CodePlex.Diagnostics

Version 1.0.0.95

Introduction

Welcome to the first release of the CodePlex.Diagnostics framework, designed to enable exception publication
and logging through components based upon the ASP.NET 2.0 provider design pattern.

Using this framework you can write your applications and defer the decision of which exception providers will be
used to publish exceptions until deployment time. In this release, the SqlExceptionProvider publishes the
exceptions to a SQL Server 2005 database. The database T-SQL creation script is included within the
CodePlex.Diagnostics Visual Studio 2005 solution.

Use of SQL Server 2005, as opposed to previous releases, is important because it allows the exceptions to be
serialized using the SoapFormatter class. The Soap encoded exceptions are then stored within the database using
the new Xml column type. Columns are included within the Exception table for most properties within the base
System.Exception type but the serialized exceptions are there to allow a developer to browse through any
additional information provided by exceptions that are either directly or indirectly derived from the
System.Exception base type. In most cases the properties within System.Exception have corresponding
columns within the Exception table; the TargetSite property however has a corresponding TargetSite table.

Central to the CodePlex.Diagnostics framework is the static ExceptionProvider class shown in the following
Visual Studio 2005 class diagram. As you can see, the ExceptionProvider contains a single method which requires
two arguments. The first argument is the exception to be published and the second argument is the IIdentity
representing the user on whose behalf the code was executing. Within a Windows Forms application this is usually
the WindowsIdentity of the current user, however within an ASP.NET application an IIdentity representing the
user who is authenticated to the Web site should be provided.

| ExceptionProvider &
: Static Class

= Methods

1
1
: ‘% Publish{Exception ex, IIdentity identity) : Guid

Figure 1. ExceptionProvider class.

Another central type within the CodePlex.Diagnostics framework is the static LoggingProvider class, shown in
the next class diagram, which provides logging capabilities. As with the publication of exceptions, the
LoggingProvider class is designed to allow the decision of where log entries should be persisted to be deferred
until deployment time. The default SqlLoggingProvider class persists log entries within the same SQL Server
2005 database.

__ -
| LoggingProvider E3N
: Static Class :
I]
| & Methods 1
1

l ‘% Loag(string entry,LoggingPriority priority, LoggingTypetype, IIdentity identity): Guid :
N e .

Figure 2. LoggingProvider class.

When using the static LoggingProvider class, the log entry is simply a System.String, however you must also
determine the priority of the entry and the type of information the entry provides. The LoggingPriority
enumeration allows you to indicate that the entry is of Low, Medium, High, or Critical priority. Additionally, using
the LoggingType enumeration, the log entry can be described as Information, Warning’s or an Error. The fourth
argument that the Log method expects is the IIdentity which, as with the ExceptionProvider, represents the
user on whose behalf the code was executing.

LoggingPriority B3 LoggingType &
Enum Enum

Low Information

Medium Warning

High Error

Critical

Figure 3. LoggingPriority and LoggingType enumerations.

Default Providers

The CodePlex.Diagnostics framework contains default exception and logging provider classes although you are
free to construct other exception and logging providers, and then configure the framework accordingly. The default
exception and logging providers are the SqlExceptionProvider and SqlLoggingProvider classes, these providers,
as mentioned previously, store the exceptions and log entries within a SQL Server 2005 database. Figure 4 provides
a Visual Studio 2005 class diagram depicting these two classes.

" ProviderBase =
Abstract Class
o 1

= Properties
ﬁ Description { get; } : string
ﬁ Name { get; } : string
= Methods
4 Initialize(string name, NameValueCollection config) : void
" ProviderBase()

'.Ioggingpmride.rﬂaw @3 " ExceptionProviderBase)
Abstract Class Abstract Class
= ProviderBase = ProviderBase
[= Fields [= Fields
@ m_context : LoggingContext @ m_context : ExceptionContesxt
= Properties = Properties
g LoggingContext { get; set; } : LoggingContext g ExceptionContext { get; set; } : ExceptionContext
= Methods = Methods
‘4 Createlnstance(): LoggingProviderBase 4 Createlnstance() : ExceptionProviderBase
9 Logfobject context) : void "% ExceptionProviderBase()
-4p Log(string entry, LoggingPriority priority, LoggingType type, lidentity identity) : void ¢ GetHResult(Exception ex) : int?
% LoggingProviderBase) ‘4 GetlsTransient(Exception ex) : bool?
d o PublishiException ex, lldentity identity) : void

oy Publishiobject context) : void

i

~ ™
SqlLoggingProvider & SqlExceptionProvider &
Sealed Class Sealed Class
= LoggingProviderBase =¥ ExceptionProviderBase
= Methods = Methods
4 Log{object context): void “4 Publish{Exception ex, IIdentity identity) : void
“4 Log(string entry,LoggingPriority priority,LoggingType type, IIdentity identity): void 4" Publish(Exception ex, IIdentity identity, ref int? innerExceptionId) : void

“4 Publish{object context) : void

Figure 4. SqlExceptionProvider and SqlLoggingProvider types.

Within the System.Configuration assembly resides the System.Configuration.Provider namespace which is
where you'll find the ProviderBase abstract base class shown in figure 2. The ProviderBase class forms the
foundation for the ASP.NET 2.0 Provider design pattern, upon which this frameworks design is based.
Subsequently, the LoggingProviderBase and ExceptionProviderBase abstract classes allow you to define
specific providers such as the aforementioned default providers.

Configuration

Configuration of the CodePlex.Diagnostics framework is achieved using the application domain’s configuration
file (e.g. App.config or Web.config). Some additional sections, within which, are required to allow the framework
to determine the correct exception and logging providers at runtime. For an example of the Xml configuration
sections required by the framework you should examine the App.Config from the unit test project
CodePlex.Diagnostics.External.UnitTests.

Although these additional Xml sections are required within the App.Config or Web.Config for the framework to
determine the correct providers, it is also permissible to omit them entirely. Essentially, the framework is designed
to operate in a ‘fire and forget mode which implies that if the publication of an exception or log entry fails then the
calling code itself will be unaware of this failure. This is by design, because at no time should the use of this library
inhibit the calling code itself.

Assuming you have access to the Visual Studio 2005 Team Developer or Visual Studio 2005 Team Suite editions
then it is suggested that you use the various unit test projects included within the CodePlex.Diagnostics
solution. Once Visual Studio 2008 is released the Professional edition will also contain support for unit testing.

These unit test projects show the intended use of the various types defined within the library and the App.config
from the unit test project is a good starting point for using the framework within your own projects. If you have
other versions of Visual Studio 2005 (including the express editions), yowll still be able to use the framework
although some of the projects within the solution might not function due to the limitations within the particular
edition you are using,

Once you've installed the CodePlex.Diagnostics library, using the setup program that is included with the
solution, the CodePlex.Diagnostics library will appear as an option within the Visual Studio 2005 / Visual
Studio 2008 “Add Reference” dialog (see figure 5).

NET | COomM I Projects | Browse | Recent|

Component Name Version Runtime

Accessibility 2000 v2.0.50727 C:\Wir1do1..\ts'|—I
adodb 7033000 vl14322 C:\Program
adodb 7.0.3300.0 v11.4322 C\Program
adodb 7.03300.0 vi14322 C:\Program
Analysis Management Obj.. 9.0.242.0 v2.0.50727 C:\Program
| CodePlex.Diagnostics 1,0.0.95 v2.0.50727 C:\Program
CppCodeProvider 8000 v2.0.50727 C:\Program
CppCodeProvider 8.0.00 v2.0.50727 C\Program
cscompmgd 8.0.00 v2.0.50727 C\Windows
CustomMarshalers 2000 v2.0.50727 ChA\Windows'

dac 10045040 v1.0.3705 C\Program =
< m

Figure 5. Visual Studio 2008 Add Reference dialog showing the CodePlex.Diagnostics library.

Assuming you create a C# Console Application and add a reference to the CodePlex.Diagnostics library, then
you can then use the following code to test the publication of exceptions and logging events to the supplied
CodePlex.Diagnostics database. If you haven't done so already, run the database creation script that is included
within the source code for the library within SQL Server 2005 Management Studio.

using System;

using System.Security;
using System.Security.Principal;

using CodePlex.Diagnostics;
using CodePlex.Diagnostics.Providers;

namespace CodePlex.Diagnostics.Samples
{

public static class Program

{

#region private static void Main(string[] args)

/// <summary>
/// Program entry point.
/// </summary>
/// <param name="args">
/// An array of <see cref="T:System.String"/> containing the command line arguments.
/// </param>
[STAThread]
private static void Main(string[] args)
{

try

{

for (int index = ©; index < 1@; index++)

{
}

index /= index;

}

catch (DivideByZeroException ex)

{
ITIdentity identity = WindowsIdentity.GetCurrent() as IIdentity;

ExceptionProvider.Publish(ex, identity);

}

Console.ReadLine();

}

#endregion

}

Listing 1. Sample C# Console Application to publish an exception using the static ExceptionProvider class.

You'll also need to add the appropriate Xml nodes to the App.config which can be copied from the App.config
within the CodePlex.Diagnostics.External.UnitTests project, remembering to change the SQL connection
string to reference the server upon which you installed the CodePlex.Diagnostics database.

Using SQL Server 2005 Management Studio (or other similar tools), youw'll observe the data that was collected when
the DivideByZeroException was caught and subsequently published to the CodePlex.Diagnostics database
using the ExceptionProvider class.

USE [CodePlex.Diagnostics]

SELECT * FROM Exception

SELECT * FROM LogEntry

SELECT * FROM AppDomain -- new in build 1.0.0.8
SELECT * FROM Assembly -- new in build 1.0.0.8
SELECT * FROM GraphicsProcessor -- new in build 1.0.0.15
SELECT * FROM Machine -- new in build 1.0.0.15
SELECT * FROM MachineGraphicsProcessor -- new in build 1.0.0.15
SELECT * FROM MachineProcessor -- new in build 1.0.0.15
SELECT * FROM Processor -- new in build 1.0.0.15
SELECT * FROM TargetSite

SELECT * FROM Thread -- new in build 1.0.0.8
SELECT * FROM WorkItem -- new in build 1.0.0.60
SELECT * FROM TeamFoundationServer -- new in build 1.0.0.60

Listing 2. Simple T-SQL select statements to show the content of the various tables used by the framework.

If all went according to plan then you should see something such as the screenshot of SQL Server 2005 Management
Studio found in figure 7 which is on the last page of this document, although possibly containing only a single
exception. In build 1.0.0.60, new WorkItem and TeamFoundationServer tables were added to the database to
enable exceptions and log entries to be promoted to Team Foundation Server work items. These tables are merely
place holders for future functionality which will be enabled within the forthcoming Diagnostics Studio smart-
client application.

PublishedException

The CodePlex.Diagnostics framework includes three new Exception types that can be used to either control the
behavior of the framework or add additional meta-data regarding the exceptions that were caught and
subsequently published. The first of these new Exception types is the PublishedException class which is shown
along with the ThreadException and UnhandledException in figure 6.

The code fragment in listing 3 shows how the DivideByZeroException can be thrown again as the inner-exception
of a PublishedException, ensuring that the original exception is published only once by the ExceptionProvider.
Subsequent calls to the class ExceptionProvider, further up the call stack, will ignore an exception that has
already been published.

catch (DivideByZeroException ex)

{
IIdentity identity = WindowsIdentity.GetCurrent() as IIdentity;
Guid publicationId = ExceptionProvider.Publish(ex, identity);
throw new PublishedException(publicationId, ex);

}

Listing 3. Using the PublishedException class to indicate an exception has already been published.

ThreadException

In addition to the aforementioned PublishedException, the framework also contains the new ThreadException
class, which indicates that the exception was caught within an event handler for the ThreadException event. The
ThreadException event is located within the Application class from the System.Windows . Forms namespace.

UnhandledException

Finally, the framework contains the new UnhandledException class, which indicates that an exception was caught
within an event handler for the UnhandledException event. The ThreadException event is located within the

AppDomain class.

AppDomain.CurrentDomain.UnhandledException += delegate(object sender,
UnhandledExceptionEventArgs e)

{
Exception ex = e.ExceptionObject as Exception;
IIdentity identity = WindowsIdentity.GetCurrent() as IIdentity;
ExceptionProvider.Publish(new UnhandledException(ex), identity);
s

Listing 4. Using the UnhandledException class to indicate an exception was unhandled.

(f ISerializable

_Bxception
UnhandledException & Exception &
Sealed Class Class
=% Exception -3
[= Properties
= Pl ﬁ Data { get; } : IDictionary
‘i GetObjectData{SerializationInfo info, StreamingContext context) : void ﬁ HelpLink { get; set; } 2 string
“4 UnhandledException(Exception inner) ng HResult { get; set: 3+ int
2% UnhandledException(SerializationInfa info, StreamingContext context) Tﬁ InnerException § get; } : Exception
ﬁ Message | get; } = string
ﬁ Source { get; set; } : string
ﬁ StackTrace { get; }: string
P - 5 Targetsite { get; }: MethodBase
PublishedException & = Methods
Sealed Class § .
b Excaption 4 Exception{)
% Exception(SerializationInfo info, Streaming Context context)

= Fields v Exception{stringmessage)

Exception{string message, Exception innerException)

¢ m_publicationld : Guid % GetBaseBException() : Exception
= Properties ¢ GetObjectData{SerializationInfo info, StreamingContext context) : void
5 PublicationId { get; } : Guid 9 GetType(): Type
= Methods & ToString() : string
‘i GetObjectData(SerializationInfo infa, StreamingContext contaxt) : void T
‘4 PublishedException(Guid publicationId,Exceptioninner) T
&% PublishedException(SerializationInfo info, Streaming Context context)
J

rmreadExoeptinn 3
Sealed Class
=% Exception

= Methods
‘i GetObjectData(SerializationInfo infa, StreamingContext contaxt) : void
‘4 ThreadException(Exception inner)
2% ThreadException(SerializationInfo info, StreamingContext context)

Figure 6. New Exception types contained within the framework.

Limitations

In this release, the internal ExceptionSerializer and IIdentitySerializer classes, which are responsible for
creating the Soap encoded Xml which is stored within the Exception and LogEntry tables, are unable to serialize
objects if either of the following conditions is true:

1. Supplied Exception | IIdentity is not serializable which is determined by checking the IsSerializable

property of the NET Framework Type class.
2. Supplied Exception | IIdentity is generic, which determined by checking the IsGeneric property of the

NET Framework Type class.

In both of these instances, the appropriate column within either the Exception or LogEntry tables will contain
NULL within the SerializedIIdentityXml column. In previous releases, any generic Exception type would
simply not be published and this was fixed in build 1.0.0.60.

The above limitations are in actual fact limitations of the serialization capabilities of the SoapFormatter class
which is located within the System.Runtime.Serialization.Formatters.Soap namespace.

Other serialization alternatives are presently being explored although the XmlSerializer class is unable to handle
serialization of objects implementing the IDictionary interface. When serializing types inheriting from the
System.Exception base class this is a major problem because the Data property is itself an IDictionary.

Alternatively, the new serialization capabilities within the NET Framework 3.0, specifically within the Windows
Communication Foundation, require you to specify the known types using the KnownTypeAttribute. This also is
not appropriate given we cannot at compile time know all of the known types for which serialization may be
required.

i MomonSQUSenmrMangementStio L B
Ble Edt Yew Quey Poject Jook Yindow Communty Help
ooy B BDEHR SHALS BOBE S

%3 1| CodePlexDingnosti - BRee v 5 D@2 81060 QEO
S 8K DougHolund PCCo..- SQUQuerylsar o
Connect~ | % » USE [CodePlex.Diagnoatical x
@ 1 DougHoltand-PC (SQL Serves 9.0.3042 - Doug r
& [Databases -
1 [System Databases W l v
[Database Snapshots
@ (3 AdventureWorks
@ (3 AdventureWorksOW Vioktemid Publcanonid Jasenblyld TogeSteld Theodd AppDomanid Mschneld Processid ExceptonType Weblrk WRes# osfestonk sTrarsent Message
5 [J CodePrexDiagnostics N BCICBEDC5564871-ASEIODBEAFE 10804 1 1 1 1 1 1 Spetem DivdeByZeroExcepbon NULL 217352558 NULL Atempted to dhve by zere
@) ReportServer N BCICBEMLS56-4371 10804 1 N 1 1 1 2 ‘System Reflecton TerpetivocstonExcepbon NULL 2146232828 1 o Excegtion has been thrown by the tst
% 1] ReportSenvesTempD8 oL 1 1 2 1 1 3 System Orvdby ZeroSception NULL 2147362868 NULL 0 Atemoted o dde by e
@ [Securty o 1 N 2 1 1 4 Syatem Feflscton TaetimocsionSrcegton NULL 2146232628 3 0 Excepton has been hrow by the
s (3 Server Objects N 2 1 1 3 1 1 5 Systom DivdoBy ZooExcestion NULL 217352658 NULL 0 Atomoted o cve by 200
@ [Rephcation Nuw 12E 1 N 3 1 1 6 CodePlex Dagrosecs UnhandedException NULL 2146233088 5 ° An urhandied exception has been th
@ 3 Management NULL 8300884BSTIC41DABGACFRSHFFR 1 1 4 l 1 7 Syatem Oy ZeroException NULL 2172558 NULL 0 Atempted o dvde by e
5 (24 Notication Services NULL BS00BBABSTICAIADAMBEACFESEFFR2 1 [T TR 1 1 7 CodePlex Dagromes ThesdBomstion UL 214230088 7 0 0 exceptin s bean throan anc
@ (3 SQL Server Agent = i
Wordemid Publcstonid Assestiyid Theadd AppDomenkd Machneld Processd Logirey Proy Ty SensizediiderttyXel Iiderttytiame lderttylsiutherticsied Ideretyius
AL ' s 1 ' s HeloWold 3 2 <SDAPENVEnveiopesmbaxsen/Sonundonl. DougHelandPC\Dos Helend 1 NTLH
e — - e '
AppDomanid Concusencyd ‘BaseDrectory Domanianager Feendhdiame. I.. Crested
c nuL UntTestAdspterDloman_ForC\CodePex Diogrostics. 2 200801115 16:00.22.240
CodeBaee EntryPort FuliName HosCortent. Location. MardestModie
ot/ NULL CodePlex Dagrostcs Bxtemal Ui Tests, Versen . 0) V2050727 CCodaPlx c
il o
Deveed Name = Ftleghiemary Crosted
NG 71511698 2080115 160022210
Machnetiame Mochre Phgses OSeen ProcessaCout Instalediemay rasledMemonSpeed Cremed
102 1504357503 Ut 4 us2 w0 2080115 16002207
Devic. Achtectoe Name Deecription Manufacturer Cores Created
] 0:0000000000000702 CPWO 9 oRIConTM20ACPU @ 266GH: EMGAT Famiy 6 Model 15 Sepping 7 Genuneltel & 20080115 160022117
sfostact IsAssembly IsConstructor lsFamily IsFinal IsPrvate sPubhc BSpecallame isStatc isVimal Crested
o o 0 o o L] o 1 o 1 0 o L 200801-15 160022290
live lBackgound eThveadPooiThveed ManagedTheadkd Name ooy TrmsdSite CumertCitre CurertUCulire Crated
1 0 L] ApseteMgThead! Nomal Backgound. WatSleeplon enUS «-us 20080115 16:0022 240
1 0 2 KoxetallgThesd! Nomd Backgound. ViskSeepkon enUS s 20080115 160022757
1] % AdpsetxeMgThead] Nomd Backgound, WatSeepon enlUS s 20080115 16:0023 127
1 o 2 AdpsterfxeMgThread] Nommal Backgound, WatSleeplon enUS eoUs 200801-15 16:00.23.360
& 0 2 AdpsterExegrThveed] Nommsl Backgound, WatSleeploin en-US s 200801-15 16:00.23 627
Woktenkd Concurencyld TeanfoundstonSeverd Created
TesmFoundstionServerld Concumencyld Un Crested
l —— + | @ Query executed successlly. 2 00:0000 2rows
Ready Lng Col 34 [b2 NS

Figure 7. SQL Server 2005 Management Studio showing the result of running the T-SQL in listing 2.

