[bookmark: _Toc255745891]Using the ASP.NET MVC 2 Futures Model Binders
Contents
Using the ASP.NET MVC 2 Futures Model Binders	1
Introduction	1
Using extensible model binders	2
Authoring and registering a simple binder	3
Error reporting and validation	5
Authoring and registering a binder provider	6
Authoring and registering a complex binder and provider	8
Controlling property binding	13
Working with ORMs and DTOs	14
Considerations when retrieving binders from a DI container	16
Miscellaneous	16
Authoring and registering generic binders	16
Registering providers or binders on model types	17
Global default validation messages	17
Interoperability with existing model binders	18

[bookmark: _Toc255745892]Introduction
Model binding in ASP.NET MVC represents one of the most important steps in the framework in terms of bringing the client’s submitted data into a form suitable for inspection and manipulation by the server. Since version 1, the framework has supported registration of custom binders based on the type of the model being bound.
ModelBinders.Binders[typeof(DateTime)] = new MyDateTimeBinder();

It has also supported replacing the built-in DefaultModelBinder in order to run your own custom logic for the general-purpose binding case.
ModelBinders.Binders.DefaultBinder = new MyDefaultModelBinder();

The biggest problem with both of these is that they don’t give the developer the granularity that is sometimes required for performing proper binding. For example, the first sample will successfully bind against DateTime, but not Nullable<DateTime>, DateTime[], or other similar types. Similarly, the second example replaces the entire DefaultModelBinder, so unless the new default model binder has complex binding functionality or delegates to the original binder, the developer has lost the ability to bind to complex model objects like EF or L2S objects.
In MVC 2 Futures, a new prototype model binding system is being introduced which works around these limitations and gives the developer further power and flexibility. Throughout this document the new system will be referred to as the extensible model binding system. The new system uses a provider-based lookup model to retrieve the binder itself. The providers are responsible for inspecting the model and determining whether they are able to provide a binder that can handle the model. The framework then calls into the returned binder to perform the binding itself.
[bookmark: _Toc255745893]Using extensible model binders
The extensible model binding system is included in MVC 2 Futures. To opt-in,
1. Download MVC 2 Futures from http://go.microsoft.com/fwlink/?LinkID=183739.
2. Add a reference to Microsoft.Web.Mvc.dll from your project.
3. In Global.asax, import the Microsoft.Web.Mvc.ModelBinding namespace.
4. In Global.asax, call the initialization routine:
ModelBinderConfig.Initialize();

The initialization routine will replace the existing DefaultModelBinder with an adapter that calls into the extensible system. The new system will then be used to perform all binding application-wide.
The initialization routine also hooks up the default 8 extensible binder providers to the system. These providers partition the responsibilities of the original DefaultModelBinder, making it easy to consume them from your own custom binder or to replace their individual responsibilities. For example, changing how dictionaries are bound application-wide now involves replacing a single provider rather than rewriting the DefaultModelBinder. The 9 binders included in-box are, in order:
· TypeMatchModelBinderProvider – If the incoming value is already typed correctly for the target model (e.g. incoming value is string, property to bind is string), short-circuits the entire process and just returns the string.
· BinaryDataModelBinderProvider – Handles binding base-64 encoded input to byte[] and System.Linq.Data.Binary models.
· KeyValuePairModelBinderProvider – Handles KeyValuePair<TKey, TValue>. Consumed by the dictionary binder.
· ComplexModelDtoModelBinderProvider – Handles complex models. Consumed by the mutable object binder. More info on this type in the tutorial at the end of this document.
· ArrayModelBinderProvider – Handles T[].
· DictionaryModelBinderProvider – Handles IDictionary<TKey, TValue>.
· CollectionModelBinderProvider – Handles IEnumerable<T>.
· TypeConverterModelBinderProvider – Handles simple type conversions, e.g. incoming value is a string and property to bind is an integer.
· MutableObjectModelBinderProvider – Handles models which have public read/write properties, such as L2S and EF. Delegates to the ComplexModelDto binder.
[bookmark: _Toc255745894]Authoring and registering a simple binder
Binders in the extensible binder system implement the IExtensibleModelBinder interface. As the name implies, this is the extensible equivalent of the original IModelBinder interface. The interface is defined simply:
public interface IExtensibleModelBinder {
 bool BindModel(ControllerContext controllerContext,
 ExtensibleModelBindingContext bindingContext);
}

Note that like the IModelBinder interface, it takes a ControllerContext and a binding context. Though unlike the IModelBinder interface, its BindModel() method does not return the model. Instead, the model is returned via the ExtensibleModelBindingContext.Model property. Here’s a closer look at the ExtensibleModelBindingContext type, along with a brief description of each property.
public class ExtensibleModelBindingContext {

 // Originally contains the model to be bound (or null).
 // BindModel() should set this to the bound model.
 public object Model { get; set; }

 // Provides access to all the registered extensible providers.
 // Use this instead of the singleton global collection for unit testing.
 public ModelBinderProviderCollection ModelBinderProviders { get; set; }

 // Metadata for the current model.
 public ModelMetadata ModelMetadata { get; set; }

 // Name of the model, i.e. the name of the method's parameter.
 public string ModelName { get; set; }

 // Contains raw values from the value provider and error messages.
 public ModelStateDictionary ModelState { get; set; }

 // Type of the model to be bound.
 public Type ModelType { get; }

 // Quick access to the model's property metadata.
 public IDictionary<string, ModelMetadata> PropertyMetadata { get; }

 // Provides information that controls model validation.
 public ModelValidationNode ValidationNode { get; set; }

 // The provider from which raw values should be read.
 // Generally a combination of Form, QueryString, etc.
 public IValueProvider ValueProvider { get; set; }

}

As an example, consider what it would take to create a binder that can bind the Version type. There is no built-in binder that can handle this type, so a binder that handles this type must be created manually.
Here is a first stab at such a binder:
public class VersionModelBinder : IExtensibleModelBinder {
 public bool BindModel(ControllerContext controllerContext,
 ExtensibleModelBindingContext bindingContext) {

 // get value from provider
 ValueProviderResult vpResult = bindingContext
 .ValueProvider.GetValue(bindingContext.ModelName); // (1)

 if (vpResult != null) {
 // convert to string, then call Parse() to convert to Version
 string s = (string)vpResult.ConvertTo(typeof(string)); // (2)
 bindingContext.Model = Version.Parse(s); // (3)
 return true; // success (4)
 }
 else {
 return false; // failure (5)
 }
 }
}

Consider each line of code in turn. Here, the steps correspond to the (#) comments above.
1. Use ModelName to retrieve the name of the field that is being bound. This is generally a combination of the parameter name and the name of the property within that parameter that is being bound. Then use ValueProvider.GetValue() to query the value provider for the request value corresponding to that name.
2. Call ValueProviderResult.ConvertTo() to convert the raw result to a string. ConvertTo() can convert to basic types like int, double, string, etc., but because Version is not a basic type the ConvertTo() method does not understand it.
3. Once a string is available, call Version.Parse() to convert that string to a Version instance. Then set the Model property to this value since this represents the newly bound object.
4. The BindModel() method should return true if it attempted to perform binding, read a value, and set the Model property. Returning true indicates to the caller that the Model property contains useful data and that validation should run.
5. If the value provider did not give the binder a raw value, BindModel() returns false. Returning false indicates to the caller that the binder did not attempt binding and that the Model property does not contain anything particularly useful.
The final step is to register the new binder with the extensible binding system. This is done via Global.asax.
ModelBinderProviders.Providers.RegisterBinderForType(typeof(Version),
 new VersionModelBinder());

There is also an overload of the RegisterBinderForType() that takes a factory method instead of an instance of the VersionModelBinder itself.
This is all that is necessary to create a simple binder and to hook it into the system. This binder will be called whenever an action method has a parameter of type Version. It will also be called when trying to bind a property of type Version on a complex object, when binding an element within an IEnumerable<Version>, etc.
[bookmark: _Toc255745895]Error reporting and validation
Just as with the DefaultModelBinder, the binding context’s ModelState property can be used to store raw user input and binding errors for later display. The earlier VersionModelBinder can be updated to take advantage of this.
public class VersionModelBinder : IExtensibleModelBinder {
 public bool BindModel(ControllerContext controllerContext,
 ExtensibleModelBindingContext bindingContext) {

 // get value from provider
 ValueProviderResult vpResult = bindingContext
 .ValueProvider.GetValue(bindingContext.ModelName);

 if (vpResult != null) {
 bindingContext.ModelState.SetModelValue(bindingContext.ModelName,
 vpResult); // (1)

 // convert to string, then call TryParse() to convert to Version
 string s = (string)vpResult.ConvertTo(typeof(string));
 Version result;
 if (Version.TryParse(s, out result)) {
 bindingContext.Model = result;
 return true; // success (2)
 }
 else {
 bindingContext.ModelState.AddModelError(bindingContext.ModelName,
 "Please enter a valid version number."); // (3)
 }
 }

 return false; // failure
 }
}

1. Calling SetModelValue() allows the HTML helpers to preserve the user’s input in case the form needs to be redisplayed to the user. It takes as parameters the name of the form input field (given by ModelName) and the result from the value provider.
2. If the user input can be converted to a Version, the TryParse() method returns true. The binder sets the Model property and returns true to signal that the Model property was set to a useful value.
3. If the user input cannot be converted to a Version, the TryParse() method returns false. The AddModelError() method stores error messages for later display to the user via Html.ValidationSummary() or Html.ValidationMessage(). The binder returns false to signal that the Model property doesn’t contain any useful value.
Another benefit of the extensible model binding system is that it cleanly separates binding from validation. In MVC core, the DefaultModelBinder is responsible both for binding the object and for calling into the validation system. Using the extensible binding system, the binders are able to hook validation if necessary, but validation occurs automatically without intervention by the binders.
If a binder needs to control the validation process (for example, to suppress validation for an object, to force full model validation, or to hook pre-validation or post-validation events), it can do so via the binding context’s ValidationNode property. Some interesting properties of the ModelValidationNode type are called out below.
public sealed class ModelValidationNode {

 // Contains child validation nodes that need to go
 // through the validation system.
 public ICollection<ModelValidationNode> ChildNodes { get; }

 // Allows a binder to specify that all properties of
 // this model should be validated, not just the child
 // nodes that were bound.
 public bool ValidateAllProperties { get; set; }

 // Allows a binder to specify that validation for this
 // model and all of its children should be skipped.
 public bool SuppressValidation { get; set; }

 // Allows the binder to execute extra code immediate before
 // or after validation for this node takes place.
 public event EventHandler<ModelValidatingEventArgs> Validating;
 public event EventHandler<ModelValidatedEventArgs> Validated;

}

In the extensible binding system, all binding precedes all validation. As the binders run, a tree of ModelValidationNode objects is created. A validation runner later goes over this tree, validating nodes deepest in the tree first, then those nodes’ parents, then the parents’ parents, etc.
Note: A node’s children are always validated before the node itself is validated. If any of a node’s children fails validation, validation on the node itself is skipped. This is consistent with MVC 2 RTM core validation behavior.
[bookmark: _Toc255745896]Authoring and registering a binder provider
The extensible binding system makes it possible to write binders with more complex logic than was possible in the original binding system. Generally, these are registered by creating a provider that controls whether a particular binder should be returned. Consider again the VersionModelBinder from earlier in this document. It can be generalized to any type that exposes a static TryParse() method.
public class TryParseModelBinder : IExtensibleModelBinder {
 private readonly MethodInfo _tryParseMethod;

 public TryParseModelBinder(MethodInfo tryParseMethod) {
 _tryParseMethod = tryParseMethod;
 }

 public bool BindModel(ControllerContext controllerContext,
 ExtensibleModelBindingContext bindingContext) {

 // get value from provider
 ValueProviderResult vpResult = bindingContext
 .ValueProvider.GetValue(bindingContext.ModelName);

 if (vpResult != null) {
 bindingContext.ModelState.SetModelValue(bindingContext.ModelName,
 vpResult);

 // convert to string, call TryParse() to convert to appropriate type
 string s = (string)vpResult.ConvertTo(typeof(string));

 // second element will be the result of TryParse()
 object[] invokeParams = new object[] { s, null };
 if ((bool)_tryParseMethod.Invoke(null /* obj */, invokeParams)) {
 bindingContext.Model = invokeParams[1];
 return true; // success
 }
 else {
 bindingContext.ModelState.AddModelError(bindingContext.ModelName,
 String.Format("Please enter a valid {0}.",
 bindingContext.ModelType));
 }
 }

 return false; // failure
 }
}

In this example, the binder takes as a constructor parameter the MethodInfo that represents the static TryParse() method that can convert a string to an instance of the target type. The BindModel() method uses Reflection to invoke the method, but otherwise the code is identical to the VersionModelBinder.
This binder can operate on multiple types (Version, DateTimeOffset, IPAddress, and other types that follow the necessary pattern), but the system needs to know when to instantiate the binder. For this, a provider is necessary. Provider types subclass ModelBinderProvider and are added to the binder provider collection. Below is a sample provider for the TryParseModelBinder.
public class TryParseModelBinderProvider : ModelBinderProvider {
 public override IExtensibleModelBinder GetBinder(ControllerContext
 controllerContext, ExtensibleModelBindingContext bindingContext) {

 if (!bindingContext.ValueProvider
 .ContainsPrefix(bindingContext.ModelName)) {
 // the value provider can't give us anything for this model (1)
 return null;
 }

 // is there a TryParse() method with the appropriate signature?
 MethodInfo tryParseMethod = bindingContext.ModelType.GetMethod("TryParse",
 new Type[] { typeof(string),
 bindingContext.ModelType.MakeByRefType() });

 if (tryParseMethod != null) {
 // return a binder that can handle this model (2)
 return new TryParseModelBinder(tryParseMethod);
 }
 else {
 // this provider doesn't know how create a binder that can handle
 // this model, so just move on to the next provider (3)
 return null;
 }
 }
}

1. Most providers – this one included – create binders that retrieve data from the current value provider. The first check via ContainsPrefix() is a short-circuiting check that gives up early if the value provider doesn’t contain any useful data for the candidate binder. Returning null from the GetBinder() method signals to the framework that this provider couldn’t create a binder for this model, so the framework will move on to the next provider.
2. If an appropriate TryParse() method is located, its MethodInfo is passed as a constructor to the candidate binder. Returning the binder instance from the GetBinder() method signals to the framework that the provider successfully located a binder for this model, so the framework will skip the remaining providers and use this binder for the model.
3. If no TryParse() method is located, the GetBinder() method returns null to signal that the framework should move on to the next provider.
The provider is registered in Global.asax.
ModelBinderProviders.Providers.Insert(ModelBinderProviders.Providers.Count - 1,
 new TryParseModelBinderProvider());

Since the static ModelBinderProviders.Providers property returns a ModelBinderProviderCollection, the Insert() method can be called to add the new provider to the list.
Note: The provider list is ordered. Recall from earlier that the last provider in the list is the MutableObjectModelBinderProvider, which has the equivalent of the fallback logic from the DefaultModelBinder. In this example, we want to insert the new provider immediately before the last provider in the list. This allows the other more specialized binder providers to have first shot at binding this model but ensures that the TryParseModelBinderProvider will run before the final fallback provider.
[bookmark: _Toc255745897]Authoring and registering a complex binder and provider
Occasionally it may be necessary to create a binder that is able to map arbitrary models. Like the DefaultModelBinder, such a binder inspects the model’s children and delegates to binders appropriate for each child model. The MutableObjectModelBinder also follows this logic.
To simplify the logic of binding a model’s children, the extensible binding system introduces the ComplexModelDto type. This type represents an abstraction of a model and its children. For example, the MutableObjectModelBinder creates a ComplexModelDto object where the children are simply the properties of the model being bound. This ComplexModelDto object itself is run through the binding system, where by default the ComplexModelDtoModelBinderProvider and ComplexModelDtoModelBinder handle the task of iterating over the DTO’s children and binding values to them. The basic structure of the ComplexModelDto type is provided below.
public class ComplexModelDto {
 // The metadata for the parent.
 public ModelMetadata ModelMetadata { get; }

 // The metadata for each of the parent's children.
 public ReadOnlyCollection<ModelMetadata> PropertyMetadata { get; }

 // Contains entries corresponding to each property against which binding was
 // attempted. If binding failed, the entry's value will be null. If binding
 // was never attempted, this dictionary will not contain a corresponding
 // entry.
 public IDictionary<ModelMetadata, ComplexModelDtoResult> Results { get; }
}

public sealed class ComplexModelDtoResult {
 // The bound value that was provided by the child binder.
 public object Model { get; }

 // The validation node for this child model.
 public ModelValidationNode ValidationNode { get; }
}

When the DTO binder has completed, the Results dictionary will contain the incoming child value and its validation node. The complex binder that created the DTO can interpret these results and act on them accordingly. For example, the MutableObjectModelBinder iterates over the Results collection, calling property setters on the parent model as appropriate.
As a demonstration of a complex binder which takes advantage of the ComplexModelDto, consider a binder which can bind immutable objects rather than mutable objects. This binder will be able to create models by calling its constructor with appropriate values rather than calling a parameterless constructor and setting properties. It should be able to bind the following model, for example.
public class Person {
 public Person(string firstName, string lastName, int age) {
 FirstName = firstName;
 LastName = lastName;
 Age = age;
 }

 public string FirstName { get; private set; }
 public string LastName { get; private set; }
 public int Age { get; private set; }
}

The first step to creating such a binder is to define the preconditions necessary for it to operate. These preconditions will be checked by the provider. For this binder, the preconditions will be:
· The model must have exactly one public constructor.
· That constructor must not be parameterless.
· The constructor’s parameters must correspond to public properties on the model in name and type.
This prescribes the provider code (note the normal short-circuit check at the beginning):
public class ImmutableObjectModelBinderProvider : ModelBinderProvider {
 public override IExtensibleModelBinder GetBinder(ControllerContext
 controllerContext, ExtensibleModelBindingContext bindingContext) {

 if (!bindingContext.ValueProvider
 .ContainsPrefix(bindingContext.ModelName)) {
 // the value provider can't give us anything for this model
 return null;
 }

 // there must be a single public constructor
 ConstructorInfo[] candidateCtors = bindingContext.ModelType
 .GetConstructors(BindingFlags.Public | BindingFlags.Instance);
 if (candidateCtors.Length != 1) {
 return null;
 }

 // the constructor must be parameterful
 ConstructorInfo ctor = candidateCtors[0];
 ParameterInfo[] ctorParameters = ctor.GetParameters();
 if (ctorParameters.Length == 0) {
 return null;
 }

 // all constructor parameters must have corresponding property metadatas
 foreach (ParameterInfo pInfo in ctorParameters) {
 ModelMetadata propertyMetadata;
 bindingContext.PropertyMetadata.TryGetValue(
 pInfo.Name, out propertyMetadata);

 if (propertyMetadata == null ||
 propertyMetadata.ModelType != pInfo.ParameterType) {
 return null; // property not found or type didn't match
 }
 }

 // all checks passed
 return new ImmutableObjectModelBinder();
 }
}

And the immutable binder code:
public class ImmutableObjectModelBinder : IExtensibleModelBinder {
 public bool BindModel(...) {
 // Provider ensures that there's exactly one constructor and that
 // its parameters have corresponding property metadatas.
 IEnumerable<ModelMetadata> propertyMetadatas = ...;
 ComplexModelDto dto = CreateAndPopulateDto(..., propertyMetadatas);
 ProcessDto(..., dto);

 return true; // tried to set a model, and validation should run
 }

 private ComplexModelDto CreateAndPopulateDto(...,
 IEnumerable<ModelMetadata> propertyMetadatas) {

 ComplexModelDto originalDto =
 new ComplexModelDto(bindingContext.ModelMetadata, propertyMetadatas);

 // The binding context's copy constructor clones many useful properties
 // such as the value provider, provider collection, ModelState, and
 // others. We only set the properties that must be changed.
 ExtensibleModelBindingContext dtoBindingContext =
 new ExtensibleModelBindingContext(bindingContext) {

 ModelMetadata =GetMetadataForType(() => originalDto,
 typeof(ComplexModelDto)),
 ModelName = bindingContext.ModelName
 };

 // Get the binder that can handle our DTO, then call into it to retrieve
 // values for this model's properties. The inner binder won't set the
 // properties directly, but it will populate the DTO with the appropriate
 // values so that we can read them later.
 IExtensibleModelBinder dtoBinder =GetBinder(...);
 dtoBinder.BindModel(controllerContext, dtoBindingContext);
 return (ComplexModelDto)dtoBindingContext.Model;
 }

 private void ProcessDto(..., ComplexModelDto dto) {
 List<object> ctorParameterValues = new List<object>();

 // need to retrieve the value for each property from the DTO
 foreach (ModelMetadata propertyMetadata in dto.PropertyMetadata) {
 ComplexModelDtoResult dtoResult;
 dto.Results.TryGetValue(propertyMetadata, out dtoResult);

 object currentValue = null;
 if (dtoResult != null) {
 currentValue = dtoResult.Model;
 // need to merge each of the child validation nodes up
 bindingContext.ValidationNode.ChildNodes
 .Add(dtoResult.ValidationNode);
 }

 // use property's [DefaultValue] or default(T) as last resort
 currentValue = currentValue
 ?? GetPropertyDefaultValue(...)
 ?? GetTypeDefaultValue(...);
 ctorParameterValues.Add(currentValue);
 }

 // finally, instantiate the model
 object newModel = null;
 try {
 newModel = Activator.CreateInstance(...);
 }
 catch (Exception ex) {
 // record error in ModelState
 bindingContext.ModelState.AddModelError(bindingContext.ModelName, ex);
 }

 bindingContext.Model = newModel;
 // validate all properties, even those we didn't get values for
 bindingContext.ValidationNode.ValidateAllProperties = true;
 }
}

Note: Some helper methods are removed and lines have been truncated so the above code can fit into this document. The removed code does not substantially affect the topic under discussion. See the sample project included with this document for the full source code.
The process of binding an immutable model follows these steps:
1. Get the property metadatas corresponding to the model’s target constructor.
2. Create a ComplexModelDto with the parent’s metadata and the property metadatas.
3. Run the ComplexModelDto binder.
a. This involves creating a new binding context for the DTO and querying the provider collection for a binder that can handle this object, as seen in the CreateAndPopulateDto() method.
4. Read the bound values from the ComplexModelDto object [ProcessDto()].
a. This method builds a List<object> that represents the parameters to be passed to the model’s constructor.
b. As values are read, the child validation nodes are merged into the parent’s validation node. This preserves any custom validation hooks supplied by the child binders.
c. Since every parameter must be accounted for when calling a constructor, this binder has some small fallback logic. If a child binder could not bind a property, this binder falls back to [DefaultValue] as defined on the property, then finally to default(T).
5. Call the model’s constructor with the incoming values [ProcessDto()].
a. If the constructor call fails, the exception is stored in ModelState for later inspection.
6. Finally, the BindModel() method returns true to its caller. This signals that the binder provided useful model and validation data. Note that if calling the model’s constructor fails, the Model property will be set to null, so the caller will treat that null value as the bound model.
Registering the provider is a single line in Global.asax:
ModelBinderProviders.Providers.Insert(ModelBinderProviders.Providers.Count - 1,
 new ImmutableObjectModelBinderProvider());

Note: Just like the TryParseModelBinderProvider, this registers itself immediately before the final fallback. This allows this provider / binder to execute before the MutableObjectModelBinderProvider.
While at first glance this might seem like a lot of code, consider that this provider / binder pair is now able to bind any model that follows the appropriate pattern. Writing this binder using the MVC core binder system would have taken many times more code.
[bookmark: _Toc255745898]Controlling property binding
In MVC core binding, the [Bind] attribute could be used to whitelist or blacklist candidate properties for binding. Though this system generally works, it has a few problems that make it unsuitable for inclusion in the extensible binding system.
· The whitelist / blacklist only works one layer deep, e.g. while it may seem that blacklisting “foo.bar” might blacklist the Bar sub-property of the Foo property, such an input actually signals that the binder should blacklist the property named exactly “Foo.Bar.” Since there is no such property, adding “foo.bar” to the blacklist has no effect.
· The [Bind(Include = ...)] whitelist only says “these properties are candidates for binding.” It does not mandate that these properties actually be bound.
· Since the whitelist / blacklist are string-based, it’s very easy to get the list out of sync with the actual property names of the model, which may cause the candidate list to change in unexpected ways.
The extensible binding system introduces the [BindingBehavior] attribute to solve these problems and provide a little more clarity than [Bind(Include = ..., Exclude = ...)]. Usage:
· [BindingBehavior(BindingBehavior.Optional)] – Try binding the property if a value for it is present in the request, but don’t consider it failure if no value is present. This is the default behavior if a property does not have a [BindingBehavior] attribute and matches the default behavior from MVC core binding.
· [BindingBehavior(BindingBehavior.Never)] – This property is never a candidate for binding. If a value for this property is present in the request, the binder should just skip it. This is the equivalent of [Bind(Exclude = ...)].
· [BindingBehavior(BindingBehavior.Required)] – Binding must be attempted against this property. This is the equivalent of [Bind(Include = ...)], but with the added semantic that if a value for this property is not present in the request, binding should fail.
Note: [BindNever] and [BindRequired] are convenient shorthand for the Never and Required behaviors, respectively.
If [BindingBehavior] is applied to a model instead of a property, that behavior filters down to every property of that model unless overridden explicitly on the property. For example, consider this type:
[BindRequired]
public class Employee {
 public string FirstName { get; set; }
 public string LastName { get; set; }

 [BindNever]
 public decimal Salary { get; set; }
}

This says “all properties of Employee must have binding attempted, with the exception of Salary, which must never be bound.”
Note: “must have binding attempted” doesn’t mean that the value must be non-null. Binders are allowed to return null models, such as if the request contains an empty string for an int field. In this case, the int binder will have added a conversion error to ModelState. The [BindRequired] attribute is meant to prevent underbinding, where child binding never runs at all and no ModelState error is added. See http://bradwilson.typepad.com/blog/2010/01/input-validation-vs-model-validation-in-aspnet-mvc.html for a discussion on this.
[bookmark: _Toc255745899]Working with ORMs and DTOs
Models in MVC have several responsibilities. Binders use them to transform user input into a format that can be manipulated by application code. Views use them to provide information that should be displayed to the site visitor. Templates use UI hints defined on the models to control how the information is presented to the user. As a result, the models may end up with MVC-specific attributes or behaviors.
While both the MVC core binding system and the extensible binding system technically support binding to L2S, EF, and other ORM models, the practice is discouraged for anything beyond the simplest of scenarios, as you may end up polluting your ORM types with the MVC-specific attributes or behaviors mentioned above. The binders also work best when operating on dumb DTOs.
To assist with interoperability between ORMs and DTOs, the extensible model binding system introduces the static ModelCopier type. The type contains two methods:
public static void CopyCollection<T>(IEnumerable<T> from, ICollection<T> to) { }
public static void CopyModel(object from, object to) { }

The CopyCollection() method can be used to populate the contents of the to collection with the contents of the from collection. The CopyModel() method can be used to populate the properties of the to object with the values of the properties of the from object. Both the CopyCollection() and CopyModel() methods perform shallow copies.
This allows cleaner separation between view models and data models. Consider a People table in a database; this table might contain columns for PersonId or foreign key relationship fields that should not be changed by user input. By using the ModelCopier, the developer can write a DTO whose structure exactly matches the contract that exists between the controller and the view, and MVC-specific binding or UI annotations don’t have to be put on the ORM types.
[BindRequired]
public class CreateEditPersonModel {
 [DisplayName("First name")]
 [Required(ErrorMessage = "Please enter a first name.")]
 public string FirstName { get; set; }

 [DisplayName("Last name")]
 [Required(ErrorMessage = "Please enter a last name.")]
 public string LastName { get; set; }

 [DisplayName("Age")]
 [Range(0, Int32.MaxValue, ErrorMessage = "Age must be non-negative.")]
 public int? Age { get; set; }
}

This model represents the contract between the controller and view for Create and Edit operations. Here’s a sample Edit() GET / POST method pair to demonstrate the model copier:
[HttpGet]
public ActionResult Edit(int id) {
 using (var dc = new SampleEntities()) {
 Person person = dc.People.Single(p => p.PersonId == id);

 // convert this single Person to a CreateEditPersonModel
 CreateEditPersonModel model = new CreateEditPersonModel();
 ModelCopier.CopyModel(person, model);
 return View("CreateEdit", model);
 }
}

[HttpPost]
public ActionResult Edit(int id, CreateEditPersonModel model) {
 if (model != null && ModelState.IsValid) {
 using (var dc = new SampleEntities()) {
 Person person = dc.People.Single(p => p.PersonId == id);

 // copy the incoming CreateEditPersonModel to the original Person
 ModelCopier.CopyModel(model, person);
 dc.SaveChanges();
 return RedirectToAction("Index");
 }
 }

 // validation error
 return View("CreateEdit", model);
}

In this example, Person is an EF entity class. In neither case does the binder or the view operate on the Person model, so there is no chance of stray properties showing in the view or being bound, even if the [BindingBehavior] attributes aren’t included anywhere. As mentioned above, the CreateEditPersonModel type is a better indication of the contract between the controller and view. The ModelCopier.CopyModel() method is used to copy data between the ORM and DTO objects.
The ModelCopier methods are designed for simple lightweight copying and are not customizable. If your needs are more complex, you may find AutoMapper (http://automapper.codeplex.com/) or similar tools useful.
[bookmark: _Toc255745900]Considerations when retrieving binders from a DI container
Since providers are responsible for returning binders for use in the extensible binding system, the MVC framework doesn’t necessarily know or care about where these binders come from. Because of this, the provider is allowed to use whatever logic it wants to return a binder instance. If a provider wants to retrieve a binder from a DI container, this is perfectly fine.
However, if retrieving a binder from a DI container, there are some considerations implementers should be aware of.
· The binder instance is not checked for IDisposable by its consumer, so the consumer will not notify the system when it has finished using the binder.
· Providers must be written to be thread-safe, as the provider collection is a global singleton and the server may be processing multiple requests simultaneously. If the provider returns a binder with a singleton lifetime, the binder instance must also be thread-safe.
The easiest way to work around these issues is to configure the DI container so that returned binder instances have a transient lifetime or a lifetime that is tied to the current request.
[bookmark: _Toc255745901]Miscellaneous
[bookmark: _Toc255745902]Authoring and registering generic binders
The extensible model binding system also has full support for registering generic binders. Consider a binder that can bind any ReadOnlyCollection<T>.
public class ReadOnlyCollectionModelBinder<T> : IExtensibleModelBinder {
 public bool BindModel(...) {
 // simply reroute this to the IList<T> binder
 ExtensibleModelBindingContext listBindingContext = new
 ExtensibleModelBindingContext(bindingContext) {

 ModelMetadata =GetMetadataForType(null, typeof(IList<T>)),
 ModelName = bindingContext.ModelName
 };
 IExtensibleModelBinder listBinderProvider =GetBinder(...);
 bool retVal = listBinderProvider.BindModel(...);

 // create the ReadOnlyCollection<T>
 IList<T> list = listBindingContext.Model as IList<T>;
 bindingContext.Model = (list != null)
 ? new ReadOnlyCollection<T>(list)
 : null;

 // replace the original validation node and return
 bindingContext.ValidationNode = listBindingContext.ValidationNode;
 return retVal;
 }
}

Note: Some lines above have been truncated. The full source code is available in the sample project included with this document.
This binder simply runs the request back through the extensible binding system, but as an IList<T> instead of a ReadOnlyCollection<T>. The normal IList<T> binder will handle binding the new list. Once the list has been created, it can be passed to the ReadOnlyCollection<T> constructor to create the actual model that was requested.
While writing the binder seems easy enough, it might not be immediately obvious as to how to hook this binder into the system. After all, the binder is generic, and T needs to be known ahead of time to create the binder instance.
Fortunately, registering this binder is a simple call in Global.asax:
ModelBinderProviders.Providers.RegisterBinderForGenericType(
 typeof(ReadOnlyCollection<>), typeof(ReadOnlyCollectionModelBinder<>));

This overload of the RegisterBinderForGenericType() method takes two arguments: the open generic type of the model that this binder supports and the open generic type of the binder itself. Now, when the extensible model binding system sees any ReadOnlyCollection<T>, it will instantiate a ReadOnlyCollectionModelBinder<T> using the same T, then return that binder instance.
[bookmark: _Toc255745903]Registering providers or binders on model types
Just as with MVC core binders, extensible providers or binders can be registered directly on the type they’re meant to bind. This is done via the [ExtensibleModelBinder] attribute.
[ExtensibleModelBinder(typeof(MyModelBinder))]
public class MyModel { /* */ }

The type passed to [ExtensibleModelBinder] can be either the type of the provider (must subclass ModelBinderProvider) or the type of the binder (must implement the IExtensibleModelBinder interface). Generic binders can also be registered in this fashion.
[ExtensibleModelBinder(typeof(MyGenericModelBinder<>))]
public class MyGenericModel<T> { /* */ }

Just as with RegisterBinderForGenericType(), the binder type is an open type, and the T is determined at runtime.
[bookmark: _Toc255745904]Global default validation messages
There are two static properties on ModelBinderConfig that can be used to control the default validation messages throughout the entire extensible binding system:
public static ModelBinderErrorMessageProvider TypeConversionErrorMessageProvider
 { get; set; }
public static ModelBinderErrorMessageProvider ValueRequiredErrorMessageProvider
 { get; set; }

The ModelBinderErrorMessageProvider delegate provides parameters like ControllerContext and the property metadata, which may be useful for generating specific error messages.
[bookmark: _Toc255745905]Interoperability with existing model binders
The extensible model binding system sits side-by-side with the existing model binding system. However, once control has transferred into the extensible model binding system, it will not transfer back to the original model binding system for the remainder of binding that particular model or its children.
[bookmark: _GoBack]Initializing the extensible model binding system removes any custom binders that have been registered with the default model binding system. If you have existing model binders registered in Global.asax via ModelBinders.Binders[typeof(...)] = new MyBinder(), be sure that ModelBinderConfig.Initialize() appears before these calls.
