CodePlex.Diagnostics

Version 4.0.0.0

Introduction

Welcome to the fourth major release of the CodePlex.Diagnostics framework, designed to provide extensive
exception management and logging capabilities for the .net developer.

Using this framework, exceptions and log entries can be written to SQL Server 2008 databases along with extensive
contextual information that is often critical to the resolution of exceptions. In this release, the connectivity to the
database has been refactored to use the Entity Framework instead of direct ADO.NET. Another major difference is
that this release enables true multi-tier architectures by using the Windows Communication Foundation (WCEF).
With WCEF comes additional flexibility in that the specific deployment configuration can be determined on a case
by case basis and is easily configured within standard application domain configuration files of the various
components within the SOA architecture. (e.g. App.config, Web.config, and ServiceReferences.ClientConfig)

Given the impact of Microsoft’s Silverlight technology, the CodePlex.Diagnostics framework enables exceptions
and log entries, originating from within code executing upon the Silverlight runtime, to be written to the SQL
Server 2008 database. Silverlight versions of the CodePlex.Diagnostics assemblies are provided for Silverlight
developers and these assemblies communicate with the same WCF service layer as the counterparts, targeting the
standard Common Language Runtime (CLR), do.

It is important to be aware of some differences between CodePlex.Diagnostics assemblies with respect to the
Silverlight runtime. The Silverlight runtime imposes security constraints that preclude the gathering of many of the
certain system details that are otherwise gathered when exceptions and log entries are written to the database. In
this document you will find these differences discussed at some length although generally the usage model of the
framework is consistent across the CLR and Silverlight versions.

SQL Server 2005 is no longer supported and therefore either SQL Server 2008 or SQL Server 2008 R2 is required,
due to the fact that the database now uses the datetime2 data type which was not supported in previous releases.

Within the database, columns are included in the [dbo].[Exception] table for all of the properties within the .net
base System.Exception type, aside from the TargetSite property which is mapped to the corresponding
[dbo].[TargetSite] table.

Soap-encoded versions of exceptions are also stored within the database to allow developers access to information
residing in fields and properties defined within exception types that derive, directly or indirectly, from the .net base
System.Exception type. Serialization of exceptions and identities (e.g. types implementing the .net interface
System.Security.Principal.IIdentity),is achieved using the .net framework’s SoapFormatter class.

While the SoapFormatter class has some well-known limitations, which otherwise would make its use somewhat
controversial, the resultant Soap format has the unique characteristic of being largely human readable. The resulting
Soap-encoded exceptions and identities are stored within the database using the SQL Server Xml column type.

Central to this release of the CodePlex.Diagnostics framework is the ExceptionExtensions class, shown in the
following two Visual Studio 2008 class diagrams, which provide the Publish extension method, of which there are
four overloads for the .net and Silverlight versions.

Previous releases of the CodePlex.Diagnostics framework used the static ExceptionProvider class for exception
publication; this class still resides within the framework for backwards compatibility purposes. The [Obsolete]
attribute has been applied to the ExceptionProvider class and compiler warnings will result from usage of
obsolete types, therefore usage of the ExceptionProvider class should be refactored as soon as possible.

I StaticClass

= Methods
2% IsUnhandledException() : bool
¥, Publish(this Exception ex) : Guid
©; Publish(this Exception ex, Dictionary <string, string> dictionary, ldentity identity) : Guid
@, Publish(this Exception ex, Dictionary <string, string> dictionary, XElement element, ldentity identity) : Guid
©; Publish(this Exception ex, Identity identity) : Guid

S S S S M

—— —————— - -
T - ———————————— -

Figure 1. ExceptionExtensions class.

4 A
| ExceptionExtensions &
| StaticClass

= Methods
4% IsUnhandledException() : bool
93 Publish(this Exception ex) : Guid
©; Publish(this Exception ex, Dictionary <string, string> dictionary, ldentity identity) : Guid
9, Publish(this Exception ex, Dictionary <string, string> dictionary, XElement element, ldentity identity) : Guid
©; Publish(this Exception ex, [Identity identity) : Guid

S S S S R

e —————— - —_—
N ——————— - ——— -

Figure 2. Silverlight version of the ExceptionExtensions class.

When an instance of a type implementing the ITdentity interface is not specified, the identity associated with the
exception, or log entry, within the database is derived from the current WindowsIdentity. Given that the
Silverlight runtime can be hosted upon operating systems other than Microsoft Windows, the WindowsIdentity
class does not exist within Silverlight’s class library; as such an identity must be specified when using the
Silverlight version of the framework. Silverlight applications typically use the System.Windows .Application class
to encapsulate the Silverlight application. Using the CodePlex.Diagnostics framework, Silverlight applications
should instead use the generic class CodePlex.Diagnostics.Silverlight.Application<T> shown in figure 3, the
type parameter T allows an IPrincipal interface to be specified.

»)

Application<T>
Generic Sealed Class

=+ Application

= Properties
= CurrentPrincipal {get;set; }: T

Figure 3. Silverlight Application<T> class.

The Publish extension methods return a System.Guid, or globally unique identifier, called the publication Id and
this publication Id is intended to uniquely represent an exception (and any inner-exceptions contained within). An
ASP.NET application, for example, could use the publication Id within the URL of pages designed to inform an
administrator of the exception that occurred. The publication Id is not used internally within the framework and is
merely provided for scenarios such as that described and it can be safely ignored if you have no use for it.

In addition to publishing the exception itself, it is also possible to provide additional contextual information in the
form of key value pairs that are contained within an instance of the generic Dictionary<string, string> class.
As an alternative, or in addition to, providing contextual information within the generic dictionary, contextual

information can also be specified within Xml using the XElement class. The XElement class is defined within the

System.Xml.Ling namespace and the type was chosen over several alternatives because it is also supported within
the Silverlight class libraries.

Another central type within the CodePlex.Diagnostics framework is the StringExtensions class, shown in the
next two Visual Studio 2008 class diagrams, which provides the Log extension method, of which there are five
overloads for the .net version and four for the Silverlight version.

e e
| StringExtensions
I Static Class

»

S |

= Methods

", Log(this string entry, LoggingPriority pricrity, LoggingType type) : Guid

", Log(this string entry, LoggingPriority priority, LoggingType type, Dictionary <string, string> dictionary) : Guid

%+ Log(this string entry, LoggingPriority priority, LoggingType type, Dictionary<string, string> dictionary, lIdentity identity) : Guid

"} Loglthis string entry, LoggingPricrity priority, LoggingType type, Dictionary <string, string> dictionary, XElement element, lidentity identity) : Guid
*"-. Log(this string entry, LoggingPriority priority, LoggingType type, Identity identity) : Guid

P e
£

Figure 4. StringExtensions class.

o B S B S B
" StringExtensions 210
| Static Class

= Methods
%, Loglthis string entry, LoggingPriority priarity, LoggingType type, Dictionary<string, string> dictionary) : Guid
", Loglthis string entry, LoggingPriority priority, LoggingType type, Dictionary <string, string> dictionary, lidentity identity) : Guid
‘_';, Log(this string entry, LoggingPriority priority, LoggingType type, Dictionary<string string> dictionary, XElement element, Iidentity identity) : Guid
¥, Logithis string entry, LoggingPriority priarity, LoggingType type, lldentity identity) : Guid

S o -

Figure 5. Silverlight version of the StringExtensions class.

When using any of the overloaded Log extension methods, it is necessary to determine the priority of the log entry
and the type of information the entry coveys. In order to specify the priority of log entries, the LoggingPriority
enumeration provides Low, Medium, High, or Critical levels of priority or severity.

The LoggingType enumeration then enables log entries to be described as Information, Warning or Error.

| LoggingPriority [LoggingType £l
Enum Enum
Low Information
Medium Warning
High Error
Critical L

Figure 6. LoggingPriority and LoggingType enumerations.

CodePlex.Diagnostics Visual Studio Solution

The CodePlex.Diagnostics solution contains 13 projects and is shown in figure 7 below.

8 Solution 'CodePlex.Diagnostics' (13 projects)
@~ ..i Documentation
@ . Solution Items

38| CodePlex.Diagnostics

=

i@ u CodePlex.Diagnostics Database

(@5 CodePlex.Diagnostics.Contracts

(#-@¥ CodePlex.Diagnostics.Model

[#-@F CodePlex.Diagnostics.Profiler.Console
[#-@7 CodePlex.Diagnostics.Services

@ @& CodePlex.Diagnostics.Services.Web

W &3 CodePlex.Diagnostics.Silverlight

C @ CodePlex.Diagnostics.Silverlight.Contracts
[&‘E CodePlex.Diagnostics.Silverlight.Studio

£ &3 CodePlex.Diagnostics.Silverlight.Studio.Web
+ &3 CodePlex.Diagnostics.UnitTests

@8y CodePlex.Diagnostics Setup

G Solution Ex... (3] Schema View |47 Properties | g3 Team Explo... |23 Class View |

Figure 7. Visual Studio 2008 SP1 Solution

Central to the CodePlex.Diagnostics framework is the CodePlex Diagnostics library project that contains the
core types of the framework, including the ExceptionExtensions and StringExtentions classes.

As discussed earlier within this document, one of the major changes within this version of the framework is the
adoption of the Entity Framework which enables some degree of loose coupling between the framework and the
underlying database schema design. The Entity Framework model is found within the CodePlex.Diagnostics.Model
library project along with several partial declarations that extend the entity classes generated from the model.

Another major change in this version of the framework, also discussed earlier within this document, is the use of the
Windows Communication Foundation to enable SOA based architectures to use the framework. Several projects
within the solution support this goal.

Data contracts are used to transfer data from the client to the diagnostics service and these contracts are defined
within the CodePlex.Diagnostics.Contracts and CodePlex.Diagnostics.Silverlight.Contracts library projects. While
the data contracts are structurally very similar between the two libraries there are some differences although these
differences are due to limitations in the Silverlight class library. As an example, the IExtensibleDataObject
interface is unavailable within the Silverlight 3 class library although its use within data contracts is regarded as a
best practice upon the standard .net CLR.

Service contracts are used to define the diagnostics service and variants of the IDiagnosticsService interface are
found within the CodePlex.Diagnostics, CodePlex.Diagnostics.Silverlight, and CodePlex.Diagnostics.Servics library

projects. Within the client libraries the service is described in terms of asynchronous operation contracts while the
service is described purely in terms of synchronous operation contracts within the service library'.

The CodePlex.Diagnostics.Services.Web project provides an ASP.NET Web application to host the diagnostics
service, although the diagnostics service can be hosted based upon the specific needs of your environment. Hosting
the services within Internet Information Services (IIS) will limit the communication protocols to those based upon
Http and therefore you may choose to use the Windows Activation Service (WAS) upon Windows Server 2008 or
Windows Vista and later. Using WAS for service hosting enables the use of Tcp based communication which will
also be supported in the forthcoming release of Silverlight 4°.

Visual Studio Team System 2008 Database Edition, also known as “Data Dude”, is used for defining the database
and the schema objects of the CodePlex.Diagnostics database can be found within the CodePlex.Diagnostics
Database project. See the build requirements section at the end of this document for details about the versions of
“Data Dude” to use to build the framework database. SQL scripts will also be provided with the framework release
for those who do not have access to an appropriate version of either Visual Studio 2008 or Visual Studio 2010.

The CodePlex.Diagnostics framework includes extensive unit testing based upon the Visual Studio Unit Testing
framework and the unit tests for the framework can be found within the CodePlex.Diagnostics.UnitTests project.

Several of the unit tests make use of the commercial mocking framework, Typemock Isolator 2010, and upon release
there will also be code available where this dependency has been removed. That said however, it is recommended
that the version of the framework that uses Typemock Isolator 2010 be reviewed along with the Typemock Isolator
2010 product itself. Microsoft Research, at the time of writing, is working on an alternative mocking framework,
called Moles, and this framework may provide an alternative to Typemock Isolator 2010. At the time of writing no
analysis between the two mocking frameworks has been completed although such analysis will determine which
mocking framework is used for CodePlex.Diagnostics beyond this release.

Silverlight continues to make a significant impact on the software development world, initially seen as a platform
primarily targeted at media applications, in recent months the Silverlight platform has demonstrated potential for
business applications.

As discussed earlier, the CodePlex.Diagnostics.Silverlight and CodePlex.Diagnostics.Silverlight.Contracts library
projects form the foundation of the framework for the Silverlight developer. In this release of the framework users
will be able to use a Silverlight application, CodePlex.Diagnostics.Silverlight.Studio, to examine the exceptions and
log entries within one or more instances of the CodePlex Diagnostics database’.

Finally, it would not be possible for developers to use the CodePlex.Diagnostics framework without an ability to
install the framework. The CodePlex.Diagnostics.Setup project installs the core components, for both the standard
CLR and Silverlight, and makes the necessary changes to the Windows registry such that the framework becomes
accessible from within Visual Studio 2008 and Visual Studio 2010"*,

Configuration

Configuration of the CodePlex.Diagnostics framework is achieved using the application domain’s configuration
file (e.g. App.config or Web.config) or the ServiceReferences.ClientConfig within Silverlight applications. An

' See Requirements for an Asynchronous Mechanism in Programming WCF Services, Third Edition by Juval Lowy.

? Silverlight 4 will provide support for Tep based communication while Silverlight 3 only supports Hetp
communication.

* CodePlex.Diagnostics.Silverlight.Studio and CodePlex.Diagnostics.Silverlight.Studio.Web are place holder
projects and development of the Diagnostics Studio application will begin after the RC build of the
CodePlex.Diagnostics framework has been released.

* Registry entries within “HKLM\Software\Wow6432Node\Microsoft\.NET Framework\AssemblyFolders” are
made upon 64-bit versions of Windows, upon 32-bit versions of Windows the registry keys are made within
“HKLM\Software\Microsoft\.NET Framework\AssemblyFolders”.

example of the Xml configuration sections required by the framework is found within the App.Config of the
framework unit test project CodePlex.Diagnostics.UnitTests.

Although the configuration sections are required within the App.Config or Web.Config for the correct operation of
the framework, it is also permissible to omit them entirely. Essentially, the framework is designed to operate in a
‘fire and forget" mode which implies that if the publication of an exception or log entry were to fail the calling code
itself will continue unaware of the failure. This is by design, because at no time should the use of this library inhibit
the calling code itself.

Assuming you have access to at least the Professional edition of either Visual Studio 2008 or Visual Studio 2010, it is
suggested that you use the unit test project included within the CodePlex.Diagnostics solution for verification of
any configuration changes that you intend to make. If you have other versions of Visual Studio 2008 or Visual
Studio 2010 (including the express editions), you'll still be able to use the framework although some of the projects
within the solution might not function due to the limitations within the particular edition you are using.

Setup

Once you've installed the CodePlex.Diagnostics library, using the setup program that is included with the
solution, the CodePlex.Diagnostics and CodePlex.Diagnostics.Contracts assemblies will appear as an option
within the Visual Studio 2008 or Visual Studio 2010 “Add Reference” dialog (see figure 8). Silverlight versions of the
assemblies will be displayed if the project, for which the reference is required, is targeting the Silverlight runtime.

NET |COM [Projects | Browse | Recent|

=
Component Name Version Runtime

| Accessibility 2000 v2.0.50727
adodb 7.0.3300.0 v1.1.4322
adodb 7.0.3300.0 v1.14322
adodb 7.0.3300.0 v1.14322
Analysis Management Objects 10,000 v2.0.50727
Clarius.VisualStudio.Framework 1.0.00 v2.0.50727
Clarius.VisualStudio.TextTemplateLanguageService 1000 v2.0.50727
Clarius.VisualStudio. TextTemplating 1000 v2.0.50727
Clarius.VisualStudio. TextTemplating.DSL 1000 v2.0.50727
Clarius.VisualStudio. TextTemplating.GAX 1.0.00 v2.0.50727
Clarius.VisualStudio.TextTemplating.Web.Mvc 1000 v2.0.50727
CodePlex.Diagnostics 4000 v2.0.50727

Cc_d:PIex.Diagnostics.Contracts 4000 v2.0.50727
« m

] [Cancel

Figure 8. Visual Studio 2008 Add Reference dialog showing the CodePlex.Diagnostics library.

Create a C# console application and replace the code within the default Program class with that shown below in
listing 1, adding references to the CodePlex.Diagnostics and CodePlex.Diagnostics.Contracts libraries. If you
haven't done so already, run the database creation script that is included within the source code for the library

within SQL Server 2008 or SQL Server 2008 R2 Management Studio. Alternatively the “Data Dude” project can be
deployed to the local SQL Server 2008 or SQL Server 2008 R2 instance.

using System;

using System.Security;
using System.Security.Principal;

using CodePlex.Diagnostics;

namespace CodePlex.Diagnostics.Samples
{
public static class Program

{

#region private static void Main(string[] args)

/// <summary>

/// Program entry point.

/// </summary>

/// <param name="args">

/// An array of <see cref="T:System.String"/> containing the command line arguments.
/// </param>

[STAThread]

private static void Main(string[] args)

{
try

for (int index = @; index < 10; index++)

{
}
}

catch (DivideByZeroException ex)

index /= index;

ex.Publish();

}

ttendregion

}

Listing 1. Sample C# Console Application to publish an exception using the Publish extension method defined
within the ExceptionExtensions class.

You'll also need to include an appropriate application domain configuration file, App.config, which can be based
upon that found within the unit testing project CodePlex.Diagnostics.UnitTests.

USE [CodePlex.Diagnostics]

SELECT * FROM [dbo].[AppDomain]
SELECT * FROM [dbo].[Assembly
SELECT * FROM [dbo].[Exception
SELECT * FROM [dbo].[ExceptionInnerException]
SELECT * FROM [dbo].[LogEntry]
SELECT * FROM [dbo].[Machine]
SELECT * FROM [dbo].[Process]
SELECT * FROM [dbo].[SqlError]
SELECT * FROM [dbo].[SqllLog]
SELECT * FROM [dbo].[TargetSite]
SELECT * FROM [dbo].[TeamFoundationServer]
SELECT * FROM [dbo].[Thread]
*

SELECT * FROM [dbo].[WorkItem]

Listing 2. Simple T-SQL select statements to show the content of the various tables used by the framework.

Executing the SQL within listing 2 within SQL Server Management Studio will result in results such as those
shown within figures 13 and 14. In build 1.0.0.60, new WorkItem and TeamFoundationServer tables were added to
the database to enable exceptions and log entries to be promoted to Team Foundation Server work items. These
tables are merely place holders for future functionality which will be enabled within the forthcoming Diagnostics
Studio Silverlight application.

PublishedException

The CodePlex.Diagnostics framework includes four custom Exception types that can be used to either control
the behavior of the framework or add additional meta-data regarding the inner-exceptions that are contained
within them. The first of these custom Exception types is the PublishedException class which is shown along
with the IPublishedException interface in figure 9. Silverlight versions of the PublishedException class and the
IPublishedException interface are shown in figure 10.

The code fragment in listing 3 shows how the DivideByZeroException can be re-thrown as the inner-exception of
the PublishedException class, ensuring that the original DivideByZeroException exception is published only
once by the ExceptionExtensions class. Subsequent calls to the ExceptionExtensions class, further up the call
stack, will ignore exceptions that have already been published because the PublishedException class, among
others, implements the IPublishedException interface.

catch (DivideByZeroException ex)
{
Guid publicationId = ex.Publish();

throw new PublishedException(publicationld, ex);

}

Listing 3. Using the PublishedException class to indicate an exception has already been published.

O IPublishedException

»)

-
PublishedException
Sealed Class
-+ Exception

= Properties
' Publicationld { get: set; } : Guid
= Methods
L] GetObjectData(SerializationInfo info, StreamingContext context) : void
v PublishedException()
@ PublishedException(Guid publicationld, Exception ex)
4"¥ PublishedException(Serializationlnfo info, StreamingContext context)
¥ PublishedException(string message)
@ PublishedException(string message, Exception innerException)

" IPublishedException 5)
Interface

= Properties
P Putlicationld { get: } : Guid

Figure 9. IPublishedException interface and PublishedException class

QJ IPublishedException

- e
PublishedException 2

Sealed Class

- Exception

= Properties
B Publicationld { get; set } : Guid
= Methods
PublishedException()
PublishedException(Guid publicationld, Exception ex)
PublishedException(string message)

PublishedException(string message, Exception innerException)
\, J

&

¢ ¢ ¢

»

' IPublishedException
Interface

= Properties
P pulicationid { get:) : Guid

Figure 10. Silverlight version of the IPublishedException interface and PublishedException class

PublishedFaultException

When Microsoft released version 3.0 of the NET Framework one of the major new additions to the framework was
the Windows Communication Foundation (WCF) which provides architects and developers with a framework for
building next generation Web services. Within the System.ServiceModel namespace is the FaultException type
which is the type of exception that clients receive from WCEFE services. For more information on WCF and
exception handling within WCF see Programming WCF Services 3™ Edition by Juval Lowy.

Within version 2.0.0.4 of CodePlex.Diagnostics the PublishedFaultException was added to the framework to
allow exceptions to be thrown from the service layer indicating to code within the client that the original exception
has been successfully published. Also beginning with version 2.0.0.4 the IPublishedException interface has been
added to the framework and can be seen within figure 11 below.

PublishedFaultException<T>

Within the System.ServiceModel namespace there is also a generic FaultException<T> which derives from the
aforementioned FaultException type. As such there is also a generic PublishedFaultException<T> within the
CodePlex.Diagnostics framework which derives from the WCF FaultException<T> class.

Q IPublishedException

PublishedFaultException @)
Class
= FaultExcaption
& Properties
7 Publicationld { get: set } : Guid
= Methods
‘¥ GetObjectData(SerializationInfo info, StreamingContext context) : void
‘@ PublishedFaultException()
@ PublishedFaultException(Guid publicationld, FaultReason reason)
9 PublishedFaultException(Guid publicationld, FaultReason reason, FaultCode code)
9 PublishedFaultExcepticn(Guid publicationld, FaultReason reason, FaultCode code, string action)
@ PublishedFaultException(Guid publicationld, MessageFault fault)
‘@ PublishedFaultException(Guid publicationld, MessageFault fault, string action)
9 PublishedFaultException(Guid publicationld, string reason)
9 PublishedFaultException(Guid publicatiorld, string reason, FaultCode code)
3% PublishedFaultException(SerializationInfo info, StreamingContext context)
L PublishedFaultException(string reason)
J
Q IPublishedException
IS -~
PublishedFaultException<T> ®
Generic Class
- FaultException<T>
= Properties
5 Publicationld { get: set; } : Guid
& Methods
¥ GetObjectData(Serializationnfo info, StreamingContext context) : void
‘@ PublishedFaultException(Guid publicationld, T detail)
@ PublishedFaultException(Guid publicationld, T detail, FaultReason reason)
9 PublishedFaultException(Guid publicationld, T detail, FaultReason reason, FaultCode code)
¥ PublishedFaultException(Guid publicationld, T detail, FaultReason reason, FaultCode code, string action)
w PublishedFaultException(Guid publicationld, T detail, string reason)
‘@ PublishedFaultException(Guid publicationld, T detail, string rzason, FaultCode code)
9 PublishedFaultException(Guid publicationld, T detail, string reason, FaultCode code, string action)
\}'9 PublishedFaultException(SerializationInfo info, StreamingContext context)
\ 8
IPublishedException ®)
Interface
= Properties
P Publicationld { get; } : Guid
- v,

Figure 11. PublishedFaultException and PublishedFaultException<T> classes.

O IPublishedException

»)

PublishedFaultException
Class
- FaultExcaption

= Properties
7 Publicationld { get; set: } : Guid
= Methods

¥ PublishedFaultException()
W PublishedFaultException(Guid publicationld, FaultReason reason, FaultCode code, string action)
© PublishedFaultException(Guid publicationld, MessageFault fault, string action)

’CIJ IPublishedException

" PublishedFaultException<T> &
Generic Class
= FaultExcaption<T>

= Properties
5 Publicationld { get: set } : Guid
= Methods

@ PublishedFaultException(Guid publicationld, T detail, FaultReason reason, FaultCode code, string action)
\, v

»)

' IPublishedException
Interface

= Properties
P putlicationid { get:) : Guid

Figure 12. Silverlight versions of the PublishedFaultException and PublishedFaultException<T> classes.

UnhandledException

Earlier versions of the CodePlex.Diagnostics framework contained the UnhandledException class which was
designed to indicate that the inner-exception was caught within an event handler for the UnhandledException
event upon the AppDomain class.

Listing 4 shows how the UnhandledException class was used previously, although in this version of the framework
it is now obsolete. It is obsolete due to the fact that the [dbo].[Exception] table includes the Unhandled column,
using the bit data type, to indicate whether an exception was unhandled. Within the ExceptionExtensions class
there is a private static method that determines whether or not an exception was unhandled and the Unhandled
column is set accordingly.

AppDomain.CurrentDomain.UnhandledException += delegate(object sender,
UnhandledExceptionEventArgs e)

{
Exception ex = e.ExceptionObject as Exception;
IIdentity identity = WindowsIdentity.GetCurrent() as IIdentity;
ExceptionProvider.Publish(new UnhandledException(ex), identity);
s

Listing 4. Using the UnhandledException class to indicate an exception was unhandled.

It may be useful to then explore unhandled exceptions within the database and determine if the exception should
have been caught further up the call stack and subsequently published there.

Limitations

In this release, the internal ExceptionSerializer and IIdentitySerializer classes, which are responsible for
creating the Soap encoded Xml which is stored within the Exception and LogEntry tables, are unable to serialize
objects if either of the following conditions is true:

1. Supplied Exception | IIdentity is not serializable which is determined by checking the IsSerializable
property of the NET Framework Type class.

2. Supplied Exception | IIdentity is generic, which determined by checking the IsGeneric property of the
NET Framework Type class.

In both of these instances, the appropriate column within either the Exception or LogEntry tables will contain
NULL within the SerializedIIdentityXml column. In previous releases, any generic Exception type would
simply not be published and this was fixed in build 1.0.0.60.

The above limitations are in actual fact limitations of the serialization capabilities of the SoapFormatter class
which is located within the System.Runtime.Serialization.Formatters.Soap namespace.

Other serialization alternatives are presently being explored although the Xm1Serializer class is unable to handle
serialization of objects implementing the IDictionary interface. When serializing types inheriting from the
System.Exception base class this is a major problem because the Data property is itself an IDictionary.

Alternatively, the new serialization capabilities within the NET Framework 3.0, specifically within the Windows
Communication Foundation, require you to specify the known types using the KnownTypeAttribute. This also is
not appropriate given we cannot at compile time know all of the known types for which serialization may be
required.

|t D D odg E,
CodePlexDiag « ¥ Execute b viESE IS DD TS EE N
[CodePlex.Diagnos_oug Holland (53)) % |5
v 14
=] Fesitsy
3 3 Messages
ApeOOBalrId Concurrens iveSearchPath C ted updated -
i 1 2010-82-03 #9582 82 2009-02-03 #9:12
el meversion
1 Ci\Coderlex, O
1 erationException L]
erogace
5
1
2 1067 52112914 3 3:52:12.9147723
0 maxdrkingSet imeoreingiet AonoaedSvitemwscry ~
D Query executed successfully Dough PC (10.05P1) | Doug PC\Doug Ho.-. | CodePlexDiagnostics | 000001 | 32 rows
Resdy Lnl Cell Chl INS

Figure 13. SQL Server 2008 Management Studio showing the result of running the T-SQL in listing 2.

£ Mucrosaft SQU Server Management Studio =@ =
View OJuery Project Debug Tool Window Com Hep
ary 7] d. “
CodePlex Diagn « ¥ Execute b v B Eud IS Q8D ‘;

L'+ CodePlex.Diagnos...oug Holland (531)

Teresdid wWorkiteald Logintry ¥

we seek only the day,

hineIPASSre

Ity

5.1.102

3184

ExitTime
1 1 DRI §] 2010-02-03 09:52:10. 6471092 113638
2 2 DRNIIIINIIT §] 0001 01-01 00:00: 0. 0000000 1390
]) B T ® B001-21-01 0010009, 0000000 131264 -

tusl Crested

® 1 @ 1 ° . ']
e ® ® 1 1 ® ® 0 [
® e ® 1 ® e 8 . ®

ncaticeserverld Concurren created updates

-0

6 :10-92-80 #9:83

Theeadld Concurrencyld ranagedThe nane Priceity ThresdState Currentu Created -
1 1 RIS 1 1 L] % Agert: sdapter rum thresd for ‘PublishExce. s en-us M10-02-00 89,
2 3 DNNMRNININTTIC 1 1 . » agent: adapter rum thresd for test "Publishaggr. en-us en-us 010-02-00 #3: =
1 urd Upcated
Urrortise Errcefrocedure
i 1 L _Salirro t 0 © error encountered. dbo me-
D Quiery executed successhully DougHellend-PC (100 5P1) | DeugHolland-PCiloug Ho.. | CodePlesDhagnostics | 00:00:01 | 32 rows.
Rea: Lnl8 Ch33 INS

202 PM

10

Figure 14. SQL Server 2008 Management Studio showing the result of running the T-SQL in listing 2.

Build Requirements

Visual Studio 2010 Ultimate or Visual Studio 2008 Team Suite.
Visual Studio Tools for Silverlight 3.0

Reactive Extensions for NET’

Typemock Isolator 2010°

B =

Changes since CodePlex.Diaghostics 2.0.0.4

1. ExceptionProvider class is now obsolete and has been replaced by the extension methods defined within
the ExceptionExtensions class.

2. LoggingProvider class is now obsolete and has been replaced by the extension methods defined within
the StringExtensions class.

3. SqlExceptionProvider class has been replaced by the Entity Framework model contained within the
CodePlex.Diagnostics.Model project.

> Reactive Extensions are only required when building the CodePlex.Diagnostics framework using Visual Studio
2008 as the framework uses the AggregateException and Parallel classes.

e Typemock Isolator 2010 is used as a mocking framework within the CodePlex.Diagnostics.UnitTests project
although an alternative build of the framework will be available using the Moles framework from Microsoft
Research.

