is presenting.
Parameter :
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Test-PowerPoint
[bookmark: _Toc415642718]Test-ServiceExists
Synopsis : Check to see if a service exists.
Description:
Check to see if a service exists (using WMI method because Get-Service will generate ErrorRecord if service doesn't exist).
Parameter :
Name
Specify the name of the service.
Note: Service name can be found by executing "Get-Service | Format-Table -AutoSize -Wrap" or by using the properties screen of a service in services.msc.
ComputerName
Specify the name of the computer. Default is: the local computer.
PassThru
Return the WMI service object.
ContinueOnError
Continue if an error is encountered. Default is: $true.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS> Test-ServiceExists -Name 'wuauserv'
-------------------------- EXAMPLE 2 --------------------------
C:\PS> Test-ServiceExists -Name 'testservice' -PassThru | Where-Object { $_ } | ForEach-Object { $_.Delete() }
Check if a service exists and then delete it by using the -PassThru parameter.
[bookmark: _Toc415642719]Update-GroupPolicy
Synopsis : Performs a gpupdate command to refresh Group Policies on the local machine
Description:
Performs a gpupdate command to refresh Group Policies on the local machine
Parameter :
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Update-GroupPolicy
[bookmark: _Toc415642720]Write-Log
Synopsis : Write messages to a log file in CMTrace.exe compatible format or Legacy text file format.
Description:
Write messages to a log file in CMTrace.exe compatible format or Legacy text file format and optionally display in the console.
Parameter :
Message
The message to write to the log file or output to the console.
Severity
Defines message type. When writing to console or CMTrace.exe log format, it allows highlighting of message type. Options: 1 = Information (default), 2 = Warning (highlighted in yellow), 3 = Error (highlighted in red)
Source
The source of the message being logged.
ScriptSection
The heading for the portion of the script that is being executed. Default is: $script:installPhase.
LogType
Choose whether to write a CMTrace.exe compatible log file or a Legacy text log file.
LogFileDirectory
Set the directory where the log file will be saved.
LogFileName
Set the name of the log file.
MaxLogFileSizeMB
Maximum file size limit for log file in megabytes (MB). Default is 10 MB.
WriteHost
Write the log message to the console.
ContinueOnError
Suppress writing log message to console on failure to write message to log file.
PassThru
Passes the text back to the PowerShell pipeline
DebugMessage
Specifies that the message is a debug message. Debug messages only get logged if -LogDebugMessage is set to $true.
LogDebugMessage
Debug messages only get logged if this parameter is set to $true in the config XML file.
Examples :
-------------------------- EXAMPLE 1 --------------------------
C:\PS>Write-Log -Message "Installing patch MS15-031" -Source 'Add-Patch' -LogType 'CMTrace'
-------------------------- EXAMPLE 2 --------------------------
C:\PS>Write-Log -Message "Script is running on Windows 8" -Source 'Test-ValidOS' -LogType 'Legacy'

	35
	Toolkit Exit Codes | PowerShell App Deployment Toolkit

image2.png
GetnstalledApplication
Get-RegistryKey
Get-ScheduledTask
Install-MSUpdates
New-Shortcut
Refresh-Desktop
Register-DLL
Remove-File
Remove-MSIApplications

Unregister-DLL
Update-GroupPolicy
Write-Log

INAME
Excoute S

IsYNOPsIS
‘Executes msiexec exe to pefom the folowing actons for MSI & MSP fies and MS1 product codes:insta.
uninstal, patch, epair, active setup.

ISYNTAX
‘Execute-MS! [FAction] <Sting>][-Path] <Sting>] [Transiom] <Sting>] [-Parameters] <Sting>] [FLogName]
<Sting>] [WorkingDirectory] <Sting>] [ContinueOnEor] [<CommonParameters>]

IDESCRIPTION
‘Executes msiexec exe to pefom the folowing actons for MSI & MSP fies and MSl product codes:instal.
uninstal, patch, epair, active setup.

‘Sets default swiches fo be passed to msiexec based on the preferences in the XML corfiguration e, 5.
"REBOOT-RealySuppress /QB!"

Automaticaly generates a log fle name and creates a verbose log flefor allmsiexec operatons.

'NB: Expects the S| or MSP fie o be located nthe "Fles” sub drectory of the App Deploy Toolki. Expects
transforn les to be inthe same drectory as the MSi fie.

IPARAMETERS
“Action <Sifng>
“The acton to perfom ["Instal”"Urinstal","Patch."Repar”"ActiveSetup']

Path <Sting>
The path o the MSI/MSP fie orthe product cods ofthe nstaled S

“Transfomn <Sting>
The name o the transiom fes). Thetransiom il i expected to be i the same directory 3s the S fie.

Parameters <Sting>
‘Overrides the default parameters speciiied nthe XML corfigurston . nstall defaut is
"REBOOT=RealySuppress /QB!", rinstal defaui is "REBOOT=Real)Suppress /GN'"

“LogName <Sting>
‘Overtides the defaui log file name.
“The defauk log fle name is generated from the MSi fle name or for rinstalaions. the product code s
resolved o the displayname and version o the appication.

“WorkingDirectoy <Sting>
‘Overrides the working directory.
The working drectoryis se o the location o the MSi ie.

CortinugOnEmor [<SwichParametens]
‘Continue an ext code s retumed by msiexec that s not recogrised by the App Deploy Took:

image3.png
PowerShell App Deployment Toolkit

(@) Installation in progress. Please wait.

image4.png
PowerShell App Deployment Toolkit

Please wait while the installation performs pre-

) installation cleanup tasks. This may take a few
moments.

image5.png
PowerShell App Deployment Toolkit

“The following programs must be closed before the intallation can proceed.

Flease save your work, close the programs, and then continue.
‘Alematively. save your work and click “Close programs”

‘Adobe Reader
Intemet Bxlorer

Close programs Continue.

image6.png
PowerShell App Deployment Toolkit

“The following programs must be closed before the intallation can proceed.

Flease save your work, close the programs, and then continue.
‘Alematively. save your work and click “Close programs”

‘Adobe Reader
Intemet Bxlorer

You can choose to defer the instalation unfil the deferral expires:

Remaining Deferrals: 3
Deadline: 25 August 2013 00:00:00

Once the deferral has expired, you vill no longer have the option to defer

Close programs Continue.

image7.png
PowerShell App Deployment Toolkit

“The following programs must be closed before the intallation can proceed.

Flease save your work, close the programs, and then continue.
‘Alematively. save your work and click “Close programs”

‘Adobe Reader
Intemet Bxlorer

NOTE: The program(s) will be automafically closed in:
0:09:57

Close programs Continue.

image8.png
PowerShell App Deployment Toolkit

‘The following application is about to be installed:
‘Adobe Reader 11.03

You can choose to defer the instalation unfil the deferral expires:
Deadline: 25 August 2013 00:00:00

Once the deferral has expired, you vill no longer have the option to defer

Continue.

image9.png
PowerShell App Deployment Toolkit

Launching tis application has been temporarily blocked sothat an
installation operation can complete

image10.png
2] Microsoft Office 2013 | - |

PowerShell App Deployment Toolkit

You do ot have enough disk space to complte the instalston of
Wicrosaft Offce 2015

Space required. 1500MB
Space avaisble: 1241MB

Flease fiee up enough disk space in order to proceed with the
instalafion,

ok

image11.png
PowerShell App Deployment Toolkit

You can display custom promps with up to 3 optional buttons and
customized text o interact with users.

The response given by the user s retumed s the text o the buton they
cick.

Yos Please Thats Avesome!

image12.png
[] PS App Deploy Toolkit Main 3.0.2

PowerShell App Deployment Toolkit

Yo can customise text o sppeat at the end of an nstal, o remove
it compltel for unaltended nstaltons.

oK

image13.png
PowerShell App Deployment Toolkit

In order forthe installation to complete, you must restart your computer. Please
save your work and restartwithin the alotted ime.

Your computer vill be automatically restarted at the end of the countdown.

Restartlater

Time remeining:

0:09:57

Restart Now.

image14.png
Adobe Flash Player 11.8.800.94 % *
Installation sarted.

image15.png
Adobe Flash Player 11.8.800.94 % *
Installtion complete.

image16.png
& Adobe Flash Player 11.8.800.94
Installtion failed.

image17.png
0 The installation may take up to 20 minutes to complete and requires a

reboot of your system.

Please Click OKif you are happy to proceed or Cancel to defer the
installation.

image18.png
Microsoft Office 2013

This installation wil require a reboot. Do you wish to proceed with the
A insiion now

image19.png
(28 Adobe Reader 11.00_EN.
@) Adobe Reader 1100 EN OLmst
8 Adoe Reader 1103 Nmsp
Datal.cab

& Setuy

image20.png
gl el

Data Source
Data Access
Distribution Settings
Reporting

Securty

Summary

Progress

Confirmation

New Package Wizard

B soheredertiosengion

Name:
Verson: 103
Manufacturer Adobe
Language: English
Comment:

Finish

Cancel

image21.png
Data Access
Distribution Settings
Reporting

Securty

Summary

Progress

Confirmation

New Package Wizard

‘Specify whether ths package contains source fils. If it does, specify the initiallocation of

the files and set additional source file options.

“This package contains source files
Source version:

Source directory
\\RBGKEGE\cS\Adobe Reader_11.03 EN_0T

] Update distibution points on s schedule

[Persist content in the client cache

) Enable binary differentis replication

< Previous

Use a compressed copy of the source directory

Always obtain files from the source directory.

Net>

Finish Cancel

image22.png
gg el

DGeneal
Requirements
Environment
Advanced
Windows Instlle
MOM Maintenance

Summary
Progress

Confirmation

New Program Wizard []

D Name: ‘Adobe Reader 11.0.3 EN 01 PSAppDeployToolkit

Your use of software deployed by ConfigMgr may be subject to license terms. You should
review any applicable license terms prior to deploying software.

Comment: ‘
‘Command line: Deploy-Application.exe| Browse...

Startin:

Run: Normal v

After running: No action required v
Category: v

Cancel

image23.png
g! F—

General
Requirements

[enironment |
Advanced
Windows Instlle
MOM Maintenance
Summary
Progress

Confirmation

New Program Wizard []

A program may require certain conditions to be true before it can run. Specify the
conditions that must be met for the program to run.

Program can run: Only when a user is logged on v

Promztz
O Run with user's rights ‘

Run with administrative rights

Runs vith UNC name
O Requires drive letter
O Requires specific dive letter (scample: Z):

< Previous Net>

Cancel

image24.png
Interaction
Securty
Summary
Progress
Confirmation

New Advertisement Wizard

‘Adobe Reader 11.0.3 EN 01 Deploy With 3 Deferals

‘Adobe Reader 11.0.3 English
Adobe Reader 11.0.3 EN 01 PSAppDeploy] v

Dan Testing
Include members of subcollections

< Previous

image25.png
New Advertisement Wizard [<]

Eos ‘Specify when the program will be advertised to members of the target collection. You can

ISEEE -'-o ceste an assignment to make the program mandatory.

Interaction Advertisement start time:

Security 2013-10-10 O~ || 901am = Oure
Summary [Advertisement expires:

Progress

= 20140810 901AM = utc
Confirmation

Mandatosjassignmente 3|8 X

[Enable Wake On LAN
] Ignore maintenance windows when running program
[Allow system restart outsice maintenance windows

Priority:

image26.png
Advertisement

Because you have specified more than one mandatory assignments for
this advertisement, we recommend setting the program rerun behavior
to "Always rerun program’.

Do you want to keep your current setting?

To keep your current setting, click Ves.

To set program rerun behavior to ‘Always rerun program’, click No.

To retun to the advertisement wizard, click Cancel.

Yes No Cancel

image27.png
Create Application

99

Specify settings for this application

General Information
Applation Catalog
Deployment Types

Surmery

Progress

Completion

Application cortain softwate that you can deploy to users and devices inyour Corfiguration Manager envirorment
Applications can contain multle deployment types that customizs the instalaion behaviotof the applcation.

" Automatical detect information abaut ths applicaton rom nstallation les:

Tope:

Location

[Windaws nstaler (i fl]

P

Example: \Server\SharelFile

& Manualy speciy the applcaton iformation

image28.png
General

Applcation Catalog

Specify information about this application

Software versior:

[1103EN 01

Deployment Types: Name: [Adobe Fieader 11.03
Summery. Administrator comments:
Progress.
Gl Manfacturer: [adobe
Optional eference:
Adminisrtive categories: ["Utiies”

T~ Date publishedt

T~ Allow this appiication to b

£
]

fior072ms

e instald from the Install Application task sequence action without being deployed

Soleet

|
&l
Fo—
[—

Speciythe adnirstralive user

Ourers:

Support contacts:

[dounringha0i2

[dounringha0i2

<Previous

15 who ae responsble fo this application.

Next >

Summery.

Browse.

Browse.

Cancel

image29.png
[Create Deployment Type

[
—
Specify settings for this deployment type

General Information
Content
Detection Hethod Deployment types include information abou the instalation methad and source fles fo tis applicatin.

User Experience

o Tope: [Windows Instaler (*si)
Dependencies

SR " Automatical identiy information about this deployment type fom instalation fs

s Location B

Gl Example: WServer\SharelFile:

& Manualy speciy the deployment type information

image30.png
[Create Deployment Type

General

Inf

Content

Specify general information for this deployment type

Detection Hethod ‘Applications can have any nuber o deployment types. Deployment types nclude ks to content and setings that

User Experience

Requirements
Dependencies e

Summery. Administrator comments:

Progress.

Completion

Languages

speciy how the content i defivered.

[:dobe Reader 11.0.3 EN 01 PSAppDeployT ookl

=
|
| Sokat
e

image31.png
B Create Deployment Type
o g Contert
-

General

General Information

ot
Detection Hethod
User Experence
Requrements
Dependencies

Summery

Progress

Completion

Specify information about the content to be delivered to target devices

Speciy the lacalon of the deployment type's content and other selfings that caritol haw cartent s delivered totarget.
devices. Allthe contents in the path specifid wil be delivered

Content locatior: [\\RBGKEGE \c8\Adobe_Reader_11.03 EN_O1 Browse.

T™ Persist content in the client cache
[Allow clients to share content with other clisnts on the same subnet
Thi optian allws clients that use Windows BranchCache to dowrload contert fiom orpremises distibulion pairs.

Content dowrioads fiom cloubased distrbution points can abvays be shared by ciets that use Windows
BranchCache.

Speciythe command used to nstal his content

Installaion progiam: [DepioyAppication.ex Instal Browse.

Installaton stat i

Configuration Manager can remave installations of tis content f an uninstall programis specifed below.

Urinstal program: [Deploy-Application exe Urinstall Browse.

Urinstal statt

I Run instalton and uinstal program as 32-6it process on 64-6it clents.

i | s |

image32.png
[Create Deployment Type Wizard

gg P ctection Rule-

Create a e that indicates the preserice oftis appication

General
General Infa
Content

D [

User Expere
Requirement
Dependenci

Summery

Progress

Completion

Seting Type:

[Windaws nstaler

Speciy an MS product code asthe bass for tis e

Froduct code: [(ACTEBAG5 740 7-1033-78 44-ABOOOD0D000T)

®

o

This M prackict code mst sist on the erget system to ndicate presence cf tis application

This MS product code must eiston the terget system an the folowing conditon must be met o indicate preserice of

this applcation:

MS| Propert:
Operator

Value:

[Versian

Equals

|

Concel

his

13

<Previous

Next >

Summary.

Cancel

image33.png
5 Create Deployment Type
o g User Experence
5

e Specify user experience settings for the application
Generl Iformaion

Content

Detection Methad

Installaton behavior: Install for system =
Requirements
Logon equienent Orly when et s gged on -
Dependencies |
Summary Installation program visibilty: Nomal =l
Progress ([_Allow srs to view and nteract it he program installation)
Conpleton

Speciythe masimum un time and estmated insallaion time of the deployment pragram far this applicatian. The.
estimated installaton time displys to the uset when the applcation instals.

Masinum alowed un time (minutes} 120 =

Estinated instalation tim (s o 5

image34.png
Deploy Software.

85 -

Specify general information for this deployment

Content

Deployment Settings
Scheduing

e — Software: [Adobe Fieader 11.03 B
Herts Colction [SCCM_App_Test Biowse,

Summary.

- I Use cefaut cistrution point aroups assaciated ta s callcton

Completion 7 Automaticaly dtibute conter fordependencies

Comments (optonal):

< Previous Next > Surery. Concel

image35.png
Deploy Software.

General Specify the content destination

Content

Deployment Settings
Scheduing Distibution points o disrbuton pont groups that the content has been ditibuted o

User Experience

Alrts Name Tipe
Summery There are o tems o show n this view.
Progress

Completion

‘Addiional distrbuton points, distibution point groups, and the distibution poin groups that are curently
‘associated with callectons to dstrbute cortent o

File: Add]

Name Desciption Assosialions e

Distibution point

<Brevious Next > Summary. Concel

image36.png
rd

Deploy Software

[
—

e Specify settings o control how this software is deployed
Content

Scheduing

Actia;
User Experience

. Purpose:

Summary.

Progress.

Completion T~ Pre-deploy software to the user's primary device.

T Send wake-up packets

Allow clients on metered Intermet conniction to dovriad cortent afer the
instaltion deadline, which might incur addtional costs

<Previous

image37.png
[e
—

General Specify the schedule for this deployment

Content

Deployment Settings

This application wil be availabl as saon as it has been distibuted to the canlent server(s] nless it scheded for
alate time belaw, Specify the nstalation deaclin i this s a requited applicaton. This deadlin is when the
User Experience pplcaton must be installed on the device, including a system restat f necessay.
Hlerts
Summary.
s Time based or: uTC
Completion

T Schedule the application to be available at

fior072ms = [Fazem =

Installation dadine:
s soon as possile ater the availble tine

© Scheduleat

fior072ms = [Fazem =

image38.png
Deploy Software Wizard

5 e

General
Content
Deployment Settings

Scheduing

Summary.
Progress.

Completion

L] < Previous.

Specify the user experience for the installation of this software on the selected
devices

Speciy user experience seting fo this deployment

User natficatons: [Displayin

‘When the instalston deadline i reached, alow the following actvils to be perfored outsids the maintenance
window:

I Soltware Installation
I~ System estat (f required to complete the nstalaton)

Wit fiter handiing for Windows Embedded devices

IV Commit changes at deadine of duing a maintenance window (iequies restats)

Ifthis option is ot selected, cortent willbe applied on the overlay and comnited lter.

image39.png
Default Settings

Backround Inteligent Transfer

Default Settings

Cloud Services

Clent Polcy

peciy settings that apply to all clets in the Hierarchy, and can be modifisd by custom setings.
Complsnce ettings

Hardware Inventory Lo sein
s Coscors || (7] empebotnto Samemnaere [o |
Network Access Protection (NAF)

Remote Tools

Softwere Deployment

Software Inventory
Software Metering
Software Updates
State Messaging

User and Device Afinty

o Careal

image1.png
@ PowerShell App Deployment Toolkit

