

home quick answers discussions

features community help
Search for articles, questions, tips

Articles » General Programming » Algorithms & Recipes » Compilers

Article

Browse Code

Stats

Revisions (7)

Alternatives

Comments &

Discussions (74)

About Article

An introduction to creating

programming language

tools using C# 4.0.

Type Article

Licence MIT

First Posted 22 Oct 2011

Views 60,821

Downloads 1,490

Bookmarked 202 times

C# Javascript Windows

Dev Advanced , +

Next

Implementing Programming

Languages Using C# 4.0
By Christopher Diggins, 12 Jul 2012

Download source code - 62.8 KB

Introduction

This article introduces the basic concepts of programming

language implementation for C# programmers. It is meant to

provide a quick overview of the concepts of implementing

programming languages using a number of examples including

an arithmetic evaluator and a simple JavaScript interpreter.

Accompanying this article is an Open-Source library written in C#

4.0 called Jigsaw. You can download the most up to date version

of Jigsaw at code.google.com/p/jigsaw-library/.

Jigsaw comes with an efficient and robust parsing engine as well

as a large number of sample grammars and evaluators. The

Jigsaw parsing library is an evolution of the parsers used in the

Cat language and in the later Heron language.

The Jigsaw library is licensed under the MIT Open-Source license.

If you need another license, contact me at cdiggins@gmail.com.

If you end up using or abusing Jigsaw, I would love to hear about

it!

Built-in .NET Compilers

Before we start, I should point out that if you are looking for an

off the shelf interpreter in C#, you should consider the

System.CodeDOM.Compiler namespace and one or more of

the following assemblies:

Microsoft.CSharp

Microsoft.Jscript

Microsoft.VisualBasic

 4.92 (89 votes)

×

Sign up for our free weekly Web Developer Newsletter.

articles

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

1 of 21 02.04.2013 11:57

Top News

The One Tip That Will Help

You Learn To Code 10x

Faster

Get the Insider News free each

morning.

Related Articles

Why I use explicit interface

implementation as a default

implementation technique

Concepts behind the C# 3.0

language

Allow users to select the user

interface language in your

ASP.NET Web application

DuckTyping: Runtime Dynamic

Interface Implementation

Detect a written text's language

Each of these assemblies provides a class derived from

CodeDomProvider (e.g., CSharpCodeProvider) that you can

use to compile an assembly at run-time.

The following function shows how to use a CodeDomProvider

to generate an assembly dynamically:

 Collapse | Copy Code

public static Assembly CompileWithProvider(CodeDomProvider
provider, params string[] lines)
{
 var param = new
System.CodeDom.Compiler.CompilerParameters();
 var result = provider.CompileAssemblyFromSource(param,
lines);
 foreach (var e in result.Errors)
 Console.WriteLine("Error occured during
compilation {0}", e.ToString());
 if (result.Errors.Count > 0)

return null;
 else
 return result.CompiledAssembly;
}

See the file CodeDOMCompilers.cs for more examples of how to

use the built-in .NET compilers.

That said, I’m confident you are here because you want to learn

the black arts of implementing programming languages, so

continue on brave reader!

Anatomy of a Language Tool

Most language tools follow the same basic architecture:

Tokenization (optional) – This phase is also known as

lexing, lexical analysis, and scanning. During this phase, a

string of characters is converted into a string of tokens

(also called lexemes). This phase is necessary for certain

kinds of parsers (e.g., LALR) but not others (e.g., PEG).

Parsers (like Jigsaw) without a tokenization phase are

called scanner-less parsers.

1.

Parser – Transforms a linear sequence of tokens or

characters into a tree structure called a parse tree.

2.

Tree transformer (optional) – Modifies the parse tree

simplifying later steps.

3.

Tree visitor – Visits each node in the tree and performs

some action or creates a new data structure.

4.

What happens during the node visit defines the type of language

tool. For example:

Interpreter – Transforms nodes into run-time values or

executes a primitive action.

Compiler – Transforms nodes into a machine-executable

representation.

Pretty printer – Transforms nodes into a human-readable

form such as ASCII or HTML.

Translator – Transforms nodes into a source code

representation in a new programming language.

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

2 of 21 02.04.2013 11:57

Abstract Class versus Interface

HowTo: Export C++ classes

from a DLL

Cat - A Statically Typed

Programming Language

Interpreter in C#

Basics of Dataflow

Programming in F# and C#

Adding Multilanguage Support

to Your Objects

Implement Phonetic ("Sounds-

like") Name Searches with

Double Metaphone Part V: .NET

Implementation

Word stemming for German on

.NET Framework

Multilingual Support for Web

Applications

The Future of Software

Development: CodeDOMs (Part

1)

Polymorphism in C

Irony - .NET Compiler

Construction Kit

OrderedDictionary: A generic

implementation of

IOrderedDictionary

Creating Your Own Freaking

Awesome Programming

Language

Understanding and

Implementing the Iterator

Pattern in C# and C++

Convenient wrapper of

VBScript.RegExp for VC++

COM Interface Basics

Type checker– Nodes are transformed into a

representation of the type of the expression. This is a form

of abstract interpretation.

Partial evaluator – An optimization phase where certain

nodes in the tree are replaced by their evaluation (e.g.,

compile-time expressions).

A useful simplification is this: language tools manipulate trees.

Parsing

Parsing, or syntactic analysis, tells us whether an input string

matches a specific syntactic form (grammar) and breaks the

input up into a parse tree representing the syntactic components

(terms or syntactic phrases).

The .NET Framework has no tools out of the box for doing

parsing but there are a large number of third-party parsing tools

to choose from. Some of the more popular tools are ANTLR,

YACC, and BISON. These tools are parser generators, which

means they generate the source code for a parser from a parser

definition (the grammar).

One problem with using code generators is that the learning

curve is quite steep. They each have their own syntax and rules. I

had to implement my own hand-written parser before I could

understand how to use these tools. By then it was too late, and I

was hooked on writing parsers by hand.

For this article, I am using a C# parsing library I wrote called

Jigsaw. I chose to use a hand-written parser because it is easier

to understand and debug. Jigsaw is a memoizing recursive

descent backtracking PEG parser. This is is a mouthful so let's

break down what it means:

A recursive descent parser uses a set of mutually recursive

procedures to recognize syntactic elements in the

language.

A back-tracking parser will try parsing a set of rules in

order, when facing a choice, until one succeeds.

A memoizing parser is a parser that caches (memoizes)

intermediate results of the parsing rule using a lookup

table which improves the time complexity of the

algorithm. Memoizing PEG parsers are also known as

Packrat parsers.

A PEG (Parsing Expression Grammar) parser recognizes

grammars where each rule corresponds directly to a

pattern matching algorithm. A more common alternative

to PEG are predictive LR parsers (of which there are many)

but they are more complicated.

None of this is particularly important when you first learn about

parsing. My experience has been that these kinds of parsers most

closely correspond to my intuition of how a parser should work.

Grammars

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

3 of 21 02.04.2013 11:57

A grammar is a formal definition of the syntax of a language.

Writing a grammar is a bit like writing a Regular Expression. The

grammar consists of one or more rules defined in terms of other

rules using rule operators (also called combinators). Each rule

describes a particular syntactic element in the language known

as a phrase.

In the Jigsaw library, grammars are expressed as a PEG (Parsing

Expression Grammar). In a PEG grammar, each rule defines a

parser for a particular syntactic element.

Time for some unlearning: If you have previously

learned about Context Free Grammars (CFG), a PEG

is distinct in that each rule describes how to match

strings, not how to generate them (as is the case

with a CFG). Some implications are that PEGs can

have zero-width rules and are unambiguous. The

difference between a PEG and a CFG is subtle but

important.

Each rule is an instance of a class derived from Rule. Its role is to

recognize a syntactic element in the language (called a term

or phrase). This recognition is done in the function Match()

which returns a bool value indicating whether matching was

successful. The Match function accepts an instance of a

ParserState class which holds the input string, a position in

the input string, and the parse tree.

You can create instances of rules from static member functions

of the Grammar class.

 Collapse | Copy Code

Grammar.MatchString("fox").Match("fox")); // true
Grammar.MatchString("fox").Match("foxy")); // true
Grammar.MatchString("fox").Match("flying fox")); // false

You can build compound rules that succeed only if a sequence of

child rules match successfully using the plus ("+") operator.

 Collapse | Copy Code

var rule = Grammar.MatchString("cat") +
Grammar.MatchString("fish")
rule.Match("catnip"); // false
rule.Match("dogfish"); // false
rule.Match("catfish"); // true

You can build compound rules that attempt to match any of a

sequence of rules using the pipe ("|") operator.

 Collapse | Copy Code

var rule = Grammar.MatchString("cat") |
Grammar.MatchString("dog")
rule.Match("catfish"); // true
rule.Match("doggedly"); // true

Rules operators can be combined to create even more

sophisticated rules.

 Collapse | Copy Code

var rule = (Grammar.MatchString("cat") |

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

4 of 21 02.04.2013 11:57

Grammar.MatchString("dog")) + Grammar.MatchString("fish")
rule.Match("dogfish"); // true
rule.Match("catfish"); // true
rule.Match("swordfish"); // false
rule.Match("cat"); // false

Rules can be defined as optional using the Grammar.Opt()

function:

 Collapse | Copy Code

var rule = Grammar.MatchString("cat") +
 Grammar.Opt(Grammar.MatchString("fish") |
 Grammar.MatchString("nap"));
rule.Match("cat"); // true
rule.Match("catfish"); // true

Repeated rules can also be created using

Grammar.ZeroOrMore() and Grammar.OneOrMore(). For

example:

 Collapse | Copy Code

var rule =
Grammar.OneOrMore(Grammar.MatchString("badger")) +
Grammar.MatchString("snake");
rule.Match("badger badger badger badger snake!"); // true

Creating a Parse Tree

Simply recognizing whether or not a string belongs to some

grammar is not particularly useful when writing a programming

language tool. What we really want is a data structure that

represents the structure of the input.

Jigsaw allows this to be done by embedding

Grammar.Node rules in the grammar. These rules add a new

instance of a Node to a parse tree if the associated rule is

matched successfully. Calling the Rule.Parse() function will

return a list of parse nodes, each one the root of a parse tree.

Node rules have to be named using the Rule.SetName()

function (unlike other rules where the name is optional). This

name is used as the label of the associated node in the node

tree.

The following code defines a simple grammar for parsing words:

 Collapse | Copy Code

// Define the rules

Rule word =
Grammar.Node(Grammar.Pattern(@"\w+")).SetName("word");
Rule ws = Grammar. Pattern(@"\s+");
Rule eos = Grammar.CharSet("!.?");
Rule sentence = Grammar.Node(Grammar.ZeroOrMore(word | ws)
+
 eos).SetName("sentence");
Rule sentences = Grammar.OneOrMore(sentence +
Grammar.Opt(ws));

var nodes = sentences.Parse("Hey! You stole my pen. Hey
you stole my pen!");
foreach (var n in nodes) {
 Console.WriteLine(n);
 foreach (var n2 in n.Nodes)

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

5 of 21 02.04.2013 11:57

 Console.WriteLine(" " + n2);
}

The output of the above program is:

 Collapse | Copy Code

sentence:Hey!
 word:Hey
sentence:You stole my pen.
 word:You
 word:stole
 word:my
 word:pen
sentence:Hey you stole my pen!
 word:Hey
 word:you
 word:stole
 word:my
 word:pen

Memoizing (Caching) Intermediate Results

Some recursive-descent parsers can take extremely long to parse

certain inputs. A solution to this is to cache intermediate parse

results in a look-up table. This technique is called memoization.

In the Jigsaw library, all NodeRule match results are cached in a

dictionary stored in the ParserState object.

If you set the NodeRule.UseCache constant to false, you can

see how long it takes to parse certain grammars by running the

tests in the JavaScriptTests class.

Simplifying Grammars: Deriving from the

Grammar Class

When defining a grammar, the following points are particularly

annoying:

Needing to add the prefix Grammar in front of the rule

creation functions.

1.

Needing to explicitly set the names of node rules.2.

You can work around these issues by defining all rules in a class

derived from Grammar with each rule declared as a public static

field. You can then use the InitGrammar() function in the static

initializer to assign names automatically to each rule associated

with a field.

You could simplify the grammar used in the previous example as

follows:

 Collapse | Copy Code

public class SentenceGrammar : Grammar
{
 public static Rule word = Node(Pattern(@"\w+"));
 public static Rule ws = Pattern(@"\s+");
 public static Rule eos = CharSet("!.?");
 public static Rule sentence = Node(ZeroOrMore(word |
ws) + eos);
 public static Rule sentences = OneOrMore(sentence +

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

6 of 21 02.04.2013 11:57

Opt(ws));

 static SentenceGrammar() {
 Grammar.InitGrammar(typeof(SentenceGrammar));
 }
}

Recursive Rules

Rules defined as variables or fields can’t refer to themselves or to

a rule that hasn’t been defined yet. This would result in a null

reference in the rule definition. For example, the following

grammar will generate an error during type initialization:

 Collapse | Copy Code

static Rule Number = Pattern("\d+");
static Rule Operator = Node(MatchCharSet("+-*/"));
static Rule Expr = (MatchString("(") + Expr + ")")| (Expr
+ Operator + Expr) | Number;

One solution is to use Recursive() rules which take a lambda

expression that returns an expression at run time.

 Collapse | Copy Code

static Rule RecExpr = Recursive(() => Expr);
static Rule Number = Pattern("\d+");
static Rule Operator = Node(MatchCharSet("+-*/"));
static Rule Expr = ("(" + RecExpr + ")")| (RecExpr +
Operator + RecExpr) | Number;

Avoiding Left-Recursive Rules

In a PEG grammar, recursive rules are not allowed in the left

most position of a sequence. These are called "left-recursive"

rules and will cause the parser to enter into an infinite loop.

For example, consider this grammar for recognizing function

calls (e.g., f(x) or f(x)(y)(z)):

 Collapse | Copy Code

static Rule UnaryExpr = Node(Number | Identifier);
static Rule ArgList =
Node(Parenthesize(CommaList(RecExpr())));
static Rule PostInc = Node(MatchString("++"));
static Rule PostDec = Node(MatchString("--"));
static Rule PostfixOp = Node(ArgList | PostInc | PostDec);
static Rule PostfixExpr = Node((Recursive(() => PostfixOp)
+ ArgList) | UnaryExpr);

This enters into an infinite loop and will cause a stack overflow

exception. The workaround is to rewrite the recursive rule as an

iterative rule.

 Collapse | Copy Code

static Rule PostfixExpr = Node(UnaryExpr +
ZeroOrMore(PostfixOp));

This rule recognizes the desired expressions but unfortunately

produces a parse-tree which can introduce undesired complexity

into an evaluator or compiler. You can address this by using a

post-parse transformation pass. This is discussed in the "Writing

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

7 of 21 02.04.2013 11:57

a Tree Transformer" section.

A Simple Arithmetic Grammar

Putting together everything we have learned so far, here is a

simple grammar for parsing arithmetic expressions:

 Collapse | Copy Code

class ArithmeticGrammar : SharedGrammar
{
 new public static Rule Integer =
Node(SharedGrammar.Integer);
 new public static Rule Float =
Node(SharedGrammar.Float);
 public static Rule RecExpr = Recursive(() =>
Expression);
 public static Rule ParanExpr = Node(CharToken('(') +
RecExpr + WS + CharToken(')'));
 public static Rule Number = (Integer | Float) + WS;
 public static Rule PrefixOp = Node(MatchStringSet("! -
~"));
 public static Rule PrefixExpr = Node(PrefixOp +
Recursive(() => SimpleExpr));
 public static Rule SimpleExpr = PrefixExpr | Number |
ParanExpr;
 public static Rule BinaryOp =
 Node(MatchStringSet("<= >= == != << >> && || < > & |
+ - * % / ^"));
 public static Rule Expression = Node(SimpleExpr +
ZeroOrMore(BinaryOp + WS + SimpleExpr));
 static ArithmeticGrammar() {
InitGrammar(typeof(ArithmeticGrammar)); }
}

You may have noticed that I’ve cheated here by using a

SharedGrammar base class. This class defines some additional

common rules and rule operations like WS, Integer, Float, and

CharToken(). I’ll leave it to you to poke around in the code to

see what is available.

Evaluating the Arithmetic Grammar Parse

Tree

Once a parse tree is generated by parsing a string, we will want

to convert it into a value. This process is called evaluation.

To do this, we create a new class called ArithmeticEvaluator

that has two functions: Eval(string s) and Eval(node n).

For the sake of convenience, both functions return a dynamic

value. When we declare a value as having the dynamic type, it

tells the compiler to skip type-checking. Instead all operations

are resolved at run-time.

 Collapse | Copy Code

class ArithmeticEvaluator
{
 public static dynamic Eval(string s)
 {
 return
Eval(Grammars.ArithmeticGrammar.Expression.Parse(s)[0]);
 }

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

8 of 21 02.04.2013 11:57

 public static dynamic Eval(Node n)
 {
 switch (n.Label)
 {
 case "Number": return Eval(n[0]);
 case "Integer": return Int64.Parse(n.Text);
 case "Float": return
Double.Parse(n.Text);
 case "PrefixExpr":
 switch (n[0].Text)
 {
 case "-": return -Eval(n[1]);
 case "!": return !Eval(n[1]);
 case "~": return ~Eval(n[1]);
 default: throw new
Exception(n[0].Text);
 }
 case "ParanExpr": return Eval(n[0]);
 case "Expression":
 switch (n.Count)
 {
 case 1:
 return Eval(n[0]);
 case 3:
 switch (n[1].Text)
 {
 case "+": return Eval(n[0]) +
Eval(n[2]);
 case "-": return Eval(n[0]) -
Eval(n[2]);
 case "*": return Eval(n[0]) *
Eval(n[2]);
 case "/": return Eval(n[0]) /
Eval(n[2]);
 case "%": return Eval(n[0]) %
Eval(n[2]);
 case "<<": return Eval(n[0])
<< Eval(n[2]);
 case ">>": return Eval(n[0])
>> Eval(n[2]);
 case "==": return Eval(n[0])
== Eval(n[2]);
 case "!=": return Eval(n[0])
!= Eval(n[2]);
 case "<=": return Eval(n[0])
<= Eval(n[2]);
 case ">=": return Eval(n[0])
>= Eval(n[2]);
 case "<": return Eval(n[0]) <
Eval(n[2]);
 case ">": return Eval(n[0]) >
Eval(n[2]);
 case "&&": return Eval(n[0])
&& Eval(n[2]);
 case "||": return Eval(n[0])
|| Eval(n[2]);
 case "&": return Eval(n[0]) &
Eval(n[2]);
 case "|": return Eval(n[0]) |
Eval(n[2]);
 default: throw new
Exception("Unrecognized operator " + n[1].Text);
 }
 default:
 throw new Exception(String.Format(
 "Unexpected number of nodes {0}
in expression", n.Count));
 }
 default:
 throw new Exception("Unexpected type of
node " + n.Label);
 }

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

9 of 21 02.04.2013 11:57

 }
}

Writing a JSON Parser

JSON stands for JavaScript Object Notation. It is a subset of the

JavaScript language that is frequently used as a textual data

representation language. It has a similar structure to XML.

In the Jigsaw library, there is a class JsonObject derived from

DynamicObject that can be created dynamically from a string.

This means that we can write something like:

 Collapse | Copy Code

dynamic d = JsonObject.Parse("{ \"answer\" : 42 }");
Console.WriteLine(d.answer);

For this article, the most interesting part of the implementation

of JsonObject is the Parse() function.

 Collapse | Copy Code

public static JsonObject Parse(string s)
{
 var nodes = JsonGrammar.Object.Parse(s);
 return Eval(nodes[0]);
}

To implement the parse function, we first need to define a JSON

grammar.

 Collapse | Copy Code

public class JsonGrammar : SharedGrammar
{
 new public static Rule Integer =
Node(SharedGrammar.Integer);
 new public static Rule Float =
Node(SharedGrammar.Float);
 public static Rule Number = Node(Integer | Float);
 public static Rule True = Node(MatchString("true"));
 public static Rule False = Node(MatchString("false"));
 public static Rule Null = Node(MatchString("null"));
 public static Rule UnicodeControlChar =
 Node(MatchString("\\u") + HexDigit + HexDigit +
HexDigit + HexDigit);
 public static Rule ControlChar = Node(MatchChar('\\')
+ CharSet("\"\\/bfnt"));
 public static Rule PlainChar = Node(ExceptCharSet("\"
\\")); // "
 public static Rule Char = Node(UnicodeControlChar |
ControlChar | PlainChar);
 public static Rule StringChars =
Node(ZeroOrMore(Char));
 public static Rule String = Node(MatchChar('"') +
StringChars + MatchChar('"'));
 public static Rule Value =
 Node(Recursive(() => String | Number | Object |
Array | True | False | Null));
 public static Rule Name = Node(String);
 public static Rule Pair = Node(Name + WS +
CharToken(':') + Value + WS);
 public static Rule Members =
Node(CommaDelimited(Pair));
 public static Rule Elements =
Node(CommaDelimited(Value));
 public static Rule Array = Node(CharToken('[') +

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

10 of 21 02.04.2013 11:57

Elements + WS + CharToken(']'));
 public static Rule Object = Node(CharToken('{') +
Members + WS + CharToken('}'));
 static JsonGrammar() {
InitGrammar(typeof(JsonGrammar)); }
}

Next we need to write a function that converts from a parse tree

to a JsonObject. We will follow the same basic form as the

ArithmeticEvaluator example. We will write only one Eval()

function that can return any valid JSON type (e.g., number, string,

array, etc.) depending on the label of the argument.

 Collapse | Copy Code

public static dynamic Eval(Node n)
{
 switch (n.Label)
 {
 case "Name": return Eval(n[0]);
 case "Value": return Eval(n[0]);
 case "Number": return Eval(n[0]);
 case "Integer": return Int32.Parse(n.Text);
 case "Float": return Double.Parse(n.Text);
 case "String": return n.Text.Substring(1,
n.Text.Length - 2);
 case "True": return true;
 case "False": return false;
 case "Null": return new JsonObject();
 case "Array": return n.Nodes.Select(Eval).ToList();
 case "Object":
 {
 var r = new JsonObject();
 foreach (var pair in n.Nodes)
 {
 var name = pair[0].Text;
 var value = Eval(pair[1]);
 r[name] = value;
 }
 return r;
 }
 default:
 throw new Exception("Unexpected node type " +
n.Label);
 }
}

Writing a Simple JavaScript Interpreter

The simplest kind of interpreter is little more than a wrapper

around an evaluation function. Unlike the JSON and arithmetic

evaluators, a programming language evaluator has to manage

variable and function names.

Writing a JavaScript Grammar

It makes sense to derive a JavaScript grammar from the JSON

grammar. Some rules will have to be rewritten, such as rules for

defining object and array literals so that arbitrary expressions can

be placed in objects and arrays, not just literals.

Here is the JavaScript grammar:

 Collapse | Copy Code

public class JavaScriptGrammar : JsonGrammar

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

11 of 21 02.04.2013 11:57

{
 // Recursive rules defined at the top
 public static Rule RecExpr = Recursive(() => Expr);
 public static Rule RecStatement = Recursive(() =>
Statement);
 public static Rule Literal =
 Recursive(() => String | Integer | Float | Object |
Array | True | False | Null);

 // Redefine Identifier so that it creates nodes in the
parse tree

 public new static Rule Identifier =
Node(SharedGrammar.Identifier);

 // The following rules are redefined from JsonGrmmar
because

 // arbitrary expressions are allowed, not just literals
 public static Rule PairName = Identifier |
DoubleQuotedString | SingleQuotedString;
 public new static Rule Pair = Node(PairName + WS +
CharToken(':') + RecExpr + WS);
 public new static Rule Array =
 Node(CharToken('[') + CommaDelimited(RecExpr) + WS +
CharToken(']'));
 public new static Rule Object =
 Node(CharToken('{') + CommaDelimited(Pair) + WS +
CharToken('}'));

 // Function expressions
 public static Rule ParamList =
Node(Parenthesize(CommaDelimited(Identifier + WS)));
 public static Rule NamedFunc =
Node(Keyword("function") +
 Identifier + WS +
ParamList + RecStatement);
 public static Rule AnonFunc = Node(Keyword("function")
+
 ParamList +
RecStatement);
 public static Rule Function = NamedFunc | AnonFunc;

 // Expression rules
 public static Rule ArgList = Node(CharToken('(') +
CommaDelimited(RecExpr) + CharToken(')'));
 public static Rule Index = Node(CharToken('[') +
RecExpr + CharToken(']'));
 public static Rule Field = Node(CharToken('.') +
Identifier);
 public static Rule PrefixOp = Node(MatchStringSet("! -
~"));
 public static Rule ParenExpr = Node(CharToken('(') +
RecExpr + WS + CharToken(')'));
 public static Rule NewExpr = Node(Keyword("new") +
Recursive(() => PostfixExpr));
 public static Rule LeafExpr = ParenExpr | NewExpr |
Function | Literal | Identifier;
 public static Rule PrefixExpr = Node(PrefixOp +
Recursive(() => PrefixOrLeafExpr));
 public static Rule PrefixOrLeafExpr = PrefixExpr |
LeafExpr;
 public static Rule PostfixOp = Field | Index | ArgList;
 public static Rule PostfixExpr = Node(PrefixOrLeafExpr
+ WS + OneOrMore(PostfixOp + WS));
 public static Rule UnaryExpr = PostfixExpr |
PrefixOrLeafExpr;
 public static Rule BinaryOp =
 Node(MatchStringSet("<= >= == != << >> && || < > & |
+ - * % /"));
 public static Rule BinaryExpr = Node(UnaryExpr + WS +
OneOrMore(BinaryOp + WS + UnaryExpr));
 public static Rule AssignOp =
 Node(MatchStringSet("&&= ||= >>= <<= += -= *= %= /=

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

12 of 21 02.04.2013 11:57

&s= |= ^= ="));
 public static Rule AssignExpr = Node((Identifier |
PostfixExpr) + WS + AssignOp + WS + RecExpr);
 public static Rule TertiaryExpr = Node((AssignExpr |
BinaryExpr | UnaryExpr) +
 WS + CharToken('?') + RecExpr + CharToken(':')
+ RecExpr + WS);
 public static Rule Expr = Node((TertiaryExpr |
AssignExpr | BinaryExpr | UnaryExpr) + WS);

 // Statement rules
 public static Rule Block = Node(CharToken('{') +
ZeroOrMore(RecStatement) + CharToken('}'));
 public static Rule VarDecl = Node(Keyword("var") +
Identifier + WS + Opt(Eq + Expr) + Eos);
 public static Rule While = Node(Keyword("while") +
Parenthesize(Expr) + RecStatement);
 public static Rule For = Node(Keyword("for") +
 Parenthesize(VarDecl + Expr + WS + Eos + Expr +
WS) + RecStatement);
 public static Rule Else = Node(Keyword("else") +
RecStatement);
 public static Rule If = Node(Keyword("if") +
Parenthesize(Expr) + RecStatement + Opt(Else));
 public static Rule ExprStatement = Node(Expr + WS +
Eos);
 public static Rule Return = Node(Keyword("return") +
Opt(Expr) + WS + Eos);
 public static Rule Empty = Node(WS + Eos);
 public static Rule Statement =
 Block | For | While | If | Return | VarDecl |
ExprStatement | Empty;

 // The top-level rule
 public static Rule Script = Node(ZeroOrMore(Statement)
+ WS + End);

 // Grammar initialization
 static JavaScriptGrammar()
 {
 InitGrammar(typeof(JavaScriptGrammar));
 }
}

Writing a Source Code Printer

Given a parse tree generated from a JavaScript parser, one of the

simplest tools we can build is a source code printer. This is a

useful intermediate step when you are developing a language for

validating that the parser is working as expected.

A source code printer (or pretty printer) prints a formatted

representation of the input AST. This can be useful in text editors,

or when doing source-to-source translation.

The Printer class in the Jigsaw library facilitates writing custom

source translators. By deriving from Printer, you only need to

override the Print() function and can then easily generate

output depending on the kind of node received.

The following snippet of code is taken from the

JavaScriptSourcePrinter class.

 Collapse | Copy Code

switch (n.Label)
{

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

13 of 21 02.04.2013 11:57

 case "Script":
 return Print(n.Nodes);
 case "Statement":
 return Print(n[0]);
 case "Empty":
 return Print(";");
 case "Return":
 return (n.Count > 0)
 ? Print("return ").Print(n[0]).Print(";")
 : Print("return;");
 case "ExprStatement":
 return Print(n[0]).Print(";");
 case "If":
 Print("if
(").Print(n[0]).Print(")").Indent().Print(n[1]).Unindent();
 return n.Count > 2
 ? Print(n[2])
 : this;
 case "Else":
 return
Print("else").Indent().Print(n[0]).Unindent();
 //...
}

Writing a Tree Transformer

The JavaScript parser works well, although certain parts of the

parse tree will be hard to work with during evaluation:

Chained binary expressions are not separated. For

example, when the BinaryExpr rule encounters 3 + 4 *

5, it will treat one node with 5 children (3, +, 4, *, 5)

instead of (3, +, (4, * ,5)) which would be easier to work

with.

Chained postfix operators are not separated. For example,

f(1)["hello"].field will be parsed by the

PostfixExpr rule as (f, (1), ["hello"], .field)"

whereas it would be easier if it was (((f, (1)), ["hello"]),

.field).

To simplify the evaluator, and possibly other tools, a class

derived from TreeTransformer called JSTransformer can be

found in the Jigsaw library. This transformer does a number of

tasks:

Converts postfix expressions into one of the following

types of expression:

FieldExpr – An expression followed by a "." and an

identifier. For example, "myobject.myfield".

IndexExpr – An expression followed by an index

operator. For example, "myarray[index]".

CallExpr – An expression followed by an argument

list. For example, "myfunc(arg0, arg1)".

MethodCallExpr – A FieldExpr followed by an

argument list. For example, "myobject. myfunc(arg0,

arg1)".

Separates long binary expressions according to

precedence rules.

Converts named functions (e.g., function f(x) { }) into

variable declarations of the form: var f = function(x) { }.

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

14 of 21 02.04.2013 11:57

Converts while loops into for loops.

Rewrites special assignment operators, so that the

evaluator only has to consider the basic assignment

operator. For example, "a += b" becomes "a = a + b".

Replaces nodes which only ever have one child by the

child node.

Managing the Environment

When you write an evaluator for a programming language, you

have to track values associated with names (e.g., function names,

variable names, argument names). The binding of values to

names is collectively called the environment. In Jigsaw, the

environment is managed by a class called VarBindings. You

can see an example of its usage in the Evaluator class.

The VarBindings class is a recursively defined associative list

class. It contains a name and its associated value, along with a

pointer to another VarBindings class. This representation of an

environment is not particularly efficient but very convenient to

use.

In JavaScript, when a variable is declared, it is added to the list of

variable bindings. When a "block" goes out of scope, all names

declared in that scope are unbound. In Jigsaw, this is done in a

function called "EvalScoped". The EvalScoped function takes

another function as an argument. It takes a snapshot of the

environment, executes the function, and then restores the

environment.

 Collapse | Copy Code

public dynamic EvalScoped(Func<dynamic> f)
{
 var e = env;
 var r = f();
 env = e;
 return r;
}

In JavaScript, when a new name is first used, a binding is created

automatically. This might not have been a great language design

decision, since it increases the chances of programmer error, but

we respect it in our implementation. This logic is handled in a

function called AddOrCreateBinding().

JavaScript Functions

Unlike JSON, when implementing a JavaScript interpreter, we

have to consider what data structure to use to represent

functions. In JavaScript, functions are closures. This means the

function can refer to variables declared outside of the function.

Such variables are called free variables.

One of the simplest methods to implement a closure is to use a

copy of the environment from the moment the function value is

declared. When the function is applied to its arguments (i.e.,

called), the current evaluator’s environment is temporarily

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

15 of 21 02.04.2013 11:57

replaced with the version stored with the function.

The implementation of the JavaScript function used in Jigsaw is

shown here:

 Collapse | Copy Code

public class JSFunction
{
 public static int FuncCount = 0;
 public Node node;
 public VarBindings capture;
 public Node parms;
 public string name = String.Format("_anonymous_{0}",
FuncCount++);
 public Node body;

 public JSFunction(VarBindings c, Node n) {
 capture = c;
 node = n;
 if (n.Count == 3)
 {
 name = n[0].Text;
 parms = n[1];
 body = n[2];
 }
 else
 {
 parms = n[0];
 body = n[1];
 }
 }

 public dynamic Apply(JavaScriptEvaluator e, params
dynamic[] args)
 {
 var restore = e.env;
 var originalReturningState = e.isReturning;
 dynamic result = null;

 try
 {
 e.env = capture;
 e.isReturning = false;
 int i = 0;
 foreach (var p in parms.Nodes)
 e.AddBinding(p.Text,
args[i++]);
 e.Eval(body);
 result = e.result;
 }
 finally
 {
 e.result = null;
 e.env = restore;
 e.isReturning = originalReturningState;
 }
 return result;
 }
}

Return Statements

When evaluating a series of statements and a return statement

is encountered, you need to store the return value and exit the

enclosing function.

In the JavaScript evaluators, we set a flag (isReturning). This

flag is checked whenever a compound statement is executed

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

16 of 21 02.04.2013 11:57

(e.g., for loops, while loops, etc.), to decide whether the

execution of later statements should be skipped. We chose this

approach because it is simple to understand and easy to

implement.

An even simpler approach would have been to throw an

exception. However, this would have made debugging harder

and would have had a significant negative impact on

performance.

A more efficient approach to this problem is to rewrite the parse

tree so that there is only one "return" statement at the end of a

function. This is a bit complicated since it requires adding

additional variables and rewriting any loop conditions, but the

complexity would be moved out of the evaluator function and

into the transformer.

The Evaluation Function

The JavaScript evaluation function is similar in structure to the

JsonObject.Eval() function with the following differences:

The node tree is transformed into a form that is a bit

easier to evaluate

Variables are managed in a VarBindings object

A new data type (JSFunction) is introduced

The evaluation function is too long to list here, but here is a

representative snippet:

 Collapse | Copy Code

case "AnonFunc":
 // Creates an unnamed function
 return new JSFunction(env, n);
case "Block":
 // Execute a sequence of instructions
 return EvalScoped(() => EvalNodes(n.Nodes));
case "If":
 // Check if the condition is false (or NULL)
 if (Eval(n[0]) ?? false)
 // Execute first statement
 return Eval(n[1]);
 else if (n.Count > 2)
 // Execute else statement if the condition is
false, and it exists

 return Eval(n[2]);
 else
 // By default reutrn the result
 return null;
case "VarDecl":
 // Variable declaration
 // It may or may not be initialized
 return AddBinding(n[0].Text, n.Count > 1 ? Eval(n[1])
: null);
case "Empty":
 // An empty statement means we do nothing
 return null;
case "ExprStatement":
 return Eval(n[0]);

Extending the Primitive Set

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

17 of 21 02.04.2013 11:57

The evaluator included implements only basic operators, and has

a single built-in function "alert". Built-in functions are

implemented using the JSPrimitive class and are added to the

global environment when an evaluator is initialized.

 Collapse | Copy Code

public JavaScriptEvaluator()
{
 // This is where you could add all sorts
 // of primitive objects and functions. Or don't. Fine.
 AddBinding("alert", new JSPrimitive(args => {
Console.WriteLine(args[0]); }));
}

A JavaScript to Expression Tree Compiler

The Expression class in the System.Linq.Expressions

namespace (also known as an expression tree) is a convenient

way to dynamically create new functions at run-time. By

converting a parse tree into an expression tree, we can then use

the Expression.Compile() function to create delegates at

run-time that can be executed using DynamicInvoke().

Generating expression trees is similar to evaluation, except that

instead of returning a dynamic value for each node, we return an

instance of the Expression class. An expression compiler can

be derived from the ExpressionCompiler utility class.

The sample JavaScript to expression compiler in the Jigsaw

library, JavaScriptExpressionCompiler, provides two

compilation functions, one that takes a string, and the other

that takes a Node.

 Collapse | Copy Code

public static Delegate CompileLambda(string s)
{
 var nodes = JavaScriptGrammar.AnonFunc.Parse(s);
 return CompileLambda(nodes[0]);
}

public static Delegate CompileLambda(Node n)
{
 n = JavaScriptTransformer.Transform(n);
 var compiler = new JavaScriptExpressionCompiler();
 var expr = (LambdaExpression)compiler.ToExpr(n);
 if (expr == null) return null;
 return expr.Compile();
}

Note that like the evaluation function, Transform is used to

simplify the parse tree before entering into the "ToExpr"

function which converts each Node into an Expression.

Next Steps

There are a number of JavaScript features that are not

implemented in the JavaScript interpreter and expression

compiler. For further study, you can extend the samples provided

to implement more features or add programming language

features that you may find interesting.

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

18 of 21 02.04.2013 11:57

Hopefully you have learned enough that you can start

experimenting with creating your own languages.

There are several other samples included with the Jigsaw library

that you may find interesting:

ILCompiler.cs – An implementation of an IL assembly code.

SchemeExpressionCompiler.cs – A simple expression

compiler that works for a small subset of the Scheme

language. Scheme is a dialect of LISP.

CatEvaluator.cs – Contains an evaluator for the Cat

language, a simple functional stack-based language.

Final Words

This article only scratches the surface of implementing

programming languages. If you liked this article and want to

learn more about programming language implementation, you

may be interested to know that I am working on a book with the

working title "Implementing Programming Languages in C#".

Please email me at cdiggins@gmail.com if you would like to

learn more, become a beta reviewer, or just to show your

support. Thanks!

History

Oct. 22, 2011 - First submission.

Oct. 23, 2011 - Removed superfluous files from download

package, and added missing link to download.

Oct. 28, 2011 - Made a large number of edits thanks to a

wonderfully detailed review by Tracey Houston. Thanks

Tracey!

Dec. 27, 2011 - Made a number of edits thanks to a

detailed review by David Haguenauer. Thanks David, sorry

it took so long for me to add them!

License

This article, along with any associated source code and files, is

licensed under The MIT License

About the Author

Christopher

Diggins
Software Developer Autodesk

Canada

Member

 Follow on Twitter

 Google

This article was written by Christopher Diggins, a computer

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

19 of 21 02.04.2013 11:57

Article Top

 5 Tweet 11

Sign Up to vote Poor Excellent Vote

Search this forum Go

science nerd who currently works at Autodesk as an SDK

specialist.

Comments and Discussions

Hint: For improved responsiveness ensure Javascript is enabled and

choose 'Normal' from the Layout dropdown and hit 'Update'.

You must Sign In to use this message board.

Profile popups Spacing Relaxed Noise Very High Layout

Normal Per page 10 Update

First Prev Next

filmee24 20 Dec '12 - 8:15

kishore doni 2 Sep '12 - 20:51

SunKwon 29 Aug '12 - 3:04

maklipsa 18 Jul '12 - 23:18

ShlomiO 17 Jul '12 - 16:34

Xiang Zhai 15 Jul '12 - 15:33

Sacha Barber 12 Jul '12 - 5:53

Jason Pu 10 Mar '12 - 18:39

Jason Pu 14 Apr '12 - 9:37

kartalyildirim 4 Mar '12 - 9:28

Like 9

library?

My vote of 5

My vote of 5

coco/R

My vote of 5

JigSaw is

terrible code

name

I love

articles like

this, 5 from

me

Issue with

Comments

Re: Issue

with

Comments

Very

interesting.

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

20 of 21 02.04.2013 11:57

Permalink | Advertise | Privacy | Mobile

Web04 | 2.6.130402.1 | Last Updated 12 Jul 2012

Article Copyright 2011 by Christopher Diggins

Everything else Copyright © CodeProject, 1999-2013

Terms of Use

Layout: fixed | fluid

Last Visit: 31 Dec '99 - 18:00

Last Update: 1 Apr '13 - 17:57
Refresh 1 2 3 4 5 6 7 8 Next »

 General News Suggestion Question Bug

Answer Joke Rant Admin

[modified]

Implementing Programming Languages Using C# 4.0 - CodeProject http://www.codeproject.com/Articles/272494/Implementing-Program...

21 of 21 02.04.2013 11:57

