

PowerShell App Deployment Toolkit

Administrator Guide

http://psappdeploytoolkit.codeplex.com

Document Version 3.0.0

Contents
2	Overview	4
Introduction	4
Features	4
Licensing	5
3	Toolkit Functionality	5
User Interface	5
Functions/Logic	6
Integration with SCCM	6
Help Console	7
4	Toolkit Components	7
Toolkit File Structure	7
Files	7
Directories	8
Toolkit User Interface	9
Installation Progress	9
Installation Welcome Prompt	10
Block Application Execution	12
Custom Installation Prompt	12
Installation Restart Prompt	13
Balloon tip notifications	14
Custom Dialog box	14
Logging	15
5	Toolkit Usage	16
Overview	16
Example Deployment	16
Deploying Adobe Reader with the PowerShell App Deployment Toolkit	16
Launching the Toolkit	17
Overview	17
Toolkit Parameters	18
Configuring the Toolkit	19
6	Toolkit Functions	19
Convert-RegistryPath	19
Copy-File	19
Execute-MSI	20
Execute-Process	21
Exit-Script	23
Get-FileVersion	23
Get-HardwarePlatform	24
Get-IniContent	24
Get-InstalledApplication	25
Get-RegistryKey	25
Get-ScheduledTask	26
Install-MSUpdates	26
Install-SCCMSoftwareUpdates	26
Invoke-SCCMTask	27
New-Shortcut	27
Refresh-Desktop	28
Register-DLL	28
Remove-File	29
Remove-MSIApplications	29
Remove-RegistryKey	30
Set-IniContent	30
Set-PinnedApplication	31
Set-RegistryKey	31
Show-BalloonTip	32
Show-DialogBox	33
Show-InstallationProgress	34
Show-InstallationPrompt	35
Show-InstallationRestartPrompt	36
Show-InstallationWelcome	36
Test-Battery	39
Test-MSUpdates	39
Test-NetworkConnection	39
Test-PowerPoint	40
Unregister-DLL	40
Update-GroupPolicy	40
Write-Log	40

[bookmark: _Toc365019838]Overview

[bookmark: _Toc365019839]Introduction
The PowerShell App Deployment Toolkit provides a set of functions to perform common application deployment tasks and to interact with the user during a deployment. It simplifies the complex scripting challenges of deploying applications in the enterprise, provides a consistent deployment experience and improves installation success rates.
The PowerShell App Deployment Toolkit can be used to replace your WiseScript, VBScript and Batch script wrappers with one versatile, re-usable and extensible tool.

[bookmark: _Toc365019840]Features

Easy To Use - Any PowerShell beginner can use the template and the functions provided with the Toolkit to perform application deployments.
Consistent - Provides a consistent look and feel for all application deployments, regardless of complexity.
Powerful - Provides a set of functions to perform common deployment tasks, such as installing or uninstalling multiple applications, prompting users to close apps, setting registry keys, copying files, etc.
User Interface - Provides user interaction through , customizable user interface dialog boxes, progress dialogs and balloon tip notifications that can all be branded with custom logo and banner.
Localized - The UI is localized in several languages and more can easily be added using the XML configuration file.
Integration - Integrates well with SCCM 2007/2012; provides installation and uninstallation deployment types with options on how to handle exit codes, such as supressing reboots or returning a fast retry code.
Updatable - The logic engine and functions are separated from per-application scripts, so that you can update the toolkit when a new version is released and maintain backwards compatibility with your deployment scripts.
Extensible - The Toolkit can be easily extended to add custom scripts and functions.
Helpful - The Toolkit provides detailed logging of all actions performed and even includes a graphical console to browse the help documentation for the Toolkit functions.

[bookmark: _Toc365019841]Licensing

The PowerShell App Deployment Toolkit is provided under the Microsoft Public License:
https://psappdeploytoolkit.codeplex.com/license

[bookmark: _Toc365019842]Toolkit Functionality

[bookmark: _Toc365019843]User Interface
· An interface to prompt the user to close specified applications that are open prior to starting the application deployment. The user is prompted to save their documents and has the option to close the programs themselves, have the toolkit close the programs, or optionally defer. Optionally, a countdown can be displayed until the applications are automatically closed.
· [bookmark: _GoBack]The ability to allow the user to defer an installation X number of times, X number of days or until a deadline date is reached.
· The ability to prevent the user from launching the applications that need to be closed while the application installation is in progress.
· An indeterminate progress dialog with customizable message text that can be updated throughout the deployment.
· A restart prompt with an option to restart later or restart now and a countdown to automatic restart.
· Balloon tip notifications to indicate the beginning and end of an installation and the success or failure of an installation.
· The ability to run in interactive, silent (no dialogs) or non-interactive mode (default for running SCCM task sequence or session 0).
· Branding of the above UI components using a custom logo icon for your own Organization.
· Custom dialog boxes with options to customize title, text, buttons, icon.
· The UI is localized in several languages and more can easily be added using the XML configuration file.

[bookmark: _Toc365019844]Functions/Logic
· Provides extensive logging of both the Toolkit functions and any MSI installation / uninstallation.
· Provides the ability to execute any type of setup (MSI or EXEs) and handle the return codes.
· Mass remove MSI applications with a partial match (e.g. remove all versions of all MSI applications which match "Office")
· Perform SCCM actions such as Machine and User Policy Refresh, Inventory Update and Software Update
· Update Group Policy
· Copy / Delete Files
· Get / Set / Remove Registry Keys and Values
· Get / Set Ini File Keys and Values
· Check File versions
· Pin or Unpin applications to the Start Menu or Task Bar
· Create Start Menu Shortcuts
· Register / Unregister dll files
· Refresh desktop icons
· Test network connectivity
· Test power connectivity
· Check whether a PowerPoint slideshow is running

[bookmark: _Toc365019845]Integration with SCCM
· Handles SCCM exit codes, including time sensitive dialogs supporting SCCM's Fast Retry feature - providing more accurate SCCM Reporting (no more Failed due to timeout errors).
· Ability to prevent reboot codes (3010) from being passed back to SCCM, which would cause a reboot prompt.
· Supports the CM12 application model by providing an install and uninstall deployment type for every deployment script.
· Bundle multiple application installations to overcome the supported limit of 5 applications in the CM12 application dependency chain.
· Compared to compiled deployment packages, e.g. WiseScript, the Toolkit utilises the SCCM cache correctly and SCCM Distribution Point bandwidth more efficiently by using loose files.

[bookmark: _Toc365019846]Help Console
· A graphical console for browsing the help documentation for the toolkit functions.
[bookmark: _Toc363546217]
[bookmark: _Toc365019847]Toolkit Components
[bookmark: _Toc363546218]
[bookmark: _Toc365019848]Toolkit File Structure
[bookmark: _Toc365019849]Files
The toolkit is comprised of the following files:
Deploy-Application.ps1
Performs the actual install / uninstall and is the only file that needs to be modified, depending on your level of customisation.
Deploy-Application.exe
An optional executable that can be used to launch the Deploy-Application.ps1 script without opening a PowerShell console window. Supports passing command-line parameters to the script.
AppDeployToolkitMain.ps1
Contains all of the functions and logic used by the installation script. By Separating the logic from the installation script, we can obfuscate away the complex code and make enhancements independently of the installation scripts that contain per-application actions.
AppDeployToolkitConfig.xml	
Contains configurable options referenced by the AppDeployToolkit.ps1 script, such as MSI switches and User Interface messages, which are customizable and localized in several languages. This is intended to be a static file that is configured once, not on a per-application basis.
AppDeployToolkitExtensions.ps1
This is an optional PowerShell script that can be used to extend the toolkit functionality with custom functions. It is automatically dot-sourced by the AppDeployToolkitMain.ps1 script.
AppDeployToolkitHelp.ps1
This is a script that displays a help console to browse the functions included in the Toolkit and copy and paste examples in to your deployment script.
[image:]
[bookmark: _Toc363546219][bookmark: _Toc365019850]Directories

The Root folder contains the Deploy-Application.exe and Deploy-Application.ps1 files. The Deploy-Application.ps1 file is the only file that should be modified on a per-application basis.
The directories below contain the installation files and supporting files referenced by the toolkit.
AppDeployToolkit
Folder containing the toolkit dependency files.
Files	
Folder containing your main setup files, e.g. MSI
SupportFiles 		
Folder containing any supporting files such as files you need to copy to the target machine using the toolkit during deployment.

[bookmark: _Toc365019851]Toolkit User Interface

The user interface consists of several components detailed below. The user interface can be branded with a custom a custom logo and banner.
All of the UI components include message text that is customizable in the AppDeployToolkitConfig.xml. The UI has been localised in 5 different languages: English, French, Spanish, Portuguese and German. Additional languages can easily be added in the XML configuration file.
The language used by the Toolkit UI is selected automatically based on the language culture of the operating system, so the same AppDeployToolkitConfig file can be used in a multi-language environment.
The user interface can be suppressed by specifying the deploy mode parameter as follows:
Depl0yApplication.ps1 –DeployMode “Silent”
[bookmark: _Toc365019852]Installation Progress
The installation progress message displays an indeterminate progress ring to indicate an installation is in progress and display status messages to the end user. This is invoked using the “Show-InstallationProgress” function.
[image:]
The progress message can be dynamically updated to indicate the stage of the installation or to display custom messages to the user, using the “Show-InstallationProgress” function.
[image:]

[bookmark: _Toc365019853]Installation Welcome Prompt
The application welcome prompt can be used to display applications that need to be closed, an option to defer and a countdown to closing applications automatically. Use the “Show-InstallationWelcome” function to display the prompts shown below.
[image:]
Welcome prompt with close programs option and defer option:
[image:]
Welcome prompt with close programs options and countdown to automatic closing of applications:
[image:]
Welcome prompt with just a defer option:
[image:]

[bookmark: _Toc365019854]Block Application Execution
If the block execution option is enabled (see Show-InstallationWelcome function), the user will be prompted that they cannot launch the specified application(s) while the installation is in progress. The application will be unblocked again once the installation has completed.

[image:]

[bookmark: _Toc365019855]Custom Installation Prompt	
A custom prompt with the toolkit branding can be used to display messages and interact with the user using the “Show-InstallationPrompt” function. The title and text is customizable and up to 3 customizable buttons can be included on the prompt, e.g.
[image:]
 [image:]

[bookmark: _Toc365019856]Installation Restart Prompt

A restart prompt can be displayed with a countdown to automatic restart using the “Show-InstallationRestartPrompt”. Since the restart prompt is executed in a separate PowerShell session, the toolkit will still return the appropriate exit code to the parent process.
[image:]
[bookmark: _Toc365019857]Balloon tip notifications
Balloon tip notifications are displayed in the system tray automatically at the beginning and end of the installation. These can be turned off in the XML configuration.
[image:]
[image:]
[image:]

[bookmark: _Toc365019858]Custom Dialog box
A generic dialog box to display custom messages to the user without the toolkit branding using the function “Show-DialogBox”. This can be customized with different system icons and buttons.

[image:]
[image:]

[bookmark: _Toc356573540][bookmark: _Toc365019859]Logging

The toolkit writes generates extensive logging for all toolkit and MSI operations.
The default log directory for the toolkit and MSI log files can be specified in the XML configuration file. The default directory is <C:\Windows\Logs\Software>.
The toolkit log file is named after the application with _AppDeployToolkit appended to the end, e.g.
Oracle_JavaRuntime_1.7.0.17_EN_01_PSAppDeployToolkit.log
All MSI actions are logged and the log file is named according to the MSI file used on the command line, with the action appended to the log file name. For uninstallations, the MSI product code is resolved to the MSI application name and version to keep the same log file format, e.g.
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Install.log
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Repair.log
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Patch.log
Oracle_JavaRuntimeEnvironmentx86_1.7.0.17_EN_01_Uninstall.log

[bookmark: _Toc365019860]Toolkit Usage

[bookmark: _Toc365019861]Overview

The Deploy-Application.ps1 script is the only script you need to modify to deploy your application.
The Deploy-Application.ps1 is broken down into the following sections:
Initialization		e.g. Variables such as App Vendor, App Name, App Version
Pre-Installation		e.g. Close applications, uninstall or clean-up previous versions
Installation		e.g. Install the primary application, or components of the application
Post-Installation	e.g. Drop additional files, registry tweaks
Uninstallation		e.g. Uninstall/rollback the changes performed in the install section.

[bookmark: _Toc365019862]Example Deployment

[bookmark: _Toc365019863]Deploying Adobe Reader with the PowerShell App Deployment Toolkit

This example is provided as a script with the toolkit, in the “Examples” folder.
1. Copy the application source files in to the “Files” directory, e.g.
[image:]
2. Customize the Deploy-Application.ps1 script using the example code below
3. Install the application by running Deploy-Application.ps1
4. Uninstall the application by running Deploy-Application.ps1 –DeploymentType “Uninstall”

Initialization

Populate these variables with the application and script details:
$appVendor = "Adobe"
$appName = "Reader"
$appVersion = "11.0.3"
$appArch = ""
$appLang = "EN"
$appRevision = "01"
$appScriptVersion = "1.0.0"
$appScriptDate = "08/07/2013"
$appScriptAuthor = "Your Name”

Pre-Install
Prompt the user to close the following applications if they are running and allow the option to defer the installation up to 3 times:
Show-InstallationWelcome -CloseApps "iexplore,AcroRd32,cidaemon" -AllowDefer -DeferTimes 3
Show Progress Message (with the default message)
Show-InstallationProgress
Remove any previous versions of Adobe Reader
Remove-MSIApplications "Adobe Reader"

Installation

Install the base MSI and apply a transform
Execute-MSI -Action Install -Path "Adobe_Reader_11.0.0_EN.msi" -Transform "Adobe_Reader_11.0.0_EN_01.mst"
Install the patch
Execute-MSI -Action Patch -Path "Adobe_Reader_11.0.3_EN.msp"

Post-Installation

No actions required here

Uninstallation

Prompt the user to close the following applications if they are running:
Show-InstallationWelcome -CloseApps "iexplore,AcroRd32,cidaemon"
Show Progress Message (with a message to indicate the application is being uninstalled)
Show-InstallationProgress -StatusMessage "Uninstalling Application $installTitle. Please Wait..."
Remove this version of Adobe Reader
Execute-MSI -Action Uninstall -Path "{AC76BA86-7AD7-1033-7B44-AB0000000001}"

[bookmark: _Toc365019864]Launching the Toolkit

[bookmark: _Toc365019865]Overview

There are two ways to launch the toolkit for deployment of applications.
1. Launch “Deploy-Application.ps1” PowerShell script as administrator.
2. Launch “Deploy-Application.exe” as administrator. This will launch the “Deploy-Application.ps1” PowerShell script without opening a PowerShell command window. Note, if the x86 PowerShell is required (for example, if CAPICOM or another x86 library is needed), launch Deploy-Application.exe /32
Examples:

Deploy-Application.ps1
Deploy an application for installation
Deploy-Application.ps1 –DeploymentType “Uninstall” –DeployMode “Silent”
Deploy an application for uninstallation in silent mode
Deploy-Application.exe –AllowRebootPassThru
Deploy an application for installation, supressing the PowerShell console window and allowing reboot codes to be returned to the parent process.
Deploy-Application.exe /32 –DeploymentType “Uninstall” –DeployMode “Silent”
Deploy an application for uninstallation using PowerShell x86, supressing the PowerShell console window and deploying in silent mode.
[bookmark: _Toc363546257][bookmark: _Toc365019866]Toolkit Parameters

The following parameters are accepted by Deploy-Application.ps1:
-DeploymentType “Install” | “Uninstall” (default is install)
Specifies whether to install or uninstall the application.
-DeployMode “Interactive” | “Silent” | “NonInteractive” (default is interactive)
Specifies whether the installation should be run in Interactive, Silent or NonInteractive mode.
Silent = No dialogs (progress and balloon tip notifications are supressed)
NonInteractive = Very silent, i.e. no blocking apps. Noninteractive mode is automatically set if an SCCM task sequence or session 0 is detected.
-AllowRebootPassThru $true | $false (default is false)
Specifies whether to allow the 3010 exit code (reboot required) to be passed back to the parent process (e.g. SCCM) if detected during an installation. If a 3010 code is passed to SCCM, the SCCM client will display a reboot prompt. If set to false, the 3010 return code will be replaced by a “0” (successful, no restart required).
[bookmark: _Toc365019867]Customizing the Toolkit

Aside from customizing the “Deploy-Application.ps1” script to deploy your application, no configuration is necessary out of the box. The following components can be configured as required:
AppDeployToolkitConfig.xml - Configure the default UI messages, MSI parameters and log file location.
AppDeployToolkitLogo.ico - To brand the balloon notifications and UI window title bars with your own custom/corporate logo, replace the AppDeployToolkitLogo.ico file with your own .ico file (retaining the file name)
AppDeployToolkitBanner.png - To brand the toolkit UI prompts with your own custom/corporate banner, replace the AppDeployToolkitBanner.png file with your own .png file (retaining the file name). The file must be in PNG format and must be 450 x 50 in size.

[bookmark: _Toc365019868]Toolkit Functions

[bookmark: _Toc365019869]Convert-RegistryPath
Synopsis : Converts the specified registry key path to a format that is compatible with built-in PowerShell cmdlets.
Description:
 Converts the specified registry key path to a format that is compatible with built-in PowerShell cmdlets.
 Converts registry key hives to their full paths, e.g. HKLM is converted to "HKEY_LOCAL_MACHINE" and prepends "Registry::" to the path
Parameter : Key
 Path to the registry key to convert (can be a registry hive or fully qualified path)
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Convert-RegistryPath -Key "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Convert-RegistryPath -Key "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}"
[bookmark: _Toc365019870]Copy-File
Synopsis : Function to copy a file to a destination path.
Description:
 Function to copy a file to a destination path.
Parameter : Path
 Path of the file you want to copy
 Destination
 Destination Path of the file to copy
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Copy-File -Path "$dirSupportFiles\MyApp.ini" -Destination "$envWindir\MyApp.ini"
[bookmark: _Toc365019871]Execute-MSI
Synopsis : Executes msiexec.exe to perform the following actions for MSI & MSP files and MSI product codes: install, uninstall, patch, repair, active setup.
Description:
 Executes msiexec.exe to perform the following actions for MSI & MSP files and MSI product codes: install, uninstall, patch, repair, active setup.
 Sets default switches to be passed to msiexec based on the preferences in the XML configuration file, e.g. "REBOOT=ReallySuppress /QB!"
 Automatically generates a log file name and creates a verbose log file for all msiexec operations.
 NB: Expects the MSI or MSP file to be located in the "Files" sub directory of the App Deploy Toolkit. Expects transform files to be in the same directory as the
 MSI file.
Parameter : Action
 The action to perform ["Install","Uninstall","Patch","Repair","ActiveSetup"]
 Path
 The path to the MSI/MSP file or the product code of the installed MSI.
 Transform
 The name of the transform file(s). The transform file is expected to be in the same directory as the MSI file.
 Parameters
 Overrides the default parameters specified in the XML configuration file. Install default is "REBOOT=ReallySuppress /QB!", uninstall default is
 "REBOOT=ReallySuppress /QN"
 LogName
 Overrides the default log file name.
 The default log file name is generated from the MSI file name or for uninstallations, the product code is resolved to the displayname and version of the
 application.
 WorkingDirectory
 Overrides the working directory.
 The working directory is set to the location of the MSI file.
 ContinueOnError
 Continue if an exit code is returned by msiexec that is not recognised by the App Deploy Toolkit.
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Execute-MSI -Action Install -Path "Adobe_FlashPlayer_11.2.202.233_x64_EN.msi"
 Installs an MSI
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Execute-MSI -Action Install -Path "Adobe_FlashPlayer_11.2.202.233_x64_EN.msi" -Transform "Adobe_FlashPlayer_11.2.202.233_x64_EN_01.mst" -Parameters "/QN"
 Installs an MSI, applying a transform and overriding the default MSI toolkit parameters
 -------------------------- EXAMPLE 3 --------------------------
 C:\PS>Execute-MSI -Action Uninstall -Path "{26923b43-4d38-484f-9b9e-de460746276c}"
 Uninstalls an MSI using a product code
 -------------------------- EXAMPLE 4 --------------------------
 C:\PS>Execute-MSI -Action Patch -Path "Adobe_Reader_11.0.3_EN.msp"
 Installs an MSP
[bookmark: _Toc365019872]Execute-Process
Synopsis : Function to execute a process, with optional arguments, working directory, window style.
Description:
 Executes a process, e.g. a file included in the Files directory of the App Deploy Toolkit, or a file on the local machine.
 Provides various options for handling the return codes (see Parameters)
Parameter : FilePath
 Path of the file you want to execute.
 If the file is located directly in the "Files" directory of the App Deploy Toolkit, only the file name needs to be specified.
 Otherwise, the full path of the file must be specified. If the files is in a subdirectory of "Files", use the "$dirFiles" variable as shown in the example above.
 Arguments
 Arguments to be passed to the executable
 WindowStyle
 Style of the window of the process executed: "Normal","Hidden","Maximized","Minimized" [Default is "Normal"]
 WorkingDirectory
 The working directory used for executing the process.
 Defaults to the directory of the file being executed.
 NoWait
 PassThru
 Returns STDOut and STDErr output from the process.
 IgnoreExitCodes
 List the exit codes you want to ignore.
 ContinueOnError
 Continue if an exit code is returned by the process that is not recognised by the App Deploy Toolkit.
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Execute-Process -FilePath "uninstall_flash_player_64bit.exe" -Arguments "/uninstall" -WindowStyle Hidden
 If the file is in the "Files" directory of the App Deploy Toolkit, only the file name needs to be specified.
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Execute-Process -FilePath "$dirFiles\Bin\setup.exe" -Arguments "/S" -WindowStyle Hidden
 -------------------------- EXAMPLE 3 --------------------------
 C:\PS>Execute-Process -FilePath "setup.exe" -Arguments "/S" -IgnoreExitCodes "1,2"
[bookmark: _Toc365019873]Exit-Script
Synopsis : This function exits the scripts, performs cleanup actions and passes an exit code to the parent process.
Description:
 This function should always be used when exiting the script, to ensure cleanup actions are performed.
 This function performs cleanup actions, such as closing down dialogs and unblocking blocked applications.
 It displays a balloon tip notification to indicate the setup is complete and whether it was a success or a failure.
 The function determines what exit code to pass to the parent process depending on the the options specified in the deployment script, e.g.
 If $AllowRebootPassThru is set to False, it will suppress any "3010" exit codes detected during the installation and instead pass the "0" exit code.
Parameter : ExitCode
 The exit code to be passed from the script to the parent process, e.g. SCCM
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Exit-Script -ExitCode "0"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Exit-Script -ExitCode "1618"
[bookmark: _Toc365019874]Get-FileVersion
Synopsis : Gets the version of the specified file
Description:
 Gets the version of the specified file
Parameter : File
 Path of the file
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Get-FileVersion "$envProgramFilesX86\Adobe\Reader 11.0\Reader\AcroRd32.exe"
[bookmark: _Toc365019875]Get-HardwarePlatform
Synopsis : Retrieves information about the hardware platform (physical or virtual)
Description:
 Retrieves information about the hardware platform (physical or virtual)
Parameter : ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Get-HardwarePlatform
[bookmark: _Toc365019876]Get-IniContent
Synopsis : Parses an ini file and returns the contents as objects with ini section, name and value properties
Description:
 Parses an ini file and returns the contents as objects with ini section, name and value properties
Parameter : FilePath
 Path to the ini file
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Get-IniContent "$envProgramFilesX86\IBM\Lotus\Notes\notes.ini"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Get-IniContent "$envProgramFilesX86\IBM\Lotus\Notes\notes.ini" | Where { $_.Name -eq "KeyFileName" } | Select Value -ExpandProperty Value
[bookmark: _Toc365019877]Get-InstalledApplication
Synopsis : Retrieves information about installed applications.
Description:
 Retrieves information about installed applications by querying the registry. You can specify an application name, a product code, or both.
 Returns information about application publisher, name & version, product code, uninstall string, install source, location & date.
Parameter : Name
 ProductCode
 The product code of the application you want to retrieve information on.
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Get-InstalledApplication -Name "Adobe Flash"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Get-InstalledApplication -ProductCode "{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}"
[bookmark: _Toc365019878]Get-RegistryKey
Synopsis : Retrieves value names and value data for a specified registry key
Description:
 Retrieves value names and value data for a specified registry key.
 If the registry key does not contain any values, the function will return $null. If you need to test for existence of a registry key path, use the built-in
 Test-Path cmdlet
Parameter : Key
 Path of the registry key
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Get-RegistryKey "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{1AD147D0-BE0E-3D6C-AC11-64F6DC4163F1}"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Get-RegistryKey "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\iexplore.exe"
[bookmark: _Toc365019879]Get-ScheduledTask
Synopsis : Retrieves a list of the scheduled tasks on the local computer
Description:
 Retrieves a list of the scheduled tasks on the local computer and returns them as an array
Parameter :
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Get-ScheduledTask
[bookmark: _Toc365019880]Install-MSUpdates
Synopsis : Installs all Microsft Updates in a given directory
Description:
 Installs all Microsft Updates in a given directory of type ".exe", ".msu" or ".msp"
Parameter : Directory
 Directory containing the updates
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Install-MSUpdates "$dirFiles\MSUpdates"
[bookmark: _Toc365019881]Install-SCCMSoftwareUpdates
Synopsis : Scans for outstanding SCCM updates to be installed and installed the pending updates
Description:
 Scans for outstanding SCCM updates to be installed and installed the pending updates
 This function can take several minutes to run
Parameter : ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Install-SCCMSoftwareUpdates
[bookmark: _Toc365019882]Invoke-SCCMTask
Synopsis : Triggers SCCM to invoke the relevant task
Description:
 Triggers SCCM to invoke the relevant task
Parameter : ScheduleID
 ScheduleId
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Invoke-SCCMTask "SoftwareUpdatesScan"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Invoke-SCCMTask
[bookmark: _Toc365019883]New-Shortcut
Synopsis : Creates a new shortcut .lnk or .url file, which can be used for example on the start menu.
Description:
 Creates a new shortcut .lnk or .url file, with configurable options.
Parameter : Path
 Path to save the shortcut
 TargetPath
 Target path or URL that the shortcut launches
 Arguments
 Arguments to be passed to the target path
 IconLocation
 Location of the icon used for the shortcut
 Description
 Descriptionof the shortcut
 WorkingDirectory
 Working Directory to be used for the target path
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>New-Shortcut -Path "$envProgramData\Microsoft\Windows\Start Menu\My Shortcut.lnk" -TargetPath "$envWinDir\system32\notepad.exe" -IconLocation
 "$envWinDir\system32\notepad.exe" -Description"Notepad" -WorkingDirectory "$envHomeDrive\$envHomePath"
[bookmark: _Toc365019884]Refresh-Desktop
Synopsis : Forces the Windows Exporer Shell to refresh, which causes desktop icons to be reloaded
Description:
 Forces the Windows Exporer Shell to refresh, which causes desktop icons to be reloaded.
 Informs the Explorer Shell to refresh its settings after you change registry values or other settings to avoid a reboot.
Parameter : ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Refresh-Desktop
[bookmark: _Toc365019885]Register-DLL
Synopsis : Registers a DLL file
Description:
 Registers a DLL file using regsvr32.exe
Parameter : FilePath
 Path to the DLL file
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Register-DLL "$envProgramFiles\Documentum\Shared\DcTLSFileToDMSComp.dll"
[bookmark: _Toc365019886]Remove-File
Synopsis : Function to remove a file or all files recursively in a given path.
Description:
 Function to remove a file or all files recursively in a given path.
Parameter : Path
 Path of the file you want to remove
 Recurse
 Optionally, remove all files recursively in a directory
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Remove-File -Path "C:\Windows\Downloaded Program Files\Temp.inf"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Remove-File -Path "C:\Windows\Downloaded Program Files" -Recurse
[bookmark: _Toc365019887]Remove-MSIApplications
Synopsis : Removes all MSI applications matching the specified application name
Description:
 Removes all MSI applications matching the specified application name.
 Enumerates the registry for installed applications matching the specified application name and uninstalls that application using the product code, provided the
 uninstall string
 matches "msiexec"
Parameter : Name
 The name of the application you want to uninstall.
 ContinueOnError
 Continue if an exit code is returned by msiexec that is not recognised by the App Deploy Toolkit.
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Remove-MSIApplications "Adobe Flash"
 Removes all versions of software that match the name "Adobe Flash"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Remove-MSIApplications "Adobe"
 Removes all versions of software that match the name "Adobe"
[bookmark: _Toc365019888]Remove-RegistryKey
Synopsis : Deletes the specified registry key or value
Description:
 Deletes the specified registry key or value
Parameter : Key
 Path of the registry key to delete
 Name
 Name of the registry key value to delete
 Recurse
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Remove-RegistryKey -Key "HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Remove-RegistryKey -Key "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" -Name "RunAppInstall"
[bookmark: _Toc365019889]Set-IniContent
Synopsis : Adds or sets the value of a property in an ini file
Description:
 Adds or sets the value of a property in an ini file
Parameter : FilePath
 Path to the inin file
 Key
 The ini property name
 Value
 The ini property value
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Set-IniContent "$envProgramFilesX86\IBM\Lotus\Notes\notes.ini" -Key "AutoLogoffMinutes" -Value "10"
[bookmark: _Toc365019890]Set-PinnedApplication
Synopsis : Pins or unpins a shortcut to the start menu or task bar.
Description:
 Pins or unpins a shortcut to the start menu or task bar.
 This should typically be run in the user context, as pinned items are stored in the user profile.
Parameter : Action
 Action to be performed: "PintoStartMenu","UnpinfromStartMenu","PintoTaskbar","UnpinfromTaskbar"
 FilePath
 Path to the shortcut file to be pinned or unpinned
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Set-PinnedApplication -Action "PintoStartMenu" -FilePath "$envProgramFilesX86\IBM\Lotus\Notes\notes.exe"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Set-PinnedApplication -Action "UnpinfromTaskbar" -FilePath "$envProgramFilesX86\IBM\Lotus\Notes\notes.exe"
[bookmark: _Toc365019891]Set-RegistryKey
Synopsis : Creates a registry key name, value or value data or sets the same if it does not already exist.
Description:
 Creates a registry key name, value or value data or sets the same if it does not already exist.
Parameter : Key
 The registry key path
 Name
 The value name
 Value
 The value data
 Type
 The type of registry value to create or set [Default is "String"
 Acceptable values are: "Binary","DWord","ExpandString","MultiString","None","QWord","String","Unknown"
 Object type: [Microsoft.Win32.RegistryValueKind]
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Set-RegistryKey -Key $blockedAppPath -Name "Debugger" -Value $blockedAppDebuggerValue
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Set-RegistryKey -Key "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce" -Name "Debugger" -Value $blockedAppDebuggerValue -Type String
[bookmark: _Toc365019892]Show-BalloonTip
Synopsis : Displays a balloon tip notification in the system tray
Description:
 Displays a balloon tip notification in the system tray
Parameter : BalloonTipText
 Text of the balloon tip
 BalloonTipTitle
 Title of the balloon tip
 BalloonTipIcon
 Icon to be used [Default is Info]
 Accepted values: 'Error', 'Info', 'None', 'Warning'
 BalloonTipTime
 Time in milliseconds to display the balloon tip [Default 500]
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Show-BalloonTip -BalloonTipText "Installation Started" -BalloonTipTitle "Application Name"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Show-BalloonTip -BalloonTipIcon "Info" -BalloonTipText "Installation Started" -BalloonTipTitle "Application Name" -BalloonTipTime "1000"
[bookmark: _Toc365019893]Show-DialogBox
Synopsis : This function displays a custom dialog box with optional title, buttons, icon and timeout.
Description:
 This function displays a custom dialog box with optional title, buttons, icon and timeout. The default button is "OK", the default Icon is "None" and the default
 Timeout is none.
Parameter : Text
 Text in the message dialog box
 Title
 Title of the message dialog box
 Buttons
 Buttons to be included on the dialog box [Default is "OK"]
 "OK"
 "OKCancel"
 "AbortRetryIgnore"
 "YesNoCancel"
 "YesNo"
 "RetryCancel"
 "CancelTryAgainContinue"
 DefaultButton
 The Default button that is selected [Default is "First"]
 "First"
 "Second"
 "Third"
 Icon
 Icon to display on the dialog box [Default is "None"]
 Acceptable valures are: "None", "Stop", "Question", "Exclamation", "Information",
 Timeout
 Timeout period in seconds before automatically closing the dialog box with the return message "Timeout" [Default the UI timeout value set in the config XML file]
 TopMost
 Specifies whether the message box is a system modal message box and appears in a topmost window. [Default is True]
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Show-DialogBox -Title "Installed Complete" -Text "Installation has completed. Please click OK and restart your computer." -Icon "Information"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Show-DialogBox -Title "Installation Notice" -Text "Installation will take approximately 30 mintues. Do you wish to proceed?" -Buttons "OKCancel"
 -DefaultButton "Second"
 -Icon "Exclamation" -Timeout 600
[bookmark: _Toc365019894]Show-InstallationProgress
Synopsis : Displays a progress dialog in a separate thread with an updatable custom message.
Description:
 Create a WPF window in a separate thread to display a marquee style progress ellipse with a custom message that can be updated.
 The status message supports line breaks.
 The first time this function is called in a script, it will display a balloon tip notification to indicate that the installation has started.
Parameter : StatusMessage
 The Status Message to be displayed. The default status message is taken from the XML configuration file.
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Show-InstallationProgress
 Uses the default status message from the XML configuration file.
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Show-InstallationProgress "Installation in Progress..."
 -------------------------- EXAMPLE 3 --------------------------
 C:\PS>Show-InstallationProgress "Installation in Progress...`nThe installation may take 20 minutes to complete."
[bookmark: _Toc365019895]Show-InstallationPrompt
Synopsis : Displays a custom installation prompt with the toolkit branding and optional buttons.
Description:
 Any combination of Left, Middle or Right buttons can be displayed. The return value of the button clicked by the user is the button text specified.
Parameter : Title
 Title of the prompt
 [Default is the application installation name]
 Message
 Message text to be included in the prompt
 ButtonRightText
 Show a button on the right of the prompt with the specified text
 ButtonLeftText
 Show a button on the left of the prompt with the specified text
 ButtonMiddleText
 Show a button in the middle of the prompt with the specified text
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Show-InstallationPrompt -Message "Do you want to proceed with the installation?" -buttonRightText "Yes" -buttonLeftText "No"
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Show-InstallationPrompt -Title "Funny Prompt" -Message "How are you feeling today?" -ButtonRightText "Good" -ButtonLeftText "Bad" -ButtonMiddleText
 "Indifferent"
[bookmark: _Toc365019896]Show-InstallationRestartPrompt
Synopsis : Displays a restart prompt with a countdown to a forced restart.
Description:
 Displays a restart prompt with a countdown to a forced restart.
Parameter : CountdownSeconds
 Specifies the number of seconds to countdown to the system restart.
 CountdownNoHideSeconds
 Specifies the number of seconds to display the restart prompt without allowing the window to be hidden.
 Script:AllowRebootPassThru
 InvokedExternally
 Indicates that the Show-InstallationRestartPrompt function was invoked externally. Do not modify this parameter - it is an internal script parameter.
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Show-InstallationRestartPrompt -Countdownseconds 600 -CountdownNoHideSeconds 60
[bookmark: _Toc365019897]Show-InstallationWelcome
Synopsis : This function provides a welcome dialog prompting the user with information about the installation and actions to be performed before the installation can begin.
Description:
 The following prompts can be included in the welcome dialog:
 Close the specified running applications, or optionally close the applications without showing a prompt (using the -Silent" switch).
 Defer the installation a certain number of times, for a certain number of days or until a deadline is reached.
 Countdown until applications are automatically closed.
 Prevent users from launching the specified applications while the installation is in progress.
 Notes:
 The process descriptions are retrieved from WMI, with a fall back on the process name if no description is available. Alternatively, you can specify the
 Descriptionyourself
 with a '=' symbol - see Examples.
 The dialog box will timeout after the timeout specified in the XML configuration file (default 1 hour and 55 minutes) to prevent SCCM installations from timing out
 and returning
 a failure code to SCCM. When the dialog times out, the script will exit and return a 1618 code (SCCM fast retry code).
Parameter : CloseApps
 Name of the process to stop (do not include the .exe). Specify multiple processes separated by a comma. Specify custom descriptions like this: "winword=Microsoft
 Office
 Word,excel=Microsoft Office Excel"
 Silent
 Stop processes without prompting the user.
 CloseAppsCountdown
 Option to provide a countdown in seconds until the specified applications are automatically closed. This only takes effect if deferral is now allowed or has
 expired.
 BlockExecution
 Option to prevent the user from launching the process/application during the installation
 AllowDefer
 Enables an optional defer button to allow the user to defer the installation if they do not want to close running applications.
 DeferTimes
 Specify the number of times the installation can be deferred
 DeferDays
 Specify the number of days since first run that the installation can be deferred. This is converted to a deadline.
 DeferDeadline
 Specify the deadline date up until which the installation can be deferred.
 Specify the date in the local culture if the script is intended for that same culture, e.g.
 If the script is intended to run on EN-US machines, specify the date in the format "08/25/2013" or "08-25-2013" or "08-25-2013 18:00:00".
 If the script is intended for multiple cultures, specify the date in the universal sortable date/time format, e.g. "2013-08-22 11:51:52Z"
 The deadline date will be displayed to the user in the format of their culture.
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Show-IntallationWelcome -CloseApps "iexplore,winword,excel"
 Prompt the user to close Internet Explorer, Word and Excel.
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>Show-IntallationWelcome -CloseApps "winword,excel" -Silent
 Close Word and Excel without prompting the user.
 -------------------------- EXAMPLE 3 --------------------------
 C:\PS>Show-IntallationWelcome -CloseApps "winword,excel" -BlockExecution
 Close Word and Excel and prevent the user from launching the applications while the installation is in progress.
 -------------------------- EXAMPLE 4 --------------------------
 C:\PS>Show-IntallationWelcome -CloseApps "winword=Microsoft Office Word,excel=Microsoft Office Excel" -CloseAppsCountdown "600"
 Prompt the user to close Word and Excel, with customized descriptions for the applications and automatically close the applications after 10 minutes.
 -------------------------- EXAMPLE 5 --------------------------
 C:\PS>Show-IntallationWelcome -AllowDefer -DeferDeadline "25/08/2013"
 Allow the user to defer the installation until the deadline is reached.
 -------------------------- EXAMPLE 6 --------------------------
 C:\PS>Show-IntallationWelcome -CloseApps "winword,excel" -BlockExecution -AllowDefer -DeferTimes "10" -DeferDeadline "25/08/2013" -CloseAppsCountdown "600"
 Close Word and Excel and prevent the user from launching the applications while the installation is in progress.
 Allow the user to defer the installation a maximum of 10 times or until the deadline is reached, whichever happens first.
 When deferral expires, prompt the user to close the applications and automatically close them after 10 minutes.
[bookmark: _Toc365019898]Test-Battery
Synopsis : Tests whether the local machine is running on battery
Description:
 Tests whether the local machine is running on battery and returns true/false
Parameter :
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Test-Battery
 -------------------------- EXAMPLE 2 --------------------------
 C:\PS>
[bookmark: _Toc365019899]Test-MSUpdates
Synopsis : Test whether an Microsoft Windows update is installed
Description:
 Test whether an Microsoft Windows update is installed
Parameter : KBNumber
 KBNumber
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Test-MSUpdates "KB2549864"
[bookmark: _Toc365019900]Test-NetworkConnection
Synopsis : Tests for an active network connection
Description:
 Tests for an active network connection by querying the Win32_NetworkAdapter WMI class.
Parameter :
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Test-NetworkConnection
[bookmark: _Toc365019901]Test-PowerPoint
Synopsis : Tests whether Power point is running in presentation mode
Description:
 Tests whether Power point is running in presentation mode
Parameter :
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Test-PowerPoint
[bookmark: _Toc365019902]Unregister-DLL
Synopsis : Unregisters a DLL file
Description:
 Unregisters a DLL file using regsvr32.exe
Parameter : FilePath
 Path to the DLL file
 ContinueOnError
 Continue if an error is encountered
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Unregister-DLL "$envProgramFiles\Documentum\Shared\DcTLSFileToDMSComp.dll"
[bookmark: _Toc365019903]Update-GroupPolicy
Synopsis : Performs a gpupdate command to refresh Group Policies on the local machine
Description:
 Performs a gpupdate command to refresh Group Policies on the local machine
Parameter :
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Update-GroupPolicy
[bookmark: _Toc365019904]Write-Log
Synopsis : Writes output to the console and log file simultaneously
Description:
 This functions outputs text to the console and to the log file specified in the XML configuration.
 The date, time and installation phase is pre-pended to the text, e.g. [30-07-2013 11:27:07] [Initialization] "Deploy Application script version is [2.0.0]"
Parameter : Text
 The text to display in the console and to write to the log file
 PassThru
 Passes the text back to the PowerShell pipeline
Examples :
 -------------------------- EXAMPLE 1 --------------------------
 C:\PS>Write-Log -Text "This is a custom message..."
	6
	Toolkit Functionality | PowerShell App Deployment Toolkit

image1.png
GetnstalledApplication
Get-RegistryKey
Get-ScheduledTask
Install-MSUpdates
New-Shortcut
Refresh-Desktop
Register-DLL
Remove-File
Remove-MSIApplications

Unregister-DLL
Update-GroupPolicy
Write-Log

INAME
Excoute S

IsYNOPsIS
‘Executes msiexec exe to pefom the folowing actons for MSI & MSP fies and MS1 product codes:insta.
uninstal, patch, epair, active setup.

ISYNTAX
‘Execute-MS! [FAction] <Sting>][-Path] <Sting>] [Transiom] <Sting>] [-Parameters] <Sting>] [FLogName]
<Sting>] [WorkingDirectory] <Sting>] [ContinueOnEor] [<CommonParameters>]

IDESCRIPTION
‘Executes msiexec exe to pefom the folowing actons for MSI & MSP fies and MSl product codes:instal.
uninstal, patch, epair, active setup.

‘Sets default swiches fo be passed to msiexec based on the preferences in the XML corfiguration e, 5.
"REBOOT-RealySuppress /QB!"

Automaticaly generates a log fle name and creates a verbose log flefor allmsiexec operatons.

'NB: Expects the S| or MSP fie o be located nthe "Fles” sub drectory of the App Deploy Toolki. Expects
transforn les to be inthe same drectory as the MSi fie.

IPARAMETERS
“Action <Sifng>
“The acton to perfom ["Instal”"Urinstal","Patch."Repar”"ActiveSetup']

Path <Sting>
The path o the MSI/MSP fie orthe product cods ofthe nstaled S

“Transfomn <Sting>
The name o the transiom fes). Thetransiom il i expected to be i the same directory 3s the S fie.

Parameters <Sting>
‘Overrides the default parameters speciiied nthe XML corfigurston . nstall defaut is
"REBOOT=RealySuppress /QB!", rinstal defaui is "REBOOT=Real)Suppress /GN'"

“LogName <Sting>
‘Overtides the defaui log file name.
“The defauk log fle name is generated from the MSi fle name or for rinstalaions. the product code s
resolved o the displayname and version o the appication.

“WorkingDirectoy <Sting>
‘Overrides the working directory.
The working drectoryis se o the location o the MSi ie.

CortinugOnEmor [<SwichParametens]
‘Continue an ext code s retumed by msiexec that s not recogrised by the App Deploy Took:

image2.png
PowerShell App Deployment Toolkit

(@) Installation in progress. Please wait.

image3.png
PowerShell App Deployment Toolkit

Please wait while the installation performs pre-

) installation cleanup tasks. This may take a few
moments.

image4.png
PowerShell App Deployment Toolkit

“The following programs must be closed before the intallation can proceed.

Flease save your work, close the programs, and then continue.
‘Alematively. save your work and click “Close programs”

‘Adobe Reader
Intemet Bxlorer

Close programs Continue.

image5.png
PowerShell App Deployment Toolkit

“The following programs must be closed before the intallation can proceed.

Flease save your work, close the programs, and then continue.
‘Alematively. save your work and click “Close programs”

‘Adobe Reader
Intemet Bxlorer

You can choose to defer the instalation unfil the deferral expires:

Remaining Deferrals: 3
Deadline: 25 August 2013 00:00:00

Once the deferral has expired, you vill no longer have the option to defer

Close programs Continue.

image6.png
PowerShell App Deployment Toolkit

“The following programs must be closed before the intallation can proceed.

Flease save your work, close the programs, and then continue.
‘Alematively. save your work and click “Close programs”

‘Adobe Reader
Intemet Bxlorer

NOTE: The program(s) will be automafically closed in:
0:09:57

Close programs Continue.

image7.png
PowerShell App Deployment Toolkit

‘The following application is about to be installed:
‘Adobe Reader 11.03

You can choose to defer the instalation unfil the deferral expires:
Deadline: 25 August 2013 00:00:00

Once the deferral has expired, you vill no longer have the option to defer

Continue.

image8.png
PowerShell App Deployment Toolkit

Launching tis application has been temporarily blocked sothat an
installation operation can complete

image9.png
PowerShell App Deployment Toolkit

You can display custom promps with up to 3 optional buttons and
customized text o interact with users.

The response given by the user s retumed s the text o the buton they
cick.

Yos Please Thats Avesome!

image10.png
PowerShell App Deployment Toolkit

You can customise text to appear at the end of an instal, or remove it
completely for unattended installtions.

image11.png
PowerShell App Deployment Toolkit

In order forthe installation to complete, you must restart your computer. Please
save your work and restartwithin the alotted ime.

Your computer vill be automatically restarted at the end of the countdown.

Restartlater

Time remeining:

0:09:57

Restart Now.

image12.png
Adobe Flash Player 11.8.800.94 % *
Installation sarted.

image13.png
Adobe Flash Player 11.8.800.94 % *
Installtion complete.

image14.png
& Adobe Flash Player 11.8.800.94
Installtion failed.

image15.png
0 The installation may take up to 20 minutes to complete and requires a

reboot of your system.

Please Click OKif you are happy to proceed or Cancel to defer the
installation.

image16.png
Microsoft Office 2013

This installation wil require a reboot. Do you wish to proceed with the
A insiion now

image17.png
(28 Adobe Reader 11.00_EN.
@) Adobe Reader 1100 EN OLmst
8 Adoe Reader 1103 Nmsp
Datal.cab

& Setuy

