
1

A Practice in Software Testing with OpenHopla

Jake Collins, Zhou Fang, Michael Heffernan

CS 490 Software Testing Spring 2012

Instructor: Aditya Mathur

Project Sponsor: John Spurgeon at Intel

2

Table of Contents
1: Introduction 3

2: Lessons Learned 3

3: OpenHopla Code Kata #1 (SpartanUnit) 3
3.1 Overview 3
3.2 Comparison with nUnit 3
3.3 Comparison with PyUnit 4
3.4 Suggestions for Improvement of SpartanUnit 5

4: OpenHopla Code Kata #2 (TriangleGuru) 5
4.1 Testing Preparation 5
4.2 Test Design 9
4.3 Test Results 9
4.4 Suggestions for Improvement 10

5: OpenHopla Code Kata #2 (TriangleGuru) Part 2 9
5.5 Suggestions for Improvement 9
5.5.1 Types of the triangles 9
5.5.2 Conditions to classify the triangles 10

6: OpenHopla Code Kata #4 (DysonNumbers) 11
6.1 Test Preparation 11
6.2 Test Design 12
6.3 Test Results 12
6.4 Suggestions for Improvement 13

7: Acknowledgements 13

Appendix A1 14
Appendix A2 16
Appendix A3 17
Appendix A4 18

3

1: Introduction
The primary purpose of this project was to gain a deeper understanding of

Software Testing through Code Kata and SpartanUnit using techniques taught in
class. We also wanted to evaluate SpartanUnit as a unit-testing framework. A
Code Kata is a formal exercise meant to reveal more information about the code
in SpartanUnit. SpartanUnit is a xUnit test framework written in C#.

We used the Code Kata’s in OpenHopla to test SpartanUnit. In addition

we compared SpartanUnit with traditional xUnit frameworks such as nUnit and
PyUnit. nUnit is the de-facto standard for testing C# code and PyUnit is the
xUnit implementation for the Python scripting language. As will be explained,
SpartanUnit takes a completely different direction than nUnit and PyUnit but the
comparison will still reveal some interesting similarities and differences.

2: Lessons Learned
• OpenHopla and SpartanUnit make great tools to use in almost any

testing situation.
• SpartanUnit uses a very simple implementation that would not take long

to understand completely for any programmer familiar with object-oriented
programming.

• No test framework could ever be the end all solution.
• It is up to the coder to decide which framework he/she wants to use.
• SpartanUnit seems to be one of the most versatile test frameworks out

there, but still needs work to be more programmer friendly and attractive
to multiple groups.

3: Code Kata #1 (SpartanUnit)

3.1 Overview
 Code Kata #1 is an exercise to familiarize a programmer with
SpartanUnit. We chose to implement SpartanUnit and compare it with other
xUnit frameworks to maximize our understanding of the purpose and place of
SpartanUnit.

3.2 Comparison with nUnit
 A comparison of nUnit and SpartanUnit seems to come down to these
points: Features and Ease of Use (and these are not mutually exclusive). Upon
looking at the source code for nUnit, it is clear from the hundreds of class files

4

that nUnit is a unit-testing framework with many features To name a few, nUnit
has the capability to watch open files for changes, change directories while
remembering previous locations, be run either by command line or GUI,
networking interaction, etc. These features can be very useful for the
experienced user, allowing very in depth fine tune unit testing. The keyword
there, however, is ‘experienced’. To this college student, it seems nUnit could
take a significant amount of time to learn. In addition, without the aid of tutorials
and online forums, trying to understand how to use it would be a daunting task of
swimming through a sea of source files and examples.

SpartanUnit, in contrast, contains only the features necessary for a unit-
testing framework. This allows programmers to quickly pick up on the essence of
unit testing and create useful tests for their current task. Additionally, this
succinct framework style lends itself to be intuitively understood simply from the
source.

3.3 Comparison with PyUnit
 Upon comparing SpartantUnit and PyUnit we have found some definite
benefits and drawbacks of both implementations. Below is a comparison of the
pros and cons of SpartanUnit over PyUnit.

Pros Cons

● More versatile for multiple
languages

● More versatile interaction with the
test

● Harder to interface with
results

● Much more code to
implement

 SpartanUnit will be easy to port to about any object oriented
programming language since it is a barebones framework using simple object
oriented concepts. Since the tests are detached in a way from the user
interaction it is possible to present the results in a number of different ways to the
user or even another program. For example, the tests we ran used a dialog box
with a “Run Tests” button that presented which tests passed and which failed.
The drawbacks of this interface were clear. If one test failed it would cancel all
the tests after the failed test. If a test failed it could not give any detailed
information of which part of the test failed or why. But since SpartanUnit is so
versatile another interface could be written to run it via command line or a better
GUI.

PyUnit runs strictly in the command line and immediately informs the user
why the test failed and even gives you a summary of differences when it

5

compares equality of objects. PyUnit also requires much less code to get a test
up and running, but as a consequence the tests must be run command line.
PyUnit also offers more assertions than SpartanUnit. The assertEqual method
is very powerful. There is also an assertFalse method, which is not too useful as
a “!” can make an Assert.True into a test for falseness. However it still would
make the tests more readable if there were an Assert.False method.
 Overall a comparison between SpartanUnit and PyUnit is not very useful
as PyUnit is more of a quick and dirty unit test framework and SpartanUnit is a
framework made to be easily tweaked to run in multiple situations and can be
easily ported to different languages. An implementation of SpartanUnit and
PyUnit testing an array search program can be found in the Appendix A.1.

3.4 Suggestions for improvement of SpartanUnit
 One major drawback experienced during testing was that TestSuites do
not continue after a test fails. It would be preferred that all tests are run
regardless of the result.

4: OpenHopla Code Kata #2 (TriangleGuru) Dominators

4.1 Testing Preparation
 To prepare to test OpenHopla’s triangle testing I constructed flow graph
for the function ClassifyTriangle in the TriangleGuru class. The functions
returning Boolean values can be considered basic blocks for the sake of
simplicity. The resulting flow graph is shown below in Figure 4.1a with the
simplified version in Figure 4.1b.

In Figure 4.1a we can see the code in TriangleGuru represented in blocks.
These are called basic blocks. A basic block of code is a subset of the functions
code that executes in a single path. This means that all of the code in each block
is executed. The edges represent where the path changes (In this case if-
statements).

In Figure 4.1b we can see the simplified version of 4.1a. This simply replaces
each basic block with a corresponding number. This makes the flow graph easier
to read.

6

Figure 4.1a

7

Figure 4.1b

The flow graph in Figure 4.1b was transformed into a dominator tree

(Figure 4.2) to see important parts of the code that would need to be tested. As
shown below, code blocks 2, 4, 6 and 8 are of significance, as all other code
blocks will be tested with any run of ClassifyTriangle.

8

Figure 4.2

 Since code blocks 2, 4, 6 and 8 are considered most important, we first
need to examine the code in these particular blocks. These four blocks of code
are executed if the conditional statement before it is evaluated to true.

2:	 triangleTypes.Add(TriangleType.Equilateral);	
4:	 triangleTypes.Add(TriangleType.Isosceles);	
6:	 triangleTypes.Add(TriangleType.Scalene);	
8:	 triangleTypes.Add(TriangleType.Right);	
	
It is obvious why these 4 lines are the most important. These are the 4 possible
types of triangles that TriangleGuru can classify. We can have triangles
containing the following types of triangle in a collection.

Collection 1
Equilateral
Isosceles*

Collection 2
Isosceles
Right

Collection 3
Isosceles

Collection 4
Scalene

9

4.2 Test Design
All of the above Collections in Section 5.2 are the equivalence classes in

an enumeration. So we need to test all possible collections, and this will also
cover all of our important finds from the dominator tree. These tests can be found
in the Appendix A.2.

4.3 Test Results
 All tests of a single triangle of collections 2, 3 and 4 passed as expected.
However the test that tested a triangle of being both equilateral and isosceles
failed. This would have to do with the accuracy of floating point values and the
reason would be unknown to a black box tester but a white box tester would
quickly find that TriangleGuru is directly comparing the number of unique values
in the triangle sides. Since the sides are not exactly equal, but as close as
possible, they do not pass the test.

4.4 Suggestions for improvement
OpenHopla needs to add an epsilon difference as there is in the method

IsRight. This would be about equal to the difference between the square root of
three and the actual value that could be easily calculated on the fly.

5: OpenHopla Code Kata #2 (TriangleGuru) Other Tests
 Multiple types of tests were executed on the triangle tester. These types
are enumerated below:

Functions I have test every single functions of the triangle to make sure it works properly. Do
find problems in function public bool IsRight(Triangle triangle) in triangleTester.
(same as in object based test)

Correctness 1) All types of input such as int, double, str, char, positive and negative value.
 2) Object based test of invalid triangle: less or more than 3 sides, side of length 0,

inputting same coordinate, not a closed graph. (Problems found in function public
bool IsRight(Triangle triangle) in triangleTester)

 3) boundary value test for all types of triangle.
 4) every possible type of triangle

Accuracy Using epsilon to test how low we can represent triangle’s accuracy. As expected
using an epsilon value lower than that hardcoded in the IsRight function caused
IsRight to produce unexpected results.

10

Stress Tried to add as many test cases as possible (up to 20) to see whether program
fails

Regression Tried to test program with same test cases after I add the classification of obtuse

User Let my friends to randomly pick some coordinates to see whether program works
properly.

These test cases can be found in the Appendix A.4

5.5 Suggestions For Improvement

5.5.1 Types of the triangles
 Based on the reason to help the project team to understand more about
the triangle, we may classify the triangle into more types. We can add obtuse
triangle and acute triangle besides current equilateral, Isosceles, scalene, and
right. In the following, Definitions of the obtuse and acute triangles follow.

 Obtuse triangle: a triangle that has one angle over 90 degrees.
 Acute triangle: a triangle in which all angles \less than 90 degrees.

 The code for verifying obtuse and acute triangle is easy and the method
for verifying a triangle as a right triangle was used with changes to the “=”
operator to either “>” or “<”. For the right triangle, there is a special triangle that
may be useful to test for. These are the 3-4-5, the 30-60-90, and the right
isosceles triangles.
 For a 3-4-5 triangle, the ratio of length of the sides is 3:4:5. We can get the
length of one side by knowing the other two without complicated calculations.
Hence, we may have the 11-12-13 triangle by extending this area. For the 30-60-
90 triangle, the ratio of the length of the three sides is 1: :2. One can get the
degree of the angles by knowing the lengths or get lengths by knowing angles.
 For right isosceles triangle, we have the ratio as 1: : . One may get the
degree of the angles by knowing the lengths or get lengths by knowing angles.

5.5.2 Conditions to classify the triangles
 As in the code, all triangles have to pass every if-statement to the end to
get the types of the triangle. However, such as in the case of a right triangle, it
must not be an equilateral triangle. Hence it is not necessary to pass the if-
statement. Based on this reason, one can enumerate the following possibilities
for triangle classification including the obtuse and acute triangles.

11

Type Can Be Must Be Must Not Be

Equilateral N/A Acute, Isosceles
*

Right, Obtuse, Scalene

Isosceles Right, Obtuse, Acute,
Equilateral

N/A Scalene

Right Isosceles, Scalene N/A Obtuse, Acute,
Equilateral

Scalene Obtuse, Acute, Right N/A Isosceles, Equilateral

Obtuse Isosceles, Scalene N/A Right, Equilateral, Acute

Acute Isosceles, Equilateral,
Scalene

N/A Right, Obtuse

An equilateral triangle is a special type of isosceles triangle. An equilateral

triangle is also an isosceles triangle and an isosceles triangle may also be
equilateral. But in this project, we may only say equilateral triangle is a triangle
with three equal sides and isosceles triangle with 2.

One suggestion is to add an if-statement under the outer if to verify the
“can be” part in the table (if a triangle is isosceles, then we tried to verify if it is
equilateral , right, obtuse or acute) and add an else-if clause. Even though it may
look more complicated but is more efficient and save time. It also may help better
understand the types of the triangle.

6: OpenHopla Code Kata #4 (DysonNumbers)

6.1 Test Preparation
 It was decided to use boundary value analysis (BVA) as a useful
technique for generating tests for the DysonNumbers class as it is a class that
handles ranges of numbers. The following graph shows the possible values
obtained using this technique (denoted by X):

12

Figure 6.1

The red Xs denote test cases that were not chosen due to time constraints, but
would be part of a more complete test suite. The green Xs were chosen because
they covered a particular area of interest: on boundary, outside the boundary, or
inside the boundary. The internal X, 6:6, was chosen because its answer can be
found on Wikipedia’s page on Parasitic Numbers.

6.2 Test Design
 The best way to test this program would be to select a set of values from
the BVA to test, then one could determine if the test yielded the correct result.
However, the actual value of any problem computed by this program is not easily
found in the literature, and computing them by hand is a time consuming task.
Therefore there are three main test designs: ones that are supposed to fail (out
of boundary), ones that should succeed but have no provided answer, and ones
with answers. The first two were tested by simple control flow: if illegal inputs did
not throw an exception, the test failed; if legal inputs did not throw an exception,
the test passed unless it was able to be compared to a value.

6.3 Test Results
 Unfortunately, most tests failed to yield correct results when n > 2.
Reasons for this are brought up in the following section.

13

6.4 Suggestions for Improvement
 It was found early in this Code Kata that for this problem the magnitude of
the answers are far beyond the maximum value of the basic integral types. The
largest such type in C#/.Net is the Int64 wrapper type, which has a maximum of
~9x1018. Taking into account the 6th Dyson number, ~1x1053, this is not
adequate.

 Considering the size of numbers, the double data type initially seems like
a good choice, as the maximum integral value representable is ~1x10300.
However, this too has its drawbacks. First, there is no defined limit for the size of
these numbers, so even ~1x10300 could be insufficient. Second, using a floating-
point data type means that the program would need to be further altered to
account for floating point arithmetic. The better choice is the BigInteger type,
which supports arbitrary precision and acts like an integral type.

 The arbitrary precision of the BigInteger structure brings into view another
potential problem. In the event that the program fails to find the answer, it will
continue to calculate until the computer runs out of memory or the tester gets
frustrated for waiting too long. Therefore, it is suggested that there be a defined
‘overflow’ value, perhaps around 400 decimal places. This would allow it to be
more accurate than using a double, yet prevent the program from calculating
indefinitely.

 Finally, there was an error in the current implementation of
DysonNumbers.LeftDigit. The current implementation always computes the
carryDigit to be 0 or 1. This works fine for n=2, but for anything larger it could
become a problem. It was found that setting the carryDigit to
nTimesRightDigitPlusCarryDigit/10 allows the program to successfully
compute other Dyson numbers, but fails for n=6. Hence a better solution needs
to be found.

7: Acknowledgements
 We thank John Spurgeon of Intel for the opportunity to test this test
framework. We would also like to thank our professor Aditya Mathur for teaching
us these insightful ways of testing software.

14

Appendix A1
Below is the code used to implement an array search test in SpartanUnit and after the
code used to implement an array search test in Python’s PyUnit.

SpartanUnit:
/*	 TestController.cs	 */	
using	 System;	
using	 System.Collections.Generic;
using	 System.Linq;	
using	 System.Text;	
using	 SpartanUnit;	
using	 OpenHopla.Geometry;	
using	 System.Collections.ObjectModel;	
	
namespace	 SpartanUnit.UnitTests.Root	
{	
	 	 	 	 public	 class	 TestControllerTest	 :	 TestSuite	
	 	 	 	 {	
	 	 	 	 	 	 	 	 public	 int[]	 array;	
	 	 	 	 	 	 	 	 public	 TestControllerTest()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 this.TestCases.Add(TestNumberPass);	
	 	 	 	 	 	 	 	 	 	 	 	 this.TestCases.Add(TestNumberFail);	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 public	 override	 void	 Setup()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 base.Setup();	
	 	 	 	 	 	 	 	 	 	 	 	 array	 =	 new	 int[10];	
	 	 	 	 	 	 	 	 	 	 	 	 for	 (int	 i	 =	 0;	 i	 <	 10;	 i++)	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 array[i]	 =	 i;	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 public	 override	 void	 Teardown()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 base.Teardown();	
	 	 	 	 	 	 	 	 	 	 	 	 array	 =	 null;	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 private	 void	 TestNumberPass()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(ArraySearch.find(2,	 array)	 ==	 2);	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 private	 void	 TestNumberFail()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(ArraySearch.find(2,	 array)	 ==	 3);	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
}	
	
/*	 TestSubscriber.cs	 */	
using	 System;	
using	 System.Collections.Generic;	
using	 System.Linq;	
using	 System.Text;	
using	 SpartanUnit;	
using	 SpartanUnit.UnitTests.Root;	
	
namespace	 SpartanUnit.UnitTests	
{	

15

	 	 	 	 public	 partial	 class	 MainTestController	 :	 BroadcastingTestController	
	 	 	 	 {	
	 	 	 	 	 	 	 	 private	 SampleSubscriber	 _subscriber	 =	 new	 SampleSubscriber();	
	
	 	 	 	 	 	 	 	 public	 MainTestController()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 _subscriber.SubscribeToBroadcast(this.Broadcast);	
	 	 	 	 	 	 	 	 	 	 	 	 this.TestSuites.Add(new	 TestControllerTest());	
	 	 	 	 	 	 	 	 }	
	
	 	 	 	 	 	 	 	 public	 string	 TestResults	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 get	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 return	 _subscriber.TestResults;	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
}	
	
PyUnit:
/*	 test.py	 */	
import	 unittest	
import	 arraysearch	
	
class	 TestArraySearch(unittest.TestCase):	
	 def	 setUp(self):	
	 	 self.array	 =	 [1,	 2,	 3,	 4,	 5,	 6,	 7,	 8,	 9,	 10]	
	
	 def	 tearDown(self):	
	 	 self.array	 =	 None	
	
	 def	 testNumberPass():	
	 	 self.assertEqual(arraysearch.find(2,	 array),	 2)	
	
	 def	 testNumberFail():	
	 	 self.assertNotEqual(arraysearch.find(2,	 array),	 3)	
	
if(__name__	 ==	 “__main__”):	
	 unittest.main()	

16

Appendix A2

Below are test cases in OpenHopla for the triangle tester class. As shown the first test
case fails as explained in the report.
	 	 	 	 	 	 	 	 public	 void	 CollectionOne()	 //Fails	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 List<OrderedPair>	 vertices	 =	 new	 List<OrderedPair>();	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(0,	 0));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(6,	 0));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(3,	 3	 *	 System.Math.Sqrt(3)));	
	 	 	 	 	 	 	 	 	 	 	 	 Triangle	 t	 =	 new	 Triangle(vertices);	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(_triangleTester.IsIsosceles(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(_triangleTester.IsEquilateral(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsRight(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsScalene(t));	
	 	 	 	 	 	 	 	 }	
	
	 	 	 	 	 	 	 	 public	 void	 CollectionTwo()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 List<OrderedPair>	 vertices	 =	 new	 List<OrderedPair>();	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(0,	 0));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(5,	 0));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(0,	 5));	
	 	 	 	 	 	 	 	 	 	 	 	 Triangle	 t	 =	 new	 Triangle(vertices);	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(_triangleTester.IsIsosceles(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsEquilateral(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(_triangleTester.IsRight(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsScalene(t));	
	 	 	 	 	 	 	 	 }	
	
	 	 	 	 	 	 	 	 public	 void	 CollectionThree()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 List<OrderedPair>	 vertices	 =	 new	 List<OrderedPair>();	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(4,	 5));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(1,	 1));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(-‐2,	 5));	
	 	 	 	 	 	 	 	 	 	 	 	 Triangle	 t	 =	 new	 Triangle(vertices);	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(_triangleTester.IsIsosceles(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsEquilateral(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsRight(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsScalene(t));	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 public	 void	 CollectionFour()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 List<OrderedPair>	 vertices	 =	 new	 List<OrderedPair>();	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(0,	 0));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(0,	 3));	
	 	 	 	 	 	 	 	 	 	 	 	 vertices.Add(new	 OrderedPair(-‐2,	 5));	
	 	 	 	 	 	 	 	 	 	 	 	 Triangle	 t	 =	 new	 Triangle(vertices);	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsIsosceles(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsEquilateral(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(!_triangleTester.IsRight(t));	
	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(_triangleTester.IsScalene(t));	
	 	 	 	 	 	 	 	 }	
	

17

	

Appendix A3

Below are the test cases for OpenHopla’s DysonNumber class.

public	 void	 failExample()	
{	
	 	 	 	 	 	 	 	 	 	 	 	 string	 message	 =	 "OPV=OUTOFRANGE,	 n=OUTOFRANGE";	
	 	 	 	 	 	 	 	 	 	 	 	 try	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DysonNumbers.SmallestNParasiticNumber(OUTOFRANGE,	 OUTOFRANGE);	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Assert.Fail(message	 +	 ":	 false	 success");	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 	 	 	 catch	 (ArgumentException)	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(true,	 message);	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 	 	 	 catch	 (OverflowException)	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Assert.Fail(message	 +	 ":	 overflow");	
	 	 	 	 	 	 	 	 	 	 	 	 }	
}	
	
public	 void	 succeedExample()	
{	
	 	 	 	 	 	 	 	 	 	 	 	 string	 message	 =	 "OPV=INRANGE,	 n=INRANGE";	
	 	 	 	 	 	 	 	 	 	 	 	 try	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DysonNumbers.SmallestNParasiticNumber(INRANGE,	 INRANGE);	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Assert.True(true,	 message	 +	 ":	 likely	 success");	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 	 	 	 catch	 (ArgumentException)	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Assert.Fail(message	 +	 “:	 argument	 problem”);	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 	 	 	 catch	 (OverflowException)	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Assert.Fail(message	 +	 ":	 overflow");	
	 	 	 	 	 	 	 	 	 	 	 	 }	
}	
	
public	 void	 SimpleSix()	
{	
	 	 try	
	 	 {	
	 	 	 	 Assert.True(DysonNumbers.SmallestNParasiticNumber(6,	 6.Equals(BigInteger.Parse(
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "10169491525423728813559932203389830508474576271186440677966")));	
	 	 }	
	 	 catch	 (OverflowException)	
	 	 {	
	 	 	 	 Assert.Fail("Overflow	 while	 testing	 onesPlaceValue=6	 	 n=6");	
	 	 }	
}	
	
	

18

	
	
	

	
	

Appendix A4

Function Test:

 Every function of the triangle was tested to make sure it works properly
Correctness Test:

int (0,0), (0,3), (3,4); (5,5), (7,-7),(-7,-6)
 int+ double (0,0), (0,3.1), (3.1,4)

string/char: (0,0), (0,ab),(3,4)
one side: (0,0),(3,4)
four sides (0,0),(0,1),(1,0),(1,1)
**** 3 points with 2 have the same coordinate (-2,0) ,(0,2),(-2,0) it did not call exception
when going through TriangleTesterShould.Classify345TrianglesAsRight but failed in
TriangleTesterShould.Classify345TrianglesAsScelene

 Because in public bool IsRight(Triangle triangle), codes get the length of the sides by
 ignoring the positive and negative sign of the coordinate.

 It means, the function Triangle = new Triangle(vertices); does not drop exception when
 creating triangles with even same coordinate

Boundary Value Test:
for right isosceles triangle (-2,0),(0,2),(2,0), test if any value of 3 coordinates has a very

minor changes would cause isRight and isIsosceles Fails.
 (-2.1,0),(0,2),(2,0);
 (-2,0.1),(0,2),(2,0);

(-2,0),(0.1,2),(2,0);
(-2,0),(0,2.1),(2,0);
(-2,0),(0,2),(2.1,0);

 (-2,0),(0,2),(2,0.1)

Every Possible Types of Triangle: 3 test cases in codes
 Equilateral: failed, DistinctSegmentLengths(triangle).Count == 1 in test case (-
 1,0),(0,System.Math.sqrt(3)),(1,0)

 Special Right Triangle:

3-4-5: Passed (0,0),(3,0),(3,4)
 30-60-90: Passed (0,0),(System.Math.sqrt(3),0),(System.Math.sqrt(3),1)

 Right and Isosceles Passed: (-2,0), (0,2), (2,0)

 Obtuse and Acute Triangle: may add after changes the codes

	

