Simple IR Language Definition
General Notes:
For various reasons of simplifying life in the analysis and in allowing efficient execution we have the following restrictions on the language:
(1) Naked Types – any type that does not know what it is, in our case any type that is not in the Class category is naked – we do not allow these to be allocated on the heap. Although the can be in variables, allocated on the call stack, or nested in other types on the heap.
(2) Class/Struct slicing is an error.
Types:
ValueTypes:
These types are all pass by value, implicitly inherit from System.ValueType and may implement interfaces but cannot otherwise be polymorphic (and this inheritance only holds on the boxed representation). All value types also have a boxed representation associated with them (which have the same method definitions but can be used in virtual calls, where the ValueType and pointers to it may only be used in static call contexts).
Valuetypes can be broken down into Primitive types and types that are Structures.
Primitive(Value)Types:
These types are a subset of the ValueTypes that we consider primitive (e.g. they are integers or floats). We also include function pointer types as primitive.
Struct Types:
Struct types are the basic building block for other ValueTypes.
The following Struct Types have additional information associated with them:
(1) Enum Types, for types declared as enumerations.
(2) KeyValuePair Types, for dictionary key value pairs.
(3) Enumerator Types, for container enumerators.
ClassTypes:
These types are also pass by value, implicitly inherit from System.Object but may inherit from/implement other class or interface types (interface types are simply class types with all abstract implementations and no member fields).
The following ClassTypes have additional information associated with them:
(1) Collection Types, for arrays, List, etc.
(2) Dictionary Types
(3) LambdaTypes: for delegates or lambda functions.
Pointer Types:
Pointers may be to any class type. Where all operations on other types must be exact type matches, operations on pointer types allow for subtyping relation on the class/interface structure of the underlying pointed to base types. Pointers must also always refer to the base of objects.
Reference Types:
References may be to any class, value, pointer, or primitive type (but not other references). These references may point to the base of heap allocated objects and can also refer to internal offsets and fixed memory locations. We note that fields cannot be of type reference, and that reference typed variables may only be assigned to in one location (SSA) and can never have null assigned to them.
Control Flow OpCodes:
(1) BranchU <label>: Branch to <label> unconditionally.
(2) BranchC <true_label> <false_label>: Branch to <true_label> if stack[top] is non-zero otherwise branch to <false_label>.
(3) Switch <N> <label0> … <labelN-1>, <Default>, if k = stack[top] is less than N go to <labelk> otherwise go to <Default>.
(4) Throw: throw a new exception that terminates the program.
(5) Return: return the value on top of the stack (if there is one and the method is not Void).
Call OpCodes:
(1) Call <method>: call the given method on the arguments on the stack. Can be used on virtual methods to get a specific implementation. If the call is not to a static method then the first argument is a pointer to the parameter of the given type.
(2) CallVirt <method>: Virt call to a method, note that ValueTypes cannot be used as the receiver objects here, only their boxed representations are acceptable (e.g. this receiver pointer must be to a Class type).
(3) AllocCons <type> <cons>: allocates space for <type> (a class on the heap or struct in boxed form) and invokes the given constructor with it, leaves a <type>* (or type&) to the newly created object on the top of the stack. We don’t allow direct allocation of pointer types.
Primitive Value OpCodes:
Load/Store:
(1) LoadPrimFromLocal <name>: load the primitive typed value from the local <name> to the top of the stack.
(2) StorePrimToLocal <name>: store the primitive typed value at the top of the stack to the local <name>.
(3) LoadPrimFromGlobal <name>: load the primitive typed value from the global <name> to the top of the stack.
(4) StorePrimToGlobal <name>: store the primitive typed value at the top of the stack to the global <name>.
Arithmatic OpCodes:
(1) Add: add (+) the values at stack[top-1] and stack[top].
(2) Div: divide (/) the values at stack[top-1] by stack[top].
(3) Mult: multiply (*) the values at stack[top-1] and stack[top].
(4) Neg: negate (-) the value at stack[top].
(5) Rem: remainder (%) of the values at stack[top-1] by stack[top].
(6) Sub: subtract (-) of the values at stack[top-1] by stack[top]
BitWise Opcodes:
(1) And: and (&) the values at stack[top-1] and stack[top].
(2) Or: or (|) the values at stack[top-1] and stack[top].
(3) Not: bitwise negate (~) the value at stack[top].
(4) Shl: shift left-logical the value at stack[top-1] by the amount in stack[top].
(5) Shr: shift right-arith (if unsigned modifier then logical) shift the value at stack[top-1] by the amount in stack[top].
(6) Xor: or (^) the values at stack[top-1] and stack[top].
Compare:
(1) EQPrim: if stack[top-1] == stack[top] push 1 else 0.
(2) Less: if stack[top-1] < stack[top] push 1 else 0.
(3) LessEqual: if stack[top-1] <= stack[top] push 1 else 0.
(4) Greater: if stack[top-1] > stack[top] push 1 else 0.
(5) GreaterEqual: if stack[top-1] >= stack[top] push 1 else 0.
Convert:
(1) ConvPrim <type>: convert the value to the given <type>.
Primitive Modifiers:
(1) Unsigned: perform the operation in an unsigned/unordered way.
Memory OpCodes:
Load/Store:
(1) LoadStructOrClassFromLocal <name>: load the struct/class from the <name> to the top of the stack.
(2) StoreStructOrClassToLocal <name>: store the struct/class from the top of the stack to the <name>.
(3) LoadStructOrClassFromGlobal <name>: load the struct/class from the global <name> to the top of the stack.
(4) StoreStructOrClassToGlobal <name>: store the struct/class from the top of the stack to the global <name>.
(5) LoadReferenceFromLocal <name>: load the pointer/reference typed value from the local <name> to the top of the stack.
(6) StoreReferenceToLocal <name>: store the pointer/reference typed value from the top of the stack to the local <name>.
(7) LoadPointerFromLocal <name>: load the pointer/reference typed value from the local <name> to the top of the stack.
(8) StorePointerToLocal <name>: store the pointer/reference typed value from the top of the stack to the local <name>.
(9) LoadPtrFromGlobal <name>: load the pointer typed value from the global <name> to the top of the stack.
(10) StorePtrToGlobal <name>: store the pointer typed value from the top of the stack to the global <name>.
Reference Read/Write:
(1) IndirectReadOfPrimitive <type>: Read from the reference at stack[top], which must be to a primitive of <type>, and store the result on the top of the stack.
(2) IndirectReadOfStructOrClass <type>: Read from the reference at stack[top], which must be to a struct/class of <type>, and store the result on the top of the stack.
(3) IndirectReadOfPointer <type*>: Read from the reference at stack[top], which must have a reference consistent with <type*> (e.g. it may subtype), and store the result on the top of the stack.
(4) IndirectWritePrimitive <type>: At the location given by the reference at stack[top-1], which must be to a primitive of <type>, store the value at stack[top], which must be assignable to the pointer target type.
(5) IndirectWriteStructOrClass <type>: At the location given by the reference at stack[top-1], which must be to struct/class of <type>, store the value at stack[top], which must be be of <type>.
(6) IndirectWritePointer <type*>: At the location given by the reference at stack[top-1], which must have a reference consistent with <type*>, store the value at stack[top], which must be assignable to the <type>.
Pointer Index:
(1) LoadLocalAddr <name>: get a reference to the fixed local variable location with the value associated with <name> and push it on the top of the stack.
(2) LoadGlobalAddr <name>: get a reference to the global location with the value associated with <name> and push it on the top of the stack.
(3) IndexAddrByField <field> <pos>: take the reference (or pointer) at <pos> and compute &(stack[top-pos]-><field>) -- i.e. stack[top-pos] + k, where k is the offset of <field> in the type layout, so get the address of the field in the class/ struct that the reference on the top of the stack currently refers to.
(4) IndexAddrByArrayIndex <type> <pos>: take the integer index on the top of the stack and a reference (or pointer) to an array in stack[top-pos] and compute (((<type>*)stack[top-pos]) + stack[top]), so get the address of the array index in the array that the pointer currently refers to.
(5) LoadFuncPtr <method>: get a function pointer to the named <method> and push it on the top of the stack.
(6) LoadVFuncPtr <method>: resolve the named <method> with the value of stack[top] and push the function pointer for the resulting method on top of the stack.
Compare:
(1) DerefableEQ: if the values at stack[top] and stack[top-1] are equal push 1 else 0.
(2) NonNullPtr: if the value at stack[top] is non-null push 1 else 0.
TypeOperations:
(1) Box <valuetype>: Take the valuetype on the top of the stack and box it into the associated boxed type.
(2) UnBox <valuetype>: Take a reference to the boxed valuetype on the top of the stack and return a reference to the boxed valuetype it contains.
(3) Cast <type*>: Take the pointer type on the top of the stack and cast it to <type*> if the conversion is not possible throw an exception.
(4) IsInstance <type*>: Take the pointer on the top of the stack and test if can be converted to <type*> based on the underlying type, push the result of casting the type onto the top of the stack otherwise push null.
(5) PointerToReference <type&> int: Take the pointer at the given offset from the top of the stack (which must be compatible with <type&> and convert it to a reference).
(6) ReferenceToPointer <type*> int: Take the reference at the given offset from the top of the stack (which must be compatible with <type*> and convert it to a pointer). This includes dynamic checking that the reference is not stack directed and that it is not to the interior of an object.
(7) [bookmark: _GoBack]ConstrainReciver <type&> int bool: Take the reference at the given offset from the top of the stack and convert it to the given type reference (via boxing) if the boolean flag is true.
Misc:
(1) Pop: pop the top value off the stack
(2) Dup: duplicate the value on the top of the stack
(3) PushNull: push the null constant on the stack
(4) PushInt val: push the given integer value on the stack
(5) PushFloat val: push the given floating point value on the stack
(6) PushStr val: push a pointer to the given string literal on the stack
