Architecture & Implementation Overview
Introduction to Stimulus 360 Gov 2.0 – Sample Application
This Gov 2.0 sample application provides the basic framework for a government to create a conversation with their citizens about how funds are being allocated, spent and their effectiveness. Citizen can propose ideas which can then be grouped together to form projects by government resources. Community members can comment / track on both ideas and projects of interest.
It expands on Microsoft’s overall vision of Stimulus360 that is a funds management accelerator for the governments.
It is implemented using the latest Microsoft Web Platform technologies.
Installation
Prerequisites
Following are the list of prerequisites that needs to be installed.
1. SQL Server 2008 Express Edition and above
2. ASP.NET MVC 1.0
3. IIS 6.0 and above
4. Silverlight 2.0
5. Silverlight tools for VS 2008.
6. Visual Studio 2008 Web Developer Express(and above)
These can all be downloaded via the Microsoft Web Platform Installer
[bookmark: _Toc181702977][bookmark: _Toc181620245]Downloading the Code
Download the sample code from CodePlex. Unzip the folder. You will see the following folder structure
[image:]
[bookmark: _Toc218652609][bookmark: _Toc234646144]The CRMAdmin project can be opened in both: - the Visual Web Developer 2008 Express Edition and VS2008.
For Stimulus360, customized versions of code are available for VSWebDev2008 Express and VS2008. The only difference is the absence of test cases in VSWebDev2008 version (since test case templates are not supported by default in VSWebDev2008 Express edition)
Getting Setup
(Disclaimer: These screenshots have been taken on a Windows Vista Enterprise OS. The screens may slightly vary depending on the operating system)
In this section, you will learn how to setup the demo data and prepare the application for exploring further.
Enabling FileStreaming on SQL2008 Express Edition
a. Open the SQL Server configuration Manager
[image:]
[image: StartSqlConfigMgr]
b. Right Click on SQL serverProperties FILESTREAM tab :- [image:]

Enable filestream by checking the boxes. This will enable the file stream in SQL Server 2008 Express
c. Restart the SQL Server Services so that Filestream can take effect.
[image:]
Creating the Database
Execute the CMSDBInstall data script batch file in the DataScripts folder to install the CMSDB database.
[image:]
Wait for few minutes. It will take some time to install and create CMSDB database with dummy database records.
[image:]
The CMS DB is now in place.

Configure in IIS (Optional)
Note: - This configuration is optional for those who want to set it Stimulus360 against IIS v/s running against the VS web server.
The Stimulus360 application is configured to run in an Open VS+ f5 mode. However, if you want Stimulus360 to be configured in IIS please following the given steps.
a. Turn ON the ASP.NET Feature available in Windows Features.
“Turn Windows Feature on or off” option is available in Control panel’s Program and Features option, as shown in following fig.
[image:]
Select the “World Wide Web Services\Application Development Features” node.

b. Create and configure a New Website in IIS
[image:]
Open the IIS Manager and create a new web site with the name “Stimulus360”. In the Physical path provide the folder path of the default.aspx page based on the downloaded path.
 Also change the port from default port 80 to any other port. In this case we change it to port “8082”. After the above mention changes click on “OK” button which will create a new web site in IIS as shown in below fig.
[image:]

c. Configuration of Application Pool
After successfully creation of website, IIS will create a New Application pool with the name “Stimulus360”.
Open the Application Pools section to configure the pipeline mode of this newly created application pool.
Double click on the Stimulus360 App pool.
A new window called the “Edit Application Pool” window is opened. Change the Managed Pipeline mode dropdown to “Integrated” mode
[image:]

d. Configuring the MIME Type for the Silverlight graphs
The Stimulus360 home page uses Silverlight graphs for showing analytics results. To enable the use of silverlight we need to configure the “MIME type” for silverlight.
Double click on the MIME Types Icon on Stimulus360 Home page. It will open a MIME Types Feature page where you need to add the New MIME Type for Silverlight Applications.
[image:]

[image:]

[bookmark: _Toc218652610][bookmark: _Toc234646145]
Running the App
In this section, you will learn how to start the application.
To start Stimulus360
Open Stimulus360 folder at Code\Stimulus360 in the downloaded location, it contains the following sub-folders in it.
[image:]
Open VS2008\Stimulus360.sln or VSWebDevExpress\Stimulus360.sln depending on your version of VS2008 (VSWebDev Express Edition or VS2008). Press F5 to run the solution.

To start CRMAdmin app
The CRM Admin app is located at Code/CRMAdmin in the downloaded location.
In order to work with the CRMAdmin app
1. Make sure the CRMService is running(CRMAdmin utilizes the CRMService)
a. Open the Stimulus360 App as described above.
b. Right click the CrmDataService.svc in CRMService project and click “View in Browser” to start the service

2. Open the CRM Admin solution at /Code/CRMAdmin and do an F5.
Exploring Stimulus 360
Refer the document ‘Exploring Stimulus 360 Gov 2.0 community demonstrator.docx’.

Stimulus 360 Architecture Overview
Stimulus 360 illustrates the relevance and applicability of emerging consumer web trends in broader spaces. The core theme of Stimulus 360 is the notion of participatory ideation to actively engage citizens in the process of determining the allocation and investment of govt. stimulus funds. Emerging consumer web trends are applied and extended to enable G2C (Govt-to-Citizen) collaboration and engagements in this context. While the demo/sample could be viewed as an illustration of Enterprise 2.0 concepts, the term Government 2.0 is rapidly gaining traction in this context.
Conceptual Architecture
The conceptual architecture of Stimulus 360 is based on a broader and over arching Web 2.0/Enterprise 2.0 Conceptual Architecture depicted in figure 1 and described below.
[image:]
Figure 1: Web 2.0/Enterprise 2.0 Services – A Conceptual Architecture
Infrastructure
At the bottom of the stack we have the core infrastructure with the components required to keep a service functional at its guts. This layer includes a server operating system and bread & butter services like a web server, file/unstructured content storage, a DBMS, networking services, and messaging services. Virtualization capabilities may also be a key component of this layer depending on the service type and scalability requirements.
LOB Systems
This layer is typically Enterprise/Business specific and comprises the line of business applications & services. Though not usually seen in a consumer web startup’s infrastructure, planning for LOB system integration services higher up the stack can enable interesting business opportunities for consumer web startups whose services have potential in a business context.
Foundational Services
The foundational services layer is largely common across 2.0 services and includes the following:
· Unstructured content management
· Structured data access
· LOB System Integration to enable integrating a 2.0 service with line of business applications/services – of specific relevance to the enterprise/business context
· User identity management
· Services that enable social dynamics and experiences
· Search service(s) that span unstructured content, structured data, LOB systems, external services, and social metadata
· Usage Analytics to measure/analyze service usage and guide investments
· Synchronization to enable partially connected & multi-channel experiences for consumers
· Monetization services like advertisements, billing/payments etc
In general, enterprises (and consumer web startups, in many cases) should look to integrating with and leveraging existing best of class service offerings that enable these capabilities v/s re-inventing the wheels.
Custom Services
This is the layer at which Enterprises and the vast majority of Web Startups should ideally invest maximum resources & efforts in the context of custom service development. For Enterprises, it is the layer at which customized business value enablement is materialized. For Web Startups, it is the layer at which consumer value differentiation is materialized.
Service Interfaces/APIs
The Services Interfaces & APIs layer is crucial to enabling multi-channel service consumption, service integration (with external services), and service extensibility/composition. This is the layer at which the core capabilities are wrapped and exposed as standards based web services, syndication feeds, and scripting & programming language wrappers to enable the mentioned scenarios.
Delivery Channels
At the Delivery Channels layer it is important to be able to account for multiple channels of service delivery that have gained/are gaining adoption in the users ecosystem. In addition to the web browser…channels like mobile phones, PC apps, device consoles, external services with potential to integrate with & mutually benefit from, and web service repositories used to enable user mashup experiences are all delivery channels of relevance to achieving the maximum user reach potential. Having a well defined and implemented Service Interfaces/APIs layer is the key to materializing multi-channel service delivery.
Tools
On the tools edge, it is important to account for tools that can address the requirements of a) personnel responsible for developing and operating the service viz. Developers, Designers, and Administrators, and b) users who consume the service.
External Services
Emerging Web and Enterprise services should be capable of integrating seamlessly with external services of relevance. The external services of relevance will vary by case. Accounting for service interfaces & APIs in the design from ground up will enable related scenarios.

Stimulus 360 Conceptual Architecture
Figure 2 illustrates the conceptual architecture of Stimulus 360 based on the broader Web 2.0/Enterprise 2.0 Conceptual Architecture.
[image:]
Figure 2: Stimulus360– A Conceptual Architecture
Stimulus 360 Logical Architecture
Figure 3 illustrates the logical architecture of Stimulus 360. The logical architecture is vendor/platform agnostic depiction of the architectural layers and components of relevance to Stimulus 360. The physical implementation of this architecture in the sample application is described in the Stimulus 360 Implementation Overview section of this document.
[image:]

Figure 3: Stimulus 360 Logical Architecture
[bookmark: _Stimulus_360_Implementation]Stimulus 360 Implementation Overview
The following sections explore the implementation of the Stimulus360 Service. General reader familiarity with the Microsoft Platform, the .NET Framework 3.5SP1, and Visual Studio 2008 Web Developer Express Edition is assumed. Links to resources on the Microsoft products and technologies referenced in this paper are provided inline.
Open the Stimulus360 solution (Open VS2008\Stimulus360.sln or VSWebDevExpress\Stimulus360.sln depending on your version of VS2008) and follow along to explore the implementation of the Stimulus360 Service. The Stimulus360 solutions are located in the Code\Stimulus360 folder of downloaded folder.
Infrastructure
The implementation of this version of the Stimulus360 service is based on a self hosted infrastructure environment comprising Windows, IIS, and SQL Server. To optimize for the primary goal of the service to serve as a developer sample, the solution included in the downloaded folder is packaged to enable an Open in Visual Studio 2008 -> F5 experience to get the service up & running and hosted by the Visual Studio development web server. This packaging enables the solution to be opened, run, and explored on developer workstations with a supported version of Windows. The Microsoft Web Platform Installer can be used (as described in the Getting Started document included in the downloaded folder) to install and configure the required web platform components on a supported Windows environment. The sample solution could also be manually deployed and run using IIS if desired.
The service is configured out of the box to attach the service database on startup to the default instance of SQL Server Express 2008 installed on the developer workstation (SQL Server Express 2008 is included in the Web Platform Installer).
The service database is used to store structured data and metadata, and can also be manually deployed to a SQL Server 2008 instance of choice if desired.
Foundational Services
The Foundational Services are implemented under the Repositories namespace contained in the Stimulus360 solution (Stimulus360\Repositories folder and CRMService\Repositories)
[bookmark: _Data_Access]Data Access
The service stores and accesses structured data & metadata that describe the core entities of relevance. An on-premise SQL Server 2008 database is used in this version of the service to store and access the structured data and metadata.
An RDBMS is in general a good choice to store and manipulate data/metadata pertaining to structured entities and navigate the relationships that associate them.
The Repository pattern is applied to mediate access to the data store. This design enables flexibility in switching the backend data store to say a cloud based data service like SQL Azure Database to achieve cost effective operations while accommodating mass scalability requirements, without impacting the implementation layers higher up the stack.
LINQ to SQL is used to model the relational database using .NET classes which allows us to then query the database using LINQ, as well as update/insert/delete data from it. It provides an easy way to integrate data validation and business logic rules into your data model.
The Repositories implemented for data access uses the LINQ-to-SQL programming model to access the structured data and metadata through the LINQ to SQL dbml created for the service.
[image:]

Figure 4: Data Access Architecture
Implementation Artifacts
The following are the implementation artifacts in the Stimulus360 solution that materialize the Data Access foundational service:
The Data Model
The Data Model created using the LINQ to SQL can be located at Stimulus360\Models\Data. The folder contains the Stimulus360 dbml classes (Stimulus360.dbml) which maps strongly typed entity definitions to related tables in the data store, and definitions of custom logical entity classes created to abstract the access of related data retrieved by associating 2 or more logically related physical entities.
[image:]
Figure 5: The Stimulus360 dbml (Stimulus360.dbml)
Repository Interfaces & Implementations
The Repository interface definitions and implementations can be located in the Stimulus360\Repositories\Data\Interfaces and the Stimulus360\ Repositories\Data\Implementation folders.
Idea Repository, Project Repository and Investment Category Repository are the major repositories used for access structured data related to ideas and projects.
Unstructured Content Management
The Stimulus360 Service fosters a community around the notion of submitting ideas to the government, tracking the progress of those ideas into projects and providing feedback. Users upload documents and photos relevant to a project. These documents and photos are stored in a content management system. The SQL Server application database is used as the content store in the demo implementation. The FileStreaming feature of SQL2008 is used to store and access the content. Once accessed, this content is cached using ASP.NET MVC OutputCaching for a period of 24 hours.
The access to the unstructured content storage is mediated by a Repository that enables flexibility in adapting the CMS service layer in the future to more scalable platform solutions like SharePoint or the Windows Azure Services Platform, without breaking the upstream application capabilities
Implementation Artifacts
The following are the implementation artifacts in the Stimulus360 solution that materialize the CMS foundational service:
The Data Model
The Data Model created using the LINQ to SQL can be located at Stimulus360\Models\CMS. The folder contains the CMS dbml classes (CMS.dbml) which maps strongly typed entity definitions to related tables in the data store. The Data model for CMS is fairly simple consisting of one table each for the ProjectDocument and the ProjectPhoto entity. Filestreaming enabled on this database facilitates storage and management of the actual content on the server’s file system.
[image:]
Figure 6: The CMS dbml (CMS.dbml)
Repository Interfaces & Implementations
The Repository interface definitions and implementations can be located in the Stimulus360\Repositories\CMS\Interfaces and the Stimulus360\ Repositories\CMS\Implementation folders.
User Management
The User Management services enable the management of user credentials and profiles. The ASP.NET Membership Service is used in this version of Stimulus360 to implement the user management capabilities. The ASP.NET Membership service generates and uses tables in a SQL Server database to store/manage user information. Information generated from these tables is replicated into the UserProfile table of the Stimulus360 service database discussed in the Data Access section. Access to the user information in the Stimulus360 service implementation is mediated through the same Repository provider used to access other structured service data and metadata. The Repository pattern enables flexibility in switching the backend user management service. For instance, the use of the ASP.NET Membership service could be replaced or complemented with a Windows Live ID service integration to address challenges associated with cold booting a surround community and/or extending reach into the established Windows Live user community.
Implementation Artifacts
The following are the implementation artifacts in the Stimulus360 solution that materialize the User Management foundational service:
Repository Interfaces & Implementations
The IMembershipRepository interface and the ASPNETMembershipRepository class that implements the interface are the core implementation artifacts which interact with the ASP.NET Membership Provider. These artifacts are located at Stimulus360\Repositories\Identity folder
The IUserRepository interface and the UserRepository class that implements the interface interact with the Stimulus360 database for Management of User Profile, user related data like Favorite Ideas, Volunteered Projects, and System recommendations based on user interests etc. These are located at the Stimulus360\Repositories\Data Folder
Analytics
The Analytics service provides a snapshot view of the entire ecosystem over the current financial year. Structured and unstructured data is pulled from the various databases, collaborated and analyzed to generate graphs depicting trends like community participation, idea submission trend etc.
The Analytics repository interacts with both: - the structured (Stimulus DB) and unstructured (CMS DB) databases to compute and generate the required results.
On screen the results are displayed using Silverlight graphs.
Implementation Artifacts	
The following are the implementation artifacts in the Stimulus360 solution that materialize the Analytics foundational service:
Repository Interfaces & Implementations
The Repository interface definitions and implementations can be located at Stimulus360\Repositories\Data\Interfaces\IAnalyticsRepository and the Stimulus360\ Repositories\Data\Implementation\AnalyticsRepository.
Silverlight Graphs
The Silverlight graphs used to depict the results are present in the HomeViewGraphs project
 LOB Integration
Stimulus360 fosters a community around the notion of submitting ideas to the government, tracking the progress of those ideas into projects and providing feedback. Ideas once submitted are in turn synced into a backend CRM system used by the Govt. to manage the participatory ideation process and relationships with the participating citizens.
For purposes of this sample application, the backend CRM system has been mimicked by a combination of an on premise SQL2008 database (CRMDB), a CRMService which is a WCF service responsible for interacting with the CRM Database and CRMAdmin which is a windows application used to accept/reject ideas submitted for approval.
Ideas approved/rejected are also synced back into the Stimulus360 system. Projects created for approved ideas and reasons given for rejection.
CRMRepository mediates between the CRMService and the dummy CRMDB, providing flexibility in switching the backend data store and replacing it with a formal backed CRM System
Implementation Artifacts	
The following are the implementation artifacts in the Stimulus360 solution that materialize the Sync foundational service:
The CRMService
The CRMService is located at the CRMService project in the Stimulus360 solution.
The DataModel
The CRMService hosts an on premise dummy database to replicate the backend CRM system. For purposed of this sample application, the dummy database simply contains the Idea table which is manipulated by both: - the CRMAdmin and the Stimulus360 application during syncing.
[image:]
Figure 7: The CRM dbml (CRM.dbml)
Repository Interfaces & Implementations
The Repository interface definitions and implementations to interact with the CRM DB can be located at CRMService\Repositories \Interfaces\ICrmRepository and CRMService\ Repositories \Implementation\CrmRepository.
CRM Admin
CRM Admin application to mimic the process of Idea approval/rejection can be located at the downloaded folder under \Code\CRMAdmin
Stimulus360 IP Services
The Stimulus360 IP (Intellectual Property) Services layer is the implementation of the core service logic that integrates the foundational services to materialize consolidated services that enable the user facing capabilities of the Stimulus360 Service of pertinence to idea and project viewing, providing feedback, user management, analytics and syncing.
Related implementation artifacts can be located in the Stimulus360.Services folder in the Stimulus360 project. The related source code is well commented and should be largely self explanatory.
The Services have Dependency Injection enabled via overloaded constructors providing for Constructor based Dependency Injection. This is made use of in the Test Cases as we will see in the Unit Testing section

Service Interfaces
Exposing open & internet standard endpoints/interfaces to access the services is a key requirement for a Web 2.0 Application to transition to the state of becoming a Service that can enable multi-channel consumer experiences and extensibility scenarios that include 3rd party integrations and extensions.
Resource centric RESTful interfaces for service access are fast becoming the norm in the Web 2.0 ecosystem v/s operations centric SOAP APIS.
RSS and/or Atom Syndication feeds that enable consumers to subscribe to and stay on top of activities within the service community of interest to them, are also a de facto capability seen in most web applications/services and sites today.
The Feed Service has been made RESTful to provide a sample REST service implementation. The Windows Communication Foundation (WCF) framework included in the Microsoft .NET Framework is used in the implementation of the Feeds Service to expose REST endpoints to access publicly consumable services and enable Syndication feeds in the RSS 2.0 and Atom 1.0 feed formats.
Though other Stimulus360 services in this sample have not been made RESTful, care has been taken to make them REST enabled in the future.
RESTful Access
The REST endpoint configuration is achieved by decorating service interface definitions with WCF attributes that enable RESTful access, and by configuring a RESTful HTTP end-point in the service host. The following code snippet from the Stimulus360\Services\Feeds\Interfaces\IFeedsService.cs interface definition in the Stimulus360 project illustrates the use of the WebGet WCF attribute to specify a RESTful Uri to access the service operation that returns the list of new submitted Ideas.
[WebGet(UriTemplate = "/NewIdeas/?format={format}")]
SyndicationFeedFormatter NewIdeas(string format);
The Service Interfaces is hosted by the Stimulus360 Web Application (under the \API folder of the Stimulus360 project). The following snippet from the Web.config file in the Stimulus360 project configures the REST end points to access the services:
 <services>
 <service name="Stimulus360.Services.FeedsService">
<endpoint address="" behaviorConfiguration="RESTFriendly" binding="webHttpBinding" contract="Stimulus360.Services.Interfaces.IFeedsService" />
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior name="RESTFriendly">
 <webHttp />
 </behavior>
 </endpointBehaviors>
 </behaviors>
The endpoints can also be used by developers to access the services from custom/external applications.
Syndication
The RSS 2.0 and Atom 1.0 Syndication feed interfaces are defined in the IFeedsService interface definition located in the \Services\Feeds\Interfaces folder of the Stimulus360 project.
The following snippet from IFeedsService.cs shows the WCF attributes applied to the interface definition to enable syndication in the RSS 2.0 and Atom 1.0 formats:
[ServiceContract]
[ServiceKnownType(typeof(Atom10FeedFormatter))]
[ServiceKnownType(typeof(Rss20FeedFormatter))]
interface IFeedsService
{
 /// <summary>
 /// Method to get a feed of most popular Ideas
 /// </summary>
 /// <param name="format">
 /// Feed format
 /// </param>
 /// <returns>
 /// Feed of most popular ideas
 /// </returns>
 [WebGet(UriTemplate = "/MostPopularIdeas/?format={format}")]
 SyndicationFeedFormatter MostPopularIdeas(string format);
FeedService.cs located in the \Services\Feeds\Implementation folder of the Stimulus360 project contains the implementations of the operations for the supported syndication feeds.
The Syndication feeds service is also hosted by the Stimulus360 Web Application and the related end point is configured in the Web.config file of the Stimulus360 project as done for the REST end points.
The supported syndication feeds can be accessed from the Idea and Projects view of the Stimulus360 Web Application, and can also be programmed against by developers.
The RSS and Atom syndication feeds implemented for the Stimulus360 service have been validated for compliancy with the related specifications.
Service Delivery – The Stimulus360 Web Application
The Stimulus360 Web Application included in the Stimulus360 solution is the primary service delivery/consumption channel in this version of the Stimulus360 sample service. It embodies a number of characteristics that enable the rich, interactive, and social experiences expected of Web 2.0 web applications.
The implementation of the Web Application is based on the popular MVC pattern. Popular trends like AJAX enabled and RIA style interactive user experiences are also integrated within the framework where relevant.
The Model-View-Controller (MVC) Pattern
The MVC pattern was chosen for the following benefits that it enables:
· Clear separation of concerns (data model, view definitions, and the controller logic that selects and instantiates the views)
· Testability - support for Test-Driven Development
· Fine-grained control over HTML and JavaScript to achieve related standards compliancy
· Intuitive URLs
Figure 6 illustrates the overall implementation architecture of the Stimulus360 Web Application
[image:]
Figure 8: The MVC Architecture of the Stimulus360 Web Application
Requests initiated from the client browser could be one of two kinds’ viz. a) user actions initiating direct http requests for a specific view – steps 1 to 4 in the figure 6 depict the flow for these requests, and b) user actions resulting in the execution of client side script that invokes AJAX requests to access the Controller actions or Stimulus360 services (like Feeds Service exposed as REST) – depicted by 5 in figure 6. In case (a), the requests are channeled to the controllers which handle the selection and rendering of the requested view, including executing the service calls required to obtain the data needed to feed/render the view. In case (b) the Controller Actions/ Stimulus360 Services are accessed from client side script. In either case, all access to the Stimulus360 resources are mediated by the Services layer which in turn interacts with one or more foundational services to process the resource requests.
The ASP.NET MVC Framework is used to materialize the MVC pattern in the implementation of the Stimulus360 Web Application. Follow the referenced link for information about the ASP.NET MVC framework and to watch introductory videos that illustrate the framework in action.
In the Stimulus360 solution, the implementation artifacts for the Model, the Controllers, and the Views are located at the following locations:
Model
The Model layer in the context of the Stimulus360 Service is described in the Data Access section of this paper. All access to the model is mediated by the Stimulus360 Services.
Controllers
The Controllers are located in the Stimulus360\Controllers folder in the Stimulus360 project. The controllers have Dependency Injection enabled via overloaded constructors providing for Constructor based Dependency Injection. This is made use of in the Test Cases as we will see in the Unit Testing section
Views
The Views are located in the Stimulus360 \Views folder in the Stimulus360 project.
The following code snippet from IdeasController.cs illustrates steps 1 to 4 in figure 6 in the context of the controller action that renders the default Idea view:
 /// <summary>
 /// Method to return a list of New Ideas
 /// </summary>
 /// <param name="page">
 /// Current Page No
 /// </param>
 /// <returns>
 /// ViewModel containing list of new Ideas.
 /// </returns>
 public ActionResult Index(int? page)
 {
 NewIdeasListingViewModel model = new NewIdeasListingViewModel
 {
Ideas = _ideaService.GetNew(page.GetValueOrDefault(0).ToString(CultureInfo.CurrentCulture), _pageSize),
 Categories = _investmentCategoryService.GetAll()
 };

 return View(model);
 }
The following snippet from the Index.aspx view page illustrates how the Featured Idea dataset passed to the view by the controller is integrated into the view HTML returned to the client browser. The key line of code is the one in bold font which executes the Html.RenderPartial method to render a user control named IdeasList by passing it the list of featured ideas. The surround div tags set up the styling and presentation of the section of the HTML page within which the list of featured presentations is rendered:
 <div class="main">
 <div class="contetTittle">
 <div class="floatLeft">
 New Ideas
 </div>
 <div class="floatRight">

 <%= Html.Image("submitIdeas.png", "Submit Ideas") %>
 Submit Ideas
 </div>
 </div>
 <div id="ideaListContainer">
 <%Html.RenderPartial("IdeasList", Model.Ideas); %>
 </div>
You can explore the implementation of all the controllers and views to see how the other benefits of applying the MVC pattern are achieved in the Stimulus360 Web Applications.
[bookmark: _Unit_Testing]Unit Testing (Included in the VS2008 project version)
Note:- Unit Testing capabilities have been demostrated in the VS2008 project version. VSWebDev2008 Express edition does not support ASP.NET MVC test templates by default.
Unit testing capabilities are illustrated in the Stimulus360.Tests project. A mix of test cases for Controllers have been created to showcase the potential and ease of unit testing.
Repositories
A Fake repository which implements the IDataRepository interface has been implemented for test purposes. Creation of a fake repository for testing purposes is standard practice to prevent the tweaking of the deployed database by test case generated data.
The Fake repository inturn interacts with and in- memory list of Ideas and Projects
The following method illustrates the fake repository implementation to retrieve a list of projects belonging to a given category.
 public IQueryable<Project> FindProjectsInCategory(string category)
 {
 return (from project in _projectList
 where project.InvestmentCategory.Category == category
 orderby project.DateCreated descending
 select project).AsQueryable();
 }
Apart from the use of the _projectList(which is the in-memory collection of projects passed to the Fake Repository in its constructor), the implementation remains the same as in the actual implementation of the IDataRepository in Stimulus360/Repositories/Data/ProjectRepository
The Fake repository is located at Stimulus360.Tests\Repositories\FakeRepository
Controllers
A mix of test cases has been written to show sample testing of capabilities in the IdeasController, ProjectsController and UsersController. These test cases are located at the Stimulus360.Tests\Controllers folder.
The Test cases make use of the dependency injection enabled constructors in the Stimulus360 Web App to inject the fake repositories into the Services.
The following method creates the IdeasController to be used for the test cases
 /// <summary>
 /// Method to create dependency injected IdeasController
 /// </summary>
 private static IdeasController CreateIdeasController()
 {
 List<Idea> testIdeas = FakeData.CreateIdeas();
 var repository = new FakeDataRepository(testIdeas, null);
		// inject the fake repository into the Service
 IdeaService ideaService = new IdeaService(repository);
InvestmentCategoryService investmentService = new InvestmentCategoryService(repository);
// inject the service with the fake repository into the controller
IdeasController controller = new IdeasController(ideaService, investmentService);
 return controller;
 }
AJAX
AJAX enabled user experiences are implemented in 2 ways in the Stimulus360 Web Application viz. a) by using the popular jQuery library – support for which is now integrated into Visual Studio and will be further extended to integrate deeply with the ASP.NET AJAX implementation in the future, and b) by using the client side ASP.NET AJAX helpers included in the ASP.NET MVC framework.
jQuery
The use of the jQuery library in client side JavaScript to is a powerful way to implement seamless AJAX style view updating that requires a) calling into server side services to obtain data required to update the client UI, or b) locating and applying seamless animation or transition effects to HTML UI elements on a page. jQuery has many more interesting use cases. Visit the jQuery web site to learn more about other interesting ways in which
The following script block from \Views\Ideas\Index.ascx illustrates an instance of the use of jQuery in the Stimulus360 Web Application. jQuery used here handles the control used for pagination of ideas based on number of ideas.
 <script type="text/javascript" language="javascript">
 $(document).ready(function() {
 var totalPages_Idea = "<%=Model.Ideas.TotalPages %>";
 if (totalPages_Idea == 1) {
 $(".pagerbg").hide();
 }
 var currentPage = "<%=Model.Ideas.PageIndex%>";
 $("#pagerIdeaList").pager({ pagenumber: currentPage, pagecount: totalPages_Idea, buttonClickCallback: PageClick_IdeaList });
 });
 PageClick_IdeaList = function(pageclickednuber) {
 var pageIndex = pageclickednuber;
 window.location = "/Ideas/Page/" + pageIndex.toString();
 }
 </script>
ASP.NET AJAX Helpers
The following ASP.NET AJAX helpers introduced by ASP.NET MVC are used in the implementation of the Stimulus360 Web Application.
ActionLink: This renders an anchor tag to access an action method. When the link is clicked, the
Action method is invoked asynchronously.
The following snippet from the /Views/Shared/LogOnUserControl.ascx user control illustrates the use of the ActionLink invoke the “Register” method of the “AccountsController” when user clicks on the “Join” link.
 <%= Html.ActionLink("Join", "Register", "Account")%>

BeginForm: This renders an HTML form that is submitted asynchronously. A typical use for this helper
in an ASP.NET MVC application is to submit a form asynchronously to a Controller action and to update a DOM element using the response received.

The following snippets from the \Views\Ideas\SubmitFeedback.aspx page illustrate the use of the BeginForm helper in rendering a form to submit feeback on an idea:
 <% using (Html.BeginForm())
 {%>
 <%=Html.AntiForgeryToken() %>
 <div class="mainInner colViewHdr">
 	……………………..
	……………………..	
 <div>
 <%=Html.TextBox("Subject", Model.Feedback.Subject ,new { @tabindex="2", @value="", @size="70", @maxlength="50" }) %>
 <%= Html.ValidationMessage("Subject", "*", new { @class = "requiredfield" })%>
 </div>

 <li id="foli2">
 <label class="desc" id="description1">
 Comments</label>
 <div>
 <%=Html.TextArea("Comments", Model.Feedback.Comments, new { @cols = "70", @rows = "10", @tabindex = "3" })%>
 </div>

 <li class="buttons">
<div class="btnsubmitDiv floatLeft"><input name="submit" class="btnsubmit" type="submit" id="saveForm" value="Submit" />
</div>
<div class="floatLeft"><input name="Cancel" type="button" id="cancelForm" value="Cancel" />
</div>

 <br clear="all" /> </div>

 The BeginForm helper configures the submit action of the form to trigger the RecentlyViewed action implemented in the Ideas controller. In this case the recently viewed Action is the SubmitFeedback action in the IdeasController. The POST overload of the same is called when the Submit button is clicked.
RIA Experiences
RIA technologies like Microsoft SilverLight are a good choice for creating media centric and/or advanced user experiences that require compelling animation and transition effects.
Microsoft SilverLight 2.0 is used to implement the rich Analytics Graphs seen in the Home View
These SilverLight control binaries are included in \Clientbin folder of the Stimulus360 project and referenced in the view pages that render them.
The following snippet is the HTML <object> tag in the \Views\Home\Index.ascx page to render the Silverlight graphs
	<object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%">
		<param name="source" value="/ClientBin/HomeViewGraphs.xap"/>
		<param name="onerror" value="onSilverlightError" />
		<param name="background" value="white" />
		<param name="minRuntimeVersion" value="2.0.31005.0" />
		<param name="autoUpgrade" value="true" />

		
	</object>
The Silverlight project containing the graphs is located at the HomeViewGraphs project in the Stimulus360 solution
Self Exploring Stimulus 360
Armed with the background information presented in this document, you are now set to commence a deeper self exploration of the Stimulus 360 implementation. You are encouraged to do this and explore ways to apply related concepts/capabilities to meet your individual and specific needs. You can post questions/feedback on Stimulus 360 at the community forum established for it.

Page of

image2.png

image3.png

image4.jpeg

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

