Santosh Benjamin
Project Mockingbird
A Tool for developing mock web-services

Santosh Benjamin	1/9/2009	

 (
Version: 1.0 Alpha
)

Project Mockingbird

Table of Contents
Mockingbird– A Brief Description	4
What is Mockingbird?	4
Why do I care? - The ’40 Storey’ Elevator Pitch for Mockingbird	4
Where did it come from and who is it aimed at?	4
So what is it actually?	4
Installation Guide	5
Get & Install the package	5
Update the website & app configuration files	5
Testing your installation	7
Deploying your mock service endpoints	9
Setup the data Files	9
Setting up the Endpoint Configuration File	10
Detailed Scenarios for using MockingBird	11
Contract-First Development	11
As an Environment Isolator	12
Architecture & Implementation	13
Illustration	13
Key Concepts	13
Implementation	13
Testing	13
3rd Party Libraries	13
The Codeplex ‘MockingBird’ Project	13
Roadmap	13

Revision History
	Version
	Summary of changes
	Author
	Date

	1.0a
	Alpha release
	Santosh Benjamin
	13-Jan-2009

	
	
	
	

	
	
	
	

	
	
	
	

[bookmark: _Toc219610808]Mockingbird– A Brief Description
[bookmark: _Toc219610809]What is Mockingbird?
Mockingbird is a tool for mocking web services. It is essentially a configurable message interceptor that can act as a stand in for any web service.
The two primary usage scenarios for Mockingbird are
· Contract First development
· Isolation of build & dev servers from external dependencies
[bookmark: _Toc219610810]Why do I care? - The ’40 Storey’ Elevator Pitch for Mockingbird
Imagine you are given the WSDL for a third-party web-service but no functioning system is available yet (it may be a brand new service or perhaps dev/site licenses are being negotiated). You need to get on with development right now. What do you code against? You maybe a ‘TDD & Mock Objects’ savvy dev which will help in many cases, but what if you ‘don’t do’ TDD & Mocks? Or it may be that you are maintaining/enhancing an existing system that wasn’t coded against interfaces etc. Or what if you are a BizTalk developer? You cannot mock/inject dependencies into your orchestrations and other components!!
Now imagine that you are setting up a build server and multiple environments (DEV, TEST, UAT etc). But now the vendor says you can only have one license for their software. Now how do you run DEV, TEST, UAT in parallel with different data sets? Or you may have more than one license, but what if that service has maintenance schedules that clash with your build? Your build server is then completely exposed to something you don’t control.
These are the scenarios that Mockingbirdtargets. Please read through the documentation to understand what Mockingbirddoes.
[bookmark: _Toc219610811]Where did it come from and who is it aimed at?
Mockingbird started life as ‘MockWeb’ an internal tool that my former colleagues (Senthil Sai and Will Struthers) and I developed. All credit must go to them as Senthil first came up with the concept and Will then contributed a lot to the code-base. It started life when we got rather fed up with having to set up multiple instances of a third party service and build data-sets just to help with testing our BizTalk orchestrations reliably. It grew rapidly and organically. While we felt that this concept and tool would be useful to the .NET dev community at large (not just BizTalk teams), the structure of the codebase (at the time) would not lend itself to easy extension and needed to be refactored.
I have since completely rewritten MockWeb and hence the new name.
[bookmark: _Toc219610812]So what is it actually?
There are two parts to Mockingbird at this time (and many more to come)
· An ASP.NET HttpHandler which is configured to return pre-set responses
· A GUI to setup the handler and associated configuration for a given WSDL.
[bookmark: _The_Quick_Setup][bookmark: _Toc219610813]Installation Guide
This is a short description of what you need to get up and running with the tool. A detailed description of the components (and the folders needed etc) can be found in later sections of the document. The next two sections will explain how to test your installation and how to deploy your mock endpoints.
[bookmark: _Toc219610814]Get & Install the package
(1) Get the appropriate package – source or product (binaries).
a. Source contains the full layout.
b. The binary version contains 2 setup projects. One is to setup the website and one to setup a Winforms ‘Driver’ app that sends sample messages to the website and displays the responses.
(2) If you are using the source package, you can either map a VDIR in IIS to point to this location or you can run it in WebDev by setting the MockingBird.Web.Application to be the start-up project.
(3) If you are using the binaries version, run the setup of the web application which will create a virtual directory. Then unzip the datafiles.zip file into the app root (eg: c:\inetpub\wwwroot\mockingbird\datafiles. (The source version already has the data files included in the tree). This data files folder also contains a ‘sample’ end point which is required to verify the installation. Once you are proficient with this app and don’t need it, yo can delete this folder.
(4) Run the setup of the WinForms ‘Driver’ application. This has TestData included in the setup and needs no further actions.
Please note that it is preferable NOT TO run both source and binary versions on the same box because that can cause a lot of confusion over which website is actually being called by the consumer and where the configuration files are located. If you are changing the code of mockingbird then i recommend you treat it as a regular development exercise so you develop with WebDev locally and deploy to IIS on your central server (whatever that is).
[bookmark: _Toc219610815]Update the website & app configuration files
(1) Web.config file: This configuration file is described in detail later, but the two sections to modify are shown below. The first one is the “Global” settings which has folder locations that need to be set to the “datafiles” which were unzipped in the previous steps. There is also a setting pointing to the location of the configuration XSD which by default is in the “bin” folder of the web application. The second section to change is the log4net debug log location. In the OOB version only one log appender (default) has been set which captures all log levels but you are free to add custom appenders and capture specific levels in them. (This version of the document does not describe log4net customization).

[image:]

[image:]

(2) “Driver” app.config file: (This is usually located in c:\program files\mockingbird\mockingbird.studio.driver\). The settings to be changed here are the URI to the endpoint (if you are using WebDev, don’t forget to specify the port as well), the default soapAction for the test message and the default location of the TestData files.

[image:]

In this version I am not making a distinction between the “root” of the mockingbird application and the “endpoint” that is currently being tested, so if you are testing several endpoints, change the last segment of the URI. Also the soapAction has to be manually entered if you are using SoapAction as the “Operation Inference” mechanism (described in latter sections). In later versions the possibility of inferring the soapAction by picking a message from the WSDL can be considered.

[bookmark: _Toc219610816]Testing your installation
The WinForms ‘Driver’ app provided with the tool is useful for verifying that the install is working correctly (and can also be used to test your mock endpoints). This application requires that the “sample” endpoint is available in the datafiles folder. (It should be available by default anyway, as its included in the package).
(1) Launch the application – the app picks up the default settings from the configuration file
[image:]

(2) Select a request data file by clicking the file browse button next to the request file name. On selecting a file (for this verification process choose “CreateNewPersonRequest”), the file is opened in the browser control. This control is read-only in this version.
[image:]

(3) On the ‘response’ side the soapAction need NOT be changed. Click the Submit button. You should see a successful response as shown in the following figure.
[image:]

(4) Now test the “GetPerson” method by choosing the request file “GetPerson_James”. Update the soapAction so that the last segment is “:GetPerson”. Now click submit and you should see a successful response as shown in the following figure.
[image:]

(5) Now test the “SoapFault” response by picking the “GetPerson_SoapFault” file. Leave the soapAction as “:GetPerson” and click submit. You should see the Soap Fault in the response section as shown below.
[image:]

(6) If these steps all work as described above, then the installation is ok. You can also use this Driver app to test the services you deploy.

[bookmark: _Toc219610817]Deploying your mock service endpoints
[bookmark: _Toc219610818]Setup the data Files
Setting up the data files for a custom service is a slightly detailed process and in later versions (beta onwards) an application will be provided to make this faster and easier but right now it is a manual process.
The following picture shows the layout of the data files
[image:]
(1) Setup the ‘config’ file for the endpoint(s)
a. The configuration file tells the handler what the incoming operations are and what the responses need to be (the structure of the config file is described in the next section). There is one file for every end-point, for example, Customer.asmx. (In this example, the file would be named customer.config)
b. The config file goes into the endpoints\[endpointname]\config folder. For example, endpoints\customer\config (Only rename the [endpointname] folder, not the others. The folder name does NOT contain the extension (e.g .asmx)
c. To setup a config file, you can generate an instance from the supplied XSD or, better still, copy the provided example configuration and edit accordingly. (The next section explains the structure of the configuration file)
(2) Setup sample responses
a. Responses go in the endpoints\[endpointname]\responses folder. (No renaming needed here). The response files here correspond to the response names set in the configuration file above. You can generate these from your web service XSD’s. (Studio will most probably provide a tool to generate instances)
(3) Setup Schemas and WSDL
a. In the current version of the product, there is no explicit runtime need for the WSDL and the schema. In ‘normal’ development we assume that the WSDL file has been used to create the proxy and MB is only being used after that. However it may be the case that you need to put the WSDL here first and then go about proxy generation.
b. If you do want to use the WSDLs here, then put your WSDL for the web-service in the endpoints\[endpointname]\wsdl folder and the schemas for the service in the endpoints\[endpointname]\schemas folder.
c. If the WSDL has all XSDs embedded, then there’s no further work. However if it makes use of import/include statements (with the XSDs stored elsewhere), then you need to edit the WSDL to pick up from the new XSD location. Be careful with this approach though as the BizTalk/.NET engine can choke on relative paths for XSDs when parsing a WSDL.
[bookmark: _Toc219610819]Setting up the Endpoint Configuration File
The following screenshot shows a sample HandlerConfiguration for the OOB Handler and a short note about the contents. (This particular screenshot shows the config file for the unit tests)
The sample configuration provided (with the source code) has detailed comments included and the Architecture & Implementation section explains this in more detail. You can also look at the config file for the “sample” endpoint that is used by the Driver application to test the installation to see how this works.
[image:]
The following are the key elements
· Control Settings: Indicates how the system matches up the operation names in the file to the incoming request. SoapAction means that the system looks for an operation name here that matches against the incoming soap action.
· Operations: There is one Operation corresponding to every Operation/Webmethod in the endpoint/WSDL.
· Response Strategy: The ResponseStrategy tells the system how you want it to locate responses. None – indicates a One Way message, Default –indicates that there is only one response file available and XPath means that there are many possible responses and the right one is selected through applying an XPath expression on the body of the incoming request.
· Response Behavior: ResponseBehavior applies to each response and here you tell the system whether to behave normally or to throw an error (which in turn may be a SoapFault or a Timeout)
[bookmark: _Toc219610820]Detailed Scenarios for using MockingBird
[bookmark: _Toc219610821]Contract-First Development
In Contract-First development, the specification for the service contract/interface is first developed before the actual implementation. There are two approaches for Contract-First namely Code-First (where you write the interface in C#/VB.NET and use that code to generate other artifacts such as WSDL or other metadata endpoints) and WSDL First (where you first write the XSDs for the messages and compose the WSDLs and then use that to generate the .NET code.
In the current version Mockingbird requires a WSDL but does not prescribe whether the WSDL should have been created first or the .NET code. The GUI parses a given WSDL and sets up the service so as long as the WSDL is valid and all the schemas can be discovered (embedded or linked) there should be no problem. The engine does not depend on the WSDL (although the WSDL location is specified as an optional element in the configuration schema).
There are two use-cases within the Contract-First development scenario.
· As a web-service consumer
· As a web service provider
As a web-service consumer
You may be integrating with a web-service that is external to the immediate system under development. This may be a third party web service (installed on or off-premises) or a web-service interface to another subsystem that a part of your team is building/has just built. Often when integrating with third-parties, we are first provided with WSDLs and Schemas and eventually we get access to a functioning system.
In this scenario, Mockingbird gives you complete control over the requests that you send to it and the responses you get back. This means that you can concentrate on making your calling application work and handle responses correctly, without worrying about unpredictable behaviour from the external web-service. As such it is an excellent unit/integration testing tool. Because the message responses are simply Xml files on your local PC you eliminate the following difficulties:
· Someone may be developing the web-service and taken it off line
· Or messed it up so it throws an exception
· The underlying database might be down
· You or your web services might not have the right permissions to call it
· You might not be able to call it twice with the same data (say if you’re testing your delete functionality).
· Licensing Issues: The vendor may allow you to install only one instance of the web-service which makes it very difficult, if not impossible, to run parallel environments like DEV, TEST, UAT with their own datasets & versions.

As a web-service provider
You may be providing a new web-service to an external partner or another feature team. In these situations it is helpful to be able to work out the specifications for the message and data contracts first and then embark on development (with the appropriate processes in place for change-control etc).
In this scenario, you can rapidly provide a web-service interface for the consumers so that your development schedules are not too dependent on each other and if the contracts change as you develop, updated webservice interfaces can be quickly provided without the hassle of providing a complete install and all the underlying infrastructure that goes with it.
Additionally the other side of the consumers points listed above also apply to you as a provider.
What about testing against the actual system?
Of course you do eventually need to perform functional and integration tests against the actual external system because it is not possible to simulate all the exceptions and data conditions of a line-of-business application in a mock service. Mockingbird just helps you get a working interface with a comprehensive base of response messages that will help in getting development off the ground

[bookmark: _Toc219610822]As an Environment Isolator
Just as we need predictable responses for unit tests, it is also beneficial if our build / dev servers don’t have to rely on external web services being available. instead of depending on an external system, we host Mockingbird on our local webserver. We can then change the responses it sends back to suit our purposes, and define simple business rules that determine which of several messages to return to us. Network problems are eliminated, you are not at the mercy of external changes, and your tests are endlessly repeatable. Because it is hosted locally, your tests should also work on any other machine that downloads has all the config files to support Mockingbird.

[bookmark: _Toc219610823]Architecture & Implementation
[bookmark: _Toc219610824]Illustration
(TBC)
The picture below shows the main components of Mocking Bird

[bookmark: _Toc219610825]Key Concepts
Services and End-points

[bookmark: _Toc219610826]Implementation
What is the flow between the components

[bookmark: _Toc219610827]Testing

[bookmark: _Toc219610828]3rd Party Libraries

[bookmark: _Toc219610829]The Codeplex ‘MockingBird’ Project
[bookmark: _Toc219610830]Roadmap
Mockingbird v1 will retain its core nature of a HttpHandler (plus GUI).
Mockingbird v2 will be completely rewritten to be a WCF Message Interceptor (and associated dynamic behaviours etc so that it can support non HTTP channels as well as make use of the power of WCF).
I intend Mockingbirdv2 to become a platform for
· A set of mock BizTalk WCF Send and Receive adapters
· A more general web service test tool which can generate unit tests, BizUnit tests
· etc
Of course, it all depends on time available outside regular work as this is a personal project and not officially endorsed in any way by my employer. If you would like to join up and contribute, that would be cool. Let me know.

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image1.png

image2.png

image3.png

image4.png

