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Overview 

 

 

Framework Symbology and Terminology 

 

1. Predictor Ordinates: The segment independent/input values. 

2. Response Values: The segment dependent/output values. 

3. C0, C1, and C2 Continuity: C0 refers to base function continuity. C1 refers to the 

continuity in the first derivative, and C2 refers to continuity in the second. 

4. Local Piece-wise Parameterized Splines: Here the space formulation is in the local 

variate space that spans 0 to 1 within the given segment – this is also referred to as 

piece-wise parameterization. 

5. Bias: This is the first term in the Spline Objective Function – essentially measures the 

exactness of fit. 

6. Variance: This refers to the second and the subsequent terms in the Spline Objective 

Function – essentially measures the curvature/roughness. 

 

 

Motivation 

 

1. Definition: “Spline is a sufficiently smooth polynomial function that is piecewise-

defined, and possesses a high degree of smoothness at the places where the 

polynomial pieces connect (which are known as knots).“ [Spline (Wiki), Judd (1998), 

Chen (2009)] 

2. Drivers: 

a. Lower degree, gets rid of oscillation associated with the higher degrees 

[Runge’s phenomenon (Wiki)] 

b. Easy, accurate higher degree smoothness specification 
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3. Basic Spline: Covered in [Spline (Wiki), Bartels, Beatty, and Barsky (1987), Judd 

(1998), De Boor (2001), Fan and Yao (2005), Chen (2009), Katz (2011)]. 

4. History: Schoenberg (1946), Ferguson (1964), Epperson (1998). 
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Calibration Framework 

 

 

Introduction 

 

 

1. Definition: Calibration is the process of inferring the latent state elastic properties 

from the specified inputs. 

• Calibration takes both the “mandatory” and the “desirable” classes of inputs to 

fully determine the elastic properties. 

• It makes sense to generate the calibration micro-Jacobians right at the calibration 

time. 

2. Classes of static fields: Elastic and inelastic 

• Elastic Fields => The actual Latent State response variables that will be calibrated 

to. More generally, any latent state response field (Markov or not) that is inferred 

will be an elastic parameter. 

• Inelastic Fields => The Latent State predictor ordinate variables – these are often 

explicitly “chosen” or “designed in”. 

o Typically inelastic fields correspond to constitutive properties (e.g., 

dimensions of a solid body, instruments composing a curve, etc) 

o Inelastic properties may also impose invariant, calibration independent 

edge/boundary behavioral constraint on the elastic ones. 

o Design Parameters (such as the kC  continuity parameters, roughness 

penalty derivative order, etc:) are inelastic parameters too, since they do 

not vary with changes to the calibrator input. 

3. Calibrator Creation: On creation, objects acquire specific values for the constitutive 

inelastic fields. Volatile Latent State elastic fields may as yet be undefined. 

• Setting of the elastic fields => Latent State Elastic fields adjust or vary to the 

combination of inelastic fields + inputs (external), and are set by the calibration 

process. 
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• Change of inputs => Change of external calibration inputs changes only those 

Latent State elastic properties, not the inelastic ones. 

4. Calibration is Inference: Since calibrated parameters are used for eventual prediction, 

calibration is essentially inference. Bayesian classification (an alternate, generalized 

calibration exercise) is inference too. 

• The terms calibration/inference/estimation are all sometimes used analogously. 

Where estimation estimates parameters, it performs inference. Where it predicts, 

it performs prediction. 

• Infer the Past vs. Predict the Future => You may infer the past quantification 

metric, as well as predict the future quantification metric/manifest measure. 

Therefore, in that sense, inference/prediction is relative only to the current time 

(and using earlier/later information). 

5. Calibration and entity-variate focus: 

• De-convolving the instrument entity/measure combination is necessary for the 

extraction of the parameter set. 

• Parameter calibration/parameterization etc: inherently involve parsimonization 

across the latent state predictor ordinate variate state space – this is where the 

models come in. 

6. Latent State Construction off of hard/soft signals: Hard Signals are typically the 

truthness signals. Typically reduce to one calibration parameter per hard observation, 

and they include the following: 

• Actual observations => Weight independent true truthness signals 

• Weights => Potentially indicative of the truthness hard signal strength 

Soft signals are essentially signals extracted from inference schemes. Again, typically 

reduce to one calibration parameter per soft inference unit, and they include the 

following: 

• Smoothness signals => Continuity, first, second, and higher-order derivatives 

match – one parameter per match. 

• Bayesian update metrics => Inferred using Bayesian methodologies such as 

maximum likelihood estimates, variance minimization, and error minimization 

techniques. 
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7. Directionality Bias: Directionality “bias” is inherent in calibration (e.g., left to right, 

ordered sequence set, etc:) – this simplifies the solution space significantly, as it 

avoids simultaneous non-linearity. Therefore, the same directional bias also exists in 

the calibration nodal sequence. 

8. Truthness/Smoothness vs. Information Propagation: In segment-by-segment 

calibration challenges associated with inferring a composite Latent State, if the 

inference is based purely off of the truthness measurements, the information 

directionality/propagation/flow is irrelevant. Notions such as kC  are important 

primarily owing to the smoothness axioms. 

• In general, it is trivial to get the segment elastics to respond to (via inference) 

purely truthness signals. However, if the existence of additional 

directionality/propagation/flow criteria is posited, those need to be accommodated 

too (splines constructed through the kC  criteria are one common way). 

9. Head Node Calibration: Calibration of the head node is typically inherently different 

from the other nodes, because the inputs needed/used by it could be different. The 

other nodes use continuity/smoothness parameters, which the head node does not. 

10. Parameter Space Explosion: Generally not a problem as long as it is segment-

localized (in linear systems parlance, as long the Latent State matrix is tri-diagonal, or 

close to it), i.e., local information discovery does not affect far away nodes/segments. 

• Also maybe able to use optimization techniques to trim them. 

11. Live Calibrated Parameter Updating: Use automatic differentiation to: 

• Estimate parametric Jacobians (or sub-coefficient micro-Jacobians) to the 

observed product measures. 

• Re-adjust the shifts using the hard-signal strength. 

• Update the parameters from the calculated shifts. 

• Re-construct the curve periodically (for increments, as opposed to a full re-build). 

12. Spline Segment Calibrator: For a given segment, its calibration depends only on the 

segment local value set – the other inputs come from the prior segments (except in the 

case of “left-most” segment, whose full set of inputs will have to be extraneously 

specified). 
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13. Block Diagonalization vs. Segment/Segment Calibration: Since segment-by-segment 

span calibration occurs through kC  transmission, it will effectively be block diagonal 

if it is a linear system, and hence computationally efficient (this also allows for 

explicitly setting segment level controls). In other words, although the local matrix is 

dense, the span-level matrix is still sparse, 

14. Calibration Perspective of Supervised vs. Unsupervised: 

• Supervised – Alternate View => Since supervised learning depends upon a 

training step, post supervised activity may be viewed as a post-inference systems, 

where the inference/calibration has already occurred during the training step (and 

parsimonization into the parameter step). So, post-training, the supervised 

machine is only used for prediction. 

• Unsupervised – Alternate View => Here, inference and prediction happen 

simultaneously. 

• Hybrid Supervised/Unsupervised => Clearly no TRUE unsupervised are possible 

(as there are prior views on linearity, Markov nature, error process, basis spline 

representation choice, etc;). So unsupervised systems are typically mostly hybrid 

systems. 

 

 

Latent State Specification 

 

1. Latent State Specification: The latent-state here refers to the state whose dependent 

response values we wish to calibrate/infer as a function of the predictor ordinate. For 

e.g., in fixed income finance, the Prevailing Interest Rate, the survival, the forward  

rate, FX spot/forward would each constitute a potentially separate latent state that 

needs to be inferred. 

2. Latent State Quantification Metric: A given latent state may be described by 

one/more alternate, mutually exclusive quantification metric. Again, the discounting 

latent state may be quantified using a discount factor, zero rate etc: 

3. Manifest Measure: The Latent State may be inferred using a variety of external 

experimental measurements each of which produces a convolved signal of the latent 
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state. Each such signal is referred to as a manifest metric. Again, the discounting 

latent state may be inferred from the cash instrument manifest metric, the swap rate 

manifest metric etc: 
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Spline Builder Setup 

 

 

Design Objectives behind Interpolating Splines 

 

1. Symbols and Definition: 

• Good overview of the desired characteristics is provided in Goodman (2002). 

• Data: { } Niii xxxxNiRyx <<<<<=∈ ......;,...,0,, 10
2  

• Interpolating function: ( ) [ ] [ ]RRxxfyxf Nii ⇒→= 2
0,:;  

• Optional Actual Function: ( )xg  

2. Monotonicity: ( )ixf  increases with increase in iy  (and vice versa). 

• Truly monotonic means that the segment extrema match ( )xg  extrema. 

• Co-monotone => ( )ixf  increases with increase in iy  within the segment (and 

vice versa) 

o Strictly co-monotone implies that sub-segment monotonicity must also 

be met, so “local monotonicity” where monotonicity matches between 

( )ixf  and iy  at the segment level, is what is accepted – here, there can be 

an inflection among segments in the immediate proximity of the data 

extrema. 

• At most, one extremum is allowed in { }ii xx 1, + . 

3. Convexity: ( )ixf  should also be convex wherever iy  is convex (and vice versa). 

• At the segment level this becomes co-convex. As before strict co-convexity is 

often highly restrictive, so local convexity is preferred. The earlier established 

conditions should also satisfy convexity criteria. 

• Desirable to have at most one inflection in { }ii xx 1, + . 

4. Smoothness: Smoothness (also called shape-preserving) corresponds to the least 

curvature. Even C0 can be “smooth”, and so is Ck. 
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5. Locality: Locality  means that the dependence of ( )xf  is primarily only on ( )ixf  and 

( )ixf . This is advantageous to schemes that locally modify/insert the points. 

6. Approximation Order: Approximation Order  indicates the smallest polynomial 

degree by which ( )xf  departs from ( )xg  as the density of x  increases. More 

formally, it is the m in ( )mhOgf ≈− , where { }1,...,0:max 1 −=−= + Nixxh ii . 

• For spline segments where ( )xg  through ( )xg  are specified locally, the first 

degree of departure should the first degree of non-continuity infinitesimally for 

both polynomial and non-polynomial splines, i.e., it should be 1+k  where the 

continuity criterion is kC . 

7. Other Desired Criteria: 

• The interpolating proxy ( )xf  should be able to replicate the target ( )xg . 

• Fairness – loosely a measure of “pleasing to the eye”. 

• Possible ( )xf  invariance under variate scaling/reflection. 

• Controlled derivative behavior => Small changes in x produce small changes in 

( )xf . 

8. Assessment of Monotonicity and Convexity: An individual segment can be assessed 

to be monotone/convex etc:, but from the data PoV, peaks, valleys, and inflection 

occur only at the knots. These can be assessed only at the span level. 

 

 

Base Formulation 

 

1. Base Mathematical formulation: 

• ( ) ( )∑
−

=

=
1

0

n

i
ii xfaxy , therefore 

( ) ( )
∑

−

=

=
1

0

n

i
r

i
r

ir

r

dx

xfd
a

dx

xyd
. 

• From known nodes { }00 , yx  and { }11, yx , we can draw the 2 linear equations for 

ia : 

o ( ) ( )∑
−

=

=
1

0

00
n

i
ii fay  
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o ( ) ( )∑
−

=

=
1

0

11
n

i
ii fay  

• From known nodal derivatives ( ){ }r
k k

xyx
100 ,

=
, where ( )

0

0

x

k

k

k dx

yd
xy 








= , we can 

draw the following r linear equations for ia : 

o ( ) ( )
0

1

0

0
xx

n

i
k

i
k

ik
dx

xfd
ay

=

−

=
∑ 








=  where rk ,...,1⇒  

2. Linear of Segment Coefficients to the Response Values ( iy ): In all the spline 

formulations, the Jacobian 
i

j

y

C

∂
∂

 is constant (i.e., independent of the response values 

or their nodal derivative inputs). 

3. Span Boundary Specification: 

• “Natural” Spline – Energy minimization problem – Second Derivative is Zero at 

either of the extreme nodes. 

• “Financial” Spline – Second Derivative at the left extreme is zero, but first 

derivative at the right extreme is zero. 

• Clamped Boundary Conditions: α=






∂
∂

= 0xxx

f
, and β=






∂
∂

= Nxxx

f
. 

• Not-A-Knot Boundary Conditions: 
10

3

3

3

3

xxxx
x

f

x

f

==









∂
∂=









∂
∂

 and 

NN xxxx
x

f

x

f

==









∂
∂=









∂
∂

−

3

3

3

3

1

. 

4. Discrete Segment Mesh vs. Inserted Knots: Inserting knot point is similar to 

discretizing the segment into multiple grids, with one key difference: 

• Discretization uses the same single spline across all the grid units of the segment. 

• Inserted knots introduce additional splines – on between each knot pair. 

5. Segment Inelastics: These are effectively the same as shape controller, i.e., the 

following are the shape controlling inelastic parameter set: 

• Tension σ  
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• Number of basis n  

• Continuity kC  

• Optimizing derivative set order m  
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B-Splines 

 

 

Introduction 

 

1. Motivation: As postulated by De Boor et. al. (see De Boor (2001)), B Splines have a 

geometric interpolant context – thereby with the correspondingly strong 

CADG/curve/surface construction focus. Smoothening occurs as a natural part of this. 

• The B Spline generation scheme has a recurrence-based iterative polynomial 

generator that admits coinciding control points facilitate and surface construction, 

with shape-preserving interpolation control thrown in. 

2. kth Order B-Spline Interpolant: Higher order B-Splines are defined by the recurrence 

( ) 1,1,11,,, 1 −++− −+= kikikikiki BBB εε  where 
iki

i
ki tt

tt

−
−=
−+ 1

,ε  and ( ) ( ) 11 == tXtB ii  if 

1+<< ii ttt , and ( ) ( ) 01 == tXtB ii  otherwise. 

• Coinciding knots => 011 =→= + iii Btt . 

3. Recursive Interpolant Scheme: B Spline formulation is recursively interpolant, i.e., 

the order k spline is interpolant over the order 1−k  splines on nodes i  and 1+i  - this 

formulation automatically ensures 2−kC  nodal continuity. 

• As shown in Figure 4, the left interpolator stretch [ ]1, −+ kii  contains the 

interpolator pivot at it , and the right interpolator stretch [ ]kii ++ ,1  contains the 

interpolator pivot at 1+it . 

• qpB ,  spans all the segments between the nodes [ ]qp... . 

• Further, the formulation symmetry between the left pivot at 1, −kiB  and the right 

pivot at 1,1 −+ kiB  retains the interpolation symmetry – among other things, it is 

responsible for ensuring the 2−kC  symmetry. 

4. B-Spline Order Relationships: Assuming no coincident knots, the following 

statements are all EQUIVALENT/TRUE: 

• 1+n  knot points. 
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• nth order B Spline. 

• Polynomial of degree 1−n . 

• Continuity criterion 2−nC . 

5. Expository Formulation: 

• ∑
=

+=
k

j
jiijki XB

0
, α  

• ∏
−=

− ==
0

1
,01,0 ...

kj
jiikii εεεα  where 

1

1
,

−++

−+

−
−

=
jiji

ji
ji tt

tt
ε  

• [ ]∏
=

−+−=
k

l
liik

1
11 εα  where 

1

1
1

−++

−+
−+ −

−
=

lili

li
li tt

ttε  

6. Spline Coefficient Partition of Unity: Using the earlier formulation ∑
=

+=
k

j
jiijki XB

0
, α , 

it is easy to show that 1
0

=∑
=

k

j
ijα . This simply follows from the recursive nodal 

interpolation property. 

7. Smoothness Multiplicity Order Linker: # smoothness conditions at knot + the 

multiplicity at the knot = B-Spline Order. 

8. Starting Node de-biasing: Left node is always weighted by ki,ε  in the interpolation 

scheme, but the left node asymmetry is maintained because the denominator in 

1

1
,

−++

−+

−
−

=
jiji

ji
ji tt

tt
ε , i.e., 1−++ − jiji tt  increases in length. 

9. Other Single B-Spline Properties: 

• ikB  is a piece-wise polynomial of degree k<  ( 1−k  if the knots are distinct, 

lesser if the some of the knots coincide). 

• ikB  is zero outside of ),[ kii tt + . 

• ikB  is positive in the open interval ],...,[ kii tt + . 

10. Formulation off of Starting Node and Starting Order: Given the starting node i  and 

the starting order k , the contribution to the node mi +  (i.e., m nodes after the start) 
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and the order  (i.e., n nodes after start) can be “series”ed as 

( ) ( ) nkminkminkmi BnkmimiBnknkmiB −++−+−+ −+→−+Β+−→+−+Ν= ,1,, ,11,  

• Nodal B-Spline Recursion Stepper: 

( ) ( )










−
−










−
−

=

−→+−+→+℘=−→+−+Ν

++−++

−++

++−++

+

11

1,1,

minkmi

nkmi

minkmi

mi

tt

tt

tt

tt

nknkmiminknkmi

 

• Spline Order B Spline Recursion Stepper: 

( ) ( )










−
−










−
−

=

−→−+→−+℘=−+→−+Β

++−++

++

++−++

+

1

1

1

,1,1

minkmi

mi

minkmi

mi

tt

tt

tt

tt

nknkmiminkmimi

 

11. Cardinal B-Spline Knot Sequence: Knot sequence Ζ  => Uniformly spaced knots, 

simplifying the interpolant/recursive analysis significantly - { },...2,1,0,1,2..., −−⇒Ζ . 

• Also all Cardinal B-Splines of a given order k are translates of each other. 

• Cardinal B-Spline Order 2: 

Range 2,iB  2,1+iB  

10 <≤ t  t  0  

21 <≤ t  t−2  1−t  

32 <≤ t  0  t−3  

 

• Cardinal B-Spline Order 3: 2,12,3, 2

3

2 +
−+= iii B

t
B

t
B  

Range 3,iB  
t

Bi

∂
∂ 3,  

10 <≤ t  2

2

1
t  t  

21 <≤ t  ( )362
2

1 2 −+− tt  32 −− t  

32 <≤ t  ( )23
2

1 −t  3−t  

 

12. Non-coinciding B Spline Segment Relations: 
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• 11, == ii XB  if 1+<≤ ii ttt  

• 01, == ii XB  outside 

• 1
12

2
0

1
2, X

tt

tt
X

tt

tt
B

ii

i

ii

i
i 









−
−

+








−
−

=
++

+

+

 

• 2
23

3
1

12

1
2,1 X

tt

tt
X

tt

tt
B

ii

i

ii

i
i 









−
−

+








−
−

=
++

+

++

+
+  

• 2,1
3

3
2,

2
3, +

++

+

+









−
−

+








−
−

= i
iii

i
i

ii

i
i B

tt

tt
B

tt

tt
B  

Range 2,iB  2,1+iB  3,iB  

1+<≤ ii ttt  
ii

i

tt

tt

−
−

+1

 0  
ii

i

ii

i

tt

tt

tt

tt

−
−

−
−

++ 12

 

21 ++ <≤ ii ttt  
ii

i

tt

tt

−
−

+

+

2

2  
12

1

++

+

−
−

ii

i

tt

tt
 

12

1

13

3

12

2

2 ++

+

++

+

++

+

+ −
−

−
−

+
−
−

−
−

ii

i

ii

i

ii

i

ii

i

tt

tt

tt

tt

tt

tt

tt

tt
 

32 ++ <≤ ii ttt  0  
13

3

++

+

−
−

ii

i

tt

tt
 

12

2

3

3

++

+

+

+

−
−

−
−

ii

i

ii

i

tt

tt

tt

tt
 

 

13. Bernstein B-Spline Knot Sequence: Knot sequence { }1,...,1,0,...,0⇒Ξ  - { }0,...,0  occurs 

µ  times, and { }1,...,1  occurs ν  times. 

• [ ] ( ) ( ) νµ

νµ
νµνµ tttB −+= 1
!!

!
,,  for 10 <≤ t . 

• [ ]tB ,,νµ  has 1−ν  derivatives at 0=t , and 1−µ  derivatives at 1=t  - this is also 

referred to as ν  smoothness conditions at 0=t , and µ  smoothness conditions at 

1=t . 

14. B-Spline vs. Spline: B-Spline is just a single basis polynomial that is valid across a set of 

knots. “Spline” is a linear combination of such basis B Splines – i.e., the set of all the 

ikB ’s. 

15. Spline Definition: ∑=
i

iiktk aBS ,  where 1Rai ∈ . ia ’s are the coefficients – or nodal 

points { }ii ax ,  - that can be interpolated. 
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B Spline Derivatives 

 

1. B-Spline Derivative Formulation: 

• 
r

ki
r

iki

ki
r

ki
r

iki
r

ki
r

iki

i
r

ki
r

iki
r

ki
r

t

B

tt

tt

t

B

tt

r

t

B

tt

tt

t

B

tt

r

t

B

∂
∂










−
−

+
∂

∂









−
−

∂
∂










−
−

+
∂

∂









−
=

∂
∂ −+

++

+
−

−+
−

++

−

−+
−

−
−

−+

1,1

1
1

1,1
1

1

1,

1
1

1,
1

1

,

 

2. B Spline Order 3 Nodal Slopes: The slopes match across the left and the right segment, as 

shown below, thereby making iB ,3  1C  continuous. 

Range Left Slope Right Slope 

it  - 0 

1+it  
ii

i

tt

tt

−
−

+

+

2

1  
ii

i

tt

tt

−
−

+

+

2

1  

2+it  
12

3

++

+

−
−

ii

ii

tt

tt
 

12

3

++

+

−
−

ii

ii

tt

tt
 

3+it  0  - 

 

3. B Spline Continuity Condition: From the B Spline derivative formulation it is clear that if 

both 1, −kiB  and 1,1 −+ kiB  are 3−kC  continuous, then kiB ,  will be 2−kC  continuous. Given 

that B Spline order 3 is 1C  continuous, by induction, kiB ,  is 2−kC  continuous. 
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Polynomial Spline Basis Function 

 

 

Plain Polynomial Spline Basis Function 

 

1. Most direct polynomial spline fit is the Lagrange polynomial that passes through the 

sequence of given points. 

2. Young (1971) was one of first to apply shape-preserving polynomial using 

diminished Lagrange Polynomials (Lagrange Polynomials (Wiki)), showing that co-

monotone interpolant with an upper bound on the polynomial degree exists (Raymon 

(1981)). 

3. Knot Insertion and Control Techniques: Careful knot insertion can produce: 

• Convexity Preserving Schemes on C2 cubic (de Boor (2001)). 

• Co-monotone, co-convex schemes on C1 quadratic (McAllister and Roulier 

(1981a), McAllister and Roulier (1981b), Schumaker (1983)). 

• Co-monotone on C1 cubic (Butland (1980), Fritsch and Butland (1984), Fritsch 

and Carlson (1980), Utreras and Celis (1983)). 

• Co-monotone and co-convex on C1 cubic (Costantini and Morandi (1984)). 

• C2 co-monotone and co-convex by using cubic in any interval where there is an 

inflection, and linear/quadratic rational elsewhere (Schaback (1973), Schaback 

(1988)). 

 

 

Bernstein Polynomial Basis Function 

 

1. Bernstein Polynomial of degree n, and term ν : ( ) ( ) νν
νν

−−= nn
n xxCxb 1,  where 

n,...,0=ν . 

• Bernstein Polynomial Convenience Re-cast #1: ( ) ( )
( )!
1

!
!, νν

νν

ν −
−=

−

n

xx
nxb

n

n . 
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• Bernstein Polynomial Convenience Re-cast #2: ( ) ( ) ( ) ( )cxFbxFcbxP cb ,1,!, −+=  

where ( )
!

,
b

x
bxF

b

= . 

2. Derivative of the Bernstein Polynomial: 
( ) ( ) ( )












−= −

−−
−

−
−

−

1

1,1
1

1

,1
1

,

r

n
r

r

n
r

r

n
r

dx

xbd

dx

xbd
n

dx

xbd ννν . 

• Bernstein Polynomial Re-cast #2 Derivative: 

( ) ( ) ( ) ( ) ( ) ( )







∂
−∂+−

∂
∂+=

∂
∂

x

cxF
bxFcxF

x

bxF
cb

x

xP cb ,1
,,1

,
!, . 

3. Bernstein Recurrence: ( ) ( ) ( ) ( )xxbxbxxb nnn 1,11,, 1 −−− +−= ννν . 

4. Reduction of B-Splines to Bernstein’s Polynomial: From the recurrence relation, it is 

clear that this is exactly the same recurrence as that for B-splines, except that it 

happens over repeating knots at 0=x  and 1=x . 

• Further, 1,0 =ib  for 10 <≤ x , and 0,0 =ib  otherwise. 
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Local Spline Stretches 

 

 

Local Interpolating/Smoothing Spline Stretches 

 

1. Hermite Cubic Splines: The “local information” here takes the form of user specified 

left/right slopes + calibration points. 

• 2 User Specified local slopes + 2 points => 4 sets of equations. Solve for the 

coefficients. 

• C1 continuity is maintained, and C2 continuity is not. 

• Segment control is completely local. Both the head and non-head calibration are 

identical/analogous for this reason. 

2. C1 Hermite Formal Definition: For C1, the Hermite polynomial of degree 12 +n  is given 

as ( ) ( ) ( ){ }∑
=

+ +=
n

j
jnjjnjn xHfxHfxH

0
,,12

ˆ' , where ( )xH jn,  and ( )xH jn,
ˆ  are expressed in 

terms of the jth Lagrange coefficient of degree n , ( )xL jn,  as 

• ( ) ( ) ( )[ ] ( )xLxLxxxH jnjnjjn
2

,,, '21 −−=  

• ( ) [ ] ( )xLxxxH jnjjn
2

,,
ˆ −=  

3. Catmull-Rom Cubic Splines (Catmull and Rom (1974)): Instead of explicitly specifying 

the left/right segment slopes, they are inferred from the “averages” of the prior and the 

subsequent points, i.e., 




 −=
→

−

→

+

→

112

1
iii ppτ , and 




 −=
→→

+

→

+ iii pp 21 2

1τ . Here 
→

iτ refers to the 

slope vector, and 
→

ip  to the point vector. 

• Again, C1 continuity is maintained, and C2 continuity is not. 

• Segment control is not completely local, but still local enough – it only depends 

on the neighborhood of 3 points. 
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4. Cardinal Cubic Splines: This is a generalization of the Catmull-Rom spline with a 

tightener coefficient σ , i.e., ( ) 




 −−=
→

−

→

+

→

111
2

1
iii ppστ , and ( ) 




 −−=
→→

+

→

+ iii pp 21 1
2

1 στ . 

0>σ  corresponds to tightening, and 0<σ  corresponds to loosening. 

• Again, C1 continuity is maintained, and C2 continuity is not. 

• Segment control is “local” in the Catmull-Rom sense - it only depends on the 

neighborhood of 3 points. 

5. Catmull-Rom/Cardinal Splines as Interpolation Splines: As interpolating splines, both 

Catmull-Rom and Cardinal are primarily useful in heuristic knot-insertions – Catmull-

Rom as linear in the gaps, and Cardinal as tense linear gap knots. 

• The local knot point insertion may be generalized as follows: The targeted knot 

insertions follow the formulation paradigm ( ) ( )∀ℵ= ixfxf iKNOT : , where ℵ  is the 

set of the neighborhood points. Similar formulation (with potentially different 

function forms, of course) may be used for each of the kC  derivatives. Catmull-Rom 

and cardinal use 1D, strictly neighboring adjacencies, as well as tense linear 

averaging. 

6. 1C Hermite-Bessel Splines: These splines use 4 basis functions per segment, therefore 

they are cubic polynomial, but 1C . The first are set at each node ix  as the first derivative 

of the quadratic that passes through 1−ix , ix , and 1+ix  (the edges are handled slightly 

differently, as shown below). Specifically: 

• ( )( )
( )

( )( )
( ) 









−
−−−

−
−−+

−
=

12

1201

01

01012

02
0

21
xx

yyxx

xx

yyxxx

xx
b  

• ( )( )
( )

( )( )
( ) 









−
−−−−

−
−−

−
=

−

−−−

−−

−−−

− 1

121

21

211

2

21

nn

nnnnn

nn

nnnn

nn
n xx

yyxxx

xx

yyxx

xx
b  

• ( )( )
( )

( )( )
( ) 









−
−−+

−
−−

−
=

+

+−

−

−+

−+ ii

iiii

ii

iiii

ii
i xx

yyxx

xx

yyxx

xx
b

1

11

1

11

11

1
 for 11 −<≤ ni  

7. Hyman’s Monotone Preserving Cubic Spline: 

• Hyman (1983) applies the stringent conditions to preserve monotonicity by applying 

the de Boor-Schwarz criterion. 
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• Define 
ii

ii
i xx

yy
m

−
−=

+

+

1

1 . If locally monotone (i.e., 01 ≥− ii mm ), then set 

[ ] [ ]iiii

ii
i mmmm

mm
b

,min2,max
3

11

1

−−

−

+
= . If non-monotone (i.e., 01 <− ii mm ), then set 

0≥ib . 

• Put another way (Iwashita (2013)): For cubic polynomial splines, the first derivative 

should be in the range 
1

3
'

3

−

≤≤−

i

ii
ii

i

ii

h

f
f

h

f τττ
 where )( ii fsign⇒τ . 

• Adjustment for Spurious Extrema => To ensure that no spurious extrema is 

introduced in the interpolant, ( ) ( )[ ]iiiAdji mmbb ,min3,,0maxmin 1, −∗=  if ii yy >+1 , and 

( ) ( )[ ]iiiAdji mmbb ,max3,,0minmax 1, −∗=  if ii yy <+1 . 

8. Hyman89 Extension to Hyman83: Doherty, Edelman, and Hyman (1989) relax the 

Hyman83 stringency posited for monotonicity preservation. Define the following: 

• ( )[ ] ( )
2

122111
1,

2

−

−−−−−−
− −

−+−+−=
ii

iiiiiiii
i tt

ttmttttmµ  

• ( ) ( )
11

111
0,

−+

−+−

−
−+−=

ii

iiiiii
i tt

ttmttmµ  

• ( )[ ] ( )
ii

iiiiiiii
i tt

ttmttttm

−
−−−+−=

+

+++++

2

11121
1,

2µ  

• [ ]1,0,1 ,,,min3 iiiii mmM µµ−∗=  

• If 2>i , 1,−iµ , 0,iµ , ( )21 −− − ii mm , and ( )1−− ii mm  all have the same sign, then 

( )[ ]1,0, ,min5.1,max −∗= iiii MM µµ . 

• If 1−> ni , 0,iµ− , 1,iµ− , ( )1−− ii mm , and ( )ii mm −+1  all have the same sign, then 

( )[ ]1,0, ,min5.1,max −∗= iiii MM µµ . 

• Finally, set ( ) [ ]iiii sMssigns ,min∗=  if ( ) ( )0,ii signssign µ= , and 0=is  otherwise. 

9. Hyman’s Monotone Preserving Quintic Spline: 
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• For quintic polynomial splines, the first derivative should be in the range 

1

5
'

5

−

≤≤−

i

ii
ii

i

ii

h

f
f

h

f τττ
 where )( ii fsign⇒τ . 

• The constraint on the second derivative is: 









−−−≤

−−
22

11

20
'

8,20
'

8max"
i

i

i

i

i

i

i

i
iii

h

f

h

f

h

f

h

f
f ττ . 

• Monotonicity Preserving Quintic Spline => Enhancement of the criterion established 

by de Boor and Schwartz (1977) (Hyman (1983), Doherty, Edelman, and Hyman 

(1989)). 

o Set ( )ii fsign=σ  if 01 <− ii ss , and 0=iσ  otherwise. Then 

o If 0≥iσ , then ( ) ( )[ ]iiii ssff ,min5,',0maxmin' 1−= , AND: 

o If 0≤iσ , then ( ) ( )[ ]iiii ssff ,min5,',0minmax' 1−−= . 

• Second Derivative Tests for Monotonicity Preserving Quintic Spline => 

o Define the following constants: 

� 







=

−1

'
,0max

i

i

s

f
a . 

� 







= +

i

i

s

f
b

'
,0max 1 . 

� 'ifd =+  if 0' >ii sf , and 0=+d otherwise. 

� 'ifd =−  if 0' 1 >−ii sf , and 0=−d otherwise. 

o Define Ranges A  and B  as: 

� 
( )








 −−−−−= ++++

i

i

i h

addsb

h

bdd
A

48.08220
,

26.09.7
, AND 

� 
( )








 +++−=
−

−−

−

−−−

11

1 26.09.7
,

48.08202

ii

i

h

bdd

h

addsa
B .  
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If A  and B  overlap, then "if  should lie in their common range. If they do not overlap, 

i.e., Φ⇒BAI , reset 'if  as 

( ) ( )

1

1

1

48.0848.08

220220

'

−

−

−

+++

−+−

=

ii

i

i

i

i

i

h

a

h

b
h

sa

h

sb

f . Setting this 'if  ensures 

that A  and B  overlap, so the other tests aspects may now continue. 

10. Harmonic Splines: Introduced by Fritsch and Butland (1984) as: 

• [ ]
[ ]

[ ]
[ ] iii

iiii

iii

iiii

i mtt

tttt

mtt

tttt

s

1
3

21
3

21

11

11

111

11

−+

+−

−−+

+−

−
−+−+

−
−+−=  if 01 >− ii mm , 0=is  if 

01 ≤− ii mm . Boundary Conditions are: 

• [ ]
1

02

01
0

02

0112
0

2
m

tt

tt
m

tt

tttt
s

−
−−

−
−+−=  

• [ ]
1

2

121
2

2

1
0

2
−

−

−−−
−

−

−

−
−+−+

−
−−= n

nn

nnnn
n

nn

nn m
tt

tttt
m

tt

tt
s  

• Harmonic Spline Monotonicity Filter => 

o 00 3 ms ∗=  if 000 >ms  AND 010 ≤mm  AND 00 3 ms ∗<  

o 00 ss =  if 000 >ms  

o 00 =s  if 000 ≤ms  

o 13 −∗= nn ms  if 01 >−nnms  AND 021 ≤−− nn mm  AND 13 −∗< nn ms  

o nn ss =  if 01 >−nnms  

o 0=ns  if 01 ≤−nnms  

• Continuous Limiters => For harmonic splines, as the predictor ordinate widths 

become identical ( )iiii tttt −=− +− 11 , setting 
1−

=
i

i

m

m
r , we get 

r

rr
ms ii +

+
=

1
. This is 

the Van Leer limit (Van Leer (1974)). Huynh (1993) reviews several such limiters. 

• Shortcoming of these Limiters => Since they rely on min/max/modulus functions, by 

definition they are not smooth close to transition edge. This is rectified by Le Floc’h 

(2013), who defines a new limiter based on rational functions: 
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( )
2

1
2

11

4

3

iiii

iiii
i

mmmm

mmmm
s

++
+=
−

−−  for 01 >−ii mm , and 0=is  otherwise. This produces a stable 

1C  interpolator. 

11. Akima Cubic Interpolator (Akima (1970)): 

• Expand the Predictor Ordinates => Add 2 predictor ordinates each at the left and 

the right boundaries using ( 2112 ,,, ++−− NN xxxx ): 

o 2112 −−++ −=−=− NNNNNN xxxxxx  

o 201102 xxxxxx −=−=− −−  

• Expand the Response Values => Add 2 response values each at the left and the 

right boundaries using ( 2112 ,,, ++−− NN yyyy ) using: 

o 
21

21

1

1

1

1

1

1

1

1
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−−

−
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−

−
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• Final 1C  Slope => Compute the final Akima 1C  slopes using: 

o If ii ss ≠+1  OR 21 −− ≠ ii ss , then 
211

2111'
−−+

−−−+

−+−
−+−

=
iiii

iiiiii
i ssss

ssssss
f . 

o Otherwise 
2

' 1−+= ii
i

ss
f . 

12. Kruger’s Constrained Cubic Interpolant (Kruger (2002)): 

• 0'=if  if 01 >−ii ss . 

• 

1

11
2

'

−

+
=

ii

i

ss

f  if 01 ≤−ii ss . 

• '
2
1

2
3

' 100 fsf −=  and '
2
1

2
3

' 11 −− −= NNN fsf  at the end points. 

13. Shape-Preserving Knot-based 2C  Cubic: Ideas are taken from the awesome paper by 

Pruess (1993). The basic idea is to take the interval [ ]1, +ii xx , and partition it into 3 

parts by locating the two knots at iiii hx σξ += , and iiii hx τη −= +1 . Evolve the 
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criteria for the selection of iτ and iτ  (and, of course, their corresponding responses) 

such that the local spline has shape-preserving feature, and avoids being global (i.e., 

preserves locality). 

• Using the above notations, the basic equations are: 

• ( ) ( ) [ ] ( ) [ ] ( ) [ ] ( )
6

'''

2

''
' 32 i

i
i

iiii

xf
xx

xf
xxxfxxxfxf −+−+−+=  for 

[ ]iixx ξ,∈ . 

• ( ) ( ) [ ] ( ) [ ] ( ) [ ] ( )
6
'''

2
''

' 32 i
i

i
iiii

f
x

f
xfxfxf

ξξξξξξξ −+−+−+=  for 

[ ]iix ηξ ,∈ . 

• ( ) ( ) [ ] ( ) [ ] ( ) [ ] ( )
6
'''

2
''

' 32 i
i

i
iiii

f
x

f
xfxfxf

ηηηηηηη −+−+−+=  for 

[ ]1, +∈ ii xx η . 

• The corresponding 2C  maintenance solution then becomes (in terms of 

( )ixf ' , ( )ixf '' , iσ , and iτ , whose specification will then complete the 

inference): 

• ( ) ( ) ( ) ( ) ( ){ }ii
ii

iiiii fxf
h

xfhxff ξσσξ ''''2
6

'
22

+++= . 

• ( ) ( ) ( ) ( ) ( ){ }ii
ii

iiiii fxf
h

xfhxff ηττη ''''2
6

' 1

22

11 +++= +++ . 

• ( ) ( ) ( ) ( ){ }ii
ii

ii fxf
h

xff ξσξ ''''
2

'' ++= . 

• ( ) ( ) ( ) ( ){ }ii
ii

ii fxf
h

xff ητη ''''
2

'' 11 +−= ++ . 

• ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
( )ii

iiiiiiiiiiiiiii
i h

xfhxfhxfxfs
f

τ
σττστστσξ

−
−+−−+−−−+−= ++

1
''1''2'12'226

'' 11
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• ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )ii

iiiiiiiiiiiiiii
i h

xfhxfhxfxfs
f

σ
σττστστση

−
−−−++−+−++−= ++

1

''2''1'22'126
'' 11

. 
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• ( ) ( ) ( )
ii

ii
i h

xff
xf

σ
ξ ''''

'''
−= . 

• ( ) ( ) ( )
( ) iii

ii
i h

ff
f

τσ
ξηξ

−−
−=

1
''''

''' . 

• ( ) ( ) ( )
ii

ii
i h

fxf
f

τ
ηη ''''

''' 1 −= + . 

• Choice of ( )ixf '  and ( )ixf '' : ( )ixf '  and ( )ixf ''  may be generated using 

typical generation schemes (e.g., using the Fritsch and Butland (1984) 

algorithm). 

• The Preuss Inequalities: It is specified as follows. Set 

• ( )1−−= iii sssignβ ; '2'46 112 +− −−= iiii ffsR ; iiii sffR 6'4'2 12 −+= +  

• If 012 ≥−ii Rβ  and 012 ≥−ii Rβ , you are done, since the chosen 'if  and ''if  

also preserve convexity – you can go and set the second derivatives, and 

set iτ  and iσ . 

• Mismatch in the Preuss Inequalities: If the Preuss inequalities are not met, 'if  

and ''if  need to be modified such that [ ]iii dcf ,'∈  where ii dc ,  are obtained 

using the double sweep algorithm below. 

• Preuss (1993) Double Sweep: First find ia  and ib  from the following regimes: 

• If 0,0 1 >> +ii ββ , 






 −=
2

3
,max ii

ii

bs
sa ; iii asb 23 −= . 

• If 0,0 1 >< +ii ββ , 






 −−=
2

3
,23max ii

iii

bs
bsa ; 








 −−=
2

3
,23max ii

iii

as
asb . 

• If 0,0 1 >> +ii ββ , ( )iiii bssa 23,max 1 −= + ; 
2

3 ii
i

as
b

−= . 

• Finally the 0a  and 0b  initializations are set from: 

• If 0,0 10 >> ββ , 000 23 bsa −= ; 00 sb = . 

• If 0,0 10 << ββ , 00 sa = ; 100 23 ssb −= . 
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• Preuss (1993) Backward Sweep for ii dc , : First set 
2

'' NN
NN

ba
fs

+== , 

then set ii dc ,  using the following: 

o If 0,0 1 >> +ii ββ , then '3 1+−= iii fsc , and 
2

'3 1+−= ii
i

fs
d . 

o If 0,0 1 >< +ii ββ , then 




 −−= +
+ 2

'3
,'23max 1

1
ii

iii

fs
fsc , and 






 −−= +
+ 2

'3
,'23min 1

1
ii

iii

fs
fsd . 

o If 0,0 1 << +ii ββ , then 
2

'3 1+−= ii
i

fs
c , and '23 1+−= iii fsd . 

• Preuss (1993) Setting 2nd Derivatives: 







=

−

−−

1

2212 ,min''
i

ii

i

ii
ii h

R

h

R
f

βββ . 

• Preuss (1993) Final Step – Setting iτ  and iσ : Setting 
3
1== ii στ , 

verify the following inequalities: 

o ( ) ( )[ ] iiiiiiiiiiiii sfhfhff βττττβ 61''2''''2'4 1 ≤−−−++ +  

o ( ) ( )[ ] iiiiiiiiiiiii sfhfhff 111 62''1''''4'2 +++ ≤−−−++ βττττβ  

o If these inequalities are satisfied, then you have your 'if , ''if , 

iτ , and iσ . Otherwise, reduce iτ  and iσ  till they are satisfied. 

 

 

Space Curves and Loops 

 

1. Space Curve Reproduction: Here is one way to construct loops that are not possible using 

the ordered variates, i.e., nxxx <<< ...21 . 

• If the ordering nxxx <<< ...21  is switched out in favor of the DAG { }jj yx , , where 

the DAG vertices correspond to the loop trace, normal splines may be used to 

represent space curve loops. 
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2. Second Degree Parameterization: However, on using a second-degree parameterization of 

x and y such as ( )ufx X=  and ( )ufy Y= , it may be possible to enforce the order 

nuuu <<< ...21 . The corresponding control points are [ ] [ ]nn xuxu ,..., 11  and 

[ ] [ ]nn yuyu ,..., 11 . 

a. Side effect of this – is that you need to work on two pairs of splines – one each for 

( )ufx X=  and ( )ufy Y= . 

b. This can offer additional customization and freedom in the design of the surface, 

at the expense of computing additional splines. 

3. Closed Loops: Further, if the start/end points coincide, this corresponds to a closed loop 

that satisfies the C2 continuity criterion. 

a. This also implies that no extra head/tail C1 slope specifications are required. 
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Spline Segment Calibration 

 

 

Introduction 

 

1. Spline Segment Calibrator: For a given segment, its calibration depends only on the 

segment local value set – the other inputs come from the prior segments (except in the 

case of “left-most” segment, whose full set of inputs will have to be extraneously 

specified). 

2. Bayesian Techniques in Spline Calibration: Frequentist and Bayesian techniques such as 

MLE and MAP regression ought to be possible in the calibration of the spline 

segment/span coefficients. 

3. Main Calibration Inputs Modes: Here we consider the following segment calibration 

input modes: a) Smoothing Best fit Splines, and b) Segment Best Fit Response Inputs 

with Constraints. 

 

 

Smoothing Best Fit Splines 

 

1. Definition: Here the treatment is limited to within a segment. In this, the segment 

coefficients are calibrated to the following inputs: 

• Truthness Constraints. 

• Smoothness kC . 

• Penalizing Segment Smoother. 

• Penalizing Segment Weighted Fitness Match (in the least-squared sense). 

2. Nomenclature: 

• 1,...,0 −⇒ qp  => Weighted fitness penalizer match points 

• 
1,...,0

1,...,0

−⇒

−⇒

nj

ni
 => Segment Basis Functions 

• m  => Roughness Penalty Match Derivative Order 
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• r  => r  Separation 

• k  => kC  Continuity 

3. Spline Set Setup: 

• Gross Penalizer = Best Fit Penalizer + Curvature Penalizer 

• CFq
ℜ+ℜ=ℜ λ1
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• Spline Response Setup => ( )∑
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4. Best Fit Penalizer Setup: 

• First Derivative => ( ) ( ) 02
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5. Curvature Penalizer Setup: 

• First Derivative => 0
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• Second Derivative => 02
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6. Second Derivative: 
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7. Joint Linearized Minimizer Setup: 
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8. Number of Equations/Unknowns Review: 

a. For intermediate segments, the following equations determine the unknowns: 

i. Number of Continuity Constraints => k  

ii. Number of Left/Right Node Values => 2 

iii. Number of Roughness Penalizer Constraint => at least 1 

iv. Thus, minimal number of degrees of freedom on a per-segment basis: 

3+k . This will be the number of “free” parameters we will use for to 

extract for each segment. 

b. For left most segments, the following equations determine the unknowns: 

i. Number of Left/Right Node Values => 2 

ii. Number of Roughness Penalizer Constraint => at least 1 

iii. Thus, for the set of 3+k  parameters, the number of undetermined 

parameters: k  

c. For the span as a whole, the number of degrees of freedom/undetermined 

parameters is k . You may determine: 

i. The right-most second derivative, AND 

ii. Possibly, the left-most second derivative 

iii. For k , this will complete the set of undetermined coefficients. 

 

 

Segment Best Fit Response with Constraint Matching 

 

1. Purpose: Here we assume that a linear transform exists the hidden state quantification 

metric and the measurement manifest metric. 

2. Caveat with the Segment-wise Representation: Optimizing on certain constraints 

(such as multi-segment constraints) now ends up producing a highly non-sparse, 

dense matrix. This is simply a reflection on the multi-segment spanning nature of the 

constraint and the eventual optimization. 
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3. Constraint and Least-Square Spec: ppp CCS −= ˆ  where ∑
−

=

=
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siis xfy β . Note that when the hidden state quantification metric is identically 

the same as the measurement manifest metric, 1=sγ  and 1=pt . This corresponds to 

computing the least-square minimization over the observations. 

4. Constraint Formulation Development: ( )∑ ∑
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s
sisip xfG γ . The parallel between this and the original least-squares 

formulation can now be extended in a straightforward manner. 

5. Weighted Constrained LSM: 
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Spline Jacobian 

 

 

Introduction 

 

1. Chain Rule vs. Matrix Operations of Linear Basis Function Combination: When it comes 

to extracting variate Jacobian of coefficients from boundary inputs, these are absolutely 

equivalent – in fact, the coefficient Matrix is in reality a Jacobian itself. 

• Matrix entry as a Jacobian => Every entry of the Matrix A  where YAX =  is actually 

a Jacobian entry, i.e., 
j

i
ij X

Y
A

∂
∂

= . 

2. Self-Jacobian: Given an ordered pair { }ii yx ,  that needs to be interpolated/splined across, 

the self-Jacobian is defined as the vector 
( )
( )ixy

xy

∂
∂

. More generally, the self-Jacobian may 

be defined as 
( )

jI

xy

∂
∂

 where jI  is an input. 

o Self-Jacobian tells you the story of sensitivity/perturbability of the interpolant 

(y) on non-local points through jI , since the kC  transmission occurs through jI . 

Within a single segment, quadratic and greater splines cause fairly non-banded, 

dispersed Jacobians, indicating that the impact is non-local; linear splines produce 

simple banded/tri-diagonal Jacobians; and tension splines produce a combination 

of the two depending on the tension parameter (and therefore dense within the 

segment). 

o Obviously Jacobian of any function ( )( )xyF  is going to be dependent on the 

self-Jacobian 
( )

jI

xy

∂
∂

 because of the chain rule. 

 

 

Optimizing Spline Basis Function Jacobian 
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1. Coefficient- Value Micro-Jacobian: YFA =  where 

• A is the matrix of the basis coefficients { }111210 ,...,,...,,...,,, −++ nkr aaaaaa  

• Y is the matrix (column valued) of the values (RHS). In particular, it is the 

boundary segment calibration nodal values in the following order: 
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• F is the matrix of the coefficients of the basis function values and their 

derivatives. It is the following 2D Matrix: 
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2. Coefficient-Value Micro-Jacobian: Given YFA = , the coefficient-value micro-Jack 

is [ ]ij
j

i F
y

a 1−=
∂
∂

. 

 

 

Spline Input Quote Sensitivity Jacobian 

 

1. Segment Quote Jacobian: Formulation for quote Jacobian is different than those for 

the coefficient edge value Jacobian, since the former automatically figures in the 

design matrix in the sensitivity matrix extractor pseudo-calibration stage. Thus, the 

quote sensitivities are effectively external sensitivity constraints transmitted via the 

design matrix quote sensitivities. 

2. Quote Jacobian Matrix: The Quote Sensitivity coefficients are calibrated identically 

to that of the base coefficient sensitivities. This simply follows from the linearity of 
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the quote sensitivity formulation. The only area where there is non-linearity is in the 

product term ( )ci qαβ , and that appears only at the constraint equations. Others are 

identically the same. 

3. Latent State Quote Sensitivity: Spline Formulation of the Latent State automatically 

implies that the quote sensitivity of the latent state is restricted by the above, and is 

therefore also a spline in itself. This further implies that the boundary formulation is 

subject to the similar edge conditions as before. 

4. Terminology and Nomenclature: 

a. cq  => Input “Calibration Quotes” 10,..., −⇒ dc qqq  

b. VMn  => Number of explicit Input Node Value Matches 

c. CMn  => Number of explicit Input Constraint Value Matches 

d. DMn  => Number of explicit Input Derivative Value Matches 

e. PMn  => Number of explicit Input Penalty Value Matches 

2. Explicit Input-to-Response Match: This emanates from the 0C  node match 

continuity criterion: ( ) ( )
c

j
n
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4. Explicit Input-to-Derivative Match: This emanates from the kC  continuity 

criterion: 
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5. Explicit Input-to-Penalizer Match: This emanates from the criterion for the 

curvature and length penalties: 
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Shape Preserving Spline 

 

 

Shape Preserving Tension Spline 

 

1. Integrated vs. Partitioned Shape Controller: Integrated Shape Controllers apply shape 

control on a basis function-by-basis function basis (certain basis functions such as 

flat/linear polynomial functions need no shape controller applied on them). 

Partitioned shape controllers apply shape control on a segment-by-segment basis. 

2. Shape Controller Parameter Types: 

• Specified extraneously as part of the basis function formulation itself (e.g., 

hyperbolic/exponential tension splines) 

• Specified by over-determination of the basis function set (e.g., ν  splines) 

• Specified by using a shape controller basis set that is de-coupled from the model 

basis function set (e.g., partitioned rational splines) 

3. Shape Control as part of Basis Function formulation: 

• Each basis function is typically formulated as a linear interpolant of a particular rth 

derivative across a segment, i.e., y
x

y r

r

r

σ−
∂
∂

 is proportional to 1x  in that segment. 

• Advantage is that you can control the switch between the rth derivative and the 0th 

derivative of y by controlling σ . 

• You can also explicitly formulate it to achieve kC  continuity across segments – 

and k can vary independently of r. 

4. Drawbacks of Shape Control as part of Basis Function formulation: 

• σ  may not map well to the curvature/shape departure minimization metrics. 

• The formulation constraint restricts the choice of basis functions, giving rise to 

possibly unwieldy ones (troubles with exponential/hyperbolic functions are well-

documented). 

5. Shape Control using over-determined Basis Function Set: 



 39

• Choose any set of basis Functions (e.g., based on simplicity/ease of use/model 

propriety). 

• Over-specify the set so that additional coefficients are available for explicit and 

flexible shape control 

• Explicit shape control formulation => this comes out a minimization exercise of a 

“shape departure penalty” function. 

6. Drawbacks of Shape Control using Over-determined Basis Function formulation: 

• Ease of use, more model/physics targeted, but comes with extra complexity that 

trades in flexibility 

• Formulation Complexity => Incorporating variational techniques for enforcing 

compliance by penalizing shape departure. 

• Functional implementation complexity 

• Jacobian estimation complexity => Now nn×  basis functions for which we need 

Jacobian. 

• Algorithmic complexity => Need more robust basis inversion/linearization 

techniques. 

7. Potentially Best of Both – Partitioned Basis and Shape Control: 

• Basis function set chosen from physics and other considerations 

• Shape Control achieved using targeted Shape Controllers 

• Used in conjunction with over-determined/other shape control techniques. 

8. Drawbacks of Using Partitioned Basis Functions: 

• Choice of shape controllers crucial and non-trivial – they have to satisfy the 

segment edge and shape variational constraints 

• Need clear and well-specified formulations to match/satisfy the appropriate 

metrics of shape preservation 

• Formulation Complexity – all calibrations and Jacobians need to incorporate the 

partitioned basis right during the formulation stage 

o When dealing with snipping/clipping segments, shape controllers operate 

best at the global level (i.e., at the span/stretch basis). Shape controller 

smoothness continuity will therefore be ensured, but requires careful 
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formulation at the local/global switch part (i.e., translation of the 

derivatives using the span/segment scales has to be done carefully). 

9. Partitioned vs. Integrated Tension Splines: Partitioned splines are designed such that 

the interpolant functional and the shape control functional are separated by 

formulation (e.g., rational splines). Integrated tension splines are formulated such that 

the shape preservation is an inherent consequence of the formulation, and there is no 

separation between the interpolant and the shape control functionality. 

• Customization is easier with partitioning on either the control design or the shape 

preservation dimension. 

10. Explicit Shape Preservation Control in Partitioned Splines: 
β
α=y , where α  is the 

interpolant, and β  is the shape controller. Typically α  is determined (among other 

things) by the continuity criterion kC , and β  contains an explicit design parameter 

for shape control (for e.g., λ  in the case of rational splines). 

11. Shape Control Design: Asymptotically, depending on the shape design parameter λ , 

β
α

 should switch between linear and polynomial (i.e., typically cubic – Qu and 

Sarfraz (1997)). Further, design β  such that 110 == ββ , so that 00 α=y  and 

11 α=y . 

12. Rational Cubic Spline Formulation: 

• Rational functions under tension was introduced by Spath (1974), and formulation 

expanded in the general tension setting by Preuss (1976). 

• ( ) β
α

λ
=

−+
+++=
xx

dxcxbxa
y

11

32

, where 32 dxcxbxa +++=α , and ( )xx −+= 11 λβ  

(Delbourgo and Gregory (1983), Delbourgo and Gregory (1985a), Delbourgo and 

Gregory (1985b), Delbourgo (1989)). 

• 0→λ  makes it cubic, and ∞→λ  makes it linear. 

13. Rational Cubic Spline Coefficients: 

• ''.0'.0.0.1 0010 yyyya +++=  

• ''.0'.1.0. 0010 yyyyb +++= λ  
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14. Rational Cubic Spline Derivatives: 
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15. Designing iλ  for the Segment Inflection/Extrema Control: 

• If there are “physics” hints, the segment iλ  can be designed to push out/pull in the 

inflections and/or extrema out of (or into) the segment. 

• Monotonizing Parameters for Rational Splines (Gregory (1984), Gregory (1986)) 

=> ( ) ( )[ ]
ii

ii
iiii yy

xx
xfxf

−
−++=

+

+
+

1

1
1

''µλ , again for 1+<< ii xxx . 

• 3−≥iµ  makes it monotone in this segment. 

• 2−=iµ  produces a rational quadratic. 

• Convergence is ( )4hΘ  in all cases. 
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16. Co-convex choice for λ : A similar analysis can be done to make the spline co-

convex, but the corresponding formulation requires a non-linear solution for iλ . 

17. Generalized Shape Controlling Interpolator: Given a pair of points 

{ } { } { } { }212211 ,1,0,, yyyxyx →⇒→ , a 0C  spline 0S , and a kC  spline kS , we define 

a shape controlling interpolator spline CS  by ( ) ( ) ( )[ ]2
0

1

xSxS
xS

k

C −
∝ , with the 

constraints ( ) ( ) 110 ==== xSxS CC . 

• Rational Shape Controller described earlier meets these requirements. 

18. Generically Partitioned Spline Derivative: 
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19. Partitioned Interpolating Spline Coefficient: Given 110 == ββ , 

• 00 α=y  
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• Partitioned input micro-Jack for cubic interpolator: 
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20. Interpolating Polynomial Splines of Degree n: Given ∑
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• Polynomial Basis Series for Representation => Taylor series uses the polynomial 

basis series for representation, and is popular because of the reasons below (other 

basis may be more cognitive, and derivative representation using them may be 

more intuitive as well). 

i. Mathematical simplicity 

ii. Completeness. 

• Native link of polynomials to derivatives => Given that derivatives are natively 

linked polynomial basis function representations, all the lower degree polynomial 

basis functions (i.e., degree < derivative order) get eliminated, thus only allowing 

the higher order to survive. 
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21. “Derivative Completeness” Nature of Polynomial Basis Function: One big advantage 

for polynomial basis functions is that they are “derivative complete” in the local as 

well as global sense, i.e., the 1+k  basis polynomials are sufficient to uniquely 

determine the kC  continuity constraint. This is not true of non-polynomial basis 

functions (exponential basis functions, for e.g., need an infinite number of derivatives 

for completely derivative coefficient determination), therefore their shape needs 

global determination. 

22. Polynomial Interpolating Spline Coefficient micro-Jack: 
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23. Curvature Design in Integrated Tension Splines: Cubic spline is interpolant on 
2

2

x

y

∂
∂

 

across the nodes, and linear spline is interpolant on y. Thus, y
x

y 2
2

2

σ−
∂
∂

 (the tension 

spline interpolant) offers the tightness vs. curvature smoothness trade-off. 

• Tightness vs. Smoothness Generalization => y
x

y k
k

k

σ−
∂
∂

 is linear in x, given k is 

even. Of course, for 2=k  this describes a tension spline (hyperbolic or 

exponential). Schweikert (1966) used 4=k to improve the shape preservation 

characteristics. 

24. Basis Function Interpolant: 

• y
x

y 2
2

2

σ−
∂
∂

 that is linear in x is satisfiable only by hyperbolic and exponential 

basis splines. 

• y
x

y 4
4

4

σ−
∂
∂

 that is linear in x is satisfiable by hyperbolic, exponential, or 

sinusoidal basis splines. 
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• More generally, y
x

y n
n

n
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 that is linear in x, and where 24 += mn  and 

,...1,0=m  is satisfied only by hyperbolic and exponential splines. 
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n

n
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∂

 that is linear in x, and where mn 4=  and ,...1,0=m  is satisfied only 

by hyperbolic, exponential, or sinusoidal splines. 

25. Integrated Tension Spline Types: Sets containing both exponential and hyperbolic 

basis splines and a linear spline satisfy y
x

y 2
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2
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. 

• Exponential Basis Splines: 
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• Hyperbolic Basis Splines: 
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26. Exponential Basis Functions: 

• Base Segment Formulation => 
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• Coefficient to Input Sensitivity Grid => 
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27. Hyperbolic Basis Functions: 

• Base Segment Formulation => 
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• Coefficient to Input Sensitivity Grid => 
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• Local Derivatives => 
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28. Alternate specifications of the segment interpolation (Trojand (2011)). Renka (1987) 

provides techniques for setting σ under several circumstances: 

o Finding σ when f is bound. 

� To get the minimum tension factor required we need to find the zeros of f’ 

(Renka (1987)). 

o Finding σ when f’ is bound. 

� To get the minimum tension factor required we need to find the zeros of f’ 

(Renka (1987)). 
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o Finding σ from the bound values of convexity/concavity (Renka (1987)). 

29. Problems with Hyperbolic/Tension Splines: 

• Hyperbolic and exponential functions are time consuming to compute (Preuss 

(1976)), Lynch (1982)). 

• They are somewhat unstable to wide parameter ranges (Spath (1969), Sapidis, 

Kaklis, and Loukakis (1988)). 

• In certain cases, reasonable alternatives have been provided by ν  splines (Nielson 

(1974)) and rational splines. 

 

 

Shape Preserving ν  Splines 

 

1. Generic ν  Spline Formulation: Approach here is somewhat similar to Foley (1988), 

although different language/symbology. 

• p-set Basis Splines per each Segment. 

• n Data Points 

• Penalty of degree m 

• kC  Continuity Criterion 

• Data Point Set: { }ii yx ,  

• Spline Objective Function: 
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2. Number of Unknowns Analysis: In the above, mp > , and km ≤ . 

• Number of equations from the end points per segment => 2. 

• Number of equations from the coefficients determined by the kC  Continuity 

Criterion: k . 

• Number of equations from the Shape Optimization Formulation: 

[ ]1,0 +−∈ mpw . 

• Total number of equations: 2++ wk . 
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• Number of coefficients per segment => 1+p . 

3. Node matching constraints: Given that we are examining shape preserving splines, on 

applying the node match criterion ( )iPi xY
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4. Generic Curvature Optimization Formulation: Using the above, the curvature 

optimization for spline basis function inside a local segment i corresponds to 
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5. Generic Curvature Optimization Minimizer: Given the basis function set 
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7. Polynomial Formulation for 
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( ) ( ) 







+−+−−
=

12

1

!

!

!

!

mjqmj

j

mq

q
qjβ . 

11. Polynomial ν  Splines – Number of unknowns: 

• Number of coefficients (unknown) => 1+p  

• Number of Nodal Start/End Values (known) => 2 

• Number of Calibrated coefficients from the kC  criterion (known): k  

• Net number of unknowns: 121 −−=−−+ kpkp . 

12. Ordered Unknown Coefficient Set in Polynomial ν  Splines: Given that ∑
=

=
p

j

j
iji xy

0

α , 

0iα  through ikα , as well as ipα , are known. 

• iqα  where pqk <≤+1  are the unknown coefficients. 
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• For e.g., for 1C  cubic polynomial spline, the number of unknowns are 

.11131 =−−=−− kp  

13. Maximum number of equations available from Optimizing ν  Splines: Number of 

equations available from the optimization is mpmp −=+−− 11 . 

• Determinacy criterion => Thus if 1−−<− kpmp , or 1+> km , there are no 

solutions! 

• Alternatively, for completeness, derive m from k as 1+= km  for completeness. 

• Finally, if 2−< pkinput , optimizing run is needed. 

14. Advantage of Basis Curve Optimizing Formulation: This formulation can 

readily/easily incorporate linearized constraints in an automatic manner – as long as 

the explicit constraints are re-cast to be specified with the current segment. 

 

 

Alternate Tension Spline Formulations 

 

1. Kaklis-Pandelis Tension Spline: As described in Kaklis and Pandelis (1990), here 

( )[ ] ( ) [ ] [ ]ttdttctxftxftf ii m
i

m
iii −+−++−= + 111)( 1 , where 

ii

i

xx

xx
t

−
−=

+1

, and im  is the 

Kaklis-Pandelis shape-controlling tension polynomial exponent. 

• 2=im  corresponds to the cubic spline interpolant on [ ]1, +ii xx . 

• ∞→im  corresponds to linear interpolant on [ ]1, +ii xx . 

2. Manni’s Tension Spline: The methodology is explained in detail in Manni (1996a), 

Manni and Sablionniere (1997), and Manni and Sampoli (1998). Here, 

[ ])()( 1 xqpxf iii
−=  on [ ]1, +ii xx  where ip and iq are cubic polynomials. Further, iq is 

strictly increasing in [ ]1, +ii xx , so that 1−
iq  is well defined (Manni (1996b)). 

• The boundary conditions are: iii dxf =)(' ; further, we impose that iiii dxp λ=)(' , 

ii xq λ=)(' , 11)(' ++ = iiii dxp µ , and iii xq µ=+ )(' 1 (see Manni (2001)). The claim is 
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that if 1== ii µλ , xxqi =)( , thus if becomes cubic. Also if 0== ii µλ , if  

reduces to linear. 

3. KLK Splines: Next section is completely devoted to this. 
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Koch-Lyche-Kvasov Tension Splines 

 

 

Introduction 

 

1. Exponential B-Spline Specification: Expounded in detail in Cline (1974), Koch and 

Lyche (1989), Koch and Lyche (1993), and Kvasov (2000). First extend the knot set 

with 6 new points 2−t , 1−t ¸ 0t ¸ 1+Mt ¸ 2+Mt , and 3+Mt  such that 1012 tttt <<< −−  and 

321 +++ <<< MMMM tttt , but arbitrary otherwise. 

2. Exponential Hat Functions: 

• ( ) ( )ttBj ''2, ψ=  for 1+≤≤ jj ttt , and 

• ( ) ( )ttBj ''2, φ=  for 21 ++ ≤≤ jj ttt , where 

• ( ) ( )[ ] ( )
( )[ ]jj

jj
j tt

tttt
t

−
−−−

=
+1

2 sinh

sinh

σσ
σσ

ψ , and 

• ( ) ( )[ ] ( )
( )[ ]jj

jj
j tt

tttt
t

−
−−−

=
+

++

1
2

11

sinh

sinh

σσ
σσ

φ  

3. Properties of the ( )tB kj ,  Splines: ( )tBj 2,  as defined above is the basis on top of which 

all the higher order splines are built. ( )tBj 2,  is non-zero only for [ ]2, +∈ jj ttt , where 

[ ]Mj ,...,0,1−∈ . 

4. Layout of Base Monic Setup: With reference to figure 9, the monic basis function 

2,jB  may be estimated from the corresponding primitive hat functions ψ  and φ  

(referred to as A and B respectively in Figure 9) as: 

• ( )tB jj ''2, ψ=  for 1+<≤ jj ttt . 

• ( )tB jj ''12, += φ  for 21 ++ <≤ jj ttt . 

• 02, =jB  otherwise. 

5. Monic B-Spline Normalizer: 
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• ( ) ( ) ( )dyydyydyyBC
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• ( ) ( ) ( ) ( )112112, '''' +++++ −+−= jjjjjjjjj ttttC φφψψ  

• ( ) ( ) ( ) ( )223211212,1 '''' +++++++++ −+−= jjjjjjjjj ttttC φφψψ  

6. Monic B-Spline Cumulative Normalized Integrand: 

• 02, =Λ j  for jtt < . 

• 

( )

2,
2,

''

j

t

t

j

j C

t
j

∫
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ψ
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• 
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φψ
 for 21 ++ <≤ jj ttt . 

• 12, =Λ j  for 2+≥ jtt . 

7. Monic B-Spline Scaled Integrand: 

• 02, =Λ j  for jtt < . 

• 
( ) ( )

( ) ( ) ( ) ( )11211
2, ''''
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=Λ
jjjjjjjj

jjj
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tt
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 for 1+<≤ jj ttt . 

• 
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 for 21 ++ <≤ jj ttt . 

• 12, =Λ j  for 2+≥ jtt . 

8. Monic B-Spline Scaled Integrand: 
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9. Quadratic and Cubic Exponential Tension Splines: Higher order splines are 

recursively defined from ( ) ( ) ( )tttB kjkjkj 1,11,, −+− Λ−Λ=  where: 

• ( ) 0, =Λ tkj  for jtt ≤  
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• ( ) ( )∫Ω
=Λ

t

t

kj
kj

kj

j

dyyBt ,
,

,

1
 for kjj ttt +≤≤  

• ( ) 1, =Λ tkj  otherwise 

Here ( )∫
+

=Ω
kj

j

t

t

kjkj dyyB ,, . Further, 2=k  and 3=k  correspond to quadratic and cubic 

tension splines, respectively. 

10. Similarities between Exponential Tension B-Splines and Polynomial B-Splines: 

Notice the similarities, the iterative higher-order definitions, and the partition of unity 

as well. 

11. Cubic Exponential Tension B-Spline: This corresponds to the ( )tB kj 4, =  case, i.e., 

( ) ( )∑
+

−=
−=

2

1
4,2

j

jk
kk tBtg β , with validity in the interval [ ]4, +∈ jj ttt . 

• Explicit Cubic Basis Representation => Using Koch and Lyche (1989), Koch and 

Lyche (1993), and Kvasov (2000), define: 

o ( ) ( )jjjjj ttz φψ −= −1  

o ( ) ( )jjjjj ttz ''' 1 φψ −= − , and 

o 
'j

j
jj z

z
ty −=  

o ( )
12

12
1,

++

++

−
−

=
jj

jj
j yy

bb
b  

o ( )
( ) ( )

'1

1,1,
2,

+

−−
=

j

jj
j z

bb
b  

• Expanded ( )tg  in the new basis representation => For [ ]4, +∈ jj ttt , 

( ) ( ) ( ){ } ( ) ( ) ( ) ( )ttyttBtg jjjjjjj

j

jk
kk ψβφββββ 2,2,11,1

2

1
4,2 ++−+== −−

+

−=
−∑ . This clearly 

shows the similarity to the generalized Kaklis-Pandelis tension spline formulation. 

Retaining ( )tjφ  and ( )tjψ  this way helps generalize to other basis tension splines. 

• Expansion of ( )tg  in basis function terms =>  
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o ( ) ( ) ( ) ( ) ( )tttttg jjjjjjjj 221111 ++++−− +++= αβαβαβαβ  where 
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• Robust/Efficient Calculation of Hyperbolics => Renka (1987) and Rentrop (1980) 

outline some effective methods for this. For small σ , truncated Taylor series is 

accurate enough. 

12. Piecewise Cubic Interpolant Expansion: Remember that, no matter what the basis 

tension functions are, for piecewise tension 2C  continuity, they are expected to 

satisfy 
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 for [ ]1, +∈ jj ttt , i.e., this entity varies linearly across the segment. 

• This may be re-cast as 1111 ++−− ++= jjjjjjjd ϖβϖβϖβ  where 
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13. Tension Spline Curvature Penalizing Norm: The pure curvature penalizer may now 

be altered to become a curvature + length penalizer. Thus, 

( ){ } ( ){ }[ ]∫ +=Ρ
Mt

t

Curv dttyty
1

222 ''' σλ . Notice that both ( ){ }2'' ty  and ( ){ }22 ' tyσ  (i.e., 

separated squares) are included individually in the set up. 
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• Simplification of the curvature penalty norm term for the Tension Splines => 

( ){ } ( ){ }[ ] [ ]jjjjjjj

t

t

Curv ggdggggdttyty
M

−−−=+=Ρ +++∫ 111
222 '''''''''

1

σλ . A simple 

proof of this using integration by parts is available in Andersen (2005). 

• Penalizing the segment length in addition to the segment curvature is valid for all 

spline formulations, of course. However, they may not be reducible/simplifiable 

as much as they are in tension splines. 

14. Constrained Optimizer Estimate for λ : If the RMS best-fit error is to be limited to 2γ  

where 2γ  is an extraneously specified closeness of fit metric, the constraint may be 

expressed as [ ] [ ] 21 γ≤−− PcVWWPcV
N

TT rrrr
. 

• Now the optimization minimizer attains contributions from best-fit, curvature 

penalty, and segment length penalties. 

• Step #1: For a given initial guess of λ , find the optimal co-efficient set { } 1

0

−
=

n

iiβ . 

• Step #2: Compute ( ) [ ]2BestFitS =λ . If ( )λS , you are done. Otherwise use a 

suitable root finder to extract λ . 

• Step #3: The best-fit optimizer precision norm ( )λS  is a declining function of λ . 

If a root exists, the root finder procedure should be able to find it. 

• λ  estimation in the context of curve building is treated in Tanggaard (1997) 

(using the GCV technique of Craven and Wahba (1979)) and Andersen (2005). 

15. Drawbacks of the above method: This involves yet another non-linear root extractor. 

Other non-linear root extraction parts in curve building are: 

• Non-linear boot-strapping 

• Non-linear boundary condition in spline calibration. 

Thus, the stability of the precision norm technique outlined above is riddled with 

challenges. 

16. Parallel with Hagan-West Forward Interpolator: In Hagan-West (Hagan and West 

(2006)) minimalist quadratic interpolator, the segment length is incorporated in a 
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slightly different way – as a minimizer of the 1+k  jumps at the knots (i.e., if 2C , 

minimizing 3C  at the knots). 

17. The other Tension Splines: They all have the property that the tension parameter 

moves smoothly from cubic (low tension) to linear (high tension), and have different 

forms for φ  and ψ . These forms may make them computationally less expensive too. 

o Non-uniform Rational Cubic Tension Spline with linear Denominator => 
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o Non-uniform Rational Cubic Tension Spline with Quadratic Denominator => 
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o Non-uniform Exponential Rational Spline => 
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18. Tension Implied by the Basis Function Set: Given the tension 2C  interpolant relation 
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19. Caveat for using KLK-type Splines for Local State Shape Proxying: Often (and this 

may be true for other B Splines as a whole too), the B Spline basis choice may 
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produce segment node edge values and their corresponding derivatives of zero. In this 

case, you may have a singular calibration matrix that does not calibrate. In particular, 

this is the case for iterated B Splines that are constructed to vanish and fade rapidly at 

the edges. This poses for problems for segment-local splines (that may span between 

0 and 1 within a given segment). 

• How does the KLK formulation avoid this? It is because it is built off of a cubic B 

Spline, thus works primarily for that case. KLK retains the basis representation 

out from a workable/calibratable raw cubic B Spline form that is set to be “well-

behaved” at the edges (by definition) at the cubic basis level. The B Splines that 

follow the typical iterative generation formulation end up “destroying the raw 

basis construction information” if set up from above (i.e., ψ  above the cubic level 

becomes ''ψ  at the lowest hat level). 
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Smoothing Splines 

 

 

Penalty Minimization Risk Function 

 

1. Penalty Minimizer Estimator Metric: Choice of the “normalized curvature area” 

shown in figures 5) and 6) are two possible penalty estimator choices. Obviously, 

closer the area is to zero, the better the penalizing match is. 

2. Dimensionless Penalizing Fit Metric: Choosing the representation in 5), and 

recognizing that the segment is set in the flat base ( )1,0 , we can derive the 

representation in 7). 

3. Dimensionless Penalty Estimator (DPE): Using Figure 7), we now define DPE as 
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4. Pros/Cons of the above Representation of DPE: If the basis functions have near-delta 

functional forms (Figure 8), DPE will still remain 0≈ , and the metric is not very 

meaningful in that case. Fortunately, such delta-type basis functions are rare. 

5. Aggregate DPE Measure: Need a consolidated DPE metric that spans across all the 

segments in a span, i.e., the span DPE. 

 

 

Smoothing Splines Setup 

 

1. Process Control using Weights: Dimensionless units (such as Reynolds’ number) can 

effectively account for the ratio of competing natural forces. Similar use can be done for 

process control to be able to guide/control between 2 or more competing objectives. For 

example in the instance of the smoothing spline: 

• First Objective => Closeness of match using the most faithful reproducer, or curve fit. 
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• Second Objective => Smoothest curve through the given points, without necessarily 

fitting them – of course, “smoothest” possible “curve” is a straight line. 

2. Penalizing Smootheners: Penalizing smootheners are the consequence of Bayes 

estimation applied on the Quadratic Penalties with Gaussian Priors (also referred to with 

maxim “The Penalty is the Prior”). 

3. Smoothing Spline Formulation: Given nxxx <<< ...21 , and the function µ  that fits the 

points [ ]ii Yx ,  from ( )ii xY µ=  (see Hastie and Tibshirani (1990) and Smoothing Spline 

(Wiki)). The smoothing spline estimate 
^

µ  is the minimizer 
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^

 is the Spline Objective Function. 

• 
n

1
 is needed to the left term to make it finite as ∞→n , otherwise λ  will also have 

to be infinite. 

• The derivative “k” corresponds to what makes 
( )















∂
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k

x

x
^

µ
 linear. Thus, for cubic 

splines, k = 2. 

4. Bias Curvature/Variance Fit Trade-off: Smaller the λ , the more you will fit for bias (low 

curvature penalty). Bigger the λ , more you fit for curvature/roughness penalty. 

5. Curvature Penalty Minimizer Spline: It can be theoretically shown that the curvature 

penalty minimizer spline is a cubic spline. Here is how. 

• First, notice that any spline of degree >= 0 can reproduce the knot inputs. 

• By default, curvature corresponds to k = 2. Thus, 
( )















∂
∂

2

^
2

x

xµ
 varies linearly inside a 

segment, thus this becomes the least possible curvature. 

• Higher order splines will have a non-linear curvature. 

• Lesser order (spline order less than 3) will violate the C2 continuity constraint. 
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6. Bias Curvature/Variance Fit Trade-off: Smaller the λ , the more you will fit for bias (low 

curvature penalty). Bigger the λ , more you fit for curvature/roughness penalty. 

7. Smoothing Output Criterion: 

• Speed of Fitting 

• Speed of Optimization 

• Boundary Effects 

• Sparse, Computationally Efficient Designs 

• Semi-Parametric Models 

• Non-normal Data 

• Ease of Implementation 

• Parametrically determinable Limits 

• Specialized Limits 

• Variance Alteration/inflation 

• Adaptive Flexibility Possible 

• Adaptive Flexibility Available 

• Compactness of Results 

• Conservation of data distribution moments 

• Easy Standard Errors 

8. Smoothing vs. Over-fitting: Since λ  is a control parameter, it can always be attained by a 

parametric specification. To estimate optimal value of λ  against over-fitting, use one of 

the following other additional criteria to penalize the extra parameters used in the fit, 

such as the following. Each one of them comes with its own advantages/disadvantages. 

• Cross-validation 

• Global Cross-Validation 

• Akaike Information Criterion 

• Bayesian Information Criterion 

• Deviance 

• Kullback-Leibler Divergence metric 

9. Segment Stiffness Control: λ  may also be customized to behave as a segment stiffener or 

a penalty/stiffness controller, thus providing extra knobs for the optimization control. 
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10. Relation of Lagrangian to Smoothing Spline: 

• Lagrangian objective function is used to optimize a multi-variate function ( )yxL ,  to 

incorporate the constraint ( ) cyxg =,  as ( ) ( ) ( )[ ]cyxgyxLzyx −+=Λ ,,,, λ . Here λ  

is the Lagrange multiplier. 

• Optimized formulation of the smoothing spline is given by minimizing the spline 

objective function (a form of optimization) 
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Least Squares Best Fit + Curvature + Segment Length Penalty 

Formulation 

 

1. Nomenclature: 

• 1,...,0 −= qp  => Points to Fit for the Least Squares Penalty 

• 1,...,0 −= ni  => The Basis Functions Index 

• 1,...,0 −= mj  => Number of Ordinate Points 

• r  => Curvature Penalizer Derivative 

• s => Length Penalizer Derivative 

• k  => k -Separation to be achieved during the Formulative Derivation 
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2. The Formulation: [ ] ∫∑
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3. Segment-Level Decomposition: Segment-level decomposition ensures optimal 

segment coefficient formulation to within the boundaries of a segment (from the least 

squares fit point of view) – however, not necessarily global optimum. Further, these 

optimal constraints provide an extra degree of freedom at the segment level, and not 

necessarily at the stretch/span level. 

4. Segment-Level Decomposition Formulation: 
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5. Least Squares Minimization Review: From earlier, 
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. Therefore a minimum exists. 

6. Curvature Penalty Minimization: Again, from earlier, 
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for each k . 
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• Further, 
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 for 1−> jj xx , thus a minimum exists. 

7. Segment Length Penalty Minimization: Similar to the curvature penalty, we get, 
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• Finally, 
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 for 1−> jj xx , thus a minimum exists. 

8. Combining it all: 

( ) ( ) ( ) ( ) ( )
p

n

i

x

x
s

i
s

s
k

s

j

x

x
r

i
r

r
k

r

pii ydx
x

xf

x

xf
dx

x

xf

x

xf
xf

j

j

j

j

=





















∂
∂










∂
∂+









∂
∂










∂
∂+∑ ∫∫

−

= −−

1

0

2

11

λσλβ . 

 

 

Alternate Smootheners 

 

1. Compendium of Smoothing Methods: 

• Kernel Smoothing with or without binning. 

• Local Regression with or without binning. 

• Smoothing Splines with or without band solvers. 

• Regression splines with fixed/adaptive knots. 

• Penalizing B Splines. 

• Density Smoothing. 

2. Kernel Bandwidth Selector: Kernel bandwidth selection is analogous to the optimal 

knot point selection employed in the regression spline schemes. 

• Remember that the kernel methods essentially use the periodic functions as their 

basis functions. 

3. Regression Splines: Here the data is simply fit to a (hugely) reduced set of basis 

spline functions, typically using least squares, without any smoothness penalty. 
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• Penalized regression splines are pretty much the same as regression splines in that 

they do use a reduced set of basis splines. However, they do impose a roughness 

penalty. Penalized regression splines are also referred to as smoothing splines. 

• Polynomial Regression Splines do curve fitting/regression analysis using selective 

insertion/removal of knots. Knots are added according to the Rao criterion, and 

removed according to the Wald criterion. 

o Log Splines are a customization of the polynomial regression splines 

targeted for density estimation. The log of the density is modeled as a 

cubic spline. 

• Tension Regression Splines => In addition to the curvature penalty and the least 

squares fit penalty, tension regression splines also penalize the segment length. 

4. Base Density Smoothing Formulation: Log-likelihood density smoothing is analogous 

to maximizing the multinomial likelihood histogram 






∏
=

m

i

y
i

ip
1

log , where iy  is the 

empirical observation count, and ip  is the probability of finding an observation in the 

cell i . 
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Multi-dimensional Splines 

 

 

1. Non-symmetrical multi-dimensional Variates: Again, considering 2D as an example, 

it makes sense to use the basis splines separately across both 21,xx , as in 

( ) ( ) ( )∑∑
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=
1 2

1 1
2121

^

,
n

i

n

j
jiij xBxBxx βµ . 

2. Bi-polynomial 2D Spline: For the 2D Segment Range [ ]1, +→ ii xxx  and [ ]1, +→ ii yyy , 

working in the local variate space 
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i

xx

xx
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 and 
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−
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, we transform the 

spline basis on to the local representation basis as ( ) ∑∑
= =

=
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klijji ututf

0 0
,, , β . 

3. Bi-linear 2D Spline: This produces a 0C  surface. Here 1== lk , therefore the first 

derivatives (and on) are discontinuous on the grid boundaries. From the observation 

set { }jiz , , we get from the boundary match the following values for klij ,β : 

• jiij z ,00, =β  

• 1,,01, ++−= jijiij zzβ  

• jijiij zz ,1,10, ++−=β  

• 1,,11,1,11, ++++ −−+= jijijijiij zzzzβ  

4. Bi-Cubic Interpolation: This produces a 1C  surface. Here 3== lk , therefore the 

first, second, and the first cross derivatives (i.e., ( )yxf , , 
( )
x

yxf

∂
∂ ,

, 
( )
y

yxf

∂
∂ ,

, 

( )
2

2 ,
x

yxf

∂
∂

, 
( )

2

2 ,

y

yxf

∂
∂

, and 
( )

yx

yxf

∂∂
∂ ,2

) are continuous across the grid boundaries. 

From the observation set { }jiz , , their first derivatives, and their cross derivatives, we 

get from the boundary match the following values for klij ,β  as before. The common 

way is to cast these as a sequence of 2D relations by unraveling the continuity 

constraints, and thereby linearizing the formulation. 



 69

5. Symmetrical Multi-dimensional variates: The trivial univariate ordering 

nxxx <<< ...21  needs revising in the context of certain multivariates, e.g., 

symmetrical multivariates (Smith, Price, and Lowser (1974), Graham (1983), and Lee 

(1989)). 

• A general “distance from focal node” it  makes to more sense to set in the 

ascending order. Thus ( ) ( )22 ... FiFii zzxxt −++−= , where [ ]FF zx ,...,  are the 

multivariate nodes corresponding to the focal node. 

• Alternatively, the distance from the prior node parametrizer 

( ) ( )2
1

2
1 ... iiiii zzxxt −++−= ++  may also work. 

• Use Cartesian/radial/axial basis functions to formulate the segments in terms of 

the surface vector coefficients in “symmetrical variate” situations. 

6. Surface Energy Minimization: Surface energy minimization using the “sigma” 

tension parameter – formulate equation. 

• Thin Plate Spline (Duchon (1976), Duchon (1977)): This is simply 2D spline 

interpolation, achieved by minimizing the surface bending energy, the 

minimization of [ ] ( ) dxdyyxffE
R
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• Thin plate splines are an effective way to achieve surface energy minimization, 

i.e., for a 2D surface, the smoothing spline surface may be created by the 

minimization of the following least squares surface spline objective function 
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. Again, apparently this is more appropriate if 21,xx  are symmetrical. 

7. Elastic Maps Method for Manifold Learning: This method combines the least squared 

penalty for the approximation error with the bending/torsional-stretching penalty for 

the proxy manifold. It then uses a coarse discretization to extract the solution for the 

optimization problem. 
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Spline Library Software Components 

 

 

Functionality behind Spline Library is available across 10 core functional packages, 2 

samples package and 1 regression test package. 

 

The core functional packages are: 

• Univariate function package 

• Univariate Calculus package 

• Spline Parameters package 

• Spline Basis Function Set package 

• Spline Segment package 

• Spline Stretch Package 

• Spline Grid/Span Package 

• Spline PCHIP Package 

• B Spline Package 

• Tension Spline Package 

 

The sample functional packages are: 

• Spline Sample package 

• Stretch Sample package 

 

 

Univariate Function Package (org.drip.quant.function1D) 

 

The univariate function package implements the individual univariate functions, their 

convolutions, and reflections. It contains the following classes/interfaces: 

• AbstractUnivariate: This abstract class provides the evaluation of the given 

basis/objective function and its derivatives for a specified variate. Default 

implementations of the derivatives are for black-box, non-analytical functions. 
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• UnivariateConvolution: This class provides the evaluation of the point value and the 

derivatives of the convolution of 2 univariate functions for the specified variate. 

• UnivariateReflection: For a given variate x , this class provides the evaluation and 

derivatives of the reflection at x−1 . 

• Polynomial: This class provides the evaluation of the nth order polynomial and its 

derivatives for a specified variate. The degree n specifies the order of the polynomial. 

• BernsteinPolynomial: This class provides the evaluation of Bernstein polynomial and 

its derivatives for a specified variate. The degree exponent specifies the order of the 

Bernstein polynomial. 

• NaturalLogSeriesElement: This class provides the evaluation of a single term in the 

expansion series for the natural log. The exponent parameter specifies which term in 

the series is being considered. 

• ExponentialTension: This class provides the evaluation of exponential tension basis 

function and its derivatives for a specified variate. It can be customized by the choice 

of exponent, the base, and the tension parameter. 

• HyperbolicTension: This class provides the evaluation of hyperbolic tension basis 

function and its derivatives for a specified variate. It can be customized by the choice 

of the hyperbolic function and the tension parameter. 

• LinearRationalShapeControl: This class implements the deterministic rational shape 

control functionality on top of the estimate of the basis splines inside - )1,...,0[  - 
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• QuadraticRationalShapeControl: This class implements the deterministic rational 

shape control functionality on top of the estimate of the basis splines inside - )1,...,0[  
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• LinearRationalTensionExponential: This class provides the evaluation of the 

Convolution of the Linear Rational and the Tension Exponential Function and its 

derivatives for a specified variate. 

 

 

Univariate Calculus Package (org.drip.quant.calculus) 

 

The univariate calculus package implements univariate difference based arbitrary order 

derivative, implements differential control settings, implements several integrand 

routines, and multivariate Wengert Jacobian. 

1. DerivativeControl: DerivativeControl provides bumps needed for numerically 

approximating derivatives. Bumps can be absolute or relative, and they default to a 

floor. 

2. Differential: Differential holds the incremental differentials for the variate and the 

objective functions. 

3. WengertJacobian: WengertJacobian contains the Jacobian of the given set of Wengert 

variables to the set of parameters. It exposes the following functionality: 

o Set/Retrieve the Wengert variables 

o Accumulate the Partials 

o Scale the partial entries 

o Merge the Jacobian with another 

o Retrieve the WengertJacobian elements 

o Display the contents of the WengertJacobian 

4. Integrator: Integrator implements the following routines for integrating the objective 

functions: 

o Linear Quadrature 

o Mid-Point Scheme 

o Trapezoidal Scheme 

o Simpson/Simpson38 Schemes 

o Boole Scheme 
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Spline Parameters Package (org.drip.spline.params) 

 

The spline parameters package implements the segment and stretch level construction, 

design, penalty, and shape control parameters. 

5. ResponseScalingShapeControl: This class implements the segment level basis 

functions proportional adjustment to achieve the desired shape behavior of the 

response. In addition to the actual shape controller function, it interprets whether the 

control is applied on a local or global predicate ordinate basis. 

6. SegmentBasisFlexureConstraint: This class holds the set of fields needed to 

characterize a single local linear Constraint, expressed linearly as a combination of 

the local Predictor Ordinates and their corresponding Response Basis Function 

Realizations. Constraints are expressed as ( )∑=
i

jiij xWC β  where jx is the predictor 

ordinate at node j , iβ  is the Coefficient for the Response Basis Function i , iW  is the 

weight applied for the Response Basis Function i , and jC is the value of constraintj . 

SegmentBasisFlexureConstraint may be viewed as the localized basis function 

transpose of SegmentResponseValueConstraint. 

7. SegmentResponseValueConstraint: This class holds the following set of fields that 

characterize a single global linear constraint between the predictor and the response 

variables within a single segment, expressed  linearly across the constituent nodes. 

SegmentBasisFlexureConstraint may be viewed as the localized basis function 

transpose of SegmentResponseValueConstraint. SegmentResponseValueConstraint 

exports the following functionality: 

o Retrieve the Array of Predictor Ordinates. 

o Retrieve the Array of Response Weights at each Predictor Ordinate. 

o Retrieve the Constraint Value. 

o Convert the Segment Constraint onto Local Predictor Ordinates, the 

corresponding Response Basis Function, and the Shape Controller 

Realizations. 

o Get the Position of the Predictor Knot relative to the Constraints. 
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o Generate a SegmentResponseValueConstraint instance from the given 

predictor/response pair. 

8. SegmentResonseConstraintSet: This class holds the set of 

SegmentResponseValueConstraint (Base + One/more Sensitivities) for the given 

Segment. It exposes functions to add/retrieve the base response value constraints as 

well as additional response value constraint sensitivities. 

9. SegmentBestFitResponse: This class implements basis per-segment Fitness Penalty 

Parameter Set. Currently it contains the Best Fit Penalty Weight Grid Matrix and the 

corresponding Segment Local Predictor Ordinate/Response Match Pair. 

10. StretchBestFitResponse: This class implements basis per-Stretch Fitness Penalty 

Parameter Set. Currently it contains the Best Fit Penalty Weight Grid Matrix and the 

corresponding Local Predictor Ordinate/Response Match Pair. 

StretchBestFitResponse exports the following methods: 

o Retrieve the Array of the Fitness Weights. 

o Retrieve the Indexed Fitness Weight Element. 

o Retrieve the Array of Predictor Ordinates. 

o Retrieve the Indexed Predictor Ordinate Element. 

o Retrieve the Array of Responses. 

o Retrieve the Indexed Response Element. 

o Retrieve the Number of Fitness Points. 

o Generate the Segment Local Best Fit Weighted Response contained within the 

specified Segment. 

o Construct the StretchBestFitResponse Instance from the given Inputs. 

o Construct the StretchBestFitResponse Instance from the given Predictor 

Ordinate/Response Pairs, using Uniform Weightings. 

11. SegmentFlexurePenaltyControl: This class implements basis per-segment Flexure 

Penalty Parameter Set. Currently it contains the Flexure Penalty Derivative Order and 

the Roughness Coefficient Amplitude. Flexure Penalty Control may be used to 

implement Segment Curvature Control and/or Segment Length Control. 

12. SegmentDesignInelasticControl: This class implements basis per-segment inelastic 

parameter set. It exports the following functionality: 
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o Retrieve the Continuity Order. 

o Retrieve the Length Penalty and the Curvature Penalty Parameters. 

o Create the 2C  Design Inelastic Parameters. 

o Create the Design Inelastic Parameters for the desired kC  Criterion and the 

Roughness Penalty Order. 

13. SegmentCustomBuilderControl: This class holds the parameters the guide the 

creation/behavior of the segment. It holds the segment elastic/inelastic parameters and 

the named basis function set. 

14. SegmentPredictorResponseDerivative: This class contains the segment local 

parameters used for the segment calibration. It holds the edge Input Response value 

and its derivatives. It exposes the following functions: 

o Retrieve the Response Value as well as the DResponseDPredictorOrdinate 

Array. 

o Aggregate the 2 Predictor Ordinate Response Derivatives by applying the 

Cardinal Tension Weight. 

15. SegmentStateCalibration: This class implements basis per-segment Calibration 

Parameter Set. It exposes the following functionality: 

o Retrieve the Array of the Calibration Predictor Ordinates. 

o Retrieve the Array of the Calibration Response Values. 

o Retrieve the Array of the Left/Right Edge Derivatives. 

o Retrieve the Segment Best Fit Response. 

o Retrieve the Array of Segment Basis Flexure Constraints. 

 

 

Spline Basis Function Set Package (org.drip.spline.basis) 

 

The spline basis function set package implements the basis set, parameters for the 

different basis functions, parameters for basis set construction, and parameters for B 

Spline sequence construction. 

16. FunctionSet: This class implements the general purpose basis spline function set. 
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17. FunctionSetBuilderParams: This is an empty stub class whose derived 

implementations hold the per-segment basis set parameters. 

18. ExponentialMixtureSetParams: ExponentialMixtureSetParams implements per-

segment parameters for the exponential mixture basis set - the array of the 

exponential tension parameters, one per each entity in the mixture. 

19. ExponentialTensionSetParams: ExponentialTensionSetParams implements per-

segment parameters for the exponential tension basis set – currently it only contains 

the tension parameter. 

20. ExponentialRationalSetParams: ExponentialRationalSetParams implements per-

segment parameters for the exponential rational basis set – the exponential tension 

and the rational tension parameters. 

21. PolynomialFunctionSetParams: PolynomialFunctionSetParams implements per-

segment basis set parameters for the polynomial basis spline - currently it holds the 

number of basis functions. 

22. KaklisPandelisSetParams: KaklisPandelisSetParams implements per-segment 

parameters for the Kalkis-Pandelis basis set – currently it only holds the polynomial 

tension degree. 

23. FunctionSetBuilder: This class implements the basis set and spline builder for the 

following types of splines: 

o Exponential basis tension splines 

o Hyperbolic basis tension splines 

o Polynomial basis splines 

o Bernstein Polynomial basis splines 

o Kaklis-Pandelis basis tension splines 

This elastic coefficients for the segment using kC  basis splines inside )1,...,0[  - 

globally ),...,[ 10 xx : ( ) ( )xollerShapeContrxCeFunctionBasisSpliny k ×= ,  where 
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spline is a typical shape controller spline used. 

o BSplineSequenceParams: BSplineSequenceParams implements the parameter set for 

constructing the B Spline Sequence. It provides functionality to: 
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o Retrieve the B Spline Order 

o Retrieve the Number of Basis Functions 

o Retrieve the Processed Basis Derivative Order 

o Retrieve the Basis Hat Type 

o Retrieve the Shape Control Type 

o Retrieve the Tension 

o Retrieve the Array of Predictor Ordinates 

 

 

Spline Segment Package (org.drip.spline.segment) 

 

The spline segment package implements the segment’s inelastic state, the segment basis 

evaluator, the segment flexure penalizer, computes the segment monotonicity behavior, 

and implements the segment’s complete constitutive state. 

1. InelasticConstitutiveState: This class contains the spline segment in-elastic fields - in 

this case the start/end ranges. It exports the following functions: 

o Retrieve the Segment Left/Right Predictor Ordinate 

o Find out if the Predictor Ordinate is inside the segment - inclusive of left/right 

o Get the Width of the Predictor Ordinate in this Segment 

o Transform the Predictor Ordinate to the Local Segment Predictor Ordinate 

o Transform the Local Predictor Ordinate to the Segment Ordinate 

2. BasisEvaluator: This interface implements the Segment's Basis Evaluator Functions. 

It exports the following functions: 

o Retrieve the number of Segment's Basis Functions 

o Set the Inelastics that provides the enveloping Context the Basis Evaluation 

o Clone/Replicate the current Basis Evaluator Instance 

o Compute the Response Value of the indexed Basis Function at the specified 

Predictor Ordinate 

o Compute the Basis Function Value at the specified Predictor Ordinate 

o Compute the Response Value at the specified Predictor Ordinate 
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o Compute the Ordered Derivative of the Response Value off of the indexed 

Basis Function at the specified Predictor Ordinate 

o Compute the Ordered Derivative of the Response Value off of the Basis 

Function Set at the specified Predictor Ordinate 

o Compute the Response Value Derivative at the specified Predictor Ordinate 

3. SegmentBasisEvaluator: This class implements the BasisEvaluator interface for the 

given Set of the Segment Basis Evaluator Functions. 

4. Monotonicity: This class contains the monotonicity details related to the given 

segment. It computes whether the segment is monotonic, and if not, whether it 

contains a maximum, a minimum, or an inflection. 

5. BestFitFlexurePenalizer: This Class implements the Segment's Best Fit, Curvature, 

and Length Penalizers. It provides the following functionality: 

o Compute the Cross-Curvature Penalty for the given Basis Pair 

o Compute the Cross-Length Penalty for the given Basis Pair 

o Compute the Best Fit Cross-Product Penalty for the given Basis Pair 

o Compute the Basis Pair Penalty Coefficient for the Best Fit and the Curvature 

Penalties 

o Compute the Penalty Constraint for the Basis Pair 

6. ConstitutiveState: ConstitutiveState implements the single segment basis calibration 

and inference functionality. It exports the following functionality: 

o Build the ConstitutiveState instance from the Basis Function/Shape Controller 

Set 

o Build the ConstitutiveState instance from the Basis Evaluator Set 

o Retrieve the Number of Parameters, Basis Evaluator, Array of the Response 

Basis Coefficients, and Segment Design Inelastic Control 

o Calibrate the Segment State from the Calibration Parameter Set 

o Sensitivity Calibrator: Calibrate the Segment Quote Jacobian from the 

Calibration Parameter Set 

o Calibrate the coefficients from the prior Predictor/Response Segment, the 

Constraint, and fitness Weights 
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o Calibrate the coefficients from the prior Segment and the Response Value at 

the Right Predictor Ordinate 

o Calibrate the Coefficients from the Edge Response Values and the Left Edge 

Response Slope 

o Calibrate the coefficients from the Left Edge Response Value Constraint, the 

Left Edge Response Value Slope, and the Right Edge Response Value 

Constraint 

o Retrieve the Segment Curvature, Length, and the Best Fit DPE 

o Calculate the Response Value and its Derivative at the given Predictor 

Ordinate 

o Calculate the Ordered Derivative of the Coefficient to the Quote 

o Calculate the Jacobian of the Segment's Response Basis Function Coefficients 

to the Edge Inputs 

o Calculate the Jacobian of the Response to the Edge Inputs at the given 

Predictor Ordinate 

o Calculate the Jacobian of the Response to the Basis Coefficients at the given 

Predictor Ordinate 

o Calibrate the segment and calculate the Jacobian of the Segment's Response 

Basis Function Coefficients to the Edge Parameters 

o Calibrate the Coefficients from the Edge Response Values and the Left Edge 

Response Value Slope and calculate the Jacobian of the Segment's Response 

Basis Function Coefficients to the Edge Parameters 

o Calibrate the coefficients from the prior Segment and the Response Value at 

the Right Predictor Ordinate and calculate the Jacobian of the Segment's 

Response Basis Function Coefficients to the Edge Parameters 

o Indicate whether the given segment is monotone. If monotone, may optionally 

indicate the nature of the extrema contained inside maxima/minima/infection) 

o Clip the part of the Segment to the Right of the specified Predictor Ordinate. 

Retain all other constraints the same 

o Clip the part of the Segment to the Left of the specified Predictor Ordinate. 

Retain all other constraints the same 
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o Display the string representation for diagnostic purposes 

 

 

Spline Stretch Package (org.drip.spline.stretch) 

 

The spline stretch package provides single segment and multi segment interfaces, 

builders, and implementations, along with custom boundary settings. 

1. BoundarySettings: This class implements the Boundary Settings that determine the 

full extent of description of the stretch's State. It exports functions that: 

• Specify the type of the boundary condition (NATURAL/FLOATING/IS-A-

KNOT) 

• Boundary Condition specific additional parameters (e.g., Derivative Orders 

and Matches) 

• Static methods that help construct standard boundary settings 

2. SingleSegmentSequence: SingleSegmentSequence is the interface that exposes 

functionality that spans multiple segments. Its derived instances hold the ordered 

segment sequence, the segment control parameters, and, if available, the spanning 

Jacobian. SingleSegmentSequence exports the following group of functionality: 

• Construct adjoining segment sequences in accordance with the segment 

control parameters 

• Calibrate according to a varied set of (i.e., NATURAL/FINANCIAL) 

boundary conditions 

• Estimate both the value, the ordered derivatives, and the Jacobian 

(quote/coefficient) at the given ordinate 

• Compute the monotonicity details - segment/Stretch level monotonicity, co-

monotonicity, local monotonicity. 

• Predictor Ordinate Details - identify the left/right predictor ordinate edges, 

and whether the given predictor ordinate is a knot 

3. SingleSegmentLagrangePolynomial: SingleSegmentLagrangePolynomial implements 

the SingleSegmentSequence Stretch interface using the Lagrange Polynomial 
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Estimator. As such it provides a perfect fit that travels through all the 

predictor/response pairs causing Runge's instability. 

4. MultiSegmentSequence: MultiSegmentSequence is the interface that exposes 

functionality that spans multiple segments. Its derived instances hold the ordered 

segment sequence, the segment control parameters, and, if available, the spanning 

Jacobian. MultiSegmentSequence exports the following group of functionality: 

• Retrieve the Segments and their Builder Parameters 

• Compute the monotonicity details - segment/Stretch level monotonicity, co-

monotonicity, local monotonicity 

• Check if the Predictor Ordinate is in the Stretch Range, and return the segment 

index in that case 

• Set up (i.e., calibrate) the individual Segments in the Stretch by specifying 

one/or more of the node parameters and Target Constraints 

• Set up (i.e., calibrate) the individual Segment in the Stretch to the Target 

Segment Edge Values and Constraints. This is also called the Hermite setup - 

where the segment boundaries are entirely locally set. 

• Generate a new Stretch by clipping all the Segments to the Left/Right of the 

specified Predictor Ordinate. Smoothness Constraints will be maintained. 

• Retrieve the Span Curvature/Length, and the Best Fit DPE's. 

• Retrieve the Merge Stretch Manager. 

• Display the Segments. 

5. SegmentSequenceBuilder: SegmentSequenceBuilder is the interface that contains the 

stubs required for the construction of the segment stretch. It exposes the following 

functions: 

• Set the Stretch whose Segments are to be calibrated 

• Retrieve the Calibration Boundary Condition 

• Calibrate the Starting Segment using the Left Slope 

• Calibrate the Segment Sequence in the Stretch 

6. CkSegmentSequenceBuilder: CkSegmentSequenceBuilder implements the 

SegmentSequenceBuilder interface to customize segment sequence construction. 

Customization is applied at several levels: 
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• Segment Calibration Boundary Setting/Segment Best Fit Response Settings 

• Segment Response Value Constraints for the starting and the subsequent 

Segments 

7. CalibratableMultiSegmentSequence: CalibratableMultiSegmentSequence implements 

the MultiSegmentSequence span that spans multiple segments. It holds the ordered 

segment sequence, segment sequence builder, the segment control parameters, and, if 

available, the spanning Jacobian. It provides a variety of customization for the 

segment construction and state representation control. 

8. MultiSegmentSequenceBuilder: MultiSegmentSequenceBuilder exports Stretch 

creation/calibration methods to generate customized basis splines, with customized 

segment behavior using the segment control. It exports the following methods of 

Stretch Creation: 

• Create an uncalibrated Stretch instance over the specified Predictor Ordinate 

Array using the specified Basis Spline Parameters for the Segment 

• Create a calibrated Stretch Instance over the specified array of Predictor 

Ordinates and Response Values using the specified Basis Splines 

• Create a calibrated Stretch Instance over the specified Predictor Ordinates, 

Response Values, and their constraints, using the specified Segment Builder 

Parameters 

• Create a Calibrated Stretch Instance from the Array of Predictor Ordinates and 

a flat Response Value 

• Create a Regression Spline Instance over the specified array of Predictor 

Ordinate Knot Points and the Set of the Points to be Best Fit 

9. MultiSegmentSequenceModifier: MultiSegmentSequenceModifier exports Stretch 

modification/alteration methods to generate customized basis splines, with 

customized segment behavior using the segment control. It exposes the following 

stretch modification methods: 

• Insert the specified Predictor Ordinate Knot into the specified Stretch, using 

the specified Response Value 

• Append a Segment to the Right of the Specified Stretch using the Supplied 

Constraint 
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• Insert the Predictor Ordinate Knot into the specified Stretch 

• Insert a Cardinal Knot into the specified Stretch at the specified Predictor 

Ordinate Location 

• Insert a Catmull-Rom Knot into the specified Stretch at the specified Predictor 

Ordinate Location 

 

 

Spline Grid/Span Package (org.drip.spline.grid) 

 

The spline grid/span package provides the multi-stretch spanning functionality. It 

specifies the span interface, and provides implementations of the overlapping and the 

non-overlapping span instances. It also implements the transition splines with custom 

transition zones. 

1. Span: Span is the interface that exposes the functionality behind the collection of 

Stretches that may be overlapping or non-overlapping. It exposes the following stubs: 

• Retrieve the Left/Right Span Edge 

• Indicate if the specified Label is part of the Merge State at the specified 

Predictor Ordinate 

• Compute the Response from the containing Stretches 

• Add a Stretch to the Span 

• Retrieve the first Stretch that contains the Predictor Ordinate 

• Retrieve the Stretch by Name 

• Calculate the Response Derivative to the Quote at the specified Ordinate 

• Display the Span Edge Coordinates. 

2. OverlappingStretchSpan: OverlappingStretchSpan implements the Span interface, 

and the collection functionality of overlapping Stretches. In addition to providing a 

custom implementation of all the Span interface stubs, it also converts the 

Overlapping Stretch Span to a non-overlapping Stretch Span. Overlapping Stretches 

are clipped from the Left. 
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Spline PCHIP Package (org.drip.spline.pchip) 

 

The spline PCHIP package implements most variants of the local piece-wise cubic 

Hermite interpolating polynomial smoothing functionality. It provides a number of 

tweaks for smoothing customization, as well as providing enhanced implementations of 

Akima, Preuss, and Hagan-West smoothing interpolators. 

1. AkimaLocalC1Generator: AkimaLocalC1Generator generates the local control 1C  

Slope using the Akima (1970) Cubic Algorithm. 

2. MinimalQuadraticHaganWest: This class implements the regime using the Hagan and 

West (2006) Minimal Quadratic Estimator. 

3. MonotoneConvexHaganWest: This class implements the regime using the Hagan and 

West (2006) Estimator. It provides the following functionality: 

• Static Method to create an instance of MonotoneConvexHaganWest 

• Ensure that the estimated regime is monotone an convex 

• If need be, enforce positivity and/or apply amelioration 

• Apply segment-by-segment range bounds as needed 

• Retrieve predictor ordinates/response values 

4. LocalMonotoneCkGenerator: LocalMonotoneCkGenerator generates customized 

Local Stretch by trading off kC  for local control. This class implements the following 

variants: Akima, Bessel, Harmonic, Hyman83, Hyman89, Kruger, Monotone Convex, 

as well as the Van Leer and the Huynh/Le Floch limiters. It also provides the 

following custom control on the resulting 1C : 

• Eliminate the Spurious Extrema in the Input 1C Entry 

• Apply the Monotone Filter in the Input 1C Entry 

• Generate a Vanilla 1C Array from the specified Array of Predictor Ordinates 

and the Response Values 

• Verify if the given Quintic Polynomial is Monotone using the Hyman89 

Algorithm, and generate it if necessary 

5. LocalControlStretchBuilder: LocalControlStretchBuilder exports Stretch 

creation/calibration methods to generate customized basis splines, with customized 
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segment behavior using the segment control. It provides the following local-control 

functionality: 

• Create a Stretch off of Hermite Splines from the specified the Predictor 

Ordinates, the Response 

• Values, the Custom Slopes, and the Segment Builder Parameters 

• Create Hermite/Bessel C1 Cubic Spline Stretch 

• Create Hyman (1983) Monotone Preserving Stretch 

• Create Hyman (1989) enhancement to the Hyman (1983) Monotone 

Preserving Stretch 

• Create the Harmonic Monotone Preserving Stretch 

• Create the Van Leer Limiter Stretch 

• Create the Huynh Le Floch Limiter Stretch 

• Generate the local control C1 Slope using the Akima Cubic Algorithm 

• Generate the local control C1 Slope using the Hagan-West Monotone Convex 

Algorithm 

 

 

Spline B Spline Package (org.drip.spline.bspline) 

 

The spline B Spline package implements the raw and the processed basis B Spline hat 

functions. It provides the standard implementations for the monic and the multic B Spline 

Segments. It also exports functionality to generate higher order B Spline Sequences. 

1. TensionBasisHat: TensionBasisHat implements the common basis hat function that 

forms the basis for all B Splines. It contains the left/right ordinates, the tension, and 

the normalizer. 

2. TensionProcessedBasisHat: TensionProcessedBasisHat implements the processed hat 

basis function of the form laid out in the basic framework outlined in Koch and Lyche 

(1989), Koch and Lyche (1993), and Kvasov (2000). 

3. BasisHatShapeControl: BasisHatShapeControl implements the shape control function 

for the hat basis set as laid out in the framework outlined in Koch and Lyche (1989), 
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Koch and Lyche (1993), and Kvasov (2000). Currently BasisHatShapeControl 

implements the following shape control customizers: 

a. Cubic Polynomial with Rational Linear Shape Controller 

b. Cubic Polynomial with Rational Quadratic Shape Controller 

c. Cubic Polynomial with Rational Exponential Shape Controller 

4. LeftHatShapeControl: LeftHatShapeControl implements the BasisHatShapeControl 

interface for the left hat basis set as laid out in the basic framework outlined in Koch 

and Lyche (1989), Koch and Lyche (1993), and Kvasov (2000). 

5. RightHatShapeControl: RightHatShapeControl implements the 

BasisHatShapeControl interface for the right hat basis set as laid out in the basic 

framework outlined in Koch and Lyche (1989), Koch and Lyche (1993), and Kvasov 

(2000). 

6. CubicRationalLeftRaw: CubicRationalLeftRaw implements the TensionBasisHat 

interface in accordance with the raw left cubic rational hat basis function laid out in 

the basic framework outlined in Koch and Lyche (1989), Koch and Lyche (1993), and 

Kvasov (2000). 

7. CubicRationalRightRaw: CubicRationalRightRaw implements the TensionBasisHat 

interface in accordance with the raw right cubic rational hat basis function laid out in 

the basic framework outlined in Koch and Lyche (1989), Koch and Lyche (1993), and 

Kvasov (2000). 

8. ExponentialTensionLeftHat: ExponentialTensionLeftHat implements the 

TensionBasisHat interface in accordance with the left exponential hat basis function 

laid out in the basic framework outlined in Koch and Lyche (1989), Koch and Lyche 

(1993), and Kvasov (2000). 

9. ExponentialTensionRightHat: ExponentialTensionRightHat implements the 

TensionBasisHat interface in accordance with the right exponential hat basis function 

laid out in the basic framework outlined in Koch and Lyche (1989), Koch and Lyche 

(1993), and Kvasov (2000). 

10. ExponentialTensionLeftRaw: ExponentialTensionLeftRaw implements the 

TensionBasisHat interface in accordance with the raw left exponential hat basis 
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function laid out in the basic framework outlined in Koch and Lyche (1989), Koch 

and Lyche (1993), and Kvasov (2000). 

11. ExponentialTensionRightRaw: ExponentialTensionRightRaw implements the 

TensionBasisHat interface in accordance with the raw right exponential hat basis 

function laid out in the basic framework outlined in Koch and Lyche (1989), Koch 

and Lyche (1993), and Kvasov (2000). 

12. BasisHatPairGenerator: BasisHatPairGenerator implements the generation 

functionality behind the hat basis function pair. It provides the following 

functionality: 

a. Generate the array of the Hyperbolic Phy and Psy Hat Function Pair 

b. Generate the array of the Hyperbolic Phy and Psy Hat Function Pair From 

their Raw Counterparts 

c. Generate the array of the Cubic Rational Phy and Psy Hat Function Pair From 

their Raw Counterparts 

d. Generate the array of the Custom Phy and Psy Hat Function Pair From their 

Raw Counterparts 

13. SegmentBasisFunction: SegmentBasisFunction is the abstract class over which the 

local ordered envelope functions for the B Splines are implemented. It exposes the 

following stubs: 

a. Retrieve the Order of the B Spline 

b. Retrieve the Leading Predictor Ordinate 

c. Retrieve the Following Predictor Ordinate 

d. Retrieve the Trailing Predictor Ordinate 

e. Compute the complete Envelope Integrand - this will serve as the Envelope 

Normalizer 

f. Evaluate the Cumulative Normalized Integrand up to the given ordinate 

14. SegmentMonicBasisFunction: SegmentMonicBasisFunction implements the local 

monic B Spline that envelopes the predictor ordinates, and the corresponding set of 

ordinates/basis functions. SegmentMonicBasisFunction uses the left/right 

TensionBasisHat instances to achieve its implementation goals. 
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15. SegmentMulticBasisFunction: SegmentMulticBasisFunction implements the local 

multic B Spline that envelopes the predictor ordinates, and the corresponding set of 

ordinates/basis functions. SegmentMulticBasisFunction uses the left/right 

SegmentBasisFunction instances to achieve its implementation goals. 

16. SegmentBasisFunctionSet: SegmentBasisFunctionSet class implements per-segment 

function set for B Splines and tension splines. Derived implementations expose 

explicit targeted basis functions. 

17. SegmentBasisFunctionGenerator: SegmentBasisFunctionGenerator generates B 

Spline Functions of different order. It provides the following functionality: 

a. Create a Tension Monic B Spline Basis Function 

b. Construct a Sequence of Monic Basis Functions 

c. Create a sequence of B Splines of the specified order from the given inputs. 

 

 

Tension Spline Package (org.drip.spline.tension) 

 

The tension spline package implements closed form family of cubic tension splines laid 

out in the basic framework outlined in Koch and Lyche (1989), Koch and Lyche (1993), 

and Kvasov (2000). 

1. KLKHyperbolicTensionPhy: KLKHyperbolicTensionPhy implements the custom 

evaluator, differentiator, and integrator for the KLK Tension Phy Functions outlined 

in the publications above. 

2. KLKHyperbolicTensionPsy: KLKHyperbolicTensionPsy implements the custom 

evaluator, differentiator, and integrator for the KLK Tension Psy Functions outlined 

in the publications above. 

3. KochLycheKvasovBasis: This class exposes functions that implement the monic, 

quadratic, and the cubic basis B Splines as outlined in the publications above. 

4. KochLycheKvasovFamily: This class implements the basic framework and the family 

of 2C  Tension Splines outlined above. Functions exposed here implement the Basis 

Function Set from: 

a. Hyperbolic Hat Primitive Set 
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b. Cubic Polynomial Numerator and Linear Rational Denominator 

c. Cubic Polynomial Numerator and Quadratic Rational Denominator 

d. Cubic Polynomial Numerator and Exponential Denominator 

 

 

Spline Sample Package (org.drip.sample.spline) 

 

The spline sample package contains samples that demonstrate the construction and usage 

of different basis splines and B Spline Sequences. 

1. BasisSplineSet: BasisSplineSet implements Samples for the Construction and the 

usage of various basis spline functions. It demonstrates the following: 

a. Construction of segment control parameters - polynomial (regular/Bernstein) 

segment control, exponential/hyperbolic tension segment control, Kaklis-

Pandelis tension segment control, and 1C  Hermite 

b. Control the segment using the rational shape controller, and the 

appropriate kC  

c. Estimate the node value and the node value Jacobian with the segment, as well 

as at the boundaries 

d. Calculate the segment monotonicity 

2. PolynomialBasisSpline: PolynomialBasisSpline implements Samples for the 

Construction and the usage of polynomial (both regular and Hermite) basis spline 

functions. It demonstrates the following: 

a. Control the polynomial segment using the rational shape controller, the 

appropriate kC , and the basis function 

b. Demonstrate the variational shape optimization behavior 

c. Estimate the node value and the node value Jacobian with the segment, as well 

as at the boundaries 

d. Calculate the segment monotonicity and the curvature penalty 

3. BasisTensionSplineSet: BasisTensionSplineSet implements Samples for the 

Construction and the usage of various basis spline functions. It demonstrates the 

following: 
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a. Construction of Kocke-Lyche-Kvasov tension spline segment control 

parameters - using hyperbolic, exponential, rational linear, and rational 

quadratic primitives 

b. Control the segment using the rational shape controller, and the appropriate 

kC  

c. Estimate the node value and the node value Jacobian with the segment, as well 

as at the boundaries 

d. Calculate the segment monotonicity 

4. BasisBSplineSet: BasisBSplineSet implements Samples for the Construction and the 

usage of various basis B Spline functions. 

5. BasisMonicHatComparison: BasisMonicHatComparison implements the comparison 

of the basis hat functions used in the construction of the monic basis B Splines. It 

demonstrates the following: 

a. Construction of the Linear Cubic Rational Raw Hat Functions 

b. Construction of the Quadratic Cubic Rational Raw Hat Functions 

c. Construction of the Corresponding Processed Tension Basis Hat Functions 

d. Construction of the Wrapping Monic Functions 

e. Estimation and Comparison of the Ordered Derivatives 

6. BasisMonicBSpline: BasisMonicBSpline implements Samples for the Construction 

and the usage of various monic basis B Splines. It demonstrates the following: 

a. Construction of segment B Spline Hat Basis Functions 

b. Estimation of the derivatives and the basis envelope cumulative integrands 

c. Estimation of the normalizer and the basis envelope cumulative normalized 

integrand 

7. BasisMulticBSpline: BasisMulticBSpline implements Samples for the Construction 

and the usage of various multic basis B Splines. It demonstrates the following: 

a. Construction of segment higher order B Spline Hat Basis Functions 

b. Estimation of the derivatives and the basis envelope cumulative integrands 

c. Estimation of the normalizer and the basis envelope cumulative normalized 

integrand 
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8. BSplineSequence: BSplineSequence implements Samples for the Construction and 

the usage of various monic basis B Spline Sequences. It demonstrates the following: 

a. Construction and Usage of segment Monic B Spline Sequence 

b. Construction and Usage of segment Multic B Spline Sequence 

 

 

Stretch Sample Package (org.drip.sample.stretch) 

 

The stretch sample package contains samples that demonstrate the construction, 

modification, and usage of stretches based off of different basis splines. They illustrate 

the computation of the curvature and the length penalties, and construction of best fit 

regression spline samples. Finally they bring it all together in showing how to build latent 

state from measurements. 

1. StretchEstimation: StretchEstimation demonstrates the Stretch builder and usage API. 

It shows the following: 

a. Construction of segment control parameters - polynomial (regular/Bernstein) 

segment control, exponential/hyperbolic tension segment control, Kaklis-

Pandelis tension segment control 

b. Perform the following sequence of tests for a given segment control for a 

predictor/response range 

i. Assign the array of Segment Builder Parameters - one per segment 

ii. Construct the Stretch Instance 

iii. Estimate, compute the segment-by-segment monotonicity and the 

Stretch Jacobian 

iv. Construct a new Stretch instance by inserting a pair of 

predictor/response knots 

v. Estimate, compute the segment-by-segment monotonicity and the 

Stretch Jacobian 

c. Demonstrate the construction, the calibration, and the usage of Local Control 

Segment Spline 
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d. Demonstrate the construction, the calibration, and the usage of Lagrange 

Polynomial Stretch 

e. Demonstrate the construction, the calibration, and the usage of C1 Stretch 

with the desired customization. 

2. TensionStretchEstimation: TensionStretchEstimation demonstrates the Stretch builder 

and usage API. It shows the following: 

a. Construction of segment control parameters - polynomial (regular/Bernstein) 

segment control, exponential/hyperbolic tension segment control, Kaklis-

Pandelis tension segment control 

b. Tension Basis Spline Test using the specified predictor/response set and the 

array of segment custom builder control parameters 

c. Complete the full tension stretch estimation sample test 

3. StretchAdjuster: StretchAdjuster demonstrates the Stretch Manipulation and 

Adjustment API. It shows the following: 

a. Construct a simple Base Stretch 

b. Clip a left Portion of the Stretch to construct a left-clipped Stretch 

c. Clip a right Portion of the Stretch to construct a tight-clipped Stretch 

d. Compare the values across all the stretches to establish a) the continuity in the 

base smoothness is, preserved, and b) Continuity across the predictor ordinate 

for the implied response value is also preserved 

4. RegressionSplineEstimator: RegressionSplineEstimator shows the sample 

construction and usage of Regression Splines. It demonstrates the construction of the 

segment's predictor ordinate/response value combination, and eventual calibration. 

5. PenalizedCurvatureFit: PenalizedCurvatureFit demonstrates the setting up and the 

usage of the curvature and closeness of fit penalizing spline. It illustrates in detail the 

following steps: 

a. Set up the X Predictor Ordinate and the Y Response Value Set 

b. Construct a set of Predictor Ordinates, their Responses, and corresponding 

Weights to serve as weighted closeness of fit 

c. Construct a rational shape controller with the desired shape controller tension 

parameters and Global Scaling 
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d. Construct the segment inelastic parameter that is C2, with 2nd order 

roughness penalty derivative, and without constraint 

e. Construct the base, the base + 1 degree segment builder control 

f. Construct the base, the elevated, and the best fit basis spline stretches 

g. Compute the segment-by-segment monotonicity for all the three stretches 

h. Compute the Stretch Jacobian for all the three stretches 

i. Compute the Base Stretch Curvature Penalty Estimate 

j. Compute the Elevated Stretch Curvature Penalty Estimate 

k. Compute the Best Fit Stretch Curvature Penalty Estimate 

6. PenalizedCurvatureLengthFit: PenalizedCurvatureLengthFit demonstrates the setting 

up and the usage of the curvature, the length, and the closeness of fit penalizing 

spline. This sample shows the following: 

a. Set up the X Predictor Ordinate and the Y Response Value Set 

b. Construct a set of Predictor Ordinates, their Responses, and corresponding 

Weights to serve as weighted closeness of fit 

c. Construct a rational shape controller with the desired shape controller tension 

parameters and Global Scaling 

d. Construct the Segment Inelastic Parameter that is C2, with First Order 

Segment Length Penalty Derivative, Second Order Segment Curvature 

Penalty Derivative, their Amplitudes, and without Constraint 

e. Construct the base, the base + 1 degree segment builder control 

f. Construct the base, the elevated, and the best fit basis spline stretches 

g. Compute the segment-by-segment monotonicity for all the three stretches 

h. Compute the Stretch Jacobian for all the three stretches 

i. Compute the Base Stretch Curvature, Length, and the Best Fit DPE 

j. Compute the Elevated Stretch Curvature, Length, and the Best Fit DPE 

k. Compute the Best Fit Stretch Curvature, Length, and the Best Fit DPE 

7. CustomCurveBuilder: CustomCurveBuilder contains samples that demo how to build 

a discount curve from purely the cash flows. It provides for elaborate curve builder 

control, both at the segment level and at the Stretch level. In particular, it shows the 

following: 
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a. Construct a discount curve from the discount factors available purely from the 

cash and the euro-dollar instruments 

b. Construct a discount curve from the cash flows available from the swap 

instruments 

In addition, the sample demonstrates the following ways of controlling curve 

construction: 

• Control over the type of segment basis spline 

• Control over the polynomial basis spline order kC , and tension parameters 

• Provision of custom shape controllers (in this case rational shape controller) 

• Calculation of segment monotonicity and convexity 

 

 

Spline/Stretch Regression Test Package (org.drip.regression.spline) 

 

This package contains the random input regression runs on the spline and stretch 

instances. Runs regress on C1Hermite, local control smoothing, single segment 

Lagrangians, multi-segment sequences using a variety of spline/stretch basis functions 

and controls. 

1. BasisSplineRegressor: BasisSplineRegressor implements the custom basis spline 

regressor for the given basis spline. As part of the regression sequence, it executes the 

following: 

a. Calibrate and compute the left and the right Jacobian 

b. Reset right node and re-run calibration 

c. Compute an intermediate value Jacobian 

2. HermiteBasisSplineRegressor: HermiteBasisSplineRegressor implements the 

BasisSplineRegressor using the Hermite basis spline regressor. 

3. LagrangePolynomialStretchRegressor: LagrangePolynomialStretchRegressor 

implements the BasisSplineRegressor using the SingleSegmentLagrangePolynomial 

regressor. 
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4. LocalControlBasisSplineRegressor: LocalControlBasisSplineRegressor implements 

the local control basis spline regressor for the given basis spline. As part of the 

regression run, it executes the following: 

a. Calibrate and compute the left and the right Jacobian 

b. Insert the Local Control Hermite, Cardinal, and Catmull-Rom knots 

c. Run Regressor for the C1 Local Control C1 Slope Insertion Bessel/Hermite 

Spline 

d. Compute an intermediate value Jacobian 

5. BasisSplineRegressorSet: BasisSplineRegressorSet carries out regression testing for 

the following series of basis splines: 

a. Polynomial Basis Spline, n = 2 basis functions, and 1C  

b. Polynomial Basis Spline, n = 3 basis functions, and 1C  

c. Polynomial Basis Spline, n = 4 basis functions, and 1C  

d. Polynomial Basis Spline, n = 4 basis functions, and 2C  

e. Polynomial Basis Spline, n = 5 basis functions, and 1C  

f. Polynomial Basis Spline, n = 5 basis functions, and 2C  

g. Polynomial Basis Spline, n = 5 basis functions, and 3C  

h. Polynomial Basis Spline, n = 6 basis functions, and 1C  

i. Polynomial Basis Spline, n = 6 basis functions, and 2C  

j. Polynomial Basis Spline, n = 6 basis functions, and 3C  

k. Polynomial Basis Spline, n = 6 basis functions, and 4C  

l. Polynomial Basis Spline, n = 7 basis functions, and 1C  

m. Polynomial Basis Spline, n = 7 basis functions, and 2C  

n. Polynomial Basis Spline, n = 7 basis functions, and 3C  

o. Polynomial Basis Spline, n = 7 basis functions, and 4C  

p. Polynomial Basis Spline, n = 7 basis functions, and 5C  

q. Bernstein Polynomial Basis Spline, n = 4 basis functions, and 2C  

r. Exponential Tension Spline, n = 4 basis functions, Tension = 1., and 2C  

s. Hyperbolic Tension Spline, n = 4 basis functions, Tension = 1., and 2C  
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t. Kaklis-Pandelis Tension Spline, n = 4 basis functions, KP = 2, and 2C  

u. C1 Hermite Local Spline, n = 4 basis functions, and 1C  

v. Hermite Local Spline with Local, Catmull-Rom, and Cardinal Knots, n = 4 

basis functions, and 1C  

6. BasisSplineRegressionEngine: BasisSplineRegressionEngine implements the 

RegressionEngine class for the basis spline regression functionality. 
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Figure #1 
SEGMENT/SPAN Structure Layout 
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Figure #2 
BASIS SPLINE HIERARCHY 

SEGMENT 

Basis Spline Polynomial Basis Spline Hyperbolic Tension 

Basis Spline Linear Polynomial Basis Spline Exponential Tension 

Basis Cubic Polynomial Basis Spline Cubic Hermite 

Basis Quartic Polynomial Basis Spline Catmull Rom 

Basis Cubic Rational Basis Spline Cubic Cardinal 



 106

 

 

 

 

 

Segment 
#2 

Segment 
#3 

Figure #3 
THIRD ORDER SECOND DEGREE SPLINE 
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Figure #4 
B SPLINE INTERPLATION SCHEME 
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Figure #5 
PENALTY MINIMIZER METRIC - #1 
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Figure #6 

PENALTY MINIMIZER METRIC - #2 
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Figure #7 
DIMENSION-LESS PENALTY ESTIMATOR 
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Figure #8 
NEAR-DELTA DPE 
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Figure #9 
Monic B Spline Base Setup 
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