PrePrint

Structural Analysis:
Combining Shape Analysis Information with Points-To ArsadyComputation

Mark Marron

IMDEA Software Institute, Spain
mark.marron@imdea.org

Abstract

This paper introduces a new hybrid memory analySisuctural
Analysis which combines an expressive shape analysis style ab-
stract domain with efficient and simple points-to style &fenfunc-
tions. By using insights from empirical studies of runtimeap
structures and the programmatic idioms used in modern Bbjec
oriented languages we construct an analysis with the fatigw
characteristics: (1) it can express a rich set of structshalpe, and
sharing properties which are not provided by a classic peimt
analysis and that are useful for optimization and erroraiizte ap-
plications (2) it uses efficient, weakly-updating, setdzhtransfer
functions which enable the analysis to be more robust and sca

able than a shape analysis and (3) it can be used as the basis fo.

a scalable interprocedural analysis that produces preessgts in
practice.

The analysis has been implemented for .Net bytecode angd usin
this implementation we evaluate both the runtime cost amd th

precision of the results on a number of well known benchmarks .

and real world programs. When compared to the results offagier
oracle for the benchmarks we see that, despite the use of wea
updates and absence of case splitting/materializatienatialysis
produces information that is near the limit (80-90% acm)raff
what is possible with our chosen abstract domain. Furthner, t
analysis is capable of analyzing programs larger than goyrted
general purpose shape analysis and is faster than some-pmint
analyses on these programs, never taking longer than 7@dsco
or using more than 150 MB of memory. Thus, this work presents
a new type of memory analysis that advances the state of the ar
with respect to expressive power, precision, and scatakaind
represents a new area of study on the relationships betwekn a
combination of concepts from shape and points-to analyses.

Categories and Subject Descriptors  F.3.2 Logics and Meanings
of Program$: Semantics of Programming Languages—Program
Analysis

General Terms Languages, Performance

Keywords Structural Analysis, Program Understanding, Static
Analysis

1. Introduction

Techniques for analyzing the memory structures createdoand
erated on by a program have generally fallen into two fami-
lies: Points-To (or alias) Analysis and Shape Analysis.SEhap-
proaches lie at far ends of the spectrum of analysis cost aui-p
sion. In particular points-To analyses track very simplepgrties,
usually little more than points-to set information, and thens-
fer functions which simulate the effects of various progrstate-
ments use simple and efficient set operations. At the othetroén
the spectrum, shape analyses track a range of rich heaprpespe

and generally utilize computationally complex transfendiions,
involving materialization operations, case splittingd atrong up-
dates. While individually each of these areas has seensinten
research, there has been little work in exploring the vasa &e-
tween these two points in the cost-precision spectrum orirging
concepts from these analysis approaches. A major reasdhigor
separation is the issue of weak vs. strong updates and thei-ass
ated machinery of case splitting and materialization. Irtipalar

a critical question is: Are strong updates a critical congrdrof a
shape style analysis or is it possible to compute precigeesishar-
ing, etc. information with an analysis that uses simpler ammte
efficient transfer functions?

Recent empirical work on the structure and behavior of tlaphe
in modern object-oriented programs has shed light on howp hea
structures are constructed [1, 47], the configuration opthiaters
and objects in them [3], and their invariant structural emies [31,
36]. These results affirm several common assumptions almyut h
object-oriented programs are designed and how the heajiges

in them behave. In particular [1, 3, 47] demonstrate thaeabj

koriented programs exhibit extensiveostly-functionalbehaviors:

making extensive use €ihal (or quiescing fields,stationaryfields,
copy construction, and when fields are updated the new t&get
frequently a newer (often freshly allocated) object. Thsults

in [31, 36] provide insight into what heuristics can be used t
effectively group sections of the heap based on how they sed u
in the program, what types of invariants hold for these $tmas,
and how universal these invariants are in practice. Thetseesuow
that, in practice, object-oriented programs tend to ogbbjects
on the heap into well defined groups based on their roles in the
program and that the relationships between these grougsddre
relatively stable, particularly with respect to structunagyanization,
reachability, and sharing properties.

The information provided by these empirical studies prevtte
central design principles that guide the construction ef lleap
analysis in this paper. The prevalence of mostly functibealavior
implies that the domain and transfer functions can, gelyetan-
dle writes as weak updates without large precision losseseher,
to precisely handle object initialization and the frequeae of up-
dating a field to point to a newly (or very recently) allocatdgject,
the domain should model such objects with extra care. Pus\eg-
perience withContext-Sensitiveataflow analysis has shown that
the number of contexts that are created is a critical factperfor-
mance [29, 32, 44]. To improve the speed at which the anadgsis
verges to a fixpoint the abstract heap domain and normal fepm r
resentation should have natural (and compact) encodimgfo-
monly occurring and relatively invariant heap propertiémally,
given that object-oriented programs are not completelgtional,
there will be cases where the simplified abstract transfestfons
introduce imprecision. Thus, the abstract heap domainlgtpro-
vide strong disjointness and isolation properties betvibenvari-
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ous parts of the heap. These properties serve to both mimitinéez
impact of any imprecision that is introduced and to prevastad-
ing of this imprecision. As an additional benefit a notion &f-d
jointness allows the use of frame rules [20, 41].

1.1 Contributions

The main practical contribution of this paper is the corstan of
a novel static heap analysiStructural Analysisthat combines a
rich shape analysis style abstract heap model with effigieom-
putable points-to analysis style abstract transfer foneti The re-
sulting hybrid memory analysis is able to precisely idgnedrious
structures in memory and to track sharing, shape, and rbiitha
relations on them (in practice 8090% accurate when compared to
our analysis results oracle). In addition to producing izecesults
the analysis is capable of analyzing real world programdgchvh
are beyond the capabilities of existing shape analyses,eapires
less time than even a points-to analysis on some of thesegunsg
(always less than 70 seconds and 150 MB of memory).

The main theoretical contribution of this paper is the aliéx-
ploration of a new area of memory analysis that lies betweens
based on the combination of concepts from work on shape siraly
and points-to analysis. This paper identifies and examimasia
ber of general principles that are derived from empiricatigs of
the heap in real programs and that are central to the cotistnuc
of these style of hybrid analysis approaches. The infolmndtiom
these studies combined with the empirical results from tadyasis
constructed in this paper show that strong updates (andiassd
machinery) arenot critical and that in practice weak updates are
sufficient for computing large amounts of useful shape ara-sh
ing information in real world object-oriented programs ughthis
work opens new possibilities for exploring the relatiopshbe-
tween shape and points-to analyses and represents a nevaeppr
to building scalable and precise memory analysis tools.

Technical Contributions. This paper contains a number of tech-
nical contributions involving the design of the domain, mait
form, and transfer functions. The abstract domain (Ses Based
on the classic storage shape graph approach and is ableressxp
rich set of commonly occurring and generally useful prapsrin-
cluding, structure identification, reachability, sharirzand shape.
Additionally, due to the implicit disjointness informatian the
graph structure, the resulting abstract heap model possesyy
separability and isolation characteristics that limit grepagation
of imprecision. The normal form (Sec. 3) is defined in terms of
an efficient congruence closure computatiof(N + E) «log(N))
whereN is the number of nodes in the shape graph Bnid the
number of edges. This congruence relation is based on the- str
tures identified in the empirical studies and enables thédysisa
to rapidly converge to a fixpoint without either a large lossne
formation on the domain properties of interest or the gdimra
of large amounts of irrelevant detail. The points-to stybnsfer
functions (Sec. 5) are based on set-operations and weakespda
In practice they precisely model the heap properties ofésteand
are efficiently computablé®(N + E) worst case but in practice are
near constant time. In order to quantify the performancepmadi-
sion of this analysis we present an extensive experimeungdlia-
tion (Sec. 6) of several well known benchmarks includinggpams
from SPEC JVM98 and DaCapo. This evaluation includes bath th
timing and memory use characteristics of the analysis asased
rigorous evaluation of the precision of the results. Thduation
shows that the analysis results are both precise and, debpiex-
tensive use of context sensitivity via call-graph cloningl dype
information, the interprocedural analysis is scalable.

2. Abstract Heap Domain

We begin by formalizing concrete program heaps and theastev
properties that will be captured by the abstraction. Laterdefine
the abstract heap and formally relate the abstraction tactime
crete heaps using@ncretization(y) function from the framework
of abstract interpretation [6, 40]. These definitions arsigteed
to support the expression of a range of generally usefulgsrop
ties (e.g., shape, sharing, reachability) that are commashape
analysis [5, 10, 35] and that are useful for a wide range @ftli
optimization and error detection applications.

2.1 Concrete Heaps

For the purposes of this paper, we model the state of a program
a standard way where there is an environment, mapping Vesiab
to addresses, and a store, mapping addresses to objecisteM®r
an instance of an environment together with a store esnarete
heap Given a program that defines a set of concrete typese,
and a set of fields (and array indicekjbels, defined in the types,
we construct a concrete heap as a ty@lev, o, Ob) where:

Env : Vars — Addresses

o : Addresses — ObU{null}

Vo€ Ob.ois atuple(t,Labels — Addresses)
wheret € Type

Each objecb in the setOb is a tuple consisting of the type of the
object and a map from field labels to concrete addresses éor th
fields defined in the object. We assume that the objec@bimnd
the variables in the environmeBtv, as well as the values stored in
them, are well typed according to the stogg &nd the types/labels
in the setsType andLabels.

In the following definitions we use the notatidiy (o) to refer
to the type of a given object. The usual notatmhto refers to the
value of the field (or array index)in the object. It is also useful
to be able to refer to aon-null pointeras a specific structure in
a number of definitions. Therefore we definea@-null pointer p
associated with an objectand a label a$ in a specific concrete
heap,(Env,0,0b), asp = (o,l,0(0.l)) whereo(o.l) # null. We
define a helper functioRld(type) to get the set of all fields that are
defined for a given type (or array indices for an array type).

A region of memoryC C Ob is a subset of the concrete heap
objects. It is useful to define the sB(C;,C,) of all non-null
pointers crossing from a regi@h to a regiorC, as:

P(C1,C) =

{(0s,1,0(0s.1)) | Jos € Cq,| € Fld(Ty(0s)).0(0s.l) € Co}

2.2 Concrete Heap Properties

We now formalize the set of concrete properties of objecis)tp
ers, and entire regions of the heap that we later use to ciieate
abstract heap.

Type. The set of types associated with a regwf the heap is
the set of all types of the objects in the regidity (o) | o € C}.

Injectivity. Given two regiongC; andCy, we say that the non-
null pointers with the label from C; to C, areinjective written
inj(C1,Cy,l), if for all pairs of non-null pointers(os,l,o) and
(of,1,0f) drawn fromP(Cy,Cy), 0s # 0; = 0t # 0f. As a special
case when we have an array object, we say the non-null paieter
P(C1,Cy) is array injective written, injp (C1,Cy), if for all pairs of
non-null pointergos,i,or) and(os, j,0;) drawn fromP(Cy,C,) and
i, j valid array indicesi # j = o # 0.

These definitions capture the general case of an injectlae re
tion being defined from a set of objects and fields to targetaibj
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They also capture the special, but important case of arréysev
each index in an array contains a pointer to a distinct object

Shape. We characterize the shape of regions of memory us-
ing standard graph theoretic notions of trees and direatydlic
graphs (dags) treating the objects as vertices in a graphhend
non-null pointers as defining the (labeled) edge set. We thate

in this style of definition the set of graphs that are treessalzset

of the set of graphs that are dags, and dags are a subset oéigene
graphs. Given a regio@ then:

¢ The predicateny(C) is true for any graph. We use it as the most
general shape that doesn't satisfy a more restrictive pryppe

¢ The predicatedag(C) holds, if the subgrapiC,P(C,C)) is
acyclic.

¢ The predicateree(C) holds, ifdag(C) holds and the subgraph
(C,P(C,0C)) contains no pointers that create cross edges.

¢ The predicateone(C) holds, if the edge set in the subgraph is
empty,P(C,C) = 0.

As is apparent from this definitiomone(C) implies tree(C),
tree(C) impliesdag(C), anddag(C) impliesany(C).

2.3 Abstract Heap

An abstract heap is an instance of a storage sha/ge graph¢sg M
precisely, an abstract heap graph is a tugeyv, G, Ob) where:

Env : Vars Addr/e\sses
G : Addresses — Inj x 20b
wherelnj = {true, false}
Vne Ob.nis a tuple(T, Z,Label — Addr/e\sses)
whereT € 2Pe A € {none, tree,dag,any}.
The abstract stores) maps from abstract addresses to tuples con-

sisting of the injectivity associated with the abstractradd and a

set of target nodes. Each nodén the setOb is a tuple consisting
of a set of types, a shape tag, and a map from abstract labatbs to

stract addresses. The abstract labeibél) are the field labels and
the special labd]. The label concretization is defined by:

{0,1,..} if IT==]
{I} ot herwi se
The special labe]] abstracts the indices of all array elements (i.e.,

array smashing). Otherwise an abstract szbebresents the given
object field with the given name.

As with the objects we introduce the notatigﬁ(n) to refer
to the type set associated with a node. The notéiiom) is used
to refer to the shape property, and the usuélnotation to refer

to the abstract value associated with the ldb&lince the abstract
store @) now maps to tuples dhjectivity and node target infor-

mation we use the notatid/n\j(a(x)) to refer to theinjectivity and

wl) =

'ﬁg\ts(ﬁ'(x)) to refer to the set of possible abstract node targets as-

sociated with the abstract address. We define the helpetidanc

FAId({typeb ...,typa}) to refer to the set of all abstract labels that
are defined for the types in a given set (includjhd the set con-
tains an array type).

2.4 Abstraction Relation

concretization §) of an abstract heap:
(Env,d,0b) € y((Env, 5, 0b))
& 3u.Embed(, Env, 0, 0b, Env, G, 0b)
/\Typing(u,Ob,éB)
A lInjective(U, Env,G,Ob,grR/,a,(/)\b)
A Shape(u,Env,g,0b, E/n\v,a,(/)\b)

A concrete heap is an instance of an abstract heap, if theses ex

embedding functiop : Ob — Ob satisfying the graph embedding,
typing, injectivity, and shape relations between the $tnes. The
auxiliary predicates are defined as follows.

Embed (4, Env, 0, Ob, Env, G,0b) =
WV € Vars. (0 (Env(v))) € Trgts(G(Env(v)))
AY0s € Ob and non-null pointer = (0s,1,0t)

A€ Fld(Ty(1(0s))) . u(or) € Trgts(8(u(os).N) Al € n.(1)

The embed predicate makes sure that all of the objects antepwi
of the concrete heap are present in the abstract heap graph, c
necting corresponding abstract nodes, and that the stdriabels

in the abstract graph respect the concrete store and |dltelsem-
bedding must also preserve any variable mappings.

Typing(u,Ob,0b) = Vn e Ob,0 € u~(n). Ty(0) € Ty(n)

The typing relation guarantees that the typgo) for every con-

crete objecb s in the set of types of the abstract noﬁe(n) asso-
ciated witho.

Injective(u, Env, a,0b, Env, 6,(/)\b) =
Wns.x € Ob,T € Fld(Ty(ns)). Inj(8(ns.1)) =
if T'= [] theninjy (= (ns), u ()

AV e (1) inj(uY(ng), (), 1)
The injectivity relation guarantees that every pointer rserked
as injective corresponds to injective (and array injectiveeeded)
pointers between the concrete source and target regiohe beap.
We note that this definition is restricted to the subset olathat
are type consistent with the declared types and field sets.

Shape(Env7G,Ob7E17/767(/)B) =
vn € Ob.Sh(n) = dag = dag(u~(n))
ASh(n) = tree = tree(u~(n))
ASh(n) = none = none(u~(n))

The shape relation guarantees that for every ngdée concrete
subgraphu—1(n) abstracted by node satisfies the corresponding
concrete shape predicates.

25 ExampleHeap

Fig. 1(a) shows a snapshot of the concrete heap from a simple p
gram that manipulates expression trees. An expressiondressts
of binary nodes forAdd, Sub, andMul t expressions, and leaf
nodes forConst ant s andVar i abl es. The local variablexp
(rectangular box) points to an expression tree consistirgiote-
rior binary expression objects,\2ar , and 2Const objects. The
local variableenv points to an array representing an environment
of Var objects that are shared with the expression tree.

Fig. 1(b) shows the corresponding normal form (see Sec. 3)

We are now ready to formally relate the abstract heap graph to abstract heap for this concrete heap. To ease discussioahsk |

its concrete counterparts by specifying which heaps arehén t

each node in a graph with a unique node id ($id). The absbracti
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stored in the array, i.e. every index in the array containsiater to
exp a unique object. Additionally, the abstract heap, via a doatibn
of reachability, shape, and sharing information, showsetli® no
aliasing on any distinct pair of paths starting frarp and end-
ing with a dereference of thefield. This can be deduced from the
fact that node 1 is a tree layout, so there is no aliasingratiron
either thel orr fields, and that both outgoing edgesdges are
injective(narrow and unshaded). Since we know all paths through
the tree do not alias (lead to different objects) this ingpliee fi-
nal dereferences of the fields, which can only contain injective
pointers toConst or Var objects, do not alias either.

This example illustrates the expressiveness of the albstoac
main constructed in this section which is capable of conmguti
per region and per field information on reachability (via tiiaph
structure), shape (e.g., the tree region), and sharing (@glias-
ing in theenv array). Thus it is capable of expressing properties
that are needed for the introduction of thread-level peliath [10],
object co-location [13], pool allocation [26], incremein&C [19],
static deallocation [14], etc. As many of these approachae we-
signed to work with the limited information provided by a tei
context insensitive) points-to analysis, the precise tgeiio infor-
mation in the model (due to the full call graph cloning) consa
with the shape and injectivity information provides impeavents
to both the baseline effectiveness of the techniques andropp-
ties for using the additional information for further refinents.

Figure 1(a). A Concrete Heap.

P o)

exp env

4

3. Normal Form

Given the definitions for the abstract heap itis clear thatibmain
is infinite. This allows substantial flexibility when defigjrthe
transfer functions and more precise results when analysthaight

tree{l, r} - X - . )
et <, $1{Add, Mult, Sub} $4 (Varll} line blocks of code. However, it is problematic when defining
r merge/equality operations and can result in the final aisafys/ing
I I an unacceptably large computational cost. To prevent teidefine
an efficiently computable normal forr®((N + E) «log(N)) where
) N is the number of nodes in the abstract heap graphEislthe

- -, - ) number of edges. The normal form ensures that the set of horma
$3 {Const} $2 {var}

form abstract heaps for any given progranfiiste and that the
abstract heaps in this set can easily be merged and compared.
The normal leverages the idea that locally (within a basiclbl
or method call) invariants can be broken and subtle detes|sréti-
cal to program behavior but before/after these local coraptanin-

Figure 1(b). Corresponding Normal Form Abstract Heap.

summarizes the concrete objects into three regions. Thenzgre

variants should be restored. The basis for the normal fonoh tlae

represented by the nodes in the abstract heap graph: 1) a nodgelection of what are important properties to preserve esoitom

representing all interior recursive objects in the expogsdree
(Add, Mul t, Sub), 2) a node representing the tw@r objects,
and 3) a node representing the tWonst objects. The edges

studies of the runtime heap structures produced in objéetted
programs [31, 36]. Thus we know that, in general, these diefirs
are well suited to capturing the fundamental structurapprties

represent possible sets of non-null cross region pointssciated
with the given abstract labels. Details about the order aaddhing
structure of expression nodes are absent but other moreajene
properties are still present. For example, the fact thatetle no
sharing or cycles among the interior expression nodes iarapp

in the abstract graph by looking at the self-edge reprasgtie
pointers between objects in the interior of the expressiea. {The
labelt r ee{l, r } on the self-edge expresses that pointers stored
inthel andr fields of the objects in represented by node 1 form a
tree structure (i.e., no sharing and no cycles).

The abstract graph maintains another useful property aéxhe
pression tree, namely that @onst object is referenced from mul-
tiple expression objects. On the other hand, several esipresb-
jects might point to the samar object. The abstract graph shows
this possible non-injectivity using wide orange coloredyes (if
color is available), whereas normal edges indicate injeqibint- heuristics derived from empirical studies of the heap $tines in
ers. Similarly the edge from node 4 (teav array) to the set of real programs (and thus one could imagine a number of vajiant
Var objects represented by node 2 is injective, not shaded andthere are three key properties that it possesses: (1) thétings
wide. This implies that there is no aliasing between the e abstract heap graph has a bounded depth, (2) each node has a

of the heap that are of interest while simplifying the stanetof
abstract heaps and discarding superfluous details.

DEeFINITION 1 (Normal Form).We say that the abstract heap is in
normal form iff;

¢ All nodes are reachable from a variable or static field.

o All recursive structures are summarized (Def. 2).

o All equivalent successors are summarized (Def. 4).

¢ All variable/global equivalent targets are summarized f[38.

That s there are no unreachable nodes and structurally tstract
heap represents the congruence closure of the recursivetste,
equivalent successor, and equivalent target relations.

While the normal form definition is fundamentally driven by
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bounded out degree, and (3) for each node the possible sarfjet
the abstract addresses associated with it are unique srtakiel
and the types in the target nodes. The first two propertiagemisat
the number of abstract heaps in the normal form set are finlitie
the third allows us to define efficient merge and compare tipesa
(Sec. 4).

3.1 Equivalence Partitions

As each of the propertiesgcursive structuresambiguous succes-
sors andambiguous targejsare defined in terms of, congruence
between abstract nodes the transformation of an abstraptihto

the corresponding normal form is fundamentally the compra

of a congruence closure over the nodes in the abstract héap fo
lowed by merging the resulting equivalence sets. Thus, vile bu
a map from the abstract nodes to equivalerE:\e sets (pasiitis?

ing a Tarjan union-find structure. Formally: Ob — {74, ..., T}
wherer; € 29 and{m, ..., 7} are apartition of Ob. The union-

find structure can also be used to maintain Athe set of all thesty
associated with the nodes in a partitigm,(, Ty(n)). Initially the

partition is set as a singleton (i.&n € Ob.M(n) = {n}).

Recursive Structures. The first step in computing the normal
form is to identify any nodes that may be parts of unboundeurde
structures. This is accomplished by examining the typessydgor
the program that is under analysis and identifying all theegythat
are part of the same recursive type definitions. This is a confyn
used technique [2, 7, 30] and ensures that any heap grapbqawd
has a finite depth. We say typesandt, arerecursive(ty ~ 17) if
they are part of the same recursive type definition.

DEFINITION 2 (Recursive Structure)siven two partitionsg and
» we define theecursive structureongruence relation as:

m Ern D =
311 € Unyerg TY(N1), 72 € Unper TY(M2) . T1 ~ T2
Adne m, [ e Fld(Ty(n)). Trgts(G(n.1)) N 75 # 0

Equivalent Successorsand Targets. The other part of the normal
form computation is to identify any partitions that haauivalent
successorand variables that hawxjuivalent targets

The successor (predecessor) relation for the node pasitio
is the natural definition based on the underlying structdrthe
abstract heap graph:

7 a successor e andl < 3np € 1. Trgts(G(np.)) N7m # 0

DerINITION 5 (Equivalent on Targets)Given a root r (a variable
or a static field) two target partitions, 75 we define thequivalent
targetgelation as:

m =!" 1 < Compatiblé T, ) A
(r is a static fieldv r, /& only have local var predecessgrs

Using therecursive structureelation and theequivalent suc-
cessor (targetjelations we can efficiently compute the congruence
closure over an abstract heap producing the correspondimgah
form abstract heap (Def. 2). This computation can be done via
a standard worklist algorithm [39] for grouping equivalemtdes
where merging two partitions may create a new opportunity fo
merging. Whenever partitions are merged we add any othé&r par
tions that may be effected by the merge back onto the worklis¢
to the properties of congruence closure algorithms and et
find data structure, we can know that this implementation imn
done such that each partition can enter the work list at fogéN)
times, whereN is the number of abstract nodes in the initial abstract
heap, and iE is the number of abstract addresses in the heap then
the complexity of computing the partitions@ (N + E) xlog(N)).

3.2 Computing Summary Nodes

After partitioning the nodes in the graph with the congrieenio-
sure computation we need to merge all the nodes in eachipartit
into a summary node. The resulting summary node shouldysafel
summarize the properties of the all the nodes in the pantitam-
ilarly, we may need to update target and injectivity infotioa for

the summary nodes in the abstract store. Given a node partit)
that we want to replace with a new summary naoalg, (we can use
the following functions to compute the abstract properfii@seach
summary node and the new abstract stiye

virelmg()
Ns = (Utype( ), ushape( 1), Imap)
Imap= {[I — al| e FAId(utype(n)),éfa fresh addregs
Gs = MergeStoréds, |, 7m) for eachl € Fld (Liype(71))

Once this merge is complete we can update the information on
the abstract addresses associated with each variabavinby

Next we define the basic equivalence relation on the nodés tha replacing any nodes in the target sets with the approprieteyn

forms the basis of the congruence relation on the graph.

DEFINITION 3 (Partition Compatibility).Given partitionsrg and
» we define the relation Compatibig(, @) as:

Compatiblérs, ) < | J Ty(M)n U Ty(n) £ 0

nem nem

Given the successor and compatibility relations we can defin
the congruence relations for nodes that are either botlesaocs of
the same partition on that are both targets of the same laciable
(or static field).

DEFINITION 4 (Equivalent Successordjor a partition 1 and

successorsn, Tk on labelsly, Io respectively we define tlegjuiva-
lent successonglation as:

m =0 75 sh= IAg/\CompatibIegnL ™)

created summary nodes.

Type. The abstract type information is simply the union of corre-
sponding type sets from the nodes in the partition.

Utype(T) = | Ty(n)

nemn

Shape. TheShapeanformation is more difficult to merge as it de-
pends both on the shapes of the individual nodes that are bein
grouped and also on the connectivity properties betweean.tki¢e
first perform a traversal of the subgraph of the partition #rel
(non-self) abstract targets between them. Then based odighe
covery of back, cross, or tree references (in a graph thesense)
and if any of these abstract storage location rzwe injectivewe

compute the shape asnapd 1) = struct(r) uunenéﬁ(n) where
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struct(r) is defined:
struct(m) =
anyif Inemle ﬂj(ﬂ(n)) .nl creates a Back Edge irr\ {n}
dagif Inemie ﬂj(ﬂ(n)) .nl creates a Cross Edge i
v =Inj(8(nl))
treeif Vne 1,1 € ﬂj(ﬂ(n)) .nl creates a Tree Edge imr
none if No Internal Edges Exist

Injectivity and Abstract Targets. Given a mapping from the par-
titions to the new summary node®,: Img(M) — {ns,...,Ng },

then for each label, and abstract addres?r, that may appear in a
summary nodens, we set the values in the abstract store as:

MergeStoréds, |, m) = Os+ [ (inj, trgts)]

where
trgts = {D(N(1)) | € Uner Trets(G(n1))}
inj = Vn e m.inj(a(n0)) AV € 1\ {n}.injp(n,n)
inj(n1,nz) = Trgts(6(ny.1) N Trgts(8(n2.1)) = 0

Injectivity is the logical conjunction of the injectivityfall the
source label locations, and that the respective targessasehe

nodes that are merged do not overlap. In the case where the tar

get sets do overlap, i.e., two distinct nodes have abstedye!
s/addresses that contain the same node, the resultingsaddey
not only be associated with injective pointers. Thus, thecitivity

value is conservatively set false (i.e., not injectivg. The target
set is simply the remapping of the old nodes in the targettedtse
appropriate newly created summary nodes.

exp

i

50 {Add}

L

$1 {Mult} $7 {Const}

env

$8 {Var[]}" $5 {Sub} $2 {Add} k

0 [ | Jr
/ -

$6 {Var} © $3 {var} $4 {Const}
Figure 2. Isomorphic Abstract Heap.

Thus the final partitioning after the congruence closure is:

18 : {no, Nz, N2, Ns}
o {n3,Ne}
18 {ng,n7}
m: {ng}
Given this set of partitions the computation of the variotaspp
erties is straight forward. Th8hapefor the partitions containing

pt

From the definitions of the summary node computations and the the Var , Const andVar [] nodes is trivial to compute as there

update of the abstract store locations the preservationeo$afety
of the abstraction is straight forward to check via case eration.
In particular each of the operations consists of a simple goi a
set of values, as given by the partition, and some simpldiaddi
computation on the local structure of each partition. It isoa
clear that each partition is processed once in the normah for
computation (and similarly the addresses in the abstract stre
each only visited a constant number of times). Thus, the abst
computing the summaries can be done in linear time. Finadly,
the congruence closure over given a graph is unique thetirggul
normal form graph, as defined here, is also unique.

3.3 Normal Form on Example Heap

We can see how this normal form works by using it to transform
the concrete heap in Fig. 1(a) into its normal form abstrepte-
sentation. This can be done by first creating an abstract drag
that is isomorphic to the concrete heap (i.e., create a nudeatch
concrete object and set the appropriate targets in theagbstore
for each concrete pointer). The resulting isomorphic alostneap

is shown in Fig. 2.

The normal form partition for the abstract heap in Fig. 2 iden
tifies the nodes with thédd, Sub, andMul t types as being in
the same partition (they are part of the sameursive structurg
The presence of this partition will then cause all of the rsodéh
Const type (nodes 4, 7) to be identified equivalent successors
of the tree partition. Finally, either due to the tree pamtitor the
fact that all the nodes witlar type (nodes 3, 6) have references
to them from node 8 (th®¥ar [ ]) will cause all the partitions as-
sociated withvar types being identified asquivalent successors

are no internal references between the nodes in thesegwstiThe
shapecomputation for the partitiorvg) containing the nodes in the
expression structure requires a traversal of the four naates as
there are no internal cross or back edges the layout forghise.

In computing the new summary abstract store propertieshéor t
abstract address associated with the expression treéqafiin )
and the labell there are two nodesf andns) that refer to the same
node () in partitions. Thus this abstract storage location is set to
not injective false. However, for the labal from partitionm the
target sets are disjoint and thus the injectivity in the i@eststore is
set totrue (injective. Similarly, the store location for the labg]
out of the partitiorry representing the targets of the pointers stored
in theenv array is set amjective This results in the normal form
abstract heap shown in Fig. 1(b).

4. Domain Operations

Given the normal form in Sec. 3 we can define an efficiently com-
putable abstract equality operatiof)(and upper approximation
(D) operator on theormal formabstract heaps. Since the set of
normal form abstract heaps is finite (for a given program) we d
not need a widening operator. Both operations can be pegfibrm
efficiently, O(N + E) for equality andO((N + E) xlog(N)) for the
upper approximation.

Abstract Equality. To enable efficient comparison we only define
equality on the normal forms of the abstract heap states.abhe
stract equality relation we construct has the property:

(Envy,81,0b1)=(Envy, G2, 0by) =
Y((Envy,81,0b1)) = y((Envz, 82, 0b))
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Since the set of normal form abstract graphs we use in theifikpo
computation is finite this is sufficient to guarantee terrtioraand
safety of the analysis. - - - -

Given two abstract heag&nvi, 01,0b;) and(Envy, 02, 0by)
we first determine if they are structurally isomorphic (iiethere is
an isomorphism on the graph structures that respects \&aaiol
field labels), then we check that all abstract node and stane-p
erties in(Envy, 02, 0by) have the same values {Envy,01,0b;)
under the isomorphism.

To efficiently compute the needed isomorphism we use a prop-
erty of the abstract graphs established by the normal fofmitien
(Def. 1). By this definition we know that each node is reachabl
from a root location (a local variable or a static field), thfian
isomorphism exists it can be found by matching from the roots
Further, we know that for each abstract address in the dttrere
is more than one element in the target set then each of these ta
gets must have non-overlapping setsygfes(from the definition
of Compatible Def. 3). Thus, to compute an isomorphism between
two graphs we can simply start pairing the local and statitsro
and then process the abstract structure in a breadth firsheanan
pairing up nodes based on abstract labels and type sets t#rthe
gets, leading to new pairings. This either results in an mmsm
between the two structures, or it reaches a point where no match
is possible and fails without backtracking.

If we find an isomorphismp then we check the equivalence of
the abstract nodes and store as follows:

(Envy,81,0b1) =¢ (Envz, 6,0bp) &
¥ne Oby. Ty(n) = Ty(¢(n)) ASh(n) = Sh(e(n))
AT € FId(Ty(n)) . Inj(84(n) = Inj(G2(@(n)))

Upper Approximation. The upper approximation operation takes
two abstract heaps and produces a new abstract heap thahisran
approximation of all the concrete heap states that aresepted by
the two input abstract heaps. In the standard abstracpietation
formulation this is typically the least element that is atspover
approximation. However, to simplify the computation we dut n
enforce this property (formally we define apper approximation
instead of goin). Our approach is to leverage the existing defini-
tions from the normal form cgnlputaticmin the fo/nging siep
Given two abstract heap&nvs, 61,0b1) and(Envy, 02, 0by)
we can define the abstract heap that is the result of theirenerg
as follows. First we produce the union of the two abstracphkea

standard set of allocation, load, and store operations.adery in
practice the approach can be extended in a natural way tdéhand
a much richer language. Our implementation for .Net bytecod
(Sec. 6) handles features such as struct types, refereodbe t
stack, limited forms of multi-threading, pointers to theeinor of
objects, and function pointers.

Table 1 shows the transition semantics for both the concrete
heap model (left column) and abstract heap model (rightranju
for the statements that are the most interesting from thelptznt
of memory analysis. In order to focus on the central ideasgwe i
nore issues with null-pointer dereferences, array ouieafnds er-
rors, etc. In most cases the abstract transfer functiontharaat-
ural translations of the concrete semantic operations aagdery
similar to the set of transfer functions seen in a standanat@to
analysis [38, 44, 48]. However, there are a number of impbdd-
ferences from a standard formulation of points-to analysissfer
functions, of particular interest are thél ocat i on,st or e, and
i nvocat i on operations.

Allocate. The definition of the allocation operation plays a key
role in the functioning of the analysis. As opposed to thealisu
points-to definition which will reuse nodes in the abstraeah
based on some context token, ranging from simple allocayipa

or line number through sophisticated object-sensitivestron-
tions, our definition of the allocation operation alwaysates a
fresh node. In this sense the definition closely resemblesdn-
structions used in shape style analyses.

The creation of a fresh node for each visit to an allocatioa si
is critical to allowing the analysis to later model storesolof
this object and the impact on injectivity and shape. Any dnit
naming scheme creates situations where there will be smirio
reuse of a node, which will cause the loss of injectivity and/
shape information (e.g., in the store operation or the nbfamm
summary computation). Of course the creation of a new node at
each visit to an allocation site creates a potential prohiétim the
termination of the analysis as the abstract heap state may gr
without bound. However, by applying the normal form openati
from Sec. 3 at each control flow join point and at each callwie
can be sure of the termination of the analysis as the set phgra
that are in normal form is finite.

Load. The load operation is mostly a simple translation of the
concrete semantics where the target set that is storednateeti-
able is the union of the target sets of the appropriate fields a
objects. However, since a variable location always costaisin-

by taking the union of the abstract node sets and the abstractgle pointer we can strongly update the target set and alvetybes

stores in the usual way. From this union store we can compaete t
corresponding normal form as described in Sec. 3.

(Envy, 81, 0by)0(Envy, G, Oby) =
NormalizQE/rWrm Grm, Oby & 652) where
Envm = {lv—a&l|ve Dom(ﬁn\vl U ﬁn\vg)ﬁv afresh addregs
Om = 016 G {[& > (true trgts,)] | [V &] € Envi}
trgts, = Trgts(G1(Enva(v))) U Trgts(2(Enva(v))

5. Abstract Transfer Functions

Given the expressivéshape Analysis Styldomain defined in
Sec. 2.3 the next step is to define a set of transfer functiwas t
simulate the effects of various program statements on thaat
heaps. Our goal is to construct these definitionskoiats-To Anal-
ysis Styleusing weak updates and simple set operations while still
precisely modeling the effects of each statement on the sizap.

In order to focus on the fundamental aspects of the analysis w
present the results on a simple object-oriented languate thé

associated pointers as beiimgective

Store. The store operation plays a central role in the analysis as
it is where special care needs to be taken to update theiuifgct
and shape information. It first gathers all the possible aibjéhat
may be stored intovfrgts) and all the possible objects that we may
be storing references to{,@ts). In the update step we compute new
values for the possible shape, the new target node set, amti
injectivity value. The shape information is handled by dtieg if

the node we are storing into is in the set of possible targdeso

If it is then we may be modifying the shape of the data strectur
represented by the node we are updating. While, it is passibl
perform additional checks to be more precise in how the store
affects the shape information we have opted to simply sedtibpe

to the top valuedny) in the case that a self store occurs. If there is
no self store then the shape is unchanged.

The update to the abstract store involves taking the union of
the old target set and the new target set (we weakly update the
target set) and computing a new injectivity value. Theretam@
cases we need to check to determine the new injectivity value
The first is if the old injectivity value was false, in whichseawe
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v=all oc type: (Env,g,0b)~ (Env,c’,0b’)where
o= (type,{l =& |l eFld(t ype),a fresh address

0’ =0+ [Env(v) — 0]
+{[o] — null] | € Fid(t ype)}
Ob’ = Ob {o}

v=V:

! _

Env,d,0b) ~ (Env,d’,0b) where

(
0’ = 0+ [Env(v) — a(Env(V))]

v=V.: (Env,0,0b)~ (Env,0’,0b) where
0= o(Env(V))

0’ = o+ [Env(v) = a(o.l)]

vl =V: (Env,0,0b)~ (Env,0’,0b) where
0= 0(Env(v))
o' =o+[ol s g(Env(V))]

v=m(V’): (Env,0,0b)~ (Env,c’,0b’) where

Envm = {[param — &] | param € m, g a fresh addregs
Om = 0 + {Envp(param) +— o(Env(V)) | param € m}

(Envret, Gret, Obret) = Appl y (M, Enviy, Om, Obm)
0’ = Gret+ [Env(V) = Oret(Enviet(Vret))]
Ob/ = Obret

return v: (Env,0,0b)~ (Env',0’,0b) where
Env’ = Env + [Vret — @ret], &et @ fresh address
0’ = 0+ [Env(Vret) — 0 (Env(V))]

v=alloc type: (Env,&,0b)~ (@76’7@/) where
n=(t ype,none,{l — a | le IEB({t ype}).a-fresh address
G =G+ [Env(v) — (true {n})]
+{[nT— (true,0)] |T e Fld({t ype})}
Ob = Obw {n}

v=V: (Env,&,0b)~ (Env,d’,0b) where

&' =G+ [Env(v) — G(Env(V))]

v=V.I. (Env,G,0b)~ (Env,d’,Ob) where
Virgts = Trets(G(Env(V)))

&' =G+ [Env(v)— (true, |J Trats(@(nl)))]
nev{rgls

vi=V: (Env,5,0b)~ (Env,d’,0b) where

Virgts = Trgts(G(Env(V)))
Virgts = Trgts(G(Env(V)))

VN € Virgts - if N € Vigggs thenSh(n) « any
&' =G+ [nTw> (inj, Trgts(8(n1)) UVirges)

whereinj = Inj(G(n.1)) A Trgts(G(n.1)) N Vjrgs = 0

v=m(V'): (Env,8,0b)~ (Env,d’,0b ) where
Envin= {[param — &] | param € m,§ a fresh addregs
G =G+ {Envm(param) — G(Env(V))) | param € m}
(E/n\Vrety Oret, E)TIJret) = Am (m, E/n\Vm7 Om, Cﬁ’m)
0’ = Oret+ [EK/(V) — 6ret(mret(vret))]

Ob' = Obret

return v. (Env,5,0b)~ (E/rF/?cAr’?(%) where
E/n\v/ —Env+ [Vret — &ret], &et @ fresh address

=/

6’ =G+ [Env(Vrer) — G (Env(V))]

Table 1: Concrete Semantics (left) and Abstract Semarriigist)
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conservatively leave it aglse The second is if the new target set
and the old target set overlap, in which case we cannot gtegan
that the address is only associated with injective poin#gsin in
this case we conservatively set the result as not injedfiveither

of these cases occur then we mark the abstract address amoant
injective pointers (i.e., the injective valuetisie).

Method Call.  For simplicity we assume that each method call can
be statically resolved to a single target but in practiceahalysis
handles dynamic dispatch in the usual way of resolving the po
sible types of the receiver object, performing the analgsisach
possible target, and then combining the results. Otherfgisthe
method call operation we perform the usual steps of cortitigic
a fresh environment for the callee method body, calling pdrel
function QAFpI\y) to perform the analysis of the callee, and inte-
grating the results back into the local method scope. Thetstre
and key aspects of the interprocedural analysis its ojperatie out-
lined here and we refer to [34] for more detail. The interparal
analysis is fully context sensitive on calls to acyclic puns of the
call graph, performing full call graph cloning on each methall

for each new call state. On calls involving cyclic composaritthe
call graph the analysis performs partial call graph cloriaged on
the Compatibility, Def. 3, of the arguments of the call. In practice
this is done via a memotable of analysis input states (atistemps)
and results which are re-analyzed as needed with new inpigtsst
asin[32, 48].

DEFINITION 6 (Memo Table Representatiorfjor each method m
in the program we maintain a list of memoized analysis states
[A1,...A] where each\; = ((Env,G,0b)I", (Env, G, Ob)P4).

When a call to a methoch is encountered with the input de-

scribed by the abstract hea(frix,&,a)), we look at the memo
table entriesjA1, ... A], that we have previously encountered when

analyzing the method body. If we find an en@n\v, 6,65)}” that

matches witt{ﬁn\w o, (ﬁmm, which is the abstract heap at the call
site projected into the scope of, we return the memoized result

state(Eh\v, g, C/)B)?”t [32, 41, 48]. If not then we create a new entry

in the table for(Env, d,0b)|m and begin analysis om with the
new input. We refer to [32, 34] for a discussion of the matghin
and project/extend techniques used.

One interesting issue is what to do in the case of a recuraiVe ¢
when we may have a matching input but the memoized outpu¢valu
has never been computed. A common approach is to simplyretur
the bottom domain valuel() for this case. The bottom value —
for us the empty heap — is always a safe under approximation of
the results but using it generally leads to a large numbexpbiint
computation iterations. However, we know that the inputraios
heap is also an under approximation of whatever the regultin
output abstract heap will be. This is a result of the fact tibof
the transfer functions are weakly updating wrt. heap locatiand
we do not do case splitting, thus any domain property thadshol
on the caller reachable heap at the entry of the method wikyd
hold on the caller reachable portion of the heap at the exihef
method. So for the initial match we can simply return a copthef
input abstract heap. This often substantially reducingnilaber
of iterations required to reach a fixpoint.

Computation. All of the transfer functions we have defined can
be computed in time linear in the size of the heap model thet th
operate on. But the local operations (allocate, assigml, Istre)
are even more efficient as they are implemented in terms gflsim
set/graph operations which only examine the nodes (andapsrh
immediate neighbors) that are the targets of the variabktsthey
operate on. Thus, these local operations are linear in thibauof
targets and neighbor nodes (abstract addresses) whinlgenéral,

a small fraction of the total number of nodes (abstract sih®) in
the abstract heap.

6. Implementation and Evaluation

We have implemented the analysis described in this papea for
large set of the .Net bytecode language including struagypef-
erences to the stack, limited forms of multi-threading npais to
the interior of objects, and function pointers. In practiee first
translate from .Net bytecode to an intermediate repreentsim-

ilar to the IR used in the LLVM compiler [25]. The translatilom
.Net to our IR is a mostly a 1-1 mapping but the use of the inter-
nal IR allows us remove most .Net specific idioms from the core
analysis and allows some pre-processing to simplify latatysis
steps. Our benchmarks are C# implementations of programs fr
Jolden [22], thelb andraytracer programs from SPEC JVM98 [45],
theluindex andlusearch programs from the DaCapo suite [22], and
the heap abstraction code from [34]nabs. The domain, opera-
tions, and data flow analysis algorithms are all implementeti#
and are publicly availablé.

One important consideration from the viewpoint of an analy-
sis tool that is intended to operate on userspace prograengher
types provided by the base class or system libraries, bgBase
Class Library (BCL) for .Net or th¢ ava. * in Java. For user
space applications the internal structure of $ay, eSt r eamor
StringBui | der is not interesting, so we treat these as single
opaque objects. However, some classes in these libranesféa-
tures that are relevant to userspace code even though thiésdet
of the internal representation are not of particular irgerExam-
ples of these types would ke st <T> or Di cti onar y<K, V>,
which we treat as ideal algebraic data structures, trackiey
contained elements but treating the internal implemesatias
opaque. Our .Net translation system identifies these buypes
and methods invoked on them, replacing the actual implesnent
tions with either simplified versions or with special senaip-
erations as in [8, 37]. This special handling of builtin cdens
is very useful in improving the performance and precisiorihef
analysis, but comes at the cost of additional work to implgme
support for large libraries.

Our test machine is an Intel i7 class processor.@é BHz with
2 GB of RAM available. We use the standard 32 bit .Net JIT and
runtime framework provided by Windows 7. As the analysisemev
consumes more than 150 MB of memory or takes more than 70
seconds we utilize the default parameters for the JIT antihnen

6.1 AnalysisPerformance

Table 2 examines the cost of running the analysis in thisp&oe
each benchmark we list the number of bytecode instructitres,
number of classes, and the number of methods that each progra
contains after being translated into the internal IR. Thresabers
exclude much of the code that would normally be part of the run
time system libraries. This is due to the fact that duringtthes-
lation from .Net bytecode to the internal IR code which iserev
referenced is excluded. Additionally for the builtin tyfresethods
that are used the implementations are often replaced bylifadp
versions or specialized domain operations.

The last two columns of Fig. 2 show the aggregate performance
of the analysis on the benchmark set. The timing measurament
exclude the time required to startup and read/transfornsdhbece
program into the internal IR. These performance resultsighat
the analysis described in this work is quite efficient ancatdg of
analyzing complex programs. Despite the fact that the asiwlg
highly-context sensitive and has an expressive shape dyiain
the overall time and memory needed to analyze the programs is

1Source code available 4ttt p: / / j ackal ope. codepl ex. conl
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Benchmark Statistics Analysis Cost
Name Insts Types | Methods || Time Mem
power 3,298 | 43 320 0.09s| 11MB
health 2,062 | 44 329 0.14s| 12MB
bh 3,723 | 45 351 0.42s| 14MB
db 2,873 | 42 315 0.21s| 12MB
raytracer | 9,808 | 65 476 6.72s| 32MB
luindex 26,852 | 246 1747 12.1s| 53MB
lusearch | 33,632 | 272 1919 64.3s| 130MB
runabs 27,875 | 253 1894 10.4s| 60MB

Table 2: Benchmark statistics and aggregate performandkeof
analysis on them.

Benchmark]|| Max Iters | Avg. Entries| Max Nodes
power 3 1.02 29
health 4 1.09 23
bh 5 1.11 32
db 1 1.80 14
raytracer 4 2.24 61
luindex 6 2.46 102
lusearch 16 2.88 170
runabs 4 211 70

Table 3:Max Itersis the maximum number iterations taken to reach
a fixpoint for any method/input abstract he#wg. Entriesis the
average number of memotable entries associated with eatiodye
andMax Nodesds the max number of nodes in any abstract heap
during the analysis.

quite small (even when compared to state of the art objettithes
points-to analyses). However, the analysis runtime and aoly
has a minimal correlation with the size of the program. Deespi
very similar numbers of instructions and methddstakes over
four times as long agower, and similarly forluindex andlusearch.

In the case ofuindex (a fairly direct translation of the Java ver-
sion from the DaCapo suite) the analysis requires only 1@rstxc
while recently reported results on context-sensitive {3dio analy-
ses [44] reports analysis times ranging between 67 and Tofde
depending on the amount and type of object-sensitivity §aad
37 seconds with an insensitive analysis). But more imptgtan
as memory use frequently is a major scalability wall, areltie
memory requirements. Despite performing the equivalerfulhf
call graph cloning for large parts of the analysis and beengjglly
context sensitive on the remainder, the analysis presentéuds

the table shows the maximum number of analysis iteratiors of
method body (with a given input abstract heap) requireddche
fixpoint state. As can be seen even this maximum value isvehat
small (16 in the worst case). Additionally when looking aé th
average number of contexts created per method in the progeam
see that, even with the aggressive creation of memo tabfegnt
the average is less than 3. Finally, the size of the abstesgisis
large enough to precisely resolve useful structure but adarge
that it is computationally problematic.

The runtimes from Tab. 2 correlate well with tidaxiters
andAvgEntriescolumns. Thus we see the performance impacts of
reducing the number of memo table entries and number of fikpoi
iterations. This highlights the value of the normal form whis
able to quickly push the abstract heaps toward invariateéstehus
producing a small set of input abstract states for each rdetinich
quickly stabilizes during the fixpoint computation. Thioals that
the normal form is, in combination with the efficient opevas
for the local transfer functions, critical to the low memarse and
rapid completion of the analysis.

6.2 Quantitative Precision

The analysis in this paper tracks properties that have shawn
past work, to be both relevant and useful [9, 10, 12-14, 2§, 44
However, we want to examine the quantitative precision ef th
analysis in a way that is free from biases introduced by thezen
of a particular client application. Thus, we examine thecjsien
of the static analysis relative to a hypothetical perfecilysis
which uses the same abstract domain. This notion of precisio
a better basis for examining the impact of the possible igipi@n
of the abstract transfer functions and normal form on thdysiga
results than the use of a specific client application (whiely mde
precision losses th&iappennot to matter for the particular client).
We define precision relative to a hypothetigarfect analysis
which uses the same abstract domain from Sec. 2 but thatdgabl
perfectly predict the effects of every program operatianc& we
cannot actually build such an analysis we approximate idfigct-
ing and abstracting the results of concrete executions efipition
this collection of results from the concrete execution isiager ap-
proximation of the universal information we want to compuated
in the limit of execution of all possible inputs is identicRbrmally,
given a method and a set of concrete hefips...,h¢} and a set

of abstract heapﬁﬁb e ﬁj} we can compute differences between
Lheh,....ho a(h) andLi{hs,....h;j}. This gives an unbiased mea-

sure of how close our results are to the optimal solution, thet

abstract domain we are working with in a way that is indepande

of peculiarities of a client application or other analysisttnique.
Table 4 shows the results of this comparison on our benctsnark

paper uses less than 150 MB of memory when analyzing any of the For the numbers in this table we compared the results from our

benchmarks. We note that existing shape style approachastdo
currently scale to programs of this size/complexity. WHile work
in[4, 8,9, 49] has been used to analyze large programs, the-C/

perfect analysisvith the results from the static analysis described
in the paper. In this table we further refine the comparison to
be property specific by reporting the average percentags, al/

programs that have been analyzed do not use heap allocated da nodes (or abstract addresses) in all graphs for all methotisei

structures, recursion, and dynamic dispatch as extegsasthe
Java/C# programs here. Additionally, these techniques fallsce
restrictions on the types of heap structures that the pragraay
create, either limitations on sharing [4, 49], or on the preg of
recursive data structures [8, 9].

One major reason for the scalability of the analysis is that t
normal form in Sec. 3 has been constructed to create equosle
classes that closely mirror the heap structures which apipea
object-oriented programs. This ensures that the analysekly
converges to a fixpoint and avoids generating large numblers o
spurious and uninteresting contexts (entries in the merblesa

program, precisely identified: regions, shapes, or injégtvalues.
The region percentage (tieegioncolumn) is number of nodes
that can be exactly matched between the statically comparidd
ideal result structure. Using this matching we then comlige
percentage of thehapeandinjectivity properties that are precisely
identified by the static analysis (thapeandlinjectivity columns).
Overall the results show that the analysis is able to extact
large percentage of the properties that can be expresséaeviz-
lected abstract domain (in general with a rate of 80% to 9086).
general the normal form and points-to style abstract tearfsic-
tions result in only small losses in precision when analyzine

Table 3 shows information on the number of memo table entries behavior of the program and the effects of various operatmm

produced for methods during the analysis. The first column in

10

the state of the heap. In inspecting the places where thgsimal
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Benchmark|| Region| Shape] Injectivity
power 100% | 100% 100%
health 72% | 100% 65%
bh 100% | 90% 87%
db 100% | 100% 81%
raytracer 80% 85% 83%
luindex 95% 95% 82%
lusearch 93% 90% 84%
runabs 97% 98% 87%

Table 4: Average accuracy of analysis results when compiared
perfect analysisReported as a percentage of each property cor-
rectly predicted by the static analysis.

does lose precision we often find small blocks of code opwagati
in a nontrivial way on some set of objects. An example of thés a
the benchmarkgower, which has extensivenostly-functionabe-
havior and our analysis is able to analyze it perfectly. @osely,
the outlying benchmarkealth performs extensive transfer of own-
ership among a number of lists in the program. In this case our
analysis loses a substantial amount of sharing informdfiten-
tifying the true injectivity state precisely for only 65% tife ab-
stract store locations). In all the cases we inspected, asiodalth,

it would be possible to apply more powerful analysis techag
such as [9, 49] to these slices of code/heap structuresrinelie
the precision losses. This refinement process could be dtrer e
as a post processing step or online during the analysis.

7. Related Work

There is a large body of existing work in the areas of both {setia
and shape analysis and this work has led to a number of pahctic
and widely used analysis techniques. Rather than attenguivier
the entirety of previous work (which even for the area of p®in
to analysis requires a full paper to do justice to [18]) weufc
specifically on where this analysis sits in the spectrum ahonry
analysis techniques and how it ties in with other work in tfeaa

From the viewpoint of the analysis in this paper work on
points-to analysis can be seen as falling into two categofiew-
insensitive, and flow-sensitive. Flow-insensitive anatysvolve
an inherently different set of tradeoffs than the analysithis pa-
per. These analyses fundamentally prioritize speed aridbslity
over precision and thus are much faster but produce muclstess
phisticated information [16, 46]. In particular these ajgmhes can
now scale to millions of lines of code with analysis times ba t
order of a few seconds or less [16]. The second class of ptuints
style analyses are more precise, tracking information irowa-fl
sensitive manner [17, 28] and often employing techniquegatk
information in a way that is sensitive to different call siteither
via a context-sensitive or object-sensitive approach §83,44].
While these analyses are more precise than flow insensibiviss
to analyses they cannot express general shape or sharjeres.
However, due to the way that context is tracked they can m®du
more precise points-to information in some cases than talysia
in this paper and itis an open question if object sensitigkr@ues
can be used to improve on the results in this paper. Somewhat s
prisingly these context (or object) sensitive analysesheaslower
(and use more memory) than the analysis in this paper.

Work on memory analysis by Latter et. al. [24, 27] is based on a
modular approach which first builds local shape graphs fohea
method via a local flow-insensitive points to analysis, ahnent

merges (and clones as needed) these local graphs via a teontex

sensitive interprocedural analysis to produce the finallteBue
to the modular and flow insensitive nature of the analysis viery
efficient, capable of analyzing large C++ programs in sesomte
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use of a flow-insensitive and a local points-to analysistbntie
range of properties that can be extracted and the precisitimeo
analysis. However, as the focus of this work was scalalfiliistead
of expressivity) it provides an interesting contrast inigesleci-
sions to the hybrid analysis proposed in this paper. Sityildue
work of Hackett and Rugina [15] mixes shape and points-tdyana
sis by first partitioning the heap into regions via a flow-imsigve
points-to analysis followed by performing shape analysithiw
these partitions. The work of Ghiya and Hendren [10] is of par
ticular relevance to the work in this paper as it uses pdimi@nad
basic reachability predicates to compute shape informatia in
Sec. 4.3 notes the challenges of using weak updates wheyzenggpl
shape properties.

There is an extensive body of work on shape analysis [5, 9,
11, 12, 21, 37, 42, 43, 49], and while the work in presented in
this paper eschews the use of materialization and caseirgplit
in the abstract transfer functions, it borrows heavily freristing
work in the design of the abstract domain and in the seleaifon
properties it encodes. In particular the domain in this papleased
on the basicstorage shape graphonstruction [5], which is then
augmented with additional information on data structuapst{10]
and sharing information (injectivity) [37]. However, aspmsed to
using a partitioning scheme based on type or allocatiorasitione
in [5] (or in most work on points-to analysis) the approachhis
paper always creates a fresh node in the graph duringlitt@ation
operation. This node is then grouped into other data strestas
needed using a normal form operation based on connectinidy a
a set of equivalence relations on the properties of the n{Rks
33, 49]. The simplicity of the transfer functions in this kpas
opposed to the more sophisticated shape analysis transfaidns,
results in a much faster and more scalable analysis at thetas
small amount of precision.

8. Conclusion

This paper introduce&tructural Analysisa novel memory anal-
ysis technique based on the combination of a shape anatykis s
abstract heap model, a normal form driven by empirical studf
heap structures in real-world object-oriented programs, a set
of points-to analysis style transfer functions. The resglhybrid
memory analysis is able to precisely identify various dtites in
memory and to track sharing, shape, and reachability oglaton
them. At the same time the simple points-to style transfecfu
tions and congruence closure based normal form allow thly-ana
sis to efficiently process the effects of various prograntestents
and quickly converge to a final fixpoint (despite using extens
call-graph cloning in the interprocedural analysis). Wheve that
the combined scalability and precision, plus the hybridhehand
points-to analysis structure presents both immediateferand
unique opportunities for future research. The developnoéren
expressive and scalable heap analysis is a valuable oatidrib
wrt. the wide range of other research that depends on intisma
about the program heap. However, we also believe furthek wor
in the area of hybrid analysis approaches, such as addimgtebj
sensitivity or integrating aspects from SMT or separatiogid
based approaches, will be fruitful areas of investigatis.such
we believe the analysis presented in this paper repredenistto-
duction of a significant new class of heap analysis and reptesin
important advancement in the state of the art in precise caldlsle
heap analysis techniques.
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