
Developing with Gravitybox Schedule
Gravitybox Software

 Gravitybox Schedule Primer Page 1

Ó1998-2004 Gravitybox Software LLC

Copyright Warning
This document is protected by copyright law. Unauthorized reproduction or distribution
of this program, or any portion of it, may result in severe civil and criminal penalties and
will be prosecuted to the maximum extent possible under law.

Contact Information
For inquiries about redistribution of this document or the GbSchedule ActiveX
component please contact Gravitybox Software.

Gravitybox Software
550 Arncliffe Court
Suite 100
Alpharetta, GA 30005

Voice-Mail and FAX (Toll-Free in the US):
877.GRAVCOM (877.472.8266)
(+1) 215.243.7686 (outside US)

Fax (UK):
0870.138.9550 (inside UK)
(+44) 870.138.9550 (outside UK)

Website:
http://www.gravitybox.com

Email:
Please send questions, comments, or bugs to feedback@gravitybox.com

Downloads
The Gravitybox Schedule ActiveX component and other Gravitybox products can be
downloaded from the Gravitybox website at http://www.gravitybox.com.

The direct download URL for GbSchedule is
http://www.gravitybox.com/download/gbschedule.exe.

Source Code Note
You may notice that the examples of this book are not complete. The relevant code has
been listed for discussion; however I do not find it necessary to list thousands of lines of
code that you are never going to read. All of the code and examples are available
online, so there is no reason to print it. I hope that other writers in the future take this
same methodology.

 Gravitybox Schedule Primer Page 3

Ó1998-2004 Gravitybox Software LLC

Table Of Contents

Part I Getting Started

Introduction Why GbSchedule?
 The need for GbSchedule
 Goals of GbSchedule
 Real-World Uses

Chapter 1 The GbSchedule Object Model
 ScheduleItems
 Rooms
 Categories
 Providers

NoDropAreas

PART II Using GbSchedule

Chapter 2 Creating your first Scheduling Application
 Creating a GbSchedule form
 Moving Appointments
 Moving Appointments between Windows

Chapter 3 Adding Code

Reference Creation
Collection Looping

 Adding
 Moving
 Coping
 Editing
 Deleting
 Resizing
 AllowOtherDrops
 Default Property Window
 Custom Icons

Chapter 4 File Maintenance
 ImportXML
 ExportXML

Chapter 5 Database Access
 Creating the Table Structure
 Loading Appointments
 Saving Appointments

 Gravitybox Schedule Primer Page 4

Ó1998-2004 Gravitybox Software LLC

PART III Display Modes

Chapter 6 What is a DisplayMode?
ViewMode
WeekNumbers
ScheduleIncrement
AllowColumnResizing
AllowRowResizing
TimeFormat
HeaderDateFormat
ImageList and IconAlign
CategoryBar
CategoryBarWidth
ShowProviderAvailableTime
ShowProviderScheduledTime
ProviderBarWidth

Chapter 7 Area Availability

IsDayVisible
IsRoomVisible
IsTimeVisible
ShowDay
ShowRoom
ShowTime
ShowItem
IsEnabledAreaByValues
GetNextFreeSlot
GetScheduleItemFromCor
EnforceTimeLimits
HitTest

PART IV Advanced Functionality

Chapter 8 Conflicts
 What is a conflict?

Conflict displays
Next available slots

Chapter 9 Printing
 GoPrint

PrintPageInfo

Chapter 10 Displaying Schedules on the Web
 Web Schedules Defined
 ExportHTML

 Gravitybox Schedule Primer Page 5

Ó1998-2004 Gravitybox Software LLC

Chapter 11 Recurring Appointments
 RecurrenceDay

RecurrenceWeek
RecurrenceMonth

Chapter 12 Advanced Functionality

AllowInterWindowDrop
Activities and Events
Effects
BlackOuts
Find
DisplayDragTip
DynamicScroll
UseUniCode
OutsideAreas
End of day overlap
End of schedule overlap
Zoom
Provider AvailableTimes
ScheduleItem Categories
AppointmentShape
Redrawing
Rooms Collection

PART V Other Controls

Chapter 13 ScheduleProperties Control
 ScheduleRecurrence Control

ScheduleSummary Control
 TaskList Control
 Contacts Control
 Header Control
 TitleBar Control

PART VI Examples
Chapter 14 Scheduling Program
Chapter 15 OtherDrop Example
Chapter 16 GbOrganize Application

PART VII APPENDIX

 Property Pages
 Properties
 Methods
 Events

 Gravitybox Schedule Primer Page 7

Ó1998-2004 Gravitybox Software LLC

Part I
Getting Started

The most likely way for the world to be destroyed, most experts agree, is by accident.
That's where we come in; we're computer professionals. We cause accidents.

-Unknown

Enthusiasm is contagious -- and so is the lack of it.

-Unknown

Introduction Why GbSchedule?
Chapter 1 The GbSchedule Object Model

 Gravitybox Schedule Primer Page 9

Ó1998-2004 Gravitybox Software LLC

Introduction

Why GbSchedule?

Gravitybox Schedule is a third-party tool written in response the to the vacuum of third-
party scheduling components. Few companies have any type of scheduling software
available. The selection that is available is incomplete at best and non-functional at
worst. Many of the existing applications deal mainly with scheduling in a very narrow
context, such as employee scheduling or task scheduling. Many of these applications
display the schedules as Gantt graphs. Most people who have created schedules by
hand are familiar with the appointment book model or grid display. This appears to be
an obvious way to display scheduled information; however the lack of software that
displays information in these formats is noticeably missing.

In fill the void, Gravitybox offers a general-purpose software component that may be
used to display scheduled information of almost any type, in many, different formats.
The component will display information in the common grid format with time and dates
on opposing axes. It will also allow you to transpose the axes, as well as specify the
increments on the each one. It can display an arbitrarily large schedule, allowing for
years at a time to be view and scrolled. There are conflict resolution routines that can
determine if a change will cause a conflict with other appointments. A warning may also
be given the user in this situation in his native language, if need be.

GbSchedule will not only display the information in a grid with multiple configurations
but it may also be used to display scheduled information in MonthView or ListView
formats as well. The component may show information in the MonthView format
popularized by MS-Outlook. This view allows the user to see a month at a glance. For
those who are accustomed to viewing information in an appointment book format, they
will not be disappointed because the GbSchedule offers this view as well.

Most of the functionality available may be used with little or no coding. There are many
properties that may be set to configure the behavior of the schedule. These properties
control almost all of the functionality and behavior of the software. Customizations may
be added in code. Opportunities are given to override the default behavior of the
schedule by using the provided events. There are “Before” and “After” procedures for
most events. For example there is a BeforeMove and AfterMove event. The first may be
used to cancel an appointment move. The latter maybe used for some sort of
confirmation code that an event has been moved.

In all, the component is truly general purpose. It allows the developer full control over
the display and behavior of every aspect of its existence. The control was designed to
allow maximum flexibility over almost any type of scheduling scenario.

 Gravitybox Schedule Primer Page 10

Ó1998-2004 Gravitybox Software LLC

The need for GbSchedule

In today’s world, there is a need for a general-purpose scheduling utility. More
applications are requiring at least some scheduling as part of their functionality. Many
developers dreading this task save it for last only to realize that it is a much larger task
than at first they thought. A high-quality schedule inside of your application is an
application in and of itself. You could spend your entire allotted time developing just this
part of your application.

This is where the Gravitybox Schedule component comes in. All of the complicated
scheduling routines have been incorporated into it, including conflict resolution and
warning. Also added is the ScheduleProperties control that allows you to create in
minutes a customized property sheet for appointments. Almost all default behaviors
may be overridden with customizations. And most importantly, very little code is needed
to perform even complex tasks. The schedule may be dropped on a form, be fully drag-
drop enabled, moving appointments across windows or even different programs with file
loading and saving functionality in 30 lines of code or less!

All of this creates a component that has a small learning curve. Most of the properties
are self-explanatory. An intermediate developer can read though the properties and look
at examples and almost be an expert in less than an hour. This allows you to add first-
rate scheduling to your application with ease.

Goals of GbSchedule
The goals of GbSchedule are several. These are the guidelines on which the software
was developed.

To create a high-quality component
To have a small learning curve
To have the maximum functionality with a minimal of code
To add user requests in a timely fashion

The software has been translated into many languages. The actual language text is
small when compared to a commercial application. The only places in the component
that are language specific are prompts. There are default dialogs, which may be
overridden by the developer if need be.

Real-World Uses

When evaluating a software product, its usefulness is its most important attribute. No
matter the time and care expended to create a software program, if it does not solve
any real-world problem, it is useless. GbSchedule has been designed to resolve many
scheduling situations. The original goal of the component was to produce a module that
could be dropped into an application to create a scheduling application for a doctor’s
office. This did prove an ambitious goal in and of itself. The necessary functionality has

 Gravitybox Schedule Primer Page 11

Ó1998-2004 Gravitybox Software LLC

been added to accomplish this task and there is even a sample application provided for
this purpose.

As stated, this component may be used to create applications that have significant,
differing scheduling purposes. The first use is an office application. Some of the
program features follow. It should graphically display clients that are scheduled to come
into the office on any given day. It should be able to list services provided and cost. It
should be able to assign an appointment to a category and to a provider. The developer
should define the categories and providers collections. It should have print functionality
so that the user can crate a hard copy of his schedule. There are other more advanced
features of coarse but these criteria can be used to create a basic office application.
This is probably the most used scenario for application development using the
GbSchedule product.

There are as many uses as developers can conceive. I know of one developer using it
to schedule airplanes at an airport. I think this was a very small airport, as I do hope that
the FAA has its own proprietary program written for this express purpose. One TV
studio has created a schedule of TV programs. It lists all shows and lets them see their
air schedule at a glance. And as if to test its flexibility, some have used the component
to keep their schedule for a year at time. After all it can be scrolled through any length of
time.

 Gravitybox Schedule Primer Page 13

Ó1998-2004 Gravitybox Software LLC

Chapter 1

The GbSchedule Object Model

The Gravitybox Schedule has an extensive object model. It may seem complex at first
but is actually very intuitive. There are seven main collections. Each holds some part of
the information to be displayed on the screen.

ScheduleItems

The main collection and the one that you cannot live without
is the ScheduleItems collection. This is the group of
appointments for a schedule. In its simplest form each
object in the collection needs a starting time, date, and length. These three basic
properties are used to display an appointment at its proper position. Many other
properties are also available to define customized attributes of each object, but these
three are the necessary ones for an object to exist. If a schedule is defined as the
display of dates on one axis verses time on the other, then each one of these
ScheduleItem objects has a particular position on which to be placed.

Table 1.1
ScheduleItem Object Definition

Alarm This property determines if the appointment should raise an
event at its StartTime. If this property is set, there is an icon
displayed in the upper, left corner of the appointment and the
ScheduleItemStart event is raised when the appointment’s
starting time comes due.

AlarmReminder This property is used to fire the event ScheduleItemReminder
event some time before an appointment comes due. This is a
positive number of minutes. If the Alarm property is true, the
AlarmReminder number minutes is subtracted from the
appointment’s start time. If the calculated time is the current
time, this event is raised. This property basically allows you
to receive an event some time prior to an appointment
starting. This is useful for builder reminders that an
appointment is due in X minutes.

BackColor This property allows for the specification of a custom
backcolor for the appointment. This may be useful, if you
want a particular appointment to stand out. When an
appointment is created, the backcolor is defaulted to white.

BlackOut This property allows an appointment to be into a placeholder.
The BlackOutColor will determine the appointment’s color.
No text will be displayed on the appointment and the user
may not move, copy, or perform any operation on it.

Quick Tip
Appointments are stored in the
ScheduleItems collection.

 Gravitybox Schedule Primer Page 14

Ó1998-2004 Gravitybox Software LLC

Category This property is a pointer into a collection of user-defined
categories in the Categories collection. The appointment is
said to be in the specified category.

ClusterId This is a string value that allows you group appointments
together without a recurrence pattern. If multiple
appointments share the same GroupId property, they are
displayed as recurring. However there are times when you
may wish to group appointments programmatically without
displaying the relationship on screen. You may use the
“GetClustered” method to retrieve a list of all appointments
with a unique “ClusterId” property value.

DisplayText This is text that may be used to identify an appointment.
Either the DisplayText or Subject may be used as the text
displayed on the schedule canvas.

ExtraProperties This is a collection of name/values pairs. You may add any
number of elements to this collection and the values may be
referenced by name or index. This allows you to store any
amount of information with each appointment.

FontBold Controls the appointment font’s bold property

FontItalics Controls the appointment font’s italics property

FontStrikethru Controls the appointment font’s strikethrough property

FontUnderline Controls the appointment font’s underline property

ForeColor This property allows for the specification of a custom color to
be specified for the text of an appointment.

GroupId This is a string value that uniquely identifies a group of
appointments. Many appointments may have the same
GroupId. This property is generated when a recurring
appointment pattern is defined. The ScheduleItems
"AddRecurrence" method may create many appointments
with the same GroupId, to specify that the appointments are
part of a group. This value may never be an empty string.
You may use the “GetGrouped” method to retrieve all
appointments with the same GroupId property value.

Id This is a 32-bit integer that may be used to store extra
information about an appointment. This is for developer
convenience only. It has no effect on scheduling whatsoever.

IsActivity This read-only property determines if the appointment
overlaps a day boundary. If an appointment is scheduled
past 12:00 AM on any day it becomes an Activity. Activities
are displayed in the event header at the top of the screen,
when time is displayed on the left side of the screen.

IsDirty This property is a Boolean value that is set to True any time
one of the object’s properties is changed. It is designed to be
false when the object is loaded. It may be checked at any
time as a way of identifying if the object has changed.

 Gravitybox Schedule Primer Page 15

Ó1998-2004 Gravitybox Software LLC

IsEvent This property determines if the appointment is an event.
Events do not have a StartTime or Length. They exist for a
day only and do not have a definite start or end. An example
of an event is a birthday. When true, the StartTime and
Length will not have any genuine value. These appointments
will be displayed only if the AllowEventHeader property is
true. This property maps to the “All day event” text in the
default property window.

IsFlagged This Boolean value determines if a small flag is displayed
next to the appointment. This icon may be used to indicate
some condition to the user.

ItemData This is a 32-bit integer that may be used to store extra
information about an appointment. This is for developer
convenience only. It has no effect on scheduling whatsoever.

Length This property defines the length of the appointment. It is
measured in minutes and must be greater than zero.

MaxLength This property will ensure that a user may never resize an
appointment to more than a certain size. The value
represents the maximum number of minutes allowed for an
appointment. The default value is –1. This default value
places no restriction on the appointment. It effectively has no
maximum length.

MinLength This property is a supplement to the MaxLength property. It
will ensure that a user may never resize an appointment less
than a certain size. The default value is –1. This value places
no restriction on the appointment. It effectively has no
minimum length.

Name This is an optional parameter used when adding an
appointment to the ScheduleItems collection. If specified it
must be unique or an error occurs. After an appointment is
added, this property is read-only. You may use this identifier
to access an element in the ScheduleItems collection.

Notes This is an extra string value that may be used to save some
additional information associated with this appointment
object. It is not used by the schedule for any purpose.

Priority This is a 32-bit integer that may be used to store an
appointment’s priority. This is for developer convenience
only. It has no effect on scheduling whatsoever.

Provider This property maps to the Providers collection, a custom-
defined collection of people that participate with the current
schedule. This property may be set to a member of the
Providers collection or left blank, if desired.

ReadOnly This property determines if the appointment is read-only. If
this is true then the user may not move, copy, or modify this
appointment

 Gravitybox Schedule Primer Page 16

Ó1998-2004 Gravitybox Software LLC

Room When the schedule is setup to display Rooms, only
appointments with a valid Room property will be displayed.
When the schedule is not displaying Rooms, this property is
not used.

StartDate This property is the date on which the appointment will be
displayed. The valid date range is the MinDate property to
the MaxDate property.

StartTime This property defines the time an appointment is to start.
Used in conjunction with the StartDate property, it determines
the position of the appointment on the schedule. If the
appointment is an event, this property has no genuine value.

Subject This is text that may be used to identify an appointment.
Either the DisplayText or Subject may be used as the text
displayed on the schedule.

Tag This is an extra string value that may be used to save some
additional information associated with this appointment
object. It is not used by the schedule for any purpose.

ToolTipText This text is used to display a tooltip over an appointment
when the mouse is at rest over it. This is the default value for
the appointment’s tooltip. If this property is not specified, it’s
DisplayText or Subject property is used, depending on the
schedule’s ToolTipDisplay property.

UniqueKey This read-only property is a unique 32-bit integer that
identifies this appointment from all the rest in the
ScheduleItems collection. When an appointment is added, a
unique key is generated and assigned to this property. It may
not be changed and will be different on every load. However,
the most important thing is that it never changes as long as
the schedule is loaded. Even if dragged to another window,
the appointment’s UniqueKey will not change. It is provided
to give the developer a way to uniquely identify an
appointment in a schedule session.

A change in many of these properties will result in a display change of the appointment
or the schedule. Some other properties of an appointment, though still important, are
not display related. A change in non-display properties will not result in a repaint of the
appointment or screen. They represent associated data that may be saved with an
appointment. An example of this is the Id or ItemData property.

Some of the more interesting properties include Alarm, BlackOut, MinLength, and
MaxLength. The Alarm property allows for the creation of applications that raise an
event, at the start of an appointment. The ScheduleItemStart event is raised to inform of
this happening. The index of the object in the ScheduleItems collection is returned, as a
parameter to this event. The following code display a message box at each
appointment’s starting time.

 Gravitybox Schedule Primer Page 17

Ó1998-2004 Gravitybox Software LLC

Private Sub Schedule1_ScheduleItemStart(ByVal Index As Long)

Dim sText As String

 sText = "The following appointment has started!" & vbCrLf
 sText = sText & Schedule1.ScheduleItems(Index).Subject
 Call MsgBox(sText, vbInformation)

End Sub

You may also receive notification some time before an appointment occurs. Each
appointment has an “AlarmReminder” property. This is a non-negative number that
represents the number of minutes ahead of an appointment starting time to notify the
container. If this property value is non-zero, the ScheduleItemReminder event is raised
this many minutes before the actual appointment start. This is most useful when
building appointment reminders that prompts the user about an impending appointment.

Also notice that each appointment object has its own FontBold, FontItalics,
FontStrikethru, and FontUnderline property. This allows you to control the look of each
individual appointment. Use this in conjunction with the backcolor and forecolor
properties to bring attention to any appointment. You may also use this to define
appointment groups. Perhaps you have need to display multiple sets of appointments
together on the same schedule but want to the user to be able to easily distinguish
between them. You could give each group a unique set of colors and fonts.

The Blackout property permits appointments to be displayed that are in no way editable
by the user. Also, the user may not view the contents of a blacked-out appointment
either. This property is useful when an area needs to be shown as filled but the user has
no access to the appointment. An example of this is a doctor office that has many
doctors, each with his own secretary. In a networked system, one secretary can see
that a particular room is filled at a particular time, but she has no access to view or
modify the other doctor’s appointment. When the BlackOut flag of an appointment is set,
it will be a solid color, determined by the BlackOutColor property of the schedule. Its text
will not be shown. It is effectively blacked out.

 Gravitybox Schedule Primer Page 18

Ó1998-2004 Gravitybox Software LLC

Figure 1.1

In Figure 1.1, there are three, one-hour appointments. The first and third are visible and
editable. The second has its BlackOut property set to true. The text of the appointment
is set to “Appt2”, but this cannot be seen. The user cannot modify anything about the
second appointment, nor can he even see the appointment’s text.

The ReadOnly property also performs this behavior, though in a different fashion. The
ReadOnly property makes the appointment non-editable, but still displays the
appointment’s information. This property is useful to display read-only versions of a
schedule, while still allowing on one person to lock the schedule.

The MinLength and MaxLength properties complement each other. The default value for
each of these is –1. This indicates that there are no restrictions imposed on the
appointment’s length. In some applications, it may be necessary to limit the
appointment’s length; minimum, maximum, or both. These two properties can be set
independently and they influence each other in only one respect. The MaxLength must
be greater than or equal to the MinLength (if MinLength is not -1) and the MinLength
must be less than or equal to the MaxLength (if MaxLength is not -1). If either property
is –1, it the value of the other property can be any positive integer.

An interesting new feature is the ability to display appointments that begin on one day
and extend over a day boundary into another day. This is currently only available when
the time is on left and day only is on top. The appointment is displayed in the event
header at the top of the screen. To be displayed the “AllowEventHeader” property must
be true. Also the schedule property “AllowActivities” must be true as well.

Rooms

In many circumstances, a date and time is enough to define a schedule for an
application’s needs. However there are situations that require more than just a date and
time. For example, in a doctor’s office, there may be two patients scheduled for 10:00
AM on October 23. If a schedule is used that defines only with dates and times, there

 Gravitybox Schedule Primer Page 19

Ó1998-2004 Gravitybox Software LLC

will be two conflicts at this particular time. Conflicts are not necessarily an error. There
are times when a conflict is valid and even wanted. Nonetheless, there is a better way
to display this information, for this office example. There exist two rooms in this office;
this is the reason why two appointments are present for the same time. This means that
in reality there is no conflict.

The Rooms collection defines a set of rooms that may be associated with an
appointment. When the Viewmode is set to a property that supports dates and rooms,
each day will have as a subcategory, the defined Rooms. If there are two rooms
defined, the schedule will have the two rooms displayed, for each day on the schedule.
Now when the two patients are displayed, there is no conflict, since each appointment's
associated room makes it unique on the schedule.

Table 1.2
Room Object Definition

Id This is a 32-bit integer that may be used to store extra data.

IsDirty This property determines if an object has been modified. This property
may be set to false upon load and checked before a conditional save.
Changing the Id property or renaming the Room object through the
Rooms collection will cause this property to be true.

Index This read-only property is the numeric index of this object in its parent
collection. The valid values are 1 to N, where N is the number of
objects in the Rooms collection.

Name This is the name, as well as the caption, of the Room object. This
property is read-only after the addition; however it can be set indirectly
by using the Rename method of the Rooms collection.

Figure 1.2

 Each appointment has a Room property that may be set to an existing Room
object’s name or index. The property does not have to be mapped to anything; however
if it does not map to anything and rooms are being displayed on the schedule, this
appointment will not be shown. This property will never return an error for an incorrect

 Gravitybox Schedule Primer Page 20

Ó1998-2004 Gravitybox Software LLC

value. If the value does not map to any valid value in the Rooms collection, nothing will
happen. The only error that may happen is one of logic. If you set this property to
“Room1” and the name of the room you wish to map is “Room 1”, the appointment will
not be displayed in the proper room. This may cause puzzling results, if you make this
error, but no run-time error will be raised.

A room may be added to the Rooms collection with the Add method in the following
fashion.

Call Schedule1.Rooms.Add(“Room1”)

The new room will be named “Room1”. This object may be referenced by name or index
[1..N]. The following code fragments are equivalent.

Debug.Print Schedule1.Rooms(“Room1”).Name
Debug.Print Schedule1.Rooms(1).Name

A Room object’s name may not be numeric. This is because there would be no way to
determine if the parameter being used is a name or an index. Since you may not add a
numeric name the code below is invalid but I use it as an illustration. If an object’s name
were numeric, the following code would produce an error, since there is only one object
in the collection and its name is “100”. When referenced by the name “100”, the
collection will try to return index 100, which does not exist, and produce an error.

Call Schedule1.Rooms.Add(“100”)
Debug.Print Schedule1.Rooms(“100”).Name ‘ERROR

This logic also applies to all object collections in this product. The name of no object
may be numeric.

 Rooms may not be renamed directly. By this I mean that the following code will
not execute. It will not rename the first Room object in the collection to “NewName”.

Schedule1.Rooms(1).Name = “NewName”

This code will produce an error, because the Name property is read-only. If the name of
existing Room needs to be changed, the collection’s Rename method must be used. If,
as in the previous example, the first Room object is to be renamed “NewName”, the
following code would work.

Call Schedule1.Rooms.Rename(1, “NewName”)

The Rooms collection actually has many useful methods. These may be used to
manipulate Room objects within the collection. There are also search functions that
make finding a particular object much easier. Additional language support for the
displayed schedule may be provided as well, with the collection’s DisplayName

 Gravitybox Schedule Primer Page 21

Ó1998-2004 Gravitybox Software LLC

property. If an application’s language is not English or different text needs to be
displayed other than the default, the DisplayName property may be set to the desired
text. This text will be used as the header of Room columns, on the schedule.

Table 1.3
Rooms Collection Definition

Add This method takes parameters to create a new Room object
and adds it to the Rooms collection. A reference it the created
object is returned.

Clear This method will clear the collection of all Room objects.

Count This method will return the number of elements in the
collection.

DisplayName This is the text that will appear as the room header on the
schedule. The default text is “Rooms”, but may be set to any
text preferred.

Exists Given a Room object’s name or index, this method will return
true if a Room object exists, at the specified position in the
collection.

Index This method is very similar to the Exists method only it returns
a number. Given a Room object’s name or index, this method
returns its index. Though valid syntax, it is not very useful to
give the index in order to retrieve it. This function was designed
to take the Name property as a parameter.

IsDirty This property will determine if any modifications have occurred,
since the last time it was set to false. If any property of any
Room object is modified this property is automatically set to
true.

Item Given a Room object’s name or index, this method will return a
reference to the object. If the given parameter does not exist in
the collection, an error is raised. To avoid an error, use the
Exists method in conjunction with this method.

NewIndex This read-only property is the index of the newest object added
to the collection with the Add method. After the Remove
method is called this property is reset to zero.

Remove Given a valid index or name, this method will remove the
specified room object.

Rename This method will rename a Room object. It takes a parameter of
an existing object’s index or name and the new name to give
the object. If the new name already belongs to another Room
object, an error is raised.

NOTE: An appointment’s Room property is not aware of changes in the Rooms
collection. If an appointment has a Room property of “2”, referring to the second room in
the Rooms collection and this element is removed, the appointment will still point to the

 Gravitybox Schedule Primer Page 22

Ó1998-2004 Gravitybox Software LLC

old (now non-existent) Room object. If there is not a second Room and the schedule is
displaying rooms, the appointment will not be displayed.

Categories

The schedule object also has a Categories collection. This collection may be filled with
custom categories that define a business. This functionality is very useful when
categorizing appointments. If the appointments can be grouped into categories, this will
give the users a much better view of the schedule.

To go back to the doctor’s office demo, say there are three categories, “Surgery”,
“Major”, and “Misc”. These categories are added to this collection and an associated
color with each.

Call Categories.Add("Surgery", vbRed)
Call Categories.Add("Major", vbYellow)
Call Categories.Add("Misc", vbBlue)

Much like the Rooms collection, a Category object may be referenced by its name or
index. Each appointment has a Category property that maps to this collection. An
appointment need not have an associated category, but this functionality is provided for
convenience.

This category information is used to display the appointment with a slightly different
appearance. If its Category property of an appointment maps to a valid object of the
Categories collection, the associated Category object’s color is displayed on the left
side of the appointment. In addition to displaying a category, colored bar on the
appointment, there will be a matching bar in the left margin of the schedule. This allows
the user to see, at a glance, the categories of appointments. In the left margin of the
schedule, there is a column for each defined Category object. When an appointment is
mapped to a Category object, its corresponding color bar, in the left margin, will be filled
for the length of the appointment. This may be toggled on/off by setting the CategoryBar
property of the schedule true or false. If CategoryBar is false, the Categories collection
is not displayed in the left margin of the schedule. The associated mapped colors may
still be displayed on the appointment’s margin by setting the CategoryBar property to
true. There exists a tab set in the top, left corner of the schedule. The top tab must be
“checked” for the Categories collection to be displayed. This effectively puts the
schedule into category mode. This tab is a toggle for the display of Categories or
Providers (as described below).

A Category object’s name may not be numeric. This is because there would be no way
to determine if the parameter being used is a name or an index. Since you may not add
a numeric name the code below is invalid but I use it as an illustration. If an object’s
name were numeric, the following code would produce an error, since there is only one
object in the collection and its name is “100”. When referenced by the name “100”, the
collection will try to return index 100, which does not exist, and produce an error.

 Gravitybox Schedule Primer Page 23

Ó1998-2004 Gravitybox Software LLC

Call Schedule1.Categories.Add(“100”)
Debug.Print Schedule1.Categories(“100”).Name ‘ERROR

This logic also applies to all object collections in this product. The name of no object
may be numeric.

NOTE: An appointment’s Category property is not aware of changes in the Categories
collection. If an appointment has a Category property of “2”, referring to the second
category in the Categories collection and this element is removed, the appointment will
still point to the old (now non-existent) Category object.

Figure 1.3

Table 1.4
Category Object Definition

Color This property stores the color associated with this Category object.
The category bar for this Category object will be displayed in this color.

Id This is a 32-bit integer that may be used to store extra data.

IsDirty This property will determine if any modifications have occurred, since
the last time it was set to false. If any property of any Category object
is modified this property is set to true.

Name This is the name as well as the caption of the Category object. This
property is read-only; however it may be changed with the Categories
collection, using its Rename method.

The Categories collection has the same methods as the Rooms collection. They may be
used to manipulate Category objects within the collection. There are also search
functions that make finding a particular object much easier. Additional language support
may be provided for the same reasons and by the same methods as explained for the
Rooms collection.

 Gravitybox Schedule Primer Page 24

Ó1998-2004 Gravitybox Software LLC

Table 1.5

Categories Collection Definition
Add This method takes parameters to create a new Category object

and adds it to the Categories collection. A reference to the newly
created object is returned.

Clear This method will remove all of the Category objects from the
collection.

Count This method will return the number of elements in the collection.

Exists Given a Category object’s name or index, this method will return
true if a Category object exists at the specified position.

Index This method is very similar to the Exists method only it returns a
number. Given a Category object’s name or index, this method
returns its index. Though valid syntax, it is not very useful to give
the index in order to retrieve it. This function was designed to take
the Name property as a parameter.

IsDirty This property will determine if any modifications have occurred,
since the last time it was set to false. If any property of any
Category object is modified, this property is set to true.

Item Given a Category object’s name or index, this method will return a
reference to the object. If the given parameter does not exist in the
collection, an error is raised. To avoid an error, use the Exists
method in conjunction with this method.

Name This is the text that will appear as the category bar header on the
schedule. The default text is “Categories”, but may be changed to
any desired text.

NewIndex This read-only property is the index of the newest object added to
the collection with the Add method. After the Remove method is
called, this property is reset to zero.

Remove Given a valid Category object’s index or name, this method will
remove the specified object.

Rename This method will rename a Category object. It takes a parameter of
an existing object’s index or name and the new name to give the
object. If the new name already belongs to another Category
object, an error is raised.

Providers

Another important collection of the GbSchedule is the Providers collection. This
collection represents a group of people who provide services for appointments. This is
very useful when an appointment needs to be assigned to a person. This also aids in
resource management. It allows for a provider to view a schedule and know the times of
his responsibilities. Since there are color-coded bars in the left margin, the provider may
view a schedule and know by his colored bar when he must work and when he is free.

 Gravitybox Schedule Primer Page 25

Ó1998-2004 Gravitybox Software LLC

In the doctor’s example, there are four providers, “John”, “Sue”, “Fred”, and “Jane”.
These people work in the office and each has a set of appointments. First, these
providers need to be added to the Providers collection.

Call Schedule1.Providers.Add("John", vbBlue)
Call Schedule1.Providers.Add("Sue", vbYellow)
Call Schedule1.Providers.Add("Fred", vbRed)
Call Schedule1.Providers.Add("Jane", vbGreen)

Figure 1.4

Now that the providers are part of the schedule, appointments may be assigned to
each. This may be accomplished by setting the Provider property of an appointment to
the desired Provider object’s name or index. This will associated the specified Provider
and appointment. The user may view this association on the schedule by selecting the
bottom tab on the tab strip in the top, left corner of the schedule, if a tab strip exists.
This will toggle the schedule into provider mode. Also the schedule property
ShowProviderScheduledTime must be true to for the Providers collection’s information
to be displayed in the left margin of the schedule.

Table 1.6
Provider Object Definition

Color This property stores the color associated with this Provider object. The
provider bar for this Provider object will be displayed as this color.

Id This is a 32-bit integer that may be used to store extra data.

Name This is the name, as well as the caption, of the Provider object. This
property is read-only; however renaming the object, through the Providers
collections using its Rename method will change it.

The Providers collection exposes much of the same interface as the Rooms and
Categories collections. These methods and properties may be used to manipulate

 Gravitybox Schedule Primer Page 26

Ó1998-2004 Gravitybox Software LLC

objects within the collection. Included are search functions for locating particular
objects. Language support may be offered here as well.

Table 1.7
Providers Collection Definition

Add This method takes parameters to create a new Provider
object and adds it to the Providers collection. A reference to
the newly created object is returned.

CaptionAvailable This is the text that will appear above the Provider
AvailableTimes bars, in the left margin of the schedule. This
collection holds the valid times for which an appointment may
be scheduled, for a Provider. The default text is “Available”,
but it may be changed to anything desired.

CaptionScheduled This is the text that will appear above the times for which a
Provider is scheduled. Each appointment associated with a
Provider will cause the provider to be scheduled for the
duration of the appointment. The default text is “Providers”,
but it may be changed to anything desired.

Clear This method will remove all Provider objects.

Count This method will return the number of elements in the
collection.

Exists Given a Provider object’s name or index, this method will
return true if a Provider object exists at the specified position.

Index This method is very similar to the Exists method only it
returns a number. Given a Provider object’s name or index,
this method returns its index. Though valid syntax, it is not
very useful to give the index in order to retrieve it. This
function was designed to take the Name property as a
parameter.

IsDirty This property will determine if any modifications have
occurred, since the last time it was set to false. If any property
of any Provider object is modified this property is set to true.

Item Given a Provider object’s name or index, this method will
return a reference to the object. If the given parameter does
not exist in the collection, an error is raised. To avoid an error,
use the Exists method in conjunction with this method.

Name This is the text that will appear as the header for the provider
columns on the schedule. The default text is “Providers”, but
may be changed to any desired text.

NewIndex This read-only property is the index of the newest object
added to the collection with the Add method. After the
Remove method is called, this property is reset to zero.

Remove Given a valid Provider object’s index or name, this method
will remove the specified object.

Rename This method will rename a Provider object. It takes a

 Gravitybox Schedule Primer Page 27

Ó1998-2004 Gravitybox Software LLC

parameter of an existing object’s index or name and the new
name to give the object. If the new name already belongs to
another Provider object, an error is raised.

An important feature not to be overlooked is the
ExtraProperties collection. You may store any amount of
extra information using an appointment object’s
“ExtraProperties” collection. This is a collection of name /
value pairs that be used to store anything. You may address
the collection by name or index to retrieve its associated value setting. You may not
need this functionality but if you have a large amount of information to store with a task
this collection is quite useful.

NoDropAreas

There are circumstances that require that certain area of a
schedule be blocked from creating and receiving
appointments. The NoDropAreas collection provides this
functionality. This is an added convenience for developers
so that they might not be required to write these
complicated routines themselves. The functionality essentially defines reserved areas of
a schedule.

If the user attempts to drag (move or copy) an appointment to a NoDrop zone, the
mouse will turn to a no-drop pointer to indicate that the appointment may not dropped.
When an appointment’s edge touches a NoDrop zone, the appointment will no longer
move, as this would move it into the reserved zone. If the user continues dragging until
the appointment has passed the zone, it will jump to the other side of the NoDrop zone.
There is no way to move an appointment or portion thereof into one of these zones.
There must be a valid portion of the schedule grid available for the entire length of the
appointment.

NOTE: Appointments may be scheduled in these zones by using the Add method of the
ScheduleItems collection, however the user may not drop appointments in these areas.
There is a way to determine with code, if an appointment slot is free. You may use the
GetNextFreeSlot method. This will be covered later in chapter 8.

There may be days that need to be invalid, for example weekends. A developer might
constructed a loop and walk through all the days on the schedule, check to see if the
date is a weekend day, and add it to this collection. The following code blocks the first
weekend in June 2002.

Call NoDropAreas.Add(#6/8/2002#)
Call NoDropAreas.Add(#6/9/2002#)

Quick Tip
You may store any number of
name/value pairs for each
appointment its “ExtraProperties”
collection. Use it to store any amount
of information.

Quick Tip
Mark areas on a schedule as
unavailable for appointment by using
the “NoDropAreas” collection.
Appointments cannot be added,
moved, or copied to these areas.

 Gravitybox Schedule Primer Page 28

Ó1998-2004 Gravitybox Software LLC

Code to block out all weekend days may be constructed with a simple loop. The
following code loops through all the dates on a schedule and defines the weekend days
as NoDrop zones.

Dim i As Long
Dim lLoopCount As Long
Dim dtCurDate As Date

 'Loop through how many days?
 lLoopCount = DateDiff("d", Schedule1.MinDate,
Schedule1.MaxDate)

 'Perform loop
 For i = 0 To lLoopCount - 1

 'Get the current date
 dtCurDate = DateAdd("d", i, Schedule1.MinDate)

 'If the date is Saturday (Weekday function = 7)
 'or Sunday (Weekday function = 1)
 'Then add it to our no drop collection
 If (Weekday(dtCurDate) = 1) Or _
 (Weekday(dtCurDate) = 7) Then
 Call Schedule1.NoDropAreas.Add(dtCurDate)
 End If

 Next I

When the schedule is displayed and these dates come into the viewable window, they
will be a special color defined by the color of the added NoDrop object. This will allow
the user to easily see that this is not a valid section of the schedule.

Figure 1.5

 Gravitybox Schedule Primer Page 29

Ó1998-2004 Gravitybox Software LLC

The collection can be used to define a NoDrop zone for a room also. If five rooms are
defined and Room3 must be guaranteed to never accept any appointments, the room
may be added to this collection and the user will no be allowed to add, copy or move
any appointments to the specified room. If the user attempts to drag an appointment to
this schedule section, the mouse will turn to a no-drop pointer, to indicate that this
action is not valid.

It may be very useful to block rooms. Perhaps you have an office that is being
remodeled and you do not wish to schedule any appointments in a particular room.
Adding the specified room as the second parameter to the collection does this.

Call NoDropAreas.Add(, 3)

Figure 1.6

To block a time interval two parameters must be specified, StartTime and Length. The
zone will begin at the specified time and last for the duration of the Length property, in
minutes. The usefulness of this may be seen in the doctor’s demo by defining 12PM-
1PM as the “lunch hour”. No appointments should be scheduled for this time slot, as the
office is closed. The following code sets 12:00PM until 1:30PM as a NoDrop zone.

Call NoDropAreas.Add(, , #12:00:00 PM#, 90)

 Gravitybox Schedule Primer Page 30

Ó1998-2004 Gravitybox Software LLC

Figure 1.7

This collection is most useful; however it has much more power. You have seen how to
block entire columns and rows, but in the real world many times we need to block very
specific sections of our schedule such as Thursdays the 9 from 10AM – 11AM. This
may greatly increases the functionality of the collection and the schedule component.

Using multiple parameters of this collection may block any section of a schedule. If you
wish to block August 9, 2002 from 8AM through 12PM then you need to add a
NoDropArea for this section of the schedule. Notice that second parameter was omitted.
There is no room component to this schedule block so we leave it blank. Keep in mind
that this block will only show up if both the date and time is displayed by the schedule’s
viewmode. If the ViewMode is displaying dates versus rooms only, with no time
component, this NoDropArea will not be displayed even if the proper date is displayed.
If a NoDrop zone is defined with a date, room, or time element then these same
components must be in the schedule’s viewmode. A good example of this is a NoDrop
zone for a specified date, room and time. It would only be shown is the viewmode was
set to vmcNormalDayRoomTopTimeLeft or vmcNormalDayRoomLeftTimeTop. These
are the only two viewmodes that display all of the NoDrop zones parts.

Call NoDropAreas.Add(#8/9/2002#, , #8:00:00 AM#, 240)

This collection may be of no use to some developers, but it will be extremely valuable to
others. Since GbSchedule does not allow for the selective removal of dates and times
from its display, this is the next best thing. The dates and times will be displayed, but
only as placeholders.

 Gravitybox Schedule Primer Page 31

Ó1998-2004 Gravitybox Software LLC

Part II
Using GbSchedule

Fast, fat computers breed slow, lazy programmers.

-Unknown

Chapter 2 Creating your first GbSchedule Application
Chapter 3 Adding Code
Chapter 4 File Maintenance
Chapter 5 Database Access

 Gravitybox Schedule Primer Page 33

Ó1998-2004 Gravitybox Software LLC

Chapter 2

Creating your first Scheduling Application

So now that you are familiar with the object model we can begin to construct our first
scheduling application. It is easy to create a program that actually has schedule
functionality with no code! If there is no underlying code, you will not be able to load or
save schedules. However I state this merely to display the ease of use. We begin by
opening Visual Basic and creating and new project. Next we need to add the software
component to the project. On the Project menu choose “Components…”. This will
display the add component screen. Use this to add the “Gravitybox Schedule”
component.

Figure 2.1

Figure 2.1 shows the Component screen with the schedule added. Press the “OK”
button and we are ready to start scheduling. When the schedule is added to a form it is
displayed with times on the left opposing days and rooms on the top. This is a very
common configuration of a schedule. At design-time there are two rooms for each day
to display the day-room configuration functionality. As described in Chapter 1 there
many different modes in which the schedule may be displayed. If your application does
not require rooms (or objects), this feature may be removed by changing the schedule’s
Viewmode property to one of the “day only” settings. This will display only dates and no
rooms. Just to keep things simple in our first program, we are going to turn off the Room
interface.

 Gravitybox Schedule Primer Page 34

Ó1998-2004 Gravitybox Software LLC

Creating a GbSchedule form

To create a display that has a more common interface we need to set the following
properties.

StartTime = #8:00 AM#
DayLength = 10
MinDate = #1/1/2002#
MaxDate = #1/31/2002#

Figure 2.2

This will create a schedule that starts at 8 in the morning and displays times until 6 at
night. The start date is the first of January and it lasts for 31 days, the end of the month.
This will generate a schedule that starts at a normal time and lasts for the business day.
It will also display the entire month so that we can make appointments for the month in
its entirety.

Now that we have set the properties to some meaningful values, lets run the program.
In run-mode the user may click the mouse and create an appointment. To create an
appointment of a desired length, you must press the left mouse button and drag the
mouse the length of the desired appointment. When the mouse button is released the
appointment is created. The schedule’s standard properties box appears when adding
and editing by default. This may be turned off. This will be addressed later.

 Gravitybox Schedule Primer Page 35

Ó1998-2004 Gravitybox Software LLC

Figure 2.3

In Figure 2.3, I have created an appointment from 9:00 AM on January 1 for one hour. I
have created another appointment at 9:30 AM on January 2 for an hour as well. The
displayed text may be edited by clicking the appointment. It will become editable after a
small delay. You may type directly into the appointment when it is editable. It you wish
to edit more properties of an appointment, you may double-click on it and the default
properties window will be displayed. Again, this is configurable and may be toggled off if
desired.

Moving Appointments

Now that we have two appointments on the schedule we may need to move them. The
whole purpose behind an electronic schedule is that maintenance should be easy. On
paper you would need to erase the old appointment, then pencil it back in at a new date
and time. The process is far easier now. Grab the appointment by clicking it with the left
mouse button. While the button is pressed drag the appointment to another position. As
it is being dragged, an outline will be drawn to show you exactly where the appointment
will be dropped. It you move the mouse close to any margin, the schedule will scroll in
that direction. This ensures that if you want to move an appointment to a position that is
not currently on the screen, you can still get there by scrolling. When the appointment is
dropped, you will be prompted to confirm the move. This functionality may also be
overridden if desired.

Now that you know how to move an appointment, it is a good time to describe another
very similar action: copy. Moving is a common occurrence for any schedule; however
there are times you may want to copy an appointment as well. If you hold the <CTRL>
key while moving the mouse, the icon will have a small plus sign next to it. This
indicates that you are coping not moving an appointment. When the appointment is
dropped, the original appointment does not change. There will be one more
appointment on the schedule than before the drag. This feature might be used to add a
follow-up for the same person, with all of the same information. For example if John Doe
came in for an exam this week and he needed to come back for another exam next
week, you could copy his appointment to next week. Now all of the information is the
same and you do not need to retype any of it.

 Gravitybox Schedule Primer Page 36

Ó1998-2004 Gravitybox Software LLC

Moving Appointments between Windows

The previous move and copy example displayed the actions being performed on a
single screen. It is possible to drag appointments across windows or even applications.
As in the example you may drag an appointment to another form that has a GbSchedule
component on it. Since this is another instance of GbSchedule, it does not matter if it is
the same screen, a child window, or a different application. The drag will work no matter
what! This feature is nice when building a MDI application. You can construct an
application that allows the user to open different days or rooms or some combination of
both in different windows. If the user opens two, child forms say one for January 12 and
the other for January 13; he will have two instances of GbSchedule. He may then drag
one of the existing appointments to the other window. The original appointment in the
source windows will disappear and the appointment will reappear in the destination
window. There is a little caveat though. For an instance of the schedule to receive drops
from outside of itself, the AllowOtherDrops must be toggled to true. This property
ensures that the schedule is allowed to receive outside drops. If this property is false, no
appointments may be dropped from other schedules. The beauty of this cross-window
dragging is that the source and destination schedules need not be the same format. The
source may display time at the top and the destination may display time on the left. One
may display Rooms while the other may not. They may be displayed in any
combination.

 Gravitybox Schedule Primer Page 37

Ó1998-2004 Gravitybox Software LLC

Chapter 3

Adding Code

So far we have created and application with a schedule in it. We have learned to create
an application with multiple schedules in it and move appointment between those
schedules. However we have not as of yet added any code. Now creating these
schedules are nice, but without code, we can really build nothing but trivial applications.
Chapter 1 showed how to set some other the properties but now we need to learn how
to add code and use some of the events.

Reference Creation

We will begin by looking at the ScheduleItems collection, since this collection is the
most frequently used. The collection has an Add method that allows for the addition of a
new element to the collection. Many properties may be set as parameters in the method
call. There are some exceptions and this is the reason for creating an object reference
to each. In collections, all of the properties of an object may not be set from its parent
Add method. To set all properties would be cumbersome for objects with many
properties and would break compatibility, if more properties were added in future
versions.

There is no parameter in the Add method to set the Id property of a ScheduleItem. An
object reference must be made to set the property contents of the newly added object.
The following code will add an appointment, to the ScheduleItems collection, with the
name of “Appt1”. It will be scheduled on June 3, 2002 in Room 1 at 8:00 AM. It will
display the text “John Doe's Appointment” on the screen.

Call Schedule1.ScheduleItems.Add("Appt1", #6/3/2002#, 1, _
#8:00:00 AM#, 60, "John Doe's Appointment")

As can be seen, there is no parameter to set the Id property, in the Add method. The
developer must reference the last added element and set it. This may be done with the
following code. The Count method returns the total number of item in its collection.
Since the object was the last one added, it will be the last one in the collection. The Id
property may then be referenced and its value set.

Schedule1.ScheduleItems(Schedule1.ScheduleItems.Count).Id =
newId

This syntax is rather cumbersome and could get very messy, if several properties
needed to be set. Also, it issues at least 4 object lookups to find the element. When
setting many properties, this syntax would create slow code very quickly, not to mention

 Gravitybox Schedule Primer Page 38

Ó1998-2004 Gravitybox Software LLC

code that is difficult to read. An alternative is to get a set an object variable to the newly
added object and set its properties. The following code declares an object variable to
point to the newly added ScheduleItem.

Dim oAppt As CScheduleEl

 Set oAppt = Schedule1.ScheduleItems.Add("Appt1", _
 #6/3/2002#, 1, _
 #8:00:00 AM#, 60, "John Doe's Appointment")
 oAppt.Id = newId
 oAppt.ReadOnly = True
 Set oAppt = Nothing

Clearly, the code is much easier to read. This code will also, in theory, run faster. I say
“in theory”, because with this amount of code, no difference will be noticed in speed.
The object variable was not declared with the “New” keyword because a new object
variable of this type may not be created, nor does one ever need to do so. The Add
method of the ScheduleItems collection will create the object, add it to the collection,
and returns a reference. This reference may be used to manipulate the new object’s
properties.

Collection Looping

The same philosophy may be applied to the other collections as well. A Room object
may be added to the Rooms collection in must the same way. A reference to it will be
returned that may be used to manipulate its properties. A Room object has an Id
property that is not defined in the Add method of the Rooms collection. The only way to
set it is after it has been added.

Dim oRoom As CRoomEl

 Set oRoom = Schedule1.Rooms.Add("Green Room")
 oRoom.Id = 57
 Set oRoom = Nothing

This Rooms collection will create a Room object and return a reference to the object.
The object reference is stored it in the “oRoom” object variable. Its “Id” property may
then be set.

This syntax may be used for all the collections of GbSchedule. An object variable for
each collection element type can be created and used to jockey the property values.
Alternately, object variables may be used in loops. This is by far the easiest way to set
property values of objects.

Many times an object’s properties will need to be set using loops. There are three ways
to loop through a collection. The first has been discussed, referencing an object with an
index. An integer, looping variable is declared and a loop is constructed to walk from the

 Gravitybox Schedule Primer Page 39

Ó1998-2004 Gravitybox Software LLC

first to the last element, each time referencing the Item method of the collection by
index.

Dim i As Long

 For i = 1 To Schedule1.ScheduleItems.Count
 Schedule1.ScheduleItems(i).Id = i
 Next I

The second way to loop through a collection is by creating an object variable, of an
appropriate type, and using it, to set the property values. The object variable is set to a
member of the collection, used, and released. This is much easier to read, but still
rather awkward.

Dim oAppt As CScheduleEl
Dim i As Long

 For i = 1 To Schedule1.ScheduleItems.Count
 Set oAppt = Schedule1.ScheduleItems(i)
 oAppt.MinLength = 60
 oAppt.MaxLength = 120
 Set oAppt = Nothing
 Next I

The third way is the easiest to read. It lets the collection do the loop. There is no loop
counter, as in the other two examples. An object variable is declared and the collection
loops through all of its own items. The following syntax allows the collection to do the
looping work and takes some of the coding away from the developer.

Dim oAppt As CScheduleEl

 For Each oAppt In Schedule1.ScheduleItems
 oAppt.MinLength = 60
 oAppt.MaxLength = 120
 Next

In this code, is can be seen that there is no explicit call the to the Item method of the
collection. The call is implicit. The following two code fragments are equivalent.

Debug.Print ScheduleItems(1).Name
Debug.Print ScheduleItems.Item(1).Name

The Item method is the default method of all collections in GbSchedule. There is no
need to specify a call to this method explicitly. There is also a speed issue to consider
when looping. The third looping example is the fastest way to create a loop. An object

 Gravitybox Schedule Primer Page 40

Ó1998-2004 Gravitybox Software LLC

reference is executed much faster than looping with an object’s index as in the second
example. This difference becomes more drastic as the number of items in the loop
increases.

Adding

A good place to start adding code is to manually add an
appointment. This may be accomplished in code, with the
ScheduleItems collection’s Add method. A user can add
appointments, if the AllowAdd property of the schedule has
been set to true. If false, user adds are not permitted. The
user may click the mouse’s left mouse button on the starting
time that he wishes the appointment to begin. He must then
drag the mouse the length of the appointment. The times of the schedule are displayed
in the margin of the schedule. The times are clearly marked for the user to know exactly
the position of the mouse. When the mouse button is released, an appointment is
created. This assumes that the user did make a non-zero length appointment. If the
length of his drag was zero minutes, nothing happens.

If the property AllowAddDialog is set to true, the default property box will appear. This
allows the user to modify key properties of the appointment. This dialog is not
configurable by the developer. If special functionality needs to be added to the property
box, a custom screen needs to be constructed and the default property box canceled.
Alternatively, you may use the ScheduleProperties control. This control is discussed
later and may be used to construct a customized property screen. After the user
completes the editing of properties in the default dialog, he will have two options. First
he may press the “Ok” button, at which point the modified appointment information is
saved. If the user presses the “Cancel” button on the property box, no save will be
performed.

If a property box should not be displayed at all, the AllowAddDialog should be set to
false. When the user creates an appointment, it will appear on the schedule with default
appointment values. There will be no text displayed inside of it. The user may modify
the appointment values later by double-clicking the appointment. The event sequence
will follow the order: BeforeAdd, AfterAdd.

The BeforeAdd event is raised before the appointment is actually added to the
ScheduleItems collection. It will return as parameters the proposed appointment’s date,
room, start time, and length. In addition, there is a Boolean Cancel parameter that will
allow for the cancellation of the Add operation, if so desired. You may add code to this
event to perform whatever error checking you wish. If the AllowAddDialog property is
true, this event may also be used to cancel the dialog by setting the “Cancel” parameter
to false and displaying your own custom dialog. The event may also be used to error
check the parameters and Cancel the addition if necessary. This may be required if the
user tried to create an appointment outside of some bounds that you have set. Perhaps
you wish to cancel all appointments made on weekends.

Quick Tip
When adding many appointments,
toggle the “AutoRedraw” property to
false. This will turn off screen paints
for each object add. When you have
completed the loading, toggle this
property to true, as the screen will
not update when this property is
false. This action will speed your
loads dramatically.

 Gravitybox Schedule Primer Page 41

Ó1998-2004 Gravitybox Software LLC

The AfterAdd event is raised after an item has been added to the ScheduleItems
collection. The event will have the new appointment’s index as its parameter. You may
display your custom dialog box by using this event if it is more appropriate. Make sure
that the AllowAddDialog property to false. This will ensure that the default dialog is not
displayed at all. The AfterAdd event has the index of the newly added ScheduleItem. So
you may create a custom property box and use it to modify the properties of the object
specified by the index parameter. The BeforeEdit and AfterEdit events will be raised as
well, if the default property box is used. The reason the edit events are called is that
after the Add, the operation is a normal edit. So the default behavior for adding an
appointment is BeforeAdd, AfterAdd, BeforeEdit, and AfterEdit.

Moving

A move is defined as changing the StartTime, Date, or Room property of a
ScheduleItem, by dragging it, with the mouse. After an appointment is created, the user
may move the appointment to any other part of the schedule (except NoDrop zones),
with the mouse. This assumes the schedule property AllowMove is set to true, since no
user-initiated moves may occur if this property is false. Also the appointment’s
ReadOnly property may not be true, since moving it would change its position. This
section does not refer to the action taken when using the property box or setting an
appointment’s properties in code. These actions are considered edits. When using a
property box, the events BeforeEdit and AfterEdit are raised. The following refers to the
event sequence when dragging an appointment, with the mouse.

During a move, there are a number of events that come into play. The first event that is
raised is the BeforeDrag event. This occurs to inform you that the user is dragging an
appointment. A Cancel parameter is provided so that the operation may be canceled if
necessary. There is also a drop operation parameter that will inform you as to whether
the operation is a copy or a move. The DragOverScheduleItem event is raised every
time the mouse moves while dragging an appointment. The DragDropScheduleItem
event is finally raised to inform that something was dropped on the schedule (perhaps
not even an appointment).

The next event in sequence is the BeforeMove event. This
event is raised so that any code that needs to be executed,
before a move, is performed. An interesting parameter in
the BeforeMove event is DoPrompt. This is a Boolean value that determines whether
the user will be prompted for a move confirmation. The default value is true, but this
property may be set to false and the appointment will be moved, with no questions
asked. Also the schedule property ConflictWarn allows for the determination of whether
the user is to be prompted about conflicts. When moving an appointment, there is the
possibility that a conflict may occur. If a conflict does occur because of this move and
ConflictWarn is true, the user is prompted by a confirmation dialog to ensure that a
conflict is indeed wanted at this position. If ConflictWarn is false then the appointment
will be moved and a conflict will occur, with no warning to the user.

Quick Tip
To turn off the move prompt, set the
“DoPrompt” parameter in the
BeforeMove event to False.

 Gravitybox Schedule Primer Page 42

Ó1998-2004 Gravitybox Software LLC

After the user has been prompted for the move (or perhaps not prompted) and the
appointment’s properties have been modified, the AfterMove event is raised. Any
cleanup, saving, etc that needs to be done after an appointment move may be
performed here. This event has a single parameter, which is a reference to the newly
moved appointment object.

Coping

A copy is special case of move. A copy will add another
ScheduleItem object to the ScheduleItems collection and
set its StartTime, Date, and Room properties to the new
position. The original appointment will not be changed. The
Copy action is accomplished by holding the <CTRL> key
while dragging an appointment. If the user presses the <CTRL> key while dragging, he
will notice that the mouse pointer has changed from a normal arrow, to an arrow with a
plus sign. This indicates that there will be an extra appointment added to the schedule,
by performing this action.

Much like moving an appointment, coping raises its own sequence of events. The first
event that is raised is the BeforeDrag event, just like the move operation. As with the
previous, there is a Cancel parameter and a drop operation parameter. The
DragOverScheduleItem event is raised every time the mouse moves while dragging an
appointment. The DragDropScheduleItem event is then raised to inform that something
was dropped on the schedule.

The next event in sequence is the BeforeCopy event. This event is raised so that any
code that needs to be executed, before a copy is performed, is done so. It also has a
DoPrompt parameter, which is a Boolean value that determines whether the user will be
prompted, for a copy confirmation. Also remember the schedule property ConflictWarn
allows for the determination of whether the user is prompted about conflicts.

After the user has been prompted for the copy and the appointment’s properties have
been modified, the AfterCopy event is raised. Any cleanup, saving, etc that needs to be
executed, after an appointment copy, is performed here. This event has a single
parameter, which is a reference to the newly copied appointment object.

Editing

The user may edit an appointment, in a variety of ways. The most common way is to
double-click the appointment, for the display of its property box. This assumes that the
AllowEdit property is set to true. The default property box will display the StartTime,
Length, Room, Date, Category, and DisplayText for the selected appointment. There is
also a Notes tab that allows the user to associate some additional text to an
appointment.

Quick Tip
To copy an appointment, press the
<CTRL> button and move an
appointment. When dropping the
appointment, a new one will be
created and the original one will not
be removed, thus a copy.

 Gravitybox Schedule Primer Page 43

Ó1998-2004 Gravitybox Software LLC

If you wish to build your own property screen, you will probably need to cancel the
default property screen. The following code illustrates the actions that should be
performed if a custom property box is to be used. In the BeforeEdit event, the Cancel
parameter must be set to true. This will cancel the default edit. A custom property box
may then be shown from this event. The following code displays an example of how to
display a custom property box. The form “frmProperty” is a customized screen that has
been built to display an appointment’s properties as deemed fit.

Private Sub Schedule1_AfterEdit(ByVal Index As Long)
 Cancel = True
 Load frmProperty
 frmProperty.ScheduleIndex = Index
 frmProperty.Show vbModal
End Sub

It is also possible to modify the ScheduleItem’s DisplayText property without using a
property box. If the schedule’s AllowInPlaceEdit property is true, the user may make the
display portion of an appointment editable by single clicking the mouse on an
appointment. This will start an edit sequence whereby the user may edit the text
displayed on the appointment. The BeforeEditText event will be raised before the text
area becomes editable. This event has a Boolean Cancel parameter and the
ScheduleItem’s index. A successful edit is achieved when the user clicks off of the
appointment or it loses focus. If the <ESCAPE> key is pressed, the edit is canceled and
the property value is not modified. Upon a successful edit, the AfterEditText event is
raised to confirm that the edit was successful.

Deleting

The user may remove an appointment from a schedule (and
from the ScheduleItems collection) by moving the mouse
over the appointment and pressing the <DELETE> key.
This assumes the schedule property AllowDelete is true. The user will be prompted to
remove the appointment. The default remove text may be overridden. The verbiage or
even the language may be changed, if need be. There is a prompt text parameter sent
in to the BeforeDelete event. If the default text is to be changed, set this string to the
desired text here.

Private Sub Schedule1_BeforeDelete(ByVal Index As Long, _
sPrompt As String, Cancel As Boolean)

 sPrompt = "Are you sure that you wish to remove “ & _
“the selected appointment?"

End Sub

Before deleting an appointment the BeforeDelete event is raised and will allow for the
cancellation of the operation. Upon completion of the delete operation, the AfterDelete

Quick Tip
To remove an appointment, move the
mouse over the appointment and
pres the <DELETE> key.

 Gravitybox Schedule Primer Page 44

Ó1998-2004 Gravitybox Software LLC

event is raised to inform that the delete operation was completed successfully. The
event will have the appointment’s old index in the ScheduleItems collections as a
parameter. Do not try to reference this appointment at this point. It has been removed. If
this index exists, it is the appointment that was next in sequence in the ScheduleItems
collection.

Resizing

You may set the size of an appointment in code but this is
rather prohibitive in the real world. When a schedule is
displayed, the user may be allowed to resize an
appointment. He may do this by moving the mouse over the borders of the appointment
then clicking and dragging the desired length. If resizing is allowed, the mouse pointer
will turn to an arrow, either North-South or East-West, depending on which is
appropriate. The pointer will change when the mouse is over the border of the
appointment, not in its interior. Keep in mind that the schedule’s AllowResize property
must be true for any resizing to be done at all.

There AllowItemResizing property selectively allows resizing of all non-read-only
appointments. The possible values of the property are as follows: ircNone,
ircBottomRight, ircTopLeft, or ircAll. The value will determine how much functionality is
allowed. If this property is set to ircNone, no user resizing will be allowed. If it is set to
ircBottomRight, the appointment’s length may be modified. Depending on the
Viewmode property, dragging the right or bottom appointment edge may modify the
length. If the value is ircTopLeft, only StartTime is editable. Again, depending on the
Viewmode, the StartTime may be modified, by dragging the top or left appointment
edge. Lastly, by using the ircAll value, the StartTime and Length of the appointment
may be modified. Essentially this says that both edges of the appointment may be
resized. This property affects all appointments.

‘Length modification only
Schedule1.AllowItemResizing = ircBottomRight

There is additional functionality for an appointment that may
be used. Every appointment has two properties that control
resizing: MinLength and MaxLength. When the user creates
an appointment these values are set to their default value of (–1). This indicates that the
appointment has no restrictions on its size. You have the option of setting these values
to restrict the user from breaking any business rules that have been defined in your
application. If the MinLength is non-zero, the user may not resize the appointment
smaller than this value. Conversely, if the MaxLength is non-zero, the user may not
resize the appointment larger than this value.

'No smaller than 30 minutes
Schedule1.ScheduleItems(3).MinLength = 30
'No larger than 2 hours

Quick Tip
To resize an appointment, drag one
of its resizable edges to the newly
desired position.

Quick Tip
Bound an appointment’s size by
using its MinLength and MaxLength
properties.

 Gravitybox Schedule Primer Page 45

Ó1998-2004 Gravitybox Software LLC

Schedule1.ScheduleItems(3).MaxLength = 120

This code will set the third element in the ScheduleItems collection, so that it may not be
smaller than 30 minutes and no larger than 2 hours.

There are two of events raised as a consequence of
resizing an appointment. The first is the BeforeItemResize
event. This event has as its parameters the appointment’s
index in the ScheduleItems collection and a Boolean Cancel parameter. Once an
appointment is resized the AfterItemResize event is raised with the appointment’s index
as a parameter.

When the user is dragging an edge of an appointment, the WhileItemResize event will
be raised repeatedly. As the user drags an appointment edge, it may be resized many
times before he releases the mouse button. Each resize triggers this event.

AllowOtherDrops

A special Add may be performed if required. A drag of some external object to a
schedule may be desired. This could be a file, picture, etc. Although these items are not
appointments, they might have some significance in your application. In this case, the
schedule property AllowOtherDrops will allow dropping of non-GbSchedule items on the
schedule. This will be performed as follows. The DragDropScheduleItem event will be
raised when the drop has taken place. The BeforeAdd and AfterAdd events will then be
raised, providing an opportunity to do any verification and also to cancel the Add if
necessary. Afterwards the BeforeEdit and AfterEdit events will be raised, in response to
the editing with the default property box.

This action actually takes a bit of work. The source control must be setup as OLEDrag
enabled. This may be accomplished by using three events of the source control. For
example, assume there is a form that has a Listbox and a Schedule on it and the user
should be able to drag a list item from the Listbox and drop it on the Schedule. This may
be accomplished by using the source’s MouseDown event to initiate a drag as follows.

Private Sub List1_MouseDown(Button As Integer, Shift As
Integer, X As Single, Y As Single)

 Call List1.OLEDrag

End Sub

This action will start the drag; however nothing will happen until there is code in other
events as well. The schedule expects a particular type of drag, so this needs to be
defined in the source’s OLEStartDrag event.

Quick Tip
Cancel a user resize in the
“BeforeItemResize” event.

 Gravitybox Schedule Primer Page 46

Ó1998-2004 Gravitybox Software LLC

Private Sub List1_OLEStartDrag(Data As DataObject,
AllowedEffects As Long)

 Call Data.SetData(, Schedule1.OLEDragFormat)
 AllowedEffects = vbDropEffectCopy

End Sub

The OLEStartDrag event is called by the Schedule to test whether this source object is
dragging a valid type. The format may be set to the Schedule’s OLEDragFormat
property.

Private Sub List1_OLESetData(Data As DataObject, DataFormat As
Integer)

 ‘This will create a 90 minute appointment
 Call Data.SetData(Schedule1.CreateByteArray(90),
Schedule1.OLEDragFormat)

End Sub

The source control’s OLESetData event is called by the Schedule when dragging or a
drop has occurred. In this event, the drag format is set to the Schedule’s
OLEDragFormat property. Also the Schedule expects an appointment length for this
format. The data must be a byte array. So that every developer will not need to create
his own byte array creation routine, one is implemented by the Schedule itself. The
CreateByteArray method takes a string value and returns a byte array with its ASCII
codes. If this is sent into the Data object’s SetData method, the schedule will draw an
appointment of this length on itself. If the data entered is invalid or not a number, the
ScheduleIncrement property is used to determine the length of the appointment.

This is not the only way to use the AllowOtherDrops property. When true, any drop will
be valid. The user could drop files from Windows Explorer if he chose to do so. The only
difference is that all of this code would not have been needed and the appointment
would be set to the ScheduleIncrement property. Using the defined technique, allows
the developer to have control over the size of the appointment to be created.

Default Property Window

You may choose to use the default property window
included in the control. If the other properties like AllowAdd
and AllowEdit permit, the default property window will be
displayed when the user adds or double-clicks and appointment. You may cancel this
functionality in the BeforeAdd or BeforeEdit events by setting the “Cancel” parameter to
false. The AllowAddDialog property also plays a part. Assuming that the property
settings of the control permit, the user will see the default property window. The window

Quick Tip
You may use the default property
window instead of building your own
custom edit screen.

 Gravitybox Schedule Primer Page 47

Ó1998-2004 Gravitybox Software LLC

may be shown modal or non-modal depending on the property “DefaultDialogModal”. In
Figure 3.1, the window is shown non-modal. Notice that there is an “Apply” button. This
will allow the user to save changes to the main schedule without closing the property
window. Also notice that there is a “Minimize” button for the window. This allows the
user to minimize the property window. When the default property window is shown in a
non-modal fashion, multiple windows may be open at the same time. No more than one
per appointment may be open, but there may be several windows open each for a
different appointment.

Figure 3.1

If the default property window is set to open in a modal fashion then only one per
schedule may be open and the user may not minimize the window at any time. The
screen is displayed and requires user interaction before it may be closed. Also the
“Apply” button does not appear on a modal window since the user must either choose to
save or cancel, both of which close the property window.

Custom Icons

In many instances you may wish to add custom icons to
your appointments. These icons may signify special events
or information relevant to your application. GbSchedule
provides a way to do this simply. The Microsoft common controls are required for this
action. Put an ImageList on a form and load it with all of the icons that you want to be
displayed on any of the appointments. Make sure that the ImageList is set to display
16x16 icons and set its “UseMaskColor” to true.

Quick Tip
Add custom icons to any
appointment by using its “Icons”
collection and an ImageList control.

 Gravitybox Schedule Primer Page 48

Ó1998-2004 Gravitybox Software LLC

Each ScheduleItem has an “Icons” collection. This is merely a collection of names. If
you wish to use a particular icon from the ImageList, simply add its key to the
ScheduleItem’s Icons collection. When a schedule is repainted it will check to determine
if the associated icon key exists in the ImageList. If it does it is painted on the
appointment. Icons are displayed in the order [1..N] that they are present in the
appointment’s Icons collection. Invalid icons keys are skipped and no error occurs.
Keep in mind that the standard icons are dislayed first and the custom icons are
displayed thereafter. A standard icon is one that is predefined by the schedule; these
include the Alarm property icon, partially displayed icon, and Recurrence icon.

 Gravitybox Schedule Primer Page 49

Ó1998-2004 Gravitybox Software LLC

Chapter 4

File Maintenance

The schedule has the capability to save its data to a file and
retrieve it later. Although most applications will probably use
a database to save and load information, there may be
times when a database is too much overhead. The added
file functionality will make it very easy to build ”lightweight”
applications. An application may be constructed to allow a user to open and save files,
with the common dialog control or you may wish to handle all of the specifics in the
background.

ImportXML

The ImportXML method will load a saved schedule. It takes a CXMLParameters object
as a parameter. This object will allow the properties that control the load, to be set. This
method will load the ScheduleItems collection previously committed to file. It will also
selectively load other collections: Categories, Providers, Rooms, and NoDropAreas.
These collections may be toggled to load using the following properties of the parameter
object.

Table 4.1
ImportXML / ExportXML Parameters

EmployGMT When True, this property will save the appointment’s
StartTime property in Greenwich Mean Time (GMT). This
may be used when trading schedules across time zones.
When saved in this format, the schedule file may be loaded
on another machine and the schedule will reflect the
current time zone.

FileName This is the filename of the saved schedule.

Overwrite This flag determines if the file is overwritten if it exists.
(ExportXML only)

UseCategories This Boolean flag determines whether the Categories
collection is loaded and saved.

UseRooms This Boolean flag determines whether the Rooms
collection is loaded or saved.

UseProviders This Boolean flag determines whether the Providers
collection is loaded and saved.

UseNoDropAreas This Boolean flag determines whether the NoDropAreas
collection is loaded and saved.

UseAllCollections This method takes a Boolean parameter and sets all the
”Use…” properties to the specified value.

Quick Tip
If you need to save a schedule but do
not wish to distribute DAO or ADO
database layers, you may use the
“ImportXML” and “ExportXML”
methods to save/load information.

 Gravitybox Schedule Primer Page 50

Ó1998-2004 Gravitybox Software LLC

The following code will load all the data a file contains.

Public Sub Save()

Dim oXMLParameters As CXMLParameters

 Call oXMLParameters.UseAllCollections(True)
 oXMLParameters.FileName = "c:\schedule.gcf"
 Call Schedule1.ImportXML(oXMLParameters)
 Set oXMLParameters = Nothing

End Sub

The UseAllCollections method was invoked to set all the load flags for all the collections
to true. This will load the data for each of those collections, if data exists in the file.

ExportXML

A schedule may be saved using the ExportXML method. It also takes a
CXMLParameters object as a parameter, though more of its properties are used. The
object may be setup just as if calling the ImportXML routine, with the exception that the
Overwrite Boolean flag may be set to true, to overwrite the file, if it exists.

Dim oXMLParameters As CXMLParameters

 Call oXMLParameters.UseAllCollections(True)
 oXMLParameters.FileName = "c:\schedule.gcf"
 oXMLParameters.Overwrite = True
 Call Schedule1.ExportXML(oXMLParameters)
 Set oXMLParameters = Nothing

Do remember when loading a file, no information on a schedule is removed. If a
schedule has one appointment on it and a saved file is loaded with two appointments in
it, there will be total of three appointments on the schedule, after the load. If there is
previous information in a schedule collection, it will probably need to be cleared before a
file is loaded. Clearing first will ensure that after a load, the only items in a schedule
collection are the items loaded from file. This action is not necessary however. If two or
more schedules are being merged, multiple loads without first clearing is desirable.

Which collections to save is a concern as well. It may be desired to save only the
ScheduleItems collection. Perhaps there is no need for information in the other
collections. There may be a standard format an application has, with common
Providers, Categories, etc. In this case, it is redundant to save the information that is
already known. The other collections may be toggled off. The ScheduleItems collection

 Gravitybox Schedule Primer Page 51

Ó1998-2004 Gravitybox Software LLC

can never be toggled off. It is always saved and loaded when these methods are used.
The two code fragments that follow are equivalent. The first sets all the ”Use…”
properties individually and the second sets them all at once.

’Set Seperately
oXMLParameters.UseCategories = True
oXMLParameters.UseRooms = True
oXMLParameters.UseProviders = True
oXMLParameters.UseNoDropAreas = True

’Set all at once
Call oXMLParameters.UseAllCollections(True)

The second code fragment is just easier to read and more compact. If some collections
are to be saved and not others, the ”Use…” properties must to be set separately.

The file format is a markup language. The file uses tags like HTML and XML. Each
element in a collection is saved, wrapped in its property name. This makes the file
easier to read than binary file. It may also be edited, if need be. Since the file is text,
other programs may be created to read, modify, or save schedules. An auxiliary
application may be created that generates a GbSchedule file that is read into the
GbSchedule ActiveX control. An example of the file tags is displayed here. The example
is a file fragment of that describes one appointment.

<Appointment>
 <Alarm>False</Alarm>
 <BackColor>16777215</BackColor>
 <BlackOut>False</BlackOut>
 <Category>Category1</Category>
 <DisplayText>qwe</DisplayText>
 <ForeColor>0</ForeColor>
 <Id>0</Id>
 <ItemData>0</ItemData>
 <StartDate>1/2/02</StartDate>
 <Length>90</Length>
 <MaxLength>-1</MaxLength>
 <MinLength>-1</MinLength>
 <Priority>0</Priority>
 <ReadOnly>False</ReadOnly>
 <Room>Room1</Room>
 <StartTime>10:00:00 AM</StartTime>
 <ScheduleCategories>
 </ScheduleCategories>
</Appointment>

 Gravitybox Schedule Primer Page 52

Ó1998-2004 Gravitybox Software LLC

Also the StartDate and StartTime properties may be
influenced by the EmployGMT property. If EmployGMT is
True, the export routine will add (or subtract) the necessary
number of hours to make the StartDate and StartTime
correspond to GMT. When a schedule is loaded with this
property also set to true, the calculation will be done in reverse, based on the time zone
of the computer performing the load. For example, if an appointment at 2:00 PM is
saved on a computer in the Eastern Standard Time (EST), which is GMT –5 hours, the
saved file will have 7:00 PM for its StartTime property. This is because at 2:00 PM EST
it is 7:00 GMT. Now this file is sent to California, which is Pacific Standard Time (PST)
or GMT –8 hours. When loaded the 7:00 PM file setting will be converted to 11:00 AM.
So the west coast user will see that this appointment starts at 11:00 AM local time,
which is correct. This is the same as 2:00 PM EST for the east coast user. If the
EmployGMT property is False (default value), the time loaded and saved will be exactly
as it appears on the schedule.

Notice that each element is described by its tags. The schedule uses these tags to save
and load information into the correct elements. The language is a simple markup
language. It conforms for the most part to the XML standard. It differs in that you cannot
add a data definition template header. However since the software is creating the files
and not the user, this should not be a problem. The markup language is all that is
needed for the uses of this scheduling software. To create an application that can read
or save a ”gcf” (Gravitybox Calendar File) file, its file format must be used. The code
below defines all the collections saved in the file. If this code were saved to a file, it
would load successfully, however there would be no data loaded.

<?xml version='1.0'?>
<?Properties ScheduleIncrement='30'?>

<!-- This is a GbSchedule saved schedule. -->

<GbSchedule version='6.2.342'>
 <ScheduleRooms/>
 <ScheduleCategories/>
 <ScheduleProviders/>
 <ScheduleNoDropAreas/>
 <ScheduleItems/>
</GbSchedule>

The order of loading is determined by how the file is organized. If the Categories
collection is first in the file and Providers second, this is the order of loading. Unless
manually modified, it will be loaded as it was saved. The procedure for saving is as
follows: Rooms, Categories, Providers, NoDropAreas, and ScheduleItems.

Quick Tip
If you are distributing schedules to
people in other time zones, you may
use Greenwich Mean Time (GMT).
This will ensure that time differences
are not lost.

 Gravitybox Schedule Primer Page 53

Ó1998-2004 Gravitybox Software LLC

Rooms

If there are objects in the collections, they will be saved inside their respective object
tags. The Rooms collection with one Room object named ”Room1” would be saved as
follows.

<ScheduleRooms>
 <Room>
 <Name>Room1</Name>
 <Id>0</Id>
 </Room>
</ScheduleRooms>

If more rooms were present, there would be more ”<Room></Room>” tags pairs
defined.

Categories

Categories are defined in much the same way. A Category object has more properties
than a Room object. This is solved by adding more tags.

<Category>
 <Name>Category1</Name>
 <Id>0</Id>
 <Color>16711680</Color>
</Category>

As was seen earlier, with the ScheduleItems object, a Category object defines each of
its properties with a tag and wraps the property’s data in the tag. This example shows
that a Category object has three properties: Name, Id, and Color.

Providers

 The Providers collection defines the people that work with a schedule. Each has
multiple properties that need saving. The properties that are present on the Provider
object are the same tags that are defined in the file. This makes it obvious that there is a
one-to-one map of object properties to file tags.

<Provider>
 <Name>John</Name>
 <Id>0</Id>
 <Color>16711680</Color>
 <ScheduleTimes/>
</Provider>

 Gravitybox Schedule Primer Page 54

Ó1998-2004 Gravitybox Software LLC

NoDropAreas Collection

 Finally, there is the NoDropAreas collection. This collection saves the data that
define NoDrop zones.

<NoDropAreas>
 <NoDropArea>
 <SelDate>6/12/02</SelDate>
 <Room>2</Room>
 <StartTime>12:00:00 PM</StartTime>
 <Length>60</Length>
 </NoDropArea>
</NoDropAreas>

Note: The file format saves some characters in hexadecimal format. The letters,
numbers and selected punctuation are displayed in the file as plain ASCII. All other
characters are saved in the format ”&00”, where the ”00” is its hexadecimal ASCII code.

 This ability to create XML files open doors for other functionality. You may wish
to construct an application that opens a port to listen for other scheduling applications
that send information to you. You may construct a set of applications that reside at
different locations and use the Internet to coordinate schedules back and forth. Since
you can use the ImportXML method to merge other appointments from a file with the
current configuration of the schedule, this type of application could conceivability be
built. You may even build a server component that coordinates all client programs. The
server may receive XML schedules and send them to their respective destinations. The
possibilities are endless.

 Gravitybox Schedule Primer Page 55

Ó1998-2004 Gravitybox Software LLC

Chapter 5

Database Access

In Chapter 4, we learned how to save and load information to files. This may work on a
limited scale. In this scenario, all schedules are saved in their own separate files. This
makes searching through multiple schedules extremely difficult. For a serious
application, you need the power of a database. A database can be your repository of
appointments and other information that may be loaded, searched, and saved at will.
You may also only load the information you need. It is possible to accumulate years of
appointment data. You defiantly would not want to load every appointment for 10 years
just to see today’s appointments. This is the muscle of a database used in conjunction
with the schedule. This chapter basically creates an example application and perhaps
should be in the examples section; however it pertains more to the database access
category than it does to the example category. This is actually another example
application and its code may be downloaded from the Gravitybox website.

Creating the Table Structure

The first thing to be done is to create the table structure. We need to decide on a
structure that will save all of our information in an efficient format. Let us assume that
we are building an application to schedule patients. We will need to keep up with the
patients as well as their appointments.

We will define a simple scheduling database. We will build an application that displays
the rooms of an office, so the schedule will be in room-only mode. We will display each
day in a separate window and make all schedules MDI child windows. This will organize
the display somewhat so that the user may view one day in a window. We will assume
that we need to add the functionality to setup categories and rooms as well.

We will need three tables: Category, Room, and Schedule. These will save all of the
information that is needed to construct a fully functional database scheduling
application. The first two tables are configuration tables and the last table stores the
appointments. For a bare-bones application we would really only need the Schedule
table, but we are going to allow the user to configure categories and rooms as well.

We start with the “Room” table. It will store each room that is to be displayed. The table
structure follows.

RoomId AutoNumber
Name String
SortOrder Long Integer

 Gravitybox Schedule Primer Page 56

Ó1998-2004 Gravitybox Software LLC

The “RoomId” field will create a unique key by which each room may be identified. The
“Name” field is the text that is displayed for a room on the schedule. Finally the
“SortOrder” field allows the user to control the order in which the rooms are displayed.
After adding a room the user may set the order in which each appears The table
structure, though simple, will serve our needed purpose of storing room configurations.

The other configuration table is the “Category” table. Each appointment may have an
associated category. This will appear as a colored bar in its left margin. This aids the
user in summarizing information about an appointment without having to look at a detail
screen. A category is nothing more than a name and a color. The table definition may
be defined as follows.

CategoryId AutoNumber
Name String
Color Long Integer
SortOrder Long Integer

The table is similar to the “Room” table with the addition of the “Color” field. This field is
used to store the numeric value of a color. This is the color of the category bars drawn
on the schedule to visually represents the category. This other fields serve the same
purposes as they do in the “Room” table, to provider a unique key, display name, and
order.

Finally the main table is named “Schedule”. This table will store all of the necessary
information for an appointment. The following fields define an appointment: Date,
StartTime, Length, Description, Room, and Category.

ScheduleId AutoNumber
StartDate Date
StartTime Time
Length Long Integer
Description String
RoomId Long Integer
CategoryId Long Integer

The “ScheduleId” field will create a unique key for this appointment. The “RoomId”
property is a pointer to the “Room” table. This will be a reference to some record in that
table. The “CategoryId” field does much the same. It references some record in the
“Category” table. The other properties are self-explanatory.

Loading Appointments

Now that the table structure is defined, we will build the code that accesses those tables
to load the schedule. After the user chooses a date to load, it is handed to a routine that
will open the database and retrieve the appropriate records. On the MDI child form the
“LoadSchedule” performs this action.

 Gravitybox Schedule Primer Page 57

Ó1998-2004 Gravitybox Software LLC

Private Sub LoadSchedule()

'This procedure Loads a Schedule from the database
'and populates this form. This method assumes a
'database with a table named “tbl_Schedule” and
'also a schedule control named “Schedule1”

Dim Db As ADODB.Connection
Dim rs As ADODB.Recordset

 'Load this day's information from the Database
 Set Db = New ADODB.Connection
 Db.ConnectionString = GetConnectString & _
 AppPath & "schedule.mdb"
 Call Db.Open
 Set rs = New ADODB.Recordset
 Set rs = Db.Execute("select * from tbl_Schedule where
StartDate = #1/1/2002#")

 'Loop through and display all the appointments
 While Not rs.EOF
 Call Me.Schedule1.ScheduleItems.Add("", _
 #1/1/2002#, rs!RoomName, _
 rs!StartTime, rs!Length, _
 rs!Description, rs!CategoryName & "")
 Call rs.MoveNext
 Wend

End Sub

This code will load the all of the appointments that have been scheduled for this
particular date.

 Before the appointments are loaded, there is code to load the rooms and
categories of the schedule. This is necessary for the schedule is display correctly, of
course. The rooms are loaded from the database where they have been previously
setup from the room configuration screen. That screen allows the user to specify a
number of rooms and a name for each.

Private Sub LoadRooms()

'This procedure Loads a Schedule from the database

Dim Db As ADODB.Connection
Dim rs As ADODB.Recordset
Dim objRoom As CRoomEl

 Gravitybox Schedule Primer Page 58

Ó1998-2004 Gravitybox Software LLC

 'Load this day's information from the Database
 Set Db = New ADODB.Connection
 Db.ConnectionString = GetConnectString & AppPath _
 & "schedule.mdb"
 Call Db.Open
 Set rs = New ADODB.Recordset
 Set rs = Db.Execute("select * from Room order by SortOrder")

 'Loop through and display all the appointments
 Call Me.Schedule1.Rooms.Clear
 While Not rs.EOF
 Set objRoom = Me.Schedule1.Rooms.Add(rs!Name)
 objRoom.Id = rs!RoomId
 Call rs.MoveNext
 Wend

 Set Db = Nothing
 Set rs = Nothing

End Sub

 In this example, we are going to give the user the capability of assigning a
category to each appointment. This will give a graphical use to the schedule. The viewer
can see at a glance to which category an appointment belongs by looking at the colored
bar in its left margin. Category setup is very similar to room setup with the addition of a
color parameter. The following code will load the defined categories from the database
into the schedule’s Categories collection.

Private Sub LoadCategories()

'This procedure Loads a Schedule from the database

Dim Db As ADODB.Connection
Dim rs As ADODB.Recordset
Dim objCategory As CCategoryEl

 'Load this day's information from the Database
 Set Db = New ADODB.Connection
 Db.ConnectionString = GetConnectString & _
 AppPath & "schedule.mdb"
 Db.Open
 Set rs = New ADODB.Recordset
 Set rs = Db.Execute("select * from Category order by
SortOrder")

 'Loop through and display all the appointments

 Gravitybox Schedule Primer Page 59

Ó1998-2004 Gravitybox Software LLC

 Call Me.Schedule1.Categories.Clear
 While Not rs.EOF
 Set objCategory = Me.Schedule1.Categories.Add(rs!Name,
rs!Color)
 objCategory.Id = rs!CategoryId
 Call rs.MoveNext
 Wend

 Set Db = Nothing
 Set rs = Nothing

End Sub

Saving Appointments

Now that we have addressed loading, we need to think about how to get all of that
information into the database in the first place. The saving routines should not be very
difficult to understand after viewing the loading routines. The save method will remove
the appointments for the specified date and save the ones on the schedule as that
date’s new appointments.

This is not a perfect scheme. Some will disagree with removing appointments that have
not changed only to read them. This is a valid point but the code was written this way for
a few reasons. First this is an example of how to save to a database, not a tutorial on
algorithm perfection. This said, I agree that examples should teach the “correct” way to
build code and this is a perfectly valid way to build it. There is a more important reason
that we are removing all appointments first; appointment moves. Posit, in an MDI
environment, the user may open multiple dates. This database example application
opens one window for each day. If the user opens two (or more) days and moves an
appointment from one day to the other, there is a problem at save time. If you choose to
merely loop through the appointments and save those appointments that have their
“IsDirty” property set to true, you will add an extra appointment each time you move
across windows. This is because the source schedule will lose an appointment and
since no appointments on the schedule have changed, you save nothing. The
destination schedule has one new appointment, so you save it. Now think about it, the
source date still has the moved appointment in the database. Now you save the same
appointment with the destination date. You have one more appointment than the
number with which you started. You may use the appointment’s UniqueKey property to
overcome this limitation, but this is beyond the current scope.

Public Sub SaveSchedule()

'This procedure saves a schedule to the database

Dim Db As ADODB.Connection
Dim sSql As String
Dim lCategoryId As Long

 Gravitybox Schedule Primer Page 60

Ó1998-2004 Gravitybox Software LLC

Dim oAppt As CScheduleEl

 Set Db = New ADODB.Connection
 Db.ConnectionString = GetConnectString & AppPath & _
 "schedule.mdb"
 Call Db.Open

 sSql = "delete from tbl_Schedule where StartDate “ & _
 “ = #1/1/2002#"
 Call Db.Execute(sSql)
 For Each oAppt In Schedule1.ScheduleItems

 If Schedule1.Categories.Exists(oAppt.Category) Then
 lCategoryId = Schedule1.Categories(oAppt.Category).Id
 Else
 lCategoryId = 0
 End If

 sSql = "insert into tbl_Schedule (StartDate, " & _
 "StartTime , Length, Description, RoomId, " & _
 "CategoryId) values (" & _
 "#1/1/2002#," & _
 "#" & oAppt.StartTime & "#," & _
 oAppt.Length & "," & _
 "'" & oAppt.DisplayText & "'," & _
 Schedule1.Rooms(oAppt.Room).Id & "," & _
 lCategoryId & ")"
 Call Db.Execute(sSql)
 Next

 Changed = False

End Sub

 This example illustrates the reason we remove all appointments and resave
them. There are other schemes of course, some of which may be quite complicated.
You could, for example, store the appointment’s database key in the ScheduleItem’s Id
property. Then on save the source date’s schedule, you could update the appointment
by adding this “Id” to a SQL where clause, to uniquely identify the appointment.
However you must also loop and create a delete query to remove all appointments that
are not now in the set of appointments for a particular date. Does that sound
complicated? It is a bit and depending on the database and number of appointments
could be quite time consuming as well. I have chosen the quick and dirty approach. You
may feel free to construct arbitrarily, complex algorithms that accomplish the same thing
as I have done here with minimal code.

 Gravitybox Schedule Primer Page 61

Ó1998-2004 Gravitybox Software LLC

 I think that this demonstrates quite well how to build a simple database program
with the schedule. It does however only show the loading and saving of appointments.
Perhaps you wish to configure rooms, categories, providers, etc. We have seen how to
load room and categories, but how do we configure and add them? We will start by
creating a simple Room configuration screen.

Figure 5.1

 We start by creating the screen. I have chosen to use standard controls like list
boxes and buttons because this is the lowest common denominator for learning and
also ensures that everyone can create the screen, without any other third-party
components. The setup screen will have a listbox and five configuration buttons, in
addition to the Ok and Cancel buttons. The configuration buttons will consist of an add,
rename, and remove button, as well as the up and down buttons. The first three do
exactly what they are named. The up and down buttons allow the user to specify the
order in which the rooms are displayed on the schedule, by reordering previously added
rooms.

 We will store the database information in a temporary collection while the
configuration screen is visible. This is done so that we may make changes and they will
not be saved until we wish for them to be saved. The program contains the “CItemCol”
and “CItemEl” class definitions. The first one will be used to create a collection of
objects that will store the necessary information for each room.

Option Explicit

Dim Rooms As New CItemCol
Dim Changed As Boolean
Dim arrDeleted() As Long

Also notice in the form’s declaration section there is a “Changed” variable. This stores
the dirty state of the screen. It is used to determine if the screen needs to be saved

 Gravitybox Schedule Primer Page 62

Ó1998-2004 Gravitybox Software LLC

upon exit. The deleted array will store the Id of any room that has been removed while
using the screen.

Public Sub LoadForm()

Dim NewEl As clsItemEl
Dim Db As ADODB.Connection
Dim rs As ADODB.Recordset

 Set Db = New ADODB.Connection
 Db.ConnectionString = GetConnectString & AppPath _
 & "schedule.mdb"
 Db.Open
 Set rs = New ADODB.Recordset
 Set rs = Db.Execute("select * from [Room] order by
sortorder")

 Call Rooms.Clear
 While Not rs.EOF
 Set NewEl = Rooms.Add(rs!Name)
 NewEl.Id = rs!RoomId
 rs.MoveNext
 Wend

 'Deallocate objects
 Call rs.Close
 Call Db.Close
 Set rs = Nothing
 Set Db = Nothing

 Call Redraw

End Sub

 After the Rooms collection is loaded, we need populate the listbox with the room
names. This is performed in the “Redraw” method. It will clear the listbox and load it with
the contents of the Rooms collection.

Private Sub Redraw()

'Reloads the combo with the Rooms

Dim i As Integer

 Call lstRoom.Clear
 For i = 1 To Rooms.Count
 Call lstRoom.AddItem(Rooms(i).Name)

 Gravitybox Schedule Primer Page 63

Ó1998-2004 Gravitybox Software LLC

 Next i

End Sub

 The “SaveForm” method will save the configuration the user has specified. It
loops through the Rooms collection, to determine if the room has a database entry. If it
does its “Id” property is non-zero. On load from the database, each room has its unique
non-zero number stored in its “Id” property. If the room was added in this session of the
configuration, it has not been saved to the database yet. If there is no database record
then one must be created. It there is a record then the record must be updated. After
the save have been performed, we loop through the deleted array and remove all of
these room entries from the database.

Private Sub SaveForm()

Dim i As Integer
Dim NewEl As CItemEl
Dim Db As ADODB.Connection
Dim sSql As String
Dim oRoom As CRoomEl

 Set Db = New ADODB.Connection
 Db.ConnectionString = GetConnectString & _
 AppPath & "schedule.mdb"
 Call Db.Open

 For Each oRoom In Rooms
 If oRoom.Id = 0 Then
 sSql = "insert into [Room] (Name, SortOrder) " & _
 "values ('" & DoubleChar(oRoom.Name, "'") & _
 "', " & i & ")"
 Else
 sSql = "update [Room] set Name ='" & _
 DoubleChar(oRoom.Name, "'") & _
 "', SortOrder=" & i & _
 " where RoomId = " & oRoom.Id
 End If

 Call Db.Execute(sSql)

 Next i

 'Delete all the one we removed in this session
 For i = 0 To UBound(arrDeleted) - 1
 sSql = "delete from [Room] " & _
 "where RoomId = " & arrDeleted(i)
 Call Db.Execute(sSql)

 Gravitybox Schedule Primer Page 64

Ó1998-2004 Gravitybox Software LLC

 Next i

 'Deallocate objects
 Call Db.Close
 Set Db = Nothing

End Sub

 The Categories screen is setup in a very similar way. This only difference being
that it has the extra property of “Color” defined. The loading and saving of the
categories is almost identical. Though not a part of this database example, a Providers
collection could also be defined similarly. Each ScheduleItem on the schedule has a
“Provider” property that may be mapped to an element in the schedule’s “Providers”
collection. This is used to define a set of people associated with a schedule. They too
may have a related color, that displays in the appointment’s left margin, if need be.

This concludes the database example. There are many ways to implement this
functionality. The proposed methods are only guidelines. There are schemes that differ
in complexity but accomplish the same task: database saves and loads. This was
simple scheme and may not scale well. However for most applications there may be no
advantage to spending countless weeks optimizing convoluted algorithms. Then again
may be there will be for your situation.

 Gravitybox Schedule Primer Page 65

Ó1998-2004 Gravitybox Software LLC

Part III
Display Modes

My cup runneth over.

-Psalm xxiii. 5

Chapter 6 What is a DisplayMode?
Chapter 7 Area Availability

 Gravitybox Schedule Primer Page 67

Ó1998-2004 Gravitybox Software LLC

Chapter 6

What is a DisplayMode?

There is more than one way to display a schedule. GbSchedule makes multiple display
modes available. A display mode is nothing more than a set of properties that define a
“look-and-feel” of a particular schedule layout. Many users require specific ways to
display data tailored to their exact needs. To keep the control as general-purpose as
possible, very few properties may be used to control the display in a remarkable variety
of ways. The property that most notably controls the display behavior of the schedule is
the Viewmode.

ViewMode

The Viewmode property determines the actual layout of the schedule. A wide variety of
displays may be had. You may control the display of the days, rooms, and times with
this property. The visibility of each may be toggled on and off. Also the position of each
may be changed. For example the time may be displayed in the top margin and the
dates in the left margin.

Viewmode Property Settings
vmcNormalDayTopTimeLeft – The days are displayed on the top and the time
increments are displayed in the left margin, There are no rooms displayed.

vmcNormalRoomTopTimeLeft - The rooms are displayed on the top and the
time increments are displayed in the left margin, There are no days displayed.

vmcNormalDayRoomTopTimeLeft – The days and rooms are displayed on top
and the time increments are displayed in the left margin.

vmcNormalDayLeftTimeTop - The days are displayed in the left margin and the
time increments are displayed in the top margin, There are no rooms displayed.

vmcNormalRoomLeftTimeTop – The rooms are displayed in the left margin and
the time increments are displayed in the top margin, There are no days
displayed.

vmcNormalDayRoomLeftTimeTop - The days and rooms are displayed in the
left margin and the time increments are displayed in the top margin.

vmcNormalDayLeftRoomTopNoTime – The days are displayed in the left margin
and the rooms are displayed in the top margin. There are no times displayed.

vmcNormalDayTopRoomLeftNoTime - The rooms are displayed in the left
margin and the days are displayed in the top margin. There are no times
displayed.

vmcMonth – The schedule is displayed one month at a time. This is a calendar
with appointments listed in the day cells.

vmcList – The schedule is displayed one day at a time. Each day has times
listed vertically and the appointments placed at their respective times.

 Gravitybox Schedule Primer Page 68

Ó1998-2004 Gravitybox Software LLC

The many view modes allow the schedule to be displayed in almost any fashion that
you may need. The display the days on the top axis and the times, you set the
Viewmode property to the “vmcNormalDayLeftTimeTop” setting. This creates a
schedule similar to the schedule in Figure 6.1.

Figure 6.1

If Viewmode is set the “vmcNormalRoomTopTimeLeft” setting, the control displays only
room information. There will be no dates displayed on either margin. Rooms as defined
by the Rooms collection and will appear opposed by times in the opposite margin.

Figure 6.2

Another useful way to display the schedule is to combine days with rooms. This will
allow you to define a number of days that are associated with each day. For each day,
every Room in the Rooms collection will be displayed. This means that Room1 for Day1
may be scheduled separately from Room1 for Day2.

 Gravitybox Schedule Primer Page 69

Ó1998-2004 Gravitybox Software LLC

Figure 6.3

Each of the above property settings also has a reverse setting in their positioning.
Instead of displaying the time in the left margin, you may choose to display it in the top
margin. There is no right or wrong way. The correctness of the positioning depends on
the needs of your application. In contrast to the previous figure, the times of Figure 6.4
are displayed in the top margin.

Figure 6.4

The schedule may also be displayed without any times at all. The rooms and days may
be plotted against each other, with one in the left margin and the other in the top margin
bringing the total to eight “normal” modes.

The Provider and Category collections will be displayed only
when the times are visible and they are displayed in the left
margin. When the time is displayed on the top of the
schedule, only basic schedule information is displayed. This is a limitation of the
schedule of this time. The colored bars that describe providers and categories are only
visible if the time is displayed on the left as well.

Quick Tip
Provider and Category information is
not displayed in every ViewMode.

 Gravitybox Schedule Primer Page 70

Ó1998-2004 Gravitybox Software LLC

A schedule may also be set to display a month at a time using the “Month” mode
setting. Depending on the MinDate and MaxDate settings, a scroll bar may appear to
allow for the scrolling through the allowed range of time. Even if the MinDate and
MaxDate are the same, the schedule will display one month. There is no way to display
only part of a month. The schedule display is formatted as a standard calendar. The
range of the schedule is determined by the month and year of the MinDate and
MaxDate. The minimum and maximum range is not determined by the days of these
two dates. In “Month” mode all months start on the first and end on the last day of the
specified month. The schedule property “FirstDayOfWeek” determines the day of the
week that is displayed in the first column. The default is Sunday, however it may be set
to any day of the week. If your application is being deployed in Europe, you may wish to
set this property to Monday for the comfort of users.

Figure 6.5

The third view is “List” mode. This allows the user to view the schedule in a list from top
to bottom, with appointment displayed in descending order. You may optionally choose
to display appointments in two fashions. All times can be listed with appointments
placed at their respective places in the time list or the appointments may be displayed
alone with no time list. In “List” mode, the appointment’s notes may be displayed and
edited on the right side of the screen if necessary. The notes section may be toggled on
and off based on the need to the containing application. When toggled on the schedule
is displayed in a two-page format with a dividing binder in the middle. If the notes
section has been toggled off, the display is one page with no divider.

 Gravitybox Schedule Primer Page 71

Ó1998-2004 Gravitybox Software LLC

Figure 6.6

Appointments may be dragged from a schedule in any view
and dropped on any another schedule of any view. For the
most part, there are no surprised or anomalies. There are
caveats to keep in mind. If an appointment is created in
“Month” or “List” mode it has no Room property. More precisely its room property is set
to 0. If the ViewMode is toggled to “Normal” mode and the DayRoomMode is set to
“RoomOnly” or “Both” mode then the appointments previously created will not be
displayed. This is because those appointments have their Room property set to 0 and
this room never exists. So when the schedule is attempting to display appointments it
does not find any valid room for these and thus does not draw them. This applies to
appointments with any invalid Room value. If an appointment is created in “Both” mode
with dates and rooms displayed then the appointment will have a valid Room value. If
the schedule is toggled to “Month” mode this value is retained even though there are no
Rooms in “Month” mode. It an appointment is moved or copied its Room value stays in
tact. If the schedule is toggle back to “Normal” mode then it will still be displayed in the
same Room as it was originally created.

WeekNumbers

In many countries user will demand to view the week
numbers on their schedule or calendar. For instance, in
Europe many people are accustomed to specifying days
with the week number like so: “Tuesday of the 23 week in 2003”. To make your
application more suited to these users you may wish to include this functionality on your
schedule. Using the AllowWeekMargin and WeekMarginCaption properties, you may
customize the look of the schedule. The AllowWeekMargin property will turn on week
numbering so that the actual number is visible. The WeekMarginCaption property allows
you to ad a small description of what the number is. In calendar mode there is very little
room so the description might be simply “w” to indicate week. However in another

Quick Tip
Be careful of information that is lost
or created when dragging
appointments between schedules
with differing ViewModes.

Quick Tip
European and Asian applications
may wish to display the week number
in Month mode.

 Gravitybox Schedule Primer Page 72

Ó1998-2004 Gravitybox Software LLC

language you could change the text it to reflect the local word for week. Currently week
number of only displayed in List mode and Calendar mode. All of this adds to the
internationalization of your application. Also, if you ever need to determine the week
number of date the method “GetWeekNum” method returns this information.

ScheduleIncrement

Every schedule will have different resolution needs. This
property will allow the schedule resolution to be configured
in relation to time increments. The property defines the
smallest time block visible on the schedule. The displayed time must be carved into
some sized pieces. This property provides the time slice size. Each one the valid values
for this property is a factor of 60. This is the number of minutes in an hour and the hour
must be sliced evenly for a coherent display. Its possible values are 1, 2, 3, 4, 5, 6, 10,
12, 15, 20, 30, and 60. For example, if the ScheduleIncrement is set to 20 minutes,
every hour will be displayed across three rows (or columns). The smaller the
ScheduleIncrement value, the more detailed each hour becomes. Figure 6.4 is
displayed with a ScheduleIncrement of 30. The time is displayed with two rows per
hour.

AllowColumnResizing

This property, when set to true, will allow the user to
dynamically resize columns. This allows the column widths
to be locked at a predetermined size or it allows the user to
modify their size will. If true, the user may move the mouse pointer over the column
break, until the mouse pointer changes to a resize icon. At this time, the user may click
the left mouse button and drag the mouse, until the column resizes to the preferred
width.

AllowRowResizing

This property, when set to true, will allow the user to
dynamically resize rows. As with columns, the row size may
be set to some predetermined size or the user may have
access to modify it. Again, the user must move the mouse pointer over the row break
until the mouse pointer changes to a resize icon. The user may then drag the mouse
until the row size is the preferred height.

TimeFormat

In different countries, the time is displayed in different formats. There could be a display
problem if the schedule is forced to always be display the same way. GbSchedule
allows for the time to be displayed in 12-hour or 24-hour format, based on the setting of
this property. In 12-hour format, the hours 1-12 are used as well as an “AM/PM” symbol.
In the 24-hour format, the time is displayed with the hours 0-23. The latter format is the

Quick Tip
The time resolution of the schedule
may be any divisor of 60 minutes.

Quick Tip
To allow the user to resize columns,
set the AllowColumnResizing
property to True

Quick Tip
To allow the user to resize rows, set
the AllowRowResizing property to
True

 Gravitybox Schedule Primer Page 73

Ó1998-2004 Gravitybox Software LLC

one preferred by much of Europe and will receive a warmer reception there than the
American 12-hour format.

HeaderDateFormat

This is a most useful property. When deploying a scheduling application around the
world, each country insists on its own date format. This property determines the format
of the date displayed in the header of each day. This property is also useful to
customize the date display, even if the application is never deployed over seas. Line
breaks may be specified as well to display any type of custom format.

ImageList and IconAlign

The schedule has a property “ImageList” that may be set to a valid reference of a
Microsoft Common Controls ImageList. This ImageList may contain icons that you wish
to associate with an appointment. First add the icons you wish to use and make sure
that each icon has a its key property value set. The images look best if they are 16x16
and the ImageList’s “UseMaskColor” property is set to true. Each appointment has an
“Icons” collection that may be used to display custom icons with an appointment. To
specify icons just call the collection’s “Add” method with the icon key you wish to use. If
the key is not valid it is just skipped when displaying icons on the schedule canvas. No
ruin-time error occurs. When drawing an appointment, if the schedule finds a valid
ImageList and one of its icons ha a key that matches a key in the Icons collection, the
associated icon is drawn on the appointment. You may specify any number of icons for
an appointment. Icons that do not fit on the appointment will not be displayed at al. This
is a limitation of small appointments. The appointment square is only so big and if you
specify 100 icons, all of them will probably not fit. This brings up another property,
IconAlign. Icons may be displayed on the left or top of the appointment text. You may
decide based on whichever looks the best for your situation.

CategoryBar

Even though Category objects have been defined in the Categories collection, their
display may not be needed. The CategoryBar property will allow for the selective display
of defined categories so that they may or may not be displayed in the left margin. The
associated mapped colors may still be displayed on the appointment’s margin by setting
the AppointmentCategoryBar property to true.

Note: If category bar margin on the left is desired to be as small as possible, set the
DisplayName of the Categories collection to empty string. The margin is the smaller
width of this caption or the summation of the bar widths. Setting the caption to have a
zero width ensures that just enough space to display the category bars is used.

 Gravitybox Schedule Primer Page 74

Ó1998-2004 Gravitybox Software LLC

CategoryBarWidth

This property determines the width of two different kinds the category bars. The first is
the category bar displayed in the left margin of the schedule. If the CategoryBar
property is True, the categories will be listed in columns in the left margin. The width of
each bar (column) is defined by the CategoryBarWidth property. The second place a
category bar may be displayed is on the left edge of each appointment. If an
appointment has an associated category, the category’s color bar may be displayed on
the appointment. The width of this bar is also determined by this property.

ShowProviderAvailableTime

This property provides functionality similar to the CategoryBar property. There may or
may not be providers defined in the Providers collection. In any case, the displayed bars
may be toggled on and off. When this property is true and the CategoryBar property is
true, there will be two tabs on a tab strip in the top, left corner, of the schedule. When
the bottom tab is selected, the available times for all of the providers will be displayed.
The available times are the times defined for each Provider object’s AvailableTimes
collection. This collection is defined later under Advanced Functionality.

Note: If this bar margin on the left is desired to be as small as possible, the
CaptionAvailable property of the Providers collection may be set to empty string. The
margin is the smaller width of this caption or the summation of the bar widths. Setting
the caption to have a zero width ensures that just enough space to display the bars is
used.

ShowProviderScheduledTime

Each appointment may have an associated provider. When an appointment has one,
the provider is scheduled for the duration of the appointment. Again, if the bottom tab on
the tab strip in the top, left corner of the screen is selected, the schedule is in provider
mode. There will be provider bar displayed in the left margin that indicates the times for
which each provider has been scheduled. For each appointment that has an associated
provider, the colored, provider bar will be displayed it the left margin of the appointment.
The ShowProviderScheduledTime property allows for its selective display.

Note: If this bar margin on the left is desired to be as small as possible, the
CaptionAvailable property of the Providers collection may be set to empty string. The
margin is the smaller width of this caption or the summation of the bar widths. Setting
the caption to have a zero width ensures that just enough space to display the bars is
used.

ProviderBarWidth

Similar to the CategoryBarWidth property, this property determines the width of the
provider bars. As with categories, provider bars may be in the left margin of the

 Gravitybox Schedule Primer Page 75

Ó1998-2004 Gravitybox Software LLC

schedule or in the left margin of an appointment. The width of both is determined by the
ProviderBarWidth property.

 Gravitybox Schedule Primer Page 77

Ó1998-2004 Gravitybox Software LLC

Chapter 7

Area Availability

On a schedule, it may be important to check for the visibility of items. Also sometimes
you may need to make items visible, if they are not already so. There exist a variety of
methods that allow the visibility any item of a schedule to be checked and set. An item
may be defined as a date, room, time, or appointment. There are methods that may be
used to determine the visibility of any date or time. In addition, if one of them is not
visible, it may be made visible with another function call. These methods may be used
to scroll the viewable window of a schedule to a particular place.

Though the defined methods in this chapter may be used to determine area availability,
there is an easier way. The methods give you the power to perform manual checks on
arbitrary area. If you wish to merely find the next available slot starting at some location
you may use the “GetNextFreeSlot” method. This functionality is defined in the next
chapter.

IsDayVisible

In the course of building and maintaining a schedule the
visibility of particular date will eventually need to be known.
This information may be obtained with a simple method call.
Given a particular date, this method returns a Boolean value that determines the
visibility state of the specified date. If the date is only partially visible, this method
returns false. The start edge to the end edge of the date must be in the view port for a
true return value.

If Not Schedule1.IsDayVisible(#6/3/2002#) Then

 'What to do if NOT visible

End If

Quick Tip
You may check if a day is in the
viewable area by using the
“IsDayVisible” property.

 Gravitybox Schedule Primer Page 78

Ó1998-2004 Gravitybox Software LLC

Figure 7.1

In the Figure 7.1, the date Jun 8 is not completely visible. Though the starting edge is
visible, its end edge is beyond the view port. If the IsDayVisible function were to be
called with this date, it would return false, since the entire room is not visible.

This functionality may be used to add search capability to an application. Let the user
specify a date to which to move. On a large schedule this functionality is almost
mandatory. An application that requires a user to scroll for over 300 columns (days) to
get to a known point is not a very efficient application.

IsRoomVisible

When dealing with many rooms, there may be more rows
(or columns) than can be displayed in the view port of the
schedule. This IsRoomVisible method allows for the
checking of visibility of any Room object. Given a Room object’s index or name, the
method returns a Boolean value that determines the visibility of the specified Room
object. As with the IsDayVisible method, if a room is only partially visible, this method
returns false. The start edge to the end edge must be in the view port for a return value
of true.

If Not Schedule1.IsRoomVisible("Room1") Then

 'What to do if NOT visible

End If

This functionality may be used to add search capability to an application as well. This
will probably not be such an issue, since there will probably not be very many rooms on
a schedule. However, the Rooms collection may represent any group of objects. Rooms
may be a group of Trucks. The Rooms collection would be labeled “Trucks” and treated
as such. This collection allows for the addition of any item. So there may be many items
in this collection after all. For this reason, “IsVisible” and “Show” methods are defined
for the Rooms collection as well.

Quick Tip
You may check if a room is in the
viewable area by using the
“IsRoomVisible” property.

 Gravitybox Schedule Primer Page 79

Ó1998-2004 Gravitybox Software LLC

IsTimeVisible

Like its two sister methods, the IsTimeVisible method
returns with a Boolean value that determines the visibility of
a particular time. If the time slot is only partially visible, this
method returns false. The start edge to the end edge must be in the view port for a
return value of true.

If Not Schedule1.IsTimeVisible(#12:00:00 PM#) Then

 'What to do if NOT visible

End If

ShowDay

The ShowDay method is the complement to the IsDayVisible function. It may be used in
conjunction with it to show a date that is not currently visible. The day is not guaranteed
to be displayed at any particular spot in the view port. It is only guaranteed that it will be
visible after this method is called.

If Not Schedule1.IsDayVisible(#6/3/2002#) Then
 Call Schedule1.ShowDay(#6/3/2002#)
End If

Search capability for dates may be added to any scheduling application very easily, with
a combination of these functions.

ShowRoom

This is the complement method to the IsRoomVisible method. The visibility of a Room
object may be determined and displayed within the view port, if necessary.

If Not Schedule1.IsRoomVisible("Room2") Then
 Call Schedule1.ShowRoom("Room2")
End If

As expressed earlier, this method may be of limited use if displaying a limited number of
rooms. If many rooms are present, this method may be very useful. There are only so
many rooms that an office may have in reality. A more productive use of this method
would be apparent when the Rooms collection defines something other than rooms. It
could define people, objects, planes, or any other physical object. There may be many
more of these objects and search capability would be needed more.

Quick Tip
You may check if a time is in the
viewable area by using the
“IsTimeVisible” property.

 Gravitybox Schedule Primer Page 80

Ó1998-2004 Gravitybox Software LLC

ShowTime

This is the complement function of the IsTimeVisible method. This method may be used
in the same fashion as the ShowDay and ShowRoom methods. Given a valid time, the
method will bring the time into the view port. It may not necessarily be the time
displayed at the top of the screen. The displayed top time will depend on the length of
the total schedule and other factors.

If Not Schedule1.IsTimeVisible(#12:00:00 PM#) Then
 Call Schedule1.ShowTime(#12:00:00 PM#)
End If

ShowItem

Another useful method that allows for the display of particular sections of a schedule is
the ShowItem method. It is perhaps the most useful. If the user has search capability,
he will want to display the results of his search. This method is called to make a
particular appointment visible. On large schedules, there will be many appointments,
most of which will probably not be in the view port window. If the user needs to see a
particular appointment, the view port may be scrolled to include the specified
appointment.

Call Schedule1.ShowItem(32)

This code will bring ScheduleItem 32 in the ScheduleItems collection into the view port.
If at least 32 appointments do not exist, in the collection, this method will perform no
action.

This method may be used to define search capability in the following way. There exist
many appointments on the schedule. Each appointment has the client’s (patient’s, etc)
name displayed on it. You may build a screen may be built that loops through the
ScheduleItems collection and displays a list of the patient names from every
appointment. This will be a visual cue to the user of what each appointment represents.
When the user indicates that he wants to edit (view, etc) the item in the X position, this
method may be called with the ScheduleItems’ index X as a parameter. This will ensure
that the specified appointment is in the view port of the schedule.

Private Sub List1_DblClick()
 Call Schedule1.ShowItem(List1.ListIndex + 1)
End Sub

These methods may be used in conjunction with one another to check the visibility of
any place on a schedule. To gain faster performance, the AutoRedraw property of the
schedule may be set to false for multiple method calls that affect screen refreshing. The
property must be set back to true after the methods calls, to ensure that the screen is

 Gravitybox Schedule Primer Page 81

Ó1998-2004 Gravitybox Software LLC

refreshed. This will move the schedule to the desired position before it redraws the
screen.

IsEnabledAreaByValues

The “IsEnabledAreaByValues” method will take differing
parameters depending on the display options of the
schedule and return to you the availability of a particular
area. To start, you specify the date, room, and time for
which an appointment starts. Also provide as a parameter the length of the area to
check. These four parameters define a definite area. The method checks to determine if
any part of this area is inside of an existing appointment. It returns a Boolean value
indicating this determination. This is an iterative algorithm, so the longer the specified
length, then longer it takes to execute. There may be times that you wish to only check
the time component of availability. If so the last parameter allows you specify a Boolean
value indicating whether you wish to check time only. When this parameter is true all
other criteria are ignored. A good place to use this function is in the BeforeMove,
BeforeCopy, or even the DragOverScheduleItem schedule. You will probably only use
this method in very customized situations since it is built in to the dragging process.
When you move or copy an appointment, the Conflicts collection is checked
automatically and prompts the user if the ConflictWarn property is true. Remember that
the Conflicts collection is only checked and updated automatically if the schedule’s
ConflictCheck property is true. If you do not care about conflicts, you may turn this
feature off for faster execution.

GetScheduleItemFromCor

This method will return the first appointment that it finds under the specified coordinates.
Given an X and Y coordinate in pixels, this method will check the ScheduleItems
collection to determine the appointment that is scheduled for the date, time, and/or room
to which these coordinates map. Keep in mind that there may be more than one. If there
is a conflict with two appointments scheduled for the exact same date, time, and room,
only the first appointment is returned. The first appointment position is defined by its
order in the ScheduleItems collection. If one appointment was the 17th element in the
collection and the other conflicting appointment was the 57th element, then the 17th
element would be returned.

EnforceTimeLimits

This property ensures that the default dialog will not allow not allow the user to create
an appointment not defined by the time area boundaries. The StartTime and DayLength
properties define the display times of a schedule. When EnforceTimeLimits is set to
true, the user may not set an appointment's StartTime or duration to a value outside of
this defined area. When false, the user may set the time to any value. This all is part of
the default property dialog for an appointment. In code you may of course set the start
time and length of an appointment to any value you wish. This property is provided for

Quick Tip
You may check an area’s availability
by using the IsEnabledAreaByValues
method. This will ensure that there
are no conflicts for an area.

 Gravitybox Schedule Primer Page 82

Ó1998-2004 Gravitybox Software LLC

convenience for those developers who use the default dialog as there appointment
editor any wish to enforce the time limits set by the schedule.

HitTest

The HitTest method is provided to give you the ability to
determine if an appointment is located at a particular
position. Given an X and Y coordinate the method will return
a reference to the appointment at that position. If there is no appointment present then
the value “Nothing” is returned. This functionality is provided for completeness and
probably is not that useful for most developers.

Quick Tip
The “HitTest” property is similar to
the Listview’s HitTest method in that
it checks for an object under a point.

 Gravitybox Schedule Primer Page 83

Ó1998-2004 Gravitybox Software LLC

Part IV
Advanced Functionality

Applying computer technology is simply finding the right wrench to pound in the correct
screw.

-Unknown

The computer only crashes when printing a document you haven't saved.

-Unknown

The only thing in life achieved without effort is failure.

-Unknown

Chapter 8 Conflicts
Chapter 9 Printing
Chapter 10 Displaying Schedules On the Web
Chapter 11 Recurring Appointments
Chapter 12 Advanced Functionality

 Gravitybox Schedule Primer Page 85

Ó1998-2004 Gravitybox Software LLC

Chapter 8

Conflicts

In scheduling, conflicts are a part of life. There will be many times when conflicts are
unavoidable. There may even be times when they are desirable. In any case, no
schedule would be complete without some sort of conflict handling.

What is a Conflict?

GbSchedule has a read-only collection named Conflicts.
The developer may not add any elements to the collection
nor may he remove any. When ScheduleItems are added to
a schedule, they may or may not conflict with other appointments on the schedule. After
an insert, the newly added object is checked, to verify whether it conflicts with any other
objects in the ScheduleItems collection. If it does, it is added to the Conflicts collection.
Any time that one of the appointment’s properties StartDate, Room, StartTime, or
Length is changed, the Conflicts collection is rechecked to determine whether the
appointment should be added or removed from the Conflicts collection. Only items that
should be in the Conflicts collection will be there. Since a change of any of many display
properties (IsEvent, Length, Room, StartDate, and StartTime) on an appointment could
cause the appointment to potentially conflict with another appointment, the
ScheduleItems collection must be checked for Conflicts after these property changes. If
the properties of a particular appointment are changed, the effect might not only
influence this appointment but others as well, since it takes at least two appointments to
conflict.

The Conflicts collection is located on the ScheduleItems collection object. It has no
properties and only a few methods. Its methods are defined in Table 8.1. There is only a
minimal amount of functionality needed, for this collection. Even though minimal, this
functionality still serves the needed purpose. The collection is actually a collection of
conflict groups. Each group object holds a collection of appointments. Each
ScheduleItem is in exactly one group. If there are no conflicts there will be one group for
each ScheduleItem. If there are N ScheduleItems, there are also N groups in the
Conflicts collection, when there are no conflicts. If there are ScheduleItems that conflict
with each another, they will be in the same conflict group. A group signifies a block of
appointments such that occupy a contiguous block of schedule space. All of the
appointments may not conflict with all others, but together as a group there is no free
space from the groups starting boundary to its end.

Table 8.1
Conflicts Collection Definition

Count This method returns the number of objects in the Conflicts
collection. This number will be between 0 and N, where N is

Quick Tip
A conflict occurs when two or more
appointments share the same
scheduled space.

 Gravitybox Schedule Primer Page 86

Ó1998-2004 Gravitybox Software LLC

the number of ScheduleItems. If there is one or more
appointments there will be at least one Conflict group object
present.

FindItem This method will return the conflict group object that
contains the specified ScheduleItem. It takes a
ScheduleItem object as a parameter and returns that
object’s associated Conflict object.

IsConflictByAppt Given a ScheduleItem object this event will determine if
there is a conflict with any other existing ScheduleItem. You
may optionally choose to ignore one or more of the
ScheduleItems as well by specifying the IgnoreIndexes.

IsConflictByData Given the information needed to build an appointment (date,
time, room, length), this method will return a Boolean value
that determines if the specified space if free of
appointments.

Item Given a Conflict index [1..M], this method returns a
reference to the object the collection.

The Count method will simply return the number of items in the Conflicts collection. An
appointment has a conflict if it is in a group that contains more than one ScheduleItem.
The “FindItem” method takes a ScheduleItem as a parameter and returns its associated
Conflict group object. You may then use the Conflict object returned to determine which
appointments conflict with the specified appointment by accessing the Conflict object’s
ScheduleItems collection. The code below will display the number of conflicts for the
first appointment.

Dim oScheduleEl As CScheduleEl
Dim oConflict As CConflictEl
Set oScheduleEl = Schedule1.ScheduleItems(1)
Set oConflict = Schedule1.Conflicts.FindItem(oScheduleEl)
Call MsgBox("Conflict Count: " & oConflict.ScheduleItems.Count, vbInformation)

The “IsConflictByAppt” method is given a ScheduleItem object as a parameter. It will
then return a Boolean value that determines if the specified appointment conflicts with
any other appointment. This method is useful when you wish to check for conflicts but
wish to ignore some appointments. You may specify any number of indexes to ignore in
the search with the second parameter.

The “IsConflictByData” is particularly useful as well. You may specify the information
needed to build an appointment (date, time, room, length) and this method will return a
Boolean value that determines if the specified space is free of appointments. You do not
need an existing appointment, just the data of a proposed appointment. This method
can be used to check for free spaces. Again, the IgnoreIndexes parameter may be used
to ignore any number of existing appointments of which you do not care about conflicts.
The ignore indexes are numbers separated by a space, comma, colon, or semicolon.

 Gravitybox Schedule Primer Page 87

Ó1998-2004 Gravitybox Software LLC

Table 8.2
Conflict Object Definition

Index This property is the index in the Conflicts collection of the
current object.

ScheduleItems This collection holds references to the appointment in this
conflict group.

Conflict Displays

Displayed in Figure 8.1 is an example with five appointments. Two of them, the third
and fourth ones, conflict with each other. The ScheduleItems collection will contain five
elements and the Conflicts collection will contain four group objects. Each group object
will contain one appointment in its ScheduleItems collection except for the third group,
which will have two. These are the third and fourth appointments.

Figure 8.1

In this example, the Count method of the Conflicts collection returns the value 4.
Following is a loop that determines which elements are in the collection.

Dim oConflict As CConflictEl
Dim oAppt As CScheduleEl

 For Each oConflict In Schedule1.Conflicts
 For Each oAppt In oConflict.ScheduleItems
 Debug.Print oAppt.Index
 Next
 Next

The output from this code fragment is as follows.

3
4

 Gravitybox Schedule Primer Page 88

Ó1998-2004 Gravitybox Software LLC

This tells us that ScheduleItems(3) and ScheduleItems(4) have conflicts. Since there
are only two appointments in the group we know that they conflict with each other.

Next available slot

Before an appointment is added, you may wish to determine
if its addition will cause a conflict. There is a way to do this.
The GetNextFreeSlot method of the schedule may be used
in a variety of situations that require conflict checks. The method is used in the following
manner. Pass the parameters of date, room, start time and length and compare them
with the returned results. If the sent parameters match the return parameters, this space
it free, otherwise there was some appointment blocking the area. For example, if the
parameters Jun 3, 2002 at 10:00AM in Room1 checking for a 60 minute appointment
space are sent and the return values are the same date, time and room, there is no
other appointment present in this area of the schedule.

There are times when the automated calculation of free appointment slots is necessary.
In many cases, the user will drag-and-drop appointments to the desired position. If a
schedule is relatively empty, it is easy to spot a free area on which to place the
appointment. However finding a place for an appointment may not be so easy, if a
schedule is chiefly full. An appointment slot may not be readily visible. In this case, the
schedule will perform the grunt work. The GetNextFreeSlot method will take a number
of parameters to define exactly where to start the search. The method will then return
the first available slot, starting from the specified point, in which the specified
appointment of the desired length will fit. The parameters to this method are as follows.

Table 8.3
GetNextFreeSlot Parameters

GroupId Specify a GroupId when you wish to find the next free slot for
a group of appointments. In general, this method if to find a
free slot for one appointment. However is may also be used to
find the next free slot of the first appointment of a Recurrence
group. You can assume that all appointments in the group will
have a free slot if all are move the relative distance from the
starting appointment in the group to the return value of the
method. For example, if the starting date/time for the group’s
starting appointment is Feb 3, 2004 10:00AM and the method
return value is Feb 5, 2004 2:00 PM, you may assume that
there is a free slot for all appointment in the group if they are
all moved 2 days and 4 hours (3120 minutes). If you do not
wish to search by group then leave this parameter blank.

StartDate This is the date at which the search should begin. If in
RoomOnly mode, this parameter is ignored.

StartRoom This is the room at which the search should begin. If in
DayOnly mode, this parameter is ignored.

Quick Tip
You may search for a free space on
a schedule by using the
“GetNextFreeSlot” method.

 Gravitybox Schedule Primer Page 89

Ó1998-2004 Gravitybox Software LLC

StartTime This is the Time at which the search should begin.

ItemLength This is the length of the desired free slot. The desired
appointment length will be used as this parameter.

IgnoreIndexes This optional parameter specifies indexes in the
ScheduleItems collection to ignore in the search. If no
appointments should be ignored this value should be set to
empty string (optional default). The ignore indexes are
numbers separated by a space, comma, colon, or semicolon.

The method needs to know the position to begin its search. This is defined by the first
three parameters: StartDate, StartRoom, and StartTime. If any one of these parameters
is not applicable, it is simply ignored. For example, in DayOnly mode there is no
concept of Rooms, so no matter the StartRoom parameter value it will be ignored.

The most curious parameter is the last one, IgnoreIndexes. In most cases, this
parameter will not be set. If using Java, or some other language, that does not allow
optional parameters, the parameter may be set it to empty string. This value will allow
for one or more ScheduleItem objects to be ignored in the search. This is useful if
moving an appointment. If moving appointment 57 to the next available position, the
StartDate and StartRoom parameters would be set the appointment’s StartDate and
Room properties respectively. The StartTime parameter would be set to the
appointment’s StartTime plus one ScheduleIncrement. One increment is added
because the appointment already lives where it is and the search is looking for the next
slot. In this case the IgnoreIndexes parameter would be set to 57. This action would
ignore this ScheduleItem object when performing the search. Since the search is
seeking the next slot that contains no conflicts, it does not matter if the specified slot
contains this appointment, since it is being moved anyway.

We can create an example schedule with three appointments. All are one hour long.
They start at 8AM, 9AM, and 10:30AM respectively. It is obvious that the next available,
non-conflicting spot for appointment 2 is for 9:30AM. The appointment may be moved
down thirty minutes and no conflict will occur. If a check is performed to find the next
available slot without specifying an IgnoreIndexes parameter, the returned StartTime
will be 11:30AM. This is because the search will look at 10:30AM as conflicting. Indeed,
there is no one-hour slot available, because appointment two lasts from 9:00AM until
10:00AM. This is why the IgnoreIndexes is so important. In this example, it is not
important to consider appointment two. In fact, it is important that this appointment not
be considered in the search criteria, since this inclusion will cause the search to return
erroneous results.

The method returns a CScheduleEl object. This object is NOT part of the
ScheduleItems collection. It is returned with its StartDate, Room, StartTime, and Length
properties set. All other properties of the object are default values. This object is used
because it has all the necessary properties needed to define the next free slot. If there

 Gravitybox Schedule Primer Page 90

Ó1998-2004 Gravitybox Software LLC

is no free spot available before the end of the schedule, this method returns a reference
to Nothing.

Figure 8.2

After calling the method with an IgnoreIndexes parameter set to “2”, the GetNextSlot
method will return results that may be used to move the specified appointment to the
next free slot.

Dim oCurrent As CScheduleEl
Dim oItem As CScheduleEl
Dim dtNextTime As Date

 'Appointment to be moved
 Set oCurrent = Schedule1.ScheduleItems(2)

 'Get the next time on the schedule after this
 'selected appointments StartTime
 dtNextTime = DateAdd("n", Schedule1.ScheduleIncrement, _
 oCurrent.StartDate)

 'Search for next appointment
 Set oItem = Schedule1.GetNextFreeSlot(_
 dtNextTime, _
 0, _
 oCurrent.StartTime, oCurrent.Length, _
 oCurrent.Index)

 'Move the appointment to the next
 'free slot if one exists
 If Not (oItem Is Nothing) Then
 oCurrent.StartDate = oItem.StartDate
 oCurrent.StartTime = oItem.StartTime
 End If

 Gravitybox Schedule Primer Page 91

Ó1998-2004 Gravitybox Software LLC

After executing this code, appointment two will be moved to its new position.

Figure 8.3

 Gravitybox Schedule Primer Page 93

Ó1998-2004 Gravitybox Software LLC

Chapter 9

Printing

Printing is the only reason some schedules are even created. Without this functionality a
schedule might be all but useless. GbSchedule provides functionality to send a
schedule to a printer or an HTML file. As discussed earlier, there are many different
display formats and any of these may be printed exactly as they appear on the screen.

GoPrint

The GoPrint method starts a print that creates a hard copy
of the schedule. This takes a number of parameters and will
send the current schedule to the printer. It is important to
remember that the Viewmode and other properties must be set to the desired values
before this method is invoked. The schedule will output the screen exactly as it appears
on the screen. The only control that the developer wields over the printing is the range
of data to be printed.

Table 9.1
GoPrint Parameters

StartDateRoom This is the starting date or starting room, depending on the
value of ViewMode. This specifies the lower value of the
range of items to be printed.

EndDateRoom This is the ending date or ending room, depending on the
value of ViewMode. This must be greater than or equal to
Start.

StartTimeRoom This is the starting range value of time for the print. This
parameter is the starting room in the viewmodes with no
time at all.

EndTimeRoom This is the ending range value of time for the print. This
parameter is the starting room in the viewmodes with no
time at all.

PrinterParameters This object will allow for the setting of many properties of
the printer. It includes the properties: Copies, Orientation,
PaperBin, PaperSize, PrinterDeviceName, and
PrintQuality. Use the SchedulePrinters collection to select
a valid system printer.

The Start and End parameters depend on the ViewMode property value. If the value is
set to display in a view with no dates, these two parameters must be valid room indexes
or names, otherwise they must be valid dates. If dates are specified, they must be in the
range MinDate to MaxDate or an error occurs. Also, the starting date must be less than
or equal to the ending date. When providing room information, the room index or name

Quick Tip
You may print a schedule of any size
or complexity using the “GoPrint”
method.

 Gravitybox Schedule Primer Page 94

Ó1998-2004 Gravitybox Software LLC

must exist in the Rooms collection or an error will occur. The starting room must be less
than or equal to the ending room. The StartTime and EndTime parameters must be
valid times and they must be in the range of the schedule. The StartTime may be no
less than the schedule’s property StartTime and the EndTime parameter may be no
more than the value of the schedule’s StartTime plus DayLength. DayLength is the
length of the day in hours. The starting time must be less than or equal to the ending
time. The PrinterDeviceName of the PrinterParameters object is the name of the printer
to which the schedule is being sent. The Orientation property of the oPrinterParameters
object will determine whether the print job will be performed in portrait or landscape
mode. See the printer’s documentation for an explanation of this concept.

Note:
Some developers have had problems creating the “CPrinterParameter “object in C++.
An object of this type is necessary to call the “GoPrint” method. To help these
developers, there is a helper method named “GetPrinterParameter”. Given a set of
parameters, this method will return a reference to an object of this type. You may use
the returned object as the last parameter to the “GoPrint” method. The
“CPrinterParameter “ object is used to specify all of the necessary information to the
print routine, like paper size, copies, etc. So if you cannot call the print method because
you cannot create this object, just let the schedule create one for you and use it to print
the schedule.

PrintPageInfo

When printing, there is also the option of displaying the page information on each page
with the PrintPageInfo property. This property determines if the page positions are
printed. A schedule may be several pages across and down. This may cause confusion
as to how they are to be pieced together. If the PrintPageInfo property is set, the X and
Y positions are printed in the top, left corner of each page to facilitate the reconstruction
of large schedules. The format of this information is [X, Y], where X is the horizontal
position (1..N) and Y is the vertical position (1..M). There will be a total of M * N pages
printed.

During the process of printing, some sort of visual cues may be given to the user, as to
what is happening. Several events are provided to render this functionality. These
events aid in informing the user about the progress of the print. They inform of the
percent complete and determine if a print was canceled.

The PrintStart event is raised immediately after the GoPrint method is invoked and error
checking completes. An error may occur if the date or room range is invalid. Another
common source of errors is that an end value is less than a start value. For example,
the start date is June 3 and the end date is June 1. This is logically impossible, so an
error occurs.

The PrintDone event is raised, after the all pages have been sent to the printer. This will
be the last event of the sequence assuming that no errors occur and the printing is not

 Gravitybox Schedule Primer Page 95

Ó1998-2004 Gravitybox Software LLC

canceled. This event is the place to remove any progress screen that may have been
displayed. If the PrintDone event is raised, the PrintCancel is not raised.

The PrintCancel event is raised when the print is canceled. All printing ceases and no
more pages are sent to the printer. A print may be canceled from the PrintProgress or
the PrintPageDone events. If canceled, the PrintDone event is not raised. These two
events are mutually exclusive.

The progress of completed pages maybe monitored, with the PrintPageDone event.
This event has several parameters. The Page parameter represents the absolute page
that was last printed. The PageX and PageY parameters represent the page in
horizontal and vertical coordinates. Finally the Cancel parameter allows for the
cancellation of printing, so no more pages are sent to the printer.

The event that is used to inform the user of the percent
complete is the PrintProgress event. This event returns a
Percent parameter that is the a value [0..100] of the percent
complete. The Cancel parameter allows for the cancellation of printing. If set to true, the
PrintCancel event is raised and the printing will not continue.

Table 9.2
Print Events

PrintCancel This event is raised if the printing was canceled.

PrintDone This event is raised when the printing completes normally.

PrintPageDone This event is raised for every page that was sent to the
printer.

PrintProgress This event is raised when at intervals to give feedback on
the progress of printing.

PrintStart This event is raised when the printing begins.

The printing creates temp files, in the window’s temp directory. Needed are several
hundred kilobytes per page. The amount varies but it is probably a good idea to have
one-half megabyte per page free on the hard disk. Computers running low on disk
space should not use the printing functionality. This is not a problem in most cases.
However, printing a schedule with a small value for ScheduleIncrement and a very large
range of days (i.e. a year) could use quite a bit of temp space. All the temp space is
released upon the printing completing or being canceled.

To aid in printer selection, there is a provided collection of printers. This collection is
named SchedulePrinters. It is a list of all valid printer names that can be used with the
DeviceName parameter of the GoPrint method.

Table 9.3
SchedulePrinters Collection Definition

Count This method returns the total number of printer in the collection. This is
the number of printers installed on the current system.

Quick Tip
There are several “Print…” events
that inform you know of the printing
progress.

 Gravitybox Schedule Primer Page 96

Ó1998-2004 Gravitybox Software LLC

Item Given a SchedulePrinter object's index or name, this method will return
a SchedulePrinter object.

Each SchedulePrinter object has just one property. This is its DeviceName property.
This property is used as a parameter to the GoPrint method, to define a valid system
printer.

If you wished to print a particular part of a schedule, you could do so from code. You
must first setup the PrinterParameter object. Most of the properties are defaulted to the
most common values. However for completeness I have included some of the settings
here.

Dim oPrinterParameters As CPrinterParameter

 Set oPrinterParameters = New CPrinterParameter
 oPrinterParameters.PrinterDeviceName = Printer.DeviceName
 oPrinterParameters.Orientation = 1
 oPrinterParameters.Copies = 1
 Set oPrinterParameters = Nothing

Afterwards you may perform the actual printing. In this example, I assume that you wish
to print the schedule from August 1 through the 31 of 2002. I also assume that you wish
to print from 8 AM to 6 PM. These parameters are valid if the schedule is displaying
dates and times. If the schedule is displaying rooms and times then the first two
parameters should be valid room names or indexes.

Call oChild.Schedule1.GoPrint(#8/1/2002#, #8/31/2002#, #8:00:00
AM#, #6:00:00 PM#, oPrinterParameters)

 Gravitybox Schedule Primer Page 97

Ó1998-2004 Gravitybox Software LLC

Chapter 10

Displaying Schedules on the Web

There are times that you may need to display your schedule on the web. You might
create schedules that effect many people and you need a way to distribute this
information without the GbSchedule ActiveX component. You can perform this by using
the schedule’s web publishing functionality.

Web Schedules Defined

A web schedule is defined as a schedule displayed in a
browser that does not need the GbSchedule component.
This is very nice for wide distribution of published
schedules. The browser does not need to load any ActiveX. This ensures that the
schedule may be viewed in any browser. In other words they are browser-independent.
The schedule is actually generated into standard HTML. It is nothing more than a big
table. This makes it convenient for distribution, with a caveat: all schedules are read-
only. Also a schedule cannot be generated if there are conflicts on the schedule. These
are the two limitations on web schedule generation at this time. There are also different
publishing options. A schedule may be published on one page or into frames. The frame
publishing allows for the custom header and footer to be visible at all times. If a large
schedule is created on a single page then the header and footer are at the far left of the
screen. This guarantees that is visible when first viewed; however if the schedule is
scrolled they disappear of course. A web publish is accomplished with a single function
call to ExportHTML.

ExportHTML

In addition to sending a schedule to a printer, the schedule may also be sent to an
HTML file. There are times when a schedule needs to be published to an HTML page,
so that users may view it. A schedule can be published every day (hour, week, month,
etc…), so users or customers may view it. Keep in mind that this will be a read-only
schedule. There is no way for a user to modify this HTML page.

The actual export is easy to use and allows for the addition of custom HTML to create a
complete page, if necessary. The ExportHTML method may be used to perform this
process. The method is called with a parameter object of type CHTMLParameters. The
properties may be set to build the page as desired.

Table 10.1
GoExport Parameter Object

FileName This is the file to which is being written.

Overwrite This property determines if this file is overwritten, if it already

Quick Tip
You may export some schedule
types to a web page by using the
“ExportHTML” method.

 Gravitybox Schedule Primer Page 98

Ó1998-2004 Gravitybox Software LLC

exists.

PageTitle This is the HTML page name. This is the name the browser will
display.

TableOnly This property determines if only the HTML inside the table tag
is written. If this is true, there will be no head tags, page tags,
of any other tags in the HTML file. The file will start with
“<Table>” and end with “</Table>”.

HTMLHeader This property is a string value that inserts raw HTML directly
above the schedule.

HTMLFooter This property is a string value that inserts raw HTML directly
below the schedule.

These properties are used to build the page to specification. A parameter object was
used for future expansion. In the future, the functionality for exporting may be
augmented. When this happens the object will add more parameters but the calls the
ExportHTML function will not change.

Dim oHTMLParameter As New CHTMLParameters

 oHTMLParameter.FileName = "c:\test_html.htm"
 oHTMLParameter.Overwrite = True
 oHTMLParameter.PageTitle = "Schedule for Jun 3, 2002"
 oHTMLParameter.TableOnly = False
 oHTMLParameter.HTMLHeader = “”
 oHTMLParameter.HTMLFooter = “”
 Call Schedule1.ExportHTML(oHTMLParameter)

 Gravitybox Schedule Primer Page 99

Ó1998-2004 Gravitybox Software LLC

Figure 10.1

A very nice feature of this method is that extra raw HTML
may be inserted into the page, to make it more complete. A
schedule is displayed as a table in the created HTML file.
An HTML template file may be used to create the schedule,
at a particular place inside an HTML file. Squeeze a
schedule between two sets of raw HTML code, by using the HTMLHeaderText and
HTMLFooterText properties. When an HTML file with a particular layout is required (i.e.
Text-Schedule-Text), the HTML above the schedule is placed in the HTMLHeaderText
parameter. The additional text, displayed at the bottom of the page, is copied into the
HTMLFooterText parameter. Using these two parameters, of the ExportToHTML
method, a full HTML page with all necessary tags may be created.

In addition, the TableOnly property will determine if only the table is written or an entire
page is written. If this property is false, the HTMLHeaderText and HTMLFooterText
properties are used. As an example, an entire page is created with the following format.

<html>
<head>
<title>PAGETITLE</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<dd align="left"><p align="center"><big><big>
PAGETITLE

Quick Tip
Add custom headers and footer to a
schedule webs page by using the
“HTMLHeaderText” and
“HTMLFooterText” properties on the
parameter object of the
“ExportHTML” method.

 Gravitybox Schedule Primer Page 100

Ó1998-2004 Gravitybox Software LLC

</big></big>
</p>
HTMLHEADERTEXT
<table>
······
</table>
HTMLFOOTERTEXT
</div>
</body>
</html>

This HTML sample shows that an entire page is indeed created with page and table
tags, along with any other additional, raw HTML above and below the schedule table. If
TableOnly is true, only the HTML table representing the schedule is saved. The HTML
file would have the following format.

<table>
······
</table>

As can be seen in this example, this file has no page tags. This format could be used to
retrieve the displayed table and insert it into many HTML pages, by copying the table
contents only.

 Gravitybox Schedule Primer Page 101

Ó1998-2004 Gravitybox Software LLC

Chapter 11

Recurring Appointments

In addition to scheduling single ungrouped appointments, a
group of them may also be added. Appointments in a group
are related in that they have the same GroupId, but the
properties of each may be manipulated separately. When an appointment is created, it
is assigned a unique GroupId. To determine the number of appointments in any group,
you may use the GroupCount method of the ScheduleItems collection. Given a GroupId,
it returns the number of appointments with a matching GroupId. You may
programmatically add recurrences with the AddRecurrence method of the
ScheduleItems collection. Given an existing appointment and a “Recurrence” object.
The proper number of recurring appointments will be added to the ScheduleItems
collection. In addition to adding recurrences with code there is a provided UI. The
default UI uses the “ScheduleRecurrence” control. You may wish to not use the default
dialog and instead use this control to create your own dialog for this functionality.

A recurrence object provides all of the necessary information to build a recurrence
pattern. A recurrence pattern may be organized in many different ways. This object has
a StartDate that defines the starting date of the recurring pattern. In addition the pattern
may end in any of three ways. (1) The recurrence may never end, (2) end after a certain
number of occurrences, or (3) end at a specified date. The recurrence interval may be
daily, weekly, or monthly. Each recurrence interval has a specified object that stores the
parameters for its particular setup.

RecurrenceDay

If the recurrence is daily, the Recurrence object’s “RecurrenceDay” object will contain
the needed information to create the recurrence pattern. This object has two properties:
DayInterval and RecurrenceMode. The day interval is the number of days to skip before
creating another occurrence. For example, if you wish to create a recurring appointment
every day then this property would be set to “1”. This indicates that each appointment is
one day from the last one. The RecurrenceMode property may be set to one of two
property values. The above example used the “DayInterval” setting, where you specify
the interval to separate the days. The other property value is “Weekdays”. This will
create the recurrence every weekday.

Quick Tip
A Recurrence is a grouping of two or
more appointments.

 Gravitybox Schedule Primer Page 102

Ó1998-2004 Gravitybox Software LLC

Figure 11.1

RecurrenceWeek

The recurrence interval may also be set to week. The Recurrence object has a
“RecurrenceWeek” object that specifies the needed information. There are seven
properties of this object that specify which days of the week are to be included. These
properties are “UseSun” through “UseSat”; one for each day of the week. The
“WeekInterval” property specifies the gap between weeks. To schedule an appointment
for every week, set this property to “1”.

 Gravitybox Schedule Primer Page 103

Ó1998-2004 Gravitybox Software LLC

Figure 11.2

RecurrenceMonth

Perhaps the most complex recurrence pattern is for a month. Each month has a
difference number of days and starts on a different day of the week. This can make
scheduling quite complex. The Recurrence object uses its “RecurrenceMonth” object to
define information to construct this recurrence pattern. The object’s “RecurrenceMode”
may be set to “MonthInterval” or “MonthOrdinal”. When it is set to “MonthInterval” the
recurrence will happen on the same day number in the month each time. For example,
you use this property to define a recurrence on the fourth (4) day of each month. Thus
the “DayInterval” property defines which day of the month to use. When
RecurrenceMonth object’s RecurrenceMode is set to the “MonthOrdinal” property value,
the appointment is scheduled at a certain position in the month though not necessarily
on the same day number. For example, you could schedule an appointment on the
second Monday of each month. You may not care the day of the appointment (1, 2, etc)
just that it is on the second Monday.

The MonthInterval property defines the skip between months. If you wish to schedule an
appointment every month, this property would be set to “1”. This allows you to define a
pattern that only occurs on the months that you specify.

 Gravitybox Schedule Primer Page 104

Ó1998-2004 Gravitybox Software LLC

Figure 11.3

The Recurrence object itself has properties that constrain
the number and range of the specified recurrence pattern.
The StartDate defines the starting point of the recurrence
pattern. The default is the date of the appointment used as
the template for the pattern. The termination of the pattern may be issued in any one of
three ways. If there is “No end date” specified, the recurrence pattern will continue until
the MaxDate property of the schedule is reached. An end date may be specified so that
an appointment may be created on this date but never after this date. The pattern may
also end after a certain number of occurrences. You may wish for only five
appointments to be made. If this termination method is specified, only that number of
appointments or less will be created. If the MaxDate of the schedule is reached before
the specified number of appointments is created, there will be fewer appointments
created than specified.

Call Schedule1.ScheduleItems.Add("", #1/7/2002#, "", #10:00:00
AM#, 60, "Weekly Meeting")
oRecurrence.RecurrenceInterval = ricWeekly
oRecurrence.EndType = recNoEnd
oRecurrence.StartDate = #1/7/2002#
oRecurrence.RecurrenceWeek.UseMon = True
oRecurrence.RecurrenceWeek.WeekInterval = 1
Call Schedule1.ScheduleItems.AddRecurrence(1, oRecurrence)

The code above will add an appointment January 7, 2002. This appointment will then be
used as a template to create a recurring pattern. All other appointments will use this
template appointment’s start time and length as their own. The interval will be weekly
with no ending point. The recurrence pattern will begin on January 7, 2002 and continue

Quick Tip
The appointments in a Recurrence
pattern do not have to share any
attributes other than the same
“GroupId” property if desired.

 Gravitybox Schedule Primer Page 105

Ó1998-2004 Gravitybox Software LLC

until the MaxDate of the schedule. All appointments will be created on a Monday. Since
the WeekInterval is set to “1”, an appointment will be created every week.

Now that recurring appointments can be created, there is a question, “How can we
remove the collection of them?” As always there are two ways to remove appointments:
in code or with user interaction. To remove a group of appointments in code, the
“RemoveRecurrence” method of the ScheduleItems collection may be used. This
method receives two parameters. The first is an existing appointment object, or its key,
index, or GroupId. Any one of these may be used to determine the GroupId. The second
parameter determines if the specified appointment is removed along with all of its
recurrences. If the first parameter is a GroupId the second parameter is ignored.
However if the first parameter is an object, index, or key; the second parameter play a
significant role. If you wish to remove all occurrences of an appointment but not the
original appointment itself then set the second parameter to false; otherwise set it to
true.

Another way to remove an appointment’s recurrences is to use the provided GUI. Under
normal circumstances when the user highlights an appointment and presses the
<Delete> key, he is prompted to remove the selected appointment. If the appointment is
part of a group, the prompt changes and asks the user if he wishes to remove the entire
series of appointments or the single, selected one. This assumes that the
“AllowRecurrences” property is set. If it is not set, the schedule does not recognize
groups. Even when there are multiple appointments with the same GroupId the delete
prompt will not change since the schedule is configured to ignore groups completely.

The Recurrence object’s state may be saved if need be. It
contains the methods “ImportXML” and “ExportXML”. The
ImportXML method takes an XML, string parameter and
loads the object from it. The ExportXML will return the XML state of the object. You may
use these methods to load and store the recurrence pattern from and to a string. This
may be useful in the certain situations. The ScheduleRecurrence control has a
Recurrence object on it. When the control is loaded, its object has the default state. You
may wish to load a previous state. An example of the usefulness of these methods is
illustrated as follows. Put a ScheduleRecurrence control on a form. When the form is
load the user can set each property to some value. Now the user unloads the form and
the control along with it of course. If the user loads this form again, he will probably
expect his settings from the last time to be restored. This does not happen “auto-
magically”. In the form unload event you can store the string from the
ScheduleRecurrence control’s ExportXML method in a string somewhere. On the load
event of the form, you can use the ImportXML method to restore the previous state of
the control that the user set. This is exactly what happens in the background on the
ScheduleProperties control. When the user presses the “Recurrences” button on this
control, a form is loaded with a ScheduleRecurrence control. Each time the button is
pressed the previous state of the recurrence pattern is displayed.

Quick Tip
Dump the recurrence information to
an XML string or file for later use with
the object’s “ExportXML” method.

 Gravitybox Schedule Primer Page 106

Ó1998-2004 Gravitybox Software LLC

Clusters

There is a way to group appointments without creating a recurrence pattern. When two
or more appointments have the same GroupId they are displayed with a small
recurrence icon next to each of them. This defines the group. However there are times
when you may wish to logically group or cluster appointments without showing any
icons relating to the cluster. To provide this functionality, each appointment has a
“ClusterId” property that has an initially unique value. You may change this to any value
you wish. If you give the same key to more than one appointment, these appointments
are said to be in a cluster. The ScheduleItems collection has a “RemoveCluster” method
that may be invoked to remove a cluster of appointments at the same time. This
eliminates the cumbersome operation of looping through the ScheduleItems collection
and removing each individually. Also a Schedule object has a “GetClustered” method
that will return a collection of appointment indexes of appointments with the specified
ClusterId. This is useful to get a collection of indexes that may be used to access the
individual appointment objects in the ScheduleItems collection.

 Gravitybox Schedule Primer Page 107

Ó1998-2004 Gravitybox Software LLC

Chapter 12

Advanced Functionality

The schedule also contains some advanced functionality. This functionality allows you
to create routines that perform some complex actions. There may be times when you
may need to blackout appointments or zoom in on areas of a schedule. Perhaps you
need to associate people (Providers) with appointments or relate additional categories.
No matter your need, the schedule component probably provides the required
functionality with a minimal amount of code.

AllowInterWindowDrop

Depending on the properties AllowMove and AllowCopy, the
schedule may or may not allow their related actions. If the
schedule does allow them, the user may move (or copy)
appointments too any valid area of the schedule. There may
be times that two or more schedules may be open and information needs to be shared
between them. This is possible, if the AllowInterWindowDrop schedule property is true.
Two windows or even two separate applications each with a GbSchedule, may share
information. Just drag an appointment and move the mouse to the destination window.
There is no NoDrop pointer because the move is perfectly valid. When the user drops
the appointment, it will disappear from the source window and reappear on the
destination window. If this is a copy, the source appointment will not disappear.

Activities and Events

Activities and events are non-traditional appointments. Instead of having a start time
and length that keeps an appointment confined to a column or row these objects have
differing ways of displaying information. First an event is an appointment with no start
time and no length. It takes place on a day or in a room. If you try to access its
StartTime property you will get 12:00 AM or the default time. Also its length will be 0.
However its IsEvent property will be set and this is what makes it an event. Events are
displayed at the top of the screen and are only displayed when days (or and days and
rooms) are displayed on the top of the schedule and time is displayed on the left. The
appointments mark an event for the day such as a birthday. The event does not happen
at a specific time nor does it have a specific length. All that is known is that is occurs on
an explicit date.

Unlike an event, an activity does have a specific time and
length. What differentiates it is that these two properties
combined cause the appointment to over lap a day
boundary. The appointment takes up 2 or more columns and for this reason is actually
displayed at the top of the screen in the event header. You can make a distinction

Quick Tip
Appointments may be dragged and
dropped to other schedules if the
“AllowInterWindowDrop” property is
set to True.

Quick Tip
To allow the user to create multi-day
appointments, set the AllowActivities
property to True.

 Gravitybox Schedule Primer Page 108

Ó1998-2004 Gravitybox Software LLC

between the two because an activity has a clock icon on its left and right side, while an
event does not. The AllowActivities property must be set to modify appointments to
have this condition and also for the display of such appointments. Being even more
restrictive in its presentation than an event, an activity will only display if the schedule’s
Viewmode is set to day on top and time on the left.

Effects

There is a way to display the appearance and disappearance of appointments in a fancy
fashion. The AllowEffects property may be used to make appointment shrink and
expand. When this property is true and an appointment is added, it will expand from a
point to the appointment’s specified size. This gives the user the illusion of an
appointment being created. Conversely, when the user removes an appointment, it will
seem to shrink down into nothing. It will collapse back down into a point and disappear.
This is enhanced functionality and may not be appropriate for a your application. If the
schedule is running on a slower computer, the repaint may not look very nice. The
graphics of the GbSchedule are rather intensive sometimes and not all monitors can
handle the extra graphic calls.

BlackOuts

Occasionally an appointment will need to be displayed so
that the user should not be able to edit, move, or view. Each
ScheduleItem has a BlackOut property. When set to true,
this appointment is nothing more than a placeholder. It will be displayed on the schedule
as a block of color defined the BlackOutColor property. This color is by default black,
but it may be set to any color desired. This functionality allows for the definition of an
area on the schedule that is an appointment but the user has no access to modify or
view.

Find

The user may also perform a find of appointments if necessary. You may construct your
own find appointments dialog window is you wish. However there is one built in. When
the AllowFind property is set to true, the user press the <CTRL>-F to display the “Find”
window. This window allows you to search for text inside of the Category, Subject,
DisplayText, and Notes fields. You may also constrict your search criteria based on date
range, start time, or end time. This allows for quite complex search criteria to be created
if need be.

Quick Tip
Appointments may be blacked-out to
reserve space but without revealing
any appointment information.

 Gravitybox Schedule Primer Page 109

Ó1998-2004 Gravitybox Software LLC

DisplayDragTip

This property determines if a small label is displayed, with additional information when
needed. This label is displayed when dragging an appointment. It reveals the
coordinates of the appointment as it moves. When resizing an appointment, the label is
shown to inform the user of the new size of the appointments as it is being resized. In
addition, the label is displayed when scrolling the schedule with scroll bars to inform the
user of the scrollbar position.

DynamicScroll

The user may click the mouse on a scroll bar and drags it to a new position. After
release, the schedule will always have its view port position set accordingly. However,
setting this property specifies that the schedule is to be scrolled as the user drags a
scroll bar. When this property is false, the schedule will not repaint, until the mouse is
released. If true however, each time the user moves the mouse while clicked on the
scroll bar, the schedule will repaint itself. This could potentially slow the schedule on
slower computers and make it seem very sluggish. This property is false by default,
because there is really no advantage to repainting the screen so often, while dragging
the scrollbar.

UseUniCode

If need be you may specify that Unicode be used instead of standard ASCII text. Some
languages, like Chinese, will not display properly on the schedule. Only half of the
characters are displayed. This is because the set of characters that this language uses

 Gravitybox Schedule Primer Page 110

Ó1998-2004 Gravitybox Software LLC

consists of 2 bytes per character. The printing code needs to know that this is a double-
byte language. When the UseUniCode property is set, all text is assumed to be double
byte and is displayed as such. Keep in mind that this only works on Windows NT and
Windows 2000 machines. On Windows 95/98 machines the double byte text will still not
completely be displayed.

OutsideAreas

In addition to the NoDropAreas collection coloring the
schedule in a special way, you may also define
OutsideAreas. Objects in this collection are defined just as
those in the NoDropAreas collection. The difference is that the user may still drag and
drop appointment to these areas. Sometimes it may be necessary to define and area as
special. It is still valid so the user may move appointments there, but you just wish to
mark it a different color for some reason. In this situation, you can use this collection to
define these areas. An example may be that you wish to display an entire day 12:00 AM
for 24 hours. However you may wish that 12:00 AM to 8:00 AM and 5:00 PM to 12:00
AM be marked another color. This could signify that these times are not normal
business hours. You may not care if they schedule appointments there. You just want to
make sure that the user knows this is outside normal business hours.

End of day overlap

The DayLength property may not make the day display past 12:00 AM. If the StartTime
is 8:00 AM then the maximum DayLength is 16. Since 17 hours would make the
schedule display until 1:00 AM the next day. Since days are displayed in columns 1:00
AM the next morning should not be in that day’s column since it would really be the next
day. Because of the way the schedule handles appointments this is a limitation at this
time. If you wish to have a 2-day appointment, you will not be able to display it on the
schedule. At this time, the maximum allowed length for an appointment is 24 hours.

End of schedule overlap

Appointments may not overlap the end of a schedule either. Even if the schedule ends
well before the 12:00 AM. If the schedule ends at 6:00 PM then an appointment starting
at 5:00 PM may not last 2 hours, since there would be no place to display it. When the
user drags an appointment to the edges of a schedule, the appointment will stop when
its bottom edge (or left edge) touches the edge of the schedule. This ensures that a
drag can move all the way to an edge, but not over. If dragging a 2-hour appointment
and the schedule end at 6:00 PM the appointment, the user cannot move the
appointment any further than 4:00 PM. This is the last valid time that this appointment
will fit.

Quick Tip
You may mark areas a special color
with the OutsideAreas collection.

 Gravitybox Schedule Primer Page 111

Ó1998-2004 Gravitybox Software LLC

Zoom

In the course of viewing a schedule, there may come a time when the big picture must
be viewed. Many schedules are too big to view all at once and some may be too large
to ever view at once. A better perspective may be ascertained, if the user is allowed to
shrink the schedule for viewing. GbSchedule provides a Zoom property that allows this.
The Zoom may be a number between 25 and 200. This will allow for the shrinking or
expanding the schedule to see details that are not readily visible in the regular 100%
zoom mode. All the functionality is still available including moving, copying and resizing
appointments.

Provider AvailableTimes

We have discussed the basic functionality of the Providers collection. There is however
some other behavior not covered. When there exists one or more providers,
ScheduleItems may be assigned a Provider that will display as a colored bar on the
appointment’s left margin. When dealing with people (Providers), it may be advantages
to include the times that they are available as well. In a large schedule, there may be
Providers that work everyday, some Monday/Wednesday/Friday, some only Tuesdays,
etc.

There exists an AvailableTimes collection on each Provider object. This allows for the
addition of times that define when a Provider is available. Each one’s available bar will
display in the left margin of the schedule. This will allow the user to view the available
times for a Provider and not schedule an appointment for the Provider, if he is not
available.

Figure 12.1

ScheduleItem Categories

There is a Categories collection on the schedule as
discussed. It allows for the display of a colored bar on the
left margin of each appointment. There is also a Categories
collection on the ScheduleItems collection. This allows other user-defined categories to

Quick Tip
Categories provide a way to color-
coding appointments.

 Gravitybox Schedule Primer Page 112

Ó1998-2004 Gravitybox Software LLC

be displayed, with an appointment. If a schedule has more than one category type, the
Categories collection of the schedule will not provide enough functionality. Categories
may be added to the ScheduleItems Categories collection. These would be category
names. These categories would be assigned to an appointment using the Categories
collection of each ScheduleItem.

This allows for as many categories as needed. A color-coded bar will not be displayed
on each appointment for these categories. There could potentially be many of them and
there is no room on an appointment for an arbitrary number of bars. The bars however
will show up on the left margin of the schedule. This is accomplished by using the
AllowOtherCategories property. Set this property to true and all of the user-defined
categories will be displayed in the left margin of the schedule.

The following code adds two custom categories. The first is a “Shoe” category and it
has three items in it. The second is a “Music” category. It also has three items in it.

Dim oCategory As CCategoryCol

 'Add a category
 Set oCategory =
Schedule1.ScheduleItems.Categories.Add("Shoes")
 'Add its items
 Call oCategory.Add("Nike", vbBlue)
 Call oCategory.Add("Doc Martin", vbYellow)
 Call oCategory.Add("Addidas", vbRed)

 'Add a category
 Set oCategory =
Schedule1.ScheduleItems.Categories.Add("Music")
 'Add its items
 Call oCategory.Add("Classical", vbBlue)
 Call oCategory.Add("Rock", vbYellow)
 Call oCategory.Add("New Age", vbRed)

 Set oCategory = Nothing

This would setup the category information. Now some values may be assigned to the
ScheduleItems.

'Set the category values for the Appointment 1
Schedule1.ScheduleItems(1).Categories(1).Name = "Nike"
Schedule1.ScheduleItems(1).Categories(2).Name = "New Age"

'Set the category values for the Appointment 2
Schedule1.ScheduleItems(1).Categories(1).Name = "Addidas"
Schedule1.ScheduleItems(1).Categories(2).Name = "Rock"

 Gravitybox Schedule Primer Page 113

Ó1998-2004 Gravitybox Software LLC

This code will assign category values to the first two appointments (lets assume that
there are at least two, Ok). The category 1 is the "Shoes" category and category 2 is the
"Music" category. Elements may not be added or removed from an appointment’s
Categories collection. The number of elements in the ScheduleItems’ Categories
collection determines the number of elements in the Categories collection, of each
ScheduleItem object. As seen here, elements are not added or removed from the
Categories collection of each ScheduleItem, but only modified.

AppointmentShape

Modifying the appointments’ shape may also change the
display of a schedule. The default shape for an appointment
is square. This will cover the entire area of the appointment.
If desired, the schedule’s AppointmentShape property may be used to change the
appointments’ shape. There may be times when you may wish to change the
appointment shape, but it is more natural to display the appointments as a square
shape. The valid settings for this property are normal, folded, and rounded. The normal
is square. The folded settings draws the appointments with the right, bottom edge of the
appointment folded up. The rounded setting will draw the all four edges of each
appointment rounded.

Redrawing

When an appointment's properties are changed, the
schedule is immediately updated. This only applies to the
properties that are displayed of course. The Notes or Id
properties would not refresh the screen because they do not
affect display, however Length does. This actually may
become very time consuming, if many items are set. When loading or clearing a
schedule, it is advised to use the schedule property AutoRedraw. Set this property to
false before loading or clearing, so that the screen is not refreshed, for every change
that is made. The value must be set back to true when done or the schedule will never
be redrawn and the user will be very confused as to what is wrong, with the “broke”
schedule.

Quick Tip
If desired, appointments may have
different shapes.

Quick Tip
When loading many appointments,
toggle the “AutoRedraw” property to
False. When complete, set it to True.
This action will temporarily turn off
screen repaints for quicker loading.

 Gravitybox Schedule Primer Page 114

Ó1998-2004 Gravitybox Software LLC

Figure 12.2

Rooms Collection

The Rooms collection was designed to display rooms that might be scheduled in a
office. This functionality may be expanded to include other functionality. The Rooms
collection defines objects that may be displayed by themselves or that may be displayed
under each date. This actually may be used to display anything. Perhaps ”Trucks” need
to be scheduled. The trucks may be defined, in the Rooms collection.

Schedule1.Rooms.DisplayName = ”Trucks”
Call Schedule1.Rooms.Add(”Truck1”)
…..
Call Schedule1.Rooms.Add(”TruckN”)

Now the caption on the schedule will be Trucks, not rooms. Each Room object has a
caption of ”Track_i”.

This analogy may by used to expand the collection to represent anything that the
developer desires. The word ”Rooms” is not displayed anywhere on the schedule,
unless the developer wishes it to be. The Rooms collection’s DisplayName property will
allow the ”name” of the collection to be set to anything.

 Gravitybox Schedule Primer Page 115

Ó1998-2004 Gravitybox Software LLC

Part V
Other Controls

Not chaos-like together crush’d and bruis’d,
But as the world, harmoniously confus’d,
Where order in variety we see,
And where, though all things differ, all agree.

-Alexander Pope

Chapter 13 Other Controls

 Gravitybox Schedule Primer Page 117

Ó1998-2004 Gravitybox Software LLC

Chapter 13

Other Controls

In addition to containing the main schedule control, the GbSchedule ActiveX also
contains some other, additional controls. They are schedule related in that you may
define headers, contacts, and task lists with them. There is also a properties control that
may be used to construct custom property windows for appointments in your programs.
All of these complement each other in the creation of robust scheduling applications.

ScheduleProperties Control

The ScheduleProperties Control allows for the construction
of configurable property windows. In most cases this control
may be used to display customized information to the user.
In special cases where the application needs to display customized property windows,
this control may not be suitable. The control will display the Subject, Room, StartTime,
EndTime (StartTime+Length), Priority, Reminder, DisplayText, Provider, and Category.
Any of these may be selectively toggled on/off. The control needs to have its Rooms
and Categories collections set to the Schedule Rooms and Categories collections.
These collections are needed to populate the Rooms and Categories combo boxes on
the control. Also the ScheduleItem property must be set. This is the appointment to
which all of the control’s properties are set. Figure 13.1 shows the control on with all of
the available Schedule properties displayed.

Figure 13.1

 The ScheduleProperties control has many properties that determine which of the
appointment properties are visible. Table 13.1 lists these visibility properties.

Quick Tip
Construct a custom properties screen
using the ScheduleProperties control

 Gravitybox Schedule Primer Page 118

Ó1998-2004 Gravitybox Software LLC

Table 13.1

ScheduleProperties Control Properties
AllowAlarm Determines visibility of ScheduleItem’s Reminder

property.

AllowCategory Determines the visibility of the ScheduleItem’s Category
property. If the Categories collection is not specified the
category combo box is disabled to disallow any user
interaction.

AllowDisplayText Determines visibility of ScheduleItem’s DisplayText
property.

AllowEventHeader Determines if the control will allow the user to specify
that this appointment is an event. If True a checkbox
labeled ”All Day Event” will be displayed. The user may
use this to make the appointment an event.

AllowPriority Determines visibility of ScheduleItem’s Priority property.

AllowProvider Determines the visibility of the ScheduleItem’s Provider
property. If the Providers collection is not specified the
provider combo box is disabled to disallow any user
interaction.

AllowRecurrences This property determines if the ”Recurrences” button is
displayed on the control. When this property is True, the
user may press the button and get the recurrence
screen. This allows the user to setup recurring
appointments.

AllowRoom Determines the visibility of the ScheduleItem’s Room
property. If the Rooms collection is not specified the
room combo box is disabled to disallow any user
interaction.

AllowSubject Determines visibility of ScheduleItem’s Subject property.

AllowTime Determines visibility of ScheduleItem’s StartTime and
Length properties. The displayed end time is the
appointment’s StartTime + Length.

AllowWarning Determines if the warning message is displayed. You
may use this attract the users attention if need be.

ReadOnly Determines if the user may edit the control.

TimeFormat Determines the displayed TimeFormat, either 12 or 24
hours format.

WarningMessage If the AllowWarning property is True, this
WarningMessage text will be displayed in the warning
label.

 Gravitybox Schedule Primer Page 119

Ó1998-2004 Gravitybox Software LLC

ScheduleRecurrence Control

The ScheduleRecurrence control may be used to construct a custom screen for
recurring appointments. You may use the object model to add recurring appointments,
but this control and the default dialog of the schedule control allows for the addition of
this functionality to any application without any code. This functionality has been broken
out so that it may be used to build custom screen that may be displayed at some non-
standard place in an application.

Figure 13.2

The control has a ”CRecurrence” object as a property. You may use this to update the
any item of the GUI. The control also has a ScheduleItem property, which must be set
to an existing appointment for the control to display properly. The appointment
information at the top of the screen is the information provided by this ScheduleItem.
The bottom frame of the control that contains the range information for the recurrence is
set by properties of the Recurrence object.

The middle frame sets the actual information about the recurrence. This frame is
actually the settings of a collection of three different objects. The Recurrence object has
three sub object: RecurrenceDay, RecurrenceWeek, and RecurrenceMonth. The middle
frame of the control is the Recurrent Pattern settings. The settings displayed on the right
side of the frame determine in which radio button is selected: Daily, Weekly, or Monthly.
The properties of the underlying object are displayed when appropriate. For example if
the Daily radio button is selected, the right side will display two radio buttons. One will
allow the user to set the recurring pattern based on a day interval like every second day.
The other radio button will set the appointment to recur every weekday. The week and
month settings are displayed when their respective radio buttons are selected.

There are various customizations that may be performed on the control. For example, a
warning message may be displayed to the user to indicate some type of condition. The
IconWarning may be set to any icon desired and the WarningMessage property may be

 Gravitybox Schedule Primer Page 120

Ó1998-2004 Gravitybox Software LLC

set to some text. When the control is used to display properties for a group of recurrent
appointments, you may use the IconRecurrence icon to customize the dialog’s look. The
control is made language independent by exposing its text properties to the developer.
The rooms and category text properties is pulled from their respective collections.
However texts like the word “Priority” can be made to display any text using the
“PriorityText” property.

ScheduleSummary Control

The ScheduleSummary control allows you to build a
coordination screen to complement appointment addition.
There are times when a user will need to view current
appointment information before making additional appointments. An example is creating
an appointment in which many people are present. The Schedule control has a
Providers collection in which people of an organization may be added. Each
appointment has a Provider property that may associate the specified appointment to
one of the Providers in the defined Providers collection. If you wish to create an
appointment and associate it with only one provider, you may look at the left margin of
the schedule to find a time that specified provider is available. However if you wish to
coordinate with two or more providers, it may be cumbersome to search for a free time
by manually searching each provider’s time scale. An easier and more intuitive
technique is to display all providers in the left margin and time on the top with non-
available times filled with a colored bar to indicate that the specified time is not
accessible.

Figure 13.3

In Figure 13.3, a ScheduleSummary control is shown with three people added to the
providers collection: John, Sally, and Sue. Each appointment that is as assigned to a
provider is displayed on the row that starts with the provider’s name. If appointments
conflict there is no difference is display. The areas that have assigned appointments are
colored. A colored area may have one or more appointments assigned to it, you cannot
know by viewing this control. All that is obvious is that is at least one appointment
covering the defined area. The color of the bars may be all the same defined by the
“DefaultBarColor” property when “UseDefaultBarColor” is set to true. If the
“UseDefaultBarColor” property is false, the color defined for the associated Provider
object is used to paint its colored bars. The icon to the left of each provider is
configurable with the “ResourceIcon” property. There is no way to set an individual icon

Quick Tip
View all appointments by provider at
a glance using the
ScheduleSummary control.

 Gravitybox Schedule Primer Page 121

Ó1998-2004 Gravitybox Software LLC

for a provider. If no icon is specified this area is blank and painted with the
“LeftMarginColor” color.

The top row is a summary. It shows the times taken by appointments regardless of the
appointment’s associated provider. The “SummaryBackColor” and “SummaryBarColor”
properties define its background and foreground colors respectively. This row is labeled
“All Attendees” and the row may not be removed; however the text may be customized
with the “AllAttendeeText” property. This makes the control configurable into any
language, since this is the only text displayed.

Table 13.2
ScheduleSummary Control Properties

AllAttendeeText This property defines the text that is displayed as the
caption of the top, totals row.

AllowUnassigned This property defines whether an additional row is
appended to the end of the rows after the providers
collection has been displayed, which displays all
appointments not assigned to a valid provider.

BackColor The color of the area to the right of the left margin,
below the top margin and extending as far down of the
last row.

DateFormat A format string that defines the layout of dates.

DefaultBarColor Used in conjunction with the UseDefaultBarColor
property, this property defines the color used for all time
bars not on the totals row.

ForeColor The color of all text, including the header text and
provider text.

LeftMarginColor The color of the background on which the providers are
displayed.

Locked This property determines if the user may interact with
the control. When set to true, the user may not move
the select bars to a new position and the scroll bars are
disabled.

MajorColumnWidth Specifies the width in pixels of the time increment
defined by the ScheduleIncrement property.

MarginColor The color that fills any area that is not in the header, left
margin, or the provider time grid.

MinorColumnWidth (Read-only) This is the width of the time slot defined by
the SubIncrement property. It is calculated by taken the
MajorColumnWidth and dividing it by the number of
times that the SubIncrement property will divide into the
ScheduleIncrement property. For this reason, the
SubIncrement must be a divisor of ScheduleIncrement.
For example if the ScheduleIncrement property is 60,
the SubIncrement property is 30, and the

 Gravitybox Schedule Primer Page 122

Ó1998-2004 Gravitybox Software LLC

MajorColumnWidth property is 100 pixels, the
MinorColumnWidth is 50 pixels since there are 2 sub-
increments for each major increment.

ResourceIcon An icon that is displayed next to each provider name in
the left margin.

ScheduleIncrement The increments of time that are displayed in the
header. For example, if this property is set to 30
minutes, the times “9:00”, “9:30”, “10:00”, etc are
displayed in the header.

ScheduleObject A reference a Schedule control. This property must be
set for the ScheduleSummary control to display
properly. The Providers collection, as well as all
associated appointments are taken from this control.

SelectBackColor This is the background color of the area between the
left and right select bars.

SelectBarColor The color of the vertical select bars.

SelectBarDate The date where the left select bar resides.

SelectBarLength The length of time defined as the difference between
the left and right select bar position.

SelectBarTime The time where the left select bar resides.

SubIncrement This is the smallest time slice by which the select bars
may be moved (in minutes). This value must be less
than or equal to the ScheduleIncrement.

SummaryBackColor This is the background color of the of the totals row.

SummaryBarColor This is the bar color used for all bars in the totals row.

TimeFormat A format string that defines the layout of times.

UseDefaultBarColor Determines if the DefaultBarColor is used to paint the
provider time bars or if the provider’s defined color is
used to draw the bar.

A ScheduleSummary control also may display information about unassigned
appointments. If an appointment has not been assigned to a provider, it cannot be
displayed in a provider row. If you wish to display these appointments despite not being
assigned to a provider you may set the “AllowUnassigned” property to true and an extra
row will be displayed with the text “<Unassigned>”. Any appointment not assigned to a
provider will be displayed in this row and the appointment’s position will also be present
in the top, totals row.

The parent Schedule control dictates much of the display. A
ScheduleSummary control cannot be shown with a
Schedule control to which to attach. It determines the format
of the dates and times that are displayed. It also defines the start time, day length, min
date, and max date. The parent Schedule control defines the Providers collection as

Quick Tip
The SubIncrement property value
must be a divisor of the
ScheduleIncrement property value.

 Gravitybox Schedule Primer Page 123

Ó1998-2004 Gravitybox Software LLC

well as the ScheduleItems collection, the appointments. The resolution of the select bar
scrolling is defined by the “SubIncrement” property. This must be less than or equal to
the ScheduleIncrement property. This is the smallest increment by which the select bars
will be moved when dragging. For example, if this value is set to 30, the user would find
that the defined area is rounded to 30 minute increments when dragging. As the user
moves the left select bar to the right, the SelectBarTime would move from “9:00” to
“9:30”, “10:00”, etc. The “ScheduleIncrement” property defines the time resolution
displayed on the top margin. If this value is set to 60 minutes then only hours will be
displayed in the top margin (“9:00”, “10:00”, etc) but with the SubIncrement set to 30 the
user may define an area of one hour from “9:30” and “10:30” with the select bars though
these times are not displayed on the top margin.

The most useful functionality of the control is to define an area to for appointment
creation. This is performed interactively with the user moving the select bars to define a
desired area, effectively to define a time block. The select bars identify a time slot that is
delineated by the “SelectBarDate”, “SelectBarTime”, and “SelectBarLength” properties.
These properties may be used by an application to create a default appointment on the
schedule control. This is not done automatically. You as the programmer have the
information needed to create an appointment and you must add the code to do so.
Since are as many add scenarios as there are software developers the
ScheduleSummary offers no predefined way to create an appointment. You may utilize
the user-defined information to generate an appointment, creation routine.

When the user moves the mouse over either of the select
bars, the mouse pointer will turn to a vertical scroll icon.
This informs the user that he may grab a bar to resize the
defined area. As the user scrolls the select bars left or right, changing the defined time
area, the “SelectionChanged” event is raised to inform the calling a container of this
state change. You may use this information to update screen information if necessary or
not use it at all if your application has no use of it. Instead of the user scrolling to define
an appointment area, you may provide functionality to the user that searches for the
next available time slot. This means that there are no appointments defined for any
displayed provider. You may use this functionality with the “SearchNextFreeSlot”
method. When called this method searches for the next available slot taking into
consideration all appointments on the schedule. If one is found, the selection bars are
updated, the view is scrolled to bring the defined area in viewing range, and the method
returns true. If an available area is not found before the end of the schedule (the
maximum defined date) then the control’s display does not change and the method
returns false. A limitation with using this control is that an increment that spans multiple
days will not be found using the “SearchNextFreeSlot” method. You may define a multi-
day increment using the select bars but this method will not find a “next” slot using the
current select bar information.

You may also capture clicks that occur when the user clicks on a provider’s name with
which you may wish to perform some action. When the user clicks on a provider’s
name, the “ProviderClick” event is raised. The index of the provider in the Providers

Quick Tip
Automatically search for an available
appointment slot with the
“SearchNextFreeSlot” method.

 Gravitybox Schedule Primer Page 124

Ó1998-2004 Gravitybox Software LLC

collection is returned as a parameter to the event. If the index is zero, the “Unassigned”
row was clicked, which is not a real provider. Other parameters to the event are “Button”
and “Shift”, which allow you to know the mouse button clicked and whether the <ALT>,
<CTRL>, or <SHIFT> key was pressed at the time of the click.

TaskList Control

The TaskList control may be used to list a number of tasks
for the user. The columns are configurable. Any number of
columns may be added with any of the following types:
Date, Text, Time, and NoEdit. These are self-explanatory except for the NoEdit. This
setting will display the text but will not allow the user to modify its contents. The top
portion of the control may be used to add new tasks to the list. This may be toggled
on/off depending on the application’s specific needs. Each Task may be checked or
unchecked in the second column. The checked tasks have their PercentComplete
property set to 100%. When unchecked, this property may be any whole number from 0
to 99. This allows users to assign completion percents to each task if desired.

Figure 13.4

The TaskList control starts with no columns. Any needed
columns must be added manually. This allows the control to
be totally configured by the developer’s desires. The
following code will clear any columns that are already present and add four new
columns. Each column has its own data type.

Call TaskList1.Columns.Clear
Call TaskList1.Columns.Add("Subject", ctText, , True)
Call TaskList1.Columns.Add("Date", ctDate, , True)
Call TaskList1.Columns.Add("Time", ctTime, , True)
Call TaskList1.Columns.Add("Length", ctText, , True)

 When columns as added or removed, each Task of the TaskItems collection is
modified to have the same number of elements as the Columns collection. This ensures
that each Task will have the same number of TaskItems as columns are present. The
TaskItems collection is used to set the value that is to be displayed in the appropriate
column of the control. The code below adds a new Task. Since there exists 4 columns
on the control now, there are exactly 4 TaskItems for each Task object. So we set the
appropriate values for each TaskItem.

Quick Tip
Add MS-Outlook type tasks to an
application with the Tasks control

Quick Tip
You must add columns first before
you can add task items.

 Gravitybox Schedule Primer Page 125

Ó1998-2004 Gravitybox Software LLC

Set oTask = TaskList1.Tasks.Add
oTask.TaskItems(1).Text = "My Subject"
oTask.TaskItems(2).Text = "12/31/2002"
oTask.TaskItems(3).Text = "11:00 AM"
oTask.TaskItems(4).Text = "60"
Set oTask = Nothing

As you can see, we did not add any TaskItems, we just edited the existing ones. In fact
you cannot add any of these objects since the collection has not add method. The
control is also drag-drop enabled and may accept appointments from the Schedule
control. This process if not automatic. When a ScheduleItem is dropped on the TaskList,
the TaskList’s ”DragDropScheduleItem” event is raised. Code may be placed here that
will add the dropped item to the TaskList. This is necessary because the TaskList does
not have any predefined columns. The developer adds all columns and there is no
guarantee that there will be a Date, Time, or Room column present when the
appointment is dropped. In addition the dropped appointment does not know which of its
properties map to which column. For instance in Germany, the ScheduleItem’s ”Room”
property will not map to a Room column since the developer will not use the English
word ”Room”. For these reasons the developer must add code to map the
appointment’s properties to the appropriate columns.

Private Sub TaskList1_DragDropScheduleItem(ByVal ScheduleItem
As Scheduler.CScheduleEl)

Dim oTask As CTaskEl

 Set oTask = TaskList1.Tasks.Add
 oTask.TaskItems(1).Text = ScheduleItem.Subject
 oTask.TaskItems(2).Text = ScheduleItem.StartDate
 oTask.TaskItems(3).Text = ScheduleItem.StartTime
 oTask.TaskItems(4).Text = ScheduleItem.Length
 Set oTask = Nothing

End Sub

This code is executed when a ScheduleItem is dropped on a TaskList. This TaskList
has four columns that we added earlier. Therefore each Task will already have 4
TaskItems present. The code maps column 1 to the Subject property, column 2 to
StartDate, column 3 to StartTime, and column 4 to the Length property. After this event,
the control will append a Task with the appointment’s information.

Table 13.3
TaskList Control Properties

AddText The text that is displayed in the add portion of the
control when it does not have focus. This should be
an instruction on what is the defined area.

 Gravitybox Schedule Primer Page 126

Ó1998-2004 Gravitybox Software LLC

AllowAdd This property determines if the add portion of the
control is displayed. When false, the user may not
add text interactively from the control.

AllowBubbleTips Determines if the tool tips that are displayed are
bubbles as the new Win2000 tool tips are or if there
are standard Win95 tool tips.

AllowColumnResizing Determines if the user may grab the edge of a
column and resize it width.

AllowContactDrops Determines if a Contact object from a Contacts
control may be dropped on the TaskList. When true
and an object if dropped, it will raise the
“DragDropContact” event as notification.

AllowCopy Determines of a contact may be copied by pressing
the <CTRL> key and dragging a Task object to
another position.

AllowDelete Determines of the user may press the <DELETE>
key to remove a Task from the list.

AllowDragFromFile Determines if a Task object file may be and dropped
on the TaskList to create a new Task object.

AllowDragToFile Determines if a Task object may be dragged from
the TaskList and dropped on a container that
supports file drops to create a Task object file.

AllowInterWindowDrop Determines if a Task objects may be dragged from
one TaskList to another TaskList control. This
applies to copy or moves.

AllowMove Determines if a Task object may be moved. Since
tasks may not be reordered, this only applies to
moving it from one TaskList to another.

AllowOtherDrops Determines if object from other sources outside of
the Schedule control (appointments, contacts, or
tasks) may be dropped on the TaskList to raise the
“DragDropOtherObject” event.

AllowScheduleDrops Determines if appointment objects may be dropped
on the TaskList.

BackColor Determines the background color of the TaskList.

BorderColor Determines the color of the outside border that
surrounds the control.

Columns This is an object collection where the column names
are displayed. This collection must have at least one
object in it for any kind of user interaction to occur I
the TaskList since without any columns nothing may
be displayed.

DateFormat This is the format of dates displayed in columns of
type date. Each column has an associated type.

 Gravitybox Schedule Primer Page 127

Ó1998-2004 Gravitybox Software LLC

ForeColor Determines the color of all text.

GridColorEmpty Determines the color of the grid lines that do not
have tasks displayed in them.

GridColorFull Determines the color of the grid lines that have
tasks displayed in them.

RightToLeft Determines if the text is to be displayed right-to-left
in certain, supported languages.

RowHeight (Read-Only) The height of each row in pixels.

SelectedItem The Task object that is currently selected. If the add
portion of the screen has focus then this property is
set to nothing, since no Task is selected.

Tasks This is the collection of Task objects that are
displayed in the TaskList.

TimeFormat Determines the hour-format of displayed time in
columns marked as type time. The possible values
are 12-hour and 24-hour.

TimeFormatString Determines the time format of text displayed in
columns marked as type time. This is a full format
string including hour, minute, and seconds.

ToolTipTextBackColor Determines the background color of the bubble tips.

ToolTipTextForeColor Determines the text color of the bubble tips.

TopRow This is the top row displayed in the view port.

UseUnicode Determines if a 2-byte language is supported.

VisibleRows (Read-Only) This is the number of rows that are
visible with the current height of the TaskList.

Much like the Schedule control, the TaskList may also save its state to a file. The
ExportXML and ImportXML properties may be used to store the column configuration
and the associated tasks to and from a file. The functions take an object of type
CXMLTaskParameters. This object stores the necessary settings to save and load the
file. The following routines are examples of saving and load a TaskList file.

Private Sub SaveFile()

Dim oXMLParameters As New CXMLTaskParameters

 oXMLParameters.FileName = "c:\tasks.xml"
 oXMLParameters.Overwrite = True
 oXMLParameters.SaveDefaults = False
 oXMLParameters.UseColumns = True
 Call TaskList1.ExportXML(oXMLParameters)
 Call MsgBox("The file was saved to '" & _
 oXMLParameters.FileName & "'", vbInformation)

 Gravitybox Schedule Primer Page 128

Ó1998-2004 Gravitybox Software LLC

 Set oXMLParameters = Nothing

End Sub

Private Sub LoadFile()

Dim oXMLParameters As New CXMLTaskParameters

 Call TaskList1.Columns.Clear
 Call TaskList1.Tasks.Clear

 oXMLParameters.UseColumns = True
 oXMLParameters.FileName = "c:\tasks.xml"
 Call TaskList1.ImportXML(oXMLParameters)
 Set oXMLParameters = Nothing
 Call TaskList1.Refresh

End Sub

Other functionality includes the controlling of each task item by using the ForeColor
property of each task object. In addition you may store any number of extra information
using a task object’s “ExtraProperties” collection. This is a collection of name / value
pairs that be used to store anything. You may address the collection by name or index
to retrieve its associated value setting. You may not need this functionality but if you
have a large amount of data to store with a task this collection comes in quite handy.

Contacts Control

If ever you have needed a control to save people, this is the
one for you. The control is modeled after the contacts
module of MS-Outlook. It allows you to store many
attributes associated with a person. Some properties that a contact has are name,
home phone, mobile, and business phone. Many of there are displayed on the contact
control is populated with data.

Figure 13.5

Quick Tip
Add MS-Outlook type contacts to an
application with the Contacts control

 Gravitybox Schedule Primer Page 129

Ó1998-2004 Gravitybox Software LLC

The component has a Contacts collection. Each object in the collection has many
properties that may be set. When one of these properties is populated with data, it is
displayed on the screen. In Figure 13.5, the three contacts have 3, 2, and 4 pieces of
information populated. The properties that are not set are not displayed on the screen.
All colors are configurable. There is at most one selected item on the screen. It has its
own color scheme defined. Every other contact uses the inactive color scheme. There is
also a focus rectangle drawn around the active contact, if one exists.

Table 13.4
Contact Control Properties

AllowAdd Determines if the user may double-click on
the background to create a new contact
object.

AllowBrowse Determines if the user may browse through
the collection of contacts from the default
properties screen. When true, two buttons,
up and down, are shown on this screen.

AllowColumnResizing Determines if the user may mouse place the
mouse pointer between Contact objects and
vertically resize the standard width of all of
the objects.

AllowCopy Determines if the user may hold the <CTRL>
key while dragging a contact to create an
exact copy of the contact.

AllowDelete Determines if the user may press the
<DELETE> key remove a contact.

AllowDragFromFile Determines if a Contact object file may be
and dropped on the Contacts control to
create a new Contact object.

AllowDragToFile Determines if a Contact object may be
dragged from the Contacts control and
dropped on a container that supports file
drops to create a Task object file.

AllowEdit Determines if the default property screen is
displayed when the user double-clicks a
contact or presses the <ENTER> key whilela
contact is selected. When true, either action
will display a pre-defined property window.

AllowInterWindowDrop Determines of Contact object may be
moved/copied to/from other Contact controls.

AllowOtherDrops Determines if object from other sources
outside of the Schedule control
(appointments, contacts, or tasks) may be
dropped on the Contact control to raise the
“DragDropOtherObject” event.

 Gravitybox Schedule Primer Page 130

Ó1998-2004 Gravitybox Software LLC

AllowScheduleDrops Determines if appointment objects may be
dropped on the Contact control.

AllowTabs Determines if the select tabs are displayed in
the right margin. These buttons may be used
as a shortcut for users to move to the first
contact that starts with a particular letter.

AllowTaskDrops Determines if Tasks objects may be dropped
on the Contact control.

BackColor Determines the color of the background area
outside of the displayed Contact objects.

Categories This is a collection of categories with which
Contact object may be associated.

ColumnWidth Determines if the width of the each Contact
object.

Contacts This is the collection that holds the actual list
of Contact objects.

DefaultDialogFloater Determines if the default property window is
an “on-top” window. When true the window
will float above all other windows in the host
application. This property only applies when
the “DefaultDialogModal” property is true.

DefaultDialogModal Determines if the default dialog is displayed
modally. When true, the default property
window must be closed before any other
interaction is possible with the host
application.

DefaultPhoneMask Determines the mask to use when displaying
phone numbers of Contact objects. This
ensures that any phone number mask in any
country may be specified to customize the
control for local use.

ItemBackColor Determines the background color of each
Contact object.

ItemForeColor Determines the text color of each Contact
object.

ItemHeaderActiveBackColor Determines the color of the background of
the header for the Contact object with the
focus only.

ItemHeaderActiveForeColor Determines the color of the header text for
the Contact object with the focus only.

ItemHeaderInactiveBackColor Determines the color of the background of
the header for all Contact objects that do not
have the focus.

ItemHeaderInactiveForeColor Determines the color of the header text for

 Gravitybox Schedule Primer Page 131

Ó1998-2004 Gravitybox Software LLC

the all Contact objects without the focus.

LineColor Determines the color of the container lines
drawn around each Contact object.

RightToLeft Determines if the text is to be displayed right-
to-left in certain, supported languages.

SelectedItem Determines the Contact object that has the
focus. If no object has the focus, this
property is set to “Nothing”.

TabAllText Sets/Returns the text displayed on the
selection button, if and only if there is one
select button displayed. If the control’s height
permits many select buttons are displayed in
the right margin. The number of buttons
displayed is a function of the control’s height.
If the height is small enough only one button
is displayed. This property determines the
text of this button.

TabAlphaText This property is the set of characters to be
displayed on the select button I th right
margin. By default, this value is the 26
characters of the English language. However
if need be this text may be changed to
coordinate with some other language.

TabNumericText After the alpha characters are displayed on
the select button there is an extra button
displayed to indicate contacts that start with
a number. By default this value is “123”, but
may be customized to display any text
desired.

The AllowEdit property gives you the power to control user edits. When true, the user
may click on some piece of information to edit it. The contact will become selected. The
data item inside of the contact will have a focus rectangle as well. An editable text box
will appear and you may enter the data. Clicking elsewhere on the screen or pressing
the <Enter> key will save the data. To cancel the edit simply press the <ESC> key and
no saving will occur.

Dim oContact As CContactEl

 Set oContact = Contacts1.Contacts.Add("John", "", "Doe")
 oContact.Email = "john@abc.com"
 oContact.PhoneHome = "770.555.1212"
 Set oContact = Nothing

 Gravitybox Schedule Primer Page 132

Ó1998-2004 Gravitybox Software LLC

The tabs on the right side of the control may be toggled on/off at your preference. By
default these are shown and allow the user an easy way to move to a desired position.
When the user presses a button, the first contact that starts with the button’s starting
letter is shown and selected. For example, if there is a tab with the caption “pqr”, the
first contact that starts with “P” will be selected. If there is no contact whose name starts
with the letter “P”, the first contact with a name greater than “P” will be selected. If the
next one in sequence is “Herman Zimmerman”, he will be selected when though the
“pqr” button was pressed.

The user may press the <F2> button to start an edit, if there is a selected item. The
events BeforeEditText and AfterEditText are executed in sequence, during this
operation. The former allows the user edit to be canceled if desired. The latter event
notifies you that the edit was successfully completed.

The user may display a property window by double-clicking
on the header of a Contact. Keep in mind that the AllowEdit
property must be set for this functionality to be present. The
property window displays some of the important properties
of a Contact. This screen is not configurable and if it does not meet your needs, you will
need to construct your own property screen. The phone numbers are auto-formatted to
the North American format.

Figure 13.6

This control also allows for file saving and loading. Just like
to TaskList and Schedule controls, it too has “ImportXML”
and “ExportXML” methods. They may be used instead of a
database to load and save the information in the contacts collection. When saving only
those properties with data will be saved. This saves space in the file. Since it would be
loaded empty string if saved empty string, there is no need to waste space with
placeholders in the XML file.

Quick Tip
You may cancel the default
properties screen by setting the
“Cancel” parameter to true in the
“BeforeEdit” event.

Quick Tip
You may define a custom phone
mask with the “DefaultPhoneMask”
property.

 Gravitybox Schedule Primer Page 133

Ó1998-2004 Gravitybox Software LLC

You may also drag Contacts to the desktop or explorer. When the AllowDragToFile
property is set to true, the user may click on the header of a Contact and drag it outside
of the control and drop it. A file will be created on the destination that contains the
Contact’s information. If the AllowDragFromFile property is set, the user may drag a
previously saved file back onto the Contact control and drop it to add the Contact to the
collection.

All of this combines to create a very useful Contacts control. It is Windows standard
adhering to the Microsoft look-and-feel, so you users will already be familiar with it. The
collection of contacts is easy to navigate and lends itself to easy file and database
manipulation. As with the task object above each contact object has an ExtraProperties
collection as well to store additional information about each contact.

Header Control

This control may be used to display an ”MS-Outlook”
header on a screen. This will give the MS Outlook look-and-
feel. The control has an associated icon that may be
displayed large or small. Also it may also be displayed on the left or right side of the
header. The displayed text is on the opposite side of the control from the icon. The
backcolor and forecolor are configurable as well. This allows for the developer to have
total control over the display. The control is read-only with no user interaction. It is for
display only.

Figure 13.7

This control adheres to the Windows look-and-feel standards to make users feel more
comfortable. Remember, the more standard an application looks, the less support calls
you will get for ignorance questions. The main reason for using standard looking
controls is to prevent costly user support and training issues. If a user is already familiar
with a software paradigm, let him keep using it so that you will not have to shell out
money for technical support, which more people are expecting for free these days!

Table 13.5
Header Control Properties

AutoSize This property determines if the control’s
height is automatically sized according to the
height of the caption.

BackColor The color of the background of the control.
This is only seen if the “HasSpacer” property
value is true. This is the color outside of the
actual header.

BorderStyle Determines if there is a border drawn around

Quick Tip
You may add a professional header
to any screen by using the Header
control

 Gravitybox Schedule Primer Page 134

Ó1998-2004 Gravitybox Software LLC

the control.

Caption The text to be displayed on the control.

Font The font to be used to display the text.

HasSpacer Determines if there is a small space around
the control color by the BackColor.

HeaderBackColor The color of the background of the area
where the text is displayed. This is the entire
control if the “HasSpacer” property value is
false.

HeaderForeColor The color of the caption text.

Icon The icon to be displayed on the control.

IconAlignment The alignment position of the icon: left or
right.

IconSize The size of the displayed icon. This is 16x16
or 32x32 pixels.

MouseIcon The icon to use for the mouse pointer.

MousePointer An integer value that specifies the mouse
pointer type.

ToolTipText The text to be displayed as a popup window
when the mouse hovers over the control.

TitleBar Control

The TitleBar control may be used to create custom looking
frames and forms. It is a control container that may be
placed on a screen to group one or more controls. It may
display a colored border if desired. Also a TitleBar may display a button in the right
corner that allows user interaction. Most of the colors are user defined. You may
customize the color of the border and background and well as the text.

Figure 13.8

The most common use of this component is to contain one or more child controls.
Placed on a form, this grouping gives a customized look and feel. When the button is
pressed you may hide the TitleBar and resize other controls on the your form to
compensate for the removal of the specified TitleBar’s disappearance. This allows you
to give addition functionality to the user to customize a form by hiding optional parts. If

Quick Tip
Define a custom looking screen with
the TitleBar control

 Gravitybox Schedule Primer Page 135

Ó1998-2004 Gravitybox Software LLC

you do not wish for the user to interact with the TitleBar, set its “AllowCloseButton”
property to false and no button will be displayed.

Table 13.6
TitleBar Control Properties

Align Determines if the control is aligned to one of the four
sides of the screen.

AllowALTF4 Determines if the <ALT>-<F4> key combination will
cause the “ButtonClick” event to be raised. This is useful
on a form with no caption or control box and the
“AllowAsCaption” property value is true. This enables the
control to act as the real title bar of a window.

AllowAsCaption Determines if the control is to replace the default TitleBar
of a window. A screen can be setup to have no caption or
control box. If so, the TItleBar may assume this
functionality by setting this property value to true. The
user may drag the TitleBar to move the window as if it
were the real window title.

AllowBody Determines if the control is a header only or has a body
on which to position child controls. When true, the
TitleBar will be vertically resizable and may accept
constituent controls. When false the control will have a
fixed height, but will be resizable horizontally.

AllowCloseButton Determines if the close button should be displayed in the
top right margin. When pressed it raises the “ButtonClick”
event.

Appearance This property determines if the control has a 3D border.
When this 'property value is true, the control has a 3D
shadowed border. Otherwise it 'has a single line border
of the color defined by the "BorderColor" property.

BackColor Determines the background color of the non-header
area. The header color is not determined by this property
value.

BorderColor Determines the color of the border drawn around the
control. If no border is desired then set this property to
the same color as the background color.

Caption This is the text to be displayed on the header of the
control.

ClientHeight This is the height of the body area where child controls
may be placed.

ClientLeft This is the left edge of the body area where child controls
may be placed.

ClientTop This is the top edge of the body area where child controls
may be placed.

ClientWidth This is the width of the body area where child controls

 Gravitybox Schedule Primer Page 136

Ó1998-2004 Gravitybox Software LLC

may be placed.

Enabled Determines if the control may accept user interaction.

Font Determines the font used to display the caption.

ForeColor Determines the text color of the caption.

HeaderBackColor Determines the color of the background of the header
portion of the control only.

When the control is resized you may wish to resize its contained controls in the “Resize”
event. This task is made easier by the four properties “ClientLeft”, “ClientTop”,
“ClientWidth”, and “ClientHeight”. These properties return the coordinates of the client
area where constituent controls are to be displayed.

A TitleBar may be used as a screen as well, while its
header will double as the screen’s caption if necessary.
When placed on a form with no controlbox and no caption
the TitleBar’s header can be made to accept mouse clicks and move the form as a
normal form caption would. When its property “AllowAsCaption” is set to true, the user
may click in the header portion and the entire form will move as if the form’s title bar
was clicked and dragged. When using the control in this fashion you may catch the
“ALT-F4” key sequence as well to close a form. If the “AllowALTF4” property is set to
true, this key combination will raise the “ButtonClick” event just as if the button was
pressed. This allows your form to act just as a real window would. There is a piece of
code that must be added for this functionality to perform properly. When the user clicks
the header to move the form the event “GetContainerhWnd” is raised. The parameter
“lHwnd” must be set to the hWnd property of the window that is to be moved. If this
parameter in this event is not set, the window will not move as expected.

Notes Control

The Notes control allows you add the ability to store arbitrary text strings in your
application. This control may display in three distinct ways so that you may customize
the look and feel of your application. The note objects are just text that is displayed with
a note icon. This is modeled after the Notes section of MS-Outlook.

Figure 13.9

Quick Tip
A user may move a screen with a
TitleBar by dragging its caption, if the
“AllowAsCaption” property is true.

 Gravitybox Schedule Primer Page 137

Ó1998-2004 Gravitybox Software LLC

Table 13.7
Notes Control Properties

AllowCopy Determines if the user may copy objects by holding
the <CTRL> button when dragging.

AllowDelete Determines if the user may remove objects by
pressing the <DELETE> key.

AllowDragFromFile Determines if a Note object file may be and dropped
on the Notes control to create a new Note object.

AllowDragToFile Determines if a Note object may be dragged from
the Notes control and dropped on a container that
supports file drops to create a Note object file.

AllowEdit Determines if the user may edit an item by double-
clicking it or pressing the <Enter> key.

AllowInterWindowDrop Determines if Note objects may be dragged to
another Note window.

AllowOtherDrops Determines if non-Gravitybox objects may be
dropped on the Note control.

BackColor Determines the back color of the control when
enabled.

DefaultDialogFloater Determines if the default property window is an “on-
top” window. When true the window will float above
all other windows in the host application. This
property only applies when the
“DefaultDialogModal” property is true.

DefaultDialogModal Determines if the default dialog is displayed
modally. When true, the default property window
must be closed before any other interaction is
possible with the host application.

Enabled Determines if the user may interact with the control.

ForeColor Determines the text color of the control when
enabled.

Notes The collection that holds the individual Note objects.

SelectedItem The Note object currently selected.

View Determines the way in which the control is
displayed. There are three different view modes.

 Gravitybox Schedule Primer Page 139

Ó1998-2004 Gravitybox Software LLC

Part VI
Examples

God gives every bird his worm, but he does not throw it into the nest.

-Swedish Proverb

Chapter 14 Scheduling Program
Chapter 15 OtherDrop Example
Chapter 16 GbOrganize Application

 Gravitybox Schedule Primer Page 141

Ó1998-2004 Gravitybox Software LLC

Chapter 14

Scheduling Program

It should be self-explanatory how a day schedule works in normal mode. You just drop a
schedule on a form, set the MinDate and MaxDate and you are done. This is not much
of an example from which to learn. So I have chosen to make our first real application a
bit more complex. We will create an MDI interface and open a new child window for
each day. Instead of having just one column for the day, we will schedule rooms. This
example assumes that we are building an application for a doctor’s office. In this
fictional office we are required to schedule patients in different rooms of the office. This
is important because in an office you may have 10 patients scheduled at 10:00 AM;
however they will be in different rooms. This is a real-world example and one that many
developers have had to build.

We may construct a simple scheduling application that still presents much of the
functionality of the schedule component. We will be able to create a new schedule. Also
we will be able to open an existing schedule. Finally, we will be able to save and print
schedules. The first thing to do is to create the needed forms. We will need an MDI and
a child form. On the child form we will place a GbSchedule object. To ensure that the
schedule is the proper size we will need to add a little code to the resize event.

Private Sub Form_Resize()

On Error Resume Next

 Schedule1.Move 0, 0, Me.ScaleWidth, Me.ScaleHeight

End Sub

This code will not cause any error if the form is minimized because it skips all errors.
The only errors that could occur are resizing errors and there is nothing to be done
about those anyway, so we will ignore them.

Next we will add some rooms to the schedule. You may, of course, add a configuration
screen to setup rooms. This is the obvious thing to do especially it you are deploying
your application to many clients and do not know their room configuration at design-
time. However, for the simplicity of this example we will just hard-wire the rooms. I have
created a routine to add rooms to the schedule and it is called from the Form_Load
event. This routine will add four rooms to the schedule.

Private Sub LoadRooms()

 'We will now load the rooms for this day.

 Gravitybox Schedule Primer Page 142

Ó1998-2004 Gravitybox Software LLC

 'Every day has these rooms since every day
 'we have the same number of rooms in our office
 Call Schedule1.Rooms.Clear
 Call Schedule1.Rooms.Add("Operatory I")
 Call Schedule1.Rooms.Add("Operatory II")
 Call Schedule1.Rooms.Add("Exam I")
 Call Schedule1.Rooms.Add("Exam II")

End Sub

Now that we know the rooms will be added, we need to write a routine to open and save
files. This application will not use any database access. It will use the built-in XML file
routines. The OpenFile and SaveFile routines will load and save schedules to XML files.

Public Function OpenFile(ByVal dtDate As Date) As Boolean

Dim oXMLParameters As CXMLParameters
Dim sFileName As String

 'Save this screen's date
 MyDate = dtDate

 'This will load a schedule from file (if need be)
 sFileName = AppPath & GetFileName(Me.MyDate)
 If FileExists(sFileName) Then
 Set oXMLParameters = New CXMLParameters
 oXMLParameters.FileName = sFileName
 oXMLParameters.EmployGMT = False
 oXMLParameters.PropertyAll = False
 Call oXMLParameters.UseAllCollections(False)
 oXMLParameters.VerifyOnly = False
 Call Schedule1.ScheduleItems.Clear
 Call Schedule1.ImportXML(oXMLParameters)
 End If

 'Setup the caption for this screen
 Me.Caption = Format(MyDate, "dddd mmm dd, yyyy")

 'There is nothing dirty
 Changed = False

EndSub:
 Set oXMLParameters = Nothing

End Function

Public Sub SaveFile()

 Gravitybox Schedule Primer Page 143

Ó1998-2004 Gravitybox Software LLC

Dim oXMLParameters As CXMLParameters
Dim sFileName As String

 'This will commit the schedule to file
 Set oXMLParameters = New CXMLParameters
 sFileName = AppPath & GetFileName(Me.MyDate)
 oXMLParameters.FileName = sFileName
 oXMLParameters.Overwrite = True
 oXMLParameters.EmployGMT = False
 oXMLParameters.PropertyAll = False
 Call oXMLParameters.UseAllCollections(False)
 oXMLParameters.VerifyOnly = False
 Call Schedule1.ExportXML(oXMLParameters)

 'There is nothing dirty anymore
 Changed = False

EndSub:
 Set oXMLParameters = Nothing

End Sub

Notice that the methods make sure to only save and load the ScheduleItems collection.
The “UseAllCollections” method has been sent a parameter of false. This will ensure
that the Rooms, Categories, and other collections are not saved or loaded to/from file.

The child form has a property called MyDate. This is a property used to identify the date
associated with the form. We will use it later to make sure that we do not load a date
more than once. Notice that this property is set in the OpenFile method. We will make
sure that anytime a form is loaded this method is called. If the file does not exist, we will
load simply load a blank day. If it does exist, we will load it form file. Either way, this
property is set during the method call.

A final method for the child form is the print method. It will print the entire existing
schedule. First we must declare the print parameter object. This stores all the
information about the printing process such as copies, orientation, etc. We set its device
name to the default printer’s device name. This will setup print to work with this printer.
The GoPrint method is flexible. Depending on the configuration of the schedule it takes
differing parameters. Since we are printing a schedule that has been displayed in
RoomOnly mode, the first two parameters are the start room and end room. These are
set to the first and last rooms. The start time is set to the schedule’s start time and the
end time to the schedule’s last displayed time. This will print the entire schedule.

Public Function PrintFile() As Boolean

Dim oPrinterParameter As New CPrinterParameter

 Gravitybox Schedule Primer Page 144

Ó1998-2004 Gravitybox Software LLC

 oPrinterParameter.PrinterDeviceName = Printer.DeviceName
 PrintFile = Schedule1.GoPrint(1, _
 Schedule1.Rooms.Count, _
 Schedule1.StartTime, _
 DateAdd("h", Schedule1.DayLength, _
 Schedule1.StartTime), _
 oPrinterParameter)
 Set oPrinterParameter = Nothing

End Function

Next we need to a property to the child form called “Changed”. This is a Boolean
property that will keep up with the changed state of the schedule. When true, it means
that the schedule needs to be saved to file. After loading and saving this property is set
to false, because there is nothing that has changed since the last save. In the
schedule’s events that signify change we will set this variable to true as in the following
code.

Private Sub Schedule1_AfterAdd(ByVal NewIndex As Long)
 Changed = True
End Sub

The events that need this line of code include: AfterAdd, AfterCopy, AfterDelete,
AfterDragFromFile, AfterEdit, AfterEditNotes, AfterEditText, and AfterMove. If any one
of these events is raised the schedule will need to be saved.

If the user presses the child window close button, how will the schedule know to save?
In the Form_QueryUnload event we will add code to catch this situation.

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As
Integer)

 If Changed Then
 Select Case MsgBox("This schedule has been modified. Do you
wish to save?", vbYesNoCancel + vbQuestion, "Save?")
 Case vbYes: Call SaveFile
 Case vbNo: 'Do Nothing
 Case vbCancel: Cancel = True
 End Select
 End If

End Sub

If the “Changed” variable is set we will prompt the user to save the form. The user may
then choose “Yes” to save and unload, “No” to not save and unload, or “Cancel” to not
save and cancel the unload of the window all together.

 Gravitybox Schedule Primer Page 145

Ó1998-2004 Gravitybox Software LLC

Now that the child form has been constructed we need a way to open these forms as
well as a container in which to contain them. So we need to build an MDI parent form.
We add one to our project and start by declaring the menus. Open the menu editor and
add a top-level menu. We will set the caption to “File” and name it “mnuFile”. Under this
menu will add the following menus: Open, Close, Save, Print, and
Exit. This will provide us with the needed functionality to use this program.

The open menu item will prompt the user for a date and if the date has not been loaded
previously, it will load a child form and have it open the saved file. If the file does not
exist it will load a blank schedule, remember? The GetDate function is defined later; just
assume that it will return a date to open.

Private Sub mnuFileOpen_Click()

Dim F As frmChild
Dim dtDate As Date

 'Get a date from the user If valid then
 'open a child window and load this date
 If GetDate(dtDate) Then
 If IsDateLoaded(dtDate) Then
 Call MsgBox("This date is already loaded!", bExclamation)
 Else
 Set F = New frmChild
 Call F.OpenFile(dtDate)
 Call F.Show
 Call UpdateMenu
 End If
 End If

End Sub

The Close menu item will do nothing more than close the active form.

Private Sub mnuFileClose_Click()

 Unload Me.ActiveForm
 Call UpdateMenu

End Sub

The Save menu item will call the SaveFile method of the child form. Each child knows
how to save itself.

Private Sub mnuFileSave_Click()
 Call Me.ActiveForm.SaveFile

 Gravitybox Schedule Primer Page 146

Ó1998-2004 Gravitybox Software LLC

End Sub

The Print menu item will tell the active form to print itself. Every child knows how to print
itself as well.

Private Sub mnuFilePrint_Click()

 If MsgBox("Do you wish to print the active schedule?", _
 vbYesNo + vbQuestion, "Print?") = vbYes Then
 Call Me.ActiveForm.PrintFile
 End If

End Sub

In order to prompt the user for dates we will need to construct a form for this action. We
only need to create a form with a textbox and two command buttons. The textbox will be
used to type in the date and the command buttons will be the “Ok” and “Cancel”
buttons. In the Ok button’s code we will need to check that the entered date is valid with
the VBA “IsDate” function. To ensure that we do not load a date twice we will need to
check the loaded child forms and verify that their dates are different than the target
date. The IsDateLoaded method is on the MDI parent form and is used for this purpose.

Private Function IsDateLoaded(ByVal dtDate As Date) As Boolean

Dim F As Form

 For Each F In Forms
 If F.Name = "frmChild" Then
 If F.MyDate = dtDate Then
 IsDateLoaded = True
 GoTo EndSub
 End If
 End If
 Next

EndSub:

End Function
'This function will ensure that the Date has no round-off error
Public Function GetDate(ByVal dtDate As Date) As Date
 GetDate = DateSerial(Year(dtDate), _
 Month(dtDate), Day(dtDate))

End Function

 Gravitybox Schedule Primer Page 147

Ó1998-2004 Gravitybox Software LLC

To make sure that our menus are always up to date, we will need a method that
enables the menu system when required. If there is an active child form, the save and
print menus should be enabled. However, if there is no active child form these should
be disabled, since it make no since to save or print nothing.

Private Sub UpdateMenu()

Dim bHasChild As Boolean

 bHasChild = Not (Me.ActiveForm Is Nothing)

 mnuFileClose.Enabled = bHasChild
 mnuFileSave.Enabled = bHasChild
 mnuFilePrint.Enabled = bHasChild

End Sub

All of this code will actually make a working application that can save and load files. It
can prompt the user for a date to open and error check to make sure that the date is not
loaded. It will make sure that the user cannot accidentally unload a schedule without
saving it. Further, it will print the schedule as well. In all, this is surprisingly little code to
accomplish all of this functionality.

 Gravitybox Schedule Primer Page 149

Ó1998-2004 Gravitybox Software LLC

Chapter 15

OtherDrop Example

The next example is deceptively simple. It is just over 20
lines of code but still merits the definition of an application
that performs a complicated action. There are times when
you will want to add appointments from some external source. You may not want the
user to click to add appointments at all. This example has one form with a schedule and
a list box. The list box is populated with people, clients, trucks, or whatever. You want to
drag an item from the list and have it appear on the schedule with the proper text
displayed. For this example I have hard-coded the list items. You could of course load it
from anywhere, preferably your database of patients. I have three items in it. In order to
drag an item and drop it on a schedule you will need to add a little code.

Option Explicit

Private Sub Form_Load()

 Call List1.AddItem("Father Time")
 Call List1.AddItem("Jack Frost")
 Call List1.AddItem("Mother Nature")

End Sub

Private Sub List1_MouseDown(Button As Integer, Shift As
Integer, X As Single, Y As Single)
 Call List1.OLEDrag
End Sub

Private Sub List1_OLESetData(Data As DataObject, _
 DataFormat As Integer)
 Call Data.SetData(Schedule1.CreateByteArray("90"), _
 Schedule1.OLEDragFormat)
End Sub

Private Sub List1_OLEStartDrag(Data As DataObject, _
 AllowedEffects As Long)
 Call Data.SetData(, Schedule1.OLEDragFormat)
 AllowedEffects = vbDropEffectCopy
End Sub

Private Sub Schedule1_AfterAdd(ByVal NewIndex As Long)
 Schedule1.ScheduleItems(NewIndex).DisplayText = List1.Text
End Sub

Quick Tip
You may drop a non-schedule object
on a schedule if needed to create an
appointment if necessary.

 Gravitybox Schedule Primer Page 150

Ó1998-2004 Gravitybox Software LLC

The first thing that needs to be done is to inform the list box that it needs to be set for
OLE dragging. In its MouseDown event, call its OLEStartDrag method. This will begin a
drag. So that target destination knows what type of drag formats the list box supports,
we set the drag format to the schedule drag format. This is a special constant defined
by the schedule in its OLEDragFormat property. If a target drop destination actually
wants the data, it is set through its OLESetData event. In this event you should set the
data the schedule expects. The only data that the schedule wants is the appointment
length. If you do not set any data the length will be set to the default
ScheduleIncrement. If you have a desired length for the new appointment set it by
creating a byte array using the schedule’s CreateByteArray method. Send in the
appointment length and an array of bytes that represent this value is returned. This
value is used to populate the Data object. The outline of the appointment as the user is
dragging over the schedule will be this length.

Figure 15.1

The final event used is the schedule’s AfterAdd event. This will allow us to set the text
displayed inside of the appointment. After the drop the new appointment’s index in the
ScheduleItems collection is returned as a parameter. You may use this to access the
newly added object and set it DisplayText property. The appointment then will have
been added and the text will have been set.

This is entire application. It will allow you to add appointments by dragging them from an
external object. Keep in mind that the schedule’s AllowOtherDrops property must be set
to true. This allows you to configure whether the schedule actually allows this type of
appointment adding in the first place.

 Gravitybox Schedule Primer Page 151

Ó1998-2004 Gravitybox Software LLC

Chapter 16

GbOrganize Application

Our final example is the most complex. We will attempt to integrate the schedule into a
real, usable application. GbOrganize is a mock up MS-Outlook. It looks similar and has
many of its features. The most glaring absence is the email functionality. However since
we are attempting to display the features of GbSchedule, I do not feel that this is a
problem. The application can be thought of as four applets. These include calendar,
task, note, and contact programs. The last three are added to create a bona fide
application. The calendar, which uses the GbSchedule, will be added last. We will
create the functionality for it last.

We will use the Gravitybox Listbar, Schedule, and Directory Browser in this application.
All may be downloaded free of charge from the Gravitybox website. We begin by
creating an MDI parent form with a Listbar and adding five items to it.

Figure 16.1

We now need to add code behind the Listbar to load the forms that we will create later
in the demonstration.

Private Sub ListBar1_ItemClick(ByVal oTab As GbListBar.CTabEl,
ByVal oItem As GbListBar.CItemEl)

 Screen.MousePointer = vbHourglass

 If Not CloseForms Then GoTo EndSub

 Gravitybox Schedule Primer Page 152

Ó1998-2004 Gravitybox Software LLC

 Select Case oItem.Name

 Case "Today": 'Today
 frmToday.Show

 Case "Calendar": 'Calendar
 frmCalendar.Show

 Case "Contacts": 'Contacts
 frmContact.Show

 Case "Tasks": 'Tasks
 Load frmTask
 Set frmTask.TaskColumns = TaskColumns
 Call frmTask.RefreshForm
 frmTask.Show

 Case "Notes": 'Notes
 frmNote.Show

 End Select

End Sub

The code for this method merely loads the appropriate form, when the user presses an
item on the Listbar.

The entire application rides on top of the OrganizeAPI DLL file. In the code displayed in
this section, you will see references to objects that you have never seen before and no
database access. Though this application uses a database to save and load data, only
the API actually touches the database. The GUI that we are building simply calls the
API. By constructing an object-oriented API, other application may be built that use the
API to manipulate the objects. For example, another application could be made that
does some type of data backup once a week. Another may be built that cleans up old
appointments or creates an archive of old appointments or task items.

Throughout this demonstration, the loading and saving of objects will be done using a
global object named “ThisUser”. This object is defined from the “CUserPreference”
class in the API DLL. It has properties and methods that control user maintenance,
saving, loading, etc. All load/save methods take this object as a parameter to properly
perform their operations. The format was chosen to ensure that the same user load and
saves the objects. This solves certain consistency problems. This user object also
contains the needed database connection information.

 Gravitybox Schedule Primer Page 153

Ó1998-2004 Gravitybox Software LLC

Notes

We will start by adding notes, since this is the simplest thing to do. A note object is
exactly what it sounds like, apiece of text. The notes form is an MDI child and loads the
notes from the API when the form loads.

Private Sub Form_Load()

Dim oNote As CNoteEl

 frmMDI.mnuNote.Visible = True
 Call frmMDI.SetStatus(oNotes.Count & " Items")

 Call oNotes.Load(ThisUser)
 For Each oNote In oNotes
 Call lvwNote.ListItems.Add(, oNote.UniqueKey, _
 oNote.Text, "Note")
 Next

End Sub

The code above uses the object “ThisUser” to load the oNotes object. It then loops
through the collection of notes and inserts each into the notes ListView. When the user
selects a displayed note on the screen by double-clicking or pressing <Enter>, a note
property window will appear that allows the user to modify the note text. After the user
modifies the text, he may press the window’s close button. In the QueryUnload event
the text box’s value will be used to set the note object’s text value. This will ensure that
the next time the notes collection is saved this value will be committed to file.

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As
Integer)

 Note.Text = txtNote.Text

End Sub

This is essentially the entire functionality of the notes portion.

Contacts

The next part of the program is to manage contacts. This is only a little more
complicated than the notes. A note has one field, Text that defines an object. A contact
object has many fields. A contact is defined a set of information that describes a person.

 Gravitybox Schedule Primer Page 154

Ó1998-2004 Gravitybox Software LLC

Figure 16.2

Private Sub LoadForm()

Dim oContact As CContactEl
Dim oListItem As ListItem

 Call oContacts.Load(ThisUser)
 Call frmMDI.SetStatus(oContacts.Count & " Items")
 Call lvwContact.ListItems.Clear
 For Each oContact In oContacts
 Set oListItem = lvwContact.ListItems.Add(, _
 oContact.UniqueKey, oContact.Name, _
 , "Contact")
 Call FormatListItem(oListItem, oContact)
 Next

End Sub

The LoadForm method of this screen will load the contacts collection and populate the
Contacts control. The user may select a contact by double-clicking or pressing the
<Enter> key. When this occurs the contact’s property window is displayed. This allows
the user to modify information about the contact.

 Gravitybox Schedule Primer Page 155

Ó1998-2004 Gravitybox Software LLC

Figure 16.3

A contact has much associated information. After the user modifies the properties on
the screen, he may press the Ok button to save the information. In the save routine the
text boxes on the screen are used to set the contact object’s properties with the new
values.

Private Sub cmdButton_Click(Index As Integer)

 ReDim ParOut(1)
 Select Case Index

 Case 0: 'Ok
 Contact.Address = txtAddress.Text
 Contact.Anniversary = IIf(IsNull(dtAnniversary.Value), _
 0, dtAnniversary.Value)
 Contact.Birthday = IIf(IsNull(dtBirthDate.Value), 0, _
 dtBirthDate.Value)
 Contact.Company = txtCompany.Text
 Contact.Email = txtEMail.Text
 Contact.HomePageAddress = txtHomePageAddress.Text
 Contact.Name = txtName.Text
 Contact.Notes = txtNotes.Text
 Contact.PhoneBusiness = txtPhoneBusiness.Text
 Contact.PhoneBusinessFax = txtPhoneBusinessFax.Text
 Contact.PhoneHome = txtPhoneHome.Text
 Contact.PhoneMobile = txtPhoneMobile.Text
 Contact.Category = txtCategories.Text
 ParOut(0) = True

 Case 1: 'Cancel
 ParOut(0) = False

 Gravitybox Schedule Primer Page 156

Ó1998-2004 Gravitybox Software LLC

 End Select
 Unload Me

End Sub

On the main contact form the Contacts collection must be saved when the user unloads
the form. This happens by clicking on another function like notes, tasks, or calendar; or
by closing the application all together. The QueryUnload event is used to save the
contact collection and deallocate the object.

Private Sub Form_QueryUnload(Cancel As Integer, _
 UnloadMode As Integer)

 Call oContacts.Save(ThisUser)
 Set oContacts = Nothing

End Sub

Tasks

The next operation uses a control from the GbSchedule module. The TaskList control is
used to display any number of columns and the information in them. The tasks in this
program have been setup to display none or more of the following items: date, start
time, subject, notes, and priority. These are properties associated with appointment;
however these tasks are independent from the calendar screen.

Figure 16.4

A TaskList has multiple sections. First there is the add portion at the top of the control.
This may be selectively toggled on/off with the “AllowAdd” property. In Figure 16.4, the
property value is true. The user may click inside this area to start editing a new
appointment. When the <Enter> key is pressed, the task is added to the list. If the
<Esc> key is pressed in this section, the new add is canceled and all information typed
into this section is removed.

 Gravitybox Schedule Primer Page 157

Ó1998-2004 Gravitybox Software LLC

The TaskList has a checked column. This corresponds to the task’s “PercentComplete”
property. It may have a value of 0 to 100. If the value is equal to 100, the checkbox is
marked to indicate that the task is complete. If the user clicks the check box, the
“PercentComplete” property value is automatically set to 100, not matter its previous
value. As the user pressed the up, down, left, and right keys the selected row and
column will change. In Figure 16.4, the second row is selected. In it the second column
is selected as well. The user may press the <F2> at any time to edit the selected cell.
Cells may have different property types as well. The valid values for cell types are date,
time, text, and noedit. The date and time will verify that the user only enters valid dates
and times. The text value is a catchall. Any value is a valid string. The noedit value is
used when you do not wish to allow the user to edit the cell.

Loading the TaskList is a bit complicated. Because it is a general-purpose control, there
are no predefined columns. Before you may load any data, you will need to load the
columns. The control has a column’s collection and may be loaded as follows.

Call TaskList1.Columns.Clear
Call TaskList1.Columns.Add("Date", ctDate)
Call TaskList1.Columns.Add("Start Time", ctTime)
Call TaskList1.Columns.Add("Subject", ctText)
Call TaskList1.Columns.Add("Notes", ctText)

This code will clear any columns that exist. It will then add four columns with their
appropriate types. After this addition there will be four columns displayed on the
TaskList. We may then start to add data items.

The first thing you will notice when adding data items is that you do not specify any
data! There is a reason for this. Since there are no predefined columns there can be no
properties associated with these non-existent columns. You must append a data object
to the collection and then set its sub-items. Since there are 4 columns, we each Task
will have a TaskItems collection with 4 items in it.

Dim oTask As CTaskEl

 Set oTask = TaskList1.Tasks.Add
 oTask.TaskItems(1).Text = "12/31/2002"
 oTask.TaskItems(2).Text = "11:00 AM"
 oTask.TaskItems(3).Text = "My Subject"
 oTask.TaskItems(4).Text = "Some Notes"
 Set oTask = Nothing

We can use this object hierarchy to load and save. The OrgranizeAPI has a Tasks
collection. This may be loaded as the notes and contacts collection objects were
previously.

 Gravitybox Schedule Primer Page 158

Ó1998-2004 Gravitybox Software LLC

Figure 16.5

Once added, the user may double-click on a task to bring up its property box. It allows
the user complete control over all aspect of the task. In the GbOrganize example,
columns may be hidden. This means that not all information is necessarily visible. The
property box gives the user a way to view all properties at one time.

The property box is not a built-in form. You must build this screen. If you wish to include
it in your application, it must be built. The form has text boxes and such on it, but how is
it loaded? Simple, we define a new property of the form called Task of type CTaskEl.
We then set the property before we show the form. All of the controls on the form are
setup by the property set method.

Option Explicit

Dim m_Task As OrganizeAPI.CTaskEl

Public Property Get Task() As OrganizeAPI.CTaskEl
 Set Task = m_Task
End Property

Public Property Set Task(ByVal Value As OrganizeAPI.CTaskEl)

 Set m_Task = Value

 'Setup the screen
 txtSubject.Text = Value.Subject
 If Value.StartDate = 0 Then
 datStartDate.Value = Now
 Else
 datStartDate.Value = Value.StartDate

 Gravitybox Schedule Primer Page 159

Ó1998-2004 Gravitybox Software LLC

 End If

 If Value.Priority = pcLow Then cboPriority.ListIndex = 0
 If Value.Priority = pcNormal Then cboPriority.ListIndex = 1
 If Value.Priority = pcHigh Then cboPriority.ListIndex = 2

 VScroll.Value = VScroll.Max
 VScroll.Value = VScroll.Min
 VScroll.Value = 100 - Value.PercentComplete
 txtCategories.Text = Value.Category
 chkReminder.Value = IIf(Value.Reminder, vbChecked, _
 vbUnchecked)
 txtNotes.Text = Value.Notes

End Property

This means that to call the form all we need to do from the parent is load the form and
set its Task object

Load frmTaskProperties
Set frmTaskProperties.Task = Tasks(oTask.Index)
FrmTaskProperties.Show vbModal

Now the form will loaded, it will load all of its own child controls and then it will be shown
as a modal form. We put this code in the “TaskDblClick” event of the TaskList. When
the user double-clicks on a task, this code is executed.

Calendar

Now it is time for the crowning jewel of the entire example. This application is used to
show off the schedule, so let start to build something with the schedule on it. The
calendar functionality of the GbOrganize example illustrates how to build a nice, simple
schedule. For this, we will need the same thing the other parts of this application require
a main form and a property box.

The main form is an MDI child form with a schedule placed on it. It will be capable of
displaying in four different modes: day, work week, week, and month. In day mode the
schedule will display one day only. There will be one column (the day) and the times will
be displayed on the left. Its MinDate and MaxDate will be the same. In work week
mode, the schedule will display one week Monday to Friday. There will be no
weekends. In week mode, the schedule will display Sunday through Saturday of a
particular week. Finally in month mode there will be an entire month visible at one time.
All displays are controlled by a calendar on the right side of the screen.

The MonthView control on the right side of the screen defines the current date. In day
mode this is the date that is displayed. In any other mode this date is belongs to the

 Gravitybox Schedule Primer Page 160

Ó1998-2004 Gravitybox Software LLC

date range displayed. For example, if we are in month mode and the selected date was
February 16, the displayed Month would be February.

Schedule1.AutoRedraw = False
Select Case DisplayMode

 Case cdcDay:
 Call Schedule1.SetMinMaxDate(_
 MonthView1.Value, MonthView1.Value)

 Case cdcWorkWeek:
 Call Schedule1.SetMinMaxDate(_
 FirstDayOfWeek(MonthView1.Value, vbMonday), _
 LastDayOfWeek(MonthView1.Value, vbFriday))

 Case cdcWeek:
 Call Schedule1.SetMinMaxDate(_
 FirstDayOfWeek(MonthView1.Value), _
 LastDayOfWeek(MonthView1.Value))

 Case cdcMonth:
 'Do Nothing Yet

End Select
Call LoadForm
Call RefreshHeaderFormat
Call frmMDI.SetStatus(oAppointments.Count & " Items")
Schedule1.AutoRedraw = True

This code will set the MinDate and MaxDate to the appropriate values depending on the
MonthView value and the display mode. Notice that the AutoRedraw was set to false
while loading occurred. This will speed up the loading significantly. The schedule will
normally redraw itself after every appointment addition. We will toggle this feature off
only during load.

Figure 16.6

 Gravitybox Schedule Primer Page 161

Ó1998-2004 Gravitybox Software LLC

When there are appointments actually on the schedule, the user may double-click on
each to display its property box. Each appointment has many properties including date,
start time, and reminder. Most of these are self-explanatory. An interesting one is the
reminder property. It will set the schedule to raise an event when the specified item
comes due. For example, if we make an appointment for June 5, 2002 at 9:00 AM, the
“ScheduleItemStart” event would be raised at this time to signify that the appointment
has come due. In the GbOrganize example, the property box is displayed.

Figure 16.7

This informs the user that an appointment has come due and gives him access to the
appointment’s properties. In this example we have loaded the properties screen and
shown it non-modally. The reason for this is that if the user is away or this is an
automated application then another appointment may come due while the first screen is
still displayed. In this example there may be any number of property boxes displayed on
the screen, waiting for user attention.

Private Sub Schedule1_ScheduleItemStart(ByVal Index As Long)

 Call ShowApptDue(Schedule1.ScheduleItems(Index),
oAppointments)

End Sub

Public Sub ShowApptDue(ByVal oScheduleItem As CScheduleEl, _
 ByVal Appointments As CAppointmentCol, _
 Optional ByVal lSnoozeCount As Long = 1)

 Gravitybox Schedule Primer Page 162

Ó1998-2004 Gravitybox Software LLC

Dim F As frmAppointmentDue

 Set F = New frmAppointmentDue
 Set F.ScreenAppt = oScheduleItem
 Set F.Appointment = Appointments.GetObject(_
 oScheduleItem.UniqueKey, osTag)
 Call F.Show
 Set F = Nothing

End Sub

You may be wondering what happens if you remove an appointment that has its
property box displayed. Since they are non-modal this is a very real situation. In the
schedule’s AfterDelete event, a search is performed to determine if an appointment
property box exists for the removed appointment. Since every appointment has a
unique identifier, a routine may be constructed that loops and searches for the
UniqueKey property. If found, the window is unloaded.

Private Sub UnloadAppointmentDialog(ByVal sUniqueKey As String)

Dim oForm As Form

 For Each oForm In Forms
 If StrComp(oForm.Name, "frmApptProperties", vbTextCompare)
= 0 Then
 If StrComp(oForm.ScreenAppt.UniqueKey, sUniqueKey, _
 vbTextCompare) = 0 Then
 Unload oForm
 End If
 End If
 Next

End Sub

This concludes the example. Of course the creation of a full-fledged program is more
complicated than what I have described. I do not find it necessary to fill volumes with
source code that you are neither going to read. All of the code is available on-line and in
digital format so that you may actually compile and use it. There are many supporting
routines and an API that are used in the GbOrganize example. In its current incarnation
there are about 8500 lines of code. This is not much considering that all of the
functionality that it provides. Since the entire source is provided for the example, you
may feel free to extend it and add any useful functionality that you may dream-up.

 Gravitybox Schedule Primer Page 163

Ó1998-2004 Gravitybox Software LLC

Part VII
Appendix

Every closed eye is not sleeping; and every open eye is not seeing.

-Unknown

Property Pages
Properties
Methods
Events

 Gravitybox Schedule Primer Page 165

Ó1998-2004 Gravitybox Software LLC

Property Pages

Property pages allow design-time properties to be edited with a graphical interface. In
addition, they provide a way to set and store some of the collections at design-time.

The “General” Property page simply allows for the setting of some of the important
schedule properties that are already available in the property box in Visual Basic.
Included properties are some of the “Allow…” properties and the text formatting
properties. The HeaderDateFormat format may be formatted to display on multiple lines.
This text box allows for the addition of a complex header format that may not be readily
set in the property box. The StartTime and DayLength may also be set. These will
generate corrections if the StartTime plus the DayLength try to make the schedule
display past 12 midnight.

Figure A.1

 The “Room” property page will allow for the setup of the Rooms collection at
design-time. This page may be useful, especially if no dynamic or run-time modifications
of the Rooms collections are required. Room objects may be added, edited, or removed
from the collection on the page. The position in the collection of each object may be
modified as well, using the arrow keys.

 Gravitybox Schedule Primer Page 166

Ó1998-2004 Gravitybox Software LLC

Figure A.2

 The “Categories” property page allows for the setup of the Categories collection,
much like the Rooms page allows for the setup of the Rooms collection. Any Category
object may be added, edited, or removed from the collection. The order of objects in the
collection may be changed as well, with the arrow keys. A difference from the previous
property page is that there is a color button present. After selecting a Category object,
its color may be set. This is its associated color that will be used in its displayed
category bar.

Figure A.3

The final property page is the “Other Categories” page. This will allow for the setup of
the Categories collection that resides on the ScheduleItems object. These additional
user defined categories may be used to associate additional information with each
appointment. Since this is a collection of categories, a Category collection must be

 Gravitybox Schedule Primer Page 167

Ó1998-2004 Gravitybox Software LLC

defined first. After selecting an existing Category collection, elements may be added to
it. Each ScheduleItem will have a Categories collection with X elements. The X is the
number of collections (not elements) defined in this screen. Each element in the
Categories collection of a ScheduleItem object is one of the elements in that category.
This functionality is defined in the ScheduleItem Categories section under the Advanced
Functionality section.

Figure A.4

 Gravitybox Schedule Primer Page 169

Ó1998-2004 Gravitybox Software LLC

Properties

AllowActivities Property AllowActivities() As Boolean

This property determines if Activities are displayed on a
schedule. An Activity is an appointment that is not and all
day event and its start time and length make it overlap a
day boundary. Activities only exist when the viewmode
supports days on top and time on the left. If the
viewmode has any other value, no activities are
displayed. When this property is set the default property
dialog allows the user to set the end date. When false,
the default property dialog lists only start date, start time,
and end time, but no end date. This ensures that no
appointment may overlap a day boundary. Activities are
displayed in the event header at the top of the screen.

AllowAdd Property AllowAdd() As Boolean

AllowAdd determines if the user can double-click on the
background and create an appointment. If this property is
True, then the appointment is made and the edit window
is evoked. This allows the user to modify any of the item's
properties.

AllowAddDialog Property AllowAddDialog() As Boolean

Determines if the Add dialog box appears automatically
when a ScheduleItem is added. If false, the item is drawn
on the screen blank or you may use the AfterAdd event to
populate the Item before it is drawn on the screen.

If the "AllowAddDialog" property is set to false then the
BeforeEdit and AfterEdit events will NOT be raised. So if
you want display a custom edit dialog you must do it in
the AfterAdd event. This event is called after the
appointment has been added to the ScheduleItems
collection so the appointment can now be accessed with
the "NewIndex" parameter of the event.

AllowAddDrag Property AllowAddDrag() As Boolean

AllowAddDrag determines if the user can press the left
mouse button on the background and drag the length of a

 Gravitybox Schedule Primer Page 170

Ó1998-2004 Gravitybox Software LLC

desired appointment and it will be created. While the
mouse is being dragged, a boxed outline is displayed
over the area that will become the new appointment. The
user can press the <Esc> key to cancel the create, before
the mouse button is released.

If this property is true, the appointment is made and the
edit window is evoked. This allows the user to modify any
of the item's properties.

AllowBrowse Property AllowBrowse() As Boolean

This property determines if the up/down arrow keys are
enabled on the default property screen. When this
property value is true the arrow keys allow to user to
navigate between appointments without unloading the
screen.

AllowBubbleTips Property AllowBubbleTips() As Boolean

This property determines if the tooltips are displayed as
standard square windows or the new Windows 2000
bubble windows. When true, the tooltips are drawn in a
round window with a pointer to the specified area. When
false, the tooltip window is a normal square.

AllowColumnResizing Property AllowColumnResizing() As Boolean

This property determines if the user can grab the edge of
a column and resize it. If this property is false then the
user can not resize columns at all. All columns are the
same width, so resizing one applies to all columns.

AllowCopy Property AllowCopy() As Boolean

AllowCopy lets the user copy an appointment instead of
moving it. If the user drags the appointment with the
<CTRL> key pressed then the mouse will have a plus on
it to show that this is a copy. When it is dropped, the
original appointment will NOT be removed.

Note: If the AllowMove property is false, then this
property is also false.

AllowDblClickAdd Property AllowDblClickAdd() As Boolean

 Gravitybox Schedule Primer Page 171

Ó1998-2004 Gravitybox Software LLC

This property determines if the user may double click on
the background of the schedule to create an appointment.
The double click must take place on the background
area, not an existing appointment. This property is tied to
the AllowAdd property. If AllowAdd is False, this property
will also be False, since no adds are allowed.

AllowDelete Property AllowDelete() As Boolean

AllowDelete determines if a highlighted appointment can
be removed using the <Delete> key. This action will
remove the selected ScheduleItem from the
ScheduleItems collection. This can be performed
programmatically in any case, but can only be performed
by the user if this property is set.

AllowDragFromFile Public Property AllowDragFromFile() As
Boolean

This property determines if the user is allowed to drag a
previously saved file to the schedule. When the
AllowDragToFile is set, the user may drag an
appointment and create a file on the desktop or Explorer.
Later the user may drag the saved file back to a schedule
window to add the appointment saved in the file to the
target schedule.

AllowDragToFile Public Property AllowDragToFile() As
Boolean

This property determines if the user is allowed to drag an
appointment and drop it on the desktop or Explorer.
When this property set, the user may drag an
appointment and drop it to create a file that contains the
information for the specified appointment.

AllowEdit Property AllowEdit() As Boolean

AllowEdit determines if the user can double-click on a
scheduled item and get an edit window for the
modification of a scheduled item's information. If
AllowEdit is false then the Edit window is read-only. It will
still appear but you will not be able to save any changes.
If you wish to cancel any dialog from displaying then
cancel it in the BeforeEdit event.

 Gravitybox Schedule Primer Page 172

Ó1998-2004 Gravitybox Software LLC

AllowEffects Property AllowEffects() As Boolean

This property will allow you to make appointments appear
and disappear from and to a point on the screen. When
adding an appointment it will expand from a point on the
screen into its fully specified size. Conversely, when
removing and appointment, it will shrink down into a
point.

AllowEventDrag Property AllowEventDrag() As Boolean

This property determines if an appointment may be
dragged to the event header or an event may be dragged
off the event header to become a normal appointment.
When this property is false you may view all types of
appointments but you may not cross the event header
boundary. All events and activities cannot become normal
appointments and normal appointments cannot be
dragged to the event header.

AllowEventHeader Property AllowEventHeader() As Boolean

This property will allow for events to be displayed. Each
ScheduleItem has an "IsEvent" property. This property
maps to the “All day event” in the default property dialog.
If this property is True then the Appointment has no start
time or length in reality. The appointment may be thought
of as an all day appointment. If the "IsEvent" property is
true, the appointment will not be visible inside the main
schedule area. The main schedule area is for
appointments that have a start time and a specific length.
An event by definition does not have these properties set.
If the Schedule's property AllowEventHeader is True then
all events will be visible above the main schedule area, in
the event area. In this area are also displayed Activities.
An activity has a start time and length, but these
properties cause it to overlap a day boundary thus
occupying two or more days.

AllowExtraFields Property AllowExtraFields() As Boolean

Added for future use. This property currently has no
functionality.

AllowFiles Property AllowFiles() As Boolean

 Gravitybox Schedule Primer Page 173

Ó1998-2004 Gravitybox Software LLC

This property determines if the "files" button is available
on the default property screen. When this propety value is
true, this button allows to user to add or remove file
associations to an appointment.

AllowFind Property AllowFind() As Boolean

This property, when set to true, allows the user to press
the CTRL-F key combination to display the default "Find
Appointments" dialog. This dialog allows the user to
search define criteria that are used to find appointments.
The results are displayed in the bottom portion of the
screen after pressing the "Find" button. The user may
double-click on an appointment to edit it if the schedule's
AllowEdit property is true. The user may also remove
appointments from the list by pressing the <Delete> key if
the schedule's AllowDelete property is true.

AllowInPlaceEdit Property AllowInPlaceEdit() As Boolean

This property determines if an edit box will appear when
the user clicks on an appointment. When the property is
True, it allows the user to edit either the Subject or
DisplayText of an appointment, depending on the
TextDisplay property. AllowInPlaceEdit is tied to the
AllowEdit property. If AllowEdit Is False, this property will
also be False.

AllowInterWindowDrop Property AllowInterWindowDrop() As Boolean

This property determines if appointments dragged from
other windows are accepted. If this property is true then
the user can move an appointment from another window
into the current one. If it is false then the mouse cursor
will turn to a NoDrop sign if another appointment is
dragged over this schedule.

Note: If the AllowMove property is false, then this
property is also false.

AllowItemResizing Property AllowItemResizing() As
ItemResizingConstants

The property determines if the user can resize an
appointment. There are 4 modes that can be set. None,
TopLeft, BottomRight, or All. If the property is set to None
then there is no item resizing by the user. When this

 Gravitybox Schedule Primer Page 174

Ó1998-2004 Gravitybox Software LLC

property is set to TopLeft then only the StartTime of the
appointment can be changed by moving its Top/Left edge
depending on if the value of the Viewmode property.
When BottomRight is set then only the user can set the
length of the appointment. He will be able to drag the
bottom or right edge of the appointment depending again
on the value of Viewmode. In All mode then the user can
drag the Top or Bottom of an appointment (Left or Right if
time is displayed on top)

AllowMove Property AllowMove() As Boolean

AllowMove determines if the user can move a scheduled
item with the mouse by dragging it. When this property is
set the user can automatically drag a ScheduleItem and
drop it elsewhere in the schedule. If this property is False,
then no automatic action is taken when the user tries to
drag a scheduled item. ScheduleItems can also be
dragged across window to another schedule.

AllowOtherDrops Property AllowOtherDrops() As Boolean

This allows any object to be dragged onto the schedule. If
it is a ScheduleItem from the same or another schedule
window, then the operation is a move. If the object is
NOT a ScheduleItem then this is an appointment
creation. When the object is dropped a new appointment
is created at that position. This is useful for having users
drop object from other program to create appointments
for a schedule

AllowRecurrences Property AllowRecurrences() As Boolean

This property defines the functionality of the schedule for
recurring appointments. When false, no user interface is
displayed to add or remove recurring appointments.
When this property is true, the default property window
will have a "Recurrences" button. The user may setup a
recurrence pattern by using the screen display with this
button. When a pattern is applied, each of the newly
created appointments is part of a group. They all have the
same GroupId property. The GroupId is read-only and is
assigned in the background. When the user highlights a
recurring appointment and presses the <Delete> key, he
will be prompted to remove the single appointment or the
entire series (group) of appointments.

 Gravitybox Schedule Primer Page 175

Ó1998-2004 Gravitybox Software LLC

AllowRowColTips Property AllowRowColTips As Boolean

This property determines if a tooltip is displayed when the
mouse hovers over the row or column header. The tooltip
is the name displayed in the header.

AllowRowResizing Property AllowRowResizing() As Boolean

This property determines if the user can grab the edge of
a row and resize it. If this property is false then the user
can not resize rows at all. All rows are the same width, so
resizing one applies to all rows.

AllowScrollBars Property AllowScrollBars() As Boolean

This property determines if the control will display
scrollbars. When true, scrollbars are displayed when
needed for the user to move about the schedule canvas.
When this property is false, no scrollbars are displayed
even when needed.

AllowSelector Property AllowSelector() As Boolean

The AllowSelector property toggles a selector that
highlights an area of a schedule. The user may use the
keyboard to navigate and highlight an area of the
schedule on which to create an appointment upon
pressing the <ENTER> key.

AllowTimeSelector Property Allow TimeSelector () As Boolean

This property determines if an arrow is displayed next to
the time that is currently selected. When the user moves
uses the arrow keys or clicks the mouse the current
position is moved. This position is highlighted and the
selected may have an arrow next to it to indicate the
current time position.

AllowWarning Property AllowWarning() As Boolean

This property determines if a warning message is
displayed on the ScheduleProperties control. The
message in is defined by the WarningMessage property.

AllowWeekMargin Property AllowWeekMargin() As Boolean

 Gravitybox Schedule Primer Page 176

Ó1998-2004 Gravitybox Software LLC

This property is used to toggle week numbers on and off.
In some locals, such as Europe, week numbers are used
in addition to day number on calendars. This property
allows you to display the week numbers is desired.

AppointmentBorderWidth Property AppointmentBorderWidth() As Long

This property determines the border between
appointments. When a conflict exists between 2
appointments they are displayed side by side. The width
is determined by the AppointmentBorderWidth property.

AppointmentCategoryBar Property AppointmentCategoryBar() As
Boolean

This property will determine if the appointments have a
colored bar on their left side when their Category property
is set. Each ScheduleItem has a Category property that
may or may not have a value. If the value matches the
name or index of a category in the Categories collection,
the appointment has a category. Each category has an
associated color. If you wish a colored bat to appear next
to the appointment to identify its associated category, set
this property to true and it will appear. The Categories
collection may also be displayed in the schedule's left
margin by using the CategoryBar property.

AppointmentsPlural Property AppointmentsPlural() As String

This is the default text used to describe appointments in
the plural. The default English text is "Appointments".
This is used as a header in many places. If you wish to
call your appointments some other name, you may
change this property to do so.

AppointmentsSingular Property AppointmentsSingular() As String

This is the default text used to describe appointments in
the singular. The default English text is "Appointment".
This is used as a header in many places. If you wish to
call your appointments some other name, you may
change this property to do so.

AutoColumnFit Property AutoColumnFit() As Boolean

 Gravitybox Schedule Primer Page 177

Ó1998-2004 Gravitybox Software LLC

This property determines if the user can grab the edge of
a row and resize it. If this property is false then the user
can not resize rows at all. All rows are the same width, so
resizing one applies to all rows.

AutoFocus Property AutoFocus() As Boolean

When a schedule is on a screen that does not have
focus, there may be times when you want the schedule to
get focus if the mouse moves over a ScheduleItem. If this
property is True the schedule screen will receive focus
every time the mouse moves over any ScheduleItem.

AutoHilite Property AutoHilite() As Boolean

This property determines if appointments are highlighted
when the mouse moves over them. When true the
appointment under the mouse pointer will be set to the
SelectedItem. It will be highlighted by drawing the
highlight bars on the top/bottom or left/right sides of the
appointment.

AutoRedraw Property AutoRedraw() As Boolean

This property is a toggle for screen refreshes. The screen
is repainted when any action is taken that affects the
screen display. Such as a ScheduleItem, Room, Provider,
or Category being added or removed. When the
AutoRedraw property is False, no screen repaint is
performed. To repaint the screen, you must set this
property back to True when you wish the screen to be
repainted. Turning this property off while adding objects
can make loading occur many times faster.

AutoRowFit Property AutoRowFit() As Boolean

This property allows for the RowHeight to be updated
automatically when the control is resized. The RowHeight
will be set to a value that allows all rows to fit exactly in
the view port. If you wish for the rows to be evenly
spaced, set this property to True. If the number of rows
requires the RowHeight to be less than the minimum row
height then a scrollbar will appear since it is impossible to
fit all the rows on the screen.

BackColor Property BackColor() As OLE_COLOR

 Gravitybox Schedule Primer Page 178

Ó1998-2004 Gravitybox Software LLC

This is the BackColor of the displayed area for the
schedule. The display area is defined by the total length
down that it takes to display the number of hours for the
property DayLength and the total width across that it
takes to display the number of days specified by the
MinDate and MaxDate Properties.

Background Property Background() As StdPicture

This property allows you to specify a background picture
to display instead of the Backcolor. If this property is set
the backcolor property will be ignored and the specified
picture will be tiled across the back of the schedule under
the gridlines and appointments.

BlackOutColor Property BlackOutColor() As OLE_COLOR

This property allows you to set the color that blacked-out
ScheduleItems are displayed. These items cannot be
moved or edited. They are displayed on the schedule to
let the user know that there is something in that spot, but
it can not be modified. This specified color is the color the
displayed block.

Note:
Each ScheduleItem ha a BlackedOut property. This
property determines if the BlackOutColor is used. When
BlackedOut is set to true, the appointment is colored and
can not be moved by the user.

CategoryBackColor Property CategoryBackcolor() As OLE_COLOR

This color will fill the category background area. If there
are Categories defined and the CategoryBar property is
set, the schedule's Categories collection is displayed on
the left side of the schedule. Every appointment may
have an associated category, if so desired.

CategoryBar Property CategoryBar() As Boolean

This determines if a summation of the ScheduleItem's
category information is displayed. There are N bars for N
categories displayed in the order the categories are in the
Categories collection. There is no way to tell if
ScheduleItems have conflicting categories.

 Gravitybox Schedule Primer Page 179

Ó1998-2004 Gravitybox Software LLC

If the ShowProviderScheduledTime or
ShowProviderAvailableTime properties are set then there
are two tabs displayed at the top of the screen

Note: This property only applies if the time is displayed in
the top margin.

CategoryBarWidth Property CategoryBarWidth() As Long

This property defines the width in pixels of each Category
bar on the left margin of the schedule. It also defines the
width of the Category bar on each appointment's left side.

ColumnWidth Property ColumnWidth() As Long

This determines the width of the columns for the schedule
only. There is a minimum value determined by the
specified font. This value is specified in pixels.

ConflictCheck Property ConflictCheck() As Boolean

This property toggles the conflict checking on/off. On
schedules with many appointments (>200), there may be
a time lag when adding and removing appointments. This
happens when it is necessary to calculate the conflicts
between appointments. If no conflict checking is
necessary, you may turn this feature off to save time. If
conflict resolution if necessary but you still wish to save
time, you can turn this feature off and when you need to
display or perform conflict checking, turn it back on. For
example, if you need to display a screen with conflicts
turn this feature off until the user selects to display this
screen. You can then set ConflictCheck to True and
display the conflicts.

It is best to turn this feature off if not needed. If your
schedule allows conflicts and you do not ever use the
Conflicts collection, set this property to false to save time.

When this property is false the ConflictWarn property is
also false. There can be no warning of conflicts, if there is
no checking.

ConflictWarn Property ConflictWarn() As Boolean

Determines if the user receives a warning prompt when

 Gravitybox Schedule Primer Page 180

Ó1998-2004 Gravitybox Software LLC

he is moving or saving a scheduled item that overlaps
one or more other items.

CustomIconAlarm Property CustomIconRecurrence() As
StdPicture

This icon may be used to define a custom icon for the
alarm. Each appointment object has an Alarm property.
When set to true an icon is displayed next to the
appointment. This icon defines the icon for this purpose.
If this property is set to "Nothing", then the default icon is
used.

CustomIconFlag Property CustomIconFlag() As StdPicture

This icon may be used to define a custom icon for the
flag. Each appointment object has an IsFlagged property.
When set to true an icon is displayed next to the
appointment. This icon defines the icon for this purpose.
If this property is set to "Nothing", then the default icon is
used.

CustomIconRecurrence Property CustomIconRecurrence() As
StdPicture

This icon may be used to define a custom icon for
appointments that are in a recurrence pattern. Each
appointment object has a GroupId property. When more
than one appointment has the same GroupId, the
appointments are said to be grouped in a recurrence
pattern. This allows you to create and maintain a set of
appointments. This icon defines the icon for this purpose.
If this property is set to "Nothing", then the default icon is
used.

DateHeaderAlign Property DateHeaderAlign() As
AlignmentConstants

This property determines the alignment of the header text
for dates in the top of left margin.

DayLength Property DayLength() As Long

This is the total number of hours in a day. The valid range
is 1 through 24. The control starts to display the day from
the StartTime and progresses for DayLength hours.

 Gravitybox Schedule Primer Page 181

Ó1998-2004 Gravitybox Software LLC

Note: The DayLength can not cause the schedule to
overlap into the next day. This causes an error. If the
StartTime is 8:00 PM, then the maximum value for
DayLength is 4, since more than 4 hours would be the
next day.

DayRoomAppearance,
DayRoomBackColor,
DayRoomFont,
DayRoomForeColor

Property DayRoomAppearance() As
AppearanceConstants
Property DayRoomBackcolor() As OLE_COLOR
Property DayRoomFont() As StdFont
Property DayRoomForeColor() As OLE_COLOR

These properties will determine the display of the day and
room headers of a schedule. The font and colors of this
section are controlled by these properties. They allow you
to set the back and fore colors as well set a 3D or flat
appearance. The font may be set as well to customize the
look and feel of this section.

DefaultDialogFloater Property DefaultDialogFloater() As Boolean

This property determines if the default property dialog is a
floating window. When True, the property dialog will
"float" on top of all other windows. This means that the
schedule control will always be under the dialog. If this
property is False then the dialog can be behind the
schedule window. If the user clicks inside the schedule,
the default property dialog will move behind the schedule
window.

DefaultDialogModal Property DefaultDialogModal() As Boolean

The default property window may be displayed in a modal
or non-modal fashion. If the programming language that
you are using supports non-modal dialogs and this
property is set to False, the default property window will
be non-modal. Keep in mind that since it is non-modal,
more than one window may be opened for a schedule
and the user may minimize the window as well. Two
property windows for a single appointment cannot be
opened, but two windows may be opened for two different
appointments. The property windows will dynamically be
updated if the user changed properties on the main
schedule. Also if the user changes properties on the
property window and presses the "Apply" button the

 Gravitybox Schedule Primer Page 182

Ó1998-2004 Gravitybox Software LLC

changes will be cascaded to the main schedule. If this
property is set to True, only one window ma be opened at
a time and it may not be minimized. This property only
applies to the default property window. If you cancel the
default edits and display your own property window, this
property has no effect.

DefaultDialogSubjectCombo This property allows you to specify a list
of items separated by semicolon (;) that
will be listed in a drop-down combo on the
appointment default property screen. This
will allow you to display a fixed list for
the subject of an appointment in which the
user may not enter free-from text.

DisplayDragTip Property DisplayDragTip() As Boolean

This property determines if the screen displays a ToolTip
when dragging an appointment. If the user is moving an
appointment, this ToolTip displays the Date/Room/Time
of the position of the mouse. You can also use the
DragOverScheduleItem event to display your own
message.

DisplayMinutes Property DisplayMinutes As
GBDisplayMinuteConstants

This property allows for the control of the display of
minutes. There are times when you may wish to only
display the "00" minutes of an hour. If so, you may set
this property to "mdcFirstOnly", otherwise set it to
"mdcShowAll".

DragFormatDate
DragFormatTime

Property DragFormatDate() As String
Property DragFormatTime() As String

These properties control the look of the drag tip. When an
appointment is being moved or copied to a new position a
tooltip window is displayed to inform the use of the
current position of the appointment if the mouse is
released. These two properties control the format of the
date and time portions of the text respectively.

DynamicScroll Property DynamicScroll() As Boolean

This property allows you to make the schedule refresh

 Gravitybox Schedule Primer Page 183

Ó1998-2004 Gravitybox Software LLC

when you are dragging a scrollbar. When false, a ToolTip
window is displayed to let the user know what
day/room/time the schedule will display when the mouse
is released. When true, the schedule will redraw during
the drag. This maybe considerably slower, since the
screen is refreshed for every position on the scrollbar. In
most instances, this property should be false. If the target
machine is fast and the schedules are small, it may be
appropriate to show real-time drag refreshes. Otherwise,
avoid using this feature, especially on slower machines.

EnforceTimeLimits Property EnforceTimeLimits() As Boolean

This property ensures that the default dialog will not allow
not allow the user to create an appointment not defined
by the time area boundaries. The StartTime and
DayLength properties define the display times of a
schedule. When EnforceTimeLimits is set to true, the
user may not set an appointment's StartTime or duration
to a value outside of this defined area. When false, the
user may set the time to any value.

EventsFrozen

Property EventsFrozen() As Boolean

This property determines if any events will be raised.
When this property is True, none of the schedule's events
will be raised to the parent container.

EventHeaderColor Property EventHeaderColor() As OLE_COLOR

This property will determine the color of the event header
background. The event header is an area portion above
the main schedule area that displays events. Events are
appointments that have been marked as all day
appointments.

FindDialogFloater Property FindDialogFloater() As Boolean

This property determines if the "Find" dialog is a floating
window. When True, the Find dialog will "float" on top of
all other windows. This means that the schedule control
will always be under the Find dialog. If this property is
False then the dialog can be behind the schedule
window. If the user clicks inside the schedule, the Find
dialog will move behind the schedule window.

 Gravitybox Schedule Primer Page 184

Ó1998-2004 Gravitybox Software LLC

FindDialogModal Property FindDialogModal() As Boolean

This property determines if the Find dialog is displayed in
a modal fashion. If this property is True, the find screen
will display as a modal screen. No user interaction with
the main schedule is possible until the screen is closed.
When False the find screen will be displayed non-modal
and the user may interact with the schedule while the
Find screen is displayed.

FirstDayOfWeek Property FirstDayOfWeek() As VbDayOfWeek

This property determines which day of the week is
displayed in the first column of the schedule in month
view. When a schedule is displayed in month view, it is in
standard calendar format. Different locals around the
world start the week on different days. This property
allows you specify which day of the week is the start day.

ForeColor Property ForeColor() As OLE_COLOR

This is the forecolor of the schedule. All grid lines, text,
etc will be drawn with this color.

GridLines Property GridLines() As Boolean

This property determines if the grid is displayed on the
schedule. By default there is a grid. It consists of lines
drawn between every time increment and every column,
be it a day or room. This enables the user to clearly see
where each appointment lies. There may be times when
you do not wish to display the grid. If so, set this property
to False, otherwise the grid is displayed.

HeaderDateFormat Property HeaderDateFormat() As String

This property defines the format of the date at the top of
the Day Schedule. The date headers for the Day
Schedule will be displayed in this format. This can be a
multiple line format string. The Day Schedule displays
two lines to accommodate large date formats.

Examples:
1) mm/dd/yy
2) YYYY-MM-DD
3) dd/mm/yyyy

 Gravitybox Schedule Primer Page 185

Ó1998-2004 Gravitybox Software LLC

Note: This property has no meaning if the ViewMode
property is set to exclude days.

HiliteBarBottom Property HiliteBarBottom() As OLE_COLOR

An appointment is highlighted when the mouse moves
over it. The highlight is a bar drawn on the top and bottom
(or left/right) of the appointment. This property
corresponds to the top (or left) bar that is displayed on a
highlighted appointment.

HiliteBarTop Property HiliteBarTop() As OLE_COLOR

An appointment is highlighted when the mouse moves
over it. The highlight is a bar drawn on the top and bottom
(or left/right) of the appointment. This property
corresponds to the bottom (or right) bar that is displayed
on a highlighted appointment.

IconAlign Property IconAlign() As AlignIconConstants

This property determines whether appointment icons are
displayed to the top or left of the appointment text. Each
appointment has an Icons collection that may be used to
display custom icons on an appointment. These icons
may be displayed on the top or left of the text.

ImageList Property ImageList() As Object

This is a standard ImageList form the Microsoft common
controls. This is used as a repository for images that are
to be used on appointments. The proper format for
pictures is 16x16 with no mask color. Images of this
format will show up on the appointment the best. Each
image in the ImageList needs to have a unique key
specified. This key is used to display the appropriate
image on the appointment.

Dim oAppt As CScheduleEl

Set oAppt =
F.Schedule1.ScheduleItems.Add("", _
 #1/1/2002#, 0, #8:00:00 AM#, _
 150, "Appt 1")
Call oAppt.Icons.Add("caution")

 Gravitybox Schedule Primer Page 186

Ó1998-2004 Gravitybox Software LLC

The ImageList is used by each appointment's "Icons"
collection. You may add the key of any image in the
ImageList. Only valid keys will be processed. Invalid ones
are ignored. If a key in an appointment's "Icons" collection
is found in the ImageList, the associated image is
displayed on that appointment. This allows you to add
custom icons to any appointment. There is no limit to the
number of icons that may be associated with an
appointment. All of the icons that can be displayed inside
of the defined appointment area will be shown.

IsDirty Property IsDirty() As Boolean

This property returns/sets whether the schedule is dirty
and needs to be saved. It returns the dirty values of all
the properties, ScheduleItems, Rooms, etc. If set to false
all the collection's dirty properties will be set to false as
well.

ListDisplayDayOfYear Property ListDisplayDayOfYear() As Boolean

This property determines if the days of the year are
displayed in List mode. The property only applies then the
ViewMode is set to "List". At the bottom of the left frame
you may wish to display the current date's day position of
the year and the total number of days per year. An
example would be "2 / 365" this is January second. The
"2" is the second day of the year and the "365" is the
number of days per year. The display does display the
correct number of days in a leap year.

ListDisplayDoublePage Property ListDisplayDoublePage() As
Boolean

When a schedule has its Viewmode set to "List", this
property determines if the displayed view has one or two
pages. If the control displays 2 pages, the Notes property
of the appointment will be displayed on the right page.

ListDisplayTimeScale Property ListDisplayTimeScale() As Boolean

When a schedule has its Viewmode set to "List", this
property determines if all times are shown or just with an
associated appointment. When true, all times beginning
at the control's StartTime and continuing for the

 Gravitybox Schedule Primer Page 187

Ó1998-2004 Gravitybox Software LLC

DayLength or displayed in increments of
ScheduleIncrement. For example if the StartTime is 8:00
AM, the DayLength is 10, and the ScheduleIncrement is
30 minutes, there would be 21 times displayed. Starting
at 8:00AM, 8:30AM, ..., and finishing at 6:00PM. If this
property is false, no times would be displayed unless it
was the StartTime of an appointment.

ListHeaderDateColor Property ListHeaderDateColor() As
OLE_COLOR

When a schedule has its Viewmode set to "List", this
property determines the color of DateText drawn in the
header portion of the control. The DayText is not to be
confused with the DateText. The DayText is the word for
the day, for example "Monday". The DateText is the
number of the date for example 23.

ListHeaderDayColor Property ListHeaderDayColor() As OLE_COLOR

When a schedule has its Viewmode set to "List", this
property determines the color of DayText drawn in the
header portion of the control. The DayText is not to be
confused with the DateText. The DayText is the word for
the day, for example "Monday". The DateText is the
number of the date 23.

ListHeaderLineColor Property ListHeaderLineColor() As
OLE_COLOR

When a schedule has its Viewmode set to "List", this
property determines the color of the lines that are drawn
in the header portion of the control.

ListHeaderSubTitleColor Property ListHeaderSubTitleColor() As
OLE_COLOR

When a schedule has its Viewmode set to "List", this
property determines color of the SubTitle. There is only
one subtitle and it is always displayed on the left page
directly under the TitleLeft text.

ListHeaderSubTitleText Property ListHeaderSubTitleText() As
String

When a schedule has its Viewmode set to "List", this

 Gravitybox Schedule Primer Page 188

Ó1998-2004 Gravitybox Software LLC

property determines the text that displayed below the
header on the left page. This is generally used to specify
a holiday or some special text. The color can be
controlled to attract attention to the text.

ListHeaderTitleColor Property ListHeaderTitleColor() As
OLE_COLOR

When a schedule has its Viewmode set to "List", this
property determines the color of the TitleLeft and the
TitleRight properties. These are texts displayed at the top
of the control on the left and right pages respectively.

ListHeaderTitleLeftText Property ListHeaderTitleLeftText() As
String

When a schedule has its Viewmode set to "List", this
property determines the text to be displayed at the top of
the control on the left page.

ListHeaderTitleRightText Property ListHeaderTitleRightText() As
String

When a schedule has its Viewmode set to "List", this
property determines header text that is displayed on the
right page. If there is only one page displayed, this text is
not shown.

ListHilightBackColor Property ListHilightBackColor() As
OLE_COLOR

When a schedule has its Viewmode set to "List", this
property determines the color of the item that has been
selected by the user. Only one item at a time may be
selected. The user may select an item by clicking it with
the mouse or using the arrow keys.

MaxDate Property MaxDate() As Date

This property defines the starting date for the schedule.
The range of days displayed on a schedule is between
the MinDate and MaxDate. This defines the total
scrollable area of the schedule. The MaxDate has to be
greater than or equal the MinDate.

Note: This property has no meaning if the ViewMode

 Gravitybox Schedule Primer Page 189

Ó1998-2004 Gravitybox Software LLC

property is set to exclude days.

MinDate Property MinDate() As Date

This property defines the ending date for the schedule.
The range of days displayed on a schedule is between
the MinDate and MaxDate. This defines the total
scrollable area of the schedule. The MinDate has to be
less than or equal the MaxDate.

Note: This property has no meaning if the ViewMode
property is set to exclude days.

MonthAppointmentEventColor Property MonthAppointmentEventColor As
OLE_COLOR

When a schedule has its ViewMode set to Month, it
displays a month of appointments at a time. This property
determines the backcolor of appointments that have been
marked as events.

MonthDisplayTime Property MonthDisplayTime() As Boolean

This property determines if the start times of
appointments are displayed in front of the appointment
text when the schedule is in "Month" mode. When False,
the appointment text displayed with no time element.

MonthEvenBackColor Property MonthEvenBackColor() As OLE_COLOR

When a schedule has its ViewMode set to Month, it
displays a month of appointments at a time. This property
determines the backcolor of the days for the months that
are Even (2,4,…,12).

MonthEvenForeColor Property MonthEvenForeColor() As OLE_COLOR

When a schedule has its ViewMode set to Month, it
displays a month of appointments at a time. This property
determines the forecolor of the days for the months that
are Even (2,4,…,12).

MonthOddBackColor Property MonthOddBackColor() As OLE_COLOR

When a schedule has its ViewMode set to Month, it
displays a month of appointments at a time. This property

 Gravitybox Schedule Primer Page 190

Ó1998-2004 Gravitybox Software LLC

determines the backcolor of the days for the months that
are Odd (1,2,…,11).

MonthOddForeColor Property MonthOddForeColor() As OLE_COLOR

When a schedule has its ViewMode set to Month, it
displays a month of appointments at a time. This property
determines the forecolor of the days for the months that
are Odd (1,2,…,11).

NoHorzScroll
NoVertScroll

Property NoHorzScroll() As Boolean
Property NoVertScroll() As Boolean

These properties allow the scrolling to be turned off in
either direction. There may be times when the schedule
will have scrollbars because the entire schedule can not
be displayed on the screen. There may also be times that
you wish to keep the user in the current view port and not
allow scrolling. If this is the case, you may set either of
these properties to False to disallow scrolling in the
appropriate direction.

OLEDragFormat Property OLEDragFormat() As Long

This property returns the number that defines a
Gravitybox Schedule appointment drag. Usually an
appointment is moved, copied, etc to the same window or
another GbSchedule window. There may be times when
you wish to drop an appointment on a non-GbSchedule
object. In this case you will need to check to make sure
that the object being dragged is an appointment. For
example, if you define a picturebox where you wish your
users to drop appointments you can add code in its
OLDDragOver event to check the drag type. You may
compare it to the value (OLDDragFormat) to confirm that
the object being dragged is a GbSchedule appointment.

OtherAreaBackColor Property OtherAreaBackColor As OLE_COLOR

This color will be used to paint all areas not cover by
some other color. This is mainly the top, left margin of the
control. All other areas are painted with their own colors
such as the time, day, category, and provider headers.

PrintPageInfo Property PrintPageInfo() As Boolean

 Gravitybox Schedule Primer Page 191

Ó1998-2004 Gravitybox Software LLC

This property determines if the page numbers are printed
on the pages when a schedule is printed. When true, a
printed schedule will display its X and Y page coordinates
in the top, left corner of the page. This allows a large
schedule to be reconstructed after printing.

PropertiesAllowCustomButton
PropertiesCustomButtonText

Property PropertiesAllowCustomButton() As
Boolean
Property PropertiesCustomButtonText() As
String

The schedule has a default property window. You have
the option of displaying a custom button on this window.
When the user clicks on this button the
"PropertiesCustomButtonClick" event is raised so that
you may add additional functionality to this property
window. If you have no use for an extra button on the
default properties screen, just set the
"PropertiesAllowCustomButton" property to false and it
will not appear. You may set the text of the button using
the "PropertiesCustomButtonText" property of the
schedule control.

ProviderAppearance,
ProviderBackColor,
ProviderFont,
ProviderForeColor

Property ProviderAppearance() As
AppearanceConstants
Property ProviderBackcolor() As OLE_COLOR
Property ProviderFont() As StdFont
Property ProviderForeColor() As OLE_COLOR

These properties will determine the display of the
provider section of a schedule. If the
ShowProviderAvailableTime or
ShowProviderScheduledTime properties are set then the
Providers collection will be displayed in the left margin.
The font and colors of this section are controlled by these
properties. They allow you to set the back and fore colors
as well set a 3D or flat appearance. The font may be set
as well to customize the look and feel of this section.

ProviderBarWidth Property ProviderBarWidth() As Long

This property defines the width in pixels of each Provider
bar on the left margin of the schedule. It also defines the
width of the Provider bar on each appointment's left side.

RightToLeft Property RightToLeft() As Boolean

 Gravitybox Schedule Primer Page 192

Ó1998-2004 Gravitybox Software LLC

This property determines if the control will display the text
right-to-left. In Arabic and Hebrew the font will display in
this manner if this property is set to true. In western
languages this property will not make any difference in
the display because the font must support this style of
writing for the display to be correctly.

RoomHeaderAlign Property RoomHeaderAlign() As
AlignmentConstants

This property determines the alignment of the header text
for rooms in the top of left margin.

RowHeight Property RowHeight() As Long

This determines the height of the rows. There is a
minimum value determined by the specified font. This
value is specified in pixels.

ScheduleIncrement Property ScheduleIncrement() As
ScheduleIncrementConstants

This is the increment in minutes that determine how an
hour is broken down. The valid values are listed below
and correspond to evenly divisible factors of an hour. Any
invalid values are mapped to sch30Minute. The default
break for an hour is 30 minutes.

Public Enum ScheduleIncrementConstants
 sch5Minute = 5
 sch10Minute = 10
 sch15Minute = 15
 sch20Minute = 20
 sch30Minute = 30
 sch60Minute = 60
End Enum

SelectedColor Property SelectedColor() As OLE_COLOR

There is a selected area on a schedule in all "normal"
Viewmodes. When the user uses the arrow keys to
navigate, he is moving the selected area. This area is
colored with the SelectedColor property value.

SelectedItem Property SelectedItem() As CScheduleEl

 Gravitybox Schedule Primer Page 193

Ó1998-2004 Gravitybox Software LLC

This is the currently selected ScheduleItem, the item
under the mousepointer. The Item is highlighted with a
colored bar above and below it. If no Item is selected then
this value is "Nothing".

SelectorStartDate Property SelectorStartDate() As Date

This property determines the starting date of the
highlighted area. An area is defined as a starting date,
room, and /or time and a number of cells that are
highlighted from this point with the selector. This property
has no meaning in the List and Month viewmodes.

SelectorStartRoom Property SelectorStartRoom() As Long

This property determines the starting room (if applicable)
of the highlighted area. An area is defined as a starting
date, room, and /or time and a number of cells that are
highlighted from this point with the selector. This property
has no meaning in the List, Month, or any viewmodes
without rooms.

SelectorStartTime Property SelectorStartTime() As Date

The AllowSelector property toggles a selector that
highlights an area of a schedule. The user may use the
keyboard to navigate and highlight an area of the
schedule on which to create an appointment upon
pressing the <ENTER> key. This property determines the
starting time of the highlighted area. An area is defined as
a starting date, room, and /or time and a number of cells
that are highlighted from this point with the selector. This
property has no meaning in the List and Month
viewmodes.

SelectorCellLength Property SelectorCellLength() As Long

The AllowSelector property toggles a selector that
highlights an area of a schedule. The user may use the
keyboard to navigate and highlight an area of the
schedule on which to create an appointment upon
pressing the <ENTER> key. This property determines the
number of cells that are highlighted with the selector. In
viewmodes with no time, this property value will always
be one. This property has no meaning in the List and

 Gravitybox Schedule Primer Page 194

Ó1998-2004 Gravitybox Software LLC

Month viewmodes.

SelTab Property SelTab() As Long

This property is only used if the either the
ShowProviderAvailableTime property or the
ShowProviderScheduledTime property is set. If either one
is set, two tabs will appear at the top of the schedule. The
top tab is 1 and the bottom is 2. When these tabs are not
visible SelTab = 0. The tabs determine if the schedule is
being viewed in Category or Provider mode. A schedule
can have so much information associated with it that it
can not be displayed on one screen. Therefore, the
Schedule control has two modes to view a schedule.

Note: This property only applies if the time is displayed in
the top margin.

ShowProviderAvailableTime Property ShowProviderAvailableTime() As
Boolean

This property allows for the display of timeslots available
for a provider. Each provider in the Providers collection
has an AvailableTimes collection that defines what time
slots the provider is available. This could be the times
that he/she works or is in the office. Each provider has
his/her own color defined by the Provider element's color
property. You can also display the times the Provider is
scheduled to work as defined by the ScheduleItems that
are assigned to him/her. The
ShowProviderScheduledTime property determines if this
information is displayed.

Note:
This property only applies if the time is displayed in the
top margin.

ShowProviderScheduledTime Property ShowProviderScheduledTime() As
Boolean

This property determines if the time allotments for the
providers, as defined by the ScheduleItems to which they
are assigned, are displayed on the left of the screen.
Each ScheduleItem has a Provider property. If this
property is set to a valid provider then this provider is
assigned to it. If the provider bars are displayed then the

 Gravitybox Schedule Primer Page 195

Ó1998-2004 Gravitybox Software LLC

Provider bar will be filled in with the Provider's associated
color for the length of the ScheduleItem. This allows for
quick viewing of how much time a particular provider is
needed for a schedule.

Note:
This property only applies if the time is displayed in the
top margin.

StartTime Property StartTime() As Date

This property determines the first displayed time for the
schedule. The day begins at this point and progresses
down for DayLength hours.

Note: The DayLength can not cause the schedule to
overlap into the next day. This causes and error. If the
StartTime is 8:00 PM, then the maximum value for
DayLength is 4, since more than 4 hours would be the
next day.

TabOrder Property TabOrder() As TabOrderConstants

When the user presses the <Tab> key, an appointment is
highlighted if at least one exists. The tab cycles between
appointments. If there are two appointments on a
schedule, pressing the <Tab> key alternates the
highlighting of each. There are two ways to cycle through
the appointments: absolute position, and ordered
position. The absolute position is the order in which the
items were added to the ScheduleItems collection. The
order position selection will move though the
appointments in the order they appear on the schedule.
For example, all the appointments from top to bottom and
then left to right would be highlighted in order no matter
their absolute position in the collection. This would allow
the user to tab until he found the appointment for which
he was looking without jumping all over the schedule. If
the highlighted appointment is not in the viewable area,
the schedule is scrolled so that the appointment is visible.

TabVisible Property TabVisible() As Boolean

This property toggles the tab strip in the top, left margin
on/off. When this property is set to False no tab strip will
be visible. When True, the tabs will be visible, if time is

 Gravitybox Schedule Primer Page 196

Ó1998-2004 Gravitybox Software LLC

displayed in the top margin. The tabs allow the user to
toggle between Category and Provider mode. This will
display the Category and Provider bars in the left margin
respectively.

TextDisplay Property TextDisplay() As
TextDisplayConstants

An appointment may display its DisplayText or Subject
property in its display area. The TextDisplay property
determines which one is used.

TimeAppearance,
TimeBackColor,
TimeFont,
TimeForeColor

Property TimeAppearance() As
AppearanceConstants
Property TimeBackcolor() As OLE_COLOR
Property TimeFont() As StdFont
Property TimeForeColor() As OLE_COLOR

These properties will determine the display of the time
headers of a schedule. The font and colors of this section
are controlled by these properties. They allow you to set
the back and fore colors as well set a 3D or flat
appearance. The font may be set as well to customize the
look and feel of this section.

TimeFormat Property TimeFormat() As
ScheduleTimeFormats

This property determines if the control displays times in
12-hour or 24-hour mode. If in 12-hour mode, then the
printed times have the AM/PM marker (ex. 3:00 PM). If
this property is set to 24-hour mode then the same time
would be displayed 15:00 with no AM/PM marker.

ScheduleTimeFormats Constants:
Public Enum ScheduleTimeFormats
 [12Hour] = 1
 [24Hour] = 2
End Enum

TimeLayout Property TimeLayout As TimeLayoutConstants

This property determines the mode in which the time
margin is displayed. If the setting is "tlHour", the time
margin has a double-size, large font hour display and a
normal size minute display. When the property value is

 Gravitybox Schedule Primer Page 197

Ó1998-2004 Gravitybox Software LLC

"tiMinute", each time increment is not broken-up but is
displayed as a full time i.e. "9:00 AM".

TimeSelectorColor Property TimeSelectorColor() As OLE_COLOR

This property specifies the color of the time selector. This
is an arrow the points to a particular time on the
schedule.

ToolTipBackColor,
ToolTipForeColor

Property ToolTipTextBackColor() As
OLE_COLOR
Property ToolTipTextForeColor() As
OLE_COLOR

The schedule has bubble tips (tool tips) that appear when
the mouse moves over certain objects on the schedule
canvas. These properties determine the back and fore
colors of the pop-up window that displays these bubble
tips.

ToolTipTextDisplay Property ToolTipTextDisplay() As
TextDisplayConstants

An appointment may display its DisplayText or Subject
property as its ToolTipText. The ToolTipTextDisplay
property determines which one is used.

UseOtherCategories Property UseOtherCategories() As Boolean

This property determines if the Categories collection on
the ScheduleItems object is used. There is Categories
collection on each schedule control. This is used to draw
the colored category bar on each ScheduleItem element.
It is also displayed in the left margin if CategoryBar is
true. The ScheduleItems object also has a Categories
collection to which each ScheduleItem element can point.
Each ScheduleItem element has a static Categories
collection that has elements that can point to the
Categories collection of the ScheduleItems collection.

UseUnicode Property UseUnicode() As Boolean

If need be you may specify that Unicode be used instead
of standard ASCII text. Some languages, like Chinese,
will not display properly on the schedule. Only half of the
characters are displayed. This is because the set of

 Gravitybox Schedule Primer Page 198

Ó1998-2004 Gravitybox Software LLC

characters that this language uses consists of 2 bytes per
character. The printing code needs to know that this is a
double-byte language. When the UseUniCode property is
set, all text is assumed to be double byte and is displayed
as such. Keep in mind that this only works on Windows
NT and Windows 2000 machines. On Windows 95/98
machines the double byte text will still not completely be
displayed.

ViewMode Property ViewMode() As ViewModeConstants

This property determines the mode in which the schedule
displays. There are three options: Normal, Calendar, and
List. In normal mode the schedule displays days, room, or
both with time across either the top or left margin. In
Calendar mode, the schedule does not display time at all.
It displays a month at a time. Normal appointments and
events are all shown together. This view is useful to
summarize a month at a time. The List view shows a day
at a time but with the times displayed in an appointment
book format.

WarningMessage Property WarningMessage() As String

This property determines the message displayed in the
warning header at the top of the control. The visibility of
the header is determined by the AllowWarning property
value.

WeekMarginCaption Property WeekMarginCaption() As String

When the AllowWeekMargin property is set, week
numbers are displayed on the schedule. To inform the
user what these numbers mean use the
WeekMarginCaption property. It is displayed as a header
for week numbers.

Zoom Property Zoom() As Long

This property will set the zoom factor of the schedule.
The normal zoom value is 100%. This number can be a
value between 25 and 200 in increments of 25 (25, 20,
75, etc...). The schedule window will be scaled to this
factor. All schedule functionality will remain in tact. The
only difference will be the look of the schedule.

 Gravitybox Schedule Primer Page 199

Ó1998-2004 Gravitybox Software LLC

Note:
The font will be scaled down if possible. If the font has a
smallest value like "MS Sans Serif" (8.25) and the Zoom
is set to less than 100%, no text will be displayed.
Otherwise, the font will be scaled smaller as necessary,
even if it cannot be read.

 Gravitybox Schedule Primer Page 201

Ó1998-2004 Gravitybox Software LLC

Methods

CloneItem Function CloneItem(OldItem As

CScheduleEl, NewName As String, NewDate
As Date, NewRoom As String, NewStartTime
As Date) As CScheduleEl

This method returns a ScheduleItem that is an exact
copy of the one provided with the "OldItem" parameter.
Given a new Name, Date, Room and Time this function
adds a copy to the ScheduleItems collection and
returns a pointer to the new object.

DeleteItem Function DeleteItem(ByVal Index As Long)
As Boolean

DeleteItem removes an item from the ScheduleItems
collection given a valid index. The return value is
Boolean, true if the item was removed, false otherwise.

EditItem Function EditItem(ByVal Index As Long)
As Boolean

The EditItem method brings up the edit window for the
specified item index. This screen allows the user to
modify the contents of a scheduled item or if AllowEdit
is false to view the data. Also, keep in mind that the
ScheduleItem has a read-only property as well. If the
item being edited is read-only then the dialog will be
read-only as well. The return value is Boolean, true if
the item was modified, false otherwise.

If the user double-clicks an item then the following
behavior follows:
If AllowEdit is true then the Edit screen is displayed.
If AllowEdit is false then the read-only property screen
is displayed.

ExportHTML Function ExportHTML(oHTMLParameters As
CHTMLParameters) As Boolean

An HTML page of a schedule can be created with this
method. The parameter object has the following values:

 Gravitybox Schedule Primer Page 202

Ó1998-2004 Gravitybox Software LLC

PageTitle - This is the title given to the page. If
generating a full HTML page this is also visible at the
top of the page.
HTMLHeader - This is any addition HTML that you wish
to appear above the table.
HTMLFooter - This is any addition HTML that you wish
to appear below the table.
TableOnly - This will specify if you wish to have an
entire page with page headers and footer and page
tags or if you wish only the table definition to appear in
the file.
FileName - This is the filename that will receive the
generated HTML.
Overwrite - If the Filename exists and Overwrite is true
then the old file will be overwritten by the newly
generated HTML. If the Filename exists and the
Overwrite is false then NO HTML will be generated at
all.

ExportXML Function ExportXML(oXMLParameters As
CXMLParameters) As Boolean

Although you will probably loop through the collections
and store the information in a database, there is an
alternative. The schedule has its own file format that
can be used instead of a database. If you are designing
a "light" program and do not wish to distribute a full-
blown database like MS-Access, you can use the
ImportXML and ExportXML methods to save
information without a database.

The parameter object allows you to control what will be
saved to the file. Seven collections can be saved from
this method. The ScheduleItems collection is always
saved, which means there are 6 collections that can be
conditionally saved.

The parameter object has the following properties:
Filename - This is the full path of the file to use to
which to save the data.
Overwrite - If the specified file already exists, this flag
will determines if the file is overwritten or the save is
canceled.
UseCategories - determines the loading/saving state of
this collection
UseNoDropAreas - determines the loading/saving state

 Gravitybox Schedule Primer Page 203

Ó1998-2004 Gravitybox Software LLC

of this collection
UseProviders - determines the loading/saving state of
this collection
UseRooms - determines the loading/saving state of this
collection

GetDayFromCor Function GetDayFromCor(X As Long, Y As
Long, [bInBounds As Boolean = False]) As
Date

Given X/Y coordinates in pixels, this property returns
the date that is associated with the position. The
InBounds parameter may be used to specify whether
you wish the specified coordinates to be inside the
client area. When true, the method will only return a
valid value if the coordinates are inside the client area
where the appointments are displayed. Clicking in the
margins will not return a valid value in this case.

GetFirstVisibleDay Function GetFirstVisibleDay() As Date

This method returns the first day that is visible in the
schedule window.

Note: This property has no meaning if the ViewMode
property is set to exclude days.

GetFirstVisibleRoom Function GetFirstVisibleRoom() As Long

This method returns the first room that is visible in the
schedule window.

Note: This property has no meaning if the ViewMode
property is set to exclude rooms.

GetFirstVisibleTime GetFirstVisibleTime() As Date

This method returns the first time that is visible in the
schedule window.

GetNextFreeSlot Function GetNextFreeSlot(pdtStartDate As
Date, plStartRoom As Long, pdtStartTime
As Date, plItemLength As Long,
[psIgnoreIndexes As String]) As
CScheduleEl

 Gravitybox Schedule Primer Page 204

Ó1998-2004 Gravitybox Software LLC

This method, given a number of parameters, will return
the next available slot into which the appointment will
fit. Define the parameters start date, start room, start
time, and appointment length and the method will
determine the next fit on the schedule. The return is an
appointment object that is NOT in the ScheduleItems
collections. The object is returned populated with its
Date, Room, and StartTime. No other properties are
set. You can use this information to add another
appointment to the ScheduleItems collection with its
Add method. You may specify the indexes to ignore
when searching. These indexes include appointments
that may conflict with the specified appointment space
but you do not care about them. The ignore indexes
are numbers separated by a space, comma, colon, or
semicolon.

Note: The time resolution is determined by the
ScheduleIncrement property. In other words if the
ScheduleIncrement is 15 minutes and you are testing
an appointment of 20 minutes then 2-15 minute slots
will be needed.

GetRoomFromCor Function GetRoomFromCor(X As Long, Y As
Long, [bInBounds As Boolean = False]) As
Long

Given X/Y coordinates in pixels, this property returns
the room that is associated with the position. The
InBounds parameter may be used to specify whether
you wish the specified coordinates to be inside the
client area. When true, the method will only return a
valid value if the coordinates are inside the client area
where the appointments are displayed. Clicking in the
margins will not return a valid value in this case.

GetTimeFromCor Function GetTimeFromCor(X As Long, Y As
Long, [bInBounds As Boolean = False]) As
Date

Given X/Y coordinates in pixels, this property returns
the time that is associated with the position. The
InBounds parameter may be used to specify whether
you wish the specified coordinates to be inside the
client area. When true, the method will only return a
valid value if the coordinates are inside the client area

 Gravitybox Schedule Primer Page 205

Ó1998-2004 Gravitybox Software LLC

where the appointments are displayed. Clicking in the
margins will not return a valid value in this case.

GetVisibleDayCount Function GetVisibleDayCount() As Long

This function returns the number of days that are
visible in the schedule window.

GetVisibleRoomCount Function GetVisibleRoomCount() As Long

This method returns the number of rooms visible in the
schedule window.

GetVisibleRowCount Function GetVisibleRowCount() As Long

This method returns the number of rows visible in the
schedule window.

GetVisibleTimeCount Function GetVisibleTimeCount() As Long

This method returns the total number of time intervals
visible on the schedule window. This is defined by the
StartTime, DayLength, and ScheduleIncrement .

GetWeekNum Function GetWeekNum(dtDate As Date,
[lFirstDayOfWeek As VbDayOfWeek])

This method returns the week number of the specified
date. Week numbers are normally used in some
countries and this functionality is provided for
developer convenience.

GoPrint Function GoPrint(vStartDateRoom,
vEndDateRoom, [vStartTimeRoom],
[vEndTimeRoom], [oPrinterParamters As
CPrinterParameter]) As Boolean

This method prints a specified part of a schedule.
Given the start/end date and rooms and the start/end
times, this defined section is sent to the printer. This
method can print an arbitrarily large schedule, but must
have the needed hard drive temp space available.
Each printed page takes about a Mb of hard drive
space. After the print is completed, this temporary area
is released.

 Gravitybox Schedule Primer Page 206

Ó1998-2004 Gravitybox Software LLC

The " vStartDateRoom " and " vEndDateRoom "
parameters are the start and end dates or rooms. This
parameter will be rooms if ViewMode property is a
setting that excludes days, otherwise it is dates. An
error is raised if invalid data is specified.

The "PrinterDeviceName" parameter is the printer
name. This must be a valid printer installed on the
system. If the printer does not exist then an error is
raised.

The "lOrientation" parameter allows you to print Portrait
or Landscape. The constants for this are as follows:

VbPRORPortrait = 1
vbPRORLandscape = 2

HitTest Function HitTest(X As Long, Y As Long)
As CScheduleEl

This function takes a set of coordinates and returns the
associated appointment under the coordinates. If there
is no appointment at this position, “Nothing” is returned.

ImportXML Function ImportXML(oXMLParameters As
CXMLParameters) As Boolean

Although you will probably loop through the collections
and store the information in a database, there is an
alternative. The schedule has its own file format that
can be used instead of a database. If you are designing
a "light" program and do not wish to distribute a full-
blown database like MS-Access, you can use the
ImportXML and ExportXML methods to save
information without a database.

The parameter object allows you to control what will be
loaded from the file. There are 7 collections that can be
loaded with this method. The ScheduleItems collection
is always saved, which means there are 6 collections
that can be conditionally saved.

The parameter object has the following properties:
Filename - This is the full path of the file to use from
which to load the data.
Overwrite - <NOT USED>

 Gravitybox Schedule Primer Page 207

Ó1998-2004 Gravitybox Software LLC

UseCategories - determines the loading/saving state of
this collection
UseNoDropAreas - determines the loading/saving state
of this collection
UseProviders - determines the loading/saving state of
this collection
UseRooms - determines the loading/saving state of this
collection

IsDayVisible Function IsDayVisible(pdtDate As Date)
As Boolean

Given a date, this method will return a Boolean value
indicating if that date is in the viewable window. A
schedule may be much larger than the viewing window.
This method can be used in conjunction with the
ShowDay method to check if a particular date is visible
and if not bring it into the viewing window.

IsEnabledAreaByValues Function IsEnabledAreaByValues(ByVal
dtDate As Date, ByVal lRoom As Long,
ByVal dtTime As Date, ByVal plLength As
Long, ByVal pbCheckTimeOnly As Boolean)
As Boolean

This method will return whether an area is enabled.
After setting up the NoDropAreas collection, you may
need to know if an appointment may be placed at a
specific position. This method will take date, room,
time, and length information and return True or False
whether this position is blocked. No error occurs if an
appointment is inserted inside of a NoDropZone
through code, but if the user may become confused if
he sees appointments in blocked areas.

IsRoomVisible Function IsRoomVisible(pvRoom) As
Boolean

Given a room, this method will return a Boolean value
indicating if that room is in the viewable window. A
schedule may be much larger than the viewing window.
This method can be used in conjunction with the
ShowRoom method to check if a particular room is
visible and if not bring it into the viewing window.

IsTimeVisible Function IsTimeVisible(pdtTime As Date)

 Gravitybox Schedule Primer Page 208

Ó1998-2004 Gravitybox Software LLC

As Boolean

Given a time, this method will return a Boolean value
indicating if that time is in the viewable window. A
schedule may be much larger than the viewing window.
This method can be used in conjunction with the
ShowTime method to check if a particular time is visible
and if not bring it into the viewing window.

MoveSeries Function MoveSeries(sGroupId As String,
[lIncDates As Long], [lIncRooms As
Long], [lIncTimes As Long]) As Boolean

This method will move an entire series of appointments
at one time. You may specify a number of days, rooms,
or minutes or move the appointment series. If you wish
to move the series back in time, use a negative
increment. For example, to move series 2 days back
into the past call the method with the "lIncDates"
parameter set to -2. The dates are measured in days
and the time in minutes. If there method is successful it
will return true, otherwise it returns false.

SetMinMaxDate Sub SetMinMaxDate(ByVal dtMinDate As
Date, ByVal dtMaxDate As Date)

This method let you set the Min-Max pairs for Date
without encountering errors. You can set the MinDate-
MaxDate pairs at the same time and not get in
intermediate error.

Example:
If the MinDate and MaxDate values are set to 1/1/78
and 2/1/79 respectively and you want to change the
MinDate and MaxDate to 6/1/78 and 7/1/78. You would
get an error when you set the MinDate to 6/1/78.
Because at this time the MaxDate is 2/1/78, the new
value of 6/1/78 for MinDate would make the MinDate
greater than the MaxDate. This is an error. With the
SetMinMaxDate method you could set both MinDate
and MaxDate at the same time and avoid this error.

Note: These properties (MinDate / MaxDate) have no
meaning if the ViewMode property is set to exclude
days.

 Gravitybox Schedule Primer Page 209

Ó1998-2004 Gravitybox Software LLC

ShowDay Function ShowRoom(ByVal Room) As Boolean

If the parameter day is in the valid range to
(MinDate..MaxDate), then the schedule scrolls to the
specified day. This allows any day to be brought into
the display window.

Note: This property has no meaning if the ViewMode
property is set to exclude days.

ShowItem Function ShowItem(Index As Long) As
Boolean

Given an index into the ScheduleItems collection on
the Schedule, this method makes the item visible on
the screen. It scrolls to the date and time of the item.
This allows any ScheduleItem to be brought into the
display window.

ShowRoom Function ShowDay(ByVal NewDate As Date)
As Boolean

If the parameter date is in the valid range MinDate to
MaxDate, then the schedule scrolls to the specified
day. This allows any day to be brought into the display
window.

ShowTime Function ShowTime(NewTime As Date) As
Boolean

If the parameter time is in the valid range StartTime to
StartTime + DayLength, then the schedule scrolls to
the specified time. This allows any valid time to be
brought into the display window.

 Gravitybox Schedule Primer Page 211

Ó1998-2004 Gravitybox Software LLC

Events

AfterAdd Event AfterAdd(NewIndex As Long)

AfterAdd is raised after a ScheduleItem has been
added. A user can add an appointment by double-
clicking on the background or in code. The
parameter is the index of the new item. AllowAdd
dictates this functionality.

AfterColumnResize Event AfterColumnResize(NewWidth As
Long)

This event is raised after a user resizes the
columns. If the AllowColumnResizing property is set,
then the user can use the mouse to grab the edge of
a column and resize it. All columns are the same
width, so resizing one applies to all columns. The
"NewWidth" parameter is the new ColumnWidth
property.

AfterCopy Event AfterCopy(ScheduleItem As
CScheduleEl)

AfterCopy is raised after an item is has been copies
to a new position on the same schedule screen or a
new screen. If a ScheduleItem is being move within
the same window, there is no confusion as to where
the event is raised, but if you drag the appointment
to another schedule window, it is important to
remember that this event is raised on the source
window.

Note: The user copies an appointment by dragging
it with the <CTRL> key pressed. If this key is not
pressed then it is an appointment move.

AfterDelete Event AfterDelete(LastIndex As Long)

AfterDelete is raised after an item is removed with
the DeleteItem method. The user can do this by
pressing the <Delete> key when highlighted or in
code. AllowDelete dictates this functionality.

 Gravitybox Schedule Primer Page 212

Ó1998-2004 Gravitybox Software LLC

AfterDragFromFile Event AfterDragFromFile(ScheduleItem As
CScheduleEl)

This event is raised after the user has dragged a
schedule file onto the schedule window. The
AllowDragToFile property allows the user to drag an
appointment and drop it outside of the schedule to
create a file with an appointment’s properties. The
AllowDragFromFile allows the user drag that
previously saved file and drop it on a schedule to
recreate the saved appointment. This event is raised
after that operation has completed.

AfterEdit Event AfterEdit(Index As Long)

AfterEdit is raised after an item is modified with the
EditItem method. This method can be called from
code or by double-clicking an appointment. AllowEdit
dictates this functionality.

AfterEditNotes Event AfterEditNotes(Index As Long,
Notes As String, Cancel As Boolean)

When the ViewMode of the schedule is List, the user
may edit the notes associated with an appointment
in on the right displayed page of the schedule. After
an edit has completed, this event is raised to inform
that the operation was a success.

AfterEditText Event AfterEditText(Index As Long,
DisplayText As String, Cancel As
Boolean)

This event is raised after the user has edited the text
of a ScheduleItem. The AllowEdit property has to be
true for this to happen. When the user clicks on an
appointment an edit box is displayed and the user
can edit the appointment's displayed text.

AfterHorizontalScroll Event AfterHorizontalScroll()

This event is raised after the user moves the
horizontal scroll bar. It also may be raised when
calling the ShowItem, ShowDay, or ShowRoom
methods, since these methods will scroll the screen
as well.

 Gravitybox Schedule Primer Page 213

Ó1998-2004 Gravitybox Software LLC

AfterItemResize Event AfterItemResize(Index As Integer)

This event is raised after the user resizes a
SelectedItem. When the mouse is moved over a
ScheduleItem, it becomes highlighted. The
SelectedItem has two bars on the top and bottom,
which can be dragged to resize an appointment. This
is the event raised after each resize. The parameter
is the item's index in the ScheduleItems collection.

AfterMove Event AfterMove(ScheduleItem As
CScheduleEl)

AfterMove is raised after an item is has been moved
to a new position on the same schedule screen or a
new screen. If a ScheduleItem is being move within
the same window, there is no confusion as to where
the event is raised, but if you drag the appointment
to another schedule window, it is important to
remember that this event is raised on the source
window.

Note: The user copies an appointment by dragging
it with the <CTRL> key pressed. If this key is not
pressed then it is an appointment move.

AfterRowResize Event AfterRowResize(NewHeight As Long)

This event is raised after a user resizes the rows. If
the AllowRowResizing property is set, then the user
can use the mouse to grab the edge of a row and
resize it. All rows are the same height, so resizing
one applies to all rows. The "NewHeight" parameter
is the new RowHeight property.

AfterVerticalScroll Event AfterVerticalScroll()

This event is raised after the user moves the vertical
scroll bar. It also may be raised when calling the
ShowItem, ShowDay, or ShowRoom methods, since
these methods will scroll the screen as well.

 Gravitybox Schedule Primer Page 214

Ó1998-2004 Gravitybox Software LLC

BackGroundClick Event BackGroundClick(Button As
Integer, Shift As Integer, dtDate As
Date, lRoom As Long, dtTime As Date)

The event is raised when the user clicks on the
schedule background where a scheduled item is not
present. This background also does not include the
horizontal or vertical headers. The headers have
their own click events, DayHeaderClick and
TimeMarginClick respectively.

Note: The dtDate property has no meaning if the
ViewMode property is set to exclude days. In
addition, the lRoom property has no meaning if the
ViewMode property is set to exclude rooms.

BeforeAdd Event BeforeAdd(Cancel As Boolean)

BeforeAdd is raised before a schedule item is
Added. The user holding the Ctrl-key and dragging
the mouse the length of a proposed schedule item or
in code performs this. In addition an add can be
initiated by double-clicking the background. The
Cancel parameter gives you the chance to cancel
the Add before it is actually performed. AllowAdd
dictates this functionality.

BeforeColumnResize Event BeforeColumnResize(Cancel As
Boolean)

This event is raised before a user resizes the
columns. If the AllowColumnResizing property is set,
then the user can use the mouse to grab the edge of
a column and resize it. All columns are the same
width, so resizing one applies to all columns. The
"Cancel" parameter allows you cancel this operation
before it gets started.

 Gravitybox Schedule Primer Page 215

Ó1998-2004 Gravitybox Software LLC

BeforeCopy Event BeforeCopy(OldAppt As
CScheduleEl, OldApptIndex As Long,
OldMode As ViewModeConstants, NewDate
As Date, NewRoom As String, NewTime As
Date, NewMode As ViewModeConstants,
DoPrompt As Boolean, Cancel As Boolean)

BeforeCopy is raised before the user drags a
ScheduleItem to a new location. This happens after
the user drops the item on its new location. The
event provides the appointment and its index in the
ScheduleItems collection. The NewDate, NewRoom,
and NewTime define the position of the new
appointment. Also there are two "By Reference"
parameters that allow you to send information back
to the schedule. "DoPrompt" allows you to display
your own confirmation by canceling the default
prompt. If you do this then the copy will automatically
be confirmed, unless the "Cancel " parameter is set
to False. "Cancel" provides a way for you to cancel a
drag, if desired.

The OldMode and Newmode parameters determine
the ViewMode setting of source schedule (OldMode)
and the mode of the target schedule (NewMode).
This allows you cancel a copy between windows if
desired, for example if the modes do not match.

Note:
The "OldApptIndex" parameter will be zero if the
user is dragging between schedule windows. This
parameter is only valid when a drag is started and
completed inside the same schedule window.

 Gravitybox Schedule Primer Page 216

Ó1998-2004 Gravitybox Software LLC

BeforeDelete Event BeforeDelete(Index As Long,
Prompt As String, Cancel As Boolean)

BeforeDelete is raised before the removal of a
scheduled item using the DeleteItem method. The
DeleteItem method can be called by the user or in
code. In addition it is called by pressing the <Delete>
key when an appointment is highlighted. The Prompt
parameter is the text to be displayed as a delete
prompt to the user. If you do not wish for a prompt
set this parameter to an empty string. The Boolean
Cancel parameter gives you a chance to cancel the
operation from code. If you set Cancel to true, the
item will not be removed and the AfterDelete event
will not be raised. AllowDelete dictates this
functionality.

BeforeDrag Event BeforeDrag(Index As Long,
InitialDragOperation As
DragOperationConstants, Cancel As
Boolean)

This event is raised before a copy or move. When
the user starts to drag an appointment, this event is
raised first and gives you a chance to cancel the
drag by setting Cancel = true. The "Index" parameter
is the index in the ScheduleItems collection of the
appointment being dragged. The
"InitialDragOperation" parameter is the drag
operation that is taking place.

BeforeDragFromFile Event BeforeDragFromFile(ScheduleItem
As CScheduleEl, Cancel As Boolean)

This event is raised after the user drops a schedule
file onto the schedule window. Dragging an
appointment and dropping it outside of the schedule
create the file. This event is raised before the
appointment is added by dragging that saved file
back onto the schedule window.

 Gravitybox Schedule Primer Page 217

Ó1998-2004 Gravitybox Software LLC

BeforeDragTip Event BeforeDragTip(Prompt As String)

This event is raised before the drag tip text is
displayed. It provides the option of changing the text
with the “Prompt” parameter. This text is displayed
when the user is dragging an appointment to another
position.

BeforeEdit Event BeforeEdit(Index As Long, Cancel
As Boolean)

BeforeEdit is raised before the edit of a scheduled
item using the EditItem. The Boolean Cancel
parameter gives you a chance to cancel the
operation from code. If you set Cancel to true the
item will not be edited and the AfterEdit event will not
be raised. AllowEdit dictates this functionality.

BeforeEditNotes Event BeforeEditNotes(Index As Long,
Cancel As Boolean)

When the ViewMode of the schedule is List, the user
may edit the notes associated with an appointment
in on the right displayed page of the schedule.
Before an edit starts, this event is raised to give the
developer a change to cancel the operation.

BeforeEditText Event BeforeEditText(Index As Long,
Cancel As Boolean)

This event is raised before the user has a chance to
edit an appointment's displayed text. The AllowEdit
property has to be true for this to happen. When the
user clicks on an appointment an edit box is
displayed and the user can edit the appointment's
displayed text.

BeforeFind Event BeforeFind(Cancel As Boolean)

This event allows you to cancel the find. If the
AllowFind property is true, the user may press the
CTRL-F key combination to display the "Find
Appointments" screen. Before the screen is
displayed this event is raised and you may cancel
the find by setting the Cancel parameter to true.

 Gravitybox Schedule Primer Page 218

Ó1998-2004 Gravitybox Software LLC

BeforeHorizontalScroll Event BeforeHorizontalScroll(Cancel As
Boolean)

This event is raised before the horizontal scrollbar
value changes. When the user scrolls the horizontal
scroll bar this event is raised to give you a chance to
cancel the scroll. This event may also raised when
the methods ShowDay, ShowRoom, or ShowTime
are called. In addition, it may be called when an
appointment is being dragged and causes and auto
scroll when it get too close to one of the schedule
edges.

BeforeItemResize Event BeforeItemResize(Index As Long,
Cancel As Boolean)

When the mouse is moved over a ScheduleItem, it
becomes highlighted. The SelectedItem has two
bars on the top and bottom, which can be dragged to
resize an appointment. This is the event raised
before each resize. The parameter is the item's
index in the ScheduleItems collection. This event is
raised if the user tries to resize a ScheduleItem. You
can cancel this operation with the "Cancel"
parameter.

 Gravitybox Schedule Primer Page 219

Ó1998-2004 Gravitybox Software LLC

BeforeMove Event BeforeMove(oAppt As CScheduleEl,
lApptIndex As Long, lMode As
ViewModeConstants, NewDate As Date,
NewRoom As String, NewTime As Date,
NewMode As ViewModeConstants, DoPrompt
As Boolean, Cancel As Boolean)

BeforeMove is raised before the user drags a
ScheduleItem to a new location. This happens after
the user drops the item on its new location. The
event provides the appointment and its index in the
ScheduleItems collection. The NewDate, NewRoom,
and NewTime define the position of its new location.
Also there are two "By Reference" parameters that
allow you to send information back to the schedule.
"DoPrompt" allows you to display your own
confirmation by canceling the default prompt. If you
do this then the move will automatically be
confirmed, unless the "Cancel " parameter is set to
False. "Cancel" provides a way for you to cancel a
drag, if desired.

The OldMode and Newmode parameters determine
the ViewMode setting of source schedule (OldMode)
and the mode of the target schedule (NewMode).
This allows you cancel a copy between windows if
desired, for example if the modes do not match.

Note:
The "lApptIndex" parameter will be zero if the user is
dragging between schedule windows. This
parameter is only valid when a drag is started and
completed inside the same schedule window.

BeforeRowResize Event BeforeRowResize(Cancel As
Boolean)

This event is raised before a user resizes the rows. If
the AllowRowResizing property is set, then the user
can use the mouse to grab the edge of a row and
resize it. All rows are the same width, so resizing
one applies to all rows. The "Cancel" parameter
allows you cancel this operation before it gets
started.

 Gravitybox Schedule Primer Page 220

Ó1998-2004 Gravitybox Software LLC

BeforeVerticalScroll Event BeforeVerticalScroll(Cancel As
Boolean)

This event is raised before the vertical scrollbar
value changes. When the user scrolls the vertical
scroll bar this event is raised to give you a chance to
cancel the scroll. This event may also raised when
the methods ShowDay, ShowRoom, or ShowTime
are called. In addition, it may be called when an
appointment is being dragged and causes and auto
scroll when it get too close to one of the schedule
edges.

CategoryClick Event CategoryClick()

This event is raised when the mouse is clicked on
the category area below the headers. There is no
way to determine which category was clicked upon.

CategoryHeaderClick Event CategoryHeaderClick(Button As
Integer, Shift As Integer)

This event is raised when the mouse is clicked on
the category headers. There is no way to determine
which category header was clicked upon.

DayHeaderClick Event DayHeaderClick(Button As Integer,
Shift As Integer, X As Single, Y As
Single)

The event is raised when the user clicks on the area
defined as the header for a day.

Note:
This event has no meaning if the ViewMode property
is set to exclude days.

DefaultDialogCancelClick Event DefaultDialogCancelClick(Index As
Long)

This event is raised when the default dialog is used
for editing and the "Cancel " button is pressed. If the
"Ok" button of the dialog is pressed the "AfterEdit"
event is fired because an appointment was edited.

 Gravitybox Schedule Primer Page 221

Ó1998-2004 Gravitybox Software LLC

DragDropScheduleItem Contacts Control
Event DragDropScheduleItem(ScheduleItem
As CScheduleEl, DragOperation As
DragOperationConstants, X As Long, Y As
Long, Effect As Long, Cancel As
Boolean)

This event is raised when the user drops a
ScheduleItem from a Schedule control onto a
Contacts control. A copy of the ScheduleItem object
is passed as a parameter.

Schedule Control
Event DragDropScheduleItem(ApptDate As
Date, ApptRoom As Long, ApptTime As
Date, ApptLength As Long, DragOperation
As DragOperationConstants, X As Long, Y
As Long, Effect As Long, Cancel As
Boolean)

This event is raised when an appointment is dropped
on a schedule window. This can be another
OLEDrag drag (i.e. from Windows Explorer) if the
AllowInterWindowDrop and AllowOtherDrops
properties are enabled. The date/room/time/length
are sent in as parameters so that any conflict
checking or other processing can be performed. The
DragOperation parameter is the operation being
performed which is none, copy, move, or add. If the
AllowOtherDrops is True and the user drags a non-
appointment item (like files or text or anything else)
then this parameter will always be set to "Add" since
the user is adding a new appointment with a drag.
When dragging an appointment to another position,
in the same window or across windows, this
parameter is set to "Move". Alternately, if the
<CTRL> key is pressed it is a "Copy". The Effect
parameter is the standard OLE Effect.

TaskList Control
Event DragDropScheduleItem(ScheduleItem
As CScheduleEl, DragOperation As
DragOperationConstants, X As Long, Y As
Long, Effect As Long, Cancel As
Boolean)

This event is raised when the user drops a
ScheduleItem from a Schedule control onto a
TaskList. A copy of the ScheduleItem object is
passed as a parameter. In this event you may add
the ScheduleItem as a task if you wish. Since there
are no predefined columns on a TaskList, an
appointment can not be automatically added. The

 Gravitybox Schedule Primer Page 222

Ó1998-2004 Gravitybox Software LLC

DragEnterSchedule Event DragEnterSchedule(DragOperation
As DragOperationConstants)

Event DragEnterSchedule(DragOperation As
DragOperationConstants)
This event is raised when a drag enters the a
schedule window with a drag. If you are
adding/moving/copying from outside the schedule,
this event will let you know when the mouse moves
over the schedule area for the first time when
dragging. The DragOperation parameter is the effect
that is used and can be one of three values Copy,
Move, or Add.

DragExitSchedule Event DragExitSchedule()

This event is raised when a drag exit the a schedule
window with a drag. If you are
adding/moving/copying from outside the schedule,
this event will let you know when the mouse moves
over the schedule area for the last time before
leaving the window during a drag operation.

 Gravitybox Schedule Primer Page 223

Ó1998-2004 Gravitybox Software LLC

DragOverScheduleItem Contacts Control
Event
DragOverScheduleItem(DragOperation As
DragOperationConstants, X As Long, Y As
Long, Effect As Long)

When the user is dragging a ScheduleItems from a
Schedule control over a Contacts control this event
is raised. The coordinates of the mouse are specified
as parameters.

Schedule Control
Event DragOverScheduleItem(ApptDate As
Date, ApptRoom As Long, ApptTime As
Date, ApptLength As Long, DragOperation
As DragOperationConstants, X As Long, Y
As Long, Effect As Long)

This event is raised when an appointment is being
dragged over the schedule to be moved to another
position. The date/room/time/length are sent in as
parameters so that any conflict checking or other
processing can be performed. These parameters
correspond to the position under the current mouse
position. The DragOperation parameter is the
operation being performed which is none, copy,
move, or add. If the AllowOtherDrops is True and the
user drags a non-appointment item (like files or text
or anything else) then this parameter will always be
set to "Add" since the user is adding a new
appointment with a drag. When dragging an
appointment to another position, in the same window
or across windows, this parameter is set to "Move".
Alternately, if the <CTRL> key is pressed it is a
"Copy". The Effect parameter is the standard OLE
Effect.

TaskList Control
Event DragDropScheduleItem(ScheduleItem
As CScheduleEl, DragOperation As
DragOperationConstants, X As Long, Y As
Long, Effect As Long, Cancel As
Boolean)

When the user is dragging a ScheduleItems from a
Schedule control over a TaskList control this event is
raised. The coordinates of the mouse are specified
as parameters.

 Gravitybox Schedule Primer Page 224

Ó1998-2004 Gravitybox Software LLC

HTMLDone Event HTMLDone()

An HTML page of a schedule can be created with
the method ExportHTML. This event is raised when
the HTML creation process is completed.

HTMLPercentDone Event HTMLPercentDone(lPercent As Long)

An HTML page of a schedule can be created with
the method ExportHTML. This event is called
periodically throughout the export to alert you of the
progress made in exporting. The parameter is the
percent progress made from 0 to 100.

HTMLStart Event HTMLStart()

An HTML page of a schedule can be created with
the method ExportHTML. This event is called when
the process of HTML creation begins.

MonthDateDblClick Event MonthDateDblClick(MonthDate As
Date, Button As Integer, Shift As
Integer)

This event only applies when the schedule's
ViewMode is set to month view. If the user double
clicks on the day portion of the day grid then this
event is raised. Each day of the month has two
parts, a top thin portion that displays the day number
only and a bottom portion that lists each appointment
for that day. This event is raised if the top portion is
double clicked.

MonthDateHeaderClick Event MonthDateHeaderClick(MonthDate As
Date, Button As Integer, Shift As
Integer, X As Long, Y As Long)

This event only applies when the schedule's
ViewMode is set to month view. If the user clicks on
a day header this event is raised. The month has 7
day headers at the top of the screen, one for each
day of the week.

 Gravitybox Schedule Primer Page 225

Ó1998-2004 Gravitybox Software LLC

MonthDateHeaderDblClick Event MonthDateHeaderDblClick(MonthDate
As Date, Button As Integer, Shift As
Integer)

This event only applies when the schedule's
ViewMode is set to month view. If the user double
clicks on a day header this event is raised. The
month has 7 day headers at the top of the screen,
one for each day of the week.

PrintCancel Event PrintCancel()

If the user cancels the printing by setting the Cancel
parameter in any of the print events to true, the
printing will stop. This event is called to notify you
that the printing was stopped prematurely.

PrintDone Event PrintDone()

Using the GoPrint method, you can print any part of
a schedule. When the printing process is complete
this event is raised.

PrintPageDone Event PrintPageDone(Page As Long, PageX
As Long, PageY As Long, Cancel As
Boolean)

This event is raised when a page has completed
being formatted for printing. The parameter "Page" is
the absolute page number that has completed. The
"PageX" and "PageY" define the horizontal [1..N]
and vertical [1..M] page that has completed. A
schedule is made up of a grid of pages [N x M] that
are pieced together to form an entire schedule.

PrintProgress Event PrintProgress(Percent As Long,
Cancel As Boolean)

Using the GoPrint method, you can print any part of
a schedule. This event is raised continually to show
the printing progress. The "Percent" parameter is the
percent done 0..100. Use this event to build a wait
progress dialog for the user to view during printing.
The Cancel parameter can be set to true to cancel
the printing.

 Gravitybox Schedule Primer Page 226

Ó1998-2004 Gravitybox Software LLC

PrintStart Event PrintStart(Cancel As Boolean)

This event is raised when the GoPrint method is
invoked. You can stop the print before anything goes
to the printer by setting the Cancel parameter to true.

PropertiesCustomButtonClick Event PropertiesCustomButtonClick()

The schedule has a default property window. You
have the option of displaying a custom button on this
window. When the user clicks on this button the
"PropertiesCustomButtonClick" event is raised so
that you may add additional functionality to this
property window. If you have no use for an extra
button on the default properties screen, just set the
"PropertiesAllowCustomButton" property to false and
it will not appear. You may set the text of the button
using the "PropertiesCustomButtonText" property of
the schedule control.

ProviderAvailableClick Event ProviderAvailableClick(oProvider
As CProviderEl, Button As Integer,
Shift As Integer)

This event is raised when the available times of a
provider is clicked with the mouse. The
ShowProviderAvailableTime property must be set for
the times to be displayed.

ProviderAvailableHeaderClick Event
ProviderAvailableHeaderClick(Button As
Integer, Shift As Integer)

This event is raised when the header of the available
times of a provider is clicked with the mouse. The
header is the text that heads the column. The
ShowProviderAvailableTime property must be set for
the times to be displayed.

 Gravitybox Schedule Primer Page 227

Ó1998-2004 Gravitybox Software LLC

ProviderScheduledClick Event ProviderScheduledClick(oProvider
As CProviderEl, Button As Integer,
Shift As Integer)

This event is raised when the scheduled times of a
provider is clicked with the mouse. The
ShowProviderScheduledTime property must be set
for the times to be displayed.

ProviderScheduledHeaderClick Event
ProviderScheduledHeaderClick(Button As
Integer, Shift As Integer)

This event is raised when the header of the
scheduled times of a provider is clicked with the
mouse. The header is the text that heads the
column. The ShowProviderScheduledTime property
must be set for the times to be displayed.

RecurrenceFailed Event RecurrenceFailed()

This event is raised when the user presses the
Cancel button on the default Recurrence screen.
This screen is displayed by pressing the Recurrence
button on the toolbar of the ScheduleProperties
control.

RecurrenceClick Event RecurrenceClick(Cancel As
Boolean)

This event is raised from the ScheduleProperties
control when the Recurrence button on the toolbar is
pressed. This action will display the default
recurrence screen, allowing the user to setup a
recurrence pattern. You may cancel the display of
the recurrence screen by setting the Cancel
parameter to true.

 Gravitybox Schedule Primer Page 228

Ó1998-2004 Gravitybox Software LLC

RoomHeaderClick Event RoomHeaderClick(RoomIndex As
Long, RoomName As String, Button As
Integer, Shift As Integer, X As Single,
Y As Single)

This event is raised when the mouse is clicked on a
Room Header. This is the area above each room
with the room name. The parameter RoomIndex is
the Room (1..N) which was clicked upon.

ScheduleItemClick Event ScheduleItemClick(ItemIndex As
Long, Button As Integer, Shift As
Integer)

The event is raised when the user clicks on a
scheduled item. The index parameter is the index of
the selected item in the ScheduleItems collection.

ScheduleItemDblClick Event ScheduleItemDblClick(ItemIndex As
Long, Button As Integer, Shift As
Integer)

The event is raised when the user double-clicks on a
scheduled item. The index parameter is the index of
the selected item in the ScheduleItems collection.

SelectedDateChanged Event SelectedDateChanged(NewDate As
Date)

This event is raised after the schedule window's date
has changed. If the user. This event is only raised if
the schedule is in Month or List view mode. When
the user moves to a new day or month in the Month
view this event is raised. In List mode the user needs
only to move to a different day by using the left or
right arrow keys.

 Gravitybox Schedule Primer Page 229

Ó1998-2004 Gravitybox Software LLC

ScheduleItemStart Event ScheduleItemStart(Index As
Integer)

This event is raised when it is time for a
ScheduleItem to begin. Each Item has a StartTime
property. On a Schedule, when the current day
matches an Item's "StartDate" and the current time
matches the Item's StartTime, then this event is
raised with the "Index" parameter being this
particular Item's index in the ScheduleItems
collection. All rooms for a particular day are checked
for a time match. This event allows you to build
applications that trigger other processes at
predetermined times.

SelectedItemChange Event SelectedItemChange()

This event is raised when the property SelectedItem
is changed. This happens any time that the Highlight
bars are drawn on an appointment. There are
several ways this event may be raised. The
developer may select an appointment by setting the
SelectedItem property. The user may select an
appointment by moving the mouse over an
appointment. Alternately, the <Tab> key may be
pressed to the move through the ScheduleItems
collection while selecting each one in turn.

 Gravitybox Schedule Primer Page 230

Ó1998-2004 Gravitybox Software LLC

TabClick Event TabClick(TabIndex As Long, Button
As Integer, Shift As Integer, X As
Single, Y As Single)

This event is raised if the a Tab at the top of the
screen is clicked. The tabs only appear if either the
ShowProviderAvailableTime or
howProviderScheduledTime properties are set. If
either one is then two tabs will appear at the top of
the schedule. The top tab is 1 and the bottom is 2.
When these tabs are not visible SelTab = 0. The
tabs determine if the schedule is being viewed in
Category or Provider mode. A schedule can have so
much information associated with it that it can not be
displayed on one screen. So the Schedule control
has two modes to view a schedule.

Note:
The tabs are displayed only applies if the time is
displayed in the top margin.

TimeMarginClick Event TimeMarginClick(Button As
Integer, Shift As Integer, X As Single,
Y As Single)

The event is raised when the user clicks in the area
that displays the time.

WhileItemResize Event WhileItemResize(Index As Long,
NewStartTime As Date, NewLength As
Long, Cancel As Boolean)

This event is called when the user is resizing an
appointment. The NewStartTime and NewLength
parameters are the new values of the SelectedItem
that will be changed after this event. You may check
for conflicts or do other processing and cancel the
resize by setting the Cancel parameter to true if
necessary.

 Gravitybox Schedule Primer Page 231

Ó1998-2004 Gravitybox Software LLC

ValidateAdd Event ValidateAdd(Index As Long)

This event is raised after the BeforeAdd event but
before the AfterAdd event. It may be used to set
information for appointments before the properties
dialog is displayed.

ValidateAppointment Event ValidateAppointment(StartDate As
Date, Room As Long, StartTime As Date,
ApptLength As Long, DisplayText As
String, Subject As String, Priority As
Long, Alarm As Boolean, Category As
String, Provider As String, GroupId As
String, UniqueKey As Long, Cancel As
Boolean)

This event is raised from the ScheduleProperties
control just before a save is performed. It allows you
to verify and change information about the
appointment before this information is saved to the
main schedule. You may cancel the save by setting
the Cancel parameter to true.

ValidateDelete Event ValidateDelete(Index As Long)

This event is raised after the BeforeDelete event but
before the AfterDelete event. It may be used to
remove appointments from a database if necessary.
The BeforeDelete event is raised to allow you to
change the prompting text if necessary. You do not
want to remove appointment from your database
here, since the user may choose NOT to remove the
appointment when prompted. After the user is
prompt and he chooses to remove the selected
appointment the ValidateDelete event is raised with
the Index of the appointment in the ScheduleItems
collection. You may not cancel the delete at this
point. This event is raised so that clean-up code can
be added. The item to be removed is still in the
ScheduleItems collection at this point. When the
AfterDelete event is raised the item is no longer in
the collection.

 Gravitybox Schedule Primer Page 232

Ó1998-2004 Gravitybox Software LLC

ViewModeChange Event ViewModeChange(ViewMode As
ViewModeConstants)

This event is raised when the value of the ViewMode
property is changed.

WarningClick Event WarningClick()

This event is raised from the ScheduleProperties
control when the mouse is clicked on the warning
header at the top of the control.

XMLExportDone Event XMLExportDone()

This event is raised when an export to XML is
completed after calling the ExportXML method.

XMLExportStart Event XMLExportStart()

This event is raised when calling the ExportXML
method starts an export to XML.

XMLImportDone Event XMLImportDone()

This event is raised when an import to XML is
completed after calling the ImportXML method.

XMLImportStart Event XMLImportStart()

This event is raised when an import to XML is
started after calling the ImportXML method.

