	
[image:]Ivy Frameworks	Coding Standards & Guidelines	08-03-2012

 (
Coding Standards & Guidelines
) (
Mrinmoy Das
Ivy Frameworks
08-03-2012
)

Document Version and History
	Version
	Date
	Status
	Author Name
	Comments/ Description of change

	1.0.0
	08-03-2012
	Initial Draft	Mrinmoy Das 	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Review Details
	Review Date
	Reviewer Name
	Role
	Comments/ Remarks

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Approval Details
	Review Date
	Reviewer Name
	Role
	Comments/ Remarks

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of content

1	Introduction	4
2	Naming Guidelines	5
2.1	Capitalisation Styles	5
2.1.1	Pascal Case:	5
2.1.2	Camel Case:	5
2.1.3	Upper Case:	5
2.1.4	Hungarian notation:	5
2.2	Case Sensitivity	5
2.3	Abbreviations	6
2.4	Class Name Guidelines	6
2.5	Namespace Naming Guidelines	6
2.6	Interface Naming Guidelines	6
2.7	Attribute and Enumeration type Naming Guidelines	7
2.8	Static Field Naming Guidelines	7
2.9	Parameter Naming Guidelines	7
2.10	Method and Property Naming Guidelines	7
2.11	Constant Naming Conventions	7
2.12	Variable Naming Conventions	7
2.13	Variable Declaration	8
2.14	Comments	8
2.15	Object Naming Convention	8
2.15.1	Web Form Controls	8
2.15.2	ADO.NET	9
3	Class Member Usage Guidelines	10
3.1	Property Usage Guidelines	10
3.2	Method Usage Guidelines	10
3.3	Constructor Usage Guidelines	11
3.4	Field Usage Guidelines	11
3.5	Parameter Usage Guidelines	11
3.6	Type Usage Guidelines	11
3.6.1	Base Class Usage Guidelines	11
3.6.2	Inheritance Usage Guidelines	12
3.6.3	Value Usage Guidelines	12
3.6.4	Nested Type Usage Guidelines	13

[bookmark: _Toc326860882]Introduction
This document specifies the recommended conventions that can be followed, and guidelines to arrive at the most optimal solutions. The project team should use its collective judgment to decide on the suitability of adopting each guideline to this project. Any recommendations of the guidelines, if adopted, should be consistently followed by all project team members. If there is any good convention the project team would like to follow but not specified in this document, the project team can do so as long as the convention is consistently followed by all team members.

Note: The document should be updated in case justifiable request for any deviation from the coding standards and best practices.

[bookmark: _Toc326860883]Naming Guidelines
[bookmark: _Toc326860884]Capitalisation Styles
[bookmark: _Toc326860885]Pascal Case:
The first letter in the identifier and the first letter of each subsequent concatenated word are capitalized. E.g. TaskName.
[bookmark: _Toc326860886]Camel Case:
The first letter of an identifier is lowercase and the first letter of each subsequent concatenated word is capitalized. E.g. taskName
[bookmark: _Toc326860887]Upper Case:
All letters in the identifier are capitalized. Use this convention only for identifiers that consist of two or fewer letters. E.g. System.Web.UI
[bookmark: _Toc326860888]Hungarian notation:
Hungarian notation is a naming convention in programming where the naming of a variable indicates its usage. Hungarian notation was designed to be language-independent eg. lSerialNumber — indicates that the variable is of type long

The following table summarizes the capitalization rules and provides examples for the different types of identifiers.
	Identifier
	Case
	Example

	Class
	Pascal
	ScheduleOff

	Enum type
	Pascal
	ErrorLevel

	Enum values
	Pascal
	FatalError

	Event
	Pascal
	ValueChange

	Exception class
	Pascal
	WebException

	Read-only Static field
	Pascal
	RedValue

	Interface
	Pascal
	IDisposable

	Method
	Pascal
	ToString

	Namespace
	Pascal
	FedEx.COMPASS

	Parameter
	Camel
	typeName

	Property
	Pascal
	AssignScheduleOffDate

[bookmark: _Toc326860889]Case Sensitivity
· Do not use names that require case sensitivity.
· Do not create namespaces with names that differ only by case.
· Do not create a function with parameter names that differ only by case.
· Do not create a namespace with type names that differ only by case.
· Do not create a type with property names that differ only by case.
· Do not create a type with method names that differ only by case.

[bookmark: _Toc326860890]Abbreviations
· Do not use abbreviations or contractions as parts of identifier names. For e.g.: use GetManagers and not GetMngrs.
· Do not use acronyms that are not generally used in the computer field.
· Where appropriate, use well-known acronyms to replace lengthy phrase names. For example, use UI for User Interface.
· When using acronyms use the Pascal case or camel case for acronyms more than two characters long. For e.g.: use HTMLControl or HtmlControl
· Avoid using class names that duplicate commonly used .NET Framework namespaces. For example, do not use any of the following names as a class name: System, Collections, Forms, or UI.
[bookmark: _Toc326860891]Class Name Guidelines
· Use a noun or noun phrase to name a class.
· Use Pascal case.
· Use abbreviations sparingly.
· Do not use a type prefix, such as C for class, on a class name. For example, use the class name FileStream rather than CFileStream.
· Do not use the underscore character (_).
· Occasionally, it is necessary to provide a class name that begins with the letter ‘I’, even though the class is not an interface. This is appropriate as long as ‘I’ is the first letter of an entire word that is a part of the class name.
· Where appropriate, use a compound word to name a derived class. The second part of the derived class's name should be the name of the base class.
[bookmark: _Toc326860892]Namespace Naming Guidelines
· The general rule is to use the company name followed by the project name and optionally the feature and design – Wipro.HRWEB.[Module].[Screen]
· A nested namespace should have dependency on the types in the containing namespace. For e.g. – System.Web.UI and System.Web.UI.Design
· Use plural namespace name appropriate. For e.g. – System.Collections
· Do not use the same name for namespace and a class.
[bookmark: _Toc326860893]Interface Naming Guidelines
· Name interfaces with nouns or noun phrases, or adjectives that describe behavior.
· Use Pascal case.
· Use abbreviations sparingly.
· Prefix interface names with the letter I, to indicate that the type is an interface.
· Use similar names when you define a class/interface pair where the class is a standard implementation of the interface. The names should differ only by the letter I prefix on the interface name.
· Do not use the underscore character (_).
[bookmark: _Toc326860894]Attribute and Enumeration type Naming Guidelines
· Add the suffix Attribute to custom attribute classes.
· Use Pascal case for Enum types and value names.
· Use abbreviations sparingly.
· Do not use an Enum suffix on Enum type names.
· Use a singular name for most Enum types, but use a plural name for Enum types that are bit fields.
· Always add the FlagsAttribute to a bit field Enum type.
[bookmark: _Toc326860895]Static Field Naming Guidelines
· Use nouns, noun phrases, or abbreviations of nouns to name static fields.
· Use Pascal case.
· Use a Hungarian notation prefix on static field names.
· It is recommended to use static properties instead of public static fields whenever possible.
[bookmark: _Toc326860896]Parameter Naming Guidelines
· Use descriptive parameter names with camel casing.
· Use names that describe a parameter's meaning rather than names that describe a parameter's type. Use type-based parameter names sparingly and only where it is appropriate.
· Do not prefix parameter names with Hungarian type notation.
[bookmark: _Toc326860897]Method and Property Naming Guidelines
· Use verbs or verb phrases to name methods.
· Use a noun or noun phrase to name properties.
· Use Pascal case.
· Do not use Hungarian notation.
· Consider creating a property with the same name as its underlying type.
[bookmark: _Toc326860898]Constant Naming Conventions
· Use a mixed-case format in which constant names have a "con" prefix.
· E.g.: conYourOwnConstant
[bookmark: _Toc326860899]Variable Naming Conventions
To enhance readability and consistency, use the following prefixes with descriptive names for variables
	Data Type
	Prefix
	Example

	Boolean
	bln
	blnFound

	Byte
	byt
	bytRasterData

	Date (Time)
	dtm
	dtmStart

	Double
	dbl
	dblTolerance

	Error
	err
	errOrderNum

	Integer
	int
	intQuantity

	Long
	lng
	lngDistance

	Object
	obj
	objCurrent

	Single
	sng
	sngAverage

	String
	str
	strFirstName

	
	
	

[bookmark: _Toc326860900]Variable Declaration
· <Data Type><Space><var1>;
· E.g: String strMonth;
[bookmark: _Toc326860901]Comments
Comments are necessary at the start of each section, logical block of program code and critical statements. Comments should briefly expalin the purpose of the statements that follow.
E.g: ‘This is a comment line
[bookmark: _Toc326860902]Object Naming Convention
The following table lists recommended conventions for objects

[bookmark: _Toc326860903]Web Form Controls

	Object Type
	Prefix
	Example

	Button
	btn
	btnSubmit

	Checkbox
	chk
	chkMon

	CheckedListBox
	clb
	clbTemplates

	Combobox
	cbo
	cboLocation

	RadioButton
	rad
	radGender

	CrystalReportViewer
	crv
	crvMaxSettings

	MonthCalendar
	cal
	calEmpScheduleOff

	Panel
	pnl
	pnlDailyMaxSettings

	GridView
	gdv
	gdvEmployees

	Label
	lbl
	lblState

	LinkLabel
	lnk
	lnkEmpSchDetails

	ListView (3.5)
	lvw
	lvwData

	LinqDataSourceControl (3.5)
	ldsc
	ldscTestdatabase

	ListBox
	lsb
	lsbBPCategories

	MainMenu and MenuItem
	mnu
	mnuTasks

	TabControl
	tab
	tabRoute

	TextBox
	txt
	txtEmpName

	ToolTip
	tip
	tipContinue

	Tree Node
	tvn
	tvnLocations

	TreeView
	tvw
	tvwCountries

	Image
	img
	imgLogo

	MultiView
	mvw
	mvwTasks

	Update Panel
	upl
	uplTasks

	Calendar
	cal
	calShiftPlanner

	UserControl
	ucl
	uclCalendar

	Table
	tbl
	tblEmpDetails

	Data List
	dls
	dlsTasks

	Repeater
	rpt
	rptCertification

	PlaceHolder
	phd
	phdTask

	RadioButtonList
	rbl
	rblTemplates

	RangeValidator, RegularExpressionValidator, RequiredValidator, ValidationSummary ,etc
	val
	valMonthDays

	Table
	tbl
	tblTasks

	TableCell
	tcl
	tclWk

	TableRow
	trw
	trwFirstRow

	DropDownList
	ddls
	ddlsGender

	
	Note: Form objects follow class naming conventions.
· Server controls that support server-based AJAX development. This includes the ScriptManager, UpdatePanel, UpdateProgress, and Timer controls. These controls enable you to create rich client behavior with little or no client script, such as partial-page rendering and displaying update progress during asynchronous postbacks.
	
[bookmark: _Toc326860904]ADO.NET
	
	Object Type
	Prefix
	Example

	Connection
	con
	conCompass

	Command
	cmd
	cmdManagers

	DataAdapter
	da
	daEmployees

	DataColumn
	dc
	dcEmail

	DataReader
	dr
	drTasks

	DataRow
	drw
	drwDeletedShift

	Dataset
	ds
	dsTasks

	DataTable
	dt
	dtRoutes

	DataView
	dv
	dvLineHauls

	Parameter
	prm
	prmEmpId

	Transaction
	trn
	trnUpdateShifts

	
	
	

[bookmark: _Toc326860905]Class Member Usage Guidelines
[bookmark: _Toc326860906]Property Usage Guidelines
· Decide whether the requirement is for a property or a method.
· Avoid creating a property with the same as an existing type.
· Use a property when the member is a logical data member.
· Use a read-only property when the user cannot change the property's logical data member. Do not use write-only properties.
· Use only one indexed property per class, and make it the default-indexed property for that class.
· Do not use non default-indexed properties.
· Use an indexed property when the property's logical data member is an array.
[bookmark: _Toc326860907]Method Usage Guidelines
· Do not use Hungarian notation.
· By default, methods are not overridable. Maintain this default in situations where it is not necessary to provide overridable methods.
· Use method overloading to provide different methods that do semantically the same thing.
· Use method overloading instead of allowing default arguments. Default arguments do not version well.
· Use default values correctly. In a family of overloaded methods, the complex method should use parameter names that indicate a change from the default state assumed in the simple method.
· Use a consistent ordering and naming pattern for method parameters. It is common to provide a set of overloaded methods with an increasing number of parameters to allow the developer to specify a desired level of information.
· Use method overloading for variable numbers of parameters. Where it is appropriate to specify a variable number of parameters to a method, use the convention of declaring n methods with increasing numbers of parameters.
[bookmark: _Toc326860908]Constructor Usage Guidelines
· Provide a default private constructor if there are only static methods and properties on a class.
· Minimize the amount of work done in the constructor. Constructors should not do more than capture the constructor parameter or parameters.
· Provide a Protected constructor that can be used by types in a derived class.
· Don’t provide an empty constructor for a value type structure.
· Use parameters in constructors as shortcuts for setting properties. There should be no difference in semantics between using an empty constructor followed by property set accessor, and using a constructor with multiple arguments.
· Use a consistent ordering and naming pattern for constructor parameters.
[bookmark: _Toc326860909]Field Usage Guidelines
· Do not use instance fields that are Public or Protected. If you avoid exposing fields directly to the developer, classes can be versioned more easily because a field cannot be changed to a property while maintaining binary compatibility. Consider providing get and set property accessors for fields instead of making them public.
· Expose a field to a derived class by using a protected property that returns the value of the field.
· It is recommended that you use read-only static fields instead of properties where the value is a global constant.
· Spell out all words used in a field name. Use abbreviations only if developers generally understand them. Do not use uppercase letters for field names.
· Do not use Hungarian notation for field names. Good names describe semantics, not type.
· Do not apply a prefix to field names or static field names. Specifically, do not apply a prefix to a field name to distinguish between static and non static fields. For example, applying a g_ or s_ prefix is incorrect.
· Use public static read-only fields for predefined object instances. If there are predefined instances of an object, declare them as public static read-only fields of the object itself. Use Pascal case because the fields are public.
[bookmark: _Toc326860910]Parameter Usage Guidelines
· Check for valid parameter arguments. Perform argument validation for every public or protected method and property set accessor. Throw meaningful exceptions for invalid parameter arguments.
· The actual checking does not necessarily have to happen in the public or protected method itself. It could happen at a lower level in private routines.
[bookmark: _Toc326860911]Type Usage Guidelines
[bookmark: _Toc326860912]Base Class Usage Guidelines
· Use base classes instead of interfaces whenever possible.
· From a versioning perspective, classes are more flexible than interfaces.
· Provide class customization through protected methods.
· The public interface of a base class should provide a rich set of functionality for the consumer of the class. However, users of the class often want to implement the fewest number of methods possible to provide that rich set of functionality to the consumer.
· Provide a set of non virtual or final public methods that call through to a single protected method that provides implementations for the methods. This method should be marked with the Impl suffix. Using this pattern is also referred to as providing a Template method.
· Many compilers will insert a public or protected constructor if you do not. Therefore, for better documentation and readability of your source code, you should explicitly define a protected constructor on all abstract classes.
· Use sealed classes if it will not be necessary to create derived classes. A class cannot be derived from a sealed class.
[bookmark: _Toc326860913]Inheritance Usage Guidelines
· Examine your objects for parent-child relationships to identify possible super classes from which to derive your subclasses.
· Look for multiple levels of parent-child relationships to build and Inheritance Tree.
· Override attributes in the derived class when the inherited functionality does not fit your needs. (If you are overriding most of the inherited functions, then this probably is not a good candidate for inheritance.)
· When modeling, decide which super class functions can be overridden and which must be overridden, and declare these as Overridable or Must Override
[bookmark: _Toc326860914]Value Usage Guidelines
· Use structure for types that meet the following criteria:Act like primitive types.
· Have an instance size fewer than 16 bytes.
· Are immutable.
· Value semantics are desirable.
· When using a structure, do not provide a default constructor. The runtime will insert a constructor that initializes all the values to a zero state.
· Use an enum to strongly type parameters, properties, and return types. Always define enumerated values using an enum if they are used in a parameter or property.
· Do not assume that enum arguments will be in the defined range. Perform argument validation
· Use an enum instead of static final constants.
· Use type Int32 as the underlying type of an enum unless either of the following is true:
· The enum represents flags and there are currently more than 32 flags, or the enum might grow to many flags in the future.
· The type needs to be different from int for backward compatibility.
· Do not use a non integralenum type. Use only Byte, Int16, Int32, or Int64.
· Do not define methods, properties, or events on an enum.
· Do not use an Enum suffix on enum types.
[bookmark: _Toc326860915]Nested Type Usage Guidelines
· Use Nested types when –
· The nested type logically belongs to the containing type.
· The nested type is not used often, or at least not directly.
· Do not use Nested types when –
· The type is used in many different methods in different classes.
· The type is commonly used in different APIs.

This document is the property of Mrinmoy Das, who owns the copyright
thereof. The information in this document is given in confidence and
without the written consent of Mrinmoy Das, given by contract or
otherwise, this document must not be copied, reprinted or reproduced
in any material form, either wholly or in part. Also the contents of this
document or any methods or techniques available there from, must not
be disclosed to any third party whatsoever.

Confidential [People who are dedicated to the truth are more likely to fail fast, learn, and try again.]		Page 9 of 13
image2.gif

image3.jpeg

image1.png

image4.png

