
CodePlex.Diagnostics

Version 4.0.0.0

Introduction

Welcome to the fourth major release of the CodePlex.Diagnostics framework, designed to provide extensive
exception management and logging capabilities for the .net developer.

Using this framework, exceptions and log entries can be written to SQL Server 2008 databases along with extensive
contextual information that is often critical to the resolution of exceptions. In this release, the connectivity to the
database has been refactored to use the Entity Framework instead of direct ADO.NET. Another major difference is
that this release enables true multi-tier architectures by using the Windows Communication Foundation (WCF).
With WCF comes additional flexibility in that the specific deployment configuration can be determined on a case
by case basis and is easily configured within standard application domain configuration files of the various
components within the SOA architecture. (e.g. App.config, Web.config, and ServiceReferences.ClientConfig)

Given the impact of Microsoft’s Silverlight technology, the CodePlex.Diagnostics framework enables exceptions
and log entries, originating from within code executing upon the Silverlight runtime, to be written to the SQL
Server 2008 database. Silverlight versions of the CodePlex.Diagnostics assemblies are provided for Silverlight
developers and these assemblies communicate with the same WCF service layer as the counterparts, targeting the
standard Common Language Runtime (CLR), do.

It is important to be aware of some differences between CodePlex.Diagnostics assemblies with respect to the
Silverlight runtime. The Silverlight runtime imposes security constraints that preclude the gathering of many of the
certain system details that are otherwise gathered when exceptions and log entries are written to the database. In
this document you will find these differences discussed at some length although generally the usage model of the
framework is consistent across the CLR and Silverlight versions.

SQL Server 2005 is no longer supported and therefore either SQL Server 2008 or SQL Server 2008 R2 is required,
due to the fact that the database now uses the datetime2 data type which was not supported in previous releases.

Within the database, columns are included in the [dbo].[Exception] table for all of the properties within the .net
base System.Exception type, aside from the TargetSite property which is mapped to the corresponding
[dbo].[TargetSite] table.

Soap-encoded versions of exceptions are also stored within the database to allow developers access to information
residing in fields and properties defined within exception types that derive, directly or indirectly, from the .net base
System.Exception type. Serialization of exceptions and identities (e.g. types implementing the .net interface
System.Security.Principal.IIdentity), is achieved using the .net framework’s SoapFormatter class.

While the SoapFormatter class has some well-known limitations, which otherwise would make its use somewhat
controversial, the resultant Soap format has the unique characteristic of being largely human readable. The resulting
Soap-encoded exceptions and identities are stored within the database using the SQL Server Xml column type.

Central to this release of the CodePlex.Diagnostics framework is the ExceptionExtensions class, shown in the
following two Visual Studio 2008 class diagrams, which provide the Publish extension method, of which there are
four overloads for the .net and Silverlight versions.

Previous releases of the CodePlex.Diagnostics framework used the static ExceptionProvider class for exception
publication; this class still resides within the framework for backwards compatibility purposes. The [Obsolete]
attribute has been applied to the ExceptionProvider class and compiler warnings will result from usage of
obsolete types, therefore usage of the ExceptionProvider class should be refactored as soon as possible.

Figure 1. Ex

Figure 2. S

When an i
exception,
Silverlight
class does
Silverlight
to encapsu
should inst
type param

Figure 3. S

The Publi
this public
ASP.NET
administra
merely pro

In addition
form of key
As an alte
informatio

xceptionExte

ilverlight versi

instance of a ty
 or log entry
 runtime can b
 not exist wi
 version of the
ulate the Silve
tead use the ge

meter T allows

ilverlight Appl

ish extension m
cation Id is inte
application, fo

ator of the exce
ovided for scen

n to publishing
y value pairs th

ernative, or in
on can also be

ensions class.

ion of the Exce

ype implement
y, within the
be hosted upon
ithin Silverligh
 framework. Si
erlight applica
eneric class Cod
an IPrincipal

lication<T> c

methods return
ended to uniqu
or example, co
eption that occ
arios such as th

g the exception
hat are contain
addition to, p
specified with

eptionExtensi

ting the IIdent
database is d
n operating sy
ht’s class libra
ilverlight appli

ation. Using th
dePlex.Diagn

l interface to b

lass.

n a System.Gu
uely represent
uld use the pu

curred. The pu
hat described a

n itself, it is als
ned within an in
providing cont
hin Xml using

ions class.

tity interface
derived from t
ystems other th
ary; as such a
ications typica
he CodePlex.D
nostics.Silve

be specified.

uid, or globally
an exception (
ublication Id w

ublication Id is
and it can be sa

so possible to p
nstance of the

textual inform
the XElement

 is not specifie
the current Wi
han Microsoft
an identity m
ally use the Sys
Diagnostics fra
erlight.Appl

y unique ident
(and any inner
within the UR
 not used inter
afely ignored if

provide additi
 generic Dicti

mation within t
 class. The XEl

ed, the identity
indowsIdenti

t Windows, th
must be specifi
stem.Windows

amework, Silv
lication<T> sh

tifier, called th
r-exceptions co
RL of pages de
rnally within t
f you have no u

onal contextua
onary<string

the generic di
lement class is

y associated wi
ity. Given th
he WindowsIde
ied when usin
s.Application

verlight applic
hown in figure

he publication I
ontained withi
esigned to info
he framework

use for it.

al information
g, string> cla
ctionary, cont
s defined with

ith the
at the
entity
ng the
n class

cations
e 3, the

Id and
in). An
orm an
 and is

 in the
ass.

textual
hin the

System.Xm

the Silverli

Another ce
next two V
overloads f

Figure 4. S

Figure 5. S

When usin
and the ty
enumeratio

The Loggi

Figure 6. L

ml.Linq names
ight class libra

entral type wit
Visual Studio
for the .net ver

StringExtensi

ilverlight versi

ng any of the o
ype of informat
on provides Lo

ngType enume

oggingPriori

space and the t
ries.

thin the CodeP
2008 class dia
sion and four f

ions class.

ion of the Stri

overloaded Log
tion the entry
ow, Medium, Hig

eration then en

ity and Loggin

type was chos

Plex.Diagnost

agrams, which
for the Silverlig

ingExtensions

g extension me
coveys. In ord
gh, or Critical

nables log entri

ngType enume

en over several

tics framewo
h provides the
ght version.

s class.

ethods, it is nec
der to specify t
l levels of prio

ies to be descri

erations.

l alternatives b

ork is the Stri
 Log extension

cessary to dete
the priority of
ority or severity

ibed as Inform

because it is al

ingExtensions

n method, of w

ermine the prio
 log entries, th
y.

mation, Warnin

lso supported w

s class, shown
which there a

ority of the log
he LoggingPri

ng or Error.

within

 in the
re five

g entry
iority

CodeP

The CodeP

Figure 7. V

Central to
core types

As discuss
adoption o
underlying
library pro

Another m
Windows
within the

Data contr
within the
the data co
differences
interface is
best practi

Service con
found with

Plex.Dia

lex.Diagnost

Visual Studio 20

o the CodePlex
 of the framew

sed earlier with
of the Entity F
g database sche
oject along with

major change in
 Communicati

e solution supp

racts are used
e CodePlex.Dia
ontracts are str
s are due to li
s unavailable w
ice upon the st

ntracts are use
hin the CodePl

agnosti

tics solution

008 SP1 Solutio

x.Diagnostic

ork, including

hin this docum
Framework wh
ema design. Th
h several partia

 this version of
on Foundation

port this goal.

to transfer dat
agnostics.Cont
ructurally very
imitations in

within the Silv
tandard .net CL

ed to define the
lex.Diagnostics

ics Visu

contains 13 pro

on

s framework
 the Exception

ment, one of th
hich enables so
he Entity Fram
al declarations

f the framewor
n to enable SO

ta from the cli
tracts and Cod
y similar betwe
the Silverlight

verlight 3 class
LR.

e diagnostics s
s, CodePlex.Di

ual Stu

ojects and is sh

is the CodePle
nExtensions a

he major chan
ome degree of

mework model i
 that extend th

rk, also discuss
OA based archi

ient to the dia
dePlex.Diagnos
een the two lib
t class library
 library althou

service and var
iagnostics.Silve

udio Sol

hown in figure

ex.Diagnostics
and StringExt

nges within thi
loose coupling
is found within
he entity classe

sed earlier with
itectures to us

agnostics servic
stics.Silverlight
braries there ar

y. As an examp
ugh its use with

riants of the ID
erlight, and Co

lution

 7 below.

s library proje
tentions class

is version of th
g between the
n the CodePlex
es generated fr

hin this docum
se the framewo

ce and these c
t.Contracts lib
re some differe

mple, the IExte
hin data contr

DiagnosticsS

odePlex.Diagno

ct that contai
ses.

he framework
e framework an
x.Diagnostics.M

rom the model.

ment, is the use
ork. Several pr

contracts are d
brary projects.
ences although
ensibleDataO

racts is regarde

ervice interfa
ostics.Servics l

ns the

 is the
nd the
Model

e of the
rojects

defined
While

h these
Object
ed as a

ace are
library

projects. Within the client libraries the service is described in terms of asynchronous operation contracts while the
service is described purely in terms of synchronous operation contracts within the service library1.

The CodePlex.Diagnostics.Services.Web project provides an ASP.NET Web application to host the diagnostics
service, although the diagnostics service can be hosted based upon the specific needs of your environment. Hosting
the services within Internet Information Services (IIS) will limit the communication protocols to those based upon
Http and therefore you may choose to use the Windows Activation Service (WAS) upon Windows Server 2008 or
Windows Vista and later. Using WAS for service hosting enables the use of Tcp based communication which will
also be supported in the forthcoming release of Silverlight 42.

Visual Studio Team System 2008 Database Edition, also known as “Data Dude”, is used for defining the database
and the schema objects of the CodePlex.Diagnostics database can be found within the CodePlex.Diagnostics
Database project. See the build requirements section at the end of this document for details about the versions of
“Data Dude” to use to build the framework database. SQL scripts will also be provided with the framework release
for those who do not have access to an appropriate version of either Visual Studio 2008 or Visual Studio 2010.

The CodePlex.Diagnostics framework includes extensive unit testing based upon the Visual Studio Unit Testing
framework and the unit tests for the framework can be found within the CodePlex.Diagnostics.UnitTests project.

Several of the unit tests make use of the commercial mocking framework, Typemock Isolator 2010, and upon release
there will also be code available where this dependency has been removed. That said however, it is recommended
that the version of the framework that uses Typemock Isolator 2010 be reviewed along with the Typemock Isolator
2010 product itself. Microsoft Research, at the time of writing, is working on an alternative mocking framework,
called Moles, and this framework may provide an alternative to Typemock Isolator 2010. At the time of writing no
analysis between the two mocking frameworks has been completed although such analysis will determine which
mocking framework is used for CodePlex.Diagnostics beyond this release.

Silverlight continues to make a significant impact on the software development world, initially seen as a platform
primarily targeted at media applications, in recent months the Silverlight platform has demonstrated potential for
business applications.

As discussed earlier, the CodePlex.Diagnostics.Silverlight and CodePlex.Diagnostics.Silverlight.Contracts library
projects form the foundation of the framework for the Silverlight developer. In this release of the framework users
will be able to use a Silverlight application, CodePlex.Diagnostics.Silverlight.Studio, to examine the exceptions and
log entries within one or more instances of the CodePlex.Diagnostics database3.

Finally, it would not be possible for developers to use the CodePlex.Diagnostics framework without an ability to
install the framework. The CodePlex.Diagnostics.Setup project installs the core components, for both the standard
CLR and Silverlight, and makes the necessary changes to the Windows registry such that the framework becomes
accessible from within Visual Studio 2008 and Visual Studio 20104.

Configuration

Configuration of the CodePlex.Diagnostics framework is achieved using the application domain’s configuration
file (e.g. App.config or Web.config) or the ServiceReferences.ClientConfig within Silverlight applications. An

1 See Requirements for an Asynchronous Mechanism in Programming WCF Services, Third Edition by Juval Löwy.
2 Silverlight 4 will provide support for Tcp based communication while Silverlight 3 only supports Http
communication.
3 CodePlex.Diagnostics.Silverlight.Studio and CodePlex.Diagnostics.Silverlight.Studio.Web are place holder
projects and development of the Diagnostics Studio application will begin after the RC build of the
CodePlex.Diagnostics framework has been released.
4 Registry entries within “HKLM\Software\Wow6432Node\Microsoft\.NET Framework\AssemblyFolders” are
made upon 64-bit versions of Windows, upon 32-bit versions of Windows the registry keys are made within
“HKLM\Software\Microsoft\.NET Framework\AssemblyFolders”.

example o
framework

Although t
the framew
"fire and forg
itself will c
the calling

Assuming
suggested
any config
Studio 201
within the

Setup

Once you’
solution, th
within the
assemblies

Figure 8. V

Create a C
listing 1, ad
haven't do

of the Xml con
k unit test proj

the configurati
work, it is also
rget" mode whic
continue unaw
 code itself.

you have acces
that you use th

guration chang
10 (including th
e solution migh

p

ve installed th
he CodePlex.D

e Visual Studio
s will be displa

Visual Studio 2

C# console app
dding reference
one so already,

nfiguration sec
ect CodePlex.

ion sections are
o permissible t
ch implies tha

ware of the failu

ss to at least th
he unit test pro
ges that you in
he express edit

ht not function

he CodePlex.D
Diagnostics

 2008 or Visua
yed if the proje

008 Add Referen

plication and re
es to the CodeP
, run the datab

ctions required
.Diagnostics

e required with
o omit them e

at if the publica
ure. This is by d

he Professional
oject included
ntend to make
tions), you’ll st
 due to the lim

Diagnostics

and CodePlex
al Studio 2010 “
ect, for which t

nce dialog show

eplace the cod
Plex.Diagnos

base creation s

d by the fram
.UnitTests.

hin the App.Co
entirely. Essent
ation of an exc
design, becaus

l edition of eith
within the Cod

e. If you have
till be able to u

mitations within

library, using
.Diagnostics

“Add Referenc
the reference is

wing the CodeP

de within the d
tics and Cod
script that is i

mework is foun

onfig or Web.C
tially, the fram
ception or log
se at no time sh

her Visual Stud
dePlex.Diagn

other versions
use the framew
n the particula

g the setup pr
s.Contracts a
e” dialog (see f
s required, is ta

Plex.Diagnost

default Program
ePlex.Diagno

included with

nd within the

Config for the
mework is desi

 entry were to
hould the use o

dio 2008 or Vis
ostics soluti
s of Visual Stu

work although
ar edition you a

rogram that is
assemblies will
figure 8). Silver
argeting the Si

tics library.

m class with t
ostics.Contr

hin the source

e App.Config

e correct operat
igned to operat
 fail the calling
of this library i

sual Studio 201
ion for verificat
udio 2008 or
 some of the pr
are using.

s included wi
l appear as an o
rlight versions
ilverlight runti

that shown bel
acts libraries.
 code for the l

of the

tion of
te in a
g code
inhibit

10, it is
tion of
Visual
rojects

th the
option

s of the
ime.

low in
 If you
library

within SQL Server 2008 or SQL Server 2008 R2 Management Studio. Alternatively the “Data Dude” project can be
deployed to the local SQL Server 2008 or SQL Server 2008 R2 instance.

using System;

using System.Security;
using System.Security.Principal;

using CodePlex.Diagnostics;

namespace CodePlex.Diagnostics.Samples
{
 public static class Program
 {
 #region private static void Main(string[] args)

 /// <summary>
 /// Program entry point.
 /// </summary>
 /// <param name="args">
 /// An array of <see cref="T:System.String"/> containing the command line arguments.
 /// </param>
 [STAThread]
 private static void Main(string[] args)
 {
 try
 {
 for (int index = 0; index < 10; index++)
 {
 index /= index;
 }
 }
 catch (DivideByZeroException ex)
 {
 ex.Publish();
 }

 }

 #endregion
 }
}

Listing 1. Sample C# Console Application to publish an exception using the Publish extension method defined
within the ExceptionExtensions class.

You’ll also need to include an appropriate application domain configuration file, App.config, which can be based
upon that found within the unit testing project CodePlex.Diagnostics.UnitTests.

USE [CodePlex.Diagnostics]

SELECT * FROM [dbo].[AppDomain]
SELECT * FROM [dbo].[Assembly
SELECT * FROM [dbo].[Exception
SELECT * FROM [dbo].[ExceptionInnerException]
SELECT * FROM [dbo].[LogEntry]
SELECT * FROM [dbo].[Machine]
SELECT * FROM [dbo].[Process]
SELECT * FROM [dbo].[SqlError]
SELECT * FROM [dbo].[SqlLog]
SELECT * FROM [dbo].[TargetSite]
SELECT * FROM [dbo].[TeamFoundationServer]
SELECT * FROM [dbo].[Thread]
SELECT * FROM [dbo].[WorkItem]

Listing 2. Simple T-SQL select statements to show the content of the various tables used by the framework.

Executing
shown wit
the databa
tables are m
Studio Sil

Publi

The CodeP
the behavi
within the
with the I
IPublishe

The code f
the Publis
once by th
stack, will
others, imp

catch (Div
{
 Guid p

 throw
}

Listing 3. U

 the SQL with
thin figures 13
ase to enable e
merely place h
verlight applic

ishedExc

Plex.Diagnost

ior of the fram
em. The first o
PublishedExc

edException in

fragment in list
shedExceptio

he ExceptionE
l ignore excep
plements the I

videByZeroExce

publicationId

new Published

Using the Publ

hin listing 2 w
and 14. In buil

exceptions and
holders for futu
cation.

ception

tics framewor
mework or ad
of these custom
ception interfa
nterface are sh

ting 3 shows h
on class, ensur
xtensions cla

ptions that hav
PublishedExc

eption ex)

= ex.Publish(

dException(pub

lishedExcepti

within SQL Se
ld 1.0.0.60, new

d log entries to
ure functionalit

n

rk includes fou
dd additional m
m Exception t
ace in figure 9.

hown in figure 1

how the Divide
ring that the o
ass. Subsequen
ve already bee
ception interfa

();

blicationId, e

ion class to ind

erver Managem
w WorkItem an
o be promoted
ty which will b

ur custom Exc
meta-data rega
types is the Pu
. Silverlight ve
10.

eByZeroExcep

original Divide
nt calls to the
en published b
ace.

ex);

dicate an excep

ment Studio w
nd TeamFounda
d to Team Fou
be enabled wit

ception types
arding the inn
ublishedExcep

ersions of the P

ption can be re
eByZeroExcep

ExceptionExt

because the Pu

ption has alrea

will result in re
ationServer t

undation Server
thin the forthc

 that can be us
ner-exceptions
ption class w
PublishedExce

e-thrown as th
ption exceptio
tensions class
ublishedExce

ady been publis

esults such as
tables were ad
r work items.

coming Diagno

sed to either c
s that are con

which is shown
eption class an

he inner-except
on is published
s, further up th
eption class, a

shed.

 those
ded to
 These
ostics

control
ntained
n along

nd the

tion of
d only
he call
among

Figure 9. IP

Figure 10. S

Publi

When Mic
the Windo
building ne
which is t
exception

Within ver
allow exce
has been su
added to th

Publi

Within th
aforementi
CodePlex.D

PublishedExce

Silverlight vers

ishedFau

crosoft released
ows Communi
ext generation
the type of ex
handling with

rsion 2.0.0.4 o
eptions to be th
uccessfully pub
he framework

ishedFau

e System.Serv
ioned FaultEx
Diagnostics fra

eption interface

sion of the IPub

ultExce

d version 3.0 of
cation Founda

n Web services
xception that
in WCF see Pr

f CodePlex.Di
hrown from the
blished. Also b
and can be see

ultExce

viceModel na
xception type
amework whic

e and Publishe

blishedExcept

eption

f the .NET Fra
ation (WCF) w
. Within the Sy
clients receiv

rogramming W

iagnostics th
e service layer
beginning with

en within figure

eption<T

amespace there
e. As such ther
ch derives from

edException cl

tion interface a

amework one o
which provides
ystem.Servic

ve from WCF
WCF Services 3

he PublishedF
 indicating to c
h version 2.0.0
e 11 below.

T>

e is also a gene
re is also a gen

m the WCF Fau

lass

and PublishedE

of the major new
s architects and
ceModel name
 services. For

3rd Edition by J

FaultExceptio

code within th
0.4 the IPubli

eric FaultExce
neric Publishe
ultException<

Exception class

w additions to
d developers w
espace is the Fa
r more inform
uval Löwy.

on was added
he client that th
shedExceptio

eption<T> wh
edFaultExcep

<T> class.

s

o the framewor
with a framewo
aultExceptio

ation on WC

to the framew
he original exce
on interface ha

hich derives fro
ption<T> with

rk was
ork for
on type
CF and

work to
eption

as been

om the
hin the

Figure 11. P

PublishedFaulttException andd PublishedFauultException<TT> classes.

Figure 12. S

Unhan

Earlier ver
designed t
event upon

Listing 4 s
it is now o
using the b
there is a p
column is s

 AppDom

 {

 };

Listing 4. U

Silverlight vers

ndledExc

rsions of the
to indicate tha
n the AppDomai

hows how the
obsolete. It is o
bit data type, t
private static m
set accordingly

main.CurrentDo

 Exception e

 IIdentity i

 ExceptionPr
;

Using the Unha

sions of the Pub

ception

CodePlex.Diag
at the inner-ex
in class.

 UnhandledExc
bsolete due to

to indicate wh
method that d
y.

omain.Unhandle

ex = e.Excepti

identity = Win

rovider.Publis

andledExcepti

blishedFaultEx

n

gnostics frame
xception was c

ception class
 the fact that t

hether an excep
determines wh

edException +=

ionObject as E

ndowsIdentity.

sh(new Unhandl

ion class to ind

xception and P

ework contain
caught within

was used prev
the [dbo].[Ex
ption was unh

hether or not a

= delegate(obj
 Unh

Exception;

GetCurrent()

ledException(e

dicate an excep

PublishedFault

ned the Unhan
 an event han

viously, althoug
xception] tabl
andled. Withi

an exception w

ject sender,
handledExcepti

as IIdentity;

ex), identity)

ption was unh

tException<T>

ndledExceptio

ndler for the Un

gh in this versi
le includes the
in the Excepti

was unhandled

ionEventArgs e

;

);

handled.

 classes.

on class which
nhandledExce

ion of the fram
e Unhandled co
ionExtensions

d and the Unha

e)

h was
eption

ework
olumn,
s class
andled

It may be useful to then explore unhandled exceptions within the database and determine if the exception should
have been caught further up the call stack and subsequently published there.

Limitations

In this release, the internal ExceptionSerializer and IIdentitySerializer classes, which are responsible for
creating the Soap encoded Xml which is stored within the Exception and LogEntry tables, are unable to serialize
objects if either of the following conditions is true:

1. Supplied Exception | IIdentity is not serializable which is determined by checking the IsSerializable
property of the .NET Framework Type class.

2. Supplied Exception | IIdentity is generic, which determined by checking the IsGeneric property of the
.NET Framework Type class.

In both of these instances, the appropriate column within either the Exception or LogEntry tables will contain
NULL within the SerializedIIdentityXml column. In previous releases, any generic Exception type would
simply not be published and this was fixed in build 1.0.0.60.

The above limitations are in actual fact limitations of the serialization capabilities of the SoapFormatter class
which is located within the System.Runtime.Serialization.Formatters.Soap namespace.

Other serialization alternatives are presently being explored although the XmlSerializer class is unable to handle
serialization of objects implementing the IDictionary interface. When serializing types inheriting from the
System.Exception base class this is a major problem because the Data property is itself an IDictionary.

Alternatively, the new serialization capabilities within the .NET Framework 3.0, specifically within the Windows
Communication Foundation, require you to specify the known types using the KnownTypeAttribute. This also is
not appropriate given we cannot at compile time know all of the known types for which serialization may be
required.

Figure 13. S

Figure 14. S

SQL Server 200

SQL Server 200

08 Managemen

08 Managemen

nt Studio show

nt Studio show

wing the result

wing the result

 of running the

 of running the

e T-SQL in listi

e T-SQL in list

ing 2.

ting 2.

Build Requirements

1. Visual Studio 2010 Ultimate or Visual Studio 2008 Team Suite.
2. Visual Studio Tools for Silverlight 3.0
3. Reactive Extensions for .NET5
4. Typemock Isolator 20106

Changes since CodePlex.Diagnostics 2.0.0.4

1. ExceptionProvider class is now obsolete and has been replaced by the extension methods defined within
the ExceptionExtensions class.

2. LoggingProvider class is now obsolete and has been replaced by the extension methods defined within
the StringExtensions class.

3. SqlExceptionProvider class has been replaced by the Entity Framework model contained within the
CodePlex.Diagnostics.Model project.

5 Reactive Extensions are only required when building the CodePlex.Diagnostics framework using Visual Studio
2008 as the framework uses the AggregateException and Parallel classes.
6 Typemock Isolator 2010 is used as a mocking framework within the CodePlex.Diagnostics.UnitTests project
although an alternative build of the framework will be available using the Moles framework from Microsoft
Research.

