
PrePrint

Structural Analysis:
Combining Shape Analysis Information with Points-To Analysis Computation

Mark Marron
IMDEA Software Institute, Spain

mark.marron@imdea.org

Abstract
This paper introduces a new hybrid memory analysis,Structural
Analysis, which combines an expressive shape analysis style ab-
stract domain with efficient and simple points-to style transfer func-
tions. By using insights from empirical studies of runtime heap
structures and the programmatic idioms used in modern object-
oriented languages we construct an analysis with the following
characteristics: (1) it can express a rich set of structural, shape, and
sharing properties which are not provided by a classic points-to
analysis and that are useful for optimization and error detection ap-
plications (2) it uses efficient, weakly-updating, set-based transfer
functions which enable the analysis to be more robust and scal-
able than a shape analysis and (3) it can be used as the basis for
a scalable interprocedural analysis that produces preciseresults in
practice.

The analysis has been implemented for .Net bytecode and using
this implementation we evaluate both the runtime cost and the
precision of the results on a number of well known benchmarks
and real world programs. When compared to the results of a perfect
oracle for the benchmarks we see that, despite the use of weak
updates and absence of case splitting/materialization, the analysis
produces information that is near the limit (80-90% accurate) of
what is possible with our chosen abstract domain. Further, the
analysis is capable of analyzing programs larger than any reported
general purpose shape analysis and is faster than some points-to
analyses on these programs, never taking longer than 70 seconds
or using more than 150 MB of memory. Thus, this work presents
a new type of memory analysis that advances the state of the art
with respect to expressive power, precision, and scalability and
represents a new area of study on the relationships between and
combination of concepts from shape and points-to analyses.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages–Program
Analysis

General Terms Languages, Performance

Keywords Structural Analysis, Program Understanding, Static
Analysis

1. Introduction
Techniques for analyzing the memory structures created andop-
erated on by a program have generally fallen into two fami-
lies: Points-To (or alias) Analysis and Shape Analysis. These ap-
proaches lie at far ends of the spectrum of analysis cost and preci-
sion. In particular points-To analyses track very simple properties,
usually little more than points-to set information, and thetrans-
fer functions which simulate the effects of various programstate-
ments use simple and efficient set operations. At the other end of
the spectrum, shape analyses track a range of rich heap properties

and generally utilize computationally complex transfer functions,
involving materialization operations, case splitting, and strong up-
dates. While individually each of these areas has seen intensive
research, there has been little work in exploring the vast area be-
tween these two points in the cost-precision spectrum or in merging
concepts from these analysis approaches. A major reason forthis
separation is the issue of weak vs. strong updates and the associ-
ated machinery of case splitting and materialization. In particular
a critical question is: Are strong updates a critical component of a
shape style analysis or is it possible to compute precise shape, shar-
ing, etc. information with an analysis that uses simpler andmore
efficient transfer functions?

Recent empirical work on the structure and behavior of the heap
in modern object-oriented programs has shed light on how heap
structures are constructed [1, 47], the configuration of thepointers
and objects in them [3], and their invariant structural properties [31,
36]. These results affirm several common assumptions about how
object-oriented programs are designed and how the heap structures
in them behave. In particular [1, 3, 47] demonstrate that object-
oriented programs exhibit extensivemostly-functionalbehaviors:
making extensive use offinal (orquiescing) fields,stationaryfields,
copy construction, and when fields are updated the new targetis
frequently a newer (often freshly allocated) object. The results
in [31, 36] provide insight into what heuristics can be used to
effectively group sections of the heap based on how they are used
in the program, what types of invariants hold for these structures,
and how universal these invariants are in practice. The results show
that, in practice, object-oriented programs tend to organize objects
on the heap into well defined groups based on their roles in the
program and that the relationships between these groups tend to be
relatively stable, particularly with respect to structural organization,
reachability, and sharing properties.

The information provided by these empirical studies provide the
central design principles that guide the construction of the heap
analysis in this paper. The prevalence of mostly functionalbehavior
implies that the domain and transfer functions can, generally, han-
dle writes as weak updates without large precision losses. However,
to precisely handle object initialization and the frequentcase of up-
dating a field to point to a newly (or very recently) allocatedobject,
the domain should model such objects with extra care. Previous ex-
perience withContext-Sensitivedataflow analysis has shown that
the number of contexts that are created is a critical factor in perfor-
mance [29, 32, 44]. To improve the speed at which the analysiscon-
verges to a fixpoint the abstract heap domain and normal form rep-
resentation should have natural (and compact) encodings for com-
monly occurring and relatively invariant heap properties.Finally,
given that object-oriented programs are not completely functional,
there will be cases where the simplified abstract transfer functions
introduce imprecision. Thus, the abstract heap domain should pro-
vide strong disjointness and isolation properties betweenthe vari-

1 2011/7/21

ous parts of the heap. These properties serve to both minimize the
impact of any imprecision that is introduced and to prevent cascad-
ing of this imprecision. As an additional benefit a notion of dis-
jointness allows the use of frame rules [20, 41].

1.1 Contributions

The main practical contribution of this paper is the construction of
a novel static heap analysis,Structural Analysis, that combines a
rich shape analysis style abstract heap model with efficiently com-
putable points-to analysis style abstract transfer functions. The re-
sulting hybrid memory analysis is able to precisely identify various
structures in memory and to track sharing, shape, and reachability
relations on them (in practice 80−90% accurate when compared to
our analysis results oracle). In addition to producing precise results
the analysis is capable of analyzing real world programs, which
are beyond the capabilities of existing shape analyses, andrequires
less time than even a points-to analysis on some of these programs
(always less than 70 seconds and 150 MB of memory).

The main theoretical contribution of this paper is the initial ex-
ploration of a new area of memory analysis that lies between and is
based on the combination of concepts from work on shape analysis
and points-to analysis. This paper identifies and examines anum-
ber of general principles that are derived from empirical studies of
the heap in real programs and that are central to the construction
of these style of hybrid analysis approaches. The information from
these studies combined with the empirical results from the analysis
constructed in this paper show that strong updates (and associated
machinery) arenot critical and that in practice weak updates are
sufficient for computing large amounts of useful shape and shar-
ing information in real world object-oriented programs. Thus, this
work opens new possibilities for exploring the relationships be-
tween shape and points-to analyses and represents a new approach
to building scalable and precise memory analysis tools.

Technical Contributions. This paper contains a number of tech-
nical contributions involving the design of the domain, normal
form, and transfer functions. The abstract domain (Sec. 2) is based
on the classic storage shape graph approach and is able to express a
rich set of commonly occurring and generally useful properties in-
cluding, structure identification, reachability, sharing, and shape.
Additionally, due to the implicit disjointness information in the
graph structure, the resulting abstract heap model possessstrong
separability and isolation characteristics that limit thepropagation
of imprecision. The normal form (Sec. 3) is defined in terms of
an efficient congruence closure computation,O((N+E)∗ log(N))
whereN is the number of nodes in the shape graph andE is the
number of edges. This congruence relation is based on the struc-
tures identified in the empirical studies and enables the analysis
to rapidly converge to a fixpoint without either a large loss of in-
formation on the domain properties of interest or the generation
of large amounts of irrelevant detail. The points-to style transfer
functions (Sec. 5) are based on set-operations and weak updates.
In practice they precisely model the heap properties of interest and
are efficiently computable,O(N+E) worst case but in practice are
near constant time. In order to quantify the performance andpreci-
sion of this analysis we present an extensive experimental evalua-
tion (Sec. 6) of several well known benchmarks including programs
from SPEC JVM98 and DaCapo. This evaluation includes both the
timing and memory use characteristics of the analysis as well as a
rigorous evaluation of the precision of the results. The evaluation
shows that the analysis results are both precise and, despite the ex-
tensive use of context sensitivity via call-graph cloning and type
information, the interprocedural analysis is scalable.

2. Abstract Heap Domain
We begin by formalizing concrete program heaps and the relevant
properties that will be captured by the abstraction. Later,we define
the abstract heap and formally relate the abstraction to thecon-
crete heaps using aconcretization(γ) function from the framework
of abstract interpretation [6, 40]. These definitions are designed
to support the expression of a range of generally useful proper-
ties (e.g., shape, sharing, reachability) that are common in shape
analysis [5, 10, 35] and that are useful for a wide range of client
optimization and error detection applications.

2.1 Concrete Heaps

For the purposes of this paper, we model the state of a programin
a standard way where there is an environment, mapping variables
to addresses, and a store, mapping addresses to objects. We refer to
an instance of an environment together with a store as aconcrete
heap. Given a program that defines a set of concrete types,Type,
and a set of fields (and array indices),Labels, defined in the types,
we construct a concrete heap as a tuple(Env,σ ,Ob) where:

Env : Vars⇀ Addresses

σ : Addresses→ Ob∪{null}

∀o∈Ob .o is a tuple(τ,Labels⇀ Addresses)

whereτ ∈ Type

Each objecto in the setOb is a tuple consisting of the type of the
object and a map from field labels to concrete addresses for the
fields defined in the object. We assume that the objects inOb and
the variables in the environmentEnv, as well as the values stored in
them, are well typed according to the store (σ) and the types/labels
in the setsType andLabels.

In the following definitions we use the notationTy(o) to refer
to the type of a given object. The usual notationo.l to refers to the
value of the field (or array index)l in the object. It is also useful
to be able to refer to anon-null pointeras a specific structure in
a number of definitions. Therefore we define anon-null pointer p
associated with an objecto and a label asl in a specific concrete
heap,(Env,σ ,Ob), as p = (o, l ,σ(o.l)) whereσ(o.l) 6= null. We
define a helper functionFld(type) to get the set of all fields that are
defined for a given type (or array indices for an array type).

A region of memoryC ⊆ Ob is a subset of the concrete heap
objects. It is useful to define the setP(C1,C2) of all non-null
pointers crossing from a regionC1 to a regionC2 as:

P(C1,C2) =

{(os, l ,σ(os.l)) | ∃os∈C1, l ∈ Fld(Ty(os)) .σ(os.l) ∈C2}

2.2 Concrete Heap Properties

We now formalize the set of concrete properties of objects, point-
ers, and entire regions of the heap that we later use to createthe
abstract heap.

Type. The set of types associated with a regionC of the heap is
the set of all types of the objects in the region:{Ty(o) | o∈C}.

Injectivity. Given two regionsC1 andC2, we say that the non-
null pointers with the labell from C1 to C2 are injective, written
inj(C1,C2, l), if for all pairs of non-null pointers(os, l ,ot) and
(o′s, l ,o

′
t) drawn fromP(C1,C2), os 6= o′s⇒ ot 6= o′t . As a special

case when we have an array object, we say the non-null pointerset
P(C1,C2) is array injective, written, inj[](C1,C2), if for all pairs of
non-null pointers(os, i,ot) and(os, j ,o′t) drawn fromP(C1,C2) and
i, j valid array indices,i 6= j⇒ ot 6= o′t .

These definitions capture the general case of an injective rela-
tion being defined from a set of objects and fields to target objects.

2 2011/7/21

They also capture the special, but important case of arrays where
each index in an array contains a pointer to a distinct object.

Shape. We characterize the shape of regions of memory us-
ing standard graph theoretic notions of trees and directed-acyclic
graphs (dags) treating the objects as vertices in a graph andthe
non-null pointers as defining the (labeled) edge set. We notethat
in this style of definition the set of graphs that are trees is asubset
of the set of graphs that are dags, and dags are a subset of general
graphs. Given a regionC then:

• The predicateany(C) is true for any graph. We use it as the most
general shape that doesn’t satisfy a more restrictive property.

• The predicatedag(C) holds, if the subgraph(C,P(C,C)) is
acyclic.

• The predicatetree(C) holds, ifdag(C) holds and the subgraph
(C,P(C,C)) contains no pointers that create cross edges.

• The predicatenone(C) holds, if the edge set in the subgraph is
empty,P(C,C) = /0.

As is apparent from this definition,none(C) implies tree(C),
tree(C) impliesdag(C), anddag(C) impliesany(C).

2.3 Abstract Heap

An abstract heap is an instance of a storage shape graph [5]. More
precisely, an abstract heap graph is a tuple:(Ênv, σ̂ ,Ôb) where:

Ênv : Vars⇀ ̂Addresses

σ̂ : ̂Addresses→ Înj×2Ôb

whereÎnj= {true, false}

∀n∈ Ôb .n is a tuple(τ̂, ζ̂ , L̂abel⇀ ̂Addresses)

whereτ̂ ∈ 2Type∧ ζ̂ ∈ {none,tree,dag,any}.

The abstract store (̂σ) maps from abstract addresses to tuples con-
sisting of the injectivity associated with the abstract address and a
set of target nodes. Each noden in the setÔb is a tuple consisting
of a set of types, a shape tag, and a map from abstract labels toab-
stract addresses. The abstract labels (̂Label) are the field labels and
the special label[]. The label concretization is defined by:

γL(l̂) =
{
{0,1, . . .} if l̂ == []
{l} otherwise

The special label[] abstracts the indices of all array elements (i.e.,
array smashing). Otherwise an abstract labell̂ represents the given
object field with the given name.

As with the objects we introduce the notation̂Ty(n) to refer
to the type set associated with a node. The notationŜh(n) is used
to refer to the shape property, and the usualn.l̂ notation to refer
to the abstract value associated with the labell̂ . Since the abstract
store (̂σ) now maps to tuples ofinjectivity and node target infor-
mation we use the notation̂Inj(σ̂(x)) to refer to theinjectivity and
T̂rgts(σ̂(x)) to refer to the set of possible abstract node targets as-
sociated with the abstract address. We define the helper function
F̂ld({type1, . . . , typek}) to refer to the set of all abstract labels that
are defined for the types in a given set (including[] if the set con-
tains an array type).

2.4 Abstraction Relation

We are now ready to formally relate the abstract heap graph to
its concrete counterparts by specifying which heaps are in the

concretization (γ) of an abstract heap:

(Env,σ ,Ob) ∈ γ((Ênv, σ̂ ,Ôb))

⇔∃µ .Embed(µ,Env,σ ,Ob, Ênv, σ̂ ,Ôb)

∧Typing(µ,Ob,Ôb)

∧ Injective(µ,Env,σ ,Ob, Ênv, σ̂ ,Ôb)

∧Shape(µ,Env,σ ,Ob, Ênv, σ̂ ,Ôb)

A concrete heap is an instance of an abstract heap, if there exists an
embedding functionµ : Ob→ Ôb satisfying the graph embedding,
typing, injectivity, and shape relations between the structures. The
auxiliary predicates are defined as follows.

Embed(µ,Env,σ ,Ob, Ênv, σ̂ ,Ôb) =

∀v∈ Vars .µ(σ(Env(v))) ∈ T̂rgts(σ̂(Ênv(v)))

∧∀os ∈Ob and non-null pointersp= (os, l ,ot)

∃l̂ ∈ F̂ld(T̂y(µ(os))) .µ(ot) ∈ T̂rgts(σ̂(µ(os).l̂))∧ l ∈ γL(l̂)

The embed predicate makes sure that all of the objects and pointers
of the concrete heap are present in the abstract heap graph, con-
necting corresponding abstract nodes, and that the store and labels
in the abstract graph respect the concrete store and labels.The em-
bedding must also preserve any variable mappings.

Typing(µ,Ob,Ôb) = ∀n∈ Ôb,o∈ µ−1(n) .Ty(o) ∈ T̂y(n)

The typing relation guarantees that the typeTy(o) for every con-
crete objecto is in the set of types of the abstract nodêTy(n) asso-
ciated witho.

Injective(µ,Env,σ ,Ob, Ênv, σ̂ ,Ôb) =

∀ns,nt ∈ Ôb, l̂ ∈ F̂ld(T̂y(ns)) . Înj(σ̂(ns.l̂))⇒

if l̂ = [] theninj[](µ−1(ns),µ−1(nt))

∧∀l ∈ γL(l̂) . inj(µ−1(ns),µ−1(nt), l)

The injectivity relation guarantees that every pointer setmarked
as injective corresponds to injective (and array injectiveas needed)
pointers between the concrete source and target regions of the heap.
We note that this definition is restricted to the subset of labels that
are type consistent with the declared types and field sets.

Shape(Env,σ ,Ob, Ênv, σ̂ ,Ôb) =

∀n∈ Ôb . Ŝh(n) = dag⇒ dag(µ−1(n))

∧ Ŝh(n) = tree⇒ tree(µ−1(n))

∧ Ŝh(n) = none⇒ none(µ−1(n))

The shape relation guarantees that for every noden, the concrete
subgraphµ−1(n) abstracted by noden satisfies the corresponding
concrete shape predicates.

2.5 Example Heap

Fig. 1(a) shows a snapshot of the concrete heap from a simple pro-
gram that manipulates expression trees. An expression treeconsists
of binary nodes forAdd, Sub, andMult expressions, and leaf
nodes forConstants andVariables. The local variableexp
(rectangular box) points to an expression tree consisting of 4 inte-
rior binary expression objects, 2Var, and 2Const objects. The
local variableenv points to an array representing an environment
of Var objects that are shared with the expression tree.

Fig. 1(b) shows the corresponding normal form (see Sec. 3)
abstract heap for this concrete heap. To ease discussion we label
each node in a graph with a unique node id ($id). The abstraction

3 2011/7/21

Figure 1(a). A Concrete Heap.

Figure 1(b). Corresponding Normal Form Abstract Heap.

summarizes the concrete objects into three regions. The regions are
represented by the nodes in the abstract heap graph: 1) a node
representing all interior recursive objects in the expression tree
(Add, Mult, Sub), 2) a node representing the twoVar objects,
and 3) a node representing the twoConst objects. The edges
represent possible sets of non-null cross region pointers associated
with the given abstract labels. Details about the order and branching
structure of expression nodes are absent but other more general
properties are still present. For example, the fact that there is no
sharing or cycles among the interior expression nodes is apparent
in the abstract graph by looking at the self-edge representing the
pointers between objects in the interior of the expression tree. The
labeltree{l,r} on the self-edge expresses that pointers stored
in thel andr fields of the objects in represented by node 1 form a
tree structure (i.e., no sharing and no cycles).

The abstract graph maintains another useful property of theex-
pression tree, namely that noConst object is referenced from mul-
tiple expression objects. On the other hand, several expression ob-
jects might point to the sameVar object. The abstract graph shows
this possible non-injectivity using wide orange colored edges (if
color is available), whereas normal edges indicate injective point-
ers. Similarly the edge from node 4 (theenv array) to the set of
Var objects represented by node 2 is injective, not shaded and
wide. This implies that there is no aliasing between the pointers

stored in the array, i.e. every index in the array contains a pointer to
a unique object. Additionally, the abstract heap, via a combination
of reachability, shape, and sharing information, shows there is no
aliasing on any distinct pair of paths starting fromexp and end-
ing with a dereference of ther field. This can be deduced from the
fact that node 1 is a tree layout, so there is no aliasing internally on
either thel or r fields, and that both outgoing edgesr edges are
injective(narrow and unshaded). Since we know all paths through
the tree do not alias (lead to different objects) this implies the fi-
nal dereferences of ther fields, which can only contain injective
pointers toConst or Var objects, do not alias either.

This example illustrates the expressiveness of the abstract do-
main constructed in this section which is capable of computing
per region and per field information on reachability (via thegraph
structure), shape (e.g., the tree region), and sharing (e.g., no alias-
ing in theenv array). Thus it is capable of expressing properties
that are needed for the introduction of thread-level parallelism [10],
object co-location [13], pool allocation [26], incremental GC [19],
static deallocation [14], etc. As many of these approaches were de-
signed to work with the limited information provided by a (often
context insensitive) points-to analysis, the precise points-to infor-
mation in the model (due to the full call graph cloning) combined
with the shape and injectivity information provides improvements
to both the baseline effectiveness of the techniques and opportuni-
ties for using the additional information for further refinements.

3. Normal Form
Given the definitions for the abstract heap it is clear that the domain
is infinite. This allows substantial flexibility when defining the
transfer functions and more precise results when analyzingstraight
line blocks of code. However, it is problematic when definingthe
merge/equality operations and can result in the final analysis having
an unacceptably large computational cost. To prevent this we define
an efficiently computable normal form,O((N+E)∗ log(N)) where
N is the number of nodes in the abstract heap graph andE is the
number of edges. The normal form ensures that the set of normal
form abstract heaps for any given program isfinite and that the
abstract heaps in this set can easily be merged and compared.

The normal leverages the idea that locally (within a basic block
or method call) invariants can be broken and subtle details are criti-
cal to program behavior but before/after these local components in-
variants should be restored. The basis for the normal form, and the
selection of what are important properties to preserve, comes from
studies of the runtime heap structures produced in object-oriented
programs [31, 36]. Thus we know that, in general, these definitions
are well suited to capturing the fundamental structural properties
of the heap that are of interest while simplifying the structure of
abstract heaps and discarding superfluous details.

DEFINITION 1 (Normal Form).We say that the abstract heap is in
normal form iff:

• All nodes are reachable from a variable or static field.
• All recursive structures are summarized (Def. 2).
• All equivalent successors are summarized (Def. 4).
• All variable/global equivalent targets are summarized (Def. 5).

That is there are no unreachable nodes and structurally the abstract
heap represents the congruence closure of the recursive structure,
equivalent successor, and equivalent target relations.

While the normal form definition is fundamentally driven by
heuristics derived from empirical studies of the heap structures in
real programs (and thus one could imagine a number of variants)
there are three key properties that it possesses: (1) the resulting
abstract heap graph has a bounded depth, (2) each node has a

4 2011/7/21

bounded out degree, and (3) for each node the possible targets of
the abstract addresses associated with it are unique wrt. the label
and the types in the target nodes. The first two properties ensure that
the number of abstract heaps in the normal form set are finite,while
the third allows us to define efficient merge and compare operations
(Sec. 4).

3.1 Equivalence Partitions

As each of the properties (recursive structures, ambiguous succes-
sors, andambiguous targets) are defined in terms of, congruence
between abstract nodes the transformation of an abstract heap into
the corresponding normal form is fundamentally the computation
of a congruence closure over the nodes in the abstract heap fol-
lowed by merging the resulting equivalence sets. Thus, we build
a map from the abstract nodes to equivalence sets (partitions) us-
ing a Tarjan union-find structure. FormallyΠ : Ôb→ {π1, . . . ,πk}

whereπi ∈ 2Ôb and{π1, . . . ,πk} are apartition of Ôb. The union-
find structure can also be used to maintain the set of all the types
associated with the nodes in a partition (

⋃
n∈π T̂y(n)). Initially the

partition is set as a singleton (i.e.,∀n∈ Ôb .Π(n) = {n}).

Recursive Structures. The first step in computing the normal
form is to identify any nodes that may be parts of unbounded depth
structures. This is accomplished by examining the type system for
the program that is under analysis and identifying all the types that
are part of the same recursive type definitions. This is a commonly
used technique [2, 7, 30] and ensures that any heap graph produced
has a finite depth. We say typesτ1 andτ2 arerecursive(τ1 ∼ τ2) if
they are part of the same recursive type definition.

DEFINITION 2 (Recursive Structure).Given two partitionsπ1 and
π2 we define therecursive structurecongruence relation as:

π1 ≡
Π
r π2⇔

∃τ1 ∈
⋃

n1∈π1
T̂y(n1),τ2 ∈

⋃
n2∈π2

T̂y(n2) .τ1 ∼ τ2

∧∃n∈ π1, l̂ ∈ F̂ld(T̂y(n)) . T̂rgts(σ̂(n.l̂))∩π2 6= /0

Equivalent Successors and Targets. The other part of the normal
form computation is to identify any partitions that haveequivalent
successorsand variables that haveequivalent targets.

The successor (predecessor) relation for the node partitions
is the natural definition based on the underlying structure of the
abstract heap graph:

π1 a successor ofπ2 and l̂ ⇔∃n2 ∈ π2 . T̂rgts(σ̂(n2.l̂))∩π1 6= /0

Next we define the basic equivalence relation on the nodes that
forms the basis of the congruence relation on the graph.

DEFINITION 3 (Partition Compatibility).Given partitionsπ1 and
π2 we define the relation Compatible(π1, π2) as:

Compatible(π1,π2)⇔
⋃

n′∈π1

T̂y(n′)∩
⋃

n′∈π2

T̂y(n′) 6= /0

Given the successor and compatibility relations we can define
the congruence relations for nodes that are either both successors of
the same partition on that are both targets of the same local variable
(or static field).

DEFINITION 4 (Equivalent Successors).For a partition π and
successorsπ1, π2 on labelŝl1, l̂2 respectively we define theequiva-
lent successorsrelation as:

π1 ≡
Π
s π2⇔ l̂1 = l̂2∧Compatible(π1,π2)

DEFINITION 5 (Equivalent on Targets).Given a root r (a variable
or a static field) two target partitionsπ1, π2 we define theequivalent
targetsrelation as:

π1 ≡
Π
t π2⇔ Compatible(π1,π2)∧

(r is a static field∨π1,π2 only have local var predecessors)

Using therecursive structurerelation and theequivalent suc-
cessor (target)relations we can efficiently compute the congruence
closure over an abstract heap producing the corresponding normal
form abstract heap (Def. 2). This computation can be done via
a standard worklist algorithm [39] for grouping equivalentnodes
where merging two partitions may create a new opportunity for
merging. Whenever partitions are merged we add any other parti-
tions that may be effected by the merge back onto the worklist. Due
to the properties of congruence closure algorithms and the union-
find data structure, we can know that this implementation canbe
done such that each partition can enter the work list at mostlog(N)
times, whereN is the number of abstract nodes in the initial abstract
heap, and ifE is the number of abstract addresses in the heap then
the complexity of computing the partitions isO((N+E)∗ log(N)).

3.2 Computing Summary Nodes

After partitioning the nodes in the graph with the congruence clo-
sure computation we need to merge all the nodes in each partition
into a summary node. The resulting summary node should safely
summarize the properties of the all the nodes in the partition. Sim-
ilarly, we may need to update target and injectivity information for
the summary nodes in the abstract store. Given a node partition (π)
that we want to replace with a new summary node (ns), we can use
the following functions to compute the abstract propertiesfor each
summary node and the new abstract storeσ̂s:

∀π ∈Img(Π)

ns = (⊔type(π),⊔shape(π), lmap)

lmap= {[l̂ 7→ âl̂] | l̂ ∈ F̂ld(⊔type(π)), âl̂ a fresh address}

σ̂s = MergeStore(σ̂s, l̂ ,π) for eacĥl ∈ F̂ld(⊔type(π))

Once this merge is complete we can update the information on
the abstract addresses associated with each variable inÊnv by
replacing any nodes in the target sets with the appropriate newly
created summary nodes.

Type. The abstract type information is simply the union of corre-
sponding type sets from the nodes in the partition.

⊔type(π) =
⋃

n∈π
T̂y(n)

Shape. TheShapeinformation is more difficult to merge as it de-
pends both on the shapes of the individual nodes that are being
grouped and also on the connectivity properties between them. We
first perform a traversal of the subgraph of the partition andthe
(non-self) abstract targets between them. Then based on thedis-
covery of back, cross, or tree references (in a graph theoretic sense)
and if any of these abstract storage location arenot injectivewe
compute the shape as⊔shape(π) = struct(π)⊔

⊔
n∈π Ŝh(n) where

5 2011/7/21

struct(π) is defined:

struct(π) =

any if ∃n∈ π, l̂ ∈ F̂ld(T̂y(n)) .n.l̂ creates a Back Edge inπ \{n}

dag if ∃n∈ π, l̂ ∈ F̂ld(T̂y(n)) .n.l̂ creates a Cross Edge inπ

∨¬Înj(σ̂(n.l̂))

tree if ∀n∈ π, l̂ ∈ F̂ld(T̂y(n)) .n.l̂ creates a Tree Edge inπ
none if No Internal Edges Exist

Injectivity and Abstract Targets. Given a mapping from the par-
titions to the new summary nodes,Φ : Img(Π) → {ns1, . . . ,nsk},
then for each label,̂l , and abstract address,âl̂ , that may appear in a
summary node,ns, we set the values in the abstract store as:

MergeStore(σ̂s, l̂ ,π) = σ̂s+[â
l̂
7→ (inj, trgts)]

where

trgts= {Φ(Π(n′)) | n′ ∈
⋃

n∈π T̂rgts(σ̂(n.l̂))}

inj = ∀n∈ π . Înj(σ̂(n.l̂))∧∀n′ ∈ π \{n} . inj l̂ (n,n
′)

inj l̂ (n1,n2) = T̂rgts(σ̂(n1.l̂))∩ T̂rgts(σ̂(n2.l̂)) = /0

Injectivity is the logical conjunction of the injectivity of all the
source label locations, and that the respective targets sets of the
nodes that are merged do not overlap. In the case where the tar-
get sets do overlap, i.e., two distinct nodes have abstract label-
s/addresses that contain the same node, the resulting address may
not only be associated with injective pointers. Thus, the injectivity
value is conservatively set tofalse (i.e., not injective). The target
set is simply the remapping of the old nodes in the target setsto the
appropriate newly created summary nodes.

From the definitions of the summary node computations and the
update of the abstract store locations the preservation of the safety
of the abstraction is straight forward to check via case enumeration.
In particular each of the operations consists of a simple join on a
set of values, as given by the partition, and some simple additional
computation on the local structure of each partition. It is also
clear that each partition is processed once in the normal form
computation (and similarly the addresses in the abstract store are
each only visited a constant number of times). Thus, the costof
computing the summaries can be done in linear time. Finally,as
the congruence closure over given a graph is unique the resulting
normal form graph, as defined here, is also unique.

3.3 Normal Form on Example Heap

We can see how this normal form works by using it to transform
the concrete heap in Fig. 1(a) into its normal form abstract repre-
sentation. This can be done by first creating an abstract heapgraph
that is isomorphic to the concrete heap (i.e., create a node for each
concrete object and set the appropriate targets in the abstract store
for each concrete pointer). The resulting isomorphic abstract heap
is shown in Fig. 2.

The normal form partition for the abstract heap in Fig. 2 iden-
tifies the nodes with theAdd, Sub, andMult types as being in
the same partition (they are part of the samerecursive structure).
The presence of this partition will then cause all of the nodes with
Const type (nodes 4, 7) to be identified asequivalent successors
of the tree partition. Finally, either due to the tree partition or the
fact that all the nodes withVar type (nodes 3, 6) have references
to them from node 8 (theVar[]) will cause all the partitions as-
sociated withVar types being identified asequivalent successors.

Figure 2. Isomorphic Abstract Heap.

Thus the final partitioning after the congruence closure is:

µ−1

π1 : {n0,n1,n2,n5}
π2 : {n3,n6}
π3 : {n4,n7}
π4 : {n8}

Given this set of partitions the computation of the various prop-
erties is straight forward. TheShapefor the partitions containing
theVar, Const andVar[] nodes is trivial to compute as there
are no internal references between the nodes in these partitions. The
shapecomputation for the partition (π1) containing the nodes in the
expression structure requires a traversal of the four nodes, and as
there are no internal cross or back edges the layout for this is tree.

In computing the new summary abstract store properties for the
abstract address associated with the expression tree partition (π1)
and the labell there are two nodes (n2 andn5) that refer to the same
node (n3) in partitionπ2. Thus this abstract storage location is set to
not injective (false). However, for the labelr from partitionπ1 the
target sets are disjoint and thus the injectivity in the abstract store is
set totrue (injective). Similarly, the store location for the label[]
out of the partitionπ4 representing the targets of the pointers stored
in theenv array is set asinjective. This results in the normal form
abstract heap shown in Fig. 1(b).

4. Domain Operations
Given the normal form in Sec. 3 we can define an efficiently com-
putable abstract equality operation (=̂) and upper approximation
(⊔̃) operator on thenormal formabstract heaps. Since the set of
normal form abstract heaps is finite (for a given program) we do
not need a widening operator. Both operations can be performed
efficiently,O(N+E) for equality andO((N+E)∗ log(N)) for the
upper approximation.

Abstract Equality. To enable efficient comparison we only define
equality on the normal forms of the abstract heap states. Theab-
stract equality relation we construct has the property:

(Ênv1, σ̂1,Ôb1)=̂(Ênv2, σ̂2,Ôb2)⇒

γ((Ênv1, σ̂1,Ôb1)) = γ((Ênv2, σ̂2,Ôb2))

6 2011/7/21

Since the set of normal form abstract graphs we use in the fixpoint
computation is finite this is sufficient to guarantee termination and
safety of the analysis.

Given two abstract heaps(Ênv1, σ̂1,Ôb1) and(Ênv2, σ̂2,Ôb2)
we first determine if they are structurally isomorphic (i.e., if there is
an isomorphism on the graph structures that respects variable and
field labels), then we check that all abstract node and store prop-
erties in(Ênv2, σ̂2,Ôb2) have the same values in(Ênv1, σ̂1,Ôb1)
under the isomorphism.

To efficiently compute the needed isomorphism we use a prop-
erty of the abstract graphs established by the normal form definition
(Def. 1). By this definition we know that each node is reachable
from a root location (a local variable or a static field), thusif an
isomorphism exists it can be found by matching from the roots.
Further, we know that for each abstract address in the store if there
is more than one element in the target set then each of these tar-
gets must have non-overlapping sets oftypes(from the definition
of Compatible, Def. 3). Thus, to compute an isomorphism between
two graphs we can simply start pairing the local and static roots
and then process the abstract structure in a breadth first manner,
pairing up nodes based on abstract labels and type sets of thetar-
gets, leading to new pairings. This either results in an isomorphism
between the two structures,φ , or it reaches a point where no match
is possible and fails without backtracking.

If we find an isomorphismφ then we check the equivalence of
the abstract nodes and store as follows:

(Ênv1, σ̂1,Ôb1) =φ (Ênv2, σ̂2,Ôb2)⇔

∀n∈ Ôb1 . T̂y(n) = T̂y(φ(n))∧ Ŝh(n) = Ŝh(φ(n))

∧∀l̂ ∈ F̂ld(T̂y(n)) . Înj(σ̂1(n)) = Înj(σ̂2(φ(n)))

Upper Approximation. The upper approximation operation takes
two abstract heaps and produces a new abstract heap that is anover
approximation of all the concrete heap states that are represented by
the two input abstract heaps. In the standard abstract interpretation
formulation this is typically the least element that is alsoan over
approximation. However, to simplify the computation we do not
enforce this property (formally we define anupper approximation
instead of ajoin). Our approach is to leverage the existing defini-
tions from the normal form computation in the following steps.

Given two abstract heaps,(Ênv1, σ̂1,Ôb1) and(Ênv2, σ̂2,Ôb2)
we can define the abstract heap that is the result of their merge
as follows. First we produce the union of the two abstract heaps
by taking the union of the abstract node sets and the abstract
stores in the usual way. From this union store we can compute the
corresponding normal form as described in Sec. 3.

(Ênv1, σ̂1,Ôb1)⊔̂(Ênv2, σ̂2,Ôb2) =

Normalize(Ênvm, σ̂m,Ôb1⊎ Ôb2) where

Ênvm = {[v 7→ âv] | v∈ Dom(Ênv1∪ Ênv2), âv a fresh address}

σ̂m = σ̂1⊎ σ̂2⊎{[âv 7→ (true, trgtsv)] | [v 7→ âv] ∈ Ênvm}

trgtsv = T̂rgts(σ̂1(Ênv1(v)))∪ T̂rgts(σ̂2(Ênv2(v)))

5. Abstract Transfer Functions
Given the expressiveShape Analysis Styledomain defined in
Sec. 2.3 the next step is to define a set of transfer functions that
simulate the effects of various program statements on the abstract
heaps. Our goal is to construct these definitions in aPoints-To Anal-
ysis Style, using weak updates and simple set operations while still
precisely modeling the effects of each statement on the heapstate.
In order to focus on the fundamental aspects of the analysis we
present the results on a simple object-oriented language with the

standard set of allocation, load, and store operations. However, in
practice the approach can be extended in a natural way to handle
a much richer language. Our implementation for .Net bytecode
(Sec. 6) handles features such as struct types, references to the
stack, limited forms of multi-threading, pointers to the interior of
objects, and function pointers.

Table 1 shows the transition semantics for both the concrete
heap model (left column) and abstract heap model (right column)
for the statements that are the most interesting from the standpoint
of memory analysis. In order to focus on the central ideas we ig-
nore issues with null-pointer dereferences, array out-of-bounds er-
rors, etc. In most cases the abstract transfer functions arethe nat-
ural translations of the concrete semantic operations, andare very
similar to the set of transfer functions seen in a standard points-to
analysis [38, 44, 48]. However, there are a number of important dif-
ferences from a standard formulation of points-to analysistransfer
functions, of particular interest are theallocation,store, and
invocation operations.

Allocate. The definition of the allocation operation plays a key
role in the functioning of the analysis. As opposed to the usual
points-to definition which will reuse nodes in the abstract heap
based on some context token, ranging from simple allocationtype
or line number through sophisticated object-sensitive construc-
tions, our definition of the allocation operation always creates a
fresh node. In this sense the definition closely resembles the con-
structions used in shape style analyses.

The creation of a fresh node for each visit to an allocation site
is critical to allowing the analysis to later model stores into/of
this object and the impact on injectivity and shape. Any finite
naming scheme creates situations where there will be spurious
reuse of a node, which will cause the loss of injectivity and/or
shape information (e.g., in the store operation or the normal form
summary computation). Of course the creation of a new node at
each visit to an allocation site creates a potential problemwith the
termination of the analysis as the abstract heap state may grow
without bound. However, by applying the normal form operation
from Sec. 3 at each control flow join point and at each call sitewe
can be sure of the termination of the analysis as the set of graphs
that are in normal form is finite.

Load. The load operation is mostly a simple translation of the
concrete semantics where the target set that is stored into the vari-
able is the union of the target sets of the appropriate fields and
objects. However, since a variable location always contains a sin-
gle pointer we can strongly update the target set and always set the
associated pointers as beinginjective.

Store. The store operation plays a central role in the analysis as
it is where special care needs to be taken to update the injectivity
and shape information. It first gathers all the possible objects that
may be stored into (vtrgts) and all the possible objects that we may
be storing references to (v′trgts). In the update step we compute new
values for the possible shape, the new target node set, and the new
injectivity value. The shape information is handled by checking if
the node we are storing into is in the set of possible target nodes.
If it is then we may be modifying the shape of the data structure
represented by the node we are updating. While, it is possible to
perform additional checks to be more precise in how the store
affects the shape information we have opted to simply set theshape
to the top value (any) in the case that a self store occurs. If there is
no self store then the shape is unchanged.

The update to the abstract store involves taking the union of
the old target set and the new target set (we weakly update the
target set) and computing a new injectivity value. There aretwo
cases we need to check to determine the new injectivity value.
The first is if the old injectivity value was false, in which case we

7 2011/7/21

v= alloc type: (Env,σ ,Ob) (Env,σ ′,Ob′) where

o= (type,{l → al | l ∈ Fld(type),al fresh address})

σ ′ = σ +[Env(v) 7→ o]

+{[o.l 7→ null] | l ∈ Fld(type)}

Ob′ =Ob⊎{o}

v= alloc type: (Ênv, σ̂ ,Ôb) (Ênv, σ̂ ′,Ôb
′
) where

n= (type,none,{l̂ → â
l̂
| l̂ ∈ F̂ld({type}), â

l̂
fresh address})

σ̂ ′ = σ̂ +[Ênv(v) 7→ (true,{n})]

+{[n.l̂ 7→ (true, /0)] | l̂ ∈ F̂ld({type})}

Ôb
′
= Ôb⊎{n}

v= v′: (Env,σ ,Ob) (Env,σ ′,Ob) where

σ ′ = σ +[Env(v) 7→ σ(Env(v′))]

v= v′: (Ênv, σ̂ ,Ôb) (Ênv, σ̂ ′,Ôb) where

σ̂ ′ = σ̂ +[Ênv(v) 7→ σ̂(Ênv(v′))]

v= v′.l: (Env,σ ,Ob) (Env,σ ′,Ob) where

o= σ(Env(v′))

σ ′ = σ +[Env(v) 7→ σ(o.l)]

v= v′.l̂: (Ênv, σ̂ ,Ôb) (Ênv, σ̂ ′,Ôb) where

v′trgts = T̂rgts(σ̂(Ênv(v′)))

σ̂ ′ = σ̂ +[Ênv(v) 7→ (true,
⋃

n∈v′trgts

T̂rgts(σ̂(n.l̂)))]

v.l = v′: (Env,σ ,Ob) (Env,σ ′,Ob) where

o= σ(Env(v))

σ ′ = σ +[o.l 7→ σ(Env(v′))]

v.l̂ = v′: (Ênv, σ̂ ,Ôb) (Ênv, σ̂ ′,Ôb) where

vtrgts = T̂rgts(σ̂(Ênv(v)))

v′trgts = T̂rgts(σ̂(Ênv(v′)))

∀n∈ vtrgts. if n∈ v′trgts thenŜh(n)← any

σ̂ ′ = σ̂ +[n.l̂ 7→ (inj, T̂rgts(σ̂(n.l̂))∪v′trgts)]

whereinj = Înj(σ̂(n.l̂))∧ T̂rgts(σ̂(n.l̂))∩v′trgts = /0

v= m(−→v ′): (Env,σ ,Ob) (Env,σ ′,Ob′) where

Envm = {[parami 7→ ai] | parami ∈m,ai a fresh address}

σm = σ +{Envm(parami) 7→ σ(Env(v′i)) | parami ∈m}

(Envret,σret,Obret) = Apply(m,Envm,σm,Obm)

σ ′ = σret+[Env(v) 7→ σret(Envret(vret))]

Ob′ =Obret

v= m(−→v ′): (Ênv, σ̂ ,Ôb) (Ênv, σ̂ ′,Ôb
′
) where

Ênvm = {[parami 7→ âi] | parami ∈m, âi a fresh address}

σ̂m = σ̂ +{Ênvm(parami) 7→ σ̂ (Ênv(v′i)) | parami ∈m}

(Ênvret, σ̂ret,Ôbret) = Âpply(m, Ênvm, σ̂m,Ôbm)

σ̂ ′ = σ̂ret+[Ênv(v) 7→ σ̂ret(Ênvret(vret))]

Ôb
′
= Ôbret

return v: (Env,σ ,Ob) (Env′,σ ′,Ob) where

Env′ = Env+[vret 7→ aret],aret a fresh address

σ ′ = σ +[Env(vret) 7→ σ(Env(v))]

return v: (Ênv, σ̂ ,Ôb) (Ênv
′
, σ̂ ′,Ôb) where

Ênv
′
= Ênv+[vret 7→ âret], âret a fresh address

σ̂ ′ = σ̂ +[Env(vret) 7→ σ̂(Ênv(v))]

Table 1: Concrete Semantics (left) and Abstract Semantics (right)

8 2011/7/21

conservatively leave it asfalse. The second is if the new target set
and the old target set overlap, in which case we cannot guarantee
that the address is only associated with injective pointers. Again in
this case we conservatively set the result as not injective.If neither
of these cases occur then we mark the abstract address as containing
injective pointers (i.e., the injective value istrue).

Method Call. For simplicity we assume that each method call can
be statically resolved to a single target but in practice theanalysis
handles dynamic dispatch in the usual way of resolving the pos-
sible types of the receiver object, performing the analysisof each
possible target, and then combining the results. Otherwisefor the
method call operation we perform the usual steps of constructing
a fresh environment for the callee method body, calling a helper
function (Âpply) to perform the analysis of the callee, and inte-
grating the results back into the local method scope. The structure
and key aspects of the interprocedural analysis its operation are out-
lined here and we refer to [34] for more detail. The interprocedural
analysis is fully context sensitive on calls to acyclic portions of the
call graph, performing full call graph cloning on each method call
for each new call state. On calls involving cyclic components of the
call graph the analysis performs partial call graph cloningbased on
theCompatibility, Def. 3, of the arguments of the call. In practice
this is done via a memotable of analysis input states (abstract heaps)
and results which are re-analyzed as needed with new input states
as in [32, 48].

DEFINITION 6 (Memo Table Representation).For each method m
in the program we maintain a list of memoized analysis states
[λ1, . . .λk] where eachλi = ((Ênv, σ̂ ,Ôb)ini , (Ênv, σ̂ ,Ôb)out

i).

When a call to a methodm is encountered with the input de-
scribed by the abstract heap,(Ênv, σ̂ ,Ôb), we look at the memo
table entries,[λ1, . . .λk], that we have previously encountered when
analyzing the method body. If we find an entry(Ênv, σ̂ ,Ôb)ini that
matches with(Ênv, σ̂ ,Ôb)↓m, which is the abstract heap at the call
site projected into the scope ofm, we return the memoized result
state(Ênv, σ̂ ,Ôb)out

i [32, 41, 48]. If not then we create a new entry
in the table for(Ênv, σ̂ ,Ôb)↓m and begin analysis onm with the
new input. We refer to [32, 34] for a discussion of the matching
and project/extend techniques used.

One interesting issue is what to do in the case of a recursive call
when we may have a matching input but the memoized output value
has never been computed. A common approach is to simply return
the bottom domain value (⊥) for this case. The bottom value —
for us the empty heap — is always a safe under approximation of
the results but using it generally leads to a large number of fixpoint
computation iterations. However, we know that the input abstract
heap is also an under approximation of whatever the resulting
output abstract heap will be. This is a result of the fact thatall of
the transfer functions are weakly updating wrt. heap locations and
we do not do case splitting, thus any domain property that holds
on the caller reachable heap at the entry of the method will always
hold on the caller reachable portion of the heap at the exit ofthe
method. So for the initial match we can simply return a copy ofthe
input abstract heap. This often substantially reducing thenumber
of iterations required to reach a fixpoint.

Computation. All of the transfer functions we have defined can
be computed in time linear in the size of the heap model that they
operate on. But the local operations (allocate, assign, load, store)
are even more efficient as they are implemented in terms of simple
set/graph operations which only examine the nodes (and perhaps
immediate neighbors) that are the targets of the variables that they
operate on. Thus, these local operations are linear in the number of
targets and neighbor nodes (abstract addresses) which is, in general,

a small fraction of the total number of nodes (abstract addresses) in
the abstract heap.

6. Implementation and Evaluation
We have implemented the analysis described in this paper fora
large set of the .Net bytecode language including struct types, ref-
erences to the stack, limited forms of multi-threading, pointers to
the interior of objects, and function pointers. In practicewe first
translate from .Net bytecode to an intermediate representation sim-
ilar to the IR used in the LLVM compiler [25]. The translationfrom
.Net to our IR is a mostly a 1-1 mapping but the use of the inter-
nal IR allows us remove most .Net specific idioms from the core
analysis and allows some pre-processing to simplify later analysis
steps. Our benchmarks are C# implementations of programs from
Jolden [22], thedb andraytracer programs from SPEC JVM98 [45],
the luindex andlusearch programs from the DaCapo suite [22], and
the heap abstraction code from [34],runabs. The domain, opera-
tions, and data flow analysis algorithms are all implementedin C#
and are publicly available.1

One important consideration from the viewpoint of an analy-
sis tool that is intended to operate on userspace programs are the
types provided by the base class or system libraries, e.g., the Base
Class Library (BCL) for .Net or thejava.* in Java. For user
space applications the internal structure of say,FileStream or
StringBuilder is not interesting, so we treat these as single
opaque objects. However, some classes in these libraries have fea-
tures that are relevant to userspace code even though the details
of the internal representation are not of particular interest. Exam-
ples of these types would beList<T> or Dictionary<K,V>,
which we treat as ideal algebraic data structures, trackingthe
contained elements but treating the internal implementations as
opaque. Our .Net translation system identifies these builtin types
and methods invoked on them, replacing the actual implementa-
tions with either simplified versions or with special semantic op-
erations as in [8, 37]. This special handling of builtin operations
is very useful in improving the performance and precision ofthe
analysis, but comes at the cost of additional work to implement
support for large libraries.

Our test machine is an Intel i7 class processor at 2.66 GHz with
2 GB of RAM available. We use the standard 32 bit .Net JIT and
runtime framework provided by Windows 7. As the analysis never
consumes more than 150 MB of memory or takes more than 70
seconds we utilize the default parameters for the JIT and runtime.

6.1 Analysis Performance

Table 2 examines the cost of running the analysis in this paper. For
each benchmark we list the number of bytecode instructions,the
number of classes, and the number of methods that each program
contains after being translated into the internal IR. Thesenumbers
exclude much of the code that would normally be part of the run-
time system libraries. This is due to the fact that during thetrans-
lation from .Net bytecode to the internal IR code which is never
referenced is excluded. Additionally for the builtin types/methods
that are used the implementations are often replaced by simplified
versions or specialized domain operations.

The last two columns of Fig. 2 show the aggregate performance
of the analysis on the benchmark set. The timing measurements
exclude the time required to startup and read/transform thesource
program into the internal IR. These performance results show that
the analysis described in this work is quite efficient and capable of
analyzing complex programs. Despite the fact that the analysis is
highly-context sensitive and has an expressive shape styledomain
the overall time and memory needed to analyze the programs is

1 Source code available at:http://jackalope.codeplex.com/

9 2011/7/21

Benchmark Statistics Analysis Cost
Name Insts Types Methods Time Mem
power 3,298 43 320 0.09s 11MB
health 2,062 44 329 0.14s 12MB
bh 3,723 45 351 0.42s 14MB
db 2,873 42 315 0.21s 12MB
raytracer 9,808 65 476 6.72s 32MB
luindex 26,852 246 1747 12.1s 53MB
lusearch 33,632 272 1919 64.3s 130MB
runabs 27,875 253 1894 10.4s 60MB

Table 2: Benchmark statistics and aggregate performance ofthe
analysis on them.

Benchmark Max Iters Avg. Entries Max Nodes
power 3 1.02 29
health 4 1.09 23
bh 5 1.11 32
db 1 1.80 14
raytracer 4 2.24 61
luindex 6 2.46 102
lusearch 16 2.88 170
runabs 4 2.11 70

Table 3:Max Itersis the maximum number iterations taken to reach
a fixpoint for any method/input abstract heap,Avg. Entriesis the
average number of memotable entries associated with each method,
andMax Nodesis the max number of nodes in any abstract heap
during the analysis.

quite small (even when compared to state of the art object-sensitive
points-to analyses). However, the analysis runtime and cost only
has a minimal correlation with the size of the program. Despite
very similar numbers of instructions and methodsbh takes over
four times as long aspower, and similarly forluindex andlusearch.

In the case ofluindex (a fairly direct translation of the Java ver-
sion from the DaCapo suite) the analysis requires only 12 seconds
while recently reported results on context-sensitive points to analy-
ses [44] reports analysis times ranging between 67 and 179 seconds
depending on the amount and type of object-sensitivity used(and
37 seconds with an insensitive analysis). But more importantly,
as memory use frequently is a major scalability wall, are thelow
memory requirements. Despite performing the equivalent offull
call graph cloning for large parts of the analysis and being partially
context sensitive on the remainder, the analysis presentedin this
paper uses less than 150 MB of memory when analyzing any of the
benchmarks. We note that existing shape style approaches donot
currently scale to programs of this size/complexity. Whilethe work
in [4, 8, 9, 49] has been used to analyze large programs, the C/C++
programs that have been analyzed do not use heap allocated data
structures, recursion, and dynamic dispatch as extensively as the
Java/C# programs here. Additionally, these techniques also place
restrictions on the types of heap structures that the programs may
create, either limitations on sharing [4, 49], or on the presence of
recursive data structures [8, 9].

One major reason for the scalability of the analysis is that the
normal form in Sec. 3 has been constructed to create equivalence
classes that closely mirror the heap structures which appear in
object-oriented programs. This ensures that the analysis quickly
converges to a fixpoint and avoids generating large numbers of
spurious and uninteresting contexts (entries in the memo tables).
Table 3 shows information on the number of memo table entries
produced for methods during the analysis. The first column in

the table shows the maximum number of analysis iterations ofa
method body (with a given input abstract heap) required to reach a
fixpoint state. As can be seen even this maximum value is relatively
small (16 in the worst case). Additionally when looking at the
average number of contexts created per method in the programwe
see that, even with the aggressive creation of memo table entries,
the average is less than 3. Finally, the size of the abstract heaps is
large enough to precisely resolve useful structure but not so large
that it is computationally problematic.

The runtimes from Tab. 2 correlate well with theMaxIters
andAvgEntriescolumns. Thus we see the performance impacts of
reducing the number of memo table entries and number of fixpoint
iterations. This highlights the value of the normal form which is
able to quickly push the abstract heaps toward invariant states, thus
producing a small set of input abstract states for each method which
quickly stabilizes during the fixpoint computation. This shows that
the normal form is, in combination with the efficient operations
for the local transfer functions, critical to the low memoryuse and
rapid completion of the analysis.

6.2 Quantitative Precision

The analysis in this paper tracks properties that have shown, in
past work, to be both relevant and useful [9, 10, 12–14, 26, 44].
However, we want to examine the quantitative precision of the
analysis in a way that is free from biases introduced by the selection
of a particular client application. Thus, we examine the precision
of the static analysis relative to a hypothetical perfect analysis
which uses the same abstract domain. This notion of precision is
a better basis for examining the impact of the possible imprecision
of the abstract transfer functions and normal form on the analysis
results than the use of a specific client application (which may hide
precision losses thathappennot to matter for the particular client).

We define precision relative to a hypotheticalperfect analysis
which uses the same abstract domain from Sec. 2 but that is able to
perfectly predict the effects of every program operation. Since we
cannot actually build such an analysis we approximate it by collect-
ing and abstracting the results of concrete executions. By definition
this collection of results from the concrete execution is anunder ap-
proximation of the universal information we want to compute, and
in the limit of execution of all possible inputs is identical. Formally,
given a method and a set of concrete heaps{h1, . . . ,hk} and a set
of abstract heaps{ĥ1, . . . , ĥ j} we can compute differences between⊔

h∈{h1,...,hk}α(h) and
⊔
{ĥ1, . . . , ĥ j}. This gives an unbiased mea-

sure of how close our results are to the optimal solution, wrt. the
abstract domain we are working with in a way that is independent
of peculiarities of a client application or other analysis technique.

Table 4 shows the results of this comparison on our benchmarks.
For the numbers in this table we compared the results from our
perfect analysiswith the results from the static analysis described
in the paper. In this table we further refine the comparison to
be property specific by reporting the average percentage, over all
nodes (or abstract addresses) in all graphs for all methods in the
program, precisely identified: regions, shapes, or injectivity values.
The region percentage (theRegioncolumn) is number of nodes
that can be exactly matched between the statically computedand
ideal result structure. Using this matching we then computethe
percentage of theshapeandinjectivityproperties that are precisely
identified by the static analysis (theShapeandInjectivitycolumns).

Overall the results show that the analysis is able to extracta
large percentage of the properties that can be expressed viathe se-
lected abstract domain (in general with a rate of 80% to 90%).In
general the normal form and points-to style abstract transfer func-
tions result in only small losses in precision when analyzing the
behavior of the program and the effects of various operations on
the state of the heap. In inspecting the places where the analysis

10 2011/7/21

Benchmark Region Shape Injectivity
power 100% 100% 100%
health 72% 100% 65%
bh 100% 90% 87%
db 100% 100% 81%
raytracer 80% 85% 83%
luindex 95% 95% 82%
lusearch 93% 90% 84%
runabs 97% 98% 87%

Table 4: Average accuracy of analysis results when comparedto
perfect analysis. Reported as a percentage of each property cor-
rectly predicted by the static analysis.

does lose precision we often find small blocks of code operating
in a nontrivial way on some set of objects. An example of this are
the benchmarkspower, which has extensivemostly-functionalbe-
havior and our analysis is able to analyze it perfectly. Conversely,
the outlying benchmarkhealth performs extensive transfer of own-
ership among a number of lists in the program. In this case our
analysis loses a substantial amount of sharing information(iden-
tifying the true injectivity state precisely for only 65% ofthe ab-
stract store locations). In all the cases we inspected, suchashealth,
it would be possible to apply more powerful analysis techniques
such as [9, 49] to these slices of code/heap structures to eliminate
the precision losses. This refinement process could be done either
as a post processing step or online during the analysis.

7. Related Work
There is a large body of existing work in the areas of both points-to
and shape analysis and this work has led to a number of practical
and widely used analysis techniques. Rather than attempt tocover
the entirety of previous work (which even for the area of points-
to analysis requires a full paper to do justice to [18]) we focus
specifically on where this analysis sits in the spectrum of memory
analysis techniques and how it ties in with other work in the area.

From the viewpoint of the analysis in this paper work on
points-to analysis can be seen as falling into two categories, flow-
insensitive, and flow-sensitive. Flow-insensitive analyses involve
an inherently different set of tradeoffs than the analysis in this pa-
per. These analyses fundamentally prioritize speed and scalability
over precision and thus are much faster but produce much lessso-
phisticated information [16, 46]. In particular these approaches can
now scale to millions of lines of code with analysis times on the
order of a few seconds or less [16]. The second class of points-to
style analyses are more precise, tracking information in a flow-
sensitive manner [17, 28] and often employing techniques totrack
information in a way that is sensitive to different call sites, either
via a context-sensitive or object-sensitive approach [23,38, 44].
While these analyses are more precise than flow insensitive points-
to analyses they cannot express general shape or sharing properties.
However, due to the way that context is tracked they can produce
more precise points-to information in some cases than the analysis
in this paper and it is an open question if object sensitive techniques
can be used to improve on the results in this paper. Somewhat sur-
prisingly these context (or object) sensitive analyses canbe slower
(and use more memory) than the analysis in this paper.

Work on memory analysis by Latter et. al. [24, 27] is based on a
modular approach which first builds local shape graphs for each
method via a local flow-insensitive points to analysis, and then
merges (and clones as needed) these local graphs via a context-
sensitive interprocedural analysis to produce the final result. Due
to the modular and flow insensitive nature of the analysis it is very
efficient, capable of analyzing large C++ programs in seconds. The

use of a flow-insensitive and a local points-to analysis limits the
range of properties that can be extracted and the precision of the
analysis. However, as the focus of this work was scalability(instead
of expressivity) it provides an interesting contrast in design deci-
sions to the hybrid analysis proposed in this paper. Similarly the
work of Hackett and Rugina [15] mixes shape and points-to analy-
sis by first partitioning the heap into regions via a flow-insensitive
points-to analysis followed by performing shape analysis within
these partitions. The work of Ghiya and Hendren [10] is of par-
ticular relevance to the work in this paper as it uses points-to and
basic reachability predicates to compute shape information and in
Sec. 4.3 notes the challenges of using weak updates when analyzing
shape properties.

There is an extensive body of work on shape analysis [5, 9,
11, 12, 21, 37, 42, 43, 49], and while the work in presented in
this paper eschews the use of materialization and case splitting
in the abstract transfer functions, it borrows heavily fromexisting
work in the design of the abstract domain and in the selectionof
properties it encodes. In particular the domain in this paper is based
on the basicstorage shape graphconstruction [5], which is then
augmented with additional information on data structure shape [10]
and sharing information (injectivity) [37]. However, as opposed to
using a partitioning scheme based on type or allocation siteas done
in [5] (or in most work on points-to analysis) the approach inthis
paper always creates a fresh node in the graph during theallocation
operation. This node is then grouped into other data structures as
needed using a normal form operation based on connectivity and
a set of equivalence relations on the properties of the nodes[30,
33, 49]. The simplicity of the transfer functions in this work, as
opposed to the more sophisticated shape analysis transfer functions,
results in a much faster and more scalable analysis at the cost of a
small amount of precision.

8. Conclusion
This paper introducedStructural Analysis, a novel memory anal-
ysis technique based on the combination of a shape analysis style
abstract heap model, a normal form driven by empirical studies of
heap structures in real-world object-oriented programs, and a set
of points-to analysis style transfer functions. The resulting hybrid
memory analysis is able to precisely identify various structures in
memory and to track sharing, shape, and reachability relations on
them. At the same time the simple points-to style transfer func-
tions and congruence closure based normal form allow the analy-
sis to efficiently process the effects of various program statements
and quickly converge to a final fixpoint (despite using extensive
call-graph cloning in the interprocedural analysis). We believe that
the combined scalability and precision, plus the hybrid shape and
points-to analysis structure presents both immediate benefits and
unique opportunities for future research. The developmentof an
expressive and scalable heap analysis is a valuable contribution
wrt. the wide range of other research that depends on information
about the program heap. However, we also believe further work
in the area of hybrid analysis approaches, such as adding object-
sensitivity or integrating aspects from SMT or separation logic
based approaches, will be fruitful areas of investigation.As such
we believe the analysis presented in this paper represents the intro-
duction of a significant new class of heap analysis and represents an
important advancement in the state of the art in precise and scalable
heap analysis techniques.

References
[1] W. Benton and C. Fischer. Mostly-functional behavior inJava pro-

grams. InVMCAI, 2009.

11 2011/7/21

[2] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies,
and H. Yang. Shape analysis for composite data structures. In CAV,
2007.

[3] S. Blackburn, R. Garner, C. Hoffman, A. Khan, K. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis (2006-
mr2). InOOPSLA, 2006.

[4] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. InPOPL, 2009.

[5] D. Chase, M. Wegman, and K. Zadeck. Analysis of pointers and
structures. InPLDI, 1990.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. InPOPL, 1979.

[7] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In PLDI, 1994.

[8] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning forprograms using
containers. InPOPL, 2011.

[9] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In
PLDI, 2011.

[10] R. Ghiya and L. Hendren. Is it a tree, a dag, or a cyclic graph? A shape
analysis for heap-directed pointers in C. InPOPL, 1996.

[11] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis
with separated heap abstractions. InSAS, 2006.

[12] S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-
manipulating low-level software. InCAV, 2007.

[13] S. Guyer and K. McKinley. Finding your cronies: static analysis for
dynamic object colocation. InOOPSLA, 2004.

[14] S. Guyer, K. McKinley, and D. Frampton. Free-me: a static analysis
for automatic individual object reclamation. InPLDI, 2006.

[15] B. Hackett and R. Rugina. Region-based shape analysis with tracked
locations. InPOPL, 2005.

[16] B. Hardekopf and C. Lin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. InPLDI, 2007.

[17] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis.
In POPL, 2009.

[18] M. Hind. Pointer analysis: haven’t we solved this problem yet? In
ISSTA, 2001.

[19] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage
collection. InOOPSLA, 2003.

[20] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable
data structures. InPOPL, 2001.

[21] J. Jenista, Y. Eom, and B. Demsky. Using disjoint reachability for
parallelization. InCC, 2011.

[22] Jolden Suite.http://www-ali.cs.umass.edu/DaCapo/.

[23] N. Jones and S. Muchnick. A flexible approach to interprocedural data
flow analysis and programs with recursive data structures. In POPL,
1982.

[24] C. Lattner and V. Adve. Data Structure Analysis: An Efficient Context-
Sensitive Heap Analysis. Technical Report UIUCDCS-R-2003-2340,
Computer Science Dept., Univ. of Illinois at Urbana-Champaign, Apr
2003.

[25] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. InCGO, 2004.

[26] C. Lattner and V. Adve. Automatic pool allocation: improving per-
formance by controlling data structure layout in the heap. In PLDI,
2005.

[27] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-
to analysis with heap cloning practical for the real world. In PLDI,
2007.

[28] O. Lhoták and K.-C. A. Chung. Points-to analysis with efficient strong
updates. InPOPL, 2011.

[29] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation.ACM Trans.
Softw. Eng. Methodol., 2008.

[30] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate ab-
straction and canonical abstraction for singly-linked lists. In VMCAI,
2005.

[31] M. Marron, E. Barr, and C. Bird. Collecting a heap of shapes. In
Preparation, 2011.

[32] M. Marron, M. Hermenegildo, D. Stefanovic, and D. Kapur. Efficient
context-sensitive shape analysis with graph based heap models. InCC,
2008.

[33] M. Marron, D. Kapur, and M. Hermenegildo. Identification of logi-
cally related heap regions. InISMM, 2009.

[34] M. Marron, O. Lhotak, and A. Banerjee. Scalable interprocedural
analysis. InSubmission, 2011.

[35] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and
D. Kapur. Sharing analysis of arrays, collections, and recursive struc-
tures. InPASTE, 2008.

[36] M. Marron, C. Sanchez, Z. Su, and M. Fahndrich. Abstracting runtime
heaps for program understanding. InSubmission, 2011.

[37] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap
analysis in the presence of collection libraries. InPASTE, 2007.

[38] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitiv-
ity for points-to analysis for Java.ACM Trans. Softw. Eng. Methodol.,
2005.

[39] G. Nelson and D. Oppen. Fast decision procedures based on congru-
ence closure.J. ACM, 1980.

[40] F. Nielson, H. Nielson, and C. Hankin.Principles of Program Analy-
sis. Springer-Verlag New York, Inc., 1999.

[41] N. Rinetzky, J. Bauer, T. Reps, S. Sagiv, and R. Wilhelm.A semantics
for procedure local heaps and its abstractions. InPOPL, 2005.

[42] X. Rival and B.-Y. E. Chang. Calling context abstraction with shapes.
In POPL, 2011.

[43] S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. InPOPL, 1999.

[44] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts
well: understanding object-sensitivity. InPOPL, 2011.

[45] Standard Performance Evaluation Corporation. JVM98 Version 1.04,
August 1998. http://www.spec.org/jvm98.

[46] B. Steensgaard. Points-to analysis in almost linear time. In POPL,
1996.

[47] C. Unkel and M. Lam. Automatic inference of stationary fields: a
generalization of Java’s final fields. InPOPL, 2008.

[48] R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for
C programs. InPLDI, 1995.

[49] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. OHearn. Scalable shape analysis for systems code. InCAV, 2008.

12 2011/7/21

