
Milestone 1: Introduction to socket
programming

Echoclient and Echoserver

Overview
The objective of this assignment is to implement a simple client program that is able to
establish a TCP connection to a given server and exchange text messages with it. The client
should provide a command line-based interface that captures the user’s input and controls the
interaction with the server. Besides connection establishment and tear down, the user must be
able to pass messages to the server. These messages are in turn echoed back to the client
where they are displayed to the user. A sequence of interactions is shown below.

EchoClient> connect 127.0.0.1 50000
EchoClient> Connection to MSRG Echo server established: /127.0.0.1 / 50000
EchoClient> send hello world
EchoClient> hello world
EchoClient> disconnect
EchoClient> Connection terminated: 127.0.0.1 / 50000
EchoClient> send hello again
EchoClient> Error! Not connected!
EchoClient> quit
EchoClient> Application exit!

The assignment serves to refresh or establish basic knowledge of TCP-based network
programming using Java stream sockets, mostly from the client’s perspective. This embodies
concepts such as client/server architecture, network streams, and message serialization.

Learning objectives
From the software development perspective, in this assignment you will learn to:

● Understand the client/server paradigm
● Get exposed to socket-based programming, mostly the client socket API
● Differentiate between client-side application, client-side communication stub, messages,

basic notions of protocol, and server
● Use Java tools for logging (log4j) and building (ant)

We will build on these concepts in subsequent assignments.

Detailed assignment description

Provided infrastructure
Together with this assignment handout, we provide you with an already deployed echo server.
The server is running at one of our servers (131.159.52.1) and listens on port 50000. Once
a connection is established, the server will continuously parse bytes (ASCII coded chars)
from the network stream until it encounters a carriage return char (13). This char serves as a
message delimiter and invokes the server to pass the afore -received message back to the
connected client.
You should use this server to test your client implementation. In addition to this, your
implementation must be compatible with our ant script for building and executing the program
(see [Link]).

Assigned development tasks
In this assignment, the following components need to be developed:

● Client program comprised of
○ Application logic: command line shell to interact with the server
○ Communication logic: socket-based communication by reading and writing from/

to a buffer
● Logging capability to log client/server interactions
● Gracefully handle failures and exceptions

Client program
Develop the client program which consists of the application logic, a simple command line–
based user interface (CLI), and the communication logic for interacting with the server based
on TCP stream sockets in Java. For the former you should use standard in and out streams.
(i.e., System.in and System.out). Once the program is started, the CLI should print out the
prompt “EchoClient>” in every line and provide the commands listed in the following table.

Command Informal description Parameters Shell output

connect

<address>

<port>

Tries to establish a TCP-
connection to the echo
server based on the
given server address
and the port number of
the echo service.

address: Hostname
or IP address of the
echo server.

port: The port of the
echo service on the
respective server.

server reply: Once the
connection is established, the
echo server will reply with a
confirmation message. This
message should be displayed to
the user.
(Note, if the connection
establishment failed, the client
application should provide a

https://docs.google.com/open?id=0B509e6nYRmLhOHFHbnA4dDZrNTg

useful error message to the
user);

disconnect Tries to disconnect from
the connected server.

- status report: Once the client
got disconnected from the
server, it should provide a
suitable notification to the user.
(Note that the connection might
also be lost due to a connection
error or a break down of the
server);

send <message> Sends a text message
to the echo server
according to the
communication protocol.

message: Sequence
of ASCII coded
characters that
correspond to the
application specific
protocol.
(see more detailed
description below)

server reply: Once the echo
server received the message
it will send back the same
message to the client. This
message should be displayed to
the user in a new line.
(Note the situation when the
client is not connected to a
server);

logLevel <level> Sets the logger to the
specified log level

level: One of the
following log4j log
levels:
(ALL | DEBUG |
INFO | WARN |
ERROR | FATAL |
OFF)

status message: Print out
current log status.

help - help text: Shows the intended
usage of the client application
and describes its set of
commands.

quit Tears down the active
connection to the server
and exits the program
execution.

- status report: Notifies the user
about the imminent program
shutdown.

<anything else> Any unrecognized input
in the context of this
application.

<any> error message: Unknown
command
prints the help text.

The communication logic of the client program involves mainly stream sockets (see Java API
[Link]). Methods that execute the commands issued by the user are part of the application logic
of the client program. Try to decouple the two program components as much as possible. The
communication logic should eventually be implemented as a library that provides well defined
functionalities (i.e., methods for connection handling, interaction with the server, message
passing, etc.). An interface provides a way for applications to get access to these functionalities.
Hence, the client application should use this library by calling the respective methods in its
interface. This library will be needed in subsequent milestones.

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html

Communication protocol and application specific messages
The following definitions should help you to develop the communication logic.

Message
A message in the context of this assignment consists of a sequence of ASCII characters. The
carriage return or newline character (i.e., ASCII 13, 0x0D, ‘\n’) serves as message delimiter.
This means that the server stops parsing the current message once it comes across a carriage
return. The maximum message size that is handled by the server is 128 kByte.

Protocol
Generally speaking, a protocol is a set of rules and message formats, which describe the
communication between different processes to fulfill a specific task by exchanging messages
according to the specified rules. The definition of a protocol incorporates two important
steps; (1) The specification of the message formats and (2) the order in which messages are
exchanged. The communication protocol for this assignment is quit simple. The client sends
a text message, as defined above, to the echo server. The echo server in turn parses the
message and replies with a message that contains the same content.

Marshaling and un-marshaling
Marshaling refers to the transforming of data elements into a representation that enables
the transmission of the message content (e.g., bytes) over a communication network. The
inverse operation, un-marshaling, is needed to restore the data elements after they have been
transmitted.

This assignment focuses on the message exchange via sockets. In order to understand the
principles of network programming, we insist on a low-level communication interface. Hence,
your client methods for message sending and reception must only rely on writing bytes to or
reading bytes from the socket, respectively. You are not allowed to use the Java-specific object
serialization methods like InputStreamReader / -Writer or ObjectStreamReader /
-Writer. The method signatures should look like the following:

● void send(byte[]);

● byte[] receive();

Imagine that the server is implemented in a language other than Java and does not understand
the Java object serialization format.

Logging
In addition to the actual implementation we would like to encourage you to get familiar with
and use the Java logging tool log4j. Download the log4j jar [Link], add it to your project and
initialize logging to the console and a separate log file (/log/client.log). Logging is a
useful mechanism to keep track of the program behavior during the development and even in
production. Besides any other logging information you consider as useful, log at least all the
messages that are sent to and all incoming replies received from the server. Logging should be
dynamically controllable (ALL | DEBUG | INFO | WARN | ERROR | FATAL | OFF) by the command
logLevel. (see table above).

Graceful failure handling
A vital prerequisite for the client is its ability to handle failures gracefully. Please make sure that
your program is robust to any kind of wrong or unintended user input (e.g., wrong/unknown
commands, number and format of parameters, etc.). In addition to that, consider problems that
might occur in communication, i.e., handle exceptions properly and watch out for a controlled
breakdown of the connection and the data stream. In addition to error messages also print out
status messages to the shell if it makes sense (e.g., if the client is connected or disconnected
from the server).

General considerations
● Document your program properly using JavaDoc comments.
● Stick to the common Java coding conventions ([Link]).
● Pay attention to a good program design (e.g., decoupling of UI and program logic.)

Suggested development plan
● First of all set up a directory structure for your project, see below. (if you use Eclipse,

much of this will be done automatically). Note, our (Ant) build script will require a setting
as proposed below with the main() -Method named ui.Application.

● Add the libraries you need to your project and initialize logging.
● Then, try to set up a socket connection to the server.
● Start with passing single chars to the server and steadily extend the program in order to

send messages as defined above.
● Finally, implement the command-line interface and handle errors.

- echoClient
 | - src

| | - ui

http://logging.apache.org/log4j/2.x/
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://ant.apache.org/

| | | - Application.java (with main())
| | | - ..
| | - <other packages> .
| - bin
| | - ui
| | | - Application.class (with main())
| | | - …
| | - <other packages>
| - libs
| | - log4j.jar
| - logs
| | - client.log
| - build.xml

 | - echoClient.jar

Deliverables & code submission
By the deadline (see Moodle), you must hand in your software artifacts that implement all the
coding requirements and include all necessary libraries and the build script.

Submission instructions
tbd (see Moodle)

Marking guidelines and marking scheme
All the code you submit must be compatible with the build scripts, interfaces and test cases
that we propose with the respective assignment. In addition your code must build and execute
on lxhalle (Ubuntu 10.04.4;current java version: 1.6.0_26) without any further interference and
provide the specified functionality.

Additional resources
● Integrated Development Environment Eclipse: http://www.eclipse.org/
● Java SE API: http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
● Java Coding Conventions: http://www.oracle.com/technetwork/java/codeconv-

138413.html
● Log4j: http://logging.apache.org/log4j/2.x/
● JUnit: http://www.junit.org/
● Ant build tool: http://ant.apache.org/
● ASCII format: http://tools.ietf.org/pdf/rfc20.pdf
● Echo server: Our echo server implementation is available under

https://www.moodle.tum.de/course/view.php?id=7562
https://www.moodle.tum.de/course/view.php?id=7562
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://www.junit.org/
http://www.junit.org/
http://www.junit.org/
http://www.junit.org/
http://www.junit.org/
http://www.junit.org/
http://www.junit.org/
http://www.junit.org/
http://www.junit.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf
http://tools.ietf.org/pdf/rfc20.pdf

o IP: 131.159.52.1
o Port: 50000

Document revisions
Changes to the assignment handout after posting it are tracked here.

Date Change

None N/A

