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1. Introduction

Model-driven engineering (MDE) is getting more accepted among both industry and
academia. Thus, the need arises to optimize certain models in in-place model transforma-
tions among a certain domain-specifc cost functions. In general, such model-optimization
tasks can easily be NP-hard problems and cannot be solved without using a backtracking
operation.

This technical report is to describe NMF OPTIMIZATIONS, a framework and internal DSL
to support creating domain-specific optimizations in a maintainable manner. However,
these optimization tasks are then solved using brute-force algorithms. This makes such an
optimization framework feasible for small model sizes, only.

NMF OPTIMIZATIONS as a framework is one of the contributions that are achieved through
the master thesis "An approach to maintainable model transformations using internal
DSLs” [Hinl3]. The reason that the content presented in this report is not included in the
master thesis is that the theoretical background of NMF OPTIMIZATIONS is only described
very incomplete in this report. It remains subject of future work to improve and extend
the background theory for the framework.






2. Example transformation

This transformation scenario has been taken from the Transformation Tool Contest 20131
(TTC). The goal of this case is to remove clones of attributes from a UML class diagram.
Thus, the transformation involved in this scenario is an in-place transformation, as source
and target domain are the same. Clones of attributes are identified as they have the same
name and type. If a cloned attribute is identified, it should be removed, if possible. If two
classes both having such a cloned attribute share a common base class, the attribute is
moved to that base class (only in case no other class is affected by this), if both do not
have a base class, a common base class is created and the attribute is moved there.

To be more precisely, the case description describes three rules to pull attributes to a base
class:

1. If an entity e has two or more derived entities that all share an attribute with the
same name and type, then these attributes should be merged into a new attribute
of e with that name and type. Thus, the transformation deletes the copies of that
attribute inside the derived classes. This refactoring called "Pull up common at-
tributes” [FB99].

2. If an entity e has two or more derived entities that share a common attribute with
the same name and type, where not all of the derived entities share this attribute,
a new class should be generated, such that is inserted in the inheritance hierarchy
right between e and those derived entities and the common attribute is then to be
pulled to that new entity. This refactoring is called "Extract superclass” in [FB99].

3. If there are two or more root classes that share an attribute with the same name and
type, then a new class is to be created that these former root classes inherit and the
common attribute is to be pulled to the new entity.

Furthermore, the case description explicitely states the requirement that the transforma-
tion produces as few as possible new classes. The case description further suggests to
apply these rules with descending priority to minimize the number of classes cxreated by
the transformation.

Besides being an in-place transformation, this case further yields another typical transfor-
mation problem. That is that there might be multiple rules to eliminate cloned attributes

"http://planet-sl.org/community/_/ttc/ttc2013/cases/ClassDiagramRestructuring/
TTC2013-ClassDiagramRestructuring-Description.pdf
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applicable at the same time, which exclude each other. The case requires a solution trans-
formation to perform these changes, such that as few as possible classes are created.

In this way, the transformation task can also be considered as an optimization task, where
we do not assume that executing the rules in descending priority will lead to the same
result.

The original case description in the TTC 2013 also contains two examples of possible
inputs. The first scenario is presented in figure
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Figure 2.1.: The initial class diagram of test case 1

In this scenario, it would be possible to extract a superclass for either a or b. If a superclass
for the attribute a is extracted, it is further possible to extract a superclass for b for the
two classes C' and D. However, this resulted in two newly created classes whereas only
two attributes are deleted. Thus, the correct solution immediately extracts a superclass
for the attribute b. In this way, only one new class is created, but also two attributes are
deleted. The solution is shown in figure
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Figure 2.2.: The solution for the first class diagram restructuring test case

While this test case is rather simple, the second test case is more complex. While in the
first test case, only the second refactoring rule to extract superclasses has been applied,



the second test case is a scenario for the other two rules. The
case is shown in figure
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Figure 2.3.: The initial class diagram for the second restructuring test case

The correct solution for this test case is presented in figure
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Figure 2.4.: The solution for the second class diagram restructuring test case

In the TTC2013, two solutions for this case were presented, both using heuristics to solve
the case without using a backtracking mechanism [SR13]. These solutions were
sufficient to solve the provided test cases. However, counter-examples could be found that
actually show that the heuristics do not solve the optimization problem in every case.






3. NMF Optimizations

This chapter presents NMF OPTIMIZATIONS, a framework to address the problems arising
from non-deterministic optimizations. Like NMF TRANSFORMATIONS, NMF OPTIMIZA-
TIONS is also designed as an internal DSL to overcome these issues.

NMF OPTIMIZATIONS is a framework written in C# to provide support for optimizations.
It aims to support optimizing models using modifications that perform domain-specific
operations on the target model. The optimal outcome is determined via a a cost function.
However, the modifications may exclude each other, which is what makes the optimization
problem NP-hard. NMF OPTIMIZATIONS aims to form a model for such optimizations
and therefore specify such optimizations declaratively using an internal DSL.

3.1. Terminology

This section introduces the main terminology of NMF OPTIMIZATIONS.

3.1.1. Optimization

An optimization in NMF OPTIMIZATIONS is a concrete optimization task. Other than a
transformation in NMF TRANSFORMATIONS, it is context-sensitive and thus not thread-
safe. As areason, the initialization overhead of an optimization is far less than the overhead
for a transformation. However, one needs to be aware of this fact when combining NMF
TRANSFORMATIONS and NMF OPTIMIZATIONS to form transformations that make use of
the optimization framework of NMF OPTIMIZATIONS.

Optimizations furthermore have a property whether they require that optimization modi-
fications (see section that perform the actual model changes should be forced. This
means that the optimization can specify whether it should be allowed that solutions to
this optimization still have modifications available.

If one for example consideres the restructuring of class diagrams mentioned in section
as optimization problem, where the changes to the class diagrams are represented by opti-
mization modifications, in the possible solution scenarios there is no further modification
available, as every further modification would definitely decrease the cost of the whole
model. In this case, it is useful to specify that the optimization forces modifications to
allow optimizers to prune several scenarios.
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3.1.2. Optimization Items

Optimization items are elements that participate in the optimization. Participating in this
context means that an element is important for the cost function of how the

3.1.3. Optimization Modification

Optimization modifications are the heart and soul of NMF OPTIMIZATIONS, as they define
the possible operations on the models. These operations are represented by the method
Apply. However, as modifications may exclude each other and optimization algorithms
need to undo several operations, these modifications also have a Reverse method which
is to reverse the modification.

Furthermore, modifications can specify an impact. This can be used for optimizers to
determine whether two modifications will exclude each other. Modifications are assumed
to not exclude each other if their impact is disjunct.

Because optimization modifications are domain-specific, they must be specified by the
clients. This is done by implementing the appropriate interface I0ptimizationModifica-
tion. This interface consists of two methods and a property. The two methods are Apply
and Reverse with the obvious functionality. As modifications can overlap and the effect
of a change sometimes is not predictable, it is necessary that changes in the model must
be reversible. However, a modification is not reversed unless it has been applied before.
Thus, a modification can save the original state and apply it in the Reverse method.

Furthermore, a modification consists of the property Impact. This property is used to
predict, whether two modifications exclude each other. The rationale behind this property
is that if two modifications have disjunct impacts, they will not interfere each other.
However, this is a conservative estimation. If two modifications have an intersection in
their impact, they do not necessarily exclude each other.

Optimization modifications are the artifacts of an optimzation specification that involve
most of the complexity.

3.1.4. Modification Patterns

Optimization modifications describe small portions of possible modifications on the target
model. To be able to apply these modifications, it is necessary to specify when such a
modification is applicable and to derive the necessary parameters of a modification. This
specification is done via modification patterns in NMF OPTIMIZATIONS. These patterns
specify when a modification is applicable through the query-syntax and dedicated monad
implementations behind it.

Modification patterns can either be static or dynamic. The main difference between these
two types is the way when new modifications are determined. While a static modification
pattern only determines once which modifications are available for a certain model, dy-
namic modification patterns update the available modifications as the model is changed
during the optimization.

The ways how to specify these modification patterns is presented in section

3.1.5. Optimization Scenario

An optimization scenario is a possible outcome of the optimizer and as such a unit for
evaluation. Optimization scenarios work on the same single model and change this model
with the modifications. Scenarios are also responsible for determining the available modi-
fications in their context.
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3.1.6. Optimizer

An optimizer in NMF OPTIMIZATIONS is an algorithm that solves an optimization task
described by an optimization. As the optimization strategy is not tightly coupled to
the optimization models, the algorithm can easily be replaced. By default, NMF OpTI-
MIZATIONS contains several implementations for optimizers. The GreedyOptimizer is an
implementation for a heuristical local optimizer. It just always applies the most promising
modification. In contrast, the BruteForceOptimizer looks for all possible combinations
of modifications and looks for the best.

For more detail how these optimizers work, see section

3.1.7. Scenario Evaluator

A scenario evaluator is a component that evaluates optimization scenarios. This procedure
is moved to a dedicated component to allow more sophisticated cost functions.

However, there are situations where it is not possible to determine a cost for the single
items or the cost of the whole model cannot be calculated as the sum of the contained
elements. An example for such a cost function is a cost function based on performance
measurements, where the response time of a whole system cannot be just summed up
from the response times of its components, but instead the components have complex
interactions.

Thus, the evaluation of a scenario is moved to a dedicated component to allow for such a
component to see the big picture.

3.2. Optimization problem to be solved by NMF Optimiza-
tions

Unlike NMF TRANSFORMATIONS, where plenty transformation engines already exist,
NMF OPTIMIZATIONS covers a field that has not been widely spread on both industry
and research. Thus, in this section, the optimization that NMF OPTIMIZATIONS uses to
describe domain-specific optimizations is introduced.

Therefore, consider a set S of possible scenarios, equipped with a cost function cost : § —
R>p. An optimization modification now is a (partial) mapping m : D,, C S — R(m) C S
with an inverse (partial) mapping m~! : R(m) — D,,, where D,, denotes the subset of
scenarios where this modification is applicable and R(m) denotes the range of this mapping.
Note that an optimization scenario is not restricted to a single scenario. Instead, it can
be valid on multiple scenarios. Denote Mod(S) as the space of such modifications on the
scenarios in S. Then we further have a function mods : S — P(Mod(S)) that for each
scenario returns the possible modifications.

We call the tuple (S, cost, mods) an optimization. Furthermore, we define a valid modifi-
cation as a modification m that suffices the Valid Modification Property:

Vs € Dy, : m € mods(s). (3.1)

The Valid Modification Property is fulfilled, if a modification is available for every scenario
it is defined on.

Being functions, optimization modifications can be composed. Let mi,ms € Mod be
valid modifications. If R(m;) C D,,, and thus for each scenario s € D,,, holds that
ma € mods(mq(s)) we define a valid composition mi2 as

M1y = M9 0 M. (3.2)
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The valid composition of m1 and my is just to apply mo after my, provided the my is defined
everywhere. Furthermore, there is a neutral element id : S — 9, s — s with id~! = id, so
modifications form the algebraic structure of a monoid. However, the identity modification
does not need to be valid (in fact, in the applications, most of the time it is not).

Clearly, the resulting function mis : Dy,, — R(mg) is itself a modification, i.e. mjs €
Mod(S) with myy =m; ' omy ! and Dy, , = Dy, .

With these definitions, we can define a valid modification sequence for an initial scenario
sp as a sequence (m;)? , with n € Ng where my,...,m, are pairwise different and m =
mio...omy, is a valid composition and m € mods(sg). In case of n = 0, the modification
sequence is empty and represents the identity modification.

The optimization task now is the problem to find a valid modification sequence for a given
initial scenario sg that minimizes the cost function, i.e. a valid modification sequence

m* = (m})", such that for each valid modification sequence m = (m;)"_; holds that

cost(m™(sg)) < cost(m(sp)). (3.3)

To create more algebraic structure in the optimization modifications, the modifications
are extended by a function impact : Mod(S) — P(O), where O is an arbitrary set of
modification elements, such that for each modifications my, ms € Mod(S) with disjunct
impact, impact(mi) Nimpact(ms) = ), it holds that

Vs € S :my € mods(s) A mg € mods(s) = ma € mods(mi(s)). (3.4)

The impact describes a set of elements that are affected by a modification. If two modifi-
cations operate on disjunct impact sets, then the application of one of these modifications
does not interfere with the other modification.

3.3. Abstract syntax

Unlike NMF TRANSFORMATIONS, the abstract syntax of NMF OPTIMIZATIONS does not
contain an execution semantic, which is just executed by an engine. Instead, the abstract
syntax of NMF OPTIMIZATIONS model an optimization task that can be solved by an
optimizer, but the execution semantic of this optimization is inside the optimizer alone.
However, this procedure allows developers to write their optimizations in a declarative
way, as the execution semantic of the optimization does not have to be specified, but is
reused from existing optimizer implementations instead.

Applying the terminology of Fowler [Fow10], NMF OPTIMIZATIONS creates an adaptive
model representing an alternative computational model, where the concrete computational
model is chosen from some various implementations of optimizers.

Figure shows a simplified class diagram containing the abstract syntax of NMF OpTI-
MIZATIONS. An optimization in NMF OPTIMIZATIONS consists of several static or dynamic
modification patterns that specify the possible optimization modifications at a given point
in time. These modification patterns in turn consist of modifications that they allow.
Furthermore, an optimization is aware of its optimization items. The impact specified by
the optimization modifications is also meant to target at these optimization items.

During optimization, the possible outcomes of the optimization process are represented
by optimization scenarios. These scenarios have a cost property assigned to them that
represent the total cost of this scenario. This property is to be populated by the optimizer.

Similar to NMF TRANSFORMATIONS, the implementation of the abstract syntax is a bit
different due to several reasons. First of all, the concept of optimization items is not

10
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Figure 3.1.: The abstract syntax of NMF OPTIMIZATIONS

represented by separate classes. The sole purpose of this lack of representation is to ease
the syntax for the optimization developer. The implementation is presented in figure

The reference to the optimization modifications is turned into a method that returns
a snapshot of the modifications. Whereas static modification patterns use a collection
of available optimization modifications, dynamic modification patterns use an observable
source of optimization modifications. Such observable sources are collections that can
be observed for CRUD (Create-Read-Update-Delete) operations. Whenever any of these
operations is executed, the according operation on the observers is fired. The details of
this procedure are presented in section [3.4.2]

3.4. Specification of Modification Patterns

Modification patterns can either be specified as static or dynamic modification patterns.
We will introduce static modification patterns in section and dynamic modification
patterns in section ch:nmfo:sec:ModificationPatterns:dynamic.

3.4.1. Static Modification Patterns

Static modification patterns represent collections of available modifications that do not
change during the optimization, besides that an already applied modification cannot be
applied once again.

An example of such optimizations where all possible modifications of the model do not
change during optimization is the computation of a weighted set cover. In the weighted set
cover problem, a finite set U called the universe must be covered by sets s € S C P(U).
Furthermore, a cost function ¢ : § — R>q determines the cost of including sets to set
cover. A solution M for the set cover problem now must fulfill the following properties:

e M must be a valid selection of sets within S, i.e. M C S
e M must cover U, ie. | JM =U

e M must have minimal cost, i.e. VYN CS:UN =U = > pc(s) <D cnels).

11
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Figure 3.2.: Implementation model of NMF OPTIMIZATIONS

In this case, each of the sets in S can be represented by an optimization modification
that inserts this set into the solution candidate, or removes it respectively in the Reverse
operation. The possible sets that a solution for the set-cover problem can consist of is
static meaning that it does not change during the optimization.

This example shows that optimizations in the commonality as treated by NMF OpTI-
MIZATIONS can easily be very hard, as the set cover problem is known to be NP-hard, even
if the cost function is constant to 1.

To specify a static modification pattern, it suffices to specify the statically known opti-
mizations. These optimizations need to be derived from StaticModification. The static
modification pattern is then specified by calling the AddPattern method of the optimiza-
tion class providing the collection of modification as parameter.

A A A D A G
= Attributes = Attributes = Attributes
+ a: Integer + a: Integer +b: Double
= Operations = Operations = Operations
A B A c A E A F
= Attributes B Attributes = Attributes = Attributes
+b:Double +b : Double + b : Double + b : Double
= Operations = Operations = Operations = Operations

Figure 3.3.: The second test case of the class diagram restructuring case

However, if considers the restructuring of UML class diagrams (see section |2) as an opti-
mization, the situation is different there. If one considers the testcase 2 that is included
in the case description (see figure , simply applying the rules leads to an incomplete
optimization, as not all modifications are applied. The resulting class diagram is shown in

figure

12
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I ]

A B A C A E A F
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Figure 3.4.: Testcase 2 after applying all modification directly derivable from the initial
model

Some rules like to pull the attributes b to the superclasses A and |D|, as well as pulling
the attribute a to a newly created class can be derived from the initial class diagram.
However, as the new class NewClass1 is introduced, further modifications are possible,
such as further pulling the attribute b to NewClass1 and as soon as this happened, pulling
it further to a newly created class, thereby merging it with the attribute b of class G.

Static modification patterns cannot support such situations, where modifications make
other modifications possible that could not be determined in a static manner. Thus, in
such cases, it is necessary to use dynamic modification patterns as featured in the next
section.

3.4.2. Dynamic Modification Patterns

In contrast to static modification patterns, dynamic modification patterns can represent
modification patterns specify patterns of optimization modifications that can vary during
the optimization process. At first, the specification of dynamic modification patterns in
a NMF OPTIMIZATIONS optimization is presented in section Next, the update
mechanism is explained in more detail in section

3.4.2.1. Specification

Dynamic modification patterns are specified through observable sources of modifications.
These observable sources can be iterated for their current elements. Furthermore, it is
possible to register observers that are notified, whenever an item of that source is added,
updated or removed. The default implementation of such an optimization source is rep-
resented by the class ObservableSource. This class provides a constructor that accepts
a collection where the items should be read from. Observable sources can be composed
using the query syntax of C# (or any other host language, respectively).

As an example, the optimization to solve the class diagram restructuring case (see section
2) optimzes the entities within the model. As the set of classes inside the class diagram
will change during optimization, it is necessary to use an optimization source that enables

13
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change propagation instead of a pure collection. Thus, the class representing the opti-
mization of the class restructuring has a property specifying the entities inside the model
as an optimization source. Listing shows its definition. This property is initialized
in the constructor by a new instance of ObservableSource that persists changes to the
underlying set of entities within the class diagram model.

Listing 3.1: The optimization item source for the entities

public OptimizationItemSource<Entity> Entities { get; set; }

This class ObservableSource<T> has three important operations: Publish, PushUpdate
and Revoke. The main purpose of these methods is that they notify their observers that a
new item is added to the source, an item is updated or an item is removed from the source.
In case of Publish or Revoke, this change is persisted to the underlying collection. In any
case, the changes are propagated to the observers.

A observableSource<T>
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=) Operations
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+ PushUpdate(T)
+ Revoke(T)

#; Lling
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P winterfaces
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Fal F 8 1
T Source’|'l | —
“““ |
]
: |
A observableSourceBase<T> | o
| F~3 winterfaces
Il -,
= Attributes : ]So;roeohservemﬁ»
= Attributes
= Operations : :
+ Subscribe(I0ptimizationObserve | =/ Operations .
+ Unsubsecribe(Predicate) | + OnDefete(Titem)
| + OnNew(T item)
: A~ + OnResety)
= + Onlipdats(Titem)

SelgctSource | *

*
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Attributes
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A OptimizationEx...

= Attributes

= Operations
+ Select(...}

+ SelectMany(...)

+ Where(...)

Figure 3.5.: The implementation of the query syntax for dynamic modification patterns

These observers chain the notification - insertion, update or removal of an element - to
subsequent implementations that form the backend for the query syntax. Figure gives
an overview on these classes. While the static class OptimizationExtensions includes

14
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the necessary extension methods for the observable source monad, the classes Composite-
Source, SelectManySource, SelectSource and FilteredSource form the backend for
the monadic implementation of the keywords from, where and select. Grouping remians
unimplemplemented, so far. With these classes, it is possible to specify dynamic modifi-
cation patterns with the query syntax of C# (or any other host language, respectively).

In the case of the class diagram restructuring case from the TTC, see section |2, there
is only one type of modifications, namely to pull common attributes to a common base
class. We can represent this modification with the class PullUpCommonAttributes. This
modifications now needs a pattern to let NMF OPTIMIZATIONS know when it is applicable.
Listing shows an implementation for a modification pattern that is triggers when there
are any two class that share an attribute and can be merged. This unifies the three rules
given in the case description.

Listing 3.2: A modification pattern when it is applicable to pull up common attributes

AddPattern(from cl in Entities

from ¢2 in Entities

where cl != c2

&& cl.Generalization. Select (g => g.General).FirstOrDefault () =
c2.Generalization . Select (g => g.General).FirstOrDefault ()

from al in cl.OwnedAttribute

from a2 in c2.OwnedAttribute

where al.Name = a2.Name && al.Type = a2.Type

select new PullUpCommonAttributes(cl.Generalization. Select (g =>
g.General) . FirstOrDefault (), al, this));

In listing the first two lines create tuples of any two entities labeled as ¢; and cs.
Line 3 requires ¢; and ¢y to be different and line 4 adds another condition that they must
share the same base class or both not have a base class at all. Line 5 and 6 select the
attributes of the entities ¢; and ¢y and finally line 7 restricts these tuples that the names
and types of the properties must match. Note that this pattern specifies every occurrence
of restructuring rules as in all at once. This has been done to avoid duplicate code.
Line 8 specifies that in this case, the PullUpCommonAttributes modification should be
applied to the model with the given parameters.

Because Entities is an observable source, NMF OPTIMIZATIONS can recognize changes to
this collection and propagate changes to this collection that cause to create or delete tu-
ples and eventually create or delete the appropriate modifications. Because it is used
in the context with an observable source, the compiler can also interfere that Owne-
dAttribute collection of an Entity should be treated as observable source. NMF Op-
TIMIZATIONS can receive updates of this collection, because it implements the interface
INotifyCollectionChanged. However, syntax restrictions in C# make it impossible to
check that during compile time. Thus, if the class representing the OwnedAttribute col-
lection of an FEntity did not implement the INotifyCollectionChanged interface, NMF
OPTIMIZATIONSWould not receive any updates, but would not throw an exception, neither
at runtime nor at compile time.

The comiler will convert the above listing into the sequence of extension methods shown
in listing These extension methods use the classes from figure [3.5| inside their imple-
mentation.

Listing 3.3: The above modification as sequence of extension methods

Entities.SelectMany (cl => Entities, (cl, ¢2) = new { cl = cl, c2

=2 )
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16 3. NMF OPTIMIZATIONS

.Where((cl,c2) = cl = c2
&& cl.Generalization. Select (g => g.General).FirstOrDefault () =
c2.Generalization . Select (g => g.General).FirstOrDefault ())

.SelectMany ((cl,c2) => cl.OwnedAttributes, (cl,c2,al) =
new {cl=cl, c¢2=c2, al=al})

.SelectMany ((cl,c2,al) = ¢2.0wnedAttributes, (cl,c2,al,
a2) => new {cl=cl, al=al,a2=a2})

.Where((cl,al,a2) => al.Name = a2.Name && al.Type = a2.
Type)

.Select ((cl,al,a2) => new PullUpCommonAttributes(cl.
Generalization. Select (g => g.General).FirstOrDefault ()
, al, this));

However, the pattern in listing is quite long. It is thus a good idea to divide into
multiple parts. An approach could be to separate the creation of tuples of entities, e.g.
because they are also needed for another pattern. In this way, duplicate code can be
avoided.

Listing 3.4: Separating the creation of tuples

var tuples = from c¢l in Entities

from c2 in Entities

where cl.Element != c¢2.Element

select new { Entityl = cl, Entity2 = ¢2 };

An example of this procedure is shown in section in listing where the creation of tuples
has been set saved into a dedicated variable. The anonymous class language feature of C#
allows the syntax to create an instance of an anonymous class with properties Entityl and
Entity2. Although this anonymous class is invisible in figure the compiler will also
create this anonymous class in the above case, although it is completely hidden from the
developer. These tuples can now be used to specify the modification patterns in a slightly
modified version of the code from listing see listing

Listing 3.5: The above modification pattern reusing the tuples

AddPattern (from tuple in tuples

where tuple.Entityl.Generalization.Select (g => g.General).
FirstOrDefault () = tuple.Entity2. Generalization. Select (g =
g.General) . FirstOrDefault ()

from al in tuple.Entityl.OwnedAttribute

from a2 in tuple.Entity2.OwnedAttribute

where al.Name =— a2 .Name && al.Type = a2.Type

select new PullUpCommonAttributes(tuple.Entityl.Generalization.
Select (g => g.General).FirstOrDefault (), al, this));

However, this version of the mofification pattern is inefficient, as it creates 2-tuples of all
2-tuples of entities. Given a large set of entities, this is going to be expensive. A better
idea would be to separate the cases where a common base entity exists. This can be easily
achieved by using the modification pattern presented in listing (3.6

Listing 3.6: A modification pattern for entities with a base entity

AddPattern(from c¢ in Entities
where c¢.Generalization.Count > 0
from a in c¢.OwnedAttribute

16




3.4. Specification of Modification Patterns 17

where IsCandidate(c.Generalization [0]. General, a.Name, a.Type)
select new PullUpCommonAttributes(c.Generalization [0]. General, a
, this));

3.4.2.2. The Update mechanism

It is crucial for dynamic modification patterns to understand how they are dynamic and
how changes within the chains of such observable sources are propagated through these
patterns. In this subsection, the update mechanism is explained for all Observable-
SourceBase implementations.

In this section, we will treat calling the observers in the same way as calling an event. The
explicit observers have been chosen over events mainly for performance reasons.

CompositeSource, SelectManySource

These source types describe tuples of elements from other collections and thus implement
the from keyword in the C# query syntax. Whenever an item of a subsequent observable
collection is added, updated or removed, all tuples within the composite source are added,
updated or removed, respectively.

SelectSource

This source simply selects a feature from a observable source of objects. When an element
is added to the underlying observable source, the selection for this element is created, saved
and the SelectSource fires an event that a new element has been added to the collection.
When an element is removed, the SelectSource finds the appropriate selection and fires
an event that the selected object is removed. The update process is more complex. If
an element is updated, the SelectSource compares the old and the new representation
for this element. In case the object references are equal, the element is updated to be
sure that no update information is lost. Otherwise, the old representation is deleted (with
the appropriate event) and the new representation is added. Thus, an update process is
turned into a deletion and an insertion.

FilteredSource

The FilteredSource works similar to the SelectSource. If an element is added to the
underlying observable source, the FilteredSource checks whether the element fulfills the
filter condition. If so, the element is added to a whitelist and an event is raised that the
FilteredSource contains a new element. Otherwise, the element is ignored. Likewise,
if an element is deleted in the underlying observable source and the elemnt is not in the
whitelist, this is ignored. If the element is on the whitelist, the element is removed from
the whitelist and an event is raised to inform clients that the element has been removed.
In case where an element in the underlying observable source is updated, it is important
whether the element is in the whitelist (i.e. previously satisfied the filter condition) and
whether it currently satisfies the filter condition. There are four cases:

1. The element is in the whitelist and also fulfills the filter condition. In this case, the
update is propagated to the client of the FilteredSource.

2. The element is in the whitelist, but does not fulfill the filter condition anymore. In
this case, the element is removed from the whitelist and an event is raised that the
element is removed from the FilteredSource.

17



18 3. NMF OPTIMIZATIONS

3. The element is not in the whitelist, but fulfills the filter condition. In this case, the
element was previously ignored by the filter source. Thus, the element is added to
the whitelist and an event is raised to inform clients.

4. The element is not in the whitelist and does not fulfill the filter condition. No action
is to be taken in this situation.

3.5. Optimizer implementations

This chapter introduces the three optimizers that are implemented in NMF OPTIMIZA-
TIONS. These include the Brute-Force Optimizer that is presented in section [3.5.1], the
Greedy Optimizer introduced in section and the Impact-sensitive Optimizer pre-
sented in section [3.5.3

While both the Brute-Force Optimizer and the Greedy Optimizer ignore the impact of a
modification, the impact-sensitive optimizer does not and thus requires the modifications
used within an optimization to specify proper impacts. However, none of these optimizers
uses the difference of static and dynamic modification patterns and thus both treat them
equally as dynamic modification patterns. Thus, there is a big unused potential to speed
up the optimizations. However, as this thesis is about the maintainability, these potential
performance gains will be ignored here, as they are out of the scope of this thesis.

However, the optimizer components presented in this chapter do not implement truly so-
phisticatzed algorithms. Instead, they are rather simple. As a reason, the purpose of NMF
OPTIMIZATIONS was to create a framework to represent optimization tasks. Thus, the op-
timizer implementations within the framework can rather be seen as a proof of concept
for the representation of optimization tasks, rather than sophisticated implementations of
optimizers.

As the execution semantics of optimizations written in NMF OPTIMIZATIONS is hidden
in the optimizer implementations, the implementation to the optimizers included in the
NMF OPTIMIZATIONS framework are presented here in detail.

3.5.1. Brute-Force Optimizer

As the name implies, the brute-force optimizer applies the brute force algorithm to solve
the optimization. The advantage of the Brute Force optimizer is that it does not require
any assumptions. Especially, the impact of the optimization modifications is not required.
Thus, the Brute-Force optimizer is an alternative when it is difficult or impossible to
compute the impact of a modification.

The implementation of the Brute-Force Optimizer is presented in listing where the
method to process a scenario is shown (the parameters types are omitted). This method is
called by the Optimize method with some initialization and afterwards, the best scenario
is applied to the model. The optimizer selects the distinct set of available optimization
modifications first. Afterwards, the scenario evaluator evaluates the current scenario and
possible set to the new best scenario. If, however, the optimization is marked to force
modifications and there is a modification available, this step is omitted. Afterwards, the
optimizer applies these modifications to the model and searches for new scenarios in a
depth-first process.

Listing 3.7: The implementation of the Brute-Force Optimizer

1 |private void ProcessScenario(currentScenario, optimization ,

2

evaluator, ref bestScenario)

{

18
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3.5. Optimizer implementations 19

var mods = optimization.GetCurrentModifications (). Distinct ().
ToArray () ;

if (loptimization.ForceModifications || mods.Length = 0)

{

currentScenario.Cost = evaluator.EvaluateScenario (

currentScenario) ;

if (currentScenario.Cost < bestScenario.Cost)

{

bestScenario = currentScenario;

¥

}

foreach (var mod in mods)

{

var scenario = currentScenario.Fork(mod);

mod . Apply () ;

FillAlternatives (scenario, optimization, evaluator, ref
bestScenario) ;

mod. Reverse () ;

}
}

However, as the Brute-Force optimizer utilizes brute force, the execution time is exponen-
tial.

3.5.2. Greedy Optimizer

Since the Brute-Force Optimizer has an exponential execution time, it is not suitable
in various occasions. A possible solution is to use approximative algorithms. A very
simple approximative algorithm is the greedy algorithm. The greedy optimizer always
checks which of the available modifications yields the gain in the cost function and applies
it. If no modification can beat the current scenario, the curent scenario is returned as
the best scenario. In this way, the greedy optimizer somehow finds a ”"local maximum”
where locality is expressed using the distance implied by the modification appliances. The
execution time of the greedy optimizer is roughly the amount of applied modifications
in the optimal scenario multiplied by the total amount of available modifications in the
optimization, which is quadratic in the total amount of modifications in the optimization.

Listing 3.8: The implementation of the Greedy Optimizer

private static IOptimizationScenario GreedyExploreScenario (
currentScenario , optimization, evaluator)
{

double lowestCost = optimization.ForceModifications ? double.
Positivelnfinity : currentScenario.Cost;

IOptimizationScenario bestScenario = currentScenario;

IOptimizationModification bestMod = null;

var mods = optimization.GetCurrentModifications (). Distinct ().
ToArray () ;
foreach (var modification in mods)

{

var modifiedScenario = currentScenario.Fork(modification);
modification . Apply () ;
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20 3. NMF OPTIMIZATIONS

var cost = evaluator.EvaluateScenario(modifiedScenario);
modifiedScenario.Cost = cost;

if (cost < lowestCost)

{

lowestCost = cost;

bestScenario = modifiedScenario;

bestMod = modification;

}

modification.Reverse () ;
if (bestScenario != currentScenario)

bestMod . Apply () ;
return GreedyExploreScenario (bestScenario, optimization
evaluator);
}

else

{

return currentScenario ;

}
}

The implementation of the greedy optimizer is presented in listing 3.8, The algorithm ap-
plies every available modification and looks for the best improvement that can be achieved
applying a single modification. If no modification can achieve an improvement, the opti-
mizer returns the initial scenario. The modification that achieved the best improvement
is applied to the optimization model and the optimizer continues to process this scenario.
The Optimize method just does some checks on the arguments and returns the result of
the method shown above.

3.5.3. Impact-Sensitive Optimizer

Of the three implementation for optimizers included in NMF OPTIMIZATIONS, the impact-
sensitive optimizer is the most sophisticated one. Unlike the other two, it uses the informa-
tion on the impact of modifications to decide when to apply an optimization modification.

The basic idea behind the impact-sensitive optimizer is the assumption that the order in
which modifications are applied does not matter in case the impact of these modifications
is disjunct. If two modifications A and B have disjunct impacts, then B will still be
available if A has been applied to the model and vice versa. Furthermore, the modifications
available after applying the sequence A, B will be the same as after B, A. Thus, It is
not necessary to explore both sequences in depth and hence one exploration step can be
pruned. Furthermore, if the optimization requires forced modification, the impact-sensitive
optimizer makes the assumption that both A and B must be applied together, unless there
is another modification C' that also has an impact disjunct to A, but interferes with B
(or vice-versa). In this case, the algorithm also considers the combination A before C.
However, as the algorithm is agnostic of the optimization domain, it might be possible
that after applying A and C, the modification B is still available, as the application of C
does not necessarily prevents the application of B.

If one considered not just two but in general n € N modifications with disjunct impact,
such procedure for forced modifications cuts down the effort spent to an almost linear
complexity.

20
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3.5. Optimizer implementations 21

Listing 3.9: The implementation of the impact-sensitive optimizer

public void ProcessScenario(currentScenario, forbidden)
{
var mods = CreatelnitialModificationGroups (forbidden);

if (!Optimization.ForceModifications || mods.Count = 0)

{

TestAndSetScenario(currentScenario);

}

ExpandModificationGroups (mods) ;
ApplyGroups(currentScenario , forbidden , mods);

The implementation of the Impact-Sensitive Optimizer is presented in listing The
ProcessScenario-method is run inside a dedicated optimization context object, which for
example contains the property Optimization from line 4. Unlike the ProcessScenario
method, it also contains a collection of forbidden modifications that must not be used in
this step. The algorithm consists of four steps. In the first steps, the algorithm creates
an initial list of modification groups that represent the available modifications of the op-
timization in groups of one. Next, the current scenario is evaluated and set as new best
scenario, similar to the Brute-Force Optimizer from section [3.5.1f The step introducing
the biggest difference is the step to expand the modification groups. After the expansion,
the groups are applied to the model.

Listing 3.10: Expanding modification groups

protected virtual List<ModificationGroup>
CreatelnitialModificationGroups (IEnumerable<
IOptimizationModification> forbidden)

{

var hashMods = new HashSet<IOptimizationModification >(
Optimization. GetCurrentModifications ());

hashMods . ExceptWith (forbidden) ;

var mods = new List<ModificationGroup >(hashMods.Count) ;
var counter = O0;

foreach (var item in hashMods)

{

var box = new SingleModification (item);

box.Index = counter;

counter—+-+;

}

return mods;

}

The implementation of the first step is shown in listing Basically, the available modi-
fications are inserted into a hash set. This hash set deletes possible duplicate modification
entries in an efficient way. Furthermore, it allows to remove forbidden modifications ef-
ficiently. Next, the remaining modifications are wrapped in a ModificationGroup and
put into a separate list of modification groups. A class diagram of modification groups is
shown in figure [3.6l A SingleModification represents a group of just a single modifi-
cation, whereas a CompositeModificationGroup represents a composite group consisting
of two other modification groups. The SingleModificatio is assigned their index within
the list of modification groups for easier reference.
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Figure 3.6.: Modification groups used in the Impact-Sensitive Optimizer

In the expansion of the modification groups, the modification groups are merged into larger
groups, provided they have a disjunct impact. The impact of a modification group is just
the conjunction of the impacts of the modifications they are representing. To allow efficient
processing, these impact sets are represented using hash sets.

The implementation of this expansion step is shown in listing ch:nmfo:impactSensitive:expand Groups.
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Listing 3.11: Expanding modification groups

protected virtual void ExpandModificationGroups (List<
ModificationGroup> mods)
{

var simples = mods. Count;
for (int 1 = 1; i < mods.Count; i++)
{
for (int j = 0; j < i & j < simples; j++)
{
var complex = mods|[i];
var simple = mods[j] as SingleModification;
if (!complex.Impact.IntersectsWith (simple.Impact))

{

if (!Optimization.ForceModifications)

complex. Forbidden .Add(simple) ;
simple.Forbidden .Add(complex) ;

}

else

{
complex.Ignore = true;
simple.Ignore = true;

}

if (simple.Index < complex.GetIndices().First())

var compound = new CompositeModificationGroup (simple ,
complex ) ;
mods . Add (compound ) ;

}
}
}
}
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30\}

The algorithm creates tuples of modification groups and single modifications that reside
in the initial list. A composite is added to the modification group list, if two modification
groups have disjunct impacts. This is guarded with the restriction that the index of the
simple modification is less than the smallest index within the composite. This condition is
used to ensure that each combination of modifications is only added to modification group
list once at most. Furthermore, if the impacts of simple and complex are disjunct, then
there will definitely be a further modification group that consists of all modifications of
simple and complex. Thus, when applying these modification groups, it is not allowed to
use the modifications of the other modification group in order to avoid duplicate processing
of these modifications.

The implementation of the other two steps is omitted here, but can be reviewed in the
online source code repository at the CodePlex project homepag

3.6. Testing

Very similar to model transformations, (model) optimizations contain a lot of possibilities
where developer can make mistakes. Thus, it is important that model optimizations are
properly tested.

Furthermore, testing optimizations has the same problems regarding black box tests. De-
spite their usefulness, it is usually better to also test bits of the optimizations separately.

Optimizations consist of modification patterns that in turn call optimization modifications.
As the classes involved in specifying modification patterns are a part of NMF OPTIMIZA-
TIONS, they already are tested. However, optimization developers can still make mistakes
when specifying modification patterns, especially dynamic modification patterns. Sadly,
it is complicated to test such modification patterns separately. An approach could be to
modify the model in the testing environment after the optimization has been initialized
and is thus observing the model and afterwards asserting the available modifications of
the optimization.

Unlike modification patterns, optimization modifications can be tested very easily. Being
classes, testing such optimization modifications is as easy as testing the Apply and Reverse
method and the impact property, if the impact is used at all. This can be achieved by
any testing framework. As the Apply and Reverse methods do not have parameters at
all, setting up the test environment entirely depends on the properties of the modification
class, which in turn is created by the optimization developer and thus, the optimization
developer is responsible that testing the modifications is possible just like with any other
piece of code.

3.7. Conclusions

Wrapping up, NMF OPTIMIZATIONS provides a way to represent optimization tasks inside
a framework. Thus, optimizations can be written in a declarative way, by just specifying
what needs to be optimized rather than specifying how this optimizaion task is to be
solved. The question how it is to solved can just be answered by reusing existing optimizer
implementations.

However, so far, there are only few optimizer implementations available, but this is a clear
point of improvement and sophisticated algorithms can be implemented in such optimizers,
making this implementation available to a wide range of optimization tasks.

"http://nmf . codeplex.com/
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A. Appendix

A.1. Restructuring UML class diagrams

Listing shows the complete optimization to solve the class diagram restructuring case
from the TTC 2013.

Listing A.1: An NMF Optimizations solution for the class diagram restructuring case from
the TTC 2013

using System;

using System. Collections. Generic;
using System.Ling;

using System.Text;

using My;

using NMF. Optimizations;
using NMF. Utilities ;

namespace RestructureClassDiagrams

{

public static class Facade

{

public static void RestructureClassDiagram (Model diagram)

{

var restructuring = new ClassDiagramRestructuring (diagram) ;
restructuring . Optimize (GreedyOptimizer . Instance ,
BasicEvaluator.Instance) ;
}

}

class ClassDiagramRestructuring : Optimization<Model>

{

public ClassDiagramRestructuring (Model model) : base(model)

{

Entities = new ObservableSource<Entity >(model. Entitys);
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}

ForceModifications = true;

AddPattern(from entity in Entities
where entity.Generalization.Count > 0
from baseEntity in entity.Generalization
from attribute in entity.OwnedAttribute
where AtLeastTwice(baseEntity
. General
.Specialization
.Select (g => g.Specific), attribute.Name, attribute.Type)
select new PullUpCommonAttributes(entity.Generalization.
First ().General, attribute, this));

var withoutBase = from c¢l1 in Entities
where c¢l1.Generalization.Count = 0
select cl;

AddPattern(from entity in withoutBase
from a in entity.OwnedAttribute
where AtLeastTwice(withoutBase, a.Name, a.Type)
select new PullUpCommonAttributes(null, a, this));

public class PullUpCommonAttributes : IOptimizationModification

{

, IEquatable<PullUpCommonAttributes>

public Entity BaseEntity { get; private set; }

public Property Property { get; private set; }

public ClassDiagramRestructuring Parent { get; private set; }
public Entity NewEntity { get; private set; }

private List<Entity> Candidates { get; set; }

public PullUpCommonAttributes(Entity baseEntity , Property
property , ClassDiagramRestructuring parent)
{

if (parent = null) throw new ArgumentNullException (”parent
")

if (property = null) throw new ArgumentNullException (”
property”);

Parent = parent;

Property = new Property () { Name = property.Name, Type =

property.Type };
BaseEntity = baseEntity;

}

public IEnumerable<Entity> GetCandidates ()

{

IEnumerable<Entity> initialCandidates;
if (BaseEntity = null)

{
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A.1. Restructuring UML class diagrams 33

initialCandidates = Parent.Model. Entitys.Where(box => box.
Generalization.Count = 0);
1

else

{

initialCandidates = BaseEntity.Specialization. Select (gen =>
gen. Specific);
}

return initialCandidates
.Where(e => e.OwnedAttribute. Exists (p => p.Name =— Property
.Name && p.Type = Property.Type));

}

public bool Apply()

{
Candidates = GetCandidates (). ToList () ;

if (Candidates.Count <= 1)

{
return false;
}
foreach (var candidate in Candidates)
{
RemovePropertyFrom (candidate) ;
}
if (BaseEntity != null && Candidates.Count() = BaseEntity .
Specialization .Count)
{

BaseEntity . OwnedAttribute . Add(Property) ;
Parent . Model. Propertys.Add(Property) ;

}

else
{
if (NewEntity = null) NewEntity = new Entity () { Name =
Parent . GetNewClassName () };
NewEntity . OwnedAttribute .Add( Property) ;
Parent . Model. Propertys.Add(Property) ;
if (BaseEntity != null)
{
Parent.Model. Generalizations.Add(new Generalization () {
General = BaseEntity, Specific = NewEntity });
foreach (var candidate in Candidates)
{
ChangeBaseEntity (candidate , BaseEntity , NewEntity) ;
}
}

else

{

foreach (var derived in Candidates)
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var g = new Generalization ()

{

General = NewEntity,

Specific = derived

b
Parent.Model. Generalizations .Add(g) ;

}

}

foreach (var candidate in Candidates)

{

Parent. Entities.Refresh (candidate);

}

Parent . Entities.Publish (NewEntity) ;

}

return true;

}

private void ChangeBaseEntity (Entity candidate, Entity oldBase
, Entity newBase)
{

var generalization = candidate. Generalization.FirstOrDefault
(g = g.General = oldBase);

candidate . Generalization.Remove( generalization);

generalization . General = null;

Parent . Model. Generalizations .Remove( generalization);
Parent . Model. Generalizations .Add(new Generalization () {
General = newBase, Specific = candidate });
}

private void RemovePropertyFrom (Entity entity)

{

var prop = entity.OwnedAttribute. First(p => p.Name —
Property .Name && p.Type = Property.Type);

entity . OwnedAttribute . Remove(prop) ;

Parent.Model. Propertys.Remove(prop) ;

}

public void Reverse()

{

if (Candidates.Count <= 1) return;
if (NewEntity = null)

RemovePropertyFrom (BaseEntity ) ;
foreach (var candidate in Candidates)

{

AddPropertyClone (candidate) ;

}
}

else
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{

RemovePropertyFrom (NewEntity ) ;
var g = NewEntity. Generalization.FirstOrDefault () ;
if (g !'= null)
{
g.General = null;
g.Specific = null;
Parent .Model. Generalizations .Remove(g) ;
foreach (var derived in Candidates)
{
ChangeBaseEntity (derived , NewEntity , BaseEntity);
Parent. Entities . Refresh (derived);
AddPropertyClone (derived ) ;

}
}

else

{

foreach (var derived in Candidates)

{

var generalization = derived. Generalization
.Where(gen => gen.General =— NewEntity) . First () ;

generalization.General = null;
generalization . Specific = null;

Parent . Model. Generalizations .Remove( generalization);

Parent . Entities.Refresh(derived);
AddPropertyClone (derived ) ;

}
}

Parent . Entities . Revoke (NewEntity) ;

}
}

private void AddPropertyClone(Entity candidate)

{

var propertyClone = new Property ()

{

Name = Property .Name,
Type = Property.Type

}s
candidate . OwnedAttribute.Add(propertyClone) ;
Parent . Model. Propertys.Add(propertyClone) ;

}

public IEnumerable<object> Impact

{

get

{

if (BaseEntity != null) yield return BaseEntity;
foreach (var candidate in GetCandidates())

{
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yield return candidate;

}
}
}
public override bool Equals(object obj)
{
return Equals(obj as PullUpCommonAttributes) ;
}
public override int GetHashCode()
{
var i = 0;

if (BaseEntity != null) i "= BaseEntity.GetHashCode () ;
i "= Property.Name. GetHashCode () ;

i "= Property.Type.GetHashCode () ;
return i;
}
public bool Equals(PullUpCommonAttributes other)
{
if (other = null) return false;
return other.BaseEntity = BaseEntity && other.Property.Name
= Property.Name && other.Property.Type = Property.Type
}
}

private bool AtLeastTwice(IEnumerable<Entity> entities , string
name, My.Type type)
{

return entities
.Where(c => c¢.OwnedAttribute
.Exists(p => p.Name = name && p.Type = type))
.Count () > 1;

}
public ObservableSource<Entity> Entities { get; set; }
private int classCounter = 0;
internal string GetNewClassName ()
{
classCounter-++;
return "NewClass” + classCounter.ToString () ;
}
}
}
A.2. NMF

This section briefly introduces NMF, an open-source project to provide support for model-
driven techniques on the .NET platform. The abbreviation NMFstands for .NET Modeling
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Framework. It is an open-source framework initiated in July 2012 and now hosted on
Codeplex at http://nmf.codeplex.com/. The following sections explain the purpose of
the projects that NMFconsists of.

e TRANSFORMATIONS for M2M transformations presented in section [A.2.1or [Hin13]
e OPTIMIZATIONS for domain-specific optimizations presented in chapter

e ECOREINTEROP for EMF interopability presented in section

e SERIALIZATIONS for XMI serialization presented in section

ANYTEXT, a parser based on language descriptions similar to XTEXT. However, this
project retired.

e Several others projects, including projects for collections and utilities

A.2.1. Transformations

The TRANSFORMATIONS project exists since July 2012. It has been subject of various
refactorings and extensions in the master thesis and is also first described in this
thesis. The project consists of a core framework (NMF TRANSFORMATIONS CORE) and
an internal DSL built on top of it, NTL. This internal DSL is designed to be used with
C+# as host language and enables transformation developers to write rule-based M2M
transformations in C# code.

A.2.2. Optimizations

The OPTIMIZATIONS project is the project that this technical report is based on. It is
described in detail in chapter 3|

A.2.3. Ecorelnterop

The ECOREINTEROP is a project to provide interopability support with EMF, especially
the Ecore meta-metamodel. In this way, it provides a code generator that can create
classes representing the metaclasses of an Ecore-metamodel. These classes are further
decorated with attributes that enable the SERIALIZATIONS project to load and save these
models from and to XMI. This interopability was needed to participate in the TTC2013,
as the resulting models were in the Ecore XMI serialization format. The code generation
for Ecore packages is an important use case of NMF TRANSFORMATIONS, as it is a model
transformation that targets the metamodel defined in the System.CodeDOM namespace,
much like the ABB case study from chapter 77.

A.2.4. Serializations

The SERIALIZATIONS project is a framework to easily serialize objects from and to XML.
Unlike the XML-serializer that is contained in the .NET framework, the XML-serializer
from the SERIALIZATIONS project is capable of serializing models with cyclic references.
However, it is still possible to influence the format of the resulting XML files. Furthermore,
the XML document is not kept in memory, but the model is created on-the-fly.

Compared to the EMF builtin serializer, this serializer has some drawbacks, as it is not
capable to load models split among multiple files. Neither is it possible to serialize a model
to multiple files.
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