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PREFACE

AMPS is a very general program for analyzing and designing transport in microelectronic and
photonic structures. It differs from other transport analysis programs such as PICES in a number
of ways. Among them are its ability to handle any defect and doping energy gap and special
distribution, its incorporation of S-R-H and band-to-band recombination, its incorporation of
Boltzmann and Fermi-Dirac statistics, its ability to handle varying material properties, its very
general treatment of contacts, and its ability to handle transport in devices under voltage bias, light
bias, or both.

This manual for AMPS-1D is intended for those using our window ‘95/NT version. We apologize
in advance for the fact that this manual will get out of date but, as we are sure you understand,
AMPS is a constantly growing, developing package. However, most of what is said here will
remain valid and should be useful.

AMPS would not exist without the support of the Electric Power Research Institute. In particular
it would not exist without the encouragement, guidance, and questioning of Dr. Terry Peterson of
EPRI and without the vision of Dr. Ed DeMeo and Dr. John Crowley.

Stephen Fonash
Electronic Materials and Processing Research Laboratory
Penn State University
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CHAPTER 1
INTRODUCTION

1.1 AMPS and Its Features

This manual is an introduction to a very general, one-dimensional computer program for simulating
transport physics in solid state devices. It uses the first-principles continuity and Poisson’s
equations approach to analyze the transport behavior of semiconductor electronic and opto-
electronic device structures. These device structures can be composed of -crystalline,
polycrystalline, or amorphous materials or combinations thereof. This program, called AMPS
(Analysis of Microelectronic and Photonic Structures), numerically solves the three governing
semiconductor device equations (the Poisson equation and the electron and hole continuity
equations) without making any a-priori assumptions about the mechanisms controlling transport in
these devices. With this general and exact numerical treatment, AMPS may be used to examine a
variety of device structures that include

«  homojunction and heterojunction p-n and p-i-n, solar cells and detectors;

« homojunction and heterojunction p-n, p-i-n, n-i-n, and p-i-p microelectronic structures;
«  multi-junction solar cell structures;

«  multi-junction microelectronic structures;

+ compositionally-graded detector and solar cell structures;

« compositionally-graded microelectronic structures;

+ novel device microelectronic, photovoltaic, and opto-electronic structures;

+  Schottky barrier devices with optional back layers.

From the solution provided by an AMPS simulation, output such as current voltage characteristics
in the dark and, if desired, under illumination can be obtained. These may be computed as a
function of temperature. For solar cell and detector structures, collection efficiencies as a function
of voltage, light bias, and temperature can also be obtained. In addition, important information
such as electric field distributions, free and trapped carrier populations, recombination profiles,
and individual carrier current densities as a function of position can be extracted from the AMPS
program. As stated earlier, AMPS’ versatility can be used to analyze transport in a wide variety of
device structures that can contain combinations of crystalline, polycrystalline, or amorphous
layers. AMPS is formulated to analyze, design, and optimize structures intended for
microelectronic, photovoltaic, or opto-electronic applications.

A comparison of AMPS with other known programs shows that AMPS is the only computer
modeling program available that incorporates all of the following physics:

+ a contact treatment that allows thermionic emission and recombination to take place at
device contacts;
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a very generalized gap state model that can fit any density of states distribution in the
bulk or at an interface;

both band-to-band and Shockley-Read-Hall recombination;

a recombination model that computes Shockley-Read-Hall recombination traffic
through any inputted general gap state distribution instead of the often-used single
recombination level approach;

full Fermi-Dirac, and not just Boltzmann, statistics;

gap state populations computed with actual-temperature statistics rather than the often
used T=0K approach;

a trapped charge model that accounts for charge in any inputted general gap state
distribution;

a gap state model that allows capture cross-sections to vary with energy;
gap state distributions whose properties can vary with position;

carrier mobility that can vary with position;

electron and hole affinities that can vary with position;

mobility gaps that can differ from optical gaps;

the ability to calculate device characteristics as a function of temperature in both
forward and reverse bias as well as with or without illumination;

the ability to analyze device structures fabricated using single crystal, polycrystalline,
or amorphous materials or all three.

1.2 About This Manual

This manual assumes the user has completed an introductory course in semiconductor device
physics and is familiar with mathematical concepts such as Poisson’s equation and the continuity
equations. A working knowledge of numerical methods is helpful, but not actually required for
working with the AMPS program. This manual explains the approach used in AMPS for

modeling of hole and electron transport, including a discussion of the basic equations
and solution techniques (Chapter 2);

parameterizing material properties (Chapter 3)
+ semiconductor materials

+ insulators

+ metals

+ interfaces

«  materials with position dependent properties;
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« running programs to obtain band diagrams in thermodynamic equilibrium and for
running programs for devices under voltage, light bias, or both (non-thermodynamic
equilibrium) (Chapter 5).

The manual begins by using the introductory chapter to offer a brief overview of AMPS, and to
present some examples of its capabilities. Chapter 2 can be skipped but it has been included in this
manual for those who are interested it discusses the physical and mathematical bases of the
simulation programs. Chapter 3 discusses parameterizing material properties and it shows that
close attention must be given to the particular types of materials the user intends to “build” his or
her structure. The AMPS programs will ask the user to input these specific parameters. Chapter 4
describes the heart of AMPS: the procedures for obtaining the detailed physics and terminal
characteristics of devices under voltage bias, light bias, or both.

1.3 An Overview of How AMPS Works

In briefly overviewing our methods of modeling microelectronic and opto-electronic devices, we
first note that the physics of device transport can be captured in three governing equations:
Poisson’s equation, the continuity equation for free holes, and the continuity equation for free
electrons. Determining transport characteristics then becomes a task of solving these three coupled
non-linear differential equations, each of which has two associated boundary conditions. In
AMPS, these three coupled equations, along with the appropriate boundary conditions, are solved
simultaneously to obtain a set of three unknown state variables at each point in the device: the
electrostatic potential, the hole quasi-Fermi level, and the electron quasi-Fermi level. From these
three state variables, the carrier concentrations, fields, currents, etc. can then be computed. To
determine these state variables, the method of finite differences and the Newton-Raphson technique
are incorporated by the computer. The Newton-Raphson Method iteratively finds the root of a
function or roots of a set of functions if given an adequate initial guess for these roots. In AMPS,
the one-dimensional device being analyzed is divided into segments by a mesh of grid points, the
number of which the user decides. The three sets of unknowns are then solved for each particular
grid point. We note that AMPS allows the mesh to have variable grid spacing at the discretion of
the user. As noted, once these three state variables are obtained as a function of x, the band edges,
electric field, trapped charge, carrier populations, current densities, recombination profiles, and any
other transport information may be obtained.

1.4 Examples of AMPS Output

The following examples illustrate the different types of semiconductor structures that AMPS can
simulate and also give a sampling of the output information AMPS can generate. These are just
two straight-forward examples intended to give the reader some indication of the power and
versatility of AMPS.

1.4.1 An example — a Al ;Ga,,As/GaAs Heterojunction Diode

Figures 1-1. and 1-2. give the room-temperature current-voltage characteristic in forward and
reverse bias and the band structure in thermodynamic equilibrium for an Alj;Ga,,;As/GaAs p-n
heterojunction diode. The doping happens to have been taken to be 10'° cm™in both layers.
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Figurel-1 Current-Voltage characteristic in forward and reverse bias.
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Band Diagram
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Figurel-2 Band structure in thermodynamic equilibrium.

Figure 1-3. shows the space charge at -1, 0, and +1 volts (i.e., forward, zero, and reverse biases,
respectively). This example demonstrates how AMPS can be used to determine the amount of
charge transfer in the space charge regions of heterojunction structures and the widths of these
space charge layers as a function of bias. The current-voltage characteristic, along with other
output from AMPS, can be used to determine how different transport mechanisms become
important at different magnitudes of forward and reverse bias.
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Electric Field
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Figure 1-3 Spatial dependence of the electric field at three different bias voltages.
-1V, 0V, 1V.

1.4.2 An Example — a Triple Junction Solar Cell

Figure 1-4. gives the illuminated current-voltage characteristic and the cell performance values
obtained from AMPS simulation of an a triple p-i-n solar cell. The density of states used to model
the a-Si:H materials consists of exponential tail states and midgap states. Fig 1-5. shows the band
diagram of this complicated cell in thermodynamic equilibrium. Figure 1-6 shows the electron and
hole lifetime at open circuit voltage. This example illustrates AMPS usefulness in determining the
transport mechanisms controlling cell performance and in optimizing cell design. In addition, this
final example also highlights the versatility of AMPS by demonstrating its ability to model
complicated structures with many layers of different materials.
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Figure 1-4. Illuminated current-voltage characteristic and cell performance values for this triple junction solar cell.
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Figure 1-5. Band diagram of this triple junction in thermodynamic equilibrium.
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CHAPTER 2
MATHEMATICAL MODELING & SOLUTION TECHNIQUES

2.0 Introduction

As noted in Chapter 1, this chapter may be skipped. It is intended for those who want to “open
AMPS up and get an idea how it ticks.”

Understanding of how AMPS “ticks” begins by noting that with the continuum approach used in
AMPS, the physics of device transport can be captured in three governing equations: Poisson’s
equation, the continuity equation for free holes, and the continuity equation for free electrons.
Determining transport characteristics then becomes a task of solving these three coupled non-linear
differential equations subject to appropriate boundary conditions. These three equations and the
corresponding boundary conditions, along with the numerical solution technique used to solve
them, will then be the subject of this chapter.

We assume in AMPS that the material system under examination is in steady state. That is, it is
assumed that there is no time dependence. It follows that the terminal characteristics generated by
AMPS are the quasi-static characteristics.

2.1 Poisson’s Equation

Poisson’s equation links free carrier populations, trapped charge populations, and ionized dopant
populations to the electrostatic field present in a material system. In one-dimensional space,
Poisson’s equation is given by

du’
Cf—x(-ax) — ) = [PO-N()+ND (0-N . (0)+pr()-ng()]

where the electrostatic potential W' and the free electron n, free hole p, trapped electron n¢, and
trapped hole pt, as well as the ionized donor-like doping Np* and ionized acceptor-like doping Na-

concentrations are all functions of the position coordinate x. Here, € is the permittivity and q is the
magnitude of the charge of an electron.

Since band diagrams show the energies allowed to electrons and since the electrostatic potential W'
is defined for a unit positive particle, the use of ' in the above equation can be inconvenient. The
local vacuum level E,,, which is the top or escape energy of the conduction band, varies only due
to the presence of an electrostatic field [1]. Its derivative, therefore, is proportional to the
electrostatic field €. In fact, if we remember to measure the position of the local vacuum level from
a reference using the quantity W measured in eV, then § = dW/dx. As seen in Fig. 2-1, AMPS uses
W not W' and always chooses the reference for W to be the position of the local vacuum level in the
contact at the right hand side of any general device structure. With this particular example in Fig.
2-1 of a Schottky barrier W, as we have defined it, is seen to be a negative quantity in much of the
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n* back-contact layer and a positive quantity essentially through the remainder of the device.
Using this way of locating the local vacuum level and remembering that its spatial derivative is the
electrostatic field allows us to rewrite Poisson’s equation in terms of the local vacuum level W
measured in eV. This gives

d
{507 ) = P00 N 0N (o)) @

Equation (2.1) is the form of Poisson’s equation that AMPS uses.

Having settled on a formulation of Poisson’s equation that will be convenient, we now realize that
AMPS needs expressions for the six new dependent variables n, p, ng, pt, Np*+, and N,- introduced
in Equation 2.1.

- W
o

\_
SRS

" ) ) ) "
EG
\ Ev
1

+
n layer _p  -—

dbo

x=0 x=L
Figure 2-1. A band diagram of a Schottky barrier in thermodynamic equilibrium.

2.1.1 The Delocalized (Band) State Populations n and p

Assuming that a parabolic relation between the density of states N(E) of the delocalized states of
the bands and the energy E - measured positively moving away from either band edge - exists such
that N(E) « E'? the free carrier concentrations in thermodynamic equilibrium or under voltage
bias, light bias, or both are computed in AMPS using the general expressions [2]

E.-E,

n=NcF, exp<£—T) (2.1.1a)
E-E

p=NF,, exp( = F) (2.1.1b)

These general expressions allow for the possibility of degeneracy; i.e. AMPS includes both Fermi-
Dirac and Boltzmann statistics. In these expressions N and Ny are the band effective densities of
states for the conduction and valence bands, respectively. In AMPS these are user chosen material
parameters. For crystalline materials they are given by [2]
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2mm, kT
Ne=2| == (2.1.1c)

27my, kT 32
Ny = 2(—}12—) (2.1.1d)

where m,* is the electron effective mass, mp* is the hole effective mass, k is the Boltzmann
constant, and h is Planck’s constant.

The Fermi integral of order one-half appearing in Equation 2.1.1a and b is defined as [6]

o0

E1/2 dE
F =] 2.1.1
12(M) %{ T+ opE-1) (2.1.1e)

E"? where 1) - the Fermi integral argument - is expressed as

Er-Ec

Y]n:( T ) (2.1.19)
for free electrons and
EV'EF

np:( T ) (2.1.1g)

for free holes. We note that for n, > 3 or np, > 3, the function Fy, reduces to the corresponding
Boltzmann factors

Eq-E,
exp( o ) (2.1.1h)
or
E,E
exp( o F) (2.1.10)

In our formulation of AMPS we have chosen to write n and p in terms of Boltzmann factors yet to
allow the possibility of degeneracy and the need for Fermi-Dirac statistics. To do this we define
the Fermi-Dirac degeneracy factor y as

v = % 2.1.1j)
for free electrons and as

Vp = % (2.1.1k)
for free holes. With these definitions Equations 2.1.1a and 2.1.1b become

n = N¢Y¥pexpMp) (2.1.11)
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p = NyVhexp(np) (2.1.1m)
which are valid for degenerate as well as non-degenerate situations.

When a device is driven out of thermodynamic equilibrium by a voltage bias, a light bias, or both
the quantities n and p can still be computed using Equations 2.1.1a - 2.1.1e. It is only necessary to
replace the equilibrium Fermi-level E; with the quasi-Fermi level Eg, in Equation 2.1.1a and the
quasi-Fermi level Eg, in Equation 2.1.1b. This is what AMPS does in going from thermodynamic
equilibrium to cases with voltage bias, light bias, or both.

2.1.2 Localized (Gap) State Populations N,’, N,’, n, and p,

Having obtained expressions for the n and p terms appearing in Poisson’s equation, we must now
develop expressions for the other quantities contributing to the development of charge. Since we
have accounted for all the free charge, any additional charge must be in gap states.

In general there may be a variety of different types of gap (i.e., localized) states existing in the
energy gap of a semiconductor or insulator. AMPS breaks these into states that are inadvertently
present due to defects and impurities and into states that are purposefully present due to doping.
There may be donor-like and acceptor-like states among both classes. There may also be states
that are continuously distributed in energy or discretely distributed in energy in both classes.
AMPS allows for different distributions of these states at interfaces and at different places in the
bulk material.

In the case of the gap states which are not purposefully present, but are due to defects and
impurities, AMPS defines n, as being the number of charged acceptor-like sites per volume (i.e.,
trapped electrons) and p, as being the number of charged donor-like sites per volume (i.e., trapped
holes) in this class of states. In the case of the gap states which are purposefully present due to
doping AMPS defines N,- as being the number of ionized acceptor-dopant sites per volume.

Correspondingly N* is defined as being the number of ionized donor-dopant sites per volume.

2.1.2.1 Doping Levels (Np" and N4)

We turn first to the charge residing in localized doping levels. The doping levels in our usage
include gap states which are characterized by discrete levels and gap states that form a band with a
bandwidth defined by an upper energy boundary and a lower energy boundary. This latter case of
localized gap state bands can arise if heavy doping is present in a structure. It is important to note
that any combination of these two unique types of states is acceptable to AMPS (see section
2.1.2.1¢c). In any case, the total charge arising in these states can be represented by

Np" = Nup* + Npp" (2.1.2.1a)

for the donor-dopant levels and

Na =Ny + Ny, (2.1.2.1b)

for the acceptor-dopant levels. Here, Np™ and N~ seen in Poisson’s equation (Equation 2.1), are
the total charges arising from both the discrete and banded dopant energy levels. In these equations
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Ngp"~ and Ny, represent the total charge originating from discrete donor and acceptor
concentrations, respectively, while Ny," and Ny, represent the total charge developed by any
banded donor and acceptor levels, respectively.

2.1.2.1a Discrete Dopant Levels (Nqp;and Ng, ;)

Discrete localized dopant sites are located at single energy levels and arise from the intentional
introduction of impurities. These states are illustrated pictorially by Figure 2-2.

N

Donor Energy Level

Acceptor Energy Level
N(E)

Figure 2-2. Density of states plot representing discrete localized dopant levels. The donor levels are located
positively down from the conduction band and the acceptor levels are located positively up from the valence band.

~QAmzm
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The charge arising from a set of i of these discrete dopant states can be expressed as

Nop"= ¥ Nap; fo; (2.1.2.1¢)
i

if they are donor-like and from a set of j of these discrete dopant states as

Noy = Y Nayifaj (2.1.2.1d)
i

if they are acceptor-like. Here Nyp" and Ny, ,represent the discrete donor and acceptor charge,
respectively. We allow for a number of these levels in AMPS with volume concentrations of Nyp;
and Ny, ; corresponding to the donor level energy E, and the acceptor level energy E;, respectively.
The number of these doping sites per volume and their energy levels may even vary with position in
AMPS as specified by the user. The quantity fp; is the probability that a discrete-level donor site
of energy E; has lost an electron and f; is the probability that a discrete level acceptor site of
energy E; has gained an electron. In thermodynamic equilibrium, the occupation probabilities fp;
and f,; are represented by one minus the Fermi function and by the Fermi function, respectively.
That is, in thermodynamic equilibrium

f —L 2.1.2.1
D,i— EF' Ei ( I VN e)
1+exp< T )
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and

1

b= EE)

(2.1.2.19)
1+exp<—JFF

Under bias, however, the above two expressions must be modified. The occupation probabilities
now must be determined by the kinetics of electron capture and emission and hole capture and
emission for the doping level in question. Using the Shockley-Read-Hall (S-R-H) model for these
processes, and assuming that a donor-like discrete gap state of energy E; in the gap communicates
with the conduction band and the valence band only, allows us to write [1]

C)-pdDi.p + OndDi°Yni°n1i
fo, = (2.1.2.1g)
OndDi(n"'Yni'nli) + OpdDi(p"'Ypi'pli)

The corresponding expression for the j® discrete acceptor-like gap state of energy E; in the gap is

Ondan + OpdAi'Yp]'pli
fA,j = (2121h)
OndAj(n+Ynj'n1j) + OndAJ(p"'YpJ'le)

In these expressions Opdp,(E,) and Opqp,(E,) are the capture cross sections for electrons and holes of
the i donor-like discrete levels, respectively. OndAj(Ej) and OpdAj(Ej) are the capture cross section
for electrons and holes at the jhacceptor site, and nlk(Ek) and plk(Ek) are parameters that can be
expressed as

E,-E .

n, (E) = NCexp( = C) (2.1.2.1)
E, - E '

plk(Ek) = NVexp( VkT ) (2. 1 .2. 1J)

In Equation 2.1.2.1g the degeneracy factor Yni is given by

Fin(1n)
Yni =m (2.1.2.1k)
where the argument 1, is expressed as
E:-E;
Nn; =< KT ) (2.1.2.11)
Likewise, in Equation 2.1.2.1h the degeneracy factor for holes in the valence band is
Fi2(Mmn.)
o~y
Yoy = exp(Mn,) (2.1.2.1m)

where the argument npi is expressed as
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E.- E:
Mn, = (T) (2.1.2.1n)

We point out that our formulation for Nyy" and Ny, allows for degeneracy and allows for both S-
R-H and band-to-band recombination to be present. We note that Equations 2.1.2.1g and h can be
used in the form shown which involves the free carrier populations or they can be recast into an
alternative form which would be like Equations 2.1.2.1e and f with appropriately defined gap state
quasi-Fermi levels. Unfortunately the latter course of action necessitates, in general, defining a gap
state quasi-Fermi level for each discrete donor and acceptor level. In AMPS we avoid the use of
quasi-Fermi levels for each set of gap states and use Equations 2.1.2.1g and h for f,; and f; for
systems under bias and Equations 2.1.2.1e and f for f; and f,; for systems in thermodynamic
equilibrium.

2.1.2.1b Banded Dopant Levels (Nyp; and N, ;)

Banded localized dopant sites are located within an energy band which has a lower boundary E,
and an upper boundary E,. These energies are measured positively down from E¢ for donor states
and positively up from Ey for acceptor states. They are shown in Figure 2-3..

N

Donor Energy Level

E2
El1 x

Acceptor Energy Level

< QAmZm

B

-
N(E)

Figure 2-3. Density of states plot showing a band of dopant states. Energies for donor sites are measured positively
down to E; from the conduction band and those for acceptor sites are measured positively up to E; from the valence
band.

The charge arising from dopant states can be expressed as

NbD+= E NbD,i+ (2.1.2.10)

if they are donor-like states and as

Nba = E Nba; (2.1.2.1p)

if they are acceptor-like states. Here Ny, * and Ny,~ are the charges arising from the banded donor
and acceptor energy levels. We allow for a number of these banded levels with band i of donor-like
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states having a site concentration of Ny ;* and band j of acceptor-like banded states having a site
concentration of N, NE

Considering the i band of banded dopant donor states we assume the concentration across the
width of the band, defined by Wp; = Ex-Ei;, to be Nyp; states per volume. Hence, Ny ;* coming
from these states is

Ep.

N +—Nl‘f(EdE W, = Ey-E, >0 (2.1.2.1q)
bDi _WD'f D; ) > D; = 27k -l.2.1q

i .
Corresponding to the j" band of banded acceptor dopant levels, we obtain

Ey.
NA‘ i
- J
Noay = W, [ f®dE. W,=Ey-E>0 (2.1.2.11)
E

The quantity f,, is the probability that one of these dopant donor sites of energy between E and
E+dE has lost an electron and fbAi is the probability that one of these dopant acceptor sites of
energy between E and E+dE has gained an electron. In thermodynamic equilibrium, the occupation
probabilities fup, and fbAi are represented by the Fermi functions

1

fiop, = E.-E (2.1.2.1s)
1+exp<T>
and
1
fou; = E-Ep (2.1.2.11)
1+exp( T )

Once again, under bias the above two expressions must be modified. Under voltage bias, light
bias, or both the occupation probabilities are determined by the kinetics of electron capture and
emission and hole capture and emission. Using the Shockley-Read-Hall model for these processes,
and assuming that a donor-like banded gap state of energy between E and E+dE falling within the
band E,-E,; in the gap only communicates with the conduction band and the valence band, allows
us to write [1]

O] .op + O, oY ey,

pbp;*P nbp;* 'n;* 111

fiop; = : —— (2.1.2.1u)
Oani(n"'Yni'nli) + Opri(p"'Ypi'pli)

for the i banded donor-like gap state. The corresponding expression for the i banded acceptor-
like gap state of energy between E and E+dE is

Onbaj*n + OpbAi°Ypi'pli

OnbAj (n+Ynj'n 1 J) + OpdAi(p+ij.pli)

fou; = (2.1.2.1v)
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In these expressions O, (E) and Oy, (E) are the capture cross sections for electrons and holes of
the i donor-like band, respectively, OnbAj(E) and OpbAj(E) are the capture cross section for electrons
and holes of the j*" acceptor like band, and nlk(E) and plk(E) are the S-R-H parameters that can be
expressed as

E-E

n, (E) = Ncexp( = C) (2.1.2.1w)
Ey-E

pi (E) = Nvexp(lf—T) (2.1.2.1%)

2.1.2.1c Generalized Dopant Level Distributions

As indicated earlier, AMPS is capable of modeling any dopant gap state density of states
distribution N(E) that the user desires. This is accomplished by piecing as many banded and
discrete doping levels together as is necessary to represent N(E).  Figure 2-4. illustrates a
generalized distribution. Np" and Ny, as appropriate, are calculated as discussed above with each
“rectangle” used in the general distribution having the energy width and kinetic features (cross-
sections for communication with bands) specified by the user.

/7 Delocalized states of the
E conduction band.
c
E
N
E
R
G
Y
Ev
Delocalized states of the
valence band.

P

N(E)

Figure 2-4. Density of states plot representing a generalized distribution of dopant states.

2.1.2.2 Defect (Structural and Impurity) Levels (n, and p,)

We reiterate that we break gap states into those that are purposefully present (dopant states) and
those that are inadvertently present (defect states). We now consider the latter category and
examine how AMPS determines n, and p, residing in these defect levels.
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These states can be donor-like or acceptor-like, discrete and/or banded just like the dopant states of
the previous section and they can be distributed across the whole bandgap. In addition, they can
also be described by discrete levels and bands. AMPS also allows for continuous exponential,
Gaussian, or constant distributions across the band-gap for defect states. In any case, the total
charge arising in these states can be represented by

P, = Po,* Po+ P, (2.1.2.2a)

for the donor-like states and

n =ng +n, +0 (2.1.2.2b)

for the acceptor-like states. Here, the p, and n, seen in Poisson’s equation (Equation 2.1), are the
total charges arising from the discrete, banded, and continuous defect (structural or impurity)
energy levels. In these equations, ny4 and py represent the total charge, originating respectively
from discrete acceptor and donor concentrations, while n,, and py,, respectively, represent the total
charge developed by any banded acceptor and donor concentrations. Finally, n, and p,
respectively represent the total charge developed by any continuous (exponential, Gaussian, or
constant) acceptor and donor concentrations. In the case of the donor-like states, Poisson’s
equation shows that we need the number of these states per volume that have lost an electron or,
equivalently, have trapped a hole. For acceptor-like states, Poisson’s equation shows that we need
the number of these states per volume that have trapped an electron.

2.1.2.2a Discrete and Banded Defect (Structural and Impurity) Levels

The populations of discrete and banded defect levels arising from structural and/or impurity causes
are computed identically to the computation performed on discrete and banded dopant levels. This
computation has been outlined in Sections 2.1.2.1a and 2.1.2.1b. We stress, however, that AMPS
distinguishes between discrete and banded defect levels and discrete and banded doping levels in
the input, for the user’s convenience. Chapter 3 will further explore this versatility.

2.1.2.2b Generalized Defect (Structural and Impurity) Level Distributions

The number of trapped holes per volume p,, in continuous donor-like defect states is given by
Ec
Pe= [ & B)fp (E)E (2.1.2.2¢)
E

v

where gy(F) is the continuous distribution function or density of states per unit volume per unit
energy for the energy E in the gap. The quantity f,(E) is the probability that a hole occupies a
state located at energy E. In thermodynamic equilibrium f,(E) is given by the Fermi function in
Equation 2.1.2.1s - with the exception that the subscript i must be removed - whereas in non-
thermodynamic equilibrium (situations of voltage bias or light bias), it is given by Equation
2.1.2.1u (with i removed).

The number of trapped electrons per volume n,_ in these continuous acceptor-like defect states is

given by
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Ec
= (e B E}dE (2.1.2.2d)

Ey

where g, (E) is the distribution or density of these acceptor-like states per unit volume per unit
energy for the energy E in the gap. The quantity f, (E) is the probability that an electron occupies a
state located at energy E. In thermodynamic equilibrium, f, (E) is given by Equation 2.1.2.1t
whereas in non-thermodynamic equilibrium f, (E) is given by Equation 2.1.2.1v (provided the

subscript i removed from both equations). As noted earlier, the functions of gy(E) in Equation
2.1.2.2¢ and g,(E) in Equation 2.1.2.2d can be exponential, Gaussians or simply a constant. The
exponentials can be either acceptor-like tails coming out of the conduction band or donor-like tails
coming out of the valence band. The constant distribution can be of donor-like states from Ey, to
some energy E;, and of acceptor-like states (of another constant value) from E, to E,. Chapter 3
will continue discussion of these possibilities.

2.2 The Continuity Equations

Section 2.1 has provided expressions for all the quantities contributing to the charge in Poisson’s
equation. A close inspection of these expressions shows that they all are ultimately defined in
terms of the free carrier populations n and p. We now need more information on n and p to
determine how they change across a device and under different biases. The equations that keep
track of the conduction band electrons and valence band holes are the continuity equations. In
steady state, the time rate of change of the free carrier concentrations is equal to zero. As a result,
the continuity equation for the free electrons in the delocalized states of the conduction band has
the form

L,
q( dx) = -G, (x) + R(x) (2.2a)

and the continuity equation for the free holes in the delocalized states of the valence band has the
form

1),

q( dx) = G,(x) - R(x) (2.2b)
where J,, and J, are, respectively, the electron and hole current densities. The term R(x) is the net
recombination rate resulting from band-to-band (direct) recombination and S-R-H (indirect)
recombination traffic through gap states. Band-to-band recombination will be discussed in Section
2.2.2.1 and S-R-H recombination in Section 2.2.2.2. Since AMPS has the flexibility to analyze
device structures which are under light bias (solar cells, photodetectors) as well as voltage bias, the

continuity equations include the term G,,(x) which is the optical generation rate as a function of x
due to externally imposed illumination. This is discussed in Section 2.2.3.

2.2.1 Electron and Hole Current Density

Once again, we must develop expressions for the terms in a key equation. Before it was Poisson’s
equation; now it is the two continuity equations. Turning to J, and J, , we first note that transport
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theory allows that, even in cases where the electron population may be degenerate or the material
properties may vary with position, the electron current density J, can always be expressed as [1]

dEfn
Ih(x) = qynn(d—x) (2.2.1a)

where v, is the electron mobility and n is defined in Equation 2.1.1a.

Similarly, even in cases where the hole populations may be degenerate or the material properties
may vary with position, the hole current density still may always simply be expressed by [1]
dEf )

—P

Jp(x) = qypp( Ix (2.2.1b)

where pp, is the hole mobility and p is defined in equation 2.1.1b. It is important to note that
Equations 2.2.1a and 2.2.1b are very general formulations that include diffusion, drift, and motion
due to effective fields arising from band gap, electron affinity, and densities-of-states gradients [1].
Therefore, as noted earlier, AMPS is formulated to handle structures with varying material
properties including graded structures and heterojunctions.

2.2.2 The Recombination Mechanisms

There are two basic processes by which electrons and holes may recombine with each other. In the
first process, electrons in the conduction band make direct transitions to vacant states in the
valence band. This process is labeled as band-to-band or direct recombination Ry, (also known as
intrinsic recombination). In the second process, electrons and holes recombine through
intermediate gap states known as recombination centers. This process, originally investigated by
Shockley, Read, and Hall, is labeled indirect recombination R; or S-R-H recombination (also
known as extrinsic recombination). The model used in AMPS for the net recombination term R(x)
in the continuity equations takes both of these processes into consideration such that

R(x) = Rp(x) + Ry(x) (2.2.2a)

The sections to follow will discuss these two processes and their mathematical representations.

2.2.2.1 Direct (Band-to-band) Recombination

The model used in AMPS for direct or band-to-band recombination R,(x) assumes that, since this
recombination process involves both the occupied states in the conduction band and the vacant
states in the valence band, the total rate of recombination is given by [1]

R = PBnp (2.2.2.1a)

where 3 is a proportionality constant whic