Comparison of logging frameworks

The following table shows how System.Diagnostics stacks up against some popular 3rd party logging frameworks, as well as the Enterprise Library Logging Application Block extensions from Microsoft, comparing the general features, the information logged, the filters that can be used and the output formats available.
The System.Diagnostics column indicates both the built in features, as well as the features available in the Essential.Diagnostics and other extensions.
Please contact me if you think any information in this table is out of date.
	Feature
	System. Diagnostics
	Log4net
	NLog
	Enterprise Library

	General Features
	
	
	
	

	Availability
	built-in
	3rd party
	3rd party
	Microsoft

	Levels
	5
	5
	6
	5

	Multiple sources
	Yes
	Yes
	Yes
	Yes

	 Hierarchical sources
	-
	Yes
	Yes
	-

	Extensible
	Yes
	Yes
	Yes
	Yes

	Listener chaining
	-
	Yes
	Yes
	Yes

	Delayed formatting
	Yes
	Yes
	Yes
	[bookmark: _GoBack]-

	 Lambda
	-
	-
	Yes
	-

	Templates
	EX
	Yes
	Yes
	Yes

	Logging interface
	EX
	Yes
	Yes
	-

	Dynamic configuration
	EX
	Yes
	Yes
	Yes

	Minimum trust
	-
	TBA
	TBA
	-

	Trace .NET framework (WCF, WIF, System.Net, etc)
	Yes
	-
	-
	-

	Source from .NET Trace
	n/a
	-
	-
	Yes

	
	
	
	
	

	Log Information
	
	
	
	

	Event ID
	Yes
	contrib extension
	-
	Yes

	Priority
	-
	-
	-
	Yes

	Process/thread information
	Yes
	Yes
	Yes
	Yes

	ASP.NET information
	EX
	Yes
	Yes
	Yes

	Correlation identifier
	Yes
	via context
	via context
	Yes

	 Cross-process correlation
	Yes
	-
	-
	Yes

	Exceptions
	-
	Yes
	Yes
	via exception block

	
	
	
	
	

	Filters
	
	
	
	

	Event level
	Yes
	Yes
	Yes
	Yes

	Source
	Yes
	Yes
	Yes
	Yes

	Property
	EX
	Yes
	-
	-

	String match
	-
	Yes
	Yes
	-

	Expression
	EX
	-
	Yes
	-

	Priority
	-
	-
	-
	Yes

	
	
	
	
	

	Listeners
	
	
	
	

	ASP.NET Trace
	Yes
	Yes
	Yes
	-

	Chainsaw (log4j)
	-
	Yes
	Yes
	-

	Colored Console
	EX
	Yes
	-
	-

	Console
	Yes
	Yes
	Yes
	-

	Database
	EX
	Yes
	Yes
	Yes

	Debug
	Yes
	Yes
	Yes
	-

	Event Log
	Yes
	Yes
	Yes
	Yes

	Event Tracing (ETW)
	Yes
	-
	-
	-

	File
	Yes
	Yes
	Yes
	Yes

	Mail
	-
	Yes
	Yes
	Yes

	Memory
	EX
	Yes
	Yes
	-

	MSMQ
	-
	-
	Yes
	Yes

	Net Send
	-
	Yes
	-
	-

	Remoting
	-
	Yes
	-
	-

	Rolling File
	Yes
	Yes
	Yes
	Yes

	Syslog (unix)
	-
	Yes
	-
	-

	Telnet
	-
	Yes
	-
	-

	UDP
	extension
	Yes
	Yes
	-

	WMI
	-
	-
	-
	Yes

	XML (Service Trace)
	Yes
	-
	-
	Yes

	Forward to .NET Trace
	n/a
	Limited
	Limited
	Yes

Note that for some features the answer is more complex than a simple table, e.g. System.Diagnostics provides some process/thread information in some listeners, with Essential.Diagnostics providing additional information.
In general features are only indicated where they are directly supported by the framework, for example any framework can log exception details as an argument or even just a string, but some have explicit overloads of logging methods with an Exception type parameter.
Similarly, while some explicitly support logging of lambda expressions, any framework with delayed formatting could pass in a wrapper object that evaluates a lambda when ToString() is called.

Performance comparison

See the solution in the Performance folder of the source code for the test harness used for comparing performance.
A comparison of logging frameworks should also compare the overhead of the different frameworks, i.e. the overhead of adding trace messages and then ignoring or filtering them out (which should be the majority situation).
All the frameworks allow you to selectively turn on sections of messages to control the volume captured. Whilst the efficiency of capturing the messages you do want may be important, it is the overhead of ignoring the ones you don’t want that is generally the main concern.
The following table shows the results of some performance testing under the following scenarios:
* All messages ignored, i.e. tracing turned off.
* One source turned on at Warning level, capturing 16 messages per million trace statements.
* All sources turned on at Warning level, capturing 245 messages per million trace statements.
* One source turned to full (all messages), with others at Warning level, capturing 3,907 messages per million trace statements.
The source code for the performance testing application is available in the code repository if you would like to run the tests yourself. Note that the absolute values will change depending on the system they are run on.
	Base test framework (ms)
	56

	Logging overhead (1 million log messages):

	
	System. Diagnostics
	System. Diagnostics (not cleared)
	System. Diagnostics EX
	Log4net
	NLog
	Enterprise Application Block

	Logging off
	50
	50
	50
	46
	3
	> 20,000

	Single filtered
	59
	85
	54
	43
	8
	> 20,000

	Multiple filtered
	89
	93
	64
	49
	61
	> 20,000

	One full
	484
	620
	238
	114
	867
	> 20,000

There are also several configurations in the test harness to compare various other scenarios, for example a source with switchValue=”Off” versus no source defined at all.
Note 1: Yes, the values for the Enterprise Application Block are what I am getting – around 21-22,000 milliseconds overhead compared to the other frameworks! Now, the EAB does not have delayed formatting, i.e. no overloads that take a format string and arguments, so my test harness does string.Format() for all messages but even removing that it still has 18-19,000 ms overhead.
Note 2: With System.Diagnostics to ignore all messages for a source set switchValue="Off" or simply leave out the source altogether. Having a source with no listeners, i.e. using <clear />, has slightly more overhead but isn't too bad.
If you don't clear the list it may look like you have no listeners but instead you will get all messages written to the default listener, which will severely impact the performance of your application. i.e. the worst thing you can do is set the trace switch to allow a lot of messages (e.g. All) without clearing the listeners:
 <!-- Bad example: will severely impact performance -->
 <source name="MySource" switchValue="All">
 </source>

