Getting Started
The Basics
The simplest possible example using the ubiquitous “Hello World”:
Hello.cs
#define TRACE
using System.Diagnostics;

class Program {
 static TraceSource _trace = new TraceSource("Hello");

 public static void Main() {
 _trace.TraceInformation("Hello World!");
 }
}
Hello.exe.config
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="Hello" switchValue="All">
 <listeners>
 <add name="console"
 type="System.Diagnostics.ConsoleTraceListener" />
 </listeners>
 </source>
 </sources>
 </system.diagnostics>
</configuration>

Compile with “csc Hello.cs”, and run, you should get the following output:
PS C:\Microsoft.Diagnostics\Examples> .\Hello.exe
Hello Information: 0 : Hello World!

Note that instead of “#define TRACE” you would usually compile as “csc Hello.cs /d:TRACE”, which is turned on by default in Visual Studio.

Logging Primer
A simple “Hello World” isn’t however very useful for showing the different capabilities of logging, so we will use a slightly more complicated example. First of all, here is the program we will use both without and then with simple logging.
· Hello World (no logging)
· Hello Logging
Once the program has had logging statements added, any of the trace listeners and filters can be configured to send the trace output to a wide variety of destinations.
· Service Trace Viewer
· Windows Event Log
Extending System.Diagnostics
The best thing is – all of the logging examples above can be done right now – they are already part of the .NET Framework that you are using – and they are designed to be extended.
So, as well as teaching you about what you already have, this project provides some extensions to the features already available in .NET – for example a trace listener that logs to a database or writes to the console in color. These extensions are clearly marked with the extension symbol where they appear in the documentation.
For example, here are examples of some of the extended listeners provided.
· Hello Color [EX]
· Hello Database [EX]

Hello World (no logging)
This version of “Hello World” involves a bunch of Worker classes that Poke() each other to say “Hello World”. Sometimes they get sick of being poked.
HelloWorld.cs – Header
using System;
using System.Collections.ObjectModel;
using System.Threading;

HelloWorld.cs – Program class
class Program {
 public static Random Random = new Random();
 public static Collection<Worker> Workers = new Collection<Worker>();

 public static void Main(string[] args) {
	int numberOfWorkers = Program.Random.Next(2, 4);
	for(int i = 1; i <= numberOfWorkers; i++) {
 Worker worker = new Worker() { Id = string.Format("Worker {0}", i) };
	 Workers.Add(worker);
 }
	StartWorkers();
	foreach(Worker worker in Workers) {
	 worker.FinishedEvent.WaitOne();
	}
 }

 static void StartWorkers() {
 foreach(Worker worker in Workers) {
	 ThreadPool.QueueUserWorkItem(worker.Work);
 }
 }
}
HelloWorld.cs – Worker class
class Worker {
 int _count;
 public AutoResetEvent FinishedEvent = new AutoResetEvent(false);
 public string Id;

 public void Poke() {
 Thread.Sleep(Program.Random.Next(500));
	_count++;
	if(_count < 4)
		Console.WriteLine("Hello World {1}", Id, _count);
	else if(_count < 6) {
	 Console.WriteLine("Hi", Id);
	}
 }

 public void Work(object state) {
	int numberOfPokes = Program.Random.Next(3, 7);
 for(int i = 1; i < numberOfPokes; i++) {
 Thread.Sleep(Program.Random.Next(500));
 int index = Program.Random.Next(Program.Workers.Count);
 Program.Workers[index].Poke();
 }
	FinishedEvent.Set();
 }
}
Compiling and running this program may produce the following:
PS C:\Microsoft.Diagnostics\Examples> .\HelloWorld.exe
Hello World 1
Hello World 2
Hello World 1
Hello World 3
Hi
Hello World 2
Hello World 1
Hi
Hello World 3
Hello World 2

Lots of “Hello World”, but a bit difficult to tell which bit of code did what.

Hello Logging
Let’s introduce some logging into our application, and we can see what it can do.
Note that this code is intended to demonstrate logging and does not necessarily follow best practices in order to keep things simple (e.g. normally you would use properties instead of public fields). Also there is a lot of logging code because even though the example is short it tries to include many of the logging features.
HelloLogging.cs – Header
using System;
using System.Collections.ObjectModel;
using System.Diagnostics;
using System.Threading;

HelloLogging.cs – Program class
class Program {
 static TraceSource _trace = new TraceSource("HelloProgram");
 public static Random Random = new Random();
 public static Collection<Worker> Workers = new Collection<Worker>();

 public static void Main(string[] args) {
	// Trace start
 Trace.CorrelationManager.ActivityId = Guid.NewGuid();
 Trace.CorrelationManager.StartLogicalOperation("Main");
 _trace.TraceEvent(TraceEventType.Start, 1000, "Program start.");
	// Run program
	int numberOfWorkers = Program.Random.Next(2, 4);
	_trace.TraceEvent(TraceEventType.Information, 2000, "Creating {0} workers", numberOfWorkers);
	for(int i = 1; i <= numberOfWorkers; i++) {
 Worker worker = new Worker() { Id = string.Format("Worker {0}", i) };
	 Workers.Add(worker);
 }
	StartWorkers();
	foreach(Worker worker in Workers) {
	 worker.FinishedEvent.WaitOne();
	}
	// Trace stop
 _trace.TraceEvent(TraceEventType.Stop, 8000, "Program stop.");
 Trace.CorrelationManager.StopLogicalOperation();
 _trace.Flush();
 }

 static void StartWorkers() {
 // Trace transfer in
 Guid newActivity = Guid.NewGuid();
	_trace.TraceTransfer(6011, "Transferred to Start", newActivity);
 Guid oldActivity = Trace.CorrelationManager.ActivityId;
	Trace.CorrelationManager.ActivityId = newActivity;
 _trace.TraceEvent(TraceEventType.Start, 1010, "Starting workers.");
	// Do work
 foreach(Worker worker in Workers) {
	 ThreadPool.QueueUserWorkItem(worker.Work);
 }
	// Trace transfer back
	_trace.TraceTransfer(6012, "Transferred back", oldActivity);
 _trace.TraceEvent(TraceEventType.Stop, 8010, "Finished starting.");
	Trace.CorrelationManager.ActivityId = oldActivity;
 }
}

HelloLogging.cs – Worker class
class Worker {
 int _count;
 static TraceSource _trace = new TraceSource("HelloWorker");
 public AutoResetEvent FinishedEvent = new AutoResetEvent(false);
 public string Id;

 public void Poke() {
 // Trace - mark with logical operation
 Trace.CorrelationManager.StartLogicalOperation(string.Format("Poked:{0}", Id));
 _trace.TraceEvent(TraceEventType.Verbose, 0, "Worker {0} was poked", Id);
	// Work
 Thread.Sleep(Program.Random.Next(500));
	_count++;
	if(_count < 4)
		Console.WriteLine("Hello World {1}", Id, _count);
	else if(_count < 6) {
	 Console.WriteLine("Hi", Id);
 _trace.TraceEvent(TraceEventType.Warning, 4500, "Worker {0} getting annoyed", Id);
	} else {
 _trace.TraceEvent(TraceEventType.Error, 5500, "Worker {0} - too many pokes", Id);
	}
	// Trace - end logical operation
 Trace.CorrelationManager.StopLogicalOperation();
 }

 public void Work(object state) {
 // Trace transfer to thread
 Guid newActivity = Guid.NewGuid();
	_trace.TraceTransfer(6501, "Transfered to worker", newActivity);
	Trace.CorrelationManager.ActivityId = newActivity;
 Trace.CorrelationManager.StartLogicalOperation(string.Format("Worker:{0}", Id));
 _trace.TraceEvent(TraceEventType.Start, 1500, "Worker {0} start.", Id);
	// Do work
	int numberOfPokes = Program.Random.Next(3, 7);
	_trace.TraceEvent(TraceEventType.Information, 2500, "Worker {0} will poke {1} times", Id, numberOfPokes);
 for(int i = 1; i < numberOfPokes; i++) {
 Thread.Sleep(Program.Random.Next(500));
 int index = Program.Random.Next(Program.Workers.Count);
 _trace.TraceEvent(TraceEventType.Verbose, 0, "Worker {0} poking {1}", Id, index);
 Program.Workers[index].Poke();
 }
	FinishedEvent.Set();
	// Trace stop (no transfer)
 _trace.TraceEvent(TraceEventType.Stop, 8500, "Worker stop.");
 Trace.CorrelationManager.StopLogicalOperation();
 }
}

For logging you also need a configuration file:
HelloLogging.exe.config
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="HelloProgram" switchValue="Information,ActivityTracing">
 <listeners>
 <add name="console" />
 </listeners>
 </source>
 <source name="HelloWorker" switchValue="All">
 <listeners>
 <add name="console" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="console"
 type="System.Diagnostics.ConsoleTraceListener" />
 </sharedListeners>
 </system.diagnostics>
</configuration>
Now, compile with “csc HelloLogging.cs /d:TRACE” – don’t forget the TRACE flag, or you won’t get any logging – and run.
With the basic console logger the information may not add much clarity, however the level of detail can be controlled by simply altering the configuration file without having to recompile.

Service Trace Viewer
A good tool for viewing log files is the Service Trace Viewer from the .NET SDK (this can normally be found in the Start > Programs menu under the Microsoft Windows SDK > Tools folder).
The best format for this tool is the XmlWriterTraceListener, although it does understand the other XML formats to a limited degree.
Use the following config file, along with the Hello Logging sample program. You do not need to recompile the sample program, using the Service Trace Viewer only requires changes to the application config file.
HelloLogging.exe.config
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="HelloProgram" switchValue="Information,ActivityTracing">
 <listeners>
 <add name="xml" />
 </listeners>
 </source>
 <source name="HelloWorker" switchValue="All">
 <listeners>
 <add name="xml" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="xml"
 type="System.Diagnostics.XmlWriterTraceListener"
 initializeData="HelloLogging.xml" />
 </sharedListeners>
 </system.diagnostics>
</configuration>
You should get a file “HelloLogging.xml” created in the example directory – if you don’t, check that the console logging is working (i.e. make sure you compiled with the TRACE flag).
To see your log, run the Service Trace Viewer tool (SvcTraceViewer.exe from the .NET SDK), and open up the log file, you should see log details similar to the following:
[image:]
The trace viewer provides a graphical overview of how the activities relate to each other and allow you to easily narrow in on any problems in the code.

Windows Event Log
The Windows Event Log is an important tool for managing Windows based computers, particularly for Windows Services, web applications, and other server based applications that do not have a user interface.
When writing to the Windows Event Log you probably don’t want to write every message, particularly not a large number of verbose messages. On the other hand, you probably want to always report every warning, error, or higher level message.
If you aren’t writing directly to the Windows Event Log, then the EventLogTraceListener can be used to forward appropriate trace events to the Windows Event Log.
HelloLogging.exe.config
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="HelloProgram" switchValue="Information,ActivityTracing">
 <listeners>
 <add name="console" />
 <add name="eventlog" />
 </listeners>
 </source>
 <source name="HelloWorker" switchValue="All">
 <listeners>
 <add name="console" />
 <add name="eventlog" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="console"
 type="System.Diagnostics.ConsoleTraceListener" />
 <add name="eventlog"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="HelloLogging.xml" />
 </sharedListeners>
 </system.diagnostics>
</configuration>
When the program is run, messages based on the switchValue settings for individual sources will be sent to both trace listeners. The console trace listener will output all messages, however the event log trace listener will only record warning and above messages.

Hello Color
The ColoredConsoleTraceListener is a replacement for the standard ConsoleTraceListener that colorizes the output according to the TraceEventType. The listener also has allows trace details to be output according to a user-supplied template.
By default errors are output in red, warnings in yellow and information messages in white. The default template matches the format output by the standard ConsoleTraceListener.
Use the following config file, along with the Hello Logging sample program. You do not need to recompile the sample program.
HelloLogging.exe.config
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="HelloProgram" switchValue="Information,ActivityTracing">
 <listeners>
 <add name="color" />
 </listeners>
 </source>
 <source name="HelloWorker" switchValue="All">
 <listeners>
 <add name="color" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="color"
 type="Essential.Diagnostics.ColoredConsoleTraceListener, Essential.Diagnostics"
 format="{DateTime} {EventType}: {Message}"
 activityTracingColor="DarkGreen"
 transferColor="Blue" />
 </sharedListeners>
 </system.diagnostics>
</configuration>
When you run the program, you should get output similar to the following.
[image:]
Messages are colored and output according to the custom template.

image1.png
I, Microsoft Service Trace Viewer- c:\microsoft. diagnosticslexamplesihellologging, xml
Ele Edt Vew Activiy Hep

eatch In:_ None = tevel: Al = Fiter Now Clear

Find What; = Lok In Find

Activy | Froject | Message | Graph Group By - (None) Create Custom Fier Actvity - Worker Warker 2 star,

Zoom + Options - Layout Mode -Process ~ ||| Desciion Level Thead D ProcessN... | Time
(&5 From: Starting workes Transfer HelloLogging 20030605 12342
;Hgy.sJum HelloLogging Ty Worker Worker 2 start Start HelloLogging ~ 2003-06-05 12:34:2.
S e o Warker Worker 2wl poke 5 tines Irfomation HeloLoggng 20030505 12342
UL Warker Worker 2 poking 1 Vetbose HeloLogging ~ 2003:06.05 12342
T2se2rent Warker Worker 2 was poked Vetbose HeloLogging 2003:06.05 12.342.
123427811 ‘worker Worker 2 poking 0 Verbase HelloLogging ~ 2009-06-05 12:34:2.
12362781 o ‘Worker Worker 1 was poked Vetbose HeloLogging 20030605 12342
123427611 S ‘Worker Worker 2 poking 0 Vetbose HeloLogging ~ 2003:06.05 12342
123427611 I Worker Worker 1 was poked Vetbose HeloLogging 2003:06.05 12.342.
22T \Worker Worker 1 getting annoyed Wamming 4 Hellolog... 20030605 12:.. |
22T Worker Warker 2 poking 0 Verbose HeloLoggng 20030505 12342
123427920 Warker Worker 1 was poked Vetbose HeloLogging 2003:06.05 12.342.
123427920 @ Worker Worker 1 - too many pokes Error HelloLog... ~ 2009-06-05 12:
123428378 Warker top. Stop HeloLoggng 20030605 12342
123428374
123428920 —
2atoman0 Fomalted | XL
12362914 Options ~
123423249
123425288 = Basic Information
123423670 Name. Valie

123423870 Activit Name ‘Wotker Worker 2 sait
123430139 Time 20090605 12:34:27.6116
Level Start

Source Hellowarker

Pracess HelloLogging

Thiead 4

<

Activiies: 4 Traces: 35

image2.png
STants Frogran stant:
Information: Creating 2 workers

gransf:;: Transferred to Start. relatedfctivityld=785£c972-712h-4b6-h7d5-0Babad2¢ 8803
tarc: Starting workers.

Transfer: Transferred back, relatedctivityld-8359719d-977c—4cfd-91dh-8e16bdcB2ht
Stop: Finighed starting.

Transfer: Transfered to worker, relatedfctivityld-B57578a7-438c-47¢8-9edd-24chpB72d237
Start: Worker Worker 1 start.

Infornation: Worker Horker 1 will poke § times

Transfer: Transfered to worker, relatedfctivityld=31£71c25-6811-4F6d-b226-4£BaB4575e57
Start: Worker Worker 2 start.

Infornation: Worker Horker 2 uill poke § times

Uerbose: Worker Worker 1 poking 8

Uerhose: Yorker Worker 1 was poked

Uerhose: Worker Worker 2 poking 8

Uerhose: Worker Worker 1 was poked

Uerbose: Worker Worker 2 poking @
Uerhose: Worker Worker 1 was poked

Uerhose: Worker Worker 1 poking @
Uerhose: Worker Worker 1 was poked

Uerbose: Worker Worker 2 poking @
Uerbose: Yorker Worker 1 was poked
Warning: Worker Worker 1 getting annoyed

Warning: Worker Worker 1 getting annoyed
Uerhose: Worker Worker 1 poking 8
Uerbose: Yorker Worker 1 was poked
Uerbose: Vorker Worker 2 poking 1
Uerhose: Worker Worker 2 was poked
Erwor: Hovker Uorker 1 - Coo hane poles

Stop: Worker stop.
Uerhose: Worker Worker 1 poking 1
Uerhose: Worker Worker 2 was poked

Stop: Worker stop.
Stop: Progran stop.
S D:\Developnent\Microsaft.Diagnostics\Exanples> _

