PDFWebViewer.NET 1.0

Developer Guide

Version: 1.4 (updated for product version 1.0.6.0)
Date: March 8, 2011

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 2/45

Legal Note

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations,
products, domain names, email addresses, logos, people, places and events depicted herein are
fictitious, and no association with any real company, organization, product, domain name, e-
mail address, logo, person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
TallComponents BV.

TallComponents BV may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from TallComponents BV, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property. Acrobat and PDF are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries.
Windows NT, 2000, XP, and Server 2003, .NET Framework and Internet Information Server are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.
All other trademarks are the property of their respective owners.

© 2001-2011 TallComponents BV. All rights reserved.

PDFWebViewer.NET is a trademark of TallComponents BV.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 3/45

Contents
SO |1 €0 Yo [ot o 1 FS RPN 8
1.1, FRATUTES ettt ccrrreeeess e e errraassessssseenensssssssssssesnnnssssssssssnsnnnnnss 8
1.2, BaSiC CONCEPLS. e s s s s s s s ssssssssssssssssssssssssssssssnsnnns 8
1.3. Conventions used in this dOCUMENTuuuiiiiiiii e 9
1.4. Please send us feedbackl.......cccceeeeerrrrrirrrireriiriirsrirssrsssssssssssssssnssssssssssssssssssnsssnsssnnnes 9
1.5, ONliNE RESOUICES .ceiiieeeuerreeeerieeerireereeeeeeseeessnneeeessssssssssnseeesssssssssssnneeassssssssssnnsneassens 9
1.6, NAMING CONVENTION....uiiiiiiiiiitiiiiieeeeeeettttieeeeeeeeeeteutneeeeeeeesaasssssssesesssssssssnssessssesssnnnnns 9
b S 111 €14 F=45 =] (Lo FO TRt 10
2.1. Development ENVIFONMENT ..cciiiiiceeirieeeeecccccireee e e e eceeeeeree e e e e e e nreeeeeeeseeennnnaaaaaeas 10
2.2, REQUITEIMENTES ..uuuuiiiiiiiiissirrsssessssnssnsssssssnssssssssnsnnsnne 10
2.3, DEPlOYMENT....ueccccc e aaaaaaaaanaaaaaannan 10
2.4. Working with Visual Studio 2008.........uuuuuuiiiiiiiiiiiiiieniieriaeereerreerrreeraeennerra————.. 10
2.5. Walkthrough: A basic PDF VIEWET (CH#) eeeeeiiiieeerrrrreeeeeiiierneereeeeeeeseenneereeeessssssssssesseees 11
TR o | A= =Y N 17
3.1, UsSing the PAfVIeWer CONTIOLuuuuuueiiiiiiiiiaaaaaa s aassasaaaannannnes 17
3.2, StYlING POV EWET e ee e ee e s e e s s e s e s s s e e s s e e s s e e s s e e e e s 17
3.3. Enabling full-texXt SEArCh..ciiii i e e e e e s e e e e 18
3.4, Client SCript interactioncceecereeeseeirrrirrsiirsiicsrrrssrsssse s sssssensssssssssssssssssssssssssssnnnns 18
F R o VTN Y g o To] - 1 U 22
4.1, USiNg PAfVIieWerTOOIDAr ..cccciiviiiiiiiiiiiicciccccceccceeeeeeeeeereeeeeee e ee e e e e e eeeeeees 22
4.2, Styling PAfVIieWerTOOIbar ..cccciiiiiiiiiceiiccccccccccncnenennrren e ses e ess s se s e se s e e se s eee e 23
4.3. Client script iNteraction ..ciiieiiiiiiieiiiccce e 25
LB oo i 0T 1] o] T 11] X3 PRt 28
L3 P - | (1] =S OPRRIN 28
5.2. Styling the thumbnails listcceieeeeeivereeiiiiiecrrrreeee e sreree e e e e s saeeeeeees 28
0% T & 1)Y= =1 i =l PR 28
6. Managing PDF dOCUMENTScevieereeeeeiieeeeeeetieteeneeeeeeeeeeeessneeeseeeessssssssnsseeeesssssssnnsssesessssnns 30
T T (o) ¢ 1= 0] g o DT 1 U= RN 30
6.2. SESSIONSTOragEPIOVIAE .. .ciiieieitieieiieeeeettcceeee e eeerrreeee e e e eeeeraaaeeeeeeeeeasssnnnnsesseessnnes 32
6.3. FileSystemStorageProOVIdEr ccceeeiiiiiiciicic e aa s aaaaaes 32
6.4. Implementing @ CUStOM PrOVIAEreeeeeeiiiieeiiiieeeeeeeeiercrieeeeeeeeeesessneeeeeeessssssnneeeeeens 33
6.5. Sample : Implement database Storage (CH)ccccveeeeeeeeereciereereeeeeeeeceeeeeeceeeesecneeeeens 33
6.6. Controlling access to PDF dOCUMENTS......ccieeeerrereeeerreneerrneeeeeessessessnneeeeessssssssnnnneeees 38
7o SBIVICES eetrrruieieieeeeettetiieeeeeeeereautnieeeeeseeessssssnsessesessssssssssessesssssssnnsssessssssssnnnssssesssssnsnnnnns 40
2% TR o i oY F g = =<1 o = T T | T 40
7.2, SEATCHHANAIET cccii i r e e e s s e e s s e e s e e s s e e s s e e e eeas 40
7.3, CONFIGUIING @ SEIVICE «.ieieieerrieeieeeeerettiieeeeeeeeetertieseseeeeeeeassnnsseseeesssssssnnsesseessssnnnnnnns 40
8. Advanced configuration OPtiIONSeeeeeeeireeeiiiiirrieeeereerrrrrreeeeeeeesssnrereeeeessssssnnenneeesssssns 42
£S5 TR 1414 €0 o 1F o f (o 1SN 42

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

8.2. Using CMaps
9. AppendixA:Tips
9.1. Registering a

Pag. 4/45

tag Prefix for ASP.NETcccviiiiiiieeeereeeieeeeeeeeeeeeeeeeeeeeeeeeeeseeesseesssssseessesnee 45

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 5/45

List of Code Samples

Code sample 2-1 The code view of the page (default.aspX) ...cccccvrurrreeereeeeeiinnreeeeeeeeeeirrreeeeeseenns 13
Code sample 2-2 Custom handler declaration in pageasimage.ashX.....ccccceeereerreeereeeeeeeeeeeeeeeenes 14
Code sample 2-3 Storage configuration in Web.Config.....ccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeees 15
Code sample 2-4 Set the document to display on the PdfViewer controlccceeeeeevunveeeeeennnnns 15
Code sample 3-1 Minimal Setup Of PAfVIEWETuuverreeereerreerreeeneeereeereermeeeeeeereeereeeeeeeeeeeeeeeeeeeeees 17
Code sample 3-2 Viewer Styling eXamMPle.....cciiieeeeerrrrrreeeereeeerrnrereeeeeseessssneereeessssssssnnnneessssases 17
Code sample 3-3 Minimal setup of PdfViewer with support for searching.......ccccceeeevvuvereeerennnne 18
Code sample 3-4 Document information in client script (Upload & View demo)ccccvveernnneenn. 18
Code sample 3-5 Handler signature for status eVENtS......ceveeeeeiivereeeerennriiinereeeeeeeeeessneeeeeeenens 20
Code sample 3-6 Using the status events to update the user interface......cccceeeeeeeeeereeeeeeeneeennnns 20
Code sample 4-1 Minimal setup of PdfViewer and PdfViewerToolbar........ccccceeeereeereeeeeeeeeeeeeeennne 23
Code sample 4-2 Register the tc tagprefix on the Page.....cceeeeevviereeiiiiicciiiereeeeeccccrreeee e, 23
Code sample 4-3 Excerpt from Default.aspx in CustomStyleDemo.eeeveeereeeeeeereeereeneeeeseennenns 24
Code sample 4-4 Using CSS to compensate for increased toolbar height.......cccoovvvvviviiiinnnnnnne 24
Code sample 4-5 Handler signature for buttonClick event.ccccveeeeeeiieeriineeeeeeeenncerieeeeeeenns 26
Code sample 4-6 Using the toolbar’s buttonClick event (Upload & View demo)ccccvveeennneen. 27
Code sample 5-1 CSS hover effect (from default.aspx in LibraryDemo)cccceeeeerereeeeneeeeesnnnee 28
Code sample 5-2 Control declaration (from default.aspx in LibraryDemo)........ccceeevveeeeevveeneennns 29
Code sample 6-1 Storage configuration in Web.config......uuueuieerreeereeeieeeieerieerieeieeeneeeeeeeeeeeee. 32
Code sample 6-2 DatabaseFile class declaration (C#).cccceeeeevieieiieiiiieenniieeeeesneeeeeseeeeeessnnees 34
Code sample 6-3 Adding a ConnectionString to web.config......cciviviiiiiiiiiiiieiiieiieiiiieeeeeeeeeeeeeeenn 35
Code sample 6-4 Initialize method for DatabaseStorageProvider.uuueeeereeeeeeeeeeeeeeeeeeeeeeeeen 35
Code sample 6-5 Implementation for the GetDocuments method.cccceeevererriivreriinnneennnnenen. 36
Code sample 6-6 Implementation for the GetDocument method.cevveeeeeiiiieiieeeiieeieeeeeeeeeeennn. 36
Code sample 6-7 Implementation Of StOreFile.....uuuuiueeireeiieeiieeiieiiieiiieirieeereeeeeeeeeeeeeeeeeeeeeeeeeeeee 37
Code sample 6-8 Storage configuration in Web.CoNfigcuvvveerreiiieiieieineireeeeeeeneeeeeeeeeeeeeeeeeeeenn 38
Code sample 6-9 Controlling access to pages (LimitedAcceSSDEMO)ceeeeueveeeeieeeereceneerenenen. 39
Code sample 7-1 Custom handler declaration in an .ashx file for PdfTolmageHandler.. 40
Code sample 7-2 Custom handler declaration in an .ashx file for SearchHandler............cuuuu..... 40
Code sample 7-3 Controls using the url’s declared for PDFWebViewer.NET services (Library demo)
... 41
Code sample 7-4 Configuring URLs for services using web.configcceevvvvrreeeeeincciinnneeeeenennns 41
Code sample 8-1 Registering the tc tag prefix for a SiNgle PAZE ..cvveerreerrrerrreereerieeeeeeeieeeeeeeeeeeeens 45
Code sample 8-2 Registring the tc tag prefix in web.configuuuivviiiiiiiiiiiiiiiiiiiieiieeeieeeeeeeeeeeeen 45

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 6/45

List of Tables

Table 3-1 Style properties supported by PAfVIEWET.ueeeieiirriiiiieeeeeiieinccrreeeeeeeeesessneeeeeens 17
Table 3-2 Properties of the Document object in client SCript. ...ccceeeeereeerrrrrrerieriiriricrrrrereceeeeeeaens 19
Table 3-3 Properties of the Documentinfo object in client SCript.....cccceeeeeeeeeiiieereeeeeinrecirneeeeeenn. 19
Table 3-4 Properties of the Page object in client SCript. ...cceiiieeeeivieeeeeeiiiciireeeeeeeeeeeccneeeeeeeeens 19
Table 4-1 Toolbar buttons and iMaZEScuuveeeeeeeeieeiieieeerteccee e eeereereeeeeeeeeersenneeeeseessesnnsnnnns 22
Table 4-2 Toolbar Styling ProPerties. ..cciieeeeerreereeeeeeeeriirerreeeeeesesssrereeeeesssssssnneneessssssssssnneseesssns 23
Table 4-3 Styles used by PAfVieWerControl......cccceeeeeeerererreereereesrrsrseeseeesssesssesssesssssssssssssssssssnns 24
Table 4-4 Toolbar buttons and IMAZESccceeeeeeeeeeiieiieeeriierreeeeeeeeereeenneerreeeerressnnneeseeessssnnnnnns 25
Table 4-5 Command names for toolbar BUttONS.cccieiiiiiiieiiieiecccceccccrcceeereee e 26
Table 6-1 Methods of PAfStorageProVider.ccuuuuuueiiiiiiiiiiiiieeieeeeeeerrnieeeeeeeeeeeanaaeeeeeeeeessnnnnnns 30
Table 6-2 Static properties on PdfStorage that provide access to configured providers. 30
Table 6-3 Properties of the DOCUMENT ClaSS ...uveeerieereriirereeieieereiireeeeeeeeesssrrrereeeeeessssssnneeeeeeeas 31
Table 6-4 Properties of the DocumentIinfo Classuueueeeueueerrenreeriiirrireeaneees 31
Table 6-5 Configuration settings for FilesystemStorageProvider.ccccccveeeeevveereeeerennccsnneeeenens 33
Table 6-6 Methods of the IPAfStoragelnterface.ccouiveieveeeiieeiiiieeeierreeeeeeeeererereeee e e eeeeenaaeeees 33
Table 6-7 Structure of th File table in the sample database........ccceeevevevevvviviicvciciccaee 34
Table 6-8 Abstract methods of PAfStorageProvider.ccceeeeveevieerirriireiirriirraeseaenenes 36

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 7/45

List of Figures

Figure 1-1 PAfWebViewer COMPONENESciccecvueeeeeeiiieeciiieeeeeeeseeeesinneeeeeeessssssnneeeeesssesssssnaseeses 8
Figure 2-1 Create a new ASP.NET 3.5 Project in Visual Studio 2008cccevvvviiiiiiiiiiiiiiiinennnennnn. 11
Figure 2-2 The newly created Project....cciiiecccrreeeeeeiiieeeriereeeeeereecsnereeeeseesessneeeeesessssssnneneessens 11
Figure 2-3 The completed project in the project eXplorer.......iieeeeevveeeeeeiiiecrireeeeeeeeeeecseeeeeeens 15
Figure 2-4 The sample application in Internet EXplOrer 8ccceeeeeieiiiiiieiiieiieeeiieeieeeeeseesesesssssssnnns 16
Figure 4-1 The default appearance for PdfViewerToolbar.......ccccceeeeiiiiiiiiiiiiiiiiiiiiiiccccecceeeeeen, 22
Figure 5-1 PdfThumbnailsList with CSS Styling....cccceiviiiiiiiiiiiiiiiiieeee e 29

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

1. Introduction

This developer guide will help you understand the PDFWebViewer.NET 1.0 ASP.NET control. It
walks through the main concepts and illustrates them with code samples. This guide is not
intended as a type reference. A full type reference is included in the download and can be viewed
online at http://www.tallcomponents.com/pdfwebvieweri/help/.

1.1. Features

PDFWebViewer.NET is a 100% .NET (verifiable) solution for viewing PDF documents in a webpage.
The product includes a complete set of ASP.NET controls that show PDF content and help users
navigate and inspect PDF documents. No PDF content is downloaded to the client. This gives you
complete access control and eliminates the need for browser plug-ins like Adobe Acrobat.

These are PDFWebViewer.NET’s primary features:
e View PDFin a web browser without downloading the document
e AJAX enabled controls provide a smooth user experience
e Smooth zoom, pan and scrolling
e Full text searching
e Control access to PDF documents at page level
e Compatible with all major browsers including IE7, IE8, FireFox, Opera and Chrome.
e No browser plug-ins required
e 100% .NET component, suitable for shared hosting deployment
e Single assembly for easy deployment
e Highly customizable
e Efficient caching to minimize server load and optimize response times

1.2. Basic concepts

PDFWebViewer.NET provides a solution for viewing PDF documents in web pages. There are three
major components in this solution.

i IR @ @ | b0 % Q
- S
D PDF as a Standard <g$§°\

for Archiving K E / &S

Figure 1-1 PdfWebViewer components

Pag. 8/45 © TallComponents BV — www.tallcomponents.com

http://www.tallcomponents.com/pdfwebviewer1/help/

PDFWebViewer.NET 1.0 - Developer Guide

Storageis responsible for storing and retrieving PDF documents. Storage is discussed in detail
in chapter 6.

PDF Processing renders the PDF content into images and provides information about
documents. This is discussed in chapter o.

The ASP.NET Controls display the rendered PDF content in an ASP.NET web page. The controls
are discussed individually in chapter 3, 4 and 5.

To get started quickly, please see chapter 2 for a getting started guide and a walkthrough.

1.3. Conventions used in this document
Throughout this document, formatting is used to discern between different types of information.
A code sample is contained in between dashed yellow lines and uses a mono-space font.

Whenever a line in a code sample is too long to fit on the page, the character . is inserted. When
copy/pasting code from this document, make sure you remove that character and any
whitespace following it.

Important side notes are formatted using a light-yellow background.

Note These blocks contain tips and warnings that may save you time and trouble.

1.4. Please send us feedback!

Please help us improve this document. If you have any questions, suggestions or find anything
in this document is incorrect or missing then let us know at support@tallcomponents.com or
send us a support request through our website at http://www.tallcomponents.com/
question.aspx.

1.5. Online Resources

e Ourweb site:
http://www.tallcomponents.com.

e PDFWebViewer.NET type reference online :
http://www.tallcomponents.com/pdfwebviewer1/help/

e Microsoft Client Script Reference:
http://msdn.microsoft.com/en-us/library/bb397536.aspx

e Microsoft ASP.NET Ajax for .NET 2.0 installer:
http://www.microsoft.com/downloads/details.aspx?FamilylID=cagd9ofa-e8c9-42e3-
aa19-08e2c027f5d6

1.6. Naming Convention

We try to adhere as much as possible to Microsoft’s “Design Guidelines for Developing Class
Libraries”. The guideline can be found here:

http://msdn2.microsoft.com/en-us/library/ms229042.aspx

Pag. 9/45 © TallComponents BV — www.tallcomponents.com

mailto:support@tallcomponents.com
http://www.tallcomponents.com/%0Bquestion.aspx
http://www.tallcomponents.com/%0Bquestion.aspx
http://www.tallcomponents.com/
http://www.tallcomponents.com/pdfwebviewer1/help/
http://msdn.microsoft.com/en-us/library/bb397536.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6
http://www.microsoft.com/downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6
http://msdn2.microsoft.com/en-us/library/ms229042.aspx

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 10/45

2.

Getting started

2.1. Development environment

PDFWebViewer.NET has been compiled and tested with Microsoft Visual Studio.NET 2008 for
Microsoft .NET Framework 2.0 and 4.0. PDFWebViewer.NET is a 100% managed .NET component
and consists of just a single assembly: TallComponents.PDF.WebViewer.dll.
PDFWebViewer.NET can be used with any ASP.NET application.

2.2. Requirements

PDFWebViewer.NET is compiled for version 2.0 and 4.0 of the Microsoft .NET framework. Both
builds are included in the distribution.

2.2.1. Development environment

To develop applications using PDFWebViewer.NET any development environment for Microsoft
.NET 2.0 or higher will do.

2.2.2. Microsoft .NET ASP.NET Ajax Extensions

To provide a good user experience, all web controls that are part of this product use Microsoft
ASP.NET Ajax.

If your application targets the Microsoft .NET 3.5 platform, these extensions are included in the
framework and no additional action is required.

If your application targets the Microsoft .NET 2.0 or 3.0 platform, you will need to install
Microsoft ASP.NET Ajax 1.0. This extension is available for download free of charge from
Microsoft at:
http://www.microsoft.com/downloads/details.aspx?FamilylID=cagd9ofa-e8c9-42e3-aa19-
08e2c027f5d6

The dependency on Microsoft ASP.NET Ajax is limited to the System.Web.Extensions
assembly. When deploying the application to a server, including that assembly in the /bin folder
will also do. There is no need to install the Ajax extensions on the server or in the GAC (Global
Assembly Cache), though you are free to do so if you wish.

2.3. Deployment

PDFWebViewer.NET is fully compatible with the XCopy deployment principle of .NET. This means
that deploying PDFWebViewer.NET is as simple as copying the single assembly to the /bin folder
of your web application. For .NET 2.0 and 3.0 sites, please also make sure the Microsoft Ajax
Extensions are available (see section 2.2.1 for more information).

Although it is possible, there is no need to install PDFWebViewer.NET in the GAC (Global
Assembly Cache).

2.3.1. Classic ASP

PDFWebViewer.NET does not support classic ASP.

2.4. Working with Visual Studio 2008

Throughout this document and all samples included with PDFWebViewer.NET we use Visual
Studio 2008. The component will work with any development environment that can target the
.NET 2.0 framework or newer.

© TallComponents BV — www.tallcomponents.com

http://www.microsoft.com/downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6
http://www.microsoft.com/downloads/details.aspx?FamilyID=ca9d90fa-e8c9-42e3-aa19-08e2c027f5d6

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 11/45

2.4.1. IntelliSense

The PDFWebViewer.NET installation includes the XML documentation file
TallComponents.PDF.WebViewer.xml, which contains all the documentation, found in the type
reference. If this XML file is in the same folder as the assembly, Visual Studio provides
IntelliSense documentation as you type in your code.

2.5. Walkthrough: A basic PDF viewer (C#)

This sample demonstrates how to setup a basic PDF viewer application with PDFWebViewer.NET.
We will use Visual Studio 2008 to create a basic website project and setup a PdfViewer in the
default page.

2.5.1. Start a new website

Start Visual Studio and select File > New > WebSite from the menu bar.

New Project
Project kypes: Templates: MET Framework 3.5 |
=) Wisual C# ¥isual Studio installed templates [~
Windows
Web 1:’ .,) ‘5} j j
Script# =ctt =ct =ci !%Cﬁ N?ﬂcﬁ
Smart Device ASP.MET 3.5 ASP.MET Web ASPMET Web ASPMET 418X ASP.MET 1A%
Database Extension. .. Application Service Ap... Server Contral Server Cont...
Reparting ﬁ JE
Tesk ch ‘E} CHiyr o &
WCF %;jcﬁ hat- 4 I=ch uv 0;\
‘Workflow ASFNET WCF Service ASP.MET MVYC Dwynamic Daka Crynamic Data
Wit Server Control - Application web Applic... Entities we... Web Applic...
+- Other Languages ﬁ
: chp.
+- Other Project Types /;/
PHP Projects B - -
: wnamic Data
+|- Test Projects web Applic... =
ASF.MET 3.5 Extensions Web Application {.MET Framework 3.5)
Narne! Pdfwebyiewsarl|
Location: CtiProjecks), E¥3
[icreate directary For solukion
[Ok l [Cancel]

Figure 2-1 Create a new ASP.NET 3.5 Project in Visual Studio 2008

Make sure the drop down menu at the top right reads “.NET Framework 3.5”. Then select
“ASP.NET 3.5 Extensions Web Application” to create a new ASP.NET 3.5 website.

Enter the project name. In this sample we’ll assume the project is named “PdfWebViewer1”, but
you’re free to choose any project name. You may also want to set the location for the project.

j Solution 'Pdfwebiewerl' {1 project)
= :& Pdfeb¥iewer1
+- [=d| Properties
4 [+l References
4 App_Data
+ _j Defaulk. aspsx
=y Web.config

Figure 2-2 The newly created project

After clicking OK, Visual Studio will create an empty project that looks like figure 2-2.

2.5.2. Add reference to PDFWebViewer.NET

In order to use the controls and handlers in PDFWebViewer.NET we will have to reference the
assembly TallComponents.Pdf.WebViewer.dll in the project. There are a couple of ways to do

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

this. As demonstrated below you can right-click on the References folder in the project explorer
and select Add Reference...

J Solution 'PdfwebYiewer1' {1 project)
= ;'g Pdf¥ebYiewerl
+- |=d| Properties

+- [+3] Refaran
4 APp Add Reference. ..
= —,.—l Def add web Reference...
i el
Add Service Reference...

This will popup a dialog named Add Reference. Select the browse tab and browse to the location

where you unpacked the downloaded component. Since we’re building an ASP.NET 3.5 website,
select the TallComponents.Pdf.WebViewer.dll file from the .NET-3.5 folder and click OK.

Add Reference @

JMET | COM || Projects | Browse | Recent

Laok ir: | [C3) NET-35 v: e Nt M=

ﬂ TallComponents, Weh, Pdfviewer. dll

File: narne: TallComponents. web. Pdfviewer. dil

Files of type: | Compaonent Files [*.dil* Hb:* olb:* ocx:” ewe;* manifest)

I Ok ‘ [Cancel

2.5.3. Add controls to the page

By default, the document default.aspx should now be open. If not, double click the file in the
project explorer. Switch to source view and add the highlighted lines in the code sample below:

Pag. 12/45

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="PdfWebViewerl. Default" %>

<%Q@ Register Assembly="TallComponents.Web.PdfViewer" TagP;efix="tc"
Namespace="TallComponents.Web.Pdf" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1l/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>PDFWebViewer .NET Sample</title>
</head>
<body>
<form id="forml" runat="server">
<asp:ScriptManager runat="server" ID="ScriptManagerl" />
<div>
<tc:PdfViewerToolbar runat="server" PdfViewerControlId="PdfViewerl"
Width="800px" />
<tc:PdfViewer runat="server" id="PdfViewerl" Width="800px"
ServiceUrl="PdfToImage.ashx" />
</div>
</form>
</body>
</html>

Code sample 2-1 The code view of the page (default.aspx)

At the top of the page, the tag prefix fcis registered for use. Right after the <form» tag, an Ajax
ScriptManager is added. This control is part of the ASP.NET Ajax extensions and is required when
one or more Ajax controls are on the page.

Next, the PdfViewerToolbar and PdfViewerControls are added. Note that the PdfViewerControlld
refers to the ID of the viewer control. This required attribute enables the toolbar to hook up to the
viewer.

The ServiceUrl attribute on the viewer is also required. This specified the URL at which the
service used to render PDF (PdfTolmageHandler) is located. We will configure that next.

2.5.4. Setup PDF To Image handler

To display PDF content in a web page, the PDF is converted to images. Everything needed to do
this is included in the PdfTolmageHandler class. The PdfViewer control will request images as
needed. To do this the handler needs to be accessible by the control. There are a couple of ways
to accomplish this, in this sample we’ll add a generic handler (.ashx) file.

Pag. 13/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 14/45

In Visual Studio, add a new item to the root folder of the project. From the dialog choose ‘Generic
handler’ and enter the name for the handler as shown below:

Add New Item - PdfWebViewer 2Jed
Categaries: Templates: m El
= Wisual C# Service Entity D... Behavior Contral Library i
Code
Data j —'" = Cﬁ‘. .ﬁ? Cﬁ:
General = —\32 =
Weh Alax Master AJAXWeb AJAX-enabled Application Assembly
Windows Farms Page Form WiCF Service Manifest File Informati...
WPF
Seript# D ch % ch ‘aljj
Reporting — 2
Test Browser File Class Class Diagram Code File DataSet
workflow
e 2y = A= @
7 5 8 2 B
Debugger Dynamic Data Generic Global HTML Page
Visualizer Field Handler Applicati. .. -
A page for implementing a generic handler
Tame: PdfToImage. ashx
[Add] [Cancel]

This will generate a new handler and a code behind file. We don’t need the code behind since all
the logic is implemented in PdfTolmageHandler. Remove PdfTo/mage.cs.ashxfrom the project
and replace the contents of PdfTo/mage.ashx with the following code:

<%@ WebHandler Class="TallComponents.Web.Pdf.PdfToImageHandler" $>

Code sample 2-2 Custom handler declaration in pageasimage.ashx

This line is all that is needed to declare the handler. It tells ASP.NET to use the
PdfTolmageHandler class tho handle requests for PdfTolmage.ashx. Note that the name of the
generic handler matches the URL set on the controls in the previous step.

2.5.5. Configure storage

The next step is to configure how the PDF documents are stored in this application.
PDFWebViewer.NET comes with a provider that loads PDF documents from disk. This provider is
called FileSystemStorageProvider.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

The provider is configured in the web.config file. The next code sample demonstrates this.

<configuration>
<configSections>
<!-- other sections and groups for ASP.NET not shown here -->
<section name="pdfStorage"
type="TallComponents.Web.Storage.PdfStorageProviderSection, !
TallComponents.Web.PdfViewer" />
</configSections>
<pdfStorage defaultProvider="filesystem">
<providers>
<clear />
<add name="filesystem"
type="TallComponents.Web.Storage.FileSystemStorageProvider, !
TallComponents.Web.PdfViewer"
basePath="~/documents" />
</providers>
</pdfStorage>

</configuration>

Code sample 2-3 Storage configuration in web.config

The highlighted lines were added to the web config. First, a new section is declared named
pdfStorage. This is the section used to configure storage providers for PDFWebViewer.NET.

Then, the section itself sets the default provider to a provider named “filesystem”. This provider
is declared as being of type FileSystemStorageProvider. The provider is setup to use the folder
documents within the web application as the base path to look for PDF documents.

2.5.6. Add PDF documents

Now that storage is configured, create the documents folder within the root of the website
project and copy a PDF document named test.pdf into it. Your project should now look similar to
this:

_: Solution 'Pdfwebviewer1' (1 project)
= :& Pdfweb¥iewer1
+- [=d] Properties
4 -] References
3 App_Data
= | documents
T test,pdf
+ j Default, aspx
%) pdfTolmage ashx
E Web,config

Figure 2-3 The completed project in the project explorer

2.5.7. Select document

The final step is to tell the viewer control what document to display. This can be accomplished by
setting the StorageKey attribute on the control. To do this, open Default.aspx and edit the
control declaration for the PdfViewer control to like this:

<tc:PdfViewer runat="server" id="PdfViewerl" Width="800px"
ServiceUrl="PdfToImage.ashx" StorageKey="test.pdf" />

Code sample 2-4 Set the document to display on the PdfViewer control

Note This sample uses the FileSystemStorageProvider that conveniently supports using the
filename as a storage key.

Pag. 15/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

2.5.8. Runwebsite
Start the project. A web page will show up allowing you to view the PDF document you copied in.

‘€ PdfWebViewer.NET Sample - Windows Internet Explorer g@

Y & |g localhost [v] @ 42| |:I, | e

File Edit Wiew Favorites Tools Help

n — = »
. Favorites (& Pdfwebviewer NET Sample M- B *| ey v Page - Safety = Tools ~ @@~

141 75% v e @ 101 0

@
PDF Q;@%?‘?@
&
S
&
&

@9
55
&

Done ‘-J Local intranst v v H100% -

Figure 2-4 The sample application in Internet Explorer 8

Pag. 16/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 17/45

3.

PdfViewer

PdfViewer is the core control of PDFWebViewer.NET. It renders a view of a page in a PDF
document. The control can be styled match the look of your site and you can interact with it
using client script.

3.1. Using the PdfViewer control
The following code sample shows a minimal setup of a PdfViewer.

<tc:PdfViewer ID="pdfViewer" runat="server" ServiceUrl="pageasimage.ashx" />

Code sample 3-1 Minimal setup of PdfViewer.

The serviceUrl property is required. It refers to the URL where the PageAsimageHandler
service is registered. Please see chapter 7 for more information on this service.

3.2. Styling PdfViewer

PdfViewer can be styled to match the look of your application. The user interface of the
PdfViewer is limited to the area the PDF is displayed in. The style of the area can be modified by
specifying a size, a border or a background.

For example:

<tc:PdfViewer ID="pdfViewer" runat="server" Width="500" Height="500"
ServiceUrl="pageasimage.ashx" BorderColor="Gray"
BorderStyle="Solid" BorderWidth="1px"
BackColor="#B9D1EA" />

Code sample 3-2 Viewer styling example.

This code sample assumes the tc prefix is registered either on the page or in the web.config file.
Please see section 9.1 for more information on registering tag prefixes for ASP.NET.

This will give you a PdfViewer of 500 x 500 pixels with a 1 pixel solid gray border and a light blue
background.

Property Description
BackColor Sets the background color.
BorderColor The color for the outer border. Default is none.

This value is ignored if BorderWidth and BorderStyle are not set.

BorderWidth The width for the outer border. Default is opx.
This value is ignored if BorderColor and BorderStyle are not set.

BorderStyle The style for the outer border. Default is none.
This value is ignored if BorderColor and BorderWidth are not set.

CssClass Sets the CSS class to assign to the toolbar. Use this to customize the
look beyond what is possible through the control properties.

Height The height of the viewer. Default is 400 pixels.

Width The width of the viewer. Default is 400 pixels.

SearchResultCssClass The CSS class applied to the rectangle that is used to highlight the
search results. Default value is ‘selection’.

Table 3-1 Style properties supported by PdfViewer.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 18/45

Set the CssClass property to enable styling using CSS rules in the page or an external style
sheet.

3.3. Enabling full-text search

PdfWebViewer.NET supports searching for text in PDF documents. To enable this, set the
SearchServiceUrl property to the url of the SearchHandler service is registered.

<tc:PdfViewer ID="pdfViewer" runat="server" ServiceUrl="pageasimage.ashx"
SearchServiceUrl="search.ashx" />

Code sample 3-3 Minimal setup of PdfViewer with support for searching.

The searchserviceUrl property is required if you want to use searching. Please see chapter 7
for more information on services and configuration.

3.4. Client script interaction

The PdfViewer control fully supports client script interaction. It provides information about the
currently loaded document and its behavior can be controlled. The control will also report
changes to its status through events.

Tip: The full type reference for PDFWebViewer.NET is available online at
http://www.tallcomponents.com/pdfwebviewer1/help/

3.4.1. Getting information about the current document

The PdfViewer control provides information about the currently loaded document through client
script. The document property provides an object that is similar to the
TallComponents.Web.Pdf.Document object available for server programming. The code sample
below demonstrates how to use this property.

<script type="text/javascript">
function showDocInfo () {
var viewer = $find('pdfViewer');
if (viewer) {
var doc = viewer.get_document() ;
if (!doc.IsValid) {

alert ("No document loaded.");

}

else {

alert (
"Title: "+ doc.DocumentInfo.Title+
"\nSubject: " + doc.DocumentInfo.Subject +
"\nKeywords: " + doc.DocumentInfo.Keywords +
"\nAuthor: " + doc.DocumentInfo.Author +
"\nCreator: " + doc.DocumentInfo.Creator +
"\n\nPages: " + doc.DocumentInfo.Pages.length);

}
}

</script>
Code sample 3-4 Document information in client script (Upload & View demo)
Please look at the Upload & View demo to see this code in action.

3.4.2. Document object
The Document object provides essential information about a PdfDocument.

© TallComponents BV — www.tallcomponents.com

http://www.tallcomponents.com/pdfwebviewer1/help/

PDFWebViewer.NET 1.0 - Developer Guide

Note that if IsValid is false, the viewer is not displaying a document. This means all other
properties of the document object are invalid.

Property Type Description
Documentinfo Object Information about the PDF document
(see Documentinfo object)
FileName String The name of the file
IsValid Boolean Indicates if there is a valid document loaded.

If false, none of the other properties of Document
contain valid information.

Pages Array A list of pages (see Page object)
StorageKey String The unique storage key for the document
Table 3-2 Properties of the Document object in client script.

3.4.3. Documentinfo object
The Documentinfo object provides information about the PDF document.

Property Type Description

Author String The person who authored the PDF document.
Creator String The application that created the PDF document.
Keywords String Keywords of the PDF document.

Subject String The subject of the PDF document

Title String The title of the PDF document

Table 3-3 Properties of the Documentinfo object in client script.

3.4.4. Page object
The Page object provides an indication of the size of a page.

Property Type Description
Width Number The width of the page in points (1 point = 1/72 inch).
Height Number The height of the page in points (1 point = 1/72 inch).

Table 3-4 Properties of the Page object in client script.

3.4.5. Status events

The PdfViewer control supports client script events that are fired when the control changes it’s
status. There are two events; updatingand updated.

The updating event fires when the control starts updating the view. This usually means the
control is about to make an out-of-band request to the server to fetch an image. Depending on
bandwidth, caching and the complexity of the document this can take anywhere from a fraction
of a second up to tens of seconds.

When the request completes and the view is updated, the updated event fires.

The main purpose of these events is to allow seamless integration of the PdfViewer control with
other controls, like the PdfViewerToolbar or a custom application.

3.4.6. Searching

The PdfViewer control provides two methods that control full-text searching.

Pag. 19/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 20/45

Method Description
search Starts or continues a search query
cancelSearch Cancels a pending search query

The search method invokes the SearchHandler service using an asynchronous request. This
request can take anywhere from a couple of milliseconds up to minutes to complete, depending
on the document size and length. While a search request is pending, it may be cancelled using
cancelSearch.

A search request starts at the current page and searches until it finds results for the query. The
viewer jumps to the first result that is found highlights the text match using one or more
rectangles overlayed on the page. You can set the CSS class of the rectangle using the
searchResultCssClass property.

3.4.7. Search status events: searching and searchCompleted

If you are using full-text searching there are two events that help you keep track of what the
PdfViewer control is doing; searchingand searchCompleted.

The searching event fires when search query is started. The searchCompleted event fires when
the request is completed or cancelled.

3.4.8. Handling events

Event handlers for the status events should have the following signature:

function myHandler (sender, args)
Code sample 3-5 Handler signature for status events.

When invoked, the sender parameter will reference to the viewer control. The args parameter
is an empty instance of Sys.EventArgs (see also Sys.EventArgs.empty).

A handler for this event will typically query the viewer control for it’s status.
The following code sample demonstrates how to use the status events.

// An event handler that makes the page red while the viewer is busy
function makePageRedWhenBusy(sender, args) {
var body = document.getElementsByTagName ('body') [0];

if (sender.get isBusy()) { // Check if the viewer is busy

body.style.backgroundColor = "red";
} else {
body.style.backgroundColor = ""; // Restore background color

}
}

// Find the PdfViewer control instance
var viewer = $find("pdfViewer");

// Register the event handlers
viewer.add updating(makePageRedWhenBusy) ;
viewer.add updated(makePageRedWhenBusy) ;

// Get initial status
makePageRedWhenBusy (viewer, null);

Code sample 3-6 Using the status events to update the user interface.

This sample demonstrates how to use the status events. The handler itself queries the viewer
control to see if it is busy (i.e. loading a new image). If so, the background color of the body tag

© TallComponents BV — www.tallcomponents.com

http://msdn.microsoft.com/en-us/library/bb383795.aspx
http://msdn.microsoft.com/en-us/library/bb310812.aspx

PDFWebViewer.NET 1.0 - Developer Guide

is set to red. This effectively makes the background of the whole page turn red. If the PdfViewer
is not busy, the page color is restored to its default value.

Though this is not a very useful sample, it does clearly visualize the time between the start and
finish of an update. This is the same mechanism the toolbar uses to display a busy image.

Next step in the sample code above is to use the $find shortcut method to find the PdfViewer
control on the page. Note that the control id “pdfViewer” passed in to the $find method should
match the client ID of the PdfViewer control in the page.

The event handler is registered with the control for both the updating and the updated event.
Finally, the handler is invoked directly to get the initial status.

This last step is recommended because the control may be in the process of updating while the
script is executing. This means the Ul (in this case the page’s background color) does not
correctly represent the control’s state.

Pag. 21/45 © TallComponents BV — www.tallcomponents.com

http://msdn.microsoft.com/en-us/library/bb397441.aspx

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 22/45

4.

PdfViewerToolbar

PdfViewerToolbar provides an easy to use and complete toolbar for the PdfViewer control. The
control can be styled match the look of your site.

4.1. Using PdfViewerToolbar

The toolbar can be used out of the box and does not require any external files. The default
appearance of the toolbar is neutral but can be customized.

(& @ 1/ 407 5p | [75% V@ @ @ | 101000 b £

Figure 4-1 The default appearance for PdfViewerToolbar

The table below shows all the images used in the toolbar and provides a brief description.
Image Description

= Triggers a file open action. Shown only when ShowFileButtons is true.
This action requires a custom implementation.

Triggers a file close action. Shown only when ShowfFileButtons is true.
This action requires a custom implementation.

Navigates to the previous page.

14

Navigates to the next page.

Switches the cursor mode to ‘pan’. The user can use the mouse to grab the page and
drag it.

Switches the cursor mode to ‘zoom in’. The user can use the mouse to zoom in to a
point on the page.

o 3 3

Switches the cursor mode to ‘zoom out’. The user can use the mouse to zoom around a
point on the page.

B

Sets the zoom factor to 100%

—
—

Enables automatic zooming to the page size.
Enables automatic zooming to the page width.
Starts searching. Shown only when ShowSearchBox is true.

Cancels a pending search request. Shown only when ShowSearchBox is true.

Sl I - -

Animated gif displayed when the viewer is busy updating.

Spacer image used to separate groups of buttons.

The image that is repeated horizontally to fill the toolbar background. This image is
only displayed when BackColor is not set.

Table 4-1 Toolbar buttons and images

4.1.1. Adding the PdfViewerToolbar control to a Page
The following code sample shows a minimal setup of a PdfViewer and a PdfViewerToolbar.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 23/45

<tc:PdfViewerToolbar runat="server" PdfViewerControlId="pdfViewer" />
<tc:PdfViewer ID="pdfViewer" runat="server" ServiceUrl="pageasimage.ashx" />

Code sample 4-1 Minimal setup of PdfViewer and PdfViewerToolbar.

The PdfviewerControlId property is required and must match the ID of the PdfViewer. This
setting ensures the PdfViewerToolbar is able to hook up to the PdfViewer so it can accuratly
display the status of the viewer and send it commands when a button is clicked.

assumes the tc prefix is registered either on the page or in the web.config file. To register the
prefix on the page include the following line at the top of the page.

<%@ Register TagPrefix="tc" Namespace="TallComponents.Web.Pdf"
Assembly="TallComponents.Web.PdfViewer" %>

Code sample 4-2 Register the tc tagprefix on the page

4.2. Styling PdfViewerToolbar

The PDFViewerToolbar supports some standard styling properties for ASP.NET controls. The table
below lists the supported properties.

Property Description
BackColor Sets the background color. Setting BackColor disables the
background image setting.
BorderColor The color for the outer border. Default is none.
This value is ignored if BorderWidth and BorderStyle are not set.
BorderWidth The width for the outer border. Default is opx.

This value is ignored if BorderColor and BorderStyle are not set.

BorderStyle The style for the outer border. Default is none.
This value is ignored if BorderColor and BorderWidth are not set.

CssClass Sets the CSS class to assign to the toolbar. Use this to cusotmize the
look beyond what is possible through the control properties.

Height The height of the toolbar. Default is 24 pixels.

Width The width of the toolbar. Default is inherit, to make the toolbar fit the

containing area.
Font.Size The font size used in the toolbar. Default is 14 pixels.

Table 4-2 Toolbar styling properties.

Note When setting a border on a PdfViewerToolbar control this border increases the total
width of the toolbar. This is a result of the way HTML and CSS layout work. To make
sure the toolbar lines up with the viewer, either set a border on both controls or
adjust the width of the viewer or the toolbar.

4.2.1. Using CSS to style the control

PdfViewerToolbar supports customization through CSS. The CustomStyleDemo website included
with the product shows how to do this. The following code is an excerpt from default.aspx in this
sample.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 24/45

<tc:PdfViewerToolbar ID="toolbar" runat="server"
PdfViewerControlId="pdfViewer"
ToolbarBackgroundImageUrl="img/vista/back.gif"

HoverButtonImageUrl="img/vista/hover.png"
SelectedButtonImageUrl="1img/vista/selected.png"
Height="32px"

/>

Code sample 4-3 Excerpt from Default.aspx in CustomStyleDemo.

To keep the code sample short some of the properties have been omitted. In the code sample
some custom images are set. Note that the height of the toolbar is changed to 32 pixels.

To make sure the toolbar buttons are still centered vertically an offset needs to be specified for
these items. PdfViewerControl was designed using CSS so this can be done by adding a couple
of style rules to the page.

The table below lists the CSS classes used by the control.
CSS Style Description

.pdftbltem Applied to each segment of the toolbar that is not a spacer. This
includes all the buttons, the page number area and the zoom factor
dropdown list.

.pdftbSpacer Applied to spacers.
Table 4-3 Styles used by PdfViewerControl.

In the CustomStyleDemo the following rules are added at the top of the page to compensate for
the increased height.

<style type="text/css">
.pdftbItem { padding-top: 4px; }
.pdftbSpacer { padding-top: 4px; }
</style>

Code sample 4-4 Using CSS to compensate for increased toolbar height.

The PdfViewerControl also supports the CssClass property. Setting this property will disable
some of the styles applied directly to the markup. This allows full customization through CSS, for
example custom background settings and applying different border colors to each side.

4.2.2. Custom image requirements

Image Property Description

= OpenlmageUrl Triggers a file open action.

B CloselmageUrl Triggers a file close action.

- PreviousimageUrl Navigates to the previous page.

o NextlmageUrl Navigates to the next page.

& PanimageUrl Switches the cursor mode to ‘pan’.

@\ ZoomlInlmageUrl Switches the cursor mode to ‘zoom in’.

@\ ZoomOutlmageUrl Switches the cursor mode to ‘zoom out’. The user can

use the mouse to zoom around a point on the page.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 25/45

1 ZoomzionilmageUrl Sets the zoom factor to 100%

—

ZoomToPagelmageUrl Enables automatic zooming to the page size.

SearchimageUrl Starts searching.

| ZoomToWidthimageUrl Enables automatic zooming to the page width.
b CancelSearchimageUrl Cancels a pending search request.
”

BusylmageUrl Animated gif displayed when the viewer is busy
updating.
SpacerlmageUrl Spacer image used to separate groups of buttons.

BackgroundlmageUrl The image that is repeated horizontally to fill the
toolbar background. This image is only displayed when
BackColor is not set.

Table 4-4 Toolbar buttons and images

The toolbar buttons can be customized by providing custom images. The toolbar is designed
with images sized 24 x 24 pixels. The images should be transparent to allow the toolbar
background to come through.

Note 24-bit PNG images with alpha transparency may not work perfectly in all browsers,
most notably Internet Explorer. IE 6 does not support PNG transparency at all. IE7 and
IE8 may not display the disabled button state as expected when using alpha
transparency.

Other image sizes should work but have not been thoroughly tested.

4.2.3. File buttons

There are two buttons on the toolbar that require custom actions to be implemented: the ‘open’
and ‘close’ button. These buttons are shown only when showFileButtons property is set to
true. These buttons do not have a default implementation because the way the function is very
application specific. For an example of how to implement these buttons, please refer to section
4.3.1.

4.2.4. Search box

If you want to allow full-text searching through the toolbar, set the showSearchBox property to
true. This will show a text box and two additional buttons on the toolbar. Note that in order for
search to work you also need to configure the SearchHandler service. See chapter 7 for more
information.

4.3. Client script interaction

The PdfViewerToolbar fires an event in the browser when a button is clicked. This event can be
handled in client script, which enables custom actions to be performed when a toolbar button is
clicked.

4.3.1. buttonClick event
Event handlers for the buttonClick event should have the following signature:

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

function myHandler (sender, args)
Code sample 4-5 Handler signature for buttonClick event.
When invoked, the sender parameter will reference to the toolbar control. The args parameter

is an instance of Sys.EventArgs. It will have a custom field, command, that holds the ID of the
button that was clicked. The table below lists all the buttons and their command.

Image Command Description
B open Triggers a file open action. Shown only when

ShowfFileButtons is true.
This action requires a custom implementation.

B close Triggers a file close action. Shown only when
ShowfFileButtons is true.
This action requires a custom implementation.
- prev Navigates to the previous page.
next Navigates to the next page.
pan Switches the cursor mode to ‘pan’. The user can use the

mouse to grab the page and drag it.

o 5 <9

zoomln Switches the cursor mode to ‘zoom in’. The user can use
the mouse to zoom in to a point on the page.

zoomOut Switches the cursor mode to ‘zoom out’. The user can use
the mouse to zoom around a point on the page.

2

zoomion1 Sets the zoom factor to 100%

—
==

zoomToPage Enables automatic zooming to the page size.

zoomToWidth Enables automatic zooming to the page width.

v R Ek

search Start searching, either by pressing enter in the search
box or clicking the button. Shown only when
ShowSearchBox is true.

™ searchCancel Stop a pending search. Shown only when
ShowSearchBox is true.

Table 4-5 Command names for toolbar buttons
Finally, the args parameter has a field named suppressDefault. Thisis setto false by

default. Setting it to t rue will suppress the default action for the clicked button, allowing you to
override the behavior of the toolbar.

The following code sample shows how to hook up a custom JavaScript function to handle the
client-side buttonClick event.

Pag. 26/45 © TallComponents BV — www.tallcomponents.com

http://msdn.microsoft.com/en-us/library/bb383795.aspx

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 27/45

<script type="text/javascript">
Sys.Application.add load(function() {
$find('Toolbar') .add buttonClick (function (sender, args) {

if (args.command == 'open') {
$find('Modall"') .show (450, 300);
} else if (args.command == 'close') {

window.location.href = window.location.href;
}
1)
)i
</script>

Code sample 4-6 Using the toolbar’s buttonClick event (Upload & View demo)

This snippet is an excerpt from the Upload & View sample included with the component
download. It demonstrates how to register an event handler for the buttonClick event.

First, a handler is added to the Sys.Application.load event. This event fires when the document is
loaded and all ASP.NET Ajax controls are ready.

The handler for the load event is an anonymous function. It uses the ASP.NET Ajax shortcut
method $find to get the toolbar control named “Toolbar”. Then the actual handler for the
buttonClick event is added to the toolbar through the add_buttonClick method.

The buttonClick handler then uses the command property to determine what button was clicked.

In this sample, the open command will show a modal dialog to allow users to upload a file. The
close command will trigger a reload of the page which effectively clears the loaded document.

© TallComponents BV — www.tallcomponents.com

http://msdn.microsoft.com/en-us/library/bb383829.aspx
http://msdn.microsoft.com/en-us/library/bb397441.aspx

PDFWebViewer.NET 1.0 - Developer Guide

5. PdfThumbnailsList

PdfThumnailsList renders a list of thumbnails for each page in a document. This control is
optimized to only download the thumbnails that are actually visible in the browser.

5.1. Features
The PdfThumbnailsList control is optimized to handle thumbnails intelligently. It will:
e Download thumbnails on demand to minimize server load on large documents

e Prioritize thumbnails loading; downloading thumbnails is postponed while the main
viewer control is updating.

e Scale thumbnails dynamically to fit the size of the list

5.2. Styling the thumbnails list
The control can be styled using properties on the control and CSS declared in the page.
The table below lists the properties availble for styling the control.

Property Description

BackColor Sets the background color.

BorderColor The color for the outer border. Default is none.

BorderWidth The width for the outer border. Default is opx.

BorderStyle The style for the outer border. Default is none.

CssClass The CSS class applied to the outer container for the thumbnails
list.

Orientation The direction for the PDF thumbnails list, either horizontal or
vertical (default).

Height The height of the list.

ThumbnailCssClass The CSS class applied to all thumbnails.

SelectedThumbnailCssClass The CSS class for the thumbnail that corresponds to the active
page in the associated PdfViewer control.

Width The width of the list.

5.3. Hover effect

Using CSS it’s possible implement a hover effect on the thumbnails. Please consider the
following snippet of CSS taken from the LibraryDemo included with the product.

.thumb { margin: Opx; padding:0px; }
.thumb img { border: solid 1px #999999; margin: 3px; }
.thumb:hover img { border: solid 2px #66ff33; margin: 2px; }

.active img { border: solid 2px black; margin: 2px; }

Code sample 5-1 CSS hover effect (from default.aspx in LibraryDemo)

Pag. 28/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

The control is declared as follows:

<tc:PdfThumbnailsList
ID="thumbnails"
runat="server"
PdfViewerControlId="pdfViewer"
Width="600"
Height="160"
ServiceUrl="pageasimage.ashx"
ThumbnailCssClass="thumb"
SelectedThumbnailCssClass="active"
Orientation="Horizontal" />

Code sample 5-2 Control declaration (from default.aspx in LibraryDemo)

The control will apply the CSS class thumb to all thumbnails and active to the thumbnail for the
active page only.

These styles are used in the CSS rules shown in Code sample 2-1. The result is shown below:

17115 | 75% (v @ @& | 1:1 0

. ,: . i
o

b

WHITE PAPER

PDF as a Standard
for Archiving s

Figure 5-1 PdfThumbnailsList with CSS styling

Pag. 29/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 30/45

6.

Managing PDF documents

To display PDF content PDFWebViewer.NET need access to PDF documents. Included in the
product is a basic storage provider that enables PDFWebViewer.NET to read files from disk.

This basic provider can be customized to integrate with your site. It is also possible to implement
a custom solution that uses a different storage medium like a database.

6.1. Storage for PDF files

At the core of PDFWebViewer.NET is a service that converts PDF to images for viewing in a web
browser using a set of web controls. The service and the controls need information about PDF
documents. PDFWebViewer.NET provides the Document class that provides this information.

A Document instance is created from PDF file data retrieved from storage. There are however lots
of ways an application can store PDF files.

PDFWebViewer.NET provides an extensible architecture that allows it to work with any ASP.NET
application.
6.1.1. Using storage providers

PDFWebViewer.NET comes with ready-to-use storage managers. These managers conform to the
ASP.NET provider model and are known as sforage providers.

The storage providers share a common base class, pdfstorageProvider. This base class
supports the following functionality:

Method Description

GetDocument Gets a single PDF document.

GetDocuments Gets a list of all PDF documents managed by the provider.
GetPage Gets a single page in a document.

StorefFile Stores a file in the storage medium managed by the provider.

Table 6-1 Methods of PdfStorageProvider.

Please refer to the type reference for more details on these methods.

6.1.2. Accessing storage

Storage is accessed through the pdfstorage class. This class provides static properties to
access all configured storage providers.

Property Description
Provider Gets the default storage provider.
Providers Gets a collection of all configured storage providers.

Table 6-2 Static properties on PdfStorage that provide access to configured providers.

PdfStorage will take care of creating the providers based on the list of providers configured in
the web.config conficuration file. Please see section 6.1.5 for more information on storage
provider configuration.

6.1.3. Document and Page classes

PDFWebViewer.NET provides information about PDF documents. This information is available
through the Document, DocumentInfo and Page classes.

© TallComponents BV — www.tallcomponents.com

http://msdn.microsoft.com/en-us/asp.net/aa336558.aspx

PDFWebViewer.NET 1.0 - Developer Guide

The Document class represents a single PDF document. The table below lists the properties of
the document class.

Property Type Description

Documentinfo Documentinfo Meta information contained in the document like subject
and title.

FileName String The file name of the PDF document.

This may be an empty string if the storage provider
doesn’t support file names.

Pages PageCollection The list of pages in the document.
StorageKey String The

Table 6-3 Properties of the Document class

Documentinfo contains information specified in the PDF document.

Property Type Description

Author String The person who authored this document.
Creator String The application that created the document.
Keywords String The keywords for this document.

Subject String The subject of the document.

Title String The title of the document

Table 6-4 Properties of the Documentinfo class

The Document.Pages property holds information about the number of pages (through the
Pages.Count property) and the width and height og each page expressed in points.

Note Pointis the basic unit of mesurement in a PDF document. 1 point equals 1/72 inch,
which is approximatly 3.53 mm.

6.1.4. Storage keys

The storage providers and controls use storage keys. Storage keys are generated by the storage
providers and can be determined through the Document.StorageKey property.

A storage key is an abstracted string value that uniquely references a document.

They exist to prevent sensitive information such as the full path of a document to be exposed to
potentially malicious users.

For example, the FileSystemStorageProvider uses an MD5 hash of the path to a PDF document as
the storage key.
6.1.5. Configuring a storage provider

Providers are configured through the configuration file web.config. The configuration requires
two steps:

1. Register the pdfStorage section
2. Configure the storage provider
The following code sample demonstrates the changes that should be made to web.config.

Pag. 31/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 32/45

<configuration>
<configSections>

<section name="pdfStorage"

type="TallComponents.Web.Storage.PdfStorageProviderSection,
TallComponents.Web.PdfViewer" />
</configSections>
<pdfStorage defaultProvider="filesystem">
<providers>

<clear />

<add name="filesystem"

type="TallComponents.Web.Storage.FileSystemStorageProvider,
TallComponents.Web.PdfViewer"
basePath="~/documents" />
</providers>
</pdfStorage>

</configuration>

Code sample 6-1 Storage configuration in web.config

This code sample lists the changes made to the configuration file in bold. This sample is limited
to the relevant information only; an actual web.config file contains much more information.

At the top of the configuration file, the pdfStorage section is registered by adding a <section>
declaration. This declaration is the same for all applications using PDFWebViewer.NET.

The pdfStorage section itself declares what provider to use by default and lists the available
providers. In the code sample above a FileSystemStorage provider is configured as the default
provider.

The name attribute is the name of the provider. This is required.
The type attribute is the fully qualified name of the provider.

The basePath attribute is specific to the FileSystemStorageProvider. It contains the path to
folder where PDF documents are stored.

Note When referencing .NET types in a configuration file it is a best practice to use both the
fully qualified name of the type and the name of the assembly that declares it. This
speeds up processing of the configuration file and prevents problems due to types of
the same name in different assemblies.

6.2. SessionStorageProvider

SessionStorageProvider is a lightweight provider that supports storing a single PDF document in
session state. Due to the nature of session state this provider is limited to storing a single
document per user effectively. It requires no configuration.

Note SessionStorageProvider provider is intended for testing and prototyping purposes. It
should not be used in production environments.

6.3. FileSystemStorageProvider

FileSystemStorageProvider is a basic provider implementation that enables PDF documents to be
read from disk.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 33/45

6.3.1. Configuration settings

Setting Description

basePath The base path where documents are stored.
This can be a virtual path like ~/Documents or an absolute file system
path like c:\My Pdf Documents.

Table 6-5 Configuration settings for FilesystemStorageProvider.

Note The folder pointed to by the basePath setting should be writable for the web server
process if documents are being written to storage by the application (using the
StoreFile method).

6.3.2. Customizing FileSystemStorageProvider

For some applications the functionality of the FileSystemStorageProvider is not sufficient.
FileSystemStorageProvider can be customized by implementing a derived class.

Please refer to the type reference for for FileSystemStorageProvider for detailed information.

6.4. Implementing a custom provider

If you need to store PDF documents in a different storage medium like a database you should
implement a custom storage provider. This section introduces the basic concepts.

In section 6.5 a complete sample demonstrates how to store PDF documents in a SQL Server
database.
6.4.1. IPdfStorage interface

The IPdfStorage interface is the contract that all classes that manage PDF documents must
implement. This is the core of the PDFWebViewer.NET extensible storage architecture.

Method Description

GetDocument Gets a single PDF document.

GetDocuments Gets a list of all PDF documents managed by the provider.
GetPage Gets a single page in a document.

Table 6-6 Methods of the IPdfStoragelnterface.

6.4.2. PdfStorageProvider

The abstract base class for all storage providers in PdfStorageProvider. This class implements
IPdfStorage and also provides support for adding documents to the underlaying storage.

6.5. Sample : Implement database storage (C#)

This sample demonstrates how to implement a provider that uses a database to store PDF files.
Databases like Microsoft SQL Server are capable of storing large blobs of binary data in a single
field. We will use this capability to build a provider that stores uploaded files in the database
and makes these available for viewing.

This sample uses Ling-To-Sql to take care of retrieving and storing data in a SQL Server 2005
database but the general principals apply to other databases and data access technologies.

The complete code of this sample is included in the DatabaseStorageDemo, included with the
project.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

6.5.1. Start a new Web project

For this sample you will need an ASP.NET 3.5 website project. Add reference to the
PDFWebViewer.NET assembly (TallComponents.Web.PdfViewer.dll) and System.Data.Ling.

See section 2.5.2 for more details on adding references to a Visual Studio project.

6.5.2. Create database and table
Create a new database named Sample.mdb in the App_Data folder.
Add a table named Files with the following fields

Field Type Description

ID Int Primary key
Setup this field to be an Identity column.

fileName Nvarchar(1024) The name of the file.
Data Image The binary contents of the file.

Table 6-7 Structure of th File table in the sample database.

6.5.3. Setup data mapping

To represent the database rows in code we will create a class named DatabaseFile. To instruct
Ling-To-Sql how the class maps to the database it is decorated with mapping attributes. The
code sample below shows the class declaration.

namespace DatabaseStorageDemo.Model

{
[Table (Name = "dbo.Files")]
public class DatabaseFile

{

[Column (Name = "ID", IsPrimaryKey = true, IsDbGenerated = true)]
public int FileId { get; set; }

[Column (Name = "fileName")]

public string FileName { get; set; }

[Column (Name = "data")]

public byte[] Data { get; set; }

}

Code sample 6-2 DatabaseFile class declaration (C#).

6.5.4. Connection string in web.config

In order to serve up PDF documents when requested to do so, the provider needs to access the
database. For that, it needs a database connection string. The best place to setup connection
strings is in web.config.

The following sample shows how a connection string for the sample database is declared in web.
config.

Pag. 34/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 35/45

<configuration>

<connectionStrings>
<clear/>
<add name="default"
connectionString="Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|\Sample.mdf; 4
Integrated Security=True;"/>
</connectionStrings>

</configuration>
Code sample 6-3 Adding a ConnectionString to web.config.

6.5.5. Implementing a provider

Let’s start implementing the provider. Create a new folder in the project named storage and
then create a new class named patabaseStorageProvider. This class should inherit from
PdfStorageProvider.

Through PdfStorageProvider, the provider inherits from ProviderBase, which has an
overridable Tnitialize method. This method is invoked when the provider is created. All
configuration options for the provider are passed in through the config parameter.

Since we need the connection string to connect to the database, we’ll want a connection string
specified in the configuration file. The following implementation checks if the setting is available
en then stores the actual connection string for later use. It will also create a Ling-to-Sql
DataContext object for reading from the database.

public class DatabaseStorageProvider : PdfStorageProvider

{

public override void Initialize(string name, NameValueCollection config)

{

base.Initialize(name, config);

if (string.IsNullOrEmpty(config["connectionString" 1))
{
throw new ProviderException("Missing required attributed
'connectionString' on DatabaseStorageProvider.");

}

_connectionString = ConfigurationManager.ConnectionStrings|[
config|["connectionString"™]].ConnectionString;

_context = new DataContext(connectionString);

}

private DataContext context;
private string connectionString;

}

Code sample 6-4 Initialize method for DatabaseStorageProvider.

6.5.6. Implementing storage specific methods
The code for the provider is not yet complete. Next we’ll implement the storage specific methods.

Method Description

GetDocument Gets a single PDF document.

GetDocuments Gets a list of all PDF documents managed by the provider.
StoreFile Stores a file in the medium managed by the provider.

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Table 6-8 Abstract methods of PdfStorageProvider.

The methods in Table 6-8 are abstract and must be implemented by our provider. Let’s get
started with the GetDocuments method.

public override IList<Document> GetDocuments ()

{
var query = from file in context.GetTable<DatabaseFile>()
orderby file.FileName
select new Document (new MemoryStream(file.Data),
file.FileNamnme,
file.FileId.ToString());

return query.ToList ();

}

Code sample 6-5 Implementation for the GetDocuments method.

This method uses a Ling query to get all files from the Files table in the sample database. The
files are ordered by file name. For each row a new Document object is created.

Finally, the query is executed and the result is returned as list of documents. Note that this
method should return an empty collection if no files were found.

Note The third argument supplied to constructor for Document is the storage key. In this
sample we’ll use the database key as the storage key. For security reasons you should
obfuscate the storage key using some sort of hashing or encryption.

Next up is the GetDocument method. This method should return a single PDF document or nu11
if the document is not available.

public override Document GetDocument (string key)
{
Document result = null;
int id = 0;
if(Int32.TryParse(key, out id))
{
var query =
from file in context.GetTable<DatabaseFile> ()
where file.FilelId == id
select new Document (new MemoryStream(file.Data),
file.FileName,
file.FileId.ToString());

result = query.FirstOrDefault();
}

return result;

}

Code sample 6-6 Implementation for the GetDocument method.

This method first tries to parse the supplied key into an integer value. If this succeeds, a
database lookup is performed. When the query is executed either the first result is returned, or
the default value for document (i.e. nu11) .

Note GetDocument and GetDocuments should not throw exceptions. Return nu11 or an
empty collection respectively when an error occures.

Finally, the StoreFile method should write a new file to the database. This is a bit more complex.

Pag. 36/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

In stead of using the shared data context used by the GetDocument and GetDocuments
methods, this method creates it’s own private context instead. This effectively isolates any
changes made in this method from other requests.

Note A provideris created once per application domain. This means the same provider
handles requests from multiple clients, possibly concurrently. Therefore you should
take greate care to make sure the provider is safe for multithreading.

public override string StoreFile(string fileName, System.IO.Stream data)

{

var insertContext = new DataContext(connectionString);
var files = insertContext.GetTable<DatabaseFile>();
var newFile = new DatabaseFile ()
{
FileName = fileName,

Data = new byte[data.Length]
b

if (data.CanSeek)

{
data.Seek(0, SeekOrigin.Begin);

}
data.Read(newFile.Data, 0, (int)data.Length);

files.InsertOnSubmit (newFile);
insertContext.SubmitChanges () ;

return newFile.FileId.ToString();

}

Code sample 6-7 Implementation of StoreFile

This completes the implementation of the DatabaseStorageProvider. Next we’ll need to configure
it.

6.5.7. Configure provider

To setup the application to use the newly created provider we’ll need to configure it. Open
web.config and add the bold lines from the code sample below.

Pag. 37/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

<configuration>
<configSections>

<section name="pdfStorage"
type="TallComponents.Web.Storage.PdfStorageProviderSection, J
TallComponents.Web.PdfViewer" />
</configSections>
<pdfStorage defaultProvider="database">
<providers>
<clear />
<add name="database"
type="DatabaseStorageDemo.Storage.DatabaseStorageProvider, .
DatabaseStorageDemo"
connectionString="default"/>
</providers>
</pdfStorage>

</configuration>

Code sample 6-8 Storage configuration in web.config

Note that the custom attribute connectionString matches the name of the setting used in the
Initialize method. The value for this property should match the name of the connection string
added to web.config in section 6.5.7.

6.5.8. Userinterface

Now that the provider is complete and configured, you can start building a user interface with
the controls provided by PDFWebViewer.NET.

Please see default.aspx in the DatabaseStorageDemo, included with the product, for a
demonstration of what you can do with this provider.

6.6. Controlling access to PDF documents

Sometimes it is not desirable to give unlimited access to a PDF document. In addition to
document based access control that you can implement using normal ASP.NET access control
methods, PDFWebViewer.NET also allows you to control access to individual pages in a
document.

6.6.1. The GetPage method

Page level access control is accomplished through the GetPage method on PdfStorageProvider.
As discussed elsewhere in this chapter, it’s possible to create your own customized version of a
storage provider.

When overriding the storage provider, it’s possible to implement custom logic for the GetPage
method. The LimitedAccess demo, inlcuded with the product, demonstrates how to do this.

6.6.2. Limited Access Demo
The limited access demo shows how you can replace any page in a document with another.

Pag. 38/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

public class LimitedAccessStorageProvider : FileSystemStorageProvider

{

public override Page GetPage(string key, int pageIndex)
{

if ((pageIndex % 2) == 1)
{

return GetCustomPage () ;

else

return base.GetPage (key, pagelndex);
}
}

private Page GetCustomPage ()
{

try

{

Document doc = new Document (new FileStream/(

HostingEnvironment .MapPath("~/not-accessible.pdf"),
FileMode.Open,
FileAccess.Read), "not-accessible.pdf", "");

return doc.Pages[0];

}
catch (Exception)

{
return null;

}

Code sample 6-9 Controlling access to pages (LimitedAccessDemo)

Pag. 39/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

7. Services

PDFWebViewer.NET provides services to provide asynchronous access to PDF content. These
services must be configured correctly in order for them to work. This chapter introduces the
services and shows you how to configure them.

7.1. PdfTolmageHandler

PdfTolmageHandler is the service that renders thumbnails and page previews. Itis implemented
by the TallComponents.Web.Pdf.PdfToImageHandler class. Itis a custom Http handler.

7.2. SearchHandler

SearchHandler is the service that enables full-text searching in PDF documents. It is
implemented by the TallComponents.Web.Pdf.SearchHandlerclass. This service is optional
and only needs to be configured if you want to use full-text searching.

7.3. Configuring a service
In order for PDFWebViewer.NET to use the services, they must to be configured to respond to a
URL. There are three ways to do this:
1. Setup a custom handler file (.ashx)
2. Configuring the handler through web.config
3. Setup routing for the handler
The third option is only available if your application is running ASP.NET 3.5 SP1 and newer.

7.3.1. Configuring a URL using a custom handler file (.ashx)

An .ashx file is represents a custom handler in ASP.NET. This means that any request for the
.ashx file is handled directly by the logic in that file.

To enable this create a blank .ashx file in your project and copy in the following code snippet.
<%@ WebHandler Class="TallComponents.Web.Pdf.PdfToImageHandler" %>

Code sample 7-1 Custom handler declaration in an .ashx file for PdfTolmageHandler.

This is the only code that is required in the file, don’t add anything else. The url to the file can
now be used as the ServiceUrl property on the PdfViewer and PdfThumbnailsList controls. The
handler requires no further configuration.

For SearchHandler the .ashx file should look like this:

<%@ WebHandler Class="TallComponents.Web.Pdf.SearchHandler" %>

Code sample 7-2 Custom handler declaration in an .ashx file for SearchHandler.

The name of the .ashx file can now be used as the SearchServiceUrl property on the PdfViewer
control. For example:

<tc:PdfViewerToolbar
ID="Toolbar"
runat="server"
PdfViewerControlId="pdfViewer"
ShowSearchBox="true" />

<tc:PdfThumbnailsList
ID="thumbnails"
runat="server"
PdfViewerControlId="pdfViewer"

Pag. 40/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Width="600"

Height="160"
ServiceUrl="pageasimage.ashx"
ThumbnailCssClass="thumb"
SelectedThumbnailCssClass="active"
Orientation="Horizontal"/>

<tc:PdfViewer
ID="pdfViewer"
runat="server"

Width="600"
Height="570"
Zoom="0.75"

ServiceUrl="pageasimage.ashx"
SearchServiceUrl="search.ashx" />

Code sample 7-3 Controls using the url’s declared for PDFWebViewer.NET services (Library demo)

The benefit of this method is that there is a file in the site marking the URL. Because of this, it’s
possible to select the file as the service urlin Visual Studio.

In addition, you do not need to add additional handlers to web.config file which may not be
allowed if your application is deployed to a shared hosting provider.

The downside is that there is an extra file to be managed.

7.3.2. Configuring a URL using web.config

An alternate method of configuring a URL for the PdfTolmageHandler is adding a handler in
web.config. The following code sample demonstrates this.

<configuration>

<system.web>
<httpHandlers>

<add verb="GET,HEAD"
path="pdfasimage.ashx"
validate="false"
type="TallComponents.Web.Pdf.PdfToImageHandler, .
TallComponents.Web.PdfViewer" />

<add verb="POST"
path="search.ashx"
validate="false"
type="TallComponents.Web.Pdf.SearchHandler, J
TallComponents.Web.PdfViewer" />
</httpHandlers>
</system.web>

</configuration>
Code sample 7-4 Configuring URLs for services using web.config

Though this does not give you the benefit of being able to select the URL in Visual Studio, it does
not require an additional file to be added to your website.

Pag. 41/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

8. Advanced configuration options

8.1. Introduction

Displaying PDF documents can be complex at times. In order to ensure correct display of your
documents PDFWebViewer.NET supports external CMaps and external fonts.

8.2. External CMaps

The PDF format supports many different ways to encode text. In order to display the text
PDFWebViewer.NET needs to map each character to a glyph in a font. This is done using a
Character Map (CMap). The most common mappings are built into PDFWebViewer.NET.
Sometimes however a specific piece of text in a document may not display in correctly because it
uses a mare exotic mapping. This most commonly occurs when viewing text with non-western
characters like Arab, Chinese and Japanese.

Included with the product download is a set of CMap files (Character Map). These files enable
PDFWebViewer.NET to process even the more exotic mappings.
8.2.1. Using CMaps

PDFWebViewer.NET searches for CMap files in the folder cmaps in the root of your web
application. You’ll find the CMap files in the product download under support/cmaps. Copy the
files into your site and PDFWebViewer.NET will automatically load and use the correct mapping.

Note: The entire set of CMap files will use over gMb of diskspace. If you know beforehand
what CMaps you need you can copy only those specific files into your site.

8.3. External fonts

PDF documents can embed the fonts used within the document. This is however not required. If a
font is used that is not embedded in the document, PDFWebViewer.NET will automatically look
for the correct font file in specific locations.

8.3.1. Fontresolving

When PDFWebViewer.NET needs to render a font it will take a couple of steps to determine what
font it should use. The steps are:

1. Check fontsubstitutions.xml inthe root of you web application for a substitute font.
2. If no substitution is defined, try to use embedded font information.

3. Ifthe fontis not embedded, look for a matching font file in
- the fonts folder in the root of your web application
- the Windows fonts folder

When looking for fonts PDFWebViewer will use the name of the font as defined in the PDF
document with the extension .ttf.

You can see the name of the font when you open the PDF document in Adobe Acrobat and hit Ctrl-
D on the keyboard or select File » Properties from the menu. The font information is on the Fonts
tab of the document properties dialog.

Note: Type 1fonts, also known as PostScript fonts, are not supported as external fonts. Use
TrueType or OpenType fonts.

Pag. 42/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

Pag. 43/45

Document Properties @

‘ Description | Securltyl Fonts ‘InmaIVlew | Custom | Advanced

Fonts Used in this Document

=] a MyriadPre-Bold (Embedded Subset)
Type: Typel
Encoding: Ansi

& €@ MyriadPro-Regular (Embedded Subset]
Type: Typel
Encoding: Custom

=] a TallCempeonentsDemoFent
Type Typel
Encoding: Ansi
Actual Font: Adobe Sans MM
Actual Font Type: Typel

=] a TallCemponentsDemoFontBold
Type: Typel
Encoding: Ansi
Actual Font: Adobe Sans MM
Actusl Font Type: Type 1

Figuur 8-1 Font information in Adobe Acrobat

For example, in the dialog above the Tal1ComponentsbDemoFont is not embedded. When
PDFWebViewer.NET looks for it on disk it will try to load a file named

TallComponentsDemoFont.ttf.

8.3.2. Using fontsubstitution.xml for specific fonts

You can control the fonts used by PDFWebViewer.NET through fontsubstitutions.xml. The
sample below demonstrates how you can specify what font files to load for the document shown
in the previous section.

<fontsubstitutionmap version="1">

<substitute fontname="TallComponentsDemoFont" path="PTSans.ttf" />
<substitute fontname="TallComponentsDemoFontBold" path="PTSans-Bold.ttf" />
</fontsubstitutionmap>

Code Sample 8-1 Example fontsubstitution.xml

Note: If you specify a font substitution the font will always be rendered using the specified
font, even if font data is embedded in the PDF document.

8.3.3. Emulating bold and italic styles

If you do not have specific fonts for each style you can tell PDFWebViewer.NET to emulate bold
and/or italic. For example:

<fontsubstitutionmap version="1">

<substitute fontname="DemoFont" path="Arial.ttf" />

<substitute fontname="DemoFontBold" path="Arial.ttf" bold="1" />
<substitute fontname="DemoFontItalic" path="Arial.ttf" italic="1" />
</fontsubstitutionmap>

Code Sample 8-2 Example fontsubstitution.xml

© TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

8.3.4. Specifying the default substitution font

By default PDFWebViewer.NET will display any font that it cannot find using the standard Times
font found on any Windows system. You can override the default font through
fontsubstitutions.xml. The example below sets the Arial unicode font as the default
substitution font.

<fontsubstitutionmap version="1">
<defaultsubsitutionfont>arialuni.ttf</defaultsubsitutionfont>
</fontsubstitutionmap>

Code Sample 8-3 Setting the default font in fontsubstitution.xml

Note: Make sure you pick a default font that supports all characters in the documents that
you are going to display. Characters that are not in the font will not be displayed
correctly.

Pag. 44/45 © TallComponents BV — www.tallcomponents.com

PDFWebViewer.NET 1.0 - Developer Guide

9. Appendix A: Tips

9.1. Registering a tag prefix for ASP.NET

To register a tag prefix for the PDFWebViewer.NET controls for a single page include the
following line at the top of the page.

<%@ Register TagPrefix="tc" Namespace="TallComponents.Web.Pdf"
Assembly="TallComponents.Web.PdfViewer" %>

Code sample 9-1 Registering the tc tag prefix for a single page

To register the prefix for the entire application, locate the controls section section in web.config
and add the line highlighted in the code sample below.

<configuration>

<system.web>
<pages>
<controls>

<add tagPrefix="tc" namespace="TallComponents.Web.Pdf"
assembly="TallComponents.Web.PdfViewer" />
</controls>
</pages>
</system.web>
</configuration>

Code sample 9-2 Registring the tc tag prefix in web.config

Pag. 45/45 © TallComponents BV — www.tallcomponents.com

	1. Introduction
	1.1. Features
	1.2. Basic concepts
	1.3. Conventions used in this document
	1.4. Please send us feedback!
	1.5. Online Resources
	1.6. Naming Convention

	2. Getting started
	2.1. Development environment
	2.2. Requirements
	2.2.1. Development environment
	2.2.2. Microsoft .NET ASP.NET Ajax Extensions

	2.3. Deployment
	2.3.1. Classic ASP

	2.4. Working with Visual Studio 2008
	2.4.1. IntelliSense

	2.5. Walkthrough: A basic PDF viewer (C#)
	2.5.1. Start a new website
	2.5.2. Add reference to PDFWebViewer.NET
	2.5.3. Add controls to the page
	2.5.4. Setup PDF To Image handler
	2.5.5. Configure storage
	2.5.6. Add PDF documents
	2.5.7. Select document
	2.5.8. Run website

	3. PdfViewer
	3.1. Using the PdfViewer control
	3.2. Styling PdfViewer
	3.3. Enabling full-text search
	3.4. Client script interaction
	3.4.1. Getting information about the current document
	3.4.2. Document object
	3.4.3. DocumentInfo object
	3.4.4. Page object
	3.4.5. Status events
	3.4.6. Searching
	3.4.7. Search status events: searching and searchCompleted
	3.4.8. Handling events

	4. PdfViewerToolbar
	4.1. Using PdfViewerToolbar
	4.1.1. Adding the PdfViewerToolbar control to a Page

	4.2. Styling PdfViewerToolbar
	4.2.1. Using CSS to style the control
	4.2.2. Custom image requirements
	4.2.3. File buttons
	4.2.4. Search box

	4.3. Client script interaction
	4.3.1. buttonClick event

	5. PdfThumbnailsList
	5.1. Features
	5.2. Styling the thumbnails list
	5.3. Hover effect

	6. Managing PDF documents
	6.1. Storage for PDF files
	6.1.1. Using storage providers
	6.1.2. Accessing storage
	6.1.3. Document and Page classes
	6.1.4. Storage keys
	6.1.5. Configuring a storage provider

	6.2. SessionStorageProvider
	6.3. FileSystemStorageProvider
	6.3.1. Configuration settings
	6.3.2. Customizing FileSystemStorageProvider

	6.4. Implementing a custom provider
	6.4.1. IPdfStorage interface
	6.4.2. PdfStorageProvider

	6.5. Sample : Implement database storage (C#)
	6.5.1. Start a new Web project
	6.5.2. Create database and table
	6.5.3. Setup data mapping
	6.5.4. Connection string in web.config
	6.5.5. Implementing a provider
	6.5.6. Implementing storage specific methods
	6.5.7. Configure provider
	6.5.8. User interface

	6.6. Controlling access to PDF documents
	6.6.1. The GetPage method
	6.6.2. Limited Access Demo

	7. Services
	7.1. PdfToImageHandler
	7.2. SearchHandler
	7.3. Configuring a service
	7.3.1. Configuring a URL using a custom handler file (.ashx)
	7.3.2. Configuring a URL using web.config

	8. Advanced configuration options
	8.1. Introduction
	8.2. External CMaps
	8.2.1. Using CMaps

	8.3. External fonts
	8.3.1. Font resolving
	8.3.2. Using fontsubstitution.xml for specific fonts
	8.3.3. Emulating bold and italic styles
	8.3.4. Specifying the default substitution font

	9. Appendix A : Tips
	9.1. Registering a tag prefix for ASP.NET

