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Introduction

Framework Symbology and Terminology

1. Response Value$he nodal segment calibration values are alsarned to as

response values.

2. C. ' and G Continuity C° refers to base function continuity® &fers to the

continuity in the first derivative, and*@efers to continuity in the second.

3. Parameterized Splinddere the space formulation is in the local varisphace that

spans 0 to 1 within the given segment — this is edéerred to as piece-wise
parameterization. This automatically renders theffament matrix banded (often tri-
diagonal)

4. Bias This is the left hand term in the Spline Objeetiunction — essentially
measures the exactness of fit.

5. VarianceThis is the right hand term in the Spline ObjeetiFunction — essentially

measures the curvature/roughness.

Motivation, Advantage and Purpose

1. Definitiort “Splineis a sufficiently smooth polynomial function thatpiecewise-
defined, and possesses a high degree of smoothtissplaces where the
polynomial pieces connect (which are knowrkasty. [Spline (Wiki), Judd (1998),
Chen (2009)]

2. Advantages

a. Lower degree, gets rid of oscillation associatet the higher degrees
[Runge’s phenomenon (Wiki)]

b. Easy, accurate higher degree smoothness sja¢icific



3. Applications

Polynomial interpolation

Function approximation

Surface/contour representation

Computer graphics

CAD

Functional Solution Proxy (Differential Equatior@ensitivity Jacobians etc)
Segment/span Calibration

Model Inference Extraction

Functional Basis Decomposition

Image/Signal processing

Finance (e.g., Curve Construction)

Literature Review

1. Basic SplineCovered in [Spline (Wiki), Bartels, Beatty, andrBky (1987), Judd
(1998), Fan and Yao (2005), Chen (2009), Katz (2011
2. History Schoenberg (1946), Ferguson (1964), Eppersor8j199

Purpose of the Document

N o o~ 0D RE

Spline design/SKU objectives, state-of-the arvay.
Calibration SKU establishment, and techniques
Spline type categorizations

Design objective match criteria establishment
Mathematical Local/global formulation

Jacobian

Span/Segment Control Parameters



8. Multi-dimensional Splines

9. Smoothing Spline / Variational Techniques

10. Surface Construction / Fitting / Image / ComtBepresentation
11. Spline Analytics software SKU partitioning ac@hstruction

12. APl Usage and Samples discussion



Spline Builder SKU

Design Objectives behind Interpolating Splines

1. Symbols and Definitian

» Good overview of the desired characteristics ivijoied in Goodman (2002).
« Data:{x,y}OR%i =0,..,N;x, < X <...<X <..< X,
- Interpolating function:f(x )= y;; f :[%,,%,] - |R? = R
« Optional Actual Functiong(x)
2. Monotonicity: f(x) increases with increase i (and vice versa).
* Truly monotonic means that the segment extrema ma;tbt) extrema.
* Co-monotone=> f()g) increases with increase y within the segment (and

vice versa)
0 Strictly co-monotoneimplies that sub-segmentonotonicity must also
be met, solbcal monotonicity” wheremonotonicity matches between
f(x) andy, at the segment level, is what is accepted — lieeee can be
an inflection among segments in the immediate pndyiof the data
extrema.

* At most, one extremum is alIowed{wi,xﬂi}.
3. Convexity: f(x) should also be convex wherevgris convex (and vice versa).

* At the segment level this becomasconvex As before stricto-convexityis
often highly restrictive, stocal convexityis preferred. The earlier established
conditions should also satisfy convexity criteria.

« Desirable to have at most one inflection{in x,,;} .

4. SmoothnessSmoothnesgalso calledshape-preserving corresponds to the least

curvature. Even &can be Smooth’, and so is &



5. Locality: Locality means that the dependencefc(f() is primarily only on f()g) and
f()g). This is advantageous to schemes that locally fyfatsert the points.

6. Approximation Order : Approximation Order indicates the smallest polynomial

degree at whichf (x) departs fromg(x) as the density ok increases. More
formally, it is the m in| f - g| = O(h™), whereh = max{x , - x :i =0,...N -1}
* For spline segments Wheg(x) through g(x) are specified locally, the first

degree of departure should the first degree ofa@rinuity infinitesimally for

both polynomial and non-polynomial splines, i.eshould bek +1 where the
continuity criterion isC*.
7. Other Desired Criteria

* The interpolating proxyf (x) should be able to replicate the tar@él().

* Fairness — loosely a measure of “pleasing to teé ey

. Possiblef(x) invariance under variate scaling/reflection.
» Controlled derivative behavior => Small changex produce small changes in
f(x).

8. Assessment of Monotonicity and Convex#éy individual segment can be assessed

to be monotone/convex etc:, but from the data R@dks, valleys, and inflection

occur only at the knots. These can be assessedbthlg span level.

Spline Calibration Framework

1. Definitiort Calibration is the process specifying “mandat@agd “desirable” classes
of inputs to fully determine the elastic properties
» It makes sense to generate the calibration miazokians right at the calibration
time.

2. Two types of static field€lastic and inelastic

» Elastic Fields => Unconstrained change of elagid$ do not force adjustment

response (i.e., force disequilibrium).



o Typically elastic fields correspond to more vokatiroperties (e.g.,
temperature of a solid body, quotes of the instntsetc.)
* Inelastic Fields => Unconstrained change of ineddsgld forces re-adjustment
response (i.e., disequilibrium, followed by statation)
o Typically inelastic fields correspond to constiwatiproperties (e.g.,
dimensions of a solid body, instruments composingrae, etc)
0 Inelastic properties may also impose invarianipcation independent
edge/boundary behavioral constraint on the elastas.
3. Calibrator CreatiarOn creation, objects acquire specific valuegHerconstitutive

inelastic fields. Volatile elastic fields may ag pe undefined.
» Setting of the elastic fields => Elastic fieldswatjor vary to the combination of
inelastic fields + inputs (external), and are sethe calibration process.
» Change of inputs => Change of external calibraitiputs changes only those
elastic properties, not the inelastic ones.
4. Calibration is InferenceSince calibrated parameters are used for eveptadiction,

calibration is essentially inference. Bayesiangifastion (an alternate calibration
exercise) is inference too.

5. Calibration and entity-variate focus:

* De-convolving the instrument entity/measure comioomais necessary for the
extraction of the parameter set (this is accometidhy the calibration process).

» Of course, calibration occurs among the elastictaadnelastic dimensions, and
the inelastics are parameter set!

» Parameter calibration/parameterization etc: inhtigr@mvolve parsimonization —
this is where the models come in.

6. Curve Construction off of hard/soft signdtiard Signals are typically the truthness

signals. Typically reduce to one calibration pareanper hard observation, and they
include the following:
* Actual observations => Weight independent truehtmass signals

* Weights => Potentially indicative of the truthnéssd signal strength



Soft signals are essentially signals extracted firdarence schemes. Again, typically
reduce to one calibration parameter per soft im@zeainit, and they include the
following:

* Smoothness signals => Continuity, first, second, ldigher-order derivatives
match — one parameter per match.

* Bayesian update metrics => Inferred using Bayesiathodologies such as
maximum likelihood estimates, variance minimizatiand error minimization
techniques.

7. Calibration Boundary Conditioff the calibration metric is based off of a dative

whose degree is greater than that used to compeseterpolated segments, then the
metric will become discontinuous, and thus calibratill fail. For e.g., if you
impose continuity only across the first derivatieésll the segments, then a
calibration metric that depends on tHé @erivative (e.g., financial boundary
conditions) will fail.

8. Directionality BiasDirectionality “bias” is inherent in calibratiqie.g., left to right,

ordered sequence set, etc:) — as noted earlisrsithplifies the solution space
significantly. Therefore, the same directional kaés exists in the calibration nodal
sequence.

9. Head Node CalibratiorCalibration of the head node is typically inhahedifferent

from the other nodes, because the inputs needediyséecould be different. The
other nodes use continuity/smoothness parametbrshwthe head node does not.

10. Parameter Space Explosi@enerally not a problem as long as it is segment-

localized (in matrix parlance, as long the transitmatrix is tri-diagonal, or close to
it), i.e., local information discovery does noteaf far away nodes/segments.
» Also maybe able to use optimization techniquesino them.

11. Live Calibrated Parameter Updatituigse automatic differentiation to:

» Estimate parametric Jacobians (or sub-coefficiantanlacobians) to the
observed product measures.
* Re-adjust the shifts using the hard-signal strength

» Update the parameters from the calculated shifts.



* Re-construct the curve ever so periodically (feulare-build, as opposed to the
increments).

* Remember that AD based parametric updates breastenmess (including
continuity as Bayesian MLE’s) — so use a tolerandée shift if this is

acceptable.
12. Span/Segment Elastic Variat&ésere are 5 different kinds.

* ® => Span stochastic evolution variate.

®, => Stochastic evolution variate for segment k.

* ¢ =>Implied Span Quoted Instrument Measure.

* @ =>Implied Quoted Instrument Measure for Segment k

* ¢, => Observed Quoted Instrument Measure for Segkahprecisely a single

variate point — typically, the observations arealahthe anterior/posterior
terminal ends of the segment.
13. Spline Segment Calibrat@pline segment calibration has an asymmetrical
dependence on the left/right calibration value.&given span, the calibration of the

non-left most segment depends only on the right walsie — the other coefficients
come from the prior segments. The left most segheémmourse, uses both the
left/right values for calibration.

Base Formulation

1. Base Mathematical formulatipn

. y(x):fa,. f.(x), thereforecrd—y(x):nz_ia d'f, (X)

i=0 X' i=0 dx’

«  From known node$x,, y,} and{x,,y,}, we can draw the 2 linear equations for



n

d*y

« From known nodal derivativel,, y, (x,)}' , wherey, (x,)= {F} , We can
k=1 X
Xo

draw the following r linear equations fary:

o 110

o vy (0)= d];" } wherek = 1...,r
=)

i=0

Linear of Segment Coefficients to the Resporseds (v, ): In all the spline

. . 0C. .
formulations, the Jacoblalg—‘ is constant (independent of the response values

I
themselves, or their nodal derivative inputs).
Analogies to energy minimization over stretchedaces
* Include notes on segment naturalization

Span Boundary Specification

* “Natural” Spline — Energy minimization problem
* “Financial” Spline

Right Segment Locality ReductioAs you go from the left segment to the right

segment, the local segment perturbation impactrdgnes due to the fact that
information gets transmitted (through th& &nd & continuity constraints) to the
right from the left. Locality is enhanced if, inmae sense, “local” information > the
transmitted information. Interpolating splines\gtrio achieve this.

Discrete Segment Mesh vs. Inserted Knloiserting knot point is similar to

discretizing the segment into multiple grids, watie key difference:
» Discretization uses the same single spline acibseagrid units of the segment.
» Inserted knots introduce additional splines — admvben each knot pair.

Segment ElasticT hese are effectively the same as shape coniroéle the

following are the shape controlling elastic paranset:
* Tensiono
* Number of basis

« Continuity C*

10



* Optimizing derivative set ordem

B-Splines

1. B-Spline Context FixatiorAs postulated by de Boor et. al., B Splines have

geometric interpolant context — thereby with therespondingly strong

CADG/curve/surface construction focus. Geometrioatinening occurs as a natural

part of this.

* The B Spline generation scheme has a recurrenezthi@sative polynomial
generator that admits coinciding control pointslitates surface construction,
although there are a lot of similarities with shgpeserving interpolation splines.

2. Lagrange Polynomial vs™lOrder B-Spline Interpolantigher order B-Splines are

: t—t,
defined by the recurrends,, = ¢, B, + (1—£i+Lk)Bi+lk_1 whereg; = —'t
i+k-1 N

and B,l(t): Xi(t):l if t <t<t,,,and B,l(t): Xi(t): 0 otherwise.

* Coinciding knots =, =t,,, - B; =0.

3. Recursive Interpolant Schent Spline formulation is recursively interpolang.,

the order k spline is interpolant over the oréerl splines on nodes andi +1 - this
formulation automatically ensuré® > nodal continuity.

» As shown in Figure 4, the left interpolator streﬁch+ k —1] contains the
interpolator pivot at,, and the right interpolator strettﬁh+li + k] contains the
interpolator pivot at, .

* The following provides the insight behind the BiSelinterpolation formulation.

B, spans all the segments between the n{)[ieq]. Thus, it is natural to have

the interpolator span that segment too.

 Further, the formulation symmetry between thepefot at B, , and the right
pivot at B,,, , retains the interpolation symmetry — among oth&gs, it is

responsible for ensuring th@*? symmetry.

11



4. B-Spline Order Relationship&ssuming no coincident knots, the following
statements are all EQUIVALENT/TRUE:

* n+1 knot points.

« n™order B Spline.

* Polynomial of degree—1.
+ Continuity of C"™2.

5. Expository Formulatian

0 t-t,.
—_ — — i+j-1
* Oy =&k~ |_|£i,j Wheregi,j =
j=k=1 i+ _ti+j—1

- U=t
Oy = H [1_£i+l—1] whereg;, =—t
= i+l tiH-l

Kk
6. Spline Coefficient Partition of UnityJsing the earlier formulatio, , = Zaij Xisi
j=0

Kk
it is easy to show thaza”. =1. This simply follows from the recursive nodal
i=0

interpolation property.

7. Smoothness Multiplicity Order Linke# smoothness conditions at knot + the

multiplicity at the knot = B-Spline Order.

8. Starting Node de-biasinbeft node is always weighted kg, in the interpolation

scheme, but the left node asymmetry is maintaimedilse the denominator in
t—t

& | =$ - t,, —t.,., - increases in length.

i+] i+j-1

9. Other Single B-Spline Properties

* B, is apiece-wise polynomial of degree (k -1 if the knots are distinct,

lesser if the some of the knots coincide).
* B, is zero outside oft;.t,,,) .

» B, is positive in the open intervil],....t,,].

12



10. Formulation off of Starting Node and Startingl€: Given the starting node and

the starting ordek , the contribution to the nodet m (i.e., m nodes after the start)
and the order (i.e., n nodes after start) carsbeéds’ed as

B =N(+mk-n+1- k-n)B +B(i+m-1- i +mKk-n)B,

i+ mk-n i+ mk-n

* Nodal B-Spline Recursion Stepper:

N(i+mk-n+1-k-n)=0(+m_i+mk-n+1_ k-n)

_|: t_ti+m :||: ti+rn+k—n_t :|
i mekenet ~ Liem | Ciemeken ~ Gima

» Spline Order B Spline Recursion Stepper:

Bli+m-1-i+mk-n)=0(+m-1-i+mk-n_k-n)

— |: t—tim }|: t—tima i|
ti+rrH-k—n+l _ti+m ti+rrH~k—n _ti+m+1

11. Cardinal B-Spline Knot Sequenéaot sequenc& => Uniformly spaced knots,

simplifying the interpolant/recursive analysis sigantly - Z = {— % 10,],2,...}.
* Also all Cardinal B-Splines of a given order k tnanslates of each other.

» Cardinal B-Spline Order 2:

Range B, Bi.1.
0<t<1 t 0

1<t<? 2-t t-1
2<t<3 0 3-t

+ Cardinal B-Spline Order 38, , :%Bi,z +3TBi+L2

B,
Range B 13
g . ot
0o<t<1 Et2 t
2
1 2
1<t<?2 E(—2t +6t-3) —2t-3

13



1o e
2<t<3 2( 3)

12. Non-coinciding B Spline Segment Relations
e B,=X =1ift <t<t,

B, = X, =0 outside

t—-t t,, -t
ti+1 _ti ti+2 _ti+l
t—-t t..—t
|3i+1’2 = {—'ﬂ}xl + {L}(z
t., "ty t—t,

-t t.,—t
B =[ : :|Bi 2 "{L}Bnlz
ti+2 _ti ti+3 _ti+i

Range Bi . ST B
t <t<t t-t 0 t-t t-t
i = i+l
t,—t t, -t b, -t

t <t<t Lot -t -t t, -t + g~ t-t,
i S 42

| | t., t., "ty t, bt~y bt G,y
t  <t<t 0 Liat g —t T, -t

e o ts—tig ts =t G, — iy

13. Bernstein B-Spline Knot Sequensmot sequenc& = {0,...,01,....1} - {0,...0} occurs

u times, and1...1} occursv times.

. B[y,v,t]=%(l—t)“t" forO<t<1.

«  B[uv,t] hasv -1 derivatives at = 0, and u -1 derivatives at =1 - this is also

referred to a¥ smoothness conditiongtt =0,

t=1.

and ¢ smoothness conditionst

14. B-Spline vs. SplineB-Spline is just a single polynomial that is dadicross a set of

knots. ‘Spline” is a linear combination of such B Splines — itee set of all theéB, 's.

14




15. Spline Definition S, ; = Z B.a Wherea OR'. a’s are the coefficients — or nodal

points{x,a} - that can be interpolated.

B Spline Derivatives

1. B-Spline Derivative Formulation
. 0'B, - r ar_lBi,k—l + t—t 0'B _ r ar_lBi+:Lk—l + ., —t 0'Bi 1y
ot’ ti+k—1 _ti ot ti+k—l _ti ot’ ti+k _ti+1 ot ti+k _ti+1 ot’

2. B Spline Order 3 Nodal Slop€Ehe slopes match across the left and the rigiheet, as

shown below, thereby making,; C* continuous.

Range Left Slope | Right Slope
t; - 0
t Lt Lt
i t., -t t., -t
t s L
i t., ~ty t, "ty
ti+3 0 -

3. B Spline Continuity ConditiarFrom the B Spline derivative formulation it ial that if

both B, andB,,,,_, areC*"® continuous, therB,, will be C*"? continuous. Given

that B Spline order 3 i€* continuous, by inductiorB,, is C** continuous.

Local Interpolating Splines

15



1.

=

Hermite Cubic Splineg he “local information” here takes the form otuspecified

left/right slopes.
a. 2 User Specified local slopes + 2 points =>t4 ekequations. Solve for the
coefficients.
b. C' continuity is maintained, and’@ontinuity is not.
c. Segment control is completely local.
Catmull-Rom Cubic Splinetnstead of explicitly specifying the left/rightgment

slopes, they are inferred from the “averages” efihor and the subsequent points, i.e.,
fi = %{ p:ﬂ— pr_l}, and r;l = %{ p;z— f},} Hererai refers to the slope vector, arﬁ;i to
the point vector.
a. Again, C continuity is maintained, and®@ontinuity is not.
b. Segment control is not completely local, but ktcal enough — it only depends
on the neighborhood of 3 points.

Cardinal Cubic SplineJhis is a generalization of the Catmull-Rom sphwith a

-

tightener coefficienu , i.e., fl =%(1—a)[p,+l— pr_l] and r;l =%(1-U)[ p;z— f)i

o >0 corresponds to tightening, amd< 0 corresponds to loosening.
a. Again, C continuity is maintained, and®@ontinuity is not.
b. Segment control is “local” in the Catmull-Rommse - it only depends on the

neighborhood of 3 points.

Space Curves and Loops

Space Curve Reproductiodere is one way to construct loops that are nssible using

the ordered variates, i.ex, < X, <...<X.
* If the orderingx, < x, <...<X, is switched out in favor of the DA({B(j , yj}, where

the DAG vertices correspond to the loop trace, mbsplines may be used to

represent space curve loops.

16
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Second Degree Parameterizatiblowever, on using a second-degree parametenizatio

x and y such ax = f, (u) and y = f,(u), it may be possible to enforce the order

U, <u, <...<u,. The corresponding control points eiug, xl]..[un,xn] and

TRARTNAP
a. Side effect of this — is that you need to wankwo pairs of splines — one each for
x=f,(u) andy = f,(u).
b. This can offer additional customization and di@® in the design of the surface,
at the expense of computing additional splines.
3. Closed LoopsFurther, if the start/end points coincide, thasresponds to a closed loop

that satisfies the Tcontinuity criterion.

a. This also implies that no extra head/tdis®pe specifications are required.

Spline Calibration

1. Spline Segment Calibrat@pline segment calibration has an asymmetriga¢éence

on the left/right calibration value. For a giveraspthe calibration of the non-left most
segment depends only on the right most value -etther coefficients come from the
prior segments. The left most segment, of courses both the left/right values for
calibration.

2. Bayesian Technigues in Spline CalibratiBrequentist and Bayesian techniques such as

MLE and MAP regression ought to be possible inddlération of the spline
segment/span coefficients.
Span-to-segment constraint transmission

4. Number of unknowns analysis

Spline Jacobian

17
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Chain Rule vs. Matrix Operations of Linear Basim&ion Combinationwhen it comes

to extracting variate Jacobian of coefficients frooundary inputs, these are absolutely
equivalent — in fact, the coefficient Matrix isn@ality a Jacobian itself.

* Matrix entry as a Jacobian => Every entry of thariaA where AX =Y is actually

a Jacobian entry, i.eA, =§7‘.
j

Self-JacobianGiven an ordered pafx,y.} that needs to be interpolated/splined across,
x)

x)

o] Self-Jacobian tells you the story of sensitivityfpebability of the interpolant

the self-Jacobian is defined as the ve 3

(y) around non-local points. Among the splines,dyatic and greater splines
cause fairly non-banded, dispersed Jacobians atidgthat the impact is non-
local; linear splines produce simple banded/trgdraal Jacobians; and tension
splines produce a combination of the two dependimthe tension parameter.

o] Further Jacobian of any functidﬁ(Y) is going to be dependent on the self-

aY(t)

Jacobian—~% because of the chain rule.

oY t)

Polynomial Spline

Base functional specification (Linear, Quadratiapic, Quartic, Polynomial)

Linear, Quadratic, Cubic, Quartic, Polynomial Basunctions

» Cubic Splines and Inflection Knots => Problem wittle inflection knot points with
cubic splines is that the “inflection” is now ant@neously supplied constraint, and
in general may not be consistent with tHec@terion.

Segment interpolation relation

Control point analysis

Truth-ness specification

Smoothness constraint

Span-to-segment constraint transmission

18



8. Number of unknowns analysis
9. Solving for coefficients

Shape Preserving Tension Spline

1. Shape Controller Parameter Types

» Specified extraneously as part of the basis fundoomulation itself (e.g.,
hyperbolic/exponential tension splines)
» Specified by over-determination of the basis fumtset (e.g.y splines)
» Specified by using a shape controller basis se¢tshde-coupled from the model
basis function set (e.g., partitioned rationalregs)
2. Shape Control as part of Basis Function fornutat

« Each basis function is typically formulated asnedir interpolant of a particuld? r

" 0" : : :
derivative across a segment, Hg—ry - o'y is proportional tox" in that segment.
X

« Advantage is that you can control the switch betwtbe [ derivative and the™
derivative of y by controllings .

+ You can also explicitly formulate it to achie@ continuity across segments —
and k can vary independently of r.

3. Drawbacks of Shape Control as part of Basis framéormulation

* 0 may not map well to the curvature/shape departumémization metrics.

* The formulation constraint restricts the choicéasis functions, giving rise to
possibly unwieldy ones (troubles with exponentighérbolic functions are well-
documented).

4. Shape Control using over-determined Basis Fon@&et

* Choose any set of basis Functions (e.g., basennpligty/ease of use/model
propriety).
» Over-specify the set so that additional coefficsegmte available for explicit and

flexible shape control

19



» Explicit shape control formulation => this comed auminimization exercise of a
“shape departure penalty” function.

5. Drawbacks of Shape Control using Over-determB@&sls Function formulation

» Ease of use, more model/physics targeted, but centieextra complexity that
trades in flexibility

» Formulation Complexity => Incorporating variationathniques for enforcing
compliance by penalizing shape departure.

* Functional implementation complexity

» Jacobian estimation complexity => Nawx n basis functions for which we need
Jacobian.

» Algorithmic complexity => Need more robust basigdarsion/linearization
techniques.

6. Potentially Best of Both — Partitioned Basis &mdpe Control

» Basis function set chosen from physics and othesiderations
» Shape Control achieved using targeted Shape Clangol
» Used in conjunction with over-determined/other ghapntrol techniques.

7. Drawbacks of Using Partitioned Basis Functions

» Choice of shape controllers crucial and non-trivighey have to satisfy the
segment edge and shape variational constraints

* Need clear and well-specified formulations to métahsfy the appropriate
metrics of shape preservation

* Formulation Complexity — all calibrations and Jaeols need to incorporate the

partitioned basis right during the formulation stag

8. Partitioned vs. Integrated Tension Splirfeartitioned splines are designed such that
the interpolant functional and the shape controtfional are separated by
formulation (e.g., rational splines). Integratedsien splines are formulated such that
the shape preservation is an inherent consequéiice formulation, and there is no
separation between the interpolant and the shapeotéunctionality.

» Customization is easier with partitioning on eitliex control design or the shape

preservation dimension.

20



9. Explicit Shape Preservation Control in PartiédrSplines y =%, wherea is the

interpolant, ands is the shape controller. Typically is determined (among other
things) by the continuity criterio®*, and 8 contains an explicit design parameter

for shape control (for e.g4 in the case of rational splines).

10. Shape Control DesigAsymptotically, depending on the shape desigampaterA ,

a should switch between linear and polynomial (bypically cubic — Qu and

Sarfraz (1997)). Further, desigh such thatg, = 5, =1, so thaty, = a, and

Y =4a;.

11. Rational Cubic Spline Formulation

* Rational functions under tension was introduce&pgth (1974), and formulation

expanded in the general tension setting by Prei®s&s).

. y= a+bx+cxt +dx3 =%,wherea=a+bX+CX2+dX31 andlg:1+/]x(1—x)

1+ Ax(1-x)
(Delbourgo and Gregory (1983), Delbourgo and Gre@t®85a), Delbourgo and
Gregory (1985b), Delbourgo (1989)).

e A - 0 makes it cubic, and — « makes it linear.

12. Rational Cubic Spline Coefficients

e a=1ly,+0y, + 0y, +0y,"
* b=Ay,+0y, +1y,+0y,"

] 1 "
* =AYy, t0y t Ay, +E-y0

1
 d=-ly,+1ly,+ [_ (1+ /])]-yol-}'[_zj-yo”

13. Rational Cubic Spline Derivatives

e a=a+bx+cd+dxX

. da_ b+ 2cx + 3dx®
dx

21



d?a
)<2

o B=1+ix(1-x)

= 2c+ 6dx

d
- L= j-2x)
d?g
. dxz:—/]
da _dB
7—0!7
. ﬂ’z'gdx dx
dx 5?
d’a d’g (dﬁjz da dB
2= % —q +2a| 2| -2p—F
dzy_'g dx® 'de2 dx dx dx
Toae B

14. Designing/, for the Segment Infection/Extrema Control

15.

16.

« If there are “physics” hints, the segmehtcan be designed to push out/pull in the

inflections and/or extrema out of (or into) the vegt.

* Monotonizing Parameters for Rational Splines (Greg®984), Gregory (1986))

=> A = 4 +[F () + £ (5. 325, again forx < x < x,,.

i+1 i

* 4 =-3 makes it monotone in this segment.
e W4 =-2 produces a rational quadratic.

+ Convergence i@(h“) in all cases.

Co-convex choice fot : A similar analysis can be done to make the sple
convex, but the corresponding formulation requare®n-linear solution fo, .

Generalized Shape Controlling Interpolaeiven a pair of points

{x.vi} = {x.v,} ={0y} - {Ly,}, acC® splines,, and aC* spline S, we define

a shape controlling interpolator splige by S.(x) O 1 iththe

[8.6d- 86
constraintsS. (x = 0) = S.(x=1) = 1.

* Rational Shape Controller described earlier mdwetsd requirements.
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17. Generically Partitioned Spline Derivative

+ WY =alx)B(x)

dy _ 0a +a%

ox  ox 0x
2 2 2
dy_da, oadB, OB

ox? 0¥ X OX ox?

"y & 0"ad'B
e More generally—==>» "C
g ox" ,Z:(; " ox"" ax’

18. Partitioned Interpolating Spline Coefficie@iven 5, = 5, =1,
* Yo =4,

* BW=a

ol e ] =[5

Cal _[o*y| _, [0°A] _jJoa| |05
|, |oxt|, %laxt|, Taxlolaxl,

iEH
ox ], °Lox |,

e Likewise,

» Partitioned input micro-Jack for cubic interpolator
o a={y, +{dhy, +{dy,+H{oy",

0o b= —‘% Yo 10y, + Ly, +0.y,"
10X,
B 2
op 110°8 0B 1
0 Cc=|||= | === Yot Oyi+|—|=— [Yo'+t=¥"
{GXJ ZOXZJyO Y1 { ‘OXO Yo 2Yo

1
0 c=|—
2
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x>

94
0X

94
0Xx

9B

2
9 1
- ~1ly, +1y, + —1yH == Ly,
o ( O] }yo yl |:aXO i|y0 |: 2i| yO

19. Interpolating Polynomial Splines of DegreeSiven y = > a;x' , x1[0])

i=0

+
0

* Polynomial Basis Series for Representation => Tragdwies uses the
polynomial basis series for representation, ambular because of the
reasons below (other basis may be more cognitiekdarivative

representation using them may be more intuitiverel§.
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I. Mathematical simplicity

ii. Completeness.
Native link of polynomials to derivatives => Givémat derivatives are
natively linked polynomial basis function represgians, all the lower degree
polynomial basis functions (i.e., degree < derixatirder) get eliminated,

thus only allowing the higher order to survive.

r n il . n il .
Polynomial C* Derivative =0 y=Zai L i = a; — B xir
ox" = (- = (i-r)
as = Yo
=19 gn-g)
rox" | _,

n-1 n-1 1 ar
an:yl_zai:yl_Z{ {OX?/} }
i=0 x=0

r=0 r!

20. Polynomial Interpolating Spline Coefficient mueJack

aao :1’%:0’ —aao =0
aYO ayl a([a' yD
ox'
x=0,02r
oa, :1’60k -0, oa, _15;«
R 1
ox'
x=0
oa, __1,60,1 -1, oa, __1
Y, 0y, r!
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o . . . L 0’
21. Curvature Design in Integrated Tension Splidsic spline is interpolant 03—2/
X

2
across the nodes, and linear spline is interpaant Thus,% -0’y (the tension
X

spline interpolant) offers the tightness vs. cunatsmoothness trade-off.
ak
» Tightness vs. Smoothness Generalizationasg - o*y is linear in x, given k is
X

even. Of course, fok = 2 this describes a tension spline (hyperbolic or
exponential). Schweikert (1966) uskd 4to improve the shape preservation
characteristics.

* Interpolant and Tension Splines => Tension splimdis o # 0 can never be a
polynomial order interpolant — only polynomial s@s of order k (and degree
k —1) areC*™? continuous and interpolant!

22. Basis Function Interpolant

0%y

. Fva o’y that is linear in x is satisfiable only by hypelib@nd exponential
X
splines.
4
. %—J“y that is linear in x is satisfiable by hyperboksponential, or
X

sinusoidal splines.

n

2"y

FY —-o"y that is linear in x, and wheme=4m+2 and
X

* More generally

m= 0J,... is satisfied only by hyperbolic and exponentidirss.
"y
ox"
by hyperbolic, exponential, or sinusoidal splines.

—-o"y thatis linear in x, and wheme=4m andm= 0]... is satisfied only

23. Integrated Tension Spline Typ&oth exponential and hyperbolic basis splinewit

2
a linear spline satisf%—g -o’y.
X

oX —OX
» Exponential Basis Spline{l X e g }
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* Hyperbolic Basis Spline{:lx,cos{

24. Exponential Basis Functians

* Base Segment Formulation =>

OX

228

0 y=A+Bx+Ce*™ +De *™™

0 y=a+pe+pr”+&”

e Global <-> Local =>
0 a=A+Bx,
0 B=B(x-%)

OXg

o y=Cev™

OXo

0o 0= De_xl‘Xo

e Local <-> Global =>

[245)

o D=¢g"™
0 C — }e X~ Xp
0 B= L
X~ X%
0o A=a- P
XX
» Co-efficient Calibration =>
0 a=Y, _y_02
g
0 y:l_yo"J’U(yo“ﬁ)—
2| o? |
0o J= 1y, _0-(2’0‘ _,5)
. 0- .
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o B= Jz(yl_a)

~y, cosho —ay, sinho

o{o - sinho)

» Coefficient to Input Sensitivity Grid =>

o a=ly+loby+lobv | Sy

o ,8:[ - }y J{ o }y J{ -sinho }y'+ 1-cosho y
o-sinho |”° | o-sinha | | o-sinho |’ | o(o-sinho)]|™®
y= 1 o + -1 v+ 1 v + o —-1+cosho —sinho
2(o -sinha) |”° | 2(oc-sinho) | | 2(o -sinho) |™° 20*(o - sinho)
0 5= -1 v+ 1 v+ -1 v + o +1-cosho —-sinho
2(o-sinhg) |”° | 2(o -sinhg) |t | 2(o -sinhg) |”° 20%(0 - sinho)

e Local Derivatives =>

6)’ - ﬁ_'_a.[}eag _é—ag]

0 -
o€

o IV o 2 1 ]
0’
a3y gE —JE

0 5= 0’3[}6 - ]

o ar)r/:ﬁ&” +0_r[}ear +(_1)r&—ar]
o€

e Global <-> Local Derivatives =>

oy _ 1 oy

0 - =
ox (% —x)0e

o oy _ 1 d%y
ot (x =) 0¢’

o Fy_ 1 9y
o (% -x%) g

25. Hyperbolic Basis Functions

* Base Segment Formulation =>
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o] y:A+Bx+CcosV( X j+Dsin}{ x j
X=X, X=X,

0 y=a+ fe+ycosioe)+ dsinh(oz)
¢ Global <-> Local =>

0 X=X +&(X = %)

0 e=2"2
X=X

0 a=A+Bx

o B=B(x-x)

o2
0 5=c5m{ jmcos{ j

» Coefficient to Input Sensitivity Grid =>

o a=[ty, +[o]y, +[0]y, + { }%

0 ﬁ:[#}y +[ -0 }y{ sinha }y-+ cost -1 | -
o-sinho |"° | o-sinho |* | o-sinhg |”° | o(o -sinhg)|”°

o =Dl ol + [y, +| 2 o

o 5:[ -1 }y{ 1 }y{ -1 }y'+ 1-cosho .
og-sinho |’ |o-sinho "' | o-sinha |”® | 0*(o -sinho) N

e Local Derivatives =>

o ¥ = B+ alysinh(og) + dcosHoe )|

e
0° oy _ .

o -5 o?|ycosHoe) + dsinh(oe )|
%y _ o

0o 570 [ysinh{ge) + dcosHoz)]
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0 % = o' [ycosHoe) + Isinh(ge)] if r is even.
0 gg = Bo,, +0'[ysinhge) + dcosHoe)] if ris odd.
* Global <-> Local Derivatives =>

o0y 1 oy
0 -_— = - =

ox (% —x)0e
o y_ 1 d%y

o (x =) 0¢’

3 3

o oy_ 1 0d

o (x —x) o0&
26. Segment interpolation relation — reduction dimear/cubic spline
27. Switch between linear and cubic spline
28. Alternate specifications of the segment intifian (Trojand (2011))
29. Localized and normalized tension (Trojand (3D11
o Findingo whenf is bound.
» To get the minimum tension factor required we rneefthd the zeros of
(Renka (1987)).

o0 Findingo whenf' is bound.
» To get the minimum tension factor required we rneefthd the zeros of
(Renka (1987)).

o Findingo from the bound values of convexity/concavity (Re(k987)).
30. Problems with Hyperbolic/Tension Splines

» Hyperbolic and exponential functions are time conisig to compute (Preuss
(1976)), Lynch (1982)).

* They are somewhat unstable to wide parameter ra&gpadh (1969), Sapidis,
Kaklis, and Loukakis (1988)).

* They have been gradually pushed ouvbgplines (Nielson (1974)) and rational

splines.

29



Optimizing Spline Basis Function Jacobian

1. Coefficient- Value Micro-JacobiafrA=Y where

« Adis the matrix of the basis coefficiens,, a,,a,,....8, .1, 18.11--8, 1}

* Y is the matrix (column valued) of the values (RH8)particular, it is the
boundary segment calibration nodal values in thieviang order:

{y07y17 ,0,...,0}
x=0

* Fis the matrix of the coefficients of the basisdiion values and their
derivatives. It is the following 2D Matrix:

o 1=0j=0.n-1=F, = f,(x=0)

o'y
ox'

o'y
ox~

oy

0x

x=0

x=0

o I=1j=0.n-1=F, =f,(x=1)

al—lfA
- _ J
0 2<I<k+lj=0.n-1=F —{—}
x=0

axl -1

o I -k+2..,n-1j-0,..,n-1=Q , where

Q,- *‘Wamf, (x)}{amfj(x)}dx_

s Loox” ox™

2. Coefficient-Value Micro-Jacobiaiven FA =Y , the coefficient-value micro-Jack

is g% = [F ‘1]ij .

Shape Preservingr Splines

1. Genericv Spline FormulationApproach here is somewhat similar to Foley (1988)

although different language/symbology.
* p-set Basis Splines per each Segment.

« n Data Points
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* Penalty of degree m
« C* Continuity Criterion
« Data Point Set{x, y}

» Spline Objective Function:

2
n-1

/\(,Zz,k,m,n,p,;ijzz [Y o (% } +A I am'uP dx +[Yn_£{P(Xn)}2

i=1

Number of Unknowns Analysitn the above,p >m, andm<k.

* Number of equations from the end points per segmeIz.

« Number of equations from the coefficients determiing theC* Continuity
Criterion: k..

* Number of equations from the Shape Optimizationridation:
wl [O, p- m+1] :

* Total number of equation&k +w+ 2.

* Number of coefficients per segment 3>+1.

Node matching constrainiSiven that we are examining shape preservingieglion

applying the node match criteriof) = ,up(xi) to /\(,u,k,m,n, p,ﬁj formulated

2

dx: where

A . n-1 Xit1f am |
earlier, we get\ ,, (,u,k,m,n, p,/lj :Z A _[ %Fr;(x)

i=1 %

Nym (,u,k,m,n, p,ﬁ) is the node matched Spline Objective Function.

Generic Curvature Optimization Formulatidising the above, the curvature

optimization for spline basis function inside adbsegment i corresponds to

S(EE
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5. Generic Curvature Optimization Minimiz&siven the basis function set

A n-1 n-1 Xi+1 amf(X) amf (X)

=> a, f(x =2) aq, ' K dx.
(=10, 2p-=a | 0200
X
/\ n-1
6. Generic Coefficient Constrained Optlmlzatlonlﬁet— 0= Za,k i« =0
ik
whereQ, = J' 0”1, (x) dx.
% ox™

7. Polynomial Formulation foA ,, (,u,k,m,n, p,ij: For the set of polynomial basis

N A P .
functions, we seps,(x) = £4(p,x) = > a;x on a segment-by-segment basis.

* We also seek to optimiza,,, (,u,k,m,n, p,jj on a per-segment basis by re-

i+1

A 2
amﬂ(p,X)] dx.

Casting/\NM (,u,k’muny pyj) to /\i(k!ml p) = X"
X

0" u(px), 0" u.(p,) AR IS T
8. T o ZO’UXJ = j:chr”x‘ _;n(j—m)!aijxj
9. /\i(k,m,p):
X1 2 P p j I x 1j+|—2m+1_ jl-2me
k e j=m = - - 2 i+ i
mp) f{ S }dx éé{(j-m)eo—m)!“’ [ j+1-2m+1
10. Minimization ofA, (k,m, p): ZAEMP) g pomp >a,8, =0
: i\ M- ] iq/qq i P J
ij J=m, J#q
m<j<p.
_ ql J Xi +lq+] 2m+l _ Xi o+ j—2m+1
e H = .
°re fa (q-m)!(J-m)!{ g+j-2m+1
P
. = Na,lp,.
,qu |:mZJ¢q il IBql
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62/\i(k,m, p)
2

* Since =B, and 5., >0, a corresponds to the minimum of

i
A (km.p).
e Thus,ifx =0 andx,, =1, B, becomes

B = oy (e g =)

11. Polvnomiall Splines — Number of unknowns

* Number of coefficients (unknown) =p+1
* Number of Nodal Start/End Values (known) => 2
« Number of Calibrated coefficients from ti&* criterion (known):k

* Net number of unknownsp+1-2-k=p-k-1.

p .
12. Ordered Unknown Coefficient Set in Polynomiabplines Given thaty, = Z% X,
= s

a;, througha, , as well asz;,, are known.

* a,, Wwherek+1<q< p are the unknown coefficients.
+ For e.g., forC' cubic polynomial spline, the number of unknowres ar
p-k-1=3-1-1=1

13. Maximum number of equations available from thztian Splines Number of

equations available from the optimizationps-1-m+1=p—-m.

» Determinacy criterion => Thus ip—-m< p-k -1, or m>k +1, there are no
solutions!

» Alternatively, for completeness, derive m from kras k +1 for completeness.

 Finally, if k. < p—2, optimizing run is needed.

14. Advantage of Basis Curve Optimizing Formulatidhis formulation can

readily/easily incorporate linearized constraintsun automatic manner — as long as

the explicit constraints are re-cast to be spetifigh the current segment.
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Penalty Minimization Risk Function

1. Penalty Minimizer Estimator Metri€hoice of the “normalized curvature area”

shown in figures 5) and 6) are two possible peredtymator choices. Obviously,
closer the area is to zero, the better the pengliziatch is.
2. Dimensionless Penalizing Fit Metrichoosing the representation in 5), and

recognizing that the segment is set in the flaehias) , we can derive the

representation in 7).
3. Dimensionless Curvature Penalty Estimator (DCPEB)ng Figure 7), we now define

ﬂamﬂ(x)}zdx

ox™
DCPE asDCPE:%W: 2
BCD max{a;(’rgx)} }()ﬂ e )ﬂ)

4. Pros/Cons of the above Representation of D@REe basis functions have near-

delta functional forms (Figure 8), DCPE will stidmain= 0, and the metric is not
very meaningful in that case. Fortunately, sucledigfpe basis functions are rare.
5. Aggregate DCPE Measumdeed a consolidated DCPE metric that spans aetbss

the segments in a span, i.e., the span DCPE.

Bernstein Polynomial

1. Bernstein Polynomial of degree n, and tgnbvyn(x):”cvx” (1-x)"" where

v=0,..,n.

» Bernstein Polynomial Convenience Re-castl#g;:(x) = n!x—:%.
v (n-v)

- Bernstein Polynomial Convenience Re-cast B2{x) = (b+c) F(xb)F(1- x.c)

b

where F(xb) :%.
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2. Derivative of the Bernstein Polynomia =) =)
dx dx’ dx’

q'b, (%) _ n{dr‘lbv_l,n (%) _ df‘le_Ln_l(X)}

* Bernstein Polynomial Re-cast #2 Derivative:

an;(x) =(b+ c)[w F(L-xc)+ F@@W} |

3. Bernstein Recurrencd, () = (1- X)b, ., (x)+xb,_, ., (x).

4. Reduction of B-Splines to Bernstein’s Polynomiabm the recurrence relation, it is

clear that this is exactly the same recurrencéasior B-splines, except that it
happens over repeating knotsxat 0 and x = 1.

* Further,b,; =1 for 0< x<1, andb,; =0 otherwise.

Other Tension Splines

1. Kaklis-Pandelis Tension Splin&s described in Kaklis and Pandelis (1990), here

X=X

f(t)= f(x )[1—t]+ f(>g+1)t+clt[1—t]m +dt™ [1—t],wheret = , andm is the

i +1
Kaklis-Pandelis shape-controlling tension polyndraigponent.
« m =2 corresponds to the cubic spline interpolan{onx,].
* m - o corresponds to linear interpolant E)ﬂ,)gﬂ].

2. Manni's Tension Splinelfhe methodology is explained in detail in Mant®96a),
Manni and Sablionniere (1997), and Manni and San{f©©P8). Here,

f.(X)=p [qi_l(x)J on [)g ,>q+l] where p.and g are cubic polynomials. Furtheg, is

strictly increasing ir{)g ,xi+1], SO thatqi_l is well defined (Manni (1996b)).

* The boundary conditions aré;'(x) = d,; further, we impose thap,'(x) = Ad;,
g'(x)=A, p'(%,)=xd,,,andqg'(x,,) = 1 (see Manni (2001)). The claim is
that if A, =4 =1, g (x) =X, thus f,becomes cubic. Also i, =y =0, f,

reduces to linear.
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Smoothing Splines

Process Control using WeighBimensionless units (such as Reynolds’ number) ca

effectively account for the ratio of competing matuforces. Similar use can be done for

process control to be able to guide/control betw®2enmore competing objectives. For

example in the instance of the smoothing spline:

» First Objective => Closeness of match using thetdaahful reproducer, or curve fit.

» Second Objective => Smoothest curve through thengpoints, without necessarily
fitting them — of course, “smoothest” possible 4eeitis a straight line.

Penalizing SmootheneBenalizing smootheners are the consequence efsBay

estimation applied on the Quadratic Penalties B#ussian Priors (also referred to with

maxim “The Penalty is the Prior”).

* In the case of non-Gaussian priors, the smootrstignation process is called the
Generalized Linear Model.

Smoothing Spline Formulatio®iven x, < x, <...< X,, and the functioru that fits the

points [)g ,Yi] fromY, = ,u(>g ) The smoothing spline estimate is the minimizer

| CN I, T e 0k ulx)
minar /\(,u,/])—;Z[Yi y(x)} +ij1 |

i=1
. /\(,u,/lj is theSpline Objective Function

1. o . i
e — is needed to the left term to make it finiteras, o , otherwiseA will also have

n
to be infinite.
o o u(x) | . .
* The derivative “k” corresponds to what ma esaT linear. Thus, for cubic
X

splines, k = 2.

Bias Curvature/Variance Fit Trade-dfmaller thed , the more you will fit for bias (low

curvature penalty). Bigger th&, more you fit for curvature/roughness penalty.
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5. Curvature Penalty Minimizer Splink can be theoretically shown that the curvature

penalty minimizer spline is a cubic spline. Heréasv.

» First, notice that any spline of degree >= 0 camaéuce the knot inputs.

n

92 p(x)

» By default, curvature corresponds to k = 2. Thus;—— | varies linearly inside a

ox®

segment, thus this becomes the least possibletaneva
* Higher order splines will have a non-linear curvatu
« Lesser order (spline order less than 3) will vieldte G continuity constraint.

6. Smoothing Output Criterion

* Speed of Fitting

* Speed of Optimization

* Boundary Effects

» Sparse, Computationally Efficient Designs
* Semi-Parametric Models

* Non-normal Data

* Ease of Implementation

» Parametrically determinable Limits

* Specialized Limits

* Variance Alteration/inflation

» Adaptive Flexibility Possible

» Adaptive Flexibility Available

» Compactness of Results

* Conservation of data distribution moments
» Easy Standard Errors

7. Smoothing vs. Over-fittingSince A is a control parameter, it can always be attabned

parametric specification. To estimate optimal vadtid against over-fitting, use one of
the following other additional criteria to penalite extra parameters used in the fit,
such as the following. Each one of them comes itstbwn advantages/disadvantages.
» Cross-validation

e Global Cross-Validation
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» Akaike Information Criterion

* Bayesian Information Criterion

» Deviance

» Kullback-Leibler Divergence metric

8. Segment Stiffness Control may also be customized to behave as a segmdanstifor

a penalty/stiffness controller, thus providing extnobs for the optimization control.

9. Extension to k-Curvature PenalBor the case where k > 2, we would need to chaose

k+1 degree spline to retain linearity of the segnkecurvature — therefore, a k+1 degree
spline is the k-curvature penalty minimizer splifibis also preserves thé& €ontinuity
constraint.

10. Relation of Lagrangian to Smoothing Spline

» Lagrangian objective function is used to optimizawdti-variate functionL(x, y) to
incorporate the constrairdg(x, y) =c asA(x y,z) = L(x, y)+/1[g(x, y)- c]. Here A
is the Lagrange multiplier.

* Optimized formulation of the smoothing spline isen by minimizing the spline

objective function (a form of optimization)

A 1 A 2 Xn| Ak "
/\(,u,/ij :%Z[Yi - u(x )} +)Ij %SX) dx. Here A is the spline objective

i=1
a/\(mj

function shadow price of curvature penalty, Hea— =-A, where cis the
C

constraint constant defined analogous to the cainsttonstant in the Lagrangian

n

0* u(x)

dx=c.
Xk

Xn
objective function: j
Xy

Density Smoothing
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1. Base Density Smoothing Formulatidiog-likelihood density smoothing is analogous

to maximizing the multinomial likelihood histograkng[” P, Vi}, wherey, is the

empirical observation count, argl is the probability of finding an observation ireth

celli.

Alternate Smootheners

1. Compendium of Smoothing Methods

Kernel Smoothing with or without binning.

Local Regression with or without binning.
Smoothing Splines with or without band solvers.
Regression splines with fixed/adaptive knots.

Penalizing B Splines.

2. Kernel Bandwidth SelectoKernel bandwidth selection is analogous to thinogd

knot point selection employed in the regressiomsgchemes.

Remember that the kernel methods essentially @spdahodic functions as their

basis functions.

3. Polynomial Regression Splindsis does curve fitting/regression analysis using

selective insertion/removal of knots. Knots areestldccording to the Rao criterion,

and removed according to the Wald criterion.

Log Splines are a customization of the polynonegression splines targeted for

density estimation. The log of the density is mededs a cubic spline.

Multi-dimensional Splines

39



1. Symmetrical Multi-dimensional variateBhe trivial univariate ordering

X <X, <...< X, needs revising in the context of certain multiates, e.g.,

symmetrical multivariates.

* A general “distance from focal nod¢” makes to more sense to set in the

ascending order. Thus=+/(x = x. +..+(z -z , where[x. ,...,z.] are the

multivariate nodes corresponding to the focal node.
» Use Cartesian/radial/axial basis functions to fdateuthe segments in terms of
the surface vector coefficients in “symmetricaliatg” situations.

2. Surface Energy Minimizatioiburface energy minimization using the “sigma”

tension parameter — formulate equation.
* Thin plate splines are an effective way to achmwdace energy minimization,
i.e., for a 2D surface, the smoothing spline s@faay be created by the

minimization of the following least squares surfapéne objective function

2 A A 2

n 1 X1n X2n X azﬂ(x) azﬂ(x)
/\ ) i) ’A Y ) A d d
(/’1 X, %, j nlzll[ ,u Xy 1 X } + I J. + oxd%, + OXZZ Xax

X11 Xo1
. Again, apparently this is more appropriateifx, are symmetrical.

3. Non-symmetrical multi-dimensional Variatégjain, considering 2D as an example,

it makes sense to use the basis splines sepaaatelss bothx , x,, as in

n N

%)= 20> 4.8 ()8, (x,).

i=1 j=1

40



References

Bartels, Beatty, and Barsky (198An introduction to Splines for use in Computer
Graphics and Geometric Modeling

Chen, W (2009)Feedback, Nonlinear, and Distributed Circui@RC Press
Delbourgo, R. (1989): Shape preserving interpatattoconvex data to rational
functions with quadratic numberator and linear aeimator,IMA J. Numer. Anal9:
123-136.

Delbourgo, R., and J. Gregory (1988)* rational spline quadratic interpolation to
monotonic dataMA J. Numer. Anal3: 141-152.

Delbourgo, R., and J. Gregory (1985a): The deteation of the derivative
parameters for a monotonic rational quadratic patmt,IMA J. Numer. Anals:
397-406.

Delbourgo, R., and J. Gregory (1985b): Shape pregepiecewise rational
interpolation, SIAM J. Sci. Stat. Comp@. 967-976.

Epperson (1998): History of Splind$A Digest 98 (26).

Fan, K., and Q. Yao (2009)ton-linear time series: parametric and non-paraneetr
methodsSpringer.

Ferguson, J. (1964): Multi-variable curve interpiolia, J ACM11 (2} 221-228.
Foley, T. (1988): A Shape preserving Interpolarthwiension Controls<Computer
Aided Geometric Desigh

Goodman, T. (20025hape preserving interpolation by curves

Gregory, J. (1984): Shape preserving rational sphiterpolation, irRational
Approximation and InterpolatiorGraves-Morris, Saff, and Varga (EdsSpringer-
Verlag, 431-441.

Gregory, J. (1986): Shape preserving spline infatjpm, Computer Aided Design
18: 53-58.

Judd, K. (1998)Numerical Methods in EconomiddIT Press.

41



Kaklis, P. D., and D. G. Pandelis (1990): Convepityserving polynomial splines of
non-uniform degredMA J. Numer. Anall0: 223-234.

Katz, M. (2011)Multi-variable Analysis: A Practical Guide for Clitians and
Public Health Researcher€ambridge University Press

Lamberti, P., and C. Manni (2001): Shape preser@hdunctional interpolation via
parametric cubicdMA J. Numer. Anal28: 229-254.

Lynch, R. (1982)A Method for Choosing a Tension Factor for a Splinder
Tension InterpolationM. Sc, University of Texas Austin.

Manni, C. (1996a)C' comonotone Hermite interpolation via parametribics, J.
Comp. App. Math69: 143-157.

Manni, C. (1996b): Parametric shape preserving kterimterpolation by piecewise
guadratics, irAdvanced Topics in Multi-variate Approximatidfgntanella, Jetter,
and Laurent (Eds.)Vorld-Scientific, 211-228.

Manni, C. (2001): On shape preservi@g Hermite interpolationBIT. 14: 127-148.
Manni, C., and P. Sablonniere (1997): Monotonerpuiation of order 3 byC? cubic
splines,IMA J. Numer. Anall7: 305-320.

Manni, C., and M. L. Sampoli (1998): Comonotonegpagtric Hermite interpolation,
in Mathematical Methods for Curves and SurfaceB#ehlen, Lyche, and
Schumaker (Eds.)Y/anderbilt University Press, 343-350.

McAllister, D., E Passow, and J Roulier (1977): étithms for computing shape
preserving spline interpolation to dakéath. Comp31: 717-725.

Nielson, G. (1974): Some Piecewise Polynomial Alé¢ives to Splines under
Tension, inComputer Aided Geometric DesidR, Barnhill, R. Reisenfeld (Eds.),
Academic Press209-235.

Passow, E., and J Roulier (1977): Monotone andeoimterpolationSociety for
Industrial and Applied Mathematics, J. Numer. Anall4: 904-909.

Preuss, S. (1976): Properties of splines in tensioApprox. Theoryl7: 86-96.

Qu, R., and M. Sarfraz (1997): Efficient method darve interpolation with
monotonicity preservation and shape contkgural, Parallel, and Scientific
Computations: 275-288.

42



Renka, R. (1987): Interpolator tension splines wititomatic selection of tension
factors.Society for Industrial and Applied Mathematics, J. ScL. Stat. CompLA.
(3): 393-415.

Runge’s phenomenon (WikiWikipedia Entry for Runge’s phenomenon

Sapidis, N., P Kaklis, and T Loukakis (1988): A ket for computing the Tension
Parameters in Convexity preserserving Spline-insia@ninterpolationNumer. Math
54: 179-192.

Schoenberg, 1. (1946): Contributions to the probtdrapproximation of equi-distant
data by analytic functionQuart. Appl. Math4: 45-99, and 112-141.

Schweikert, D. (1966): An interpolation curve usagpline in tension). Math.
Phys.45: 312-317.

Spath, H. (1969): Exponential Spline Interpolati@Gomputingd: 225-233.

Spath, H. (1974)Spline Algorithms for Curves and Surfaddsilitas Mathematica

Pub. Inc. Winnipeg.
Spline (Wiki): Wikipedia Entry for Spline
Trojand, D. (2011)Splines Under Tension

43



Spline Library Software Components

Functionality behind Spline Library is available@gs 3 packages — univariate function

package, the Span/Segment package, and the Sgigie fianction set package.

Univariate Function Package (org.drip.math.function

The univariate function package implements theviddial univariate functions, their

convolutions, and reflections. It contains thedwling classes/interfaces:

AbstractUnivariateThis abstract class provides the evaluation efgilien

basis/objective function and its derivatives fapecified variate. Default
implementations of the derivatives are for black;bmon-analytical functions.

BernsteinPolynomialThis class provides the evaluation of Bernsteilyqomial and

its derivatives for a specified variate. The degnggonent specifies the order of the
Bernstein polynomial.

ExponentialTensionThis class provides the evaluation of exponemgiasion basis

function and its derivatives for a specified vagidt can be customized by the choice
of exponent, the base, and the tension parameter.

HyperbolicTensionThis class provides the evaluation of hyperbtaitsion basis

function and its derivatives for a specified vagidt can be customized by the choice
of the hyperbolic function and the tension paramete

NaturalLogSeriesElementhis class provides the evaluation of a singlmtia the

expansion series for the natural log. The expopardmeter specifies which term in
the series is being considered.

Polynomial This class provides the evaluation of tHeonder polynomial and its
derivatives for a specified variate. The degrepatsies the order of the polynomial.
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» RationalShapeControT'his class provides the evaluation of the rafieshape control

spline basis described above. The tension paramsetan the constructor customizes
the spline.

» UnivariateConvolutionThis class provides the evaluation of the poaitig and the

derivatives of the convolution of 2 univariate ftinos for a specified variate.

» UnivariateReflectionFor a given variate, this class provides the evaluation and

derivatives of the reflection at x.

Segment/Span Layout Package (org.drip.math.grid)

This package implements the layout of the n-D fyritttionality in accordance with the

calibration schema set out earlier.

» Inelastics This class the inelastic fields of the given segts- in this case the
start/end co-ordinates.

» SegmentThis abstract class extends Inelastics, and porates segment specific
inelastic parameters. Interpolating segment sglinetions and their coefficients are
implemented/calibrated in the overriding splinessks. It provides functionality for
assessing the various segment attributes:

0 Segment Monotonicity.

o Interpolated Function Value, the ordered derivatared the corresponding
Jacobian.

0 Segment Local/Global Derivative.

o Evaluation of the Segment Micro-Jack.

0 Head/ Regular Segment calibration - both of thedfnction coefficients
and the Jacobian.

* SegmentControlParametefiis class holds the parameters the guide thagiore

and the behavior of the segment. It holds the sagsiastic/inelastic parameters and

the named basis function set.
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» SegmentMonotonicityThis class contains the monotonicity detailsteglao the

given segment. Indicates whether the segment i®taore, and if not, whether it
contains a maximum, a minimum, or an inflection.

* Span This class implements the span that spans meisipgments. It holds the
ordered segment sequence, the segment control g&r@mand, if available, the
spanning Jacobian. It exports the following grotifuactionality:

o Construct adjoining segment sequences in accordaititéhe segment
control parameters

o Calibrate according to a varied set of (i.e., NATALRFINANCIAL)
boundary conditions

0 Interpolate both the value, the ordered derivatiaes the Jacobiaat the
given ordinate

o Compute the monotonicity details - segment/spael lsmonotonicity, ce
monotonicity, local monotonicity.

o0 Insert knots

It also exports several static span creation/caitan methods to generate

customized basis splines, with customized segmambor using the segment

control.

Basis Spline Package (org.drip.math.spline)

This package implements the basis set across ffieeetlit splines — their creation, the
segment level calibration, the customization, axgh®ent-level inference values.

o0 BasisSetParam3his stub class holds out per-segment basisasateters.

o ExponentialTensionBasisSetParamBis class implements per-segment parameters

for the exponential tension basis set - currenibnly contains the tension parameter.

0 KaklisPandelisTensionBasisSetParaifisis class implements per-segment

parameters for the Kaklis-Pandelis basis set eatir it only holds the polynomial

tension degree.
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0 PolynomialBasisSetParambhis class implements per-segment basis set gdeasn

for the polynomial basis spline - currently it h®lthe number of basis functions.

0 SegmentBasisSetBuilderhis class implements the basis set and splifiddyifor

the following types of splines:

0 Exponential basis tension splines
Hyperbolic basis tension splines
Polynomial basis splines

Bernstein Polynomial basis splines

o O o o

Kaklis Pandelis basis tension splines

The elastic coefficients for the segment us@igbasis splines insidf,...1) -

globally [x,,...,X,) are extracted foy = Interpolat)r(Ck,x)* ShapeConanIer(x)
X~ Xa
X~ X
guadratic/rational spline is a typical shape cdl@rspline used.

where x is the normalized ordinate mapped &s: . The inverse

0 SegmentCkThis concrete class extends segment, and implksrtiee segment'€*
based spline functionality. It exports the follogin
o Calibration => Head Calibration, Regular Calibratio
o Estimated Segment Elastics => The Basis Functindgteeir coefficients,
C¥, the shape controller
Local Point Evaluation => Value, Ordered Derivative
Local Monotonicity

Local coefficient/derivative micro-Jack, and vakefficient micro-Jack

o O o o

Local Jacobians => Value Micro Jacobian, Value tittakacobian, Composite
Value Jacobian

0 SegmentConstrainThis class holds the segment coefficient constisaand their

values.

0 SegmentinelasticParamBnis class implements basis per-segment elgstiGmeter

set. Currently it contain€* and the segment specific constraints.
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