
CodePlex.Diagnostics

Version 2.0.0.4

Introduction

Welcome to the second major release of the CodePlex.Diagnostics framework, designed to enable exception
publication and logging through components based upon the ASP.NET 2.0 provider design pattern.

Using this framework you can write your applications and defer the decision of which exception providers will be
used to publish exceptions until deployment time. In this release, the SqlExceptionProvider publishes the
exceptions to a SQL Server 2005 / SQL Server 2008 database. The database T-SQL creation script is included within
the CodePlex.Diagnostics Visual Studio 2008 solution.

Use of SQL Server 2005 or SQL Server 2008, as opposed to previous releases, is important because it allows the
exceptions to be serialized using the SoapFormatter class. The Soap encoded exceptions are then stored within
the database using the Xml column type. Columns are included within the Exception table for most properties
within the base System.Exception type but the serialized exceptions are there to allow a developer to browse
through any additional information provided by exceptions that are either directly or indirectly derived from the
System.Exception base type. In most cases the properties within System.Exception have corresponding
columns within the Exception table; the TargetSite property however has a corresponding TargetSite table.

Central to the CodePlex.Diagnostics framework is the static ExceptionProvider class shown in the following

Visual Studio 2008 class diagram. As you can see, the ExceptionProvider contains two methods, one of which is

public and requires two arguments. The first argument is the exception to be published and the second argument is

the IIdentity representing the user on whose behalf the code was executing. Within a Windows Forms

application this is usually the WindowsIdentity of the current user, however within an ASP.NET application an

IIdentity representing the user who is authenticated to the Web site should be provided.

Figure 1. ExceptionProvider class.

Another central type within the CodePlex.Diagnostics framework is the static LoggingProvider class, shown in

the next Visual Studio 2008 class diagram, which provides logging capabilities. As with the publication of

exceptions, the LoggingProvider class is designed to allow the decision of where log entries should be persisted to

be deferred until deployment time. The default SqlLoggingProvider class persists log entries within the same SQL

Server 2005 or SQL Server 2008 database.

Figure 2. LoggingProvider class.

When using the static LoggingProvider class, the log entry is simply a System.String, however you must also

determine the priority of the entry and the type of information the entry provides. The LoggingPriority

enumeration allows you to indicate that the entry is of Low, Medium, High, or Critical priority. Additionally, using

the LoggingType enumeration, the log entry can be described as Information, Warning’s or an Error. The fourth

argument that the Log method expects is the IIdentity which, as with the ExceptionProvider, represents the

user on whose behalf the code was executing.

Figure 3. LoggingPriority and LoggingType enumerations.

Default Providers

The CodePlex.Diagnostics framework contains default exception and logging provider classes although you are
free to construct other exception and logging providers, and then configure the framework accordingly. The default
exception and logging providers are the SqlExceptionProvider and SqlLoggingProvider classes, these providers,
as mentioned previously, store the exceptions and log entries within a SQL Server 2005 or SQL Server 2008
database. Figure 4 provides a Visual Studio 2008 class diagram depicting these two classes.

Figure 4. SqlExceptionProvider and SqlLoggingProvider types.

Within the System.Configuration assembly resides the System.Configuration.Provider namespace which is
where you'll find the ProviderBase abstract base class shown in figure 4. The ProviderBase class forms the
foundation for the ASP.NET 2.0 Provider design pattern, upon which this frameworks design is based.
Subsequently, the LoggingProviderBase and ExceptionProviderBase abstract classes allow you to define
specific providers such as the aforementioned default providers.

Configuration

Configuration of the CodePlex.Diagnostics framework is achieved using the application domain’s configuration
file (e.g. App.config or Web.config). Some additional sections, within which, are required to allow the framework
to determine the correct exception and logging providers at runtime. For an example of the Xml configuration
sections required by the framework you should examine the App.Config from the unit test project
CodePlex.Diagnostics.External.UnitTests.

Although these additional Xml sections are required within the App.Config or Web.Config for the framework to
determine the correct providers, it is also permissible to omit them entirely. Essentially, the framework is designed
to operate in a "fire and forget" mode which implies that if the publication of an exception or log entry fails then the
calling code itself will be unaware of this failure. This is by design, because at no time should the use of this library
inhibit the calling code itself.

Assuming you have access to the Visual Studio 2005 Team Developer or Visual Studio 2005 Team Suite editions
then it is suggested that you use the various unit test projects included within the CodePlex.Diagnostics
solution. Once Visual Studio 2008 is released the Professional edition will also contain support for unit testing.

These unit test projects show the intended use of the various types defined within the library and the App.config
from the unit test project is a good starting point for using the framework within your own projects. If you have
other versions of Visual Studio 2008 (including the express editions), you’ll still be able to use the framework
although some of the projects within the solution might not function due to the limitations within the particular
edition you are using.

Once you’ve installed the CodePlex.Diagnostics library, using the setup program that is included with the
solution, the CodePlex.Diagnostics library will appear as an option within the Visual Studio 2008 “Add
Reference” dialog (see figure 5).

Figure 5. Visual Studio 2008 Add Reference dialog showing the CodePlex.Diagnostics library.

Assuming you create a C# Console Application and add a reference to the CodePlex.Diagnostics library, then

you can then use the following code to test the publication of exceptions and logging events to the supplied

CodePlex.Diagnostics database. If you haven't done so already, run the database creation script that is included

within the source code for the library within SQL Server 2005 or SQL Server 2008 Management Studio.

using System;

using System.Security;
using System.Security.Principal;

using CodePlex.Diagnostics;
using CodePlex.Diagnostics.Providers;

namespace CodePlex.Diagnostics.Samples
{
 public static class Program
 {
 #region private static void Main(string[] args)

 /// <summary>
 /// Program entry point.
 /// </summary>
 /// <param name="args">
 /// An array of <see cref="T:System.String"/> containing the command line arguments.
 /// </param>
 [STAThread]
 private static void Main(string[] args)
 {
 try
 {
 for (int index = 0; index < 10; index++)
 {
 index /= index;
 }
 }
 catch (DivideByZeroException ex)
 {
 IIdentity identity = WindowsIdentity.GetCurrent() as IIdentity;
 ExceptionProvider.Publish(ex, identity);
 }

 Console.ReadLine();
 }

 #endregion
 }
}

Listing 1. Sample C# Console Application to publish an exception using the static ExceptionProvider class.

You’ll also need to add the appropriate Xml nodes to the App.config which can be copied from the App.config

within the CodePlex.Diagnostics.External.UnitTests project, remembering to change the SQL connection

string to reference the server upon which you installed the CodePlex.Diagnostics database.

Using SQL Server 2005 or SQL Server 2008 Management Studio (or other similar tools), you’ll observe the data that
was collected when the DivideByZeroException was caught and subsequently published to the
CodePlex.Diagnostics database using the ExceptionProvider class.

USE [CodePlex.Diagnostics]

SELECT * FROM Exception
SELECT * FROM LogEntry
SELECT * FROM AppDomain ‐‐ new in build 1.0.0.8
SELECT * FROM Assembly ‐‐ new in build 1.0.0.8
SELECT * FROM GraphicsProcessor ‐‐ new in build 1.0.0.15
SELECT * FROM Machine ‐‐ new in build 1.0.0.15
SELECT * FROM MachineGraphicsProcessor ‐‐ new in build 1.0.0.15
SELECT * FROM MachineProcessor ‐‐ new in build 1.0.0.15
SELECT * FROM Processor ‐‐ new in build 1.0.0.15
SELECT * FROM TargetSite
SELECT * FROM Thread -- new in build 1.0.0.8
SELECT * FROM WorkItem -- new in build 1.0.0.60
SELECT * FROM TeamFoundationServer -- new in build 1.0.0.60

Listing 2. Simple T-SQL select statements to show the content of the various tables used by the framework.

If all went according to plan then you should see something such as the screenshot of SQL Server 2008 Management

Studio found in figure 8 which is on the last page of this document, although possibly containing only a single

exception. In build 1.0.0.60, new WorkItem and TeamFoundationServer tables were added to the database to

enable exceptions and log entries to be promoted to Team Foundation Server work items. These tables are merely

place holders for future functionality which will be enabled within the forthcoming Diagnostics Studio smart-

client application.

PublishedException

The CodePlex.Diagnostics framework includes three new Exception types that can be used to either control the

behavior of the framework or add additional meta-data regarding the exceptions that were caught and

subsequently published. The first of these new Exception types is the PublishedException class which is shown

along with the ThreadException and UnhandledException in figure 7.

The code fragment in listing 3 shows how the DivideByZeroException can be thrown again as the inner-exception

of a PublishedException, ensuring that the original exception is published only once by the ExceptionProvider.

Subsequent calls to the class ExceptionProvider, further up the call stack, will ignore an exception that has

already been published.

catch (DivideByZeroException ex)
{
 IIdentity identity = WindowsIdentity.GetCurrent() as IIdentity;

 Guid publicationId = ExceptionProvider.Publish(ex, identity);

 throw new PublishedException(publicationId, ex);
}

Listing 3. Using the PublishedException class to indicate an exception has already been published.

PublishedFaultException

When Microsoft released version 3.0 of the .NET Framework one of the major new additions to the framework was
the Windows Communication Foundation (WCF) which provides architects and developers with a framework for
building next generation Web services. Within the System.ServiceModel namespace is the FaultException type
which is the type of exception that clients receive from WCF services. For more information on WCF and
exception handling within WCF see Programming WCF Services 2nd Edition by Juval Löwy.

Within version 2.0.0.4 of CodePlex.Diagnostics the PublishedFaultException was added to the framework to
allow exceptions to be thrown from the service layer indicating to code within the client that the original exception
has been successfully published. Also beginning with version 2.0.0.4 the IPublishedException interface has been
added to the framework and can be seen within figure 6 below.

PublishedFaultException<T>

Within the System.ServiceModel namespace there is also a generic FaultException<T> which derives from the

aforementioned FaultException type. As such there is also a generic PublishedFaultException<T> within the

CodePlex.Diagnostics framework which derives from the WCF FaultException<T> class.

Figure 6. PublishedFaultException and PublishedFaultException<T>.

http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FProgramming-WCF-Services-Juval-Lowy%2Fdp%2F0596521308%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1221153293%26sr%3D8-1&tag=sofbloint-20&linkCode=ur2&camp=1789&creative=9325

ThreadException

In addition to the aforementioned PublishedException, the framework also contains the new ThreadException

class, which indicates that the exception was caught within an event handler for the ThreadException event. The

ThreadException event is located within the Application class from the System.Windows.Forms namespace.

UnhandledException

Finally, the framework contains the new UnhandledException class, which indicates that an exception was caught

within an event handler for the UnhandledException event. The ThreadException event is located within the

AppDomain class.

 AppDomain.CurrentDomain.UnhandledException += delegate(object sender,
 UnhandledExceptionEventArgs e)

 {
 Exception ex = e.ExceptionObject as Exception;

 IIdentity identity = WindowsIdentity.GetCurrent() as IIdentity;

 ExceptionProvider.Publish(new UnhandledException(ex), identity);
 };

Listing 4. Using the UnhandledException class to indicate an exception was unhandled.

Figure 7. PublishedException, ThreadException and UnhandledException

Limitations

In this release, the internal ExceptionSerializer and IIdentitySerializer classes, which are responsible for

creating the Soap encoded Xml which is stored within the Exception and LogEntry tables, are unable to serialize

objects if either of the following conditions is true:

1. Supplied Exception | IIdentity is not serializable which is determined by checking the IsSerializable

property of the .NET Framework Type class.

2. Supplied Exception | IIdentity is generic, which determined by checking the IsGeneric property of the

.NET Framework Type class.

In both of these instances, the appropriate column within either the Exception or LogEntry tables will contain

NULL within the SerializedIIdentityXml column. In previous releases, any generic Exception type would

simply not be published and this was fixed in build 1.0.0.60.

The above limitations are in actual fact limitations of the serialization capabilities of the SoapFormatter class

which is located within the System.Runtime.Serialization.Formatters.Soap namespace.

Other serialization alternatives are presently being explored although the XmlSerializer class is unable to handle

serialization of objects implementing the IDictionary interface. When serializing types inheriting from the

System.Exception base class this is a major problem because the Data property is itself an IDictionary.

Alternatively, the new serialization capabilities within the .NET Framework 3.0, specifically within the Windows

Communication Foundation, require you to specify the known types using the KnownTypeAttribute. This also is

not appropriate given we cannot at compile time know all of the known types for which serialization may be

required.

Figure 8. SQL Server 2008 Management Studio showing the result of running the T-SQL in listing 2.

