
Orca Java Profiler - Back-end

Liang Luo
llmainland@live.cn

Xiaoxiang Hu
hxiaox@seas.upenn.edu

December 6, 2014

1 Introduction

Orca Profiler is a tool for Java concurrent profiling, which provides the capability of tracing
thread events and lock states.

The profiler consists of two separate parts front-end and back-end. Back-end captures all events
from the program execution and dump them to files, while front-end analyze those record files and
visualize them. This is the documentation for back-end.

2 Usage

The compiled version of profiler back-end contains only 1 file, OrcaAgent.dll, which is a Java
agent. To use it, put the DLL file in your dll search path (e.g. current folder). And type the
following script in command line:

java -agentlib:OrcaAgent="<dumpfile >" <mainclass >

<mainclass> is the main class of the Java program you want to execute. <dumpfile> is the
prefix of dump file name. Three dump files will be generated by the profiler agent, <dumpfile>.orca,
<dumpfile>.methods and <dumpfile>.classtable.

The execution is similar to normal Java program execution without profiling, except that some
warnings may occur. After that, you will get 3 files described above. Pass these files to the profiler
front-end for further analysis and visualization.

Compatibility

• It is just a Java agent named OrcaAgent with an argument (the argument can be left out so
a default name will be used). Thus, it works with most Java command line arguments.

• One exception is that it can only be attached before the initialization of JVM, that is, although
it is an agent, it cannot be dynamically loaded during execution.

• It only supports Windows operating system because some Windows API are used. For migra-
tion information, see implementation details.

• It is only tested under Java 8 (64bit). But no new feature about Java 8 is used.

3 Dump file format

We are interested in concurrent information, that includes thread life cycle and interleaving
caused by locks. Most events use the internal representation for Java Virtual Machine.

1

3.1 Class and Methods metadata

Some terminology:

• MethodID

MethodID is a 32-bit integer, which identifies method. Unless a class is reloaded during exe-
cution, MethodIDs for all methods in the class won’t change (but may varies between different
executions).

• Method signature

While MethodID is a good identifier, it varies between executions and hard to read. JVM
has a internal string representation for each method, which is called Method Signature, which
consists of method name and parameter/return types. It is guaranteed to be unique for each
methods in one class.

• ClassID

Similar to MethodID, ClassID is also a 32-bit integer, which won’t change during execution.
But the quality of MethodID and ClassID are different, which is explained in implementation
detail chapters.

• Class signature

Likewise, class signature is the internal representation of each class. It is slash-separated, starts
with L, and ends with a semicolon, e.g. Ljava/lang/Object;.

• Method line mapping

When compiled to ByteCode, Java compiler builds a map between byte code locations and
source code line numbers. The mapping is not injective nor subjective, as one source line
may be compiled to multiple byte codes, and some source line may not have bytecodes (e.g.
comments and brackets). Both line numbers and byte code locations (jlocation) are 32-bit
integers.

• Class source mapping

It is obvious, that each class has one corresponding source file (Java doesn’t allow partial
classes defined two or more source files). Some internal classes don’t have source files.

The above method and class metadata are dumped to *.methods and *.classtable.

3.1.1 Class metadata file

A text file named PREFIX .classtable, consists of multiple lines. Each line describes one class,
with the following fields:

<timestamp >,<classID ><classSignature >,<sourceFileName >

<timestamp> is a float time stamp in seconds. In most cases it is useless, it is reserved in
the file for future use (if a class is reloaded, its classID may change, so there will be multiple
records for the same class). <classID> is represented in hexadecimal format with leading zeros.
<sourceFileName> is just a string of file name without its path and containing folders. It may be
empty if there is no source file for that class. An example of record is as following, -

480181.4255238244 ,15 DB9742 ,LPingPong;,PingPong.java

2

3.1.2 Method metadata file

A text file named PREFIX .methods, consists of multiple lines. Each line describes one methods
with the following fields:

<timestamp >,<methodID >,<methodName >,<methodSignature >,<classID >,<lineTable >

Similarly <methodID> is in hexadecimal format with leading zeros. <classID> is the ClassID

of the class declares the method. <lineTable> is a list of line numbers,

<entriesCount >;<startLocation1 >;<lineNumber1 >;<startLocation1 >;<lineNumber1 >;...

If <entryCount> is zero or negative, it means the line mapping information is missing.
An example of method record is as follows,

480181.4254997057 ,19831020 , main ,([Ljava/lang/String ;)V,15DB9742

,3;00000046;00000000;00000047;00000008;00000049;00000010

3.2 Runtime events

• Time stamp

All timestamps are wall times. They are represented by a floating point number with unit of
second, and precision of 0.1ns, e.g. 34232.8419237428

• Hash code

Hash code is an identifier for each Java object. The JVM specification guarantees the unique-
ness and persistence of hash codes. They are 32-bit integers. So in the logfile, all hashcode are
hexadecimal numbers of length 8 (with leading 0s, uppercased), e.g. FFFF38D6. Note that they
are the same as System.identityHashCode, which may be different from Object.hashCode.

• Stack trace

<stackDepth >;<methodID1 >;<jLocation1 >;<methodID2 >;<jLocation2 >;...

Stack trace always begins by a non-negative integer <stackDepth> (zero for those missing
stack traces), and followed by pairs of <methodID> and <jLocation>. <methodID> is
a 32-bit hexadecimal address (in uppercase, with leading 0s), and <jLocation> is also a
hexadecimal address.

A text file named PREFIX .orca, consists of multiple lines. Each line describes one event. And
different parameters are separated by commas.

3.2.1 Method call events

There are some method we want to track, like object waiting, thread start, etc. Some methods
are blocking, thus both entry event and exit event are recorded.

• Ljava/lang/Object;

<timestamp >,ObjectWait ,<currentThread >,<object >,<stackTrace >

<timestamp >,ObjectWaited ,<currentThread >,<object >,<stackTrace >

These two events are generated when Object.wait is called, at the method entry point and exit
point. <currentThread> is the hash code of current thread, and <object> is the object it
wants to wait. Note that Object.wait has several overloaded forms, we don not care about
which one is using, but if one is called, the nested wait calls are suppressed.

<timestamp >,ObjectNotify ,<currentThread >,<object >,<stackTrace >

<timestamp >,ObjectNotifyAll ,<currentThread >,<object >,<stackTrace >

When Object.notify or ObjectNotifyAll is called, the corresponding event is raised. <currentThread>
is the current thread hashcode, and <object> is the object notified.

3

• Ljava/lang/Thread;

<timestamp >,ThreadStart ,<currentThread >,<startThread >,<stackTrace >

This event is generated when Thread.start is called (at the method entry). <currentThread>
is the current thread hashcode, <startThread> is the new thread hashcode.

<timestamp >,ThreadJoin ,<currentThread >,<waitingThread >,<stackTrace >

<timestamp >,ThreadJoined ,<currentThread >,<waitingThread >,<stackTrace >

Generated when Thread.join is called, both at the method entry and method exit. <currentThread>
is the hashcode of current thread. <waitingThread> is the hashcode of thread it is waiting
for. Note that in most Java implementation, Thread.Join calls Thread.wait. In logfile, the
inner Thread.wait is supressed.

<timestamp >,ThreadSleep ,<currentThread >,<stackTrace >

<timestamp >,ThreadSlept ,<currentThread >,<stackTrace >

Generated when Thread.sleep is called, both at the method entry and method exit. <currentThread>
is the hashcode of current thread.

• Ljava/util/concurrent/Semaphore;

We choose this lock as an example of our lock visualization, because it may be the simplest
lock.

<timestamp >,SemaphoreAcquire ,<currentThread >,<object >,<stackTrace >

<timestamp >,SemaphoreAcquired ,<currentThread >,<object >,<stackTrace >

These two events are generated when Semaphore.acquire is called, at the method entry point
and exit point. <currentThread> is the hash code of current thread, and <object> is the
object it wants to wait. Note that Semaphore.acquire has several overloaded forms, we don
not care about which one is using, but if one is called, the nested wait calls are suppressed.

<timestamp >,SemaphoreRelease ,<currentThread >,<object >,<stackTrace >

When Semaphore.Release is called, the corresponding event is raised. <currentThread> is
the current thread hashcode, and <object> is the semaphore released.

3.2.2 Monitor Contention Events

Monitor contention happens when two or more threads are executing the following code snippet
simultaneously,

synchronized(obj) {

foo();

}

There are two events related to monitor contention.

<timestamp >,MonitorContendedEnter ,<currentThread >,<monitor >,<ownerThread >,<

stackTrace >

<timestamp >,MonitorContendedEntered ,<currentThread >,<monitor >,<stackTrace >

Generated at the beginning of contention, and the end (current thread owns the monitor object).
<currentThread> is the hashcode of current thread, and <monitor> is the hashcode of monitor
object. <ownerThread> is the hashcode of thread who is currently owning that monitor. When the
contention is over, current thread should be the owner of the monitor. Note these two events are
only triggered when contention happens. If there is no contention, i.e. only one thread is trying to
enter the monitor, both events are muted.

4

3.2.3 Thread events

Thread events are hooked when a thread is created or destroyed.

<timestamp >,ThreadStarted ,<thread >,<threadName >

<timestamp >,ThreadEnded ,<thread >

Where <thread> is the hashcode of current thread (of course the new thread). <threadName>
is a string representing the name of new thread, not all threads have a name, some of them are
empty. Note most threads are invoked by Thread.start, but not necessarily all of them. So not each
ThreadStarted event has a corresponding ThreadStart event.

4 Implementation

From this section, we will talk about profiler back-end implementation details.
Basically, we are using Java Virtual Machine Tool Interface (JVMTI in short) to retrieve

all information from the running Java program, which Java agents are based on. It provides a quite
complete set of events for our agent to hook.

Phase

The first thing is the live cycle of our profiler agent.
Most JVMTI functions are available in Live Phase. And most tasks like class loading, main

function execution are done in that phase. So most of our callbacks work in that phase. Before that,
there is a OnLoad Phase. We do some initialization tasks in that phase, like creating logging files.

Callback & Events

All events used:

• MethodEntry and MethodExit events.

Track the entrance and exit of each method. We only focus on a few methods, but unfortunately
there is no such filter. Thus we need to apply filtering by ourself.

• MonitorWait and MonitorWaited events.

The documentation of these two events are misleading. Thus, they are not used.

• MonitorContendedEnter and MonitorContendedEntered events.

Yes, these two events are what we expect, as described in previous section. Note that we cannot
trace the exit of monitor, which is described in more detail in experiment feature section.

• ThreadStart and ThreadEnd

• ClassLoad and ClassPrepare events.

Really useful because we use them to build our method and class cache.

• ClassFileLoadHook and NativeMethodBind events.

See experiment features.

Nested call

As explained before, some methods may be nested, for instance, Thread.join calls Thread.wait.
So we maintain a stack depth for each thread (a map for all threads) to track the call depth. If a
hook method occurs within another, the inner one is ignored.

5

Caching

Since we need to test upon each method entry if it is the method we’re interested in, it is
extremely time-consuming (1000x slower). What we did is to create a method cache for all interesting
methodIDs. That is the reason to hook ClassLoad and ClassPrepare. When a class is loaded, we
checked all its methods’ signatures and saved those we care about. As a result, at each method entry,
we only need to check methodID, which is integer comparison, much more faster than signature
retrieval and string comparison.

There are slightly differences between ClassLoad and ClassPrepare. ClassLoad happens at the
very early stage of class loading, while ClassPrepare is raised when all methods in that class is
ready. In that way, hooking ClassPrepare is enough, but some classes are missing unless we also
hook ClassLoad. One possible explanation is that some internal classes don’t have to ”prepare”.

Timing

All timestamps are retrieved by QueryPerformanceCounter function on Windows. That is the
only reason (maybe) why it is depend on Windows. A possible improvement is to change that
Windows API to a JVMTI timing function.

ClassID, MethodID and Hashcode

MethodID is a internal value used for JVM. But ClassID is not. It is just the hash code of
Java class object. Like other Java object, they has a unique and persistent hashcode by using
JVMTI function getObjectHashcode (not the one with Object.hashcode which can be overrided).
Therefore, hashcode is used as ClassID.

5 Code Structure

Two projects belong to back-end, OrcaAgent and JNIDummy. The latter is used for byte code
injection, which is not used in current version.

Major modules in OrcaAgent project:

• Lib.cpp

The main module. All callbacks are here.

• Cache.cpp

The module for method and class information caching.

• MethodTable.cpp

Customized callbacks for those methods we focus. If more classes and methods need to be
added, just modify this file by adding new items in InitInterestMethodTable function.

• java crw.c

Byte code injection. It is adapted from JDK demo hprofiler.

6 Future work & How to improve our code

6.1 Platform

For those who want to compile and use this on other platform:
Currently the back-end is run and tested on Windows 8.1 64-bit with 64-bit Java 1.8.0, and

compiled by Visual Studio 2013 64-bit C++ compiler with Release mode. We didn’t test it on any
other platform. The followings are some hints for platform migration.

No Visual C++ specific C/C++ features are used.

6

No Windows API is used, except timing API.
The agent must be compiled with the same version of Java Platform (especially 32 or 64 bit).
No 32/64-bit related features are used, except the long type used for timing, which may need to

change to long long for 32-bit platform.
C++ compiler is required.
C++0x is not required for Visual Studio. But stl unordered map is used, and cstdint header

file is included, which won’t compile under gcc without C++0x flag.

6.2 Fast Contention

Some contention occurs too fast, that we cannot find out which thread the current thread is
waiting for. One way is to filter them.

6.3 Support new locks

Currently only synchronized syntax and Object.wait and Semaphore (partially) are supported
by our profiler. MethodTable.cpp contains all callbacks for each methods. To add more method
callbacks, just create a new function here and add it to InitInterestMethodTable function in the
same file. Note that the return value of each callback stands for if the method can be nested (that
is, the nested call counts), but this feature is not stable.

6.4 Bytecode Injection

Most modern Java Profiling tools use byte code injection to capture events because of efficiency.
The basic idea is to add some extra byte code (in most cases a method invoke) before/after the
instruction we are interested on. Then, the control flow is redirected to our method first/last.

We have already implement some feature for byte code injection. You can find OrcaProfilerTracker

class in our source pack. This class is a dummy class used for byte code injection. Currently it just
has two native methods used for hooking monitorenter and monitorexit instruction. Project
JNIDummy contains ”implementations” of these two native methods (they’re dummy because they’re
not used anywhere).

Uncomment callbackClassFileLoadHook function in Lib.cpp and register the hook in agent
onload function. This callback is raised at the initial stage of class loading, the class file loading. It
calls the java crw demo function to inject byte code of invoking OrcaProfilerTracker.monitorEnter

before each monitorenter byte code instruction. If you want to add new injections, you may need
to go through java crw.c and modify several locations.

After injection, each time before monitorenter instruction is executed, the top of Java operand
stack is duplicated (the top of the operand stack is the monitor object), and then our hooking
callback is called. Next, the hooked callback is redirected to native function.

Also, we hooked NativeMethodBind event by callbackNativeMethodBind to replace the native
call to function OrcaProfilerTracker.monitorEnter with hookedMonitorEnter.

We didn’t include the byte code injection part to our current version because we don’t have
enough time and the affect about source code line mapping need to compensate.

7 Reference

• Java Development Kit sample and demos

• OpenJDK source codes

• Java Language Specification

• Java Virtual Machine Specification

• Java Virtual Machine Tool Interface Documentation

7

• Chris Murphy

8

