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Overview

Framework Symbology and Terminology

1. Predictor OrdinateS he segment independent/input values.

2. Response Value$he segment dependent/output values.
. C', and & Continuity C° refers to base function continuity fers to the

continuity in the first derivative, and*@efers to continuity in the second.

4. Local Piece-wise Parameterized Splirtdsre the space formulation is in the local

variate space that spans 0 to 1 within the givgmsat — this is also referred to as
piece-wise parameterization.

5. Bias This is the first term in the Spline Objectivenietion — essentially measures the
exactness of fit.

6. VarianceThis refers to the second and the subsequens terthe Spline Objective

Function — essentially measures the curvature/meggh

Motivation

1. Definitiont “Splineis a sufficiently smooth polynomial function thatpiecewise-
defined, and possesses a high degree of smootainéssplaces where the
polynomial pieces connect (which are knowrkasty.” [Spline (Wiki), Judd (1998),
Chen (2009)]

2. Drivers

a. Lower degree, gets rid of oscillation associatetd the higher degrees
[Runge’s phenomenon (Wiki)]

b. Easy, accurate higher degree smoothness sja¢icific



3. Basic SplineCovered in [Spline (Wiki), Bartels, Beatty, andrBky (1987), Judd
(1998), De Boor (2001), Fan and Yao (2005), Ch&092, Katz (2011)].
4. History Schoenberg (1946), Ferguson (1964), Eppersor8j199
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Calibration Framework

Introduction

1. Definitiort Calibration is the process of inferring the latstate elastic properties
from the specified inputs.
» Calibration takes both the “mandatory” and the figdde” classes of inputs to
fully determine the elastic properties.
» It makes sense to generate the calibration miazokians right at the calibration
time.

2. Classes of static fieldglastic and inelastic

» Elastic Fields => The actual Latent State respoas@bles that will be calibrated
to. More generally, any latent state response {iarkov or not) that is inferred
will be an elastic parameter.

» Inelastic Fields => The Latent State predictor watk variables — these are often
explicitly “chosen” or “designed in”.

o Typically inelastic fields correspond to constiwatiproperties (e.g.,
dimensions of a solid body, instruments composiograe, etc)

0 Inelastic properties may also impose invarianipcation independent
edge/boundary behavioral constraint on the elastas.

o Design Parameters (such as @fecontinuity parameters, roughness
penalty derivative order, etc:) are inelastic pagtars too, since they do
not vary with changes to the calibrator input.

3. Calibrator CreatiarOn creation, objects acquire specific valuegHerconstitutive

inelastic fields. Volatile Latent State elastiddi® may as yet be undefined.
» Setting of the elastic fields => Latent State Etafs¢lds adjust or vary to the
combination of inelastic fields + inputs (exterpald are set by the calibration

process.



» Change of inputs => Change of external calibraitnputs changes only those
Latent State elastic properties, not the inelasties.

4. Calibration is InferenceSince calibrated parameters are used for eveptadiction,

calibration is essentially inference. Bayesiangifastion (an alternate, generalized

calibration exercise) is inference too.

* The terms calibration/inference/estimation aresathetimes used analogously.
Where estimation estimates parameters, it perfanfesence. Where it predicts,
it performs prediction.

» Infer the Past vs. Predict the Future => You mégrithe past quantification
metric, as well as predict the future quantificatinetric/manifest measure.
Therefore, in that sense, inference/predictiorlistive only to the current time
(and using earlier/later information).

5. Calibration and entity-variate focus:

» De-convolving the instrument entity/measure comiiamais necessary for the
extraction of the parameter set.

» Parameter calibration/parameterization etc: inhtgrémvolve parsimonization
across the latent state predictor ordinate vasiae space — this is where the
models come in.

6. Latent State Construction off of hard/soft signeard Signals are typically the

truthness signals. Typically reduce to one calibreparameter per hard observation,

and they include the following:

* Actual observations => Weight independent truehtnass signals

* Weights => Potentially indicative of the truthnéssd signal strength

Soft signals are essentially signals extracted firdarence schemes. Again, typically

reduce to one calibration parameter per soft im@ainit, and they include the

following:

* Smoothness signals => Continuity, first, second, lsigher-order derivatives
match — one parameter per match.

» Bayesian update metrics => Inferred using Bayesiathodologies such as
maximum likelihood estimates, variance minimizatiand error minimization
techniques.



7. Directionality BiasDirectionality “bias” is inherent in calibratidie.g., left to right,

ordered sequence set, etc:) — this simplifies dhatisn space significantly, as it
avoids simultaneous non-linearity. Therefore, i@ directional bias also exists in
the calibration nodal sequence.

Truthness/Smoothness vs. Information Propagaitiosegment-by-segment

calibration challenges associated with inferrirgpeposite Latent State, if the

inference is based purely off of the truthness megsents, the information

directionality/propagation/flow is irrelevant. Notis such a€* are important
primarily owing to the smoothness axioms.

* Ingeneral, it is trivial to get the segment elasto respond to (via inference)
purely truthness signals. However, if the existerfcadditional
directionality/propagation/flow criteria is positetiose need to be accommodated
too (splines constructed through 8¢ criteria are one common way).

Head Node CalibratiorCalibration of the head node is typically inhehedifferent

from the other nodes, because the inputs needeldbyse could be different. The

other nodes use continuity/smoothness parametaishwhe head node does not.

10. Parameter Space Explosi@enerally not a problem as long as it is segment-

localized (in linear systems parlance, as lond #itent State matrix is tri-diagonal, or
close to it), i.e., local information discovery dasot affect far away nodes/segments.

* Also maybe able to use optimization techniquesito them.

11. Live Calibrated Parameter Updatitfse automatic differentiation to:

» Estimate parametric Jacobians (or sub-coefficigntonlacobians) to the
observed product measures.

» Re-adjust the shifts using the hard-signal strength

» Update the parameters from the calculated shifts.

* Re-construct the curve periodically (for incremeassopposed to a full re-build).

12. Spline Segment Calibratdtor a given segment, its calibration depends onlyhe

segment local value set — the other inputs conma the prior segments (except in the
case of “left-most” segment, whose full set of itgowill have to be extraneously

specified).



13. Block Diagonalization vs. Segment/Segment Catiibn Since segment-by-segment

span calibration occurs througt transmission, it will effectively be block diagdna
if it is a linear system, and hence computationetficient (this also allows for
explicitly setting segment level controls). In atmeords, although the local matrix is
dense, the span-level matrix is still sparse,

14. Calibration Perspective of Supervised vs. Uastiped

* Supervised — Alternate View => Since supervisethieg depends upon a
training step, post supervised activity may be wé\ws a post-inference systems,
where the inference/calibration has already ocdudteing the training step (and
parsimonization into the parameter step). So, pasting, the supervised
machine is only used for prediction.

* Unsupervised — Alternate View => Here, inferencd prediction happen
simultaneously.

* Hybrid Supervised/Unsupervised => Clearly no TRUSupervised are possible
(as there are prior views on linearity, Markov mafwerror process, basis spline
representation choice, etc;). So unsupervisedragséee typically mostly hybrid
systems.

Latent State Specification

1. Latent State Specificatiofhe latent-state here refers to the state wheperdient

response values we wish to calibrate/infer as etiom of the predictor ordinate. For
e.g., in fixed income finance, the Prevailing letrRate, the survival, the forward
rate, FX spot/forward would each constitute a pia#iy separate latent state that
needs to be inferred.

2. Latent State Quantification Metri& given latent state may be described by

one/more alternate, mutually exclusive quantifaatinetric. Again, the discounting
latent state may be quantified using a discourtbfazero rate etc:

3. Manifest MeasureThe Latent State may be inferred using a vaonégxternal

experimental measurements each of which produceswlved signal of the latent



state. Each such signal is referred to as a mamifesic. Again, the discounting
latent state may be inferred from the cash instrim®anifest metric, the swap rate

manifest metric etc:



Spline Builder Setup

Design Objectives behind Interpolating Splines

1. Symbols and Definitian

» Good overview of the desired characteristics ivijoied in Goodman (2002).
« Data:{x,y}OR%i =0,..,N;x, < X <...<X <..< X,
« Interpolating function:f(x ) = y;; f :[xo,xN] - [R2 = RJ
« Optional Actual Functiong(x)
2. Monotonicity f(x ) increases with increase i (and vice versa).
* Truly monotonic means that the segment extrema majbﬁ extrema.
« Co-monotone=> f(x ) increases with increase i within the segment (and

vice versa)
o0 Strictly co-monotoneimplies that sub-segmentonotonicity must also
be met, solbcal monotonicity” wheremonotonicity matches between
f(x) andy, at the segment level, is what is accepted — lieeee can be
an inflection among segments in the immediate pndyiof the data
extrema.

« At most, one extremum is allowed &, x,, } .
3. Convexity f(x) should also be convex whereveris convex (and vice versa).

» At the segment level this becomasconvex As before stricto-convexityis
often highly restrictive, stocal convexityis preferred. The earlier established
conditions should also satisfy convexity criteria.

« Desirable to have at most one inflection{in x,,;} .

4. SmoothnessSmoothnesgqalso calledshape-preserving corresponds to the least
curvature. Even Ecan be $mootH’, and so is &

10



5. Locality. Locality means that the dependencefdk) is primarily only on f(x ) and
f()g). This is advantageous to schemes that locally fyfatsert the points.

6. Approximation OrderApproximation Order indicates the smallest polynomial

degree by whichf (x) departs fromg(x) as the density ok increases. More

formally, it is the m in| f - g| = O(h™), whereh = max{x , - x :i =0,...N -1}

* For spline segments Wheg(x) through g(x) are specified locally, the first
degree of departure should the first degree ofa@rinuity infinitesimally for
both polynomial and non-polynomial splines, i.eshould bek +1 where the
continuity criterion isC*.

7. Other Desired Criteria

* The interpolating proxyf (x) should be able to replicate the tar@él().

* Fairness — loosely a measure of “pleasing to teé ey

. Possiblef(x) invariance under variate scaling/reflection.
» Controlled derivative behavior => Small changex produce small changes in

f(x).

8. Assessment of Monotonicity and Convex#ay individual segment can be assessed

to be monotone/convex etc:, but from the data R@dks, valleys, and inflection

occur only at the knots. These can be assessedbthlg span level.

Base Formulation

1. Base Mathematical formulation

n-1 r . ;
* y(x) = Zai f. (X), therefored—Y(X) = 21131 d'f (X)
=0 dx’ i=0 dax’

«  From known node$x,, y,} and{x,,y,}, we can draw the 2 linear equations for

11



k
« From known nodal derivativel,, y, (X, )} l,whereyk(xo):{d Y

r
k= dxX

i| , We can
Xo

draw the following r linear equations fary:

0 Y (0) = 3 & {d kd];(k()()

i=0

} wherek = 1...,r
X=X

2. Linear of Segment Coefficients to the Resporaeds (y; ): In all the spline

. . 0C. .
formulations, the Jacoblalg—‘ is constant (i.e., independent of the responagegal

I
or their nodal derivative inputs).

3. Span Boundary Specification

* “Natural” Spline — Energy minimization problem —c8ad Derivative is Zero at
either of the extreme nodes.
* “Financial” Spline — Second Derivative at the lettreme is zero, but first

derivative at the right extreme is zero.

of
=a,and| — =0.
[6 } b

* Clamped Boundary Condition%?—f}
ox X

X=Xo

| 0% _| o°f
* Not-A-Knot Boundary Conditiong:— == and
X |, LOX |,

o | 3 o |

4. Discrete Segment Mesh vs. Inserted Knloiserting knot point is similar to

discretizing the segment into multiple grids, watie key difference:
» Discretization uses the same single spline acibseagrid units of the segment.
* Inserted knots introduce additional splines — amvben each knot pair.

5. Segment Inelastic3hese are effectively the same as shape coniroéle the

following are the shape controlling inelastic paeden set:

e Tensiono

12



Number of basi
Continuity C¥

Optimizing derivative set ordem
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B-Splines

Introduction

1. Motivation As postulated by De Boor et. al. (see De Boof2)) B Splines have a
geometric interpolant context — thereby with therespondingly strong
CADG/curve/surface construction focus. Smoothewiogurs as a natural part of this.
* The B Spline generation scheme has a recurrenezthi@sative polynomial

generator that admits coinciding control pointslitate and surface construction,
with shape-preserving interpolation control thrawn

2. K" Order B-Spline Interpolantigher order B-Splines are defined by the recuree

Bx=&B st (1_ £i+1,k)Bi+Lk—l whereg;, = T and B,(t) = X,(t) =1 if

1
i+k-1 i

t <t<t,,,andB,(t)= X,(t) =0 otherwise.

« Coinciding knots =3, =t,, -~ B;= 0

3. Recursive Interpolant Schent Spline formulation is recursively interpolang.,

the order k spline is interpolant over the oréerl splines on nodes andi +1 - this
formulation automatically ensuré® > nodal continuity.

» As shown in Figure 4, the left interpolator stre[ich+ k —1] contains the
interpolator pivot at;, and the right interpolator stretc[:ih+],i + k] contains the
interpolator pivot at,, .

¢ B,, spans all the segments between the n{)n.eq].

 Further, the formulation symmetry between thepefot at B, , and the right

pivot at B,,, , retains the interpolation symmetry — among oth&gs, it is

responsible for ensuring th@* > symmetry.
4. B-Spline Order Relationship8ssuming no coincident knots, the following
statements are all EQUIVALENT/TRUE:

* n+1 knot points.

14



« n™order B Spline.
* Polynomial of degree—1.
+ Continuity criterionC" ™.

5. Expository Formulatian

_ _ 0 B t-t
* Qi =&ka-bio = |_|£i,j Wheregi,j =
j=k=1 i+ _ti+j—1

i+j-1

- U=t
Oy = H [1_£i+l—1] whereg;, =—t
= i+l tiH-l

o

Kk
Spline Coefficient Partition of UnityJsing the earlier formulatio, , = Zaij Xisi
i=0

Kk
it is easy to show thaza”. =1. This simply follows from the recursive nodal
i=0

interpolation property.

7. Smoothness Multiplicity Order Linke# smoothness conditions at knot + the

multiplicity at the knot = B-Spline Order.

8. Starting Node de-biasinbeft node is always weighted kg, in the interpolation

scheme, but the left node asymmetry is maintaimedilse the denominator in

t-t, , .
g, =——12 et
’ t, —t

i+] i+j-1

T T increases in length.

9. Other Single B-Spline Properties

B, is a piece-wise polynomial of degreek (k —1 if the knots are distinct,
lesser if the some of the knots coincide).

* B, is zero outside oft;.t,,,) .

» B, is positive in the open intervil],....t,,].

10. Formulation off of Starting Node and Startingl€:. Given the starting node and

the starting ordek , the contribution to the nodet m (i.e., m nodes after the start)

15



and the order (i.e., n nodes after start) carsbeés’ed as

B =N(+mk-n+1- k-n)B +B(i+m-1- i+mk-n)B, .

i mk-n Hmk-n

* Nodal B-Spline Recursion Stepper:

N(i+mk-n+1-k-n)=0(+m-i+mk-n+1_ k-n)

:[ =t }[ Ui meken — 1 }
ti+rrH-k—n+1 _ti+m ti+rrH~k—n _ti+m+1

» Spline Order B Spline Recursion Stepper:

Bli+m-1-i+mk-n)=0(+m-1-i+mk-n_ k-n)

- |: t— ti+m }|: t _ti+m+1 i|
ti+rn+k—n+l _ti+m ti+rn+k—n _ti+m+l

11. Cardinal B-Spline Knot Sequen¢&ot sequenc& => Uniformly spaced knots,

simplifying the interpolant/recursive analysis sfigantly - Z = {...— 2 101.2..}.
» Also all Cardinal B-Splines of a given order k &nanslates of each other.

» Cardinal B-Spline Order 2:

Range B, Bi.io
0<t<1 t 0

1<t<2 2-t t-1
2<t<3 0 3-t

+ Cardinal B-Spline Order 38, , 212'31,2 +3T B..,

B
Range B, 13
g ? ot
0<t<1 1t2 t
2
1 2
1<t <2 E(—2t +6t-3) ~2t-3
1 2
2<t<3 E( -3) t-3

12. Non-coinciding B Spline Segment Relations

16



° B|‘1=Xi=1if tiSt<ti+1

« B, =X =0 outside

* B,.= h Xo + feg 71 Xy
’ t—t t., ~tig
t—-t t..—t
* Bup= {—Iﬂ} X, + {L}Xz
t,, —tiy ts s,
t—-t t,,—t
o [tnz _lti }Bi’z +|:ti+l33_ti+i }BHLZ

Range B. B... B,
t <t<t =t 0 t-t, t-t
P= i+1 t, —t t,—t 4,
i+l = i+2
ti+2 _ti ti+2 _ti+1 ti+2 _ti ti+2 _ti+1 ti+3 _ti+1 ti+2 _ti+1
tist -t t,,—t
L, St<t, 0 1 1+3 2
ts—ty L VI Pl Y

13. Bernstein B-Spline Knot Sequentmot sequenc& = {0,...,04,...1} - {0,...0} occurs

u times, and1...1} occursv times.

. B[y,v,t]=%(l—t)"t“ for0<t<1.

. B[,u,v,t] hasv —1 derivatives at =0, and ¢/ —1 derivatives at =1 - this is also
referred to ag smoothness conditiongtt =0, and 4 smoothness conditiongt
t=1.

14. B-Spline vs. SplineB-Spline is just a single basis polynomial tisaavalid across a set of

knots. ‘Spline” is a linear combination of such basis B Splines= the set of all the
B,’s.

15. Spline Definition S ; = Z B.a wherea OR'. a’s are the coefficients — or nodal

points{x,a} - that can be interpolated.

17



B Spline Derivatives

1. B-Spline Derivative Formulation

a i Bi k=1

t-t,

r

r-1
a Bi+Lk—1

t

af Bi+Lk—1

0'B, r
ot' t

ik

|

*L

at r-1

ik G

0'B 4 _
at'

|:ti+k

_ti+1

|

at r-1

+[ L
L —t

i+l

2. B Spline Order 3 Nodal SlopeBhe slopes match across the left and the rigitheet, as

shown below, thereby making,; C* continuous.

Range Left Slope | Right Slope
t; - 0
t Lt Lt
" i, L 1,
t Lt bt
" t, —tiy o by
ti+3 0 -

3. B Spline Continuity ConditiarFrom the B Spline derivative formulation it i®al that if

both B, andB,,,,_, areC*™ continuous, ther;, will be C*? continuous. Given

that B Spline order 3 i€' continuous, by induction,, is C*" continuous.

18
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Polynomial Spline Basis Function

Plain Polynomial Spline Basis Function

1. Most direct polynomial spline fit is the Lagrangolynomial that passes through the
sequence of given points.

2. Young (1971) was one of first to apply shapesereing polynomial using
diminished Lagrange Polynomials (Lagrange Polynts1{\Mviki)), showing that co-
monotone interpolant with an upper bound on thgrnmohial degree exists (Raymon
(1981)).

3. Knot Insertion and Control Techniqu€sareful knot insertion can produce:

« Convexity Preserving Schemes ohddbic (de Boor (2001)).

« Co-monotone, co-convex schemes dm@adratic (McAllister and Roulier
(1981a), McAllister and Roulier (1981b), Schumalda83)).

« Co-monotone on tcubic (Butland (1980), Fritsch and Butland (1984jtsch
and Carlson (1980), Utreras and Celis (1983)).

« Co-monotone and co-convex oh €ibic (Costantini and Morandi (1984)).

« C? co-monotone and co-convex by using cubic in atarial where there is an
inflection, and linear/quadratic rational elsewhg@ehaback (1973), Schaback
(1988)).

Bernstein Polynomial Basis Function

1. Bernstein Polynomial of degree n, and tgnbvyn(x):”cvx” (1-x)"" where

v=0,..,n.

» Bernstein Polynomial Convenience Re-castl#g;:(x) = n!x—:%.
v (n-v)

19



« Bernstein Polynomial Convenience Re-cast B2{x) = (b+c) F(xb)F(1- x.c)

b

where F(xb) :%.

2. Derivative of the Bernstein Polynomiat = =)
dx dx’ dx’

d'b,(x) _ n{d b, (%) _d f‘le_Ln_l(X)}

* Bernstein Polynomial Re-cast #2 Derivative:

). o+ FELEB) ) (o) 2|

3. Bernstein Recurrencs, (x) = (1— x)bvyn_l(x)+ va-l,n-l(x)-

4. Reduction of B-Splines to Bernstein’s Polynomibm the recurrence relation, it is

clear that this is exactly the same recurrencéasor B-splines, except that it
happens over repeating knotsxat 0 and x =1.

* Further,b,; =1 for 0< x<1, andb,; =0 otherwise.

20



Local Spline Stretches

Local Interpolating/Smoothing Spline Stretches

Hermite Cubic Splineghe “local information” here takes the form otuspecified

left/right slopes + calibration points.
» 2 User Specified local slopes + 2 points => 4 eétqjuations. Solve for the
coefficients.
« C! continuity is maintained, and®@ontinuity is not.
* Segment control is completely local. Both the haad non-head calibration are
identical/analogous for this reason.
C' Hermite Formal DefinitionFor C', the Hermite polynomial of degre@n +1 is given

asH, ., (x)= i{fan,j (x)+ fj'lfln,j(x)}, whereH, (x) and H, , (x) are expressed in

j=0

terms of the'j Lagrange coefficient of degree, Lo (x) as
« H,(x)= [1_ Z(X_ Xi )Ln,j I(X)]Ln,jz(x)

HAn,i(X) = [X_ Xj]Ln,jz(X)
Catmull-Rom Cubic Splines (Catmull and Rom (1)37Mhstead of explicitly specifying
the left/right segment slopes, they are inferredhfthe “averages” of the prior and the

—

subsequent points, i.efi, = %[p,ﬂ— p:_l] and 7;1 = %[p;z— rﬂ Herefi refers to the

slope vector, ancﬁ, to the point vector.
« Again, C continuity is maintained, and*@ontinuity is not.
* Segment control is not completely local, but $tilal enough — it only depends

on the neighborhood of 3 points.

21



4. Cardinal Cubic Splinedhis is a generalization of the Catmull-Rom sphnith a

tightener coefficient , i.e., 7, = %(1—0)[ P pr_l] andr,,, = %(1—0)[ Py f),}
o >0 corresponds to tightening, amd< 0 corresponds to loosening.
« Again, C" continuity is maintained, and®@ontinuity is not.
» Segment control is “local” in the Catmull-Rom sengeonly depends on the
neighborhood of 3 points.

5. Catmull-Rom/Cardinal Splines as Interpolatiotir®&s As interpolating splines, both
Catmull-Rom and Cardinal are primarily useful irutigtic knot-insertions — Catmull-
Rom as linear in the gaps, and Cardinal as tensarligap knots.

* The local knot point insertion may be generalizedollows: The targeted knot

insertions follow the formulation paradigm(x,o,)= f(x :i00), whereQ is the
set of the neighborhood points. Similar formulatfesth potentially different

function forms, of course) may be used for eactheiC* derivatives. Catmull-Rom
and cardinal use 1D, strictly neighboring adjacesicas well as tense linear

averaging.

6. EHermite-BesseI Spline§ hese splines use 4 basis functions per segthengfore
they are cubic polynomial, bi@*. The first are set at each nogeas the first derivative

of the quadratic that passes through, x , andx,, (the edges are handled slightly

differently, as shown below). Specifically:

oo Lo =26)(v - ve) L (=), - vi)
& Xz_xo{ (% —%) (% —x) }

e b= 1 |:(Xn ~ Xn—l)(yn—l - yn—Z) _ (2Xn X1 T Xn—Z)(yn B yn—l)i|
T Xl (%) (% = %,00)

v b )= y) , X)) | for 1< eno
b Xi+1_Xi_1|: ()g—)g_l) ()§+1_Xi) }f 1< 1

7. Hyman’'s Monotone Preserving Cubic Spline

* Hyman (1983) applies the stringent conditions &sprve monotonicity by applying
the de Boor-Schwarz criterion.

22



Define m =YY locally monotone (i.e.m_m =0), then set
X~ X%
3m_m :
b= L . If non-monotone (i.e.m_m <O0), then set
max{m_,,m]+2min[m_,m] '
b=0.

Put another way (Iwashita (2013)): For cubic polyna splines, the first derivative
should be in the rangé3hr—ifi <T, fi's3r+fi wherer, = sign(f,) .
-1

Adjustment for Spurious Extrema => To ensure tlaspurious extrema is

introduced in the interpolanb, ,, = min[max(0,b ).30min(m_,m)] if y..,>y,, and

b 5 = maxmin(0,b) 30max(m_, m )] if y,,, <.

8. Hyman89 Extension to Hyman83oherty, Edelman, and Hyman (1989) relax the

Hyman83 stringency posited for monotonicity preaéon. Define the following:

m-l[Z(ti _ti—1)+ Gy _ti—z] + m—z(ti _ti—l)

Hia ™ G-t
U= M-l(ti+1—ti)+m(ti _ti—l)
i.0
[l Y
= m[z(ti+1_ti)+ti+2 _ti+1]_m+1(ti+1_ti)
" o~

M, =30min{m_| m|, 4 ob 4,

Ifi>2, th 4, tho (M, —m_,), and(m —m_,) all have the same sign, then

M, =max{M, 15 0min{g |4 )|

If i>n-1, -4, —p4,, (M -m_), and(m,, —m) all have the same sign, then
M, =maxM, L5 0min{g o |4 )|

Finally, sets = sign(s ) Omin[M, |s|] if sign(s)=sign{x ), ands =0 otherwise.

9. Hyman’s Monotone Preserving Quintic Spline
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* For quintic polynomial splines, the first derivaighould be in the range

TS 1< SN wherer, = sign(f, ).

i
-1

* The constraint on the second derivative is:
" f' f f' f
r,f"<r may8—-20—5,-8—+—-20—|.
4 4+ h h
* Monotonicity Preserving Quintic Spline => Enhancetratthe criterion established
by de Boor and Schwartz (1977) (Hyman (1983), Digh&delman, and Hyman
(1989)).
o Seto =sign(f) if 5,5 <0, andg, =0 otherwise. Then
o If ,20, then f,'=min[max(0,f, )5min(s_,||s|)], AND:
0 If g, <0, then f,'= maxmin(0, f, ),~5min(s_,}s )]
» Second Derivative Tests for Monotonicity Preseningntic Spline =>
o Define the following constants:
f'

=  a=max O,—']
Sa

*  b=max OL}
S

= d,=f"if f's >0, andd, = Ootherwise.

= d_=f"if f's_, >0, andd_ =0otherwise.

o Define RangesA andB as:

. ao|—79d, - 026d+b’(20— 2b)s -8d, - 0.48d+a} AND
I h h

. p-|(2a-20)s,+8d +048da 79d +026db|
L h—l ’ h—l
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If A and B overlap, thenf," should lie in their common range. If they do ne¢idap,

(20-2b)s | (20-23)s.,

: , . h h_, : e
i.e., ANB= @, resetf' as f'= 8+ 04% 8+ 043 . Setting thisf," ensures
h -

that A and B overlap, so the other tests aspects may now entin

10. Harmonic Splinedntroduced by Fritsch and Butland (1984) as:

Loty ot] 1 2t ot 1 50,5 =0if
3 3[ti+1_ti‘1] m., 3[ti+1_ti—1] m M-M ' §

m_,m < 0. Boundary Conditions are:

tz_t1+2[t1_to] _tl_tO

t,—t t, -1t m
tn _tn—l tn—l _tn—2 + 2[tn _tn—l]
=0 "= +
% tn _tn—z rnj_z tn _tn—2 N

Harmonic Spline Monotonicity Filter =>
0 §=30m, if s;m, >0 AND mm <0 AND |s)| <[30m|
0 §=5 if gm,>0
0 §=0if sm,<0
o s,=30m,, if sm_,>0AND m_m,_,<0 AND |s|<[30m,_
o0 s =s,ifsm_>0
0 s,=0if sm_<0

Continuous Limiters => For harmonic splines, aspteslictor ordinate widths

become identicaft, —t_, =t —t ), settingr =, we gets = mJ This is

m., L4fr|
the Van Leer limit (Van Leer (1974)). Huynh (1998yiews several such limiters.
Shortcoming of these Limiters => Since they relynan/max/modulus functions, by
definition they are not smooth close to transitalge. This is rectified by Le Floc’h

(2013), who defines a new limiter based on ratiduattions:
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S = 321”1-1(”1 * m‘1)2 for mm_, >0, ands =0 otherwise. This produces a stable
m~+4mm_ +m
C' interpolator.
11. Akima Cubic Interpolator (Akima (1970))
» Expand the Predictor Ordinates => Add 2 predictdimates each at the left and

the right boundaries usingk(,, X_;, Xy +1» Xy2)-
0 Xysz Xy = Xyr ™ Xva = X T Xn-2
0 Xo7X%=X7X=X%"%
* Expand the Response Values => Add 2 response vaagbsat the left and the
right boundaries usingy(,, Y_;, Yns1s Yn+2) USING:

Ynez “Yner _ YNt “Yn - Y “Yn YN T YN - YN T YN Y T Y

Xz T Xy Xuar Xy Xy~ Xy XX X T XN X T XN

o

YooY YT Y _Ya"Y Yo~V _Y~N_N"Y
Xo™Xy X7 X% Xi7% XX X%7X XX

o

« Final C' Slope => Compute the final Akim@" slopes using:

S~ $1547*[S S8
S~ S|*l8a 5

o Ifs,;#s5 ORs_,#s_,,thenf'=

o Otherwise fi':%.

12. Kruger’s Constrained Cubic Interpolant (Kru@&d02))

« f'=0if s5_,>0.

: 2 .
e fi'= 1 1 if ss_,<0.
T4

S Sa

3. 1., 3 1. . .
. =§so—§f1 and f =§SN_1—§fN_1 at the end points.

13. Shape-Preserving Knot-basedi Cubic Ideas are taken from the awesome paper by

Pruess (1993). The basic idea is to take the iate{axiv,xﬂ], and patrtition it into 3

parts by locating the two knots §t= x +o;h, ands, = x,, —7,h . Evolve the
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criteria for the selection of and 7; (and, of course, their corresponding responses)

such that the local spline has shape-preservirigrimaand avoids being global (i.e.,
preserves locality).

» Using the above notations, the basic equations are:

e 100 1) e x] ool b a o x P o

xO[x,&].
£(9= 1(6) [ (&) el P8+ e gp 108D g
xa[g.n].
()= 1)+ [x-n]0 )+ [x-n P o [x— )for
X0, %)

« The correspondin@” maintenance solution then becomes (in terms of
f'(x), f"(x), o,, andr,, whose specification will then complete the

inference):

()= (x-S (x)+ ()

. f”(gi)z 6s _2(2+0i _Ti)fl(xi)_z(l_ai +Ti)f'(xi+l)_aih(2_ri)f“(Xi)+rih(1_ai)f”(xi+l

h(l_ i)
. gofp)= 288t Ao —n)T(x)+ A2 0+rZ\(‘(m)wih(l—ri)f"(&)-rih(Z-ai)f”(m)
i -0
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oh
. oe(e) frm)-11()
(&) (-0 -1 )h
. f...(m):f"(mlr)i;f“(m)_

Choice of f'(x ) and f"(x): f'(x) and f"(x ) may be generated using
typical generation schemes (e.g., using the FriaschButland (1984)
algorithm).

The Preuss Inequalities: It is specified as follo%st

« B =signs -s,); Ry, =65 —4f'-2f,"; R, =2f +4f 65

 If BR,,20andBR,_, =0, you are done, since the choskhand f,"

also preserve convexity — you can go and set thenskderivatives, and

setr, ando, .
Mismatch in the Preuss Inequalities: If the Prensgualities are not mef;'
and f, "need to be modified such thatD[q ,di] wherec,d. are obtained

using the double sweep algorithm below.

Preuss (1993) Double Sweep: First figdandb from the following regimes:

* F5>05,>0 4 =ma{s,—3s‘2_hj; b=35-23.
« If3<0B,>0, 4 :ma{ss —2b|,_352_hj;

b= ma{Bs —Za,g’s—z_a*j.

3s —a
+ i £>04,>0 3 =maqs,35-2); h =0

» Finally thea, andb, initializations are set from:
- If ,>03>0,3=3%-20; =5,
* If £,<05<0, 8 =5;h=35-25.
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* Preuss (1993) Backward Sweep tpd. : First sets,'= f,'= Ay -'2-bN ,

then setc,d, using the following:

o If 5>04,, >0,thenc =35 - f,, , andd, :%_
- 35— 1.,
o If 5<0,4, >0,thenc =max3s —2f,,, TI . and

d = min[Ss1 —2fi+1',%}.

o If <0, <0,thenc = 3_2 ,andd =35 -2f,,

* Preuss (1993) Settingd“Derivatives: f,"= 8 min{ﬂ'ﬁﬁ‘l , ﬁ':ﬁﬂ} _

* Preuss (1993) Final Step — Settingand g, : Settingr, =0, ==,

Wik

verify the following inequalities:
o Alaf+2f +hf r(2-1)-ht,,"1,01-7) <685
o Bul2f At ehfn(l-1)-hf, T (2-7)]<68.8
o If these inequalities are satisfied, then you haue f', f",

7,, ando; . Otherwise, reduce ando; till they are satisfied.

Space Curves and Loops

1. Space Curve Reproductiddere is one way to construct loops that are nssjble using

the ordered variates, i.e, < X, <...<X,.
* If the orderingx, < x, <...<X, is switched out in favor of the DA{B(i , yj}, where

the DAG vertices correspond to the loop trace, mbsplines may be used to

represent space curve loops.
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2. Second Degree ParameterizatibBlowever, on using a second-degree parameternizatio

x and y such ax = f, (u) and y = f,(u), it may be possible to enforce the order

U, <u, <...<u,. The corresponding control points eiug, xl]..[un,xn] and

TRARTNAP
a. Side effect of this — is that you need to wankwo pairs of splines — one each for
x=f,(u) andy = f,(u).
b. This can offer additional customization and di@® in the design of the surface,
at the expense of computing additional splines.
3. Closed LoopsFurther, if the start/end points coincide, thasresponds to a closed loop
that satisfies the Tcontinuity criterion.
a. This also implies that no extra head/tdis®pe specifications are required.
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Spline Segment Calibration

Introduction

Spline Segment Calibratdfor a given segment, its calibration depends onlthe

segment local value set — the other inputs conma the prior segments (except in the
case of “left-most” segment, whose full set of itgowill have to be extraneously
specified).

Bayesian Techniques in Spline CalibratiBrequentist and Bayesian techniques such as

MLE and MAP regression ought to be possible inddlération of the spline
segment/span coefficients.
Main Calibration Inputs Modeslere we consider the following segment calibratio

input modes: a) Smoothing Best fit Splines, an8dgment Best Fit Response Inputs

with Constraints.

Smoothing Best Fit Splines

1. Definitiort Here the treatment is limited to within a segmémthis, the segment
coefficients are calibrated to the following inputs
* Truthness Constraints.
+ Smoothnes<k.
* Penalizing Segment Smoother.
* Penalizing Segment Weighted Fitness Match (in¢hstisquared sense).
2. Nomenclature

* p=0,...,0-1=>Weighted fitness penalizer match points

i=0,.,n-1 ) .
L => Segment Basis Functions
]=0,...n-1

* m => Roughness Penalty Match Derivative Order
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* r =>r Separation
« k =>C* Continuity
3. Spline Set Setup

* Gross Penalizer = Best Fit Penalizer + CurvatureiPeer

- 0=10, +io,
q

* Ue :Z;)Wp(yp _Yp)2
P
e O = lfl(g:yj dx

n-1

n-1
- Spline Response Setup =Y B f(x), y,=> A f (xp), and
i=0

i=0
oy g ot
axm_g;ﬁ' ox™

4. Best Fit Penalizer Setup

. R S R = ot
» First Derivative =>2F = 2> W, f, (xp){z Bf (xp)—Yp} =0.

r p=0

2 —
* Second Derivative :QD—ZF =2>'W, frz(xp) >0, so; has a minimum.
0 r p=0

5. Curvature Penalizer Setup

n-1  Xua/ am m
- First Derivative =>92¢ = >B J‘ LU T Py
08 ox™ \ ox™

r i=0 X

X141 m 2
* Second Derivative —%%— 2] [a f, ] dx>0, soJ. has a minimum.

ox"
} dx}>0I

r

6. Second Derivative

. 00 _100; aD { sz ?(x )”x'f[

08° q0B°

7. Joint Linearized Minimizer Setup
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ox q p=0

}Fm f }dx} “Lw (e )y, =0

o] _ n-1 13 i amfi
2 SaltEm b T[5

8. Number of Equations/Unknowns Review
a. Forintermediate segments, the following equatietermine the unknowns:

i. Number of Continuity Constraints =&
ii. Number of Left/Right Node Values => 2
iii. Number of Roughness Penalizer Constraint =least 1
iv. Thus, minimal number of degrees of freedom @ersegment basis:
k + 3. This will be the number of “free” parameters wdl wse for to
extract for each segment.
b. For left most segments, the following equatidetermine the unknowns:
I. Number of Left/Right Node Values => 2
ii. Number of Roughness Penalizer Constraint =teadt 1
iii. Thus, for the set ok + 3 parameters, the number of undetermined
parametersk
c. For the span as a whole, the number of degfdesealom/undetermined
parameters i& . You may determine:
I. The right-most second derivative, AND
ii. Possibly, the left-most second derivative
iii. For k, this will complete the set of undetermined caidints.

Segment Best Fit Response with Constraint Matching

1. PurposeHere we assume that a linear transform existsittden state quantification
metric and the measurement manifest metric.

2. Caveat with the Segment-wise Representa@gtimizing on certain constraints
(such as multi-segment constraints) now ends uguaiaog a highly non-sparse,
dense matrix. This is simply a reflection on thdtrmeegment spanning nature of the

constraint and the eventual optimization.
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t,-1

3. Constraint and Least-Square Spgg= ép -C, whereCA:p = Zys)‘/S and
s=0

n-1
9. => B f,(x,). Note that when the hidden state quantificatiotrimés identically
i=0

the same as the measurement manifest metriel andt, =1. This corresponds to

computing the least-square minimization over theeolations.

n-1 t-1 n-1

4. Constraint Formulation Developme®t, =Y 8" y.f(x), orC, =Y BG,,
i=0 s=0 i=0
t,-1
whereG,, = Zys fi(xs). The parallel between this and the original lesagtares
s=0

formulation can now be extended in a straightfodvaanner.
5. Weighted Constrained LSM

. n-1
* Sp =Cp _Cp =Z(;IBiGip _Cp

° sz = ,Bszkp2 + Zﬁkap{ nZ_lﬁi(?"ip _Cp} +{ nz_lﬁiGip _Cpi|

i=0,izk i=0,izk

6. Optimization ofS_2:

2
_1 = 2 = S S N
s S°= N{Bk pZ:(:)Wkap + Zﬁk;)Wkap ZIBiGip -Gy |t pZ:;)WD Z'BiGiP -G,

i=0,izk i=0,i#k

a(s ) n-1 g-1 g-1
o, =0=> ZO: B Z;)WpGikap = Z;)WkapCp
i= p= p=

2{ 2} q-1
. 60,6’82 = ZWkap2 20 for W, 20, thus the extremum is a minimum.
k p=0
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Spline Jacobian

Introduction

1. Chain Rule vs. Matrix Operations of Linear Bagimé&ion CombinationWhen it comes

to extracting variate Jacobian of coefficients frooundary inputs, these are absolutely
equivalent — in fact, the coefficient Matrix isn@ality a Jacobian itself.

* Matrix entry as a Jacobian => Every entry of tharaA where AX =Y is actually

a Jacobian entry, i.eA, =§7‘.
j

2. Self-JacobianGiven an ordered pa{pg , yi} that needs to be interpolated/splined across,
the self-Jacobian is defined as the vee?éxf). More generally, the self-Jacobian may

oy(x)
be defined as‘iayl(—x) wherel; is an input.

J

o] Self-Jacobian tells you the story of sensitivityfpebability of the interpolant

() on non-local points through , since theC* transmission occurs throudh.

Within a single segment, quadratic and greatensplcause fairly non-banded,
dispersed Jacobians, indicating that the impawbmslocal; linear splines produce
simple banded/tri-diagonal Jacobians; and tengitines produce a combination
of the two depending on the tension parameter ffag@éfore dense within the
segment).

0 Obviously Jacobian of any functidh(y(x)) is going to be dependent on the

self-Jacobianw because of the chain rule.

J

Optimizing Spline Basis Function Jacobian
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1. Coefficient- Value Micro-JacobiafrA =Y where

* Ais the matrix of the basis coefficier{tao,ai,az,...,ar+1,...,ak+1,...,an_1}

* Y is the matrix (column valued) of the values (RH8)particular, it is the

boundary segment calibration nodal values in theviang order:

{y01y11 ,O,...,O}
x=0

* Fis the matrix of the coefficients of the basisdtion values and their

oy

ox~

oy

0Xx

d'y
ox'

x=0

x=0

derivatives. It is the following 2D Matrix:
o 1=0,j=0.n-1=F, = f,(x=0)

o 1=1j=0.n-1=F, =f,(x=1)

al—lf_
0 2<l<k+1j=0.n-1=F :{Tll:l
ox o

o I -k+2..,n-1j-0,.,n-1=Q ; where

Q. :ﬂamf, (x)}[amfj(x):ldx-

L ox" ox™

2. Coefficient-Value Micro-Jacobiaiven FA =Y , the coefficient-value micro-Jack

is g%] = [F '1]ij .

Spline Input Quote Sensitivity Jacobian

1. Segment Quote Jacobidormulation for quote Jacobian is different thiaose for

the coefficient edge value Jacobian, since the dommtomatically figures in the
design matrix in the sensitivity matrix extract@epdo-calibration stage. Thus, the
guote sensitivities are effectively external sevigjt constraints transmitted via the
design matrix quote sensitivities.

2. Quote Jacobian MatriXhe Quote Sensitivity coefficients are calibraigehtically

to that of the base coefficient sensitivities. T$imply follows from the linearity of
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the quote sensitivity formulation. The only areaewéhthere is non-linearity is in the

product termﬁia(qc), and that appears only at the constraint equat@tieers are

identically the same.
Latent State Quote Sensitivi§pline Formulation of the Latent State automélfica

implies that the quote sensitivity of the latemtistis restricted by the above, and is
therefore also a spline in itself. This further Irap that the boundary formulation is
subject to the similar edge conditions as before.

. Terminology and Nomenclature

a. ¢, => Input “Calibration Quotest, = q,,...,04_,

b. n,, => Number of explicit Input Node Value Matches

C. N, => Number of explicit Input Constraint Value Magsh
d. ny, => Number of explicit Input Derivative Value Mateh
e. n,, => Number of explicit Input Penalty Value Matches

2. Explicit Input-to-Response Matchhis emanates from th@® node match

continuity criterion: Zﬁﬁ( ) F 3nif( )6,3 _

Jforj—O SNy — 1.
i l y"J M for

=0 aqC

n-1
3. Explicit Input-to-Constraint MatchZ,Blyij
i=0

0
j =Ny »e-Ney —1. This may be re-written aE gq Z,B ag‘

4. Explicit Input-to-Derivative MatchThis emanates from th@* continuity

- “z‘ld[ﬂafi (x) _ 9

L for j =n.,,....n , —1.
00 Ox |, og, e

Vi
x:xi i=0

Lo 19 (x)
criterion: ; B o

5. Explicit Input-to-Penalizer Matcihis emanates from the criterion for the

n-1
curvature and length penaltiey! 3C, =P, = ZC,J gé; -a for
i=0 i=0 c

] =Ny seesNpy — 1.
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Shape Preserving Spline

Shape Preserving Tension Spline

1.

Integrated vs. Partitioned Shape Controligiegrated Shape Controllers apply shape

control on a basis function-by-basis function bésestain basis functions such as
flat/linear polynomial functions need no shape oaltgr applied on them).
Partitioned shape controllers apply shape conti@d segment-by-segment basis.

Shape Controller Parameter Types

» Specified extraneously as part of the basis fundbomulation itself (e.qg.,
hyperbolic/exponential tension splines)

* Specified by over-determination of the basis fumtset (e.g.y splines)

» Specified by using a shape controller basis se¢tishde-coupled from the model
basis function set (e.g., partitioned rationalregs)

Shape Control as part of Basis Function fornmutat

* Each basis function is typically formulated asneér interpolant of a particula{P r

.
derivative across a segment, i%—y o'y is proportional tox" in that segment.

o
« Advantage is that you can control the switch betwtbe [" derivative and the™
derivative of y by controllings .
« You can also explicitly formulate it to achie@ continuity across segments —
and k can vary independently of r.

Drawbacks of Shape Control as part of Basis freméormulation

* 0 may not map well to the curvature/shape departumémization metrics.

* The formulation constraint restricts the choicéasis functions, giving rise to
possibly unwieldy ones (troubles with exponentigtérbolic functions are well-
documented).

Shape Control using over-determined Basis Fon&ket
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* Choose any set of basis Functions (e.g., basennpligty/ease of use/model
propriety).

» Over-specify the set so that additional coefficsegmte available for explicit and
flexible shape control

» Explicit shape control formulation => this comeg auninimization exercise of a
“shape departure penalty” function.

6. Drawbacks of Shape Control using Over-determB@&sls Function formulation

» Ease of use, more model/physics targeted, but cantieextra complexity that
trades in flexibility

* Formulation Complexity => Incorporating variationathniques for enforcing
compliance by penalizing shape departure.

» Functional implementation complexity

» Jacobian estimation complexity => Nawx n basis functions for which we need
Jacobian.

» Algorithmic complexity => Need more robust basigarsion/linearization
techniques.

7. Potentially Best of Both — Partitioned Basis &mdpe Control

» Basis function set chosen from physics and othesiderations
» Shape Control achieved using targeted Shape Clangol
» Used in conjunction with over-determined/other ghepntrol techniques.

8. Drawbacks of Using Partitioned Basis Functions

» Choice of shape controllers crucial and non-trivighey have to satisfy the
segment edge and shape variational constraints

* Need clear and well-specified formulations to métatisfy the appropriate
metrics of shape preservation

» Formulation Complexity — all calibrations and Jaeols need to incorporate the
partitioned basis right during the formulation stag

o When dealing with snipping/clipping segments, shapdrollers operate
best at the global level (i.e., at the span/strbadis). Shape controller

smoothness continuity will therefore be ensured réguires careful
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formulation at the local/global switch part (i.egnslation of the
derivatives using the span/segment scales hasdorieecarefully).

9. Partitioned vs. Integrated Tension Splirfeartitioned splines are designed such that

the interpolant functional and the shape controtfional are separated by
formulation (e.g., rational splines). Integratedsien splines are formulated such that
the shape preservation is an inherent consequéiice formulation, and there is no
separation between the interpolant and the shapgeotéunctionality.

» Customization is easier with partitioning on eittiez control design or the shape

preservation dimension.

10. Explicit Shape Preservation Control in Paniéid Splines y =%, wherea is the

interpolant, andB is the shape controller. Typically is determined (among other

things) by the continuity criterio€*, and 8 contains an explicit design parameter

for shape control (for e.g4 in the case of rational splines).

11. Shape Control DesigAsymptotically, depending on the shape desigampaterA ,

a should switch between linear and polynomial (bically cubic — Qu and

Sarfraz (1997)). Further, desigh such thats, = 5, = 1so thaty, = a, and

Y, =4a;.

12. Rational Cubic Spline Formulation

* Rational functions under tension was introduce&®pgth (1974), and formulation

expanded in the general tension setting by Prei®s&6).

- a+bx+cx +dx :g’ wherea = a+bx+cx +dX3, and,[?=1+/1X(1—X)
1+Mx1-x) B

(Delbourgo and Gregory (1983), Delbourgo and Gre¢b®85a), Delbourgo and
Gregory (1985b), Delbourgo (1989)).

A - 0 makes it cubic, and — o makes it linear.

13. Rational Cubic Spline Coefficients

« a=1ly,+0y, + 0y, +0y,"
* b=Ay,+0y, +1y,+0y,"
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C=-Ay,+0y, +Ay,'+

ly"
27°

1
c d=-ly,+1ly,+ [_ (1+ /])]-yol-"(_ij-yo”

14. Rational Cubic Spline Derivatives

a=a+bx+cd +dxX

da

™ = b+ 2cx+ 3dx
X
2
ig=2c+6dx
X
B =1+ Mx(1-x)
‘jf A1-2x)
d*g _ _
dx?

da _dg

7—a7
dy _ 'Bd dx
dx 2

2 2 2
,d2a _d dﬁj da dg
l?/ 200 —— | —2———

dzy_’g dx? 'de2 (dx dx dx
e B

15. Designing/, for the Segment Inflection/Extrema Control

If there are “physics” hints, the segmehtcan be designed to push out/pull in the

inflections and/or extrema out of (or into) the vegt.

Monotonizing Parameters for Rational Splines (Gre¢d984), Gregory (1986))

=>A =4 +[f'()§)

]X*l , again forx < x<x.,.

i+1 " D

M = -3 makes it monotone in this segment.

M = -2 produces a rational quadratic.

Convergence i@(h“) in all cases.
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16. Co-convex choice fot : A similar analysis can be done to make the sple

convex, but the corresponding formulation requare®n-linear solution foA, .

17. Generalized Shape Controlling Interpola@®iven a pair of points

{x.vi} = {x.v,} ={0y} - {Ly,},acC® splineS,, and aC* spline S, we define

1

a shape controlling interpolator splige by S.(x) 0 —————=, with the

[s(x)-S,(x)]*’

constraintsS. (x = 0) = S.(x=1) = 1.

Rational Shape Controller described earlier médwtsd requirements.

18. Generically Partitioned Spline Derivative

y(x) = a(x)5(x)

2 2 2
dy_da, ,0ads, 0B

ox?  ox¥ X 0X ox?

'y & 0""ad' B
More generally—=-=>» "C
g ox" ,Z:(; Lox™ ox’

19. Partitioned Interpolating Spline Coefficie@iven 3, = B, =1,

Yo =0a,

Yy, =a;

o) o] Aol =[5

Cal _[o*y| _, [0°A] _jJoa| |oB
|, |oxt|, %laxt|, “Taxlolaxl

iEiH
ox ], °Lox |,

Likewise,

Partitioned input micro-Jack for cubic interpolator
o a={y, +{dhy, +{dy,+H{oy",

o b= —‘% Yo + 0.y, + Ly, +0.y,"
10X,
B 2
s 1|0%B ‘6,6’ 1
o c=||l— | == Y% tO. == Yo t=Y"
(OXO] 26xzjy° Y1 { ox|, Yo 2)’0
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x>

[J4
0X

[4
0Xx

9B

2
] —l}yo +1y, +[ 9
0 0X

+

1
0 c=|—
;

4 el

0

20. Interpolating Polynomial Splines of Degred3iven y = Zaixi , XO [0

21.

i=0

Polynomial Basis Series for Representation => Tregéoies uses the polynomial
basis series for representation, and is populausecof the reasons below (other
basis may be more cognitive, and derivative repitasien using them may be
more intuitive as well).

I. Mathematical simplicity

ii. Completeness.
Native link of polynomials to derivatives => Givémat derivatives are natively
linked polynomial basis function representatiodisthe lower degree polynomial
basis functions (i.e., degree < derivative ordet)aiminated, thus only allowing

the higher order to survive.

r n il . n il .
Polynomial C* Derivative =9 y=Zai L i = a; — B xir
OXr i=0 (| _r)! i=r (I _r)!
aO = yO
=19 gn-g)
rox" | _,

n-1 n-1 1 ar
an:yl_zai:yl_Z{ {OX?/} }
i=0 x=0

r=0 r!

“Derivative Completeness” Nature of Polynonakis FunctionOne big advantage

for polynomial basis functions is that they arerfdative complete” in the local as

well as global sense, i.e., tlker 1 basis polynomials are sufficient to uniquely

determine theC* continuity constraint. This is not true of nonywmial basis

functions (exponential basis functions, for e.ggcdan infinite number of derivatives

for completely derivative coefficient determinatjptherefore their shape needs

global determination.

22. Polynomial Interpolating Spline Coefficient mueJack
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. aaozlyaaozo’ oa, -0
ayo ayl a(|:ar yD
ox'
x=0,0#r
. 0a, :1’aak -0 oa, _1 3
aYO ayl P 6ry r!
ox'
x=0
oa, =_1’%=1’ Ja, __1

2

ay, 3y, a([aryD [Tl
6X' x=0,0£r
a°y

23. Curvature Design in Integrated Tension Spli@esic spline is interpolant 03—2
X

2
across the nodes, and linear spline is interpaant Thus,% - o’y (the tension
X

spline interpolant) offers the tightness vs. cumatsmoothness trade-off.
ak
» Tightness vs. Smoothness Generalization-%a— -0y is linear in x, given k is
X

even. Of course, fok = 2 this describes a tension spline (hyperbolic or
exponential). Schweikert (1966) uskd- 4to improve the shape preservation
characteristics.

24. Basis Function Interpolant

2
. % - o’y that is linear in x is satisfiable only by hypelib@nd exponential
X
basis splines.
4
. a—}(—a“y that is linear in x is satisfiable by hyperbokxponential, or
X

sinusoidal basis splines.
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* More generallya y

- 0"y that is linear in x, and wheme=4m+ 2 and

"ox"
m= 0}... is satisfied only by hyperbolic and exponentidirsgs.
. 3 X—a”y that is linear in x, and wheme=4m andm= 0J}... is satisfied only
X

by hyperbolic, exponential, or sinusoidal splines.
25. Integrated Tension Spline Typ&ets containing both exponential and hyperbolic
. . . . %y
basis splines and a linear spline satrgﬁ; -o%y.
X

oX —OX
» Exponential Basis Spline{l X e g }

* Hyperbolic Basis Spline{:l X, cos{ x ],sinr{ x j}
X ™% X ™%

26. Exponential Basis Functians

* Base Segment Formulation =>

oxX OX

0 y=A+Bx+Ce" ™ +De "™

o) y=a’+,8£+}e”€+d_e'”£
e Global <-> Local =>

0 a=A+Bx,

o B=B(x-x)

[245)

o y=Cev™

[245)

o O0= De_xl'xt’

e Local <-> Global =>
Xo

o D=ggu™

Ko

0 C=pen™
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e Co-efficient Calibration =>

o B=
X~ %
o A=a- A%
X~ X%

o Yo
0 a= YO_U_OZ
o y:l_yo +0_(y0'_13)—
2_ o’
o 0== Yo _J(zov_lg)
2| o
o p=90n=a)=y cosho—oy;sinho

o(o -sinho)

Coefficient to Input Sensitivity Grid =>

o a=ly+loby+lobv | S

P E e R P O
o—sinha |° " | o=sinha |t | g=sinhe |”° | &

1

-sinho

-1

i 2(o- sinha)_

-1

Yot

_2(0 - sinho)

1

}yﬁ[z(a—iinha)

-1

1-cosho

o

o -1+ cosho -sinho

bl

20*(0 - sinho)

o +1-cosho -sinho

"

L 2(o- sinha)_

Local Derivatives =>

o

o

2%
0¢€

9’
63

FE

= f+ ol - & ]

ﬂ - O.Z[Jeas +é—ag]

— 0.3[}605 _&—US]

i 2(o -sinho)
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gt ol oy 2]

o]
oe'
e Global <-> Local Derivatives =>
oy _ 1 oy
0 - = @<
ox (% —x)oe
0’y 1 9%
0 2 = 2 2
ox*  (x =) 0¢
o Fy_ 1 dy
ox®  (x -x) o

27. Hyperbolic Basis Functions

* Base Segment Formulation =>

o] y:A+Bx+Ccos{ x J+Dsin}{ x j
X=X, X=X,

0 y=a+fe+ycosHoe)+ dsinh(oe)

* Global <-> Local =

0 X=X +&(x =%)

0 e=2"%
X=X

0 a=A+Bx,

o B=B(x-x)

o2
5=cSm{ jmcos{ j

» Coefficient to Input Sensitivity Grid =>

(@)

o a=[ty, +[o]y, +[0ly, + {;—ﬂ Yo

0 ﬁ:[#}y +[ - }yJ{ sinho }y'+ cosho -1 "
og-sinho |”° | o-sinha | [o-sinha |’ | o(o-sinho)]|™
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o y=loly+ o+l +| |

0 5= -1 yo + 1 v + -1 yo + 1-cosho v
og-sinho |’ | o-sinhg | | o-sinhg |”° | o*(o-sinhg)|™®

e Local Derivatives =>

oy

o ==p+ olysinh(og) + dcosHoe)]
2
0 6_532/ = o?[ycosHoe) + dsinh(oe )|
%y o
0 —5=0 [ysinh{oe) + dcosHoe)]

o oo [ycosHoe)+ dsinh(ge)] if r is even.

o€’
0 g Y = g6, +0" [ysinh{ge) + dcostoe)] if ris odd.
£
* Global <-> Local Derivatives =>
oy _ 1 oy
0 - = <
ox (% —x)oe
o’y 1 9%
0 2 = 2 3.2
ox*  (x =) 0¢
3 3
o oy_ 1 0dy

o (x -x) e
28. Alternate specifications of the segment intifian (Trojand (2011)). Renka (1987)
provides techniques for settisgunder several circumstances:
o Findingo whenf is bound.
= To get the minimum tension factor required we neeithd the zeros of
(Renka (1987)).

o Findingo whenf’ is bound.
= To get the minimum tension factor required we rneefthd the zeros of
(Renka (1987)).
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o Findingo from the bound values of convexity/concavity (Re(k987)).

29. Problems with Hyperbolic/Tension Splines

* Hyperbolic and exponential functions are time conisig to compute (Preuss
(1976)), Lynch (1982)).

* They are somewhat unstable to wide parameter ra&geth (1969), Sapidis,
Kaklis, and Loukakis (1988)).

* In certain cases, reasonable alternatives havegegitded byv splines (Nielson

(1974)) and rational splines.

Shape Preservingy Splines

1. Genericv Spline FormulationApproach here is somewhat similar to Foley (1988)

although different language/symbology.

* p-set Basis Splines per each Segment.
* n Data Points

* Penalty of degree m

« C* Continuity Criterion

« Data Point Set{x, y}

» Spline Objective Function:

2
n-1

A(L,k,m,n,p,ij=z [Y o (% } + A, _[ a”‘,up dx +[Yn_/21P(Xn)}2

i=1

2. Number of Unknowns Analysitn the above,p >m, andm<k.

* Number of equations from the end points per segmerg.

« Number of equations from the coefficients determiing theC* Continuity
Criterion: k .

* Number of equations from the Shape Optimizationrdation:
wO[o, p-m+1].

* Total number of equation& +w+ 2.

49



* Number of coefficients per segment 3>+1.

3. Node matching constraintSiven that we are examining shape preservingieglion

applying the node match criteriof) = ,up(xi) to /\(,u,k,m,n, p,ﬁj formulated

2

A o n-—. K41 m |
earlier, we get\ (,u,k,m,n, p,/]jzzl, A _[ _6 aél(fn(X)
i=1

X

dx;: where

Nym (,u,k,m,n, pjj is the node matched Spline Objective Function.

4. Generic Curvature Optimization Formulatidéfsing the above, the curvature

optimization for spline basis function inside adbsegment i corresponds to

N, :xjt[arn—’zl(x)}zdx.

I m
&ax

5. Generic Curvature Optimization Minimiz&siven the basis function set

N n

u)=3a 1,00, 2 =25a, T{am“(x)}{amfk(x)}dx_

= oa | ox" ox™

, . . oo oN, =
6. Generic Coefficient Constrained Optlmlzatlontﬁeta—' =0= Zaik i« =0

wrerec, - ﬂam f m(x)}[am fk(x)} N
% 1)

ox™

7. Polynomial Formulation foA ,, (,u,k,m,n, p,jj: For the set of polynomial basis

N N P .
functions, we seps,(x) = 4(p.x) = > a;x’ on a segment-by-segment basis.
i=0

* We also seek to optimiza,,, (,u,k,m,n, p,jj on a per-segment basis by re-

2

casting/\NM(,Zz,k,m,n,p,jj to /\i(k,m, p): Il amgix(mp,X) dx.

X1
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o O"(px). 0" m(pY) _ {za} {za} $ g

ox" ox™
9. A(kmp)
X p H || X j+1-2m+1 —x j+l-2m+1
k - j-m i+1 i
( mIO £|:Zm( )lO’X } dx= sz;n{( ( m)laua'||: j+|—2m+1 }}
oA, (k,m,p) _ _
10. Minimization ofA, (k,m, p): T 0= Za,q T Zau B, =0,
1] j=m, jzq
m<j<p.
. g+ j-2m+l _ g+ j-2m+l
. Herep, =, & I {XM "% }
(@-mp(j-mr| a+j-2m+1

_ 1 &
* Oy =77~ Zaulgql :
Iqu I=m,l#q

=B, andB,, >0, a;, corresponds to the minimum of

N (k1m1 p)-

e Thus,ifx =0 andx,, =1, B, becomes

A7 g ?!m)! (i -J!m)!{q+ j -12m+1}'

11. Polvnomiall Splines — Number of unknowns

* Number of coefficients (unknown) =p+1
* Number of Nodal Start/End Values (known) => 2
« Number of Calibrated coefficients from ti&f criterion (known):k

* Net number of unknownsp+1-2-k=p-k-1.

12. Ordered Unknown Coefficient Set in Polynomiabplines Given thaty, = ) a; x!,
j=0

a;, througha, , as well asz,,, are known.

* a,, Wherek+1<q< p are the unknown coefficients.
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» For e.g., forC" cubic polynomial spline, the number of unknowres ar
p-k-1=3-1-1=1.

13. Maximum number of equations available from miltinqz Splines Number of

equations available from the optimizationps-1-m+1=p-m.

» Determinacy criterion => Thus ip—-m< p—-k -1, or m>k +1, there are no
solutions!

» Alternatively, for completeness, derive m from kras k +1 for completeness.

 Finally, if k., < p—2, optimizing run is needed.

14. Advantage of Basis Curve Optimizing Formulatidhis formulation can

readily/easily incorporate linearized constraintsun automatic manner — as long as

the explicit constraints are re-cast to be spetifigh the current segment.

Alternate Tension Spline Formulations

1. Kaklis-Pandelis Tension Splin&s described in Kaklis and Pandelis (1990), here

f@t) = f(x)i-t]+ f(x, )t +ctfi-t]" +dt™[1-t], wheret = xx_)iq , andn is the
.+1_ -

Kaklis-Pandelis shape-controlling tension polyndraiponent.

* m =2 corresponds to the cubic spline interpolan{xpm+1].

* m - o corresponds to linear interpolant bﬂ,)g+1].

2. Manni's Tension Splinélhe methodology is explained in detail in Marit®96a),
Manni and Sablionniere (1997), and Manni and San{fp©b8). Here,

f.(X)=p lqi'l(x)J on [)g ,>q+1] where p,and g, are cubic polynomials. Furtheg, is

strictly increasing ir{x ,>g+1], SO thatqi'1 is well defined (Manni (1996D)).

* The boundary conditions ard;'(x ) = d.; further, we impose thap,'(x) =Ad,,
g'(xX) =4, p'(%,)=xd,,,andqg'(x,,) = 1 (see Manni (2001)). The claim is
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that if A =4 =1, g(X) = X, thus f,becomes cubic. Also ifl, = =0, f,
reduces to linear.

3. KLK Splines Next section is completely devoted to this.
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Koch-Lyche-Kvasov Tension Splines

Introduction

1. Exponential B-Spline SpecificatioBxpounded in detail in Cline (1974), Koch and
Lyche (1989), Koch and Lyche (1993), and KvasoW@OFirst extend the knot set

with 6 new points_,, t_, .t t,.,.t..,, andt, ., such that_, <t_ <t, <t, and
ty <ty. <ty., <ty.s, butarbitrary otherwise.

2. Exponential Hat Functions

B, ,(t)=¢"(t) fort, <t<t,,,, and

B, ,z(t) =¢'(t) for t,,st<t,,, where

) sino(t -t |- olt-t))

O'ZSinH_O-(tj+1 _tj)J

, and

. gl sintoft,,, -t)|-olt;., - t)

o? sinf’{U(tjﬂ _tj)J

3. Properties of tthyk(t) Splines B, ,z(t) as defined above is the basis on top of which

all the higher order splines are buiBm(t) is non-zero only fot D[tj ,tmj, where

jo[-10,...M].

4. Layout of Base Monic SetulVith reference to figure 9, the monic basis fimct

B; . may be estimated from the corresponding primitiaefunctionsy andg¢
(referred to as A and B respectively in Figure®) a

« B,=¢"(t) fort, <t<t,,.

« B,=@.,"(t) fort,, <t<t,,.

* B,, =0 otherwise.

5. Monic B-Spline Normalizer
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tis2 tia1 iz
 C.,= [B(ydy= [w,"(yy+ [g"(y)dy
) ) tin

o« Co=¢ ) )+ gt e) - g0 )

* G :wi+ll(tj+2)_wj+ll(ti+l)+ ¢i+2'(ti+3)_ §0J+2'(tj+2)
6. Monic B-Spline Cumulative Normalized Integrand

e N;,=0fort<t,.

« A,=" for t; st<t,,,.
j.2
tia t
[0+ [0
« A= livt fort,,, <t<t,,
.2 ijz i+l

e N ,=1lfort=t,,.

7. Monic B-Spline Scaled Integrand
* N;,=0fort<t,.

w'(t)-¢)
W) )+ g0 ) -0

j (]+l) w] t])+¢1+l() ¢J+l(]+l)
. 2= fort,, st<t,
' j (J+l) (tj)+¢J+l(J+2) ]+1I(tj+l) o

* Nj,=lfortzt,

« A,= )fortjst<tj+l.

8. Monic B-Spline Scaled Integrand

j.JHZ(y)jy j.Bj+l2(y)jy
.[ y)dy IBJ+12 Y)dy

9. Quadratic and Cubic Exponential Tension Splikegher order splines are

recursively defined fronB, , {t (t) =N\ l(t)—/\J.+lJ(_1(t) where:

« A,(t)=0fortst,
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1 t
. /\j,k(t)= J.Bj,k(y)dy fort <t<t,,,
« A, (t)=1 otherwise

HereQ,, = IBj’k(y)dy. Further,k =2 andk = 3 correspond to quadratic and cubic
¥

tension splines, respectively.

10. Similarities between Exponential Tension B-8gdi and Polynomial B-Splines

Notice the similarities, the iterative higher-ordfinitions, and the partition of unity

as well.

11. Cubic Exponential Tension B-Splirnkhis corresponds to thj,k:4(t) case, i.e.,

j+2
glt)= ]Z,B,(Bk_zyél(t), with validity in the interval D[tj ,tj+4J.
k=j-1

* Explicit Cubic Basis Representation => Using Kool &yche (1989), Koch and
Lyche (1993), and Kvasov (2000), define:

0 Zj=l//,-_1(tj)—¢,(tj)
o z'=y.'ly)-4'l) and

_ Z
© ML
]
b, —b.
0 b= 12_ -
yj+2 yj+1
by —b
0 b= "Dt

« Expandedg(t) in the new basis representation => Fﬁl{tj ,tj+4J,
j+2
g(t)= > BB2alt)= 5+ lBi-l(l){t - yj} + B, % )+ B, oy, (). This clearly
k=j-1

shows the similarity to the generalized Kaklis-Raisdtension spline formulation.

Retainingg (t) andy, (t) this way helps generalize to other basis tengitines.

« Expansion ofg(t) in basis function terms =>
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0 g(t) = ﬂj—laj—l(t)-i-lgjaj(t)+ﬁj+1aj+l(t)+ J+2a]+2( ) Where

_gt)/ 7
o a_lt)=
(t) vy,
0 aj(t):l_t_yj o)z ¢t) 7 +‘//j(t)/zj'
Yina 7Y Yi= ¥ Y Y
o O'J-ﬂ(t):t_yj +¢j (t)/zjI _w ()/Z]+l +$ ()/Z]+1
Yisa 7Y, Yir2 T Yja Y 7Y
w ()/ZJ+1
o a.ft)="11 0
ll)= Yio =Y

* Robust/Efficient Calculation of Hyperbolics => Reni987) and Rentrop (1980)
outline some effective methods for this. For snagjltruncated Taylor series is
accurate enough.

12. Piecewise Cubic Interpolant ExpansiBemember that, no matter what the basis

tension functions are, for piecewise tens@hcontinuity, they are expected to
satisfy

g =90 _ 20 g()—t”l_t{'azg(t)I —azg(t,)]ﬂ.t_tj {|azg(t)| —Uzg(tm)]

Tt t, -t || at® |

t= j+L

for tO [tJ , 1+1J i.e., this entity varies linearly across the segim

 This may be re-cast a = 3, @, , + @, + B;.,@,., Where

S (EAR ST ) IE:

- Yi 7 Yja i Vi 7Y

wi:ﬁj[ - J¢( )}/Z {1 oy, 1( )}/Z }
Yi 7Y Yia~Y;

13. Tension Spline Curvature Penalizing Nofirhe pure curvature penalizer may now

be altered to become a curvature + length penaliters,
ty

Py = A.[[{y"( +a*{y'(t)} ]dt Notice that bot{y"(t)}* and a*{y'(t)}* (i.e.,
t

separated squares) are included individually instteup.
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Simplification of the curvature penalty norm teron the Tension Splines =>
ty

PCurv = /]_[[{y”(t)}z + Uz{y'(t)}z]dt = gj+1II gj+1'_gj " gj '_dj [gj+1 - gj ] A Simple
4

proof of this using integration by parts is avadiaim Andersen (2005).
Penalizing the segment length in addition to tlgerssnt curvature is valid for all
spline formulations, of course. However, they mayhe reducible/simplifiable

as much as they are in tension splines.

14. Constrained Optimizer Estimate for If the RMS best-fit error is to be limited 10

where ) is an extraneously specified closeness of fit imetne constraint may be

expressed a?\ll—p - cﬁ]TWTWw - d3] <.

Now the optimization minimizer attains contributsofiom best-fit, curvature

penalty, and segment length penalties.

Step #1: For a given initial guess &f find the optimal co-efficient séﬂ}i":—;.

Step #2: Comput&(1) =[BestFif’. If S(4), you are done. Otherwise use a
suitable root finder to extract.

Step #3: The best-fit optimizer precision no8f1) is a declining function ofl .
If a root exists, the root finder procedure shduwgdable to find it.

A estimation in the context of curve building isated in Tanggaard (1997)
(using the GCV technique of Craven and Wahba (9&&) Andersen (2005).

15. Drawbacks of the above methddhis involves yet another non-linear root extoact

Other non-linear root extraction parts in curveding are:

Non-linear boot-strapping

Non-linear boundary condition in spline calibration

Thus, the stability of the precision norm technigudined above is riddled with

challenges.

16. Parallel with Hagan-West Forward InterpolatorHagan-West (Hagan and West

(2006)) minimalist quadratic interpolator, the segtnlength is incorporated in a
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slightly different way — as a minimizer of the+ 1 jumps at the knots (i.e., €,
minimizing C*® at the knots).

17. The other Tension Splinekhey all have the property that the tension patam

moves smoothly from cubic (low tension) to linelaigh tension), and have different
forms for ¢ andy . These forms may make them computationally lepg@sive too.

o Non-uniform Rational Cubic Tension Spline with imédenominator =>

o (t-t,f :
S TP (R G R ) P e

- tf ,
(J+1_t 11+J (t t)J16+60 (1+1 )+201(ti+1_ti)zj

0 Non-uniform Rational Cubic Tension Spline with Qretcc Denominator =>

o (-t 1

S () P ) ) > O Pt
- (-t 1
J l(tm_tj)*'aj(t‘t )(J+1 )Jl6+60 (J+l )+201(tj+1—tj)2J

o Non-uniform Exponential Rational Spline =>

o (t-t Fexd-o (t,..-t)

g e AR e

(J+l_t)3€XF{_Ji (t —4 )]

@ =

@ = i
] ( Ljsa = )[6+ 60; ( Ui _t1)+ 20, (ti+1 _tJ)ZJ
18. Tension Implied by the Basis Function:S&itven the tensior€? interpolant relation
3
g_f + UJZZ—Z =Congtant inside a given segmenjt, we can infero; from
X X
o _lof
10Xy [0X]iog
boo|o%f] |o°f
3 3
x|, |0X|

19. Caveat for using KLK-type Splines for Localt8t&hape Proxyingdften (and this

may be true for other B Splines as a whole to®@ BlSpline basis choice may

59



produce segment node edge values and their cormésygoderivatives of zero. In this

case, you may have a singular calibration matiat tfoes not calibrate. In particular,

this is the case for iterated B Splines that arestacted to vanish and fade rapidly at
the edges. This poses for problems for segment4ptiaes (that may span between

0 and 1 within a given segment).

* How does the KLK formulation avoid this? It is basa it is built off of a cubic B
Spline, thus works primarily for that case. KLKakts the basis representation
out from a workable/calibratable raw cubic B Splioem that is set to be “well-
behaved” at the edges (by definition) at the cllaisis level. The B Splines that
follow the typical iterative generation formulatiend up “destroying the raw

basis construction information” if set up from abdv.e., above the cubic level

becomegy" at the lowest hat level).
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Smoothing Splines

Penalty Minimization Risk Function

Penalty Minimizer Estimator Metri€hoice of the “normalized curvature area”

shown in figures 5) and 6) are two possible peredtymator choices. Obviously,
closer the area is to zero, the better the pengliziatch is.

Dimensionless Penalizing Fit Metrichoosing the representation in 5), and

recognizing that the segment is set in the flaehﬁﬁ&), we can derive the

representation in 7).
Dimensionless Penalty Estimator (DP83ing Figure 7), we now define DPE as

ﬂamﬂ(x)}zdx

DPE = A;\eashadedpart: X ox™ :
re —
NI max{{a a/)':n(q)()} }()ﬂ L—x )

Pros/Cons of the above Representation of:DRRe basis functions have near-delta

functional forms (Figure 8), DPE will still remam0, and the metric is not very
meaningful in that case. Fortunately, such delpe-tyasis functions are rare.
. Aggregate DPE Measurdeed a consolidated DPE metric that spans aatbdse

segments in a span, i.e., the span DPE.

Smoothing Splines Setup

Process Control using WeighRimensionless units (such as Reynolds’ numbaer) ca

effectively account for the ratio of competing matuforces. Similar use can be done for

process control to be able to guide/control betwZ2enmore competing objectives. For

example in the instance of the smoothing spline:

First Objective => Closeness of match using thetrfahful reproducer, or curve fit.
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» Second Objective => Smoothest curve through thengpoints, without necessarily
fitting them — of course, “smoothest” possible ‘geiris a straight line.

2. Penalizing SmootheneBenalizing smootheners are the consequence @sBay

estimation applied on the Quadratic Penalties @ilussian Priors (also referred to with
maxim “The Penalty is the Prior”).

3. Smoothing Spline Formulatio®iven x, < x, <...< x,, and the functioru that fits the

points [)g ,Yi] fromY, = ,u(>g) (see Hastie and Tibshirani (1990) and Smoothinm&p

(Wiki)). The smoothing spline estimage is the minimizer

i=1

_ . 1 N I ak,zl(x)
minargg Al fLA |==> |, —px)| +A || ——— |dx
. /\(,u,/ij is theSpline Objective Function

1. o ) )
e = is needed to the left term to make it finiteras. o« , otherwised will also have

n
to be infinite.
e 0 u(x) | . .
« The derivative “k” corresponds to what ma es i linear. Thus, for cubic
X

splines, k = 2.

4. Bias Curvature/Variance Fit Trade-d&maller thed , the more you will fit for bias (low

curvature penalty). Bigger th&, more you fit for curvature/roughness penalty.

5. Curvature Penalty Minimizer Splink can be theoretically shown that the curvature

penalty minimizer spline is a cubic spline. Heréasv.

» First, notice that any spline of degree >= 0 cgmaéuce the knot inputs.

n

2
X o e
» By default, curvature correspondstok =2. T M varies linearly inside a

ox®

segment, thus this becomes the least possibletaueva
* Higher order splines will have a non-linear curvatu

« Lesser order (spline order less than 3) will vietdte G continuity constraint.
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Bias Curvature/Variance Fit Trade-d&maller thed , the more you will fit for bias (low

curvature penalty). Bigger th&, more you fit for curvature/roughness penalty.

Smoothing Output Criterion

Speed of Fitting

Speed of Optimization

Boundary Effects

Sparse, Computationally Efficient Designs
Semi-Parametric Models

Non-normal Data

Ease of Implementation

Parametrically determinable Limits
Specialized Limits

Variance Alteration/inflation

Adaptive Flexibility Possible

Adaptive Flexibility Available
Compactness of Results

Conservation of data distribution moments

Easy Standard Errors

Smoothing vs. Over-fittingsince A is a control parameter, it can always be attabyed

parametric specification. To estimate optimal vadfid against over-fitting, use one of

the following other additional criteria to penalitee extra parameters used in the fit,

such as the following. Each one of them comes itstbwn advantages/disadvantages.

Cross-validation

Global Cross-Validation
Akaike Information Criterion
Bayesian Information Criterion
Deviance

Kullback-Leibler Divergence metric

Segment Stiffness Control may also be customized to behave as a segmdanstifor

a penalty/stiffness controller, thus providing extnobs for the optimization control.
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10. Relation of Lagrangian to Smoothing Spline

Lagrangian objective function is used to optimizewti-variate functionL(x, y) to
incorporate the constrairg(x, y) =c as /\(x Y, z) = L(x, y)+/1[g(x, y)— c]. HereA
is the Lagrange multiplier.

Optimized formulation of the smoothing spline igeg by minimizing the spline
objective function (a form of optimization)

A 1 A 2 Xn| Ak "
/\(,u,/ij :%Z[Yi - u(x )} +)Ij %SX) dx. Here A is the spline objective

i=1
a/\(mj

function shadow price of curvature penalty, Hea— =-A, where cis the
C

constraint constant defined analogous to the cainsttonstant in the Lagrangian

n

0* u(x)

dx=c.
Xk

Xn
objective function: j
X

Least Squares Best Fit + Curvature + Segment LengtRenalty

Formulation

1. Nomenclature

e p=0,..,9-1=> Points to Fit for the Least Squares Penalty
* 1=0,..,n—-1=>The Basis Functions Index
e j=0,..,m-1=>Number of Ordinate Points

e 1 => Curvature Penalizer Derivative
* s => Length Penalizer Derivative

* k => k-Separation to be achieved during the Formulatigguvation
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re, 2 S, 2
oy +0°? 9y dx where
ox' ox®

1 Xm
2. The FormulationP = qZ[)?p —y, A H(
p=0 Xo

9= 3100

3. Segment-Level DecompositiocBegment-level decomposition ensures optimal

segment coefficient formulation to within the boands of a segment (from the least
squares fit point of view) — however, not nece$gagtobal optimum. Further, these
optimal constraints provide an extra degree ofdoae at the segment level, and not
necessarily at the stretch/span level.

4. Segment-Level Decomposition Formulation

q-1 X; r a2
P:;[yp_yp]z-'-Ax-L{(gx?/] +0; [gxyj }dx ZM +A[Xj +aj2/\j] where

M, :[yp—yp]z, X, = J.l(gxyj dx, andA; = I(giflj dx.

xj—l XJ -1

5. Least Squares Minimization Revielrom eatrlier,
n-1 2
* Mp= [9;3 - yp]2 =[;IB| f (Xp)_ yp} :
* M :2fk(xp#:nz_ilgl fi(xp)—yp}:O:nZ_ilBI fi(xp)_yp:o'
)N = =
0°M,,
0B’

6. Curvature Penalty MinimizatioAgain, from earlier,

cox,= O e [ 55200 g
Ao hat P2 Chrray b

oG

=2f, ( )2 0. Therefore a minimum exists.

for eachk.
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X, (o f (%)) . .
* Further,— =24 I — <= | dx=0 for x; >, , thus a minimum exists.
a:Bk X aXr

7. Segment Length Penalty Minimizatiddimilar to the curvature penalty, we get,

oA, ot (9 °f
e —Ll=0=)>7 I 9 fk(x) 9 f,(x) dx=0 for eachk.
B, =R AW ox°
%A, (051, (X))
* Finally, — =24 I 0°1u(x) dx=0 for x; > x;_, thus a minimum exists.
a:Bk Xj-1 axs

8. Combining it all

5 { ) Tl(ar;;r(x)j(araf;( gx)jdijz j (aSJigx)j(aS;xgx)de} _y

Xj—

n-

1
i=0 Xj—l

Alternate Smootheners

1. Compendium of Smoothing Methods

* Kernel Smoothing with or without binning.
* Local Regression with or without binning.
* Smoothing Splines with or without band solvers.
* Regression splines with fixed/adaptive knots.
* Penalizing B Splines.
* Density Smoothing.
2. Kernel Bandwidth SelectoKernel bandwidth selection is analogous to thinaogd

knot point selection employed in the regressiomspgchemes.

* Remember that the kernel methods essentially espehodic functions as their
basis functions.

3. Regression Splineblere the data is simply fit to a (hugely) redusetiof basis

spline functions, typically using least squareshauit any smoothness penalty.
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* Penalized regression splines are pretty much tine s& regression splines in that
they do use a reduced set of basis splines. Howtaeyr do impose a roughness
penalty. Penalized regression splines are alsaeeféo as smoothing splines.

» Polynomial Regression Splines do curve fitting/esgion analysis using selective
insertion/removal of knots. Knots are added acowyto the Rao criterion, and
removed according to the Wald criterion.

0 Log Splines are a customization of the polynoneakression splines
targeted for density estimation. The log of thegityris modeled as a
cubic spline.

* Tension Regression Splines => In addition to theature penalty and the least
squares fit penalty, tension regression splines @malize the segment length.

4. Base Density Smoothing Formulatidmg-likelihood density smoothing is analogous

to maximizing the multinomial likelihood histograkng[” P, Vi}, wherey, is the

empirical observation count, arg is the probability of finding an observation ireth

celli.
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Multi-dimensional Splines

1. Non-symmetrical multi-dimensional Variatégain, considering 2D as an example,

it makes sense to use the basis splines sepaaatelss bothx , x,, as in

n N

%)= 20> 4.8 ()8, (x,).

i=1 j=1

2. Bi-polynomial 2D SplineFor the 2D Segment Range— [)g ,>q+l] andy - [yi,yiﬂ],

X=X andu =u, we transform the
X=X Yiar 7Y,

working in the local variate spacte-

spline basis on to the local representation basif 4t,u)=>_> g ,tu'.

m
k=01=0

3. Bi-linear 2D SplineThis produces &° surface. Her& =1 =1, therefore the first

derivatives (and on) are discontinuous on the lgodndaries. From the observation

set{;j}, we get from the boundary match the following ealdior 4 ,,:

ﬁij,oozz,j
:Bij n="%;%%
:Bij;LO:_Z,j tZ,;

lBij =% Y%1m" % "% n
4. Bi-Cubic InterpolationThis produces &" surface. Here&k =| = 3, therefore the

af(xy) af(xy)
ox oy

first, second, and the first cross derivatives,(ifx, y),

0*f(xy) 0°f(xy)

ax2 ! ! and 62 f(x’ y)

5 ) are continuous across the grid boundaries.
ay 0x0y

From the observation s{a;yj}, their first derivatives, and their cross deriva, we
get from the boundary match the following values & ,, as before. The common

way is to cast these as a sequence of 2D reldtypnsraveling the continuity

constraints, and thereby linearizing the formulatio
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5. Symmetrical Multi-dimensional variateBhe trivial univariate ordering

X <X, <...< X, needs revising in the context of certain multiates, e.g.,

symmetrical multivariates (Smith, Price, and Lowd&74), Graham (1983), and Lee
(1989)).

A general “distance from focal nod¢” makes to more sense to set in the

ascending order. Thus=/(x - ) +..+(z - z. ) , where[x, ...,z ] are the

multivariate nodes corresponding to the focal node.

Alternatively, the distance from the prior nodegraetrizer

’ may also work.

1:i :\/(Xi+1 - XI)2 +"'+(Zi+1 - Z|)
Use Cartesian/radial/axial basis functions to fdataithe segments in terms of

the surface vector coefficients in “symmetricaliatg” situations.

6. Surface Energy Minimizatioburface energy minimization using the “sigma”

tension parameter — formulate equation.

Thin Plate Spline (Duchon (1976), Duchon (1977))isTis simply 2D spline

interpolation, achieved by minimizing the surfaemtting energy, the

minimization of E[f] = ”DZ f(x, y)rdxdy, where
RZ

2 2 2
0 f(y) =2 ;E:;y)ﬁ (f)(>2<,y)+aaf)g<,y)_
y y

Thin plate splines are an effective way to achswdace energy minimization,
i.e., for a 2D surface, the smoothing spline s@faay be created by the

minimization of the following least squares surfapéne objective function

A 2 A 2

. 1 . 2wl (2 1) 62,21(x) 8 1()
N XX A== 1Y = X, X, A dxd
(u X%, j n;[ = U %, )} + I I ot | o, || o | RO

. Again, apparently this is more appropriate;ifx, are symmetrical.

7. Elastic Maps Method for Manifold Learninghis method combines the least squared

penalty for the approximation error with the bemyfiarsional-stretching penalty for

the proxy manifold. It then uses a coarse disa#tn to extract the solution for the

optimization problem.
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Spline Library Software Components

Functionality behind Spline Library is available@gs 10 core functional packages, 2

samples package and 1 regression test package.

The core functional packages are:

» Univariate function package

* Univariate Calculus package

» Spline Parameters package

» Spline Basis Function Set package
* Spline Segment package

» Spline Stretch Package

» Spline Grid/Span Package

* Spline PCHIP Package

* B Spline Package

» Tension Spline Package

The sample functional packages are:
* Spline Sample package

» Stretch Sample package

Univariate Function Package (org.drip.quant.functian1D)

The univariate function package implements theviddial univariate functions, their

convolutions, and reflections. It contains thedwling classes/interfaces:

» AbstractUnivariateThis abstract class provides the evaluation efgilren
basis/objective function and its derivatives fapecified variate. Default

implementations of the derivatives are for black;bmon-analytical functions.
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UnivariateConvolutionThis class provides the evaluation of the poalug and the

derivatives of the convolution of 2 univariate ftinos for the specified variate.

UnivariateReflectionFor a given variate, this class provides the evaluation and

derivatives of the reflection at- x.
Polynomial This class provides the evaluation of tfeonder polynomial and its
derivatives for a specified variate. The degrepeacies the order of the polynomial.

BernsteinPolynomialThis class provides the evaluation of Bernstalymomial and

its derivatives for a specified variate. The degnggonent specifies the order of the
Bernstein polynomial.

NaturalLogSeriesElementhis class provides the evaluation of a singlmte the

expansion series for the natural log. The expopardmeter specifies which term in
the series is being considered.

ExponentialTensionThis class provides the evaluation of exponemgiasion basis

function and its derivatives for a specified vagidt can be customized by the choice
of exponent, the base, and the tension parameter.

HyperbolicTensionThis class provides the evaluation of hyperbtaitsion basis

function and its derivatives for a specified vagidt can be customized by the choice
of the hyperbolic function and the tension paramete

LinearRationalShapeContrarhis class implements the deterministic ratisiape

control functionality on top of the estimate of thasis splines inside[®,...]]) -

Globally [X,,...,.x): Yy = ﬁ where is the normalized ordinate mapped as
X

—X=X4 _
X X

QuadraticRationalShapeContrdhis class implements the deterministic rational

X

shape control functionality on top of the estimaftéhe basis splines insid€g,....)

- Globally [X,,...,%): ¥y = ) where is the normalized ordinate mapped as

1+ Ax(1- x

_ X=X,

X .
X~ X4
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» LinearRationalTensionExponentidlhis class provides the evaluation of the

Convolution of the Linear Rational and the Tendtxponential Function and its

derivatives for a specified variate.

Univariate Calculus Package (org.drip.quant.calculs)

The univariate calculus package implements uniteadéference based arbitrary order

derivative, implements differential control setsnpgnplements several integrand

routines, and multivariate Wengert Jacobian.

1. DerivativeControlDerivativeControl provides bumps needed for nucadly

approximating derivatives. Bumps can be absolutelative, and they default to a

floor.

2. Differential Differential holds the incremental differentidds the variate and the

objective functions.

3. WengertJacobiawWengertJacobian contains the Jacobian of thenggee of Wengert

variables to the set of parameters. It exposeftimeving functionality:

o

o O O O o

Set/Retrieve the Wengert variables
Accumulate the Partials

Scale the partial entries

Merge the Jacobian with another
Retrieve the WengertJacobian elements

Display the contents of the WengertJacobian

4. Integrator Integrator implements the following routines fiotegrating the objective

functions:

o

o O O o

Linear Quadrature

Mid-Point Scheme
Trapezoidal Scheme
Simpson/Simpson38 Schemes

Boole Scheme
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Spline Parameters Package (org.drip.spline.params)

The spline parameters package implements the ségmeérstretch level construction,
design, penalty, and shape control parameters.

5. ResponseScalingShapeContiidiis class implements the segment level basis

functions proportional adjustment to achieve thardd shape behavior of the
response. In addition to the actual shape contrliection, it interprets whether the
control is applied on a local or global predicatgimate basis.

6. SegmentBasisFlexureConstraifiis class holds the set of fields needed to

characterize a single local linear Constraint, egped linearly as a combination of

the local Predictor Ordinates and their correspompéesponse Basis Function

Realizations. Constraints are expresse@as > W43 (xj) wherex; is the predictor
i

ordinate at nodg , S is the Coefficient for the Response Basis FunctioW is the
weight applied for the Response Basis FunctipandC; is the value of constrairjt

SegmentBasisFlexureConstraint may be viewed aethézed basis function
transpose of SegmentResponseValueConstraint.
7. SegmentResponseValueConstraliis class holds the following set of fields that

characterize a single global linear constraint leetwthe predictor and the response
variables within a single segment, expressed lipeaross the constituent nodes.
SegmentBasisFlexureConstraint may be viewed aethézed basis function
transpose of SegmentResponseValueConstraint. SégesponseValueConstraint
exports the following functionality:
0 Retrieve the Array of Predictor Ordinates.
0 Retrieve the Array of Response Weights at eachi®oedrdinate.
0 Retrieve the Constraint Value.
o Convert the Segment Constraint onto Local PrediCtalinates, the
corresponding Response Basis Function, and theeSbaptroller
Realizations.

0 Get the Position of the Predictor Knot relativetie Constraints.
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0 Generate a SegmentResponseValueConstraint indtanté¢he given
predictor/response pair.

8. SegmentResonseConstraintIétis class holds the set of

SegmentResponseValueConstraint (Base + One/mosiiSities) for the given
Segment. It exposes functions to add/retrieve #se lbesponse value constraints as
well as additional response value constraint seitst.

9. SegmentBestFitRespongdis class implements basis per-segment Fitnesalfy

Parameter Set. Currently it contains the Best &iitaty Weight Grid Matrix and the
corresponding Segment Local Predictor Ordinate/Besp Match Pair.
10. StretchBestFitResponsknhis class implements basis per-Stretch FitnessilB/

Parameter Set. Currently it contains the Best &iitaty Weight Grid Matrix and the
corresponding Local Predictor Ordinate/ResponseMBair.
StretchBestFitResponse exports the following method
0 Retrieve the Array of the Fitness Weights.
Retrieve the Indexed Fitness Weight Element.
Retrieve the Array of Predictor Ordinates.
Retrieve the Indexed Predictor Ordinate Element.
Retrieve the Array of Responses.
Retrieve the Indexed Response Element.

Retrieve the Number of Fitness Points.

©O O O O o o o

Generate the Segment Local Best Fit Weighted Regpoontained within the

specified Segment.

o

Construct the StretchBestFitResponse Instance tiherngiven Inputs.
o Construct the StretchBestFitResponse Instance thergiven Predictor
Ordinate/Response Pairs, using Uniform Weightings.
11. SegmentFlexurePenaltyContrbhis class implements basis per-segment Flexure

Penalty Parameter Set. Currently it contains teeufe Penalty Derivative Order and
the Roughness Coefficient Amplitude. Flexure Pgratintrol may be used to
implement Segment Curvature Control and/or Segiemgth Control.

12. SegmentDesigninelasticContrdhis class implements basis per-segment inelastic

parameter set. It exports the following functiotyali
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Retrieve the Continuity Order.
Retrieve the Length Penalty and the Curvature BeRakameters.

Create theC? Design Inelastic Parameters.

Create the Design Inelastic Parameters for theetk€i* Criterion and the

Roughness Penalty Order.

13. SegmentCustomBuilderContrdhis class holds the parameters the guide the

creation/behavior of the segment. It holds the sgralastic/inelastic parameters and

the named basis function set.

14. SegmentPredictorResponseDerivatiMas class contains the segment local

parameters used for the segment calibration. ttshthle edge Input Response value

and its derivatives. It exposes the following fuoies:

o

Retrieve the Response Value as well as the DRespéhiedictorOrdinate
Array.

Aggregate the 2 Predictor Ordinate Response Deresby applying the
Cardinal Tension Weight.

15. SegmentStateCalibratiofhis class implements basis per-segment Caldrati

Parameter Set. It exposes the following functidyali

o

o O o o

Retrieve the Array of the Calibration Predictor {Dedes.
Retrieve the Array of the Calibration Response ¥slu
Retrieve the Array of the Left/Right Edge Derivaisv
Retrieve the Segment Best Fit Response.

Retrieve the Array of Segment Basis Flexure Comdsa

Spline Basis Function Set Package (org.drip.splinaasis)

The spline basis function set package implememtbdisis set, parameters for the

different basis functions, parameters for basi€sastruction, and parameters for B

Spline sequence construction.

16. FunctionSetThis class implements the general purpose bpbigegunction set.
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17. FunctionSetBuilderParambhis is an empty stub class whose derived

implementations hold the per-segment basis sehyeeas.

18. ExponentialMixtureSetParantsxponentialMixtureSetParams implements per-

segment parameters for the exponential mixturestsagi- the array of the

exponential tension parameters, one per each émtitye mixture.

19. ExponentialTensionSetPararBxponentialTensionSetParams implements per-

segment parameters for the exponential tensioms Basi currently it only contains

the tension parameter.

20. ExponentialRationalSetPararBxponentialRationalSetParams implements per-

segment parameters for the exponential rationas lsas — the exponential tension

and the rational tension parameters.

21. PolynomialFunctionSetParan®lynomialFunctionSetParams implements per-

segment basis set parameters for the polynomiad bpkne - currently it holds the

number of basis functions.

22. KaklisPandelisSetParam&aklisPandelisSetParams implements per-segment

parameters for the Kalkis-Pandelis basis set -eatlyrit only holds the polynomial

tension degree.

23. FunctionSetBuildeiThis class implements the basis set and spliiddyifor the

following types of splines:

o

o O o o

Exponential basis tension splines
Hyperbolic basis tension splines
Polynomial basis splines

Bernstein Polynomial basis splines

Kaklis-Pandelis basis tension splines

This elastic coefficients for the segment us@ basis splines insid,...]) -

globally [X,,....x) : y = BasisSpIileFunctior{Ck , x)x ShapeContJfIIer(x) where

is the normalized ordinate mappedxas

X=X
X=X

. The inverse quadratic/rational

spline is a typical shape controller spline used.

0 BSplineSequenceParaniSplineSequenceParams implements the paraméeter se

constructing the B Spline Sequence. It providestionality to:
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Retrieve the B Spline Order

Retrieve the Number of Basis Functions
Retrieve the Processed Basis Derivative Order
Retrieve the Basis Hat Type

Retrieve the Shape Control Type

Retrieve the Tension

OO O O O o o o

Retrieve the Array of Predictor Ordinates

Spline Segment Package (org.drip.spline.segment)

The spline segment package implements the segmeel&stic state, the segment basis
evaluator, the segment flexure penalizer, compihesegment monotonicity behavior,
and implements the segment’s complete constitstiate.

1. InelasticConstitutiveStat@&his class contains the spline segment in-elésiids - in

this case the start/end ranges. It exports theviihlg functions:

Retrieve the Segment Left/Right Predictor Ordinate

Find out if the Predictor Ordinate is inside thgreent - inclusive of left/right
Get the Width of the Predictor Ordinate in this iBegt

Transform the Predictor Ordinate to the Local SegrReedictor Ordinate

o Transform the Local Predictor Ordinate to the Segri¥dinate

2. BasisEvaluatorThis interface implements the Segment's Basisuatar Functions.

o O O o

It exports the following functions:
o0 Retrieve the number of Segment's Basis Functions
0 Set the Inelastics that provides the envelopingt€drithe Basis Evaluation
o Clone/Replicate the current Basis Evaluator Insganc
o Compute the Response Value of the indexed Basistibarat the specified

Predictor Ordinate

(@)

Compute the Basis Function Value at the specifrediBtor Ordinate

o Compute the Response Value at the specified Poedztinate
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o Compute the Ordered Derivative of the Responseé/atiiof the indexed
Basis Function at the specified Predictor Ordinate

o Compute the Ordered Derivative of the Responseé/atiiof the Basis
Function Set at the specified Predictor Ordinate

o Compute the Response Value Derivative at the gpddfredictor Ordinate

3. SegmentBasisEvaluatdrhis class implements the BasisEvaluator interfac the

given Set of the Segment Basis Evaluator Functions.

4. Monotonicity This class contains the monotonicity detailstezldo the given
segment. It computes whether the segment is moieptmd if not, whether it
contains a maximum, a minimum, or an inflection.

5. BestFitFlexurePenalizefhis Class implements the Segment's Best Fity&ure,

and Length Penalizers. It provides the followingdtionality:

Compute the Cross-Curvature Penalty for the givasiBPair

Compute the Cross-Length Penalty for the given 8Rair

Compute the Best Fit Cross-Product Penalty fogtthen Basis Pair
Compute the Basis Pair Penalty Coefficient forBlest Fit and the Curvature

o O O o

Penalties
o Compute the Penalty Constraint for the Basis Pair

6. ConstitutiveStateConstitutiveState implements the single segmasisicalibration

and inference functionality. It exports the follogifunctionality:

o Build the ConstitutiveState instance from the B&sisction/Shape Controller
Set

o Build the ConstitutiveState instance from the B&sialuator Set

o Retrieve the Number of Parameters, Basis EvaluAtoay of the Response
Basis Coefficients, and Segment Design Inelastiat©b

o Calibrate the Segment State from the Calibratiaafater Set

o0 Sensitivity Calibrator: Calibrate the Segment Quizteobian from the
Calibration Parameter Set

o Calibrate the coefficients from the prior PredidR@sponse Segment, the

Constraint, and fitness Weights
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Calibrate the coefficients from the prior Segmerd the Response Value at
the Right Predictor Ordinate

Calibrate the Coefficients from the Edge Resporskeiés and the Left Edge
Response Slope

Calibrate the coefficients from the Left Edge Rem@Value Constraint, the
Left Edge Response Value Slope, and the Right Régponse Value
Constraint

Retrieve the Segment Curvature, Length, and the BeBPE

Calculate the Response Value and its Derivatitkeagiven Predictor
Ordinate

Calculate the Ordered Derivative of the Coefficienthe Quote

Calculate the Jacobian of the Segment's Resporss Banction Coefficients
to the Edge Inputs

Calculate the Jacobian of the Response to the Bpgés at the given
Predictor Ordinate

Calculate the Jacobian of the Response to the Bagficients at the given
Predictor Ordinate

Calibrate the segment and calculate the Jacobidreddegment's Response
Basis Function Coefficients to the Edge Parameters

Calibrate the Coefficients from the Edge Resporskeiés and the Left Edge
Response Value Slope and calculate the Jacobidwe &egment's Response
Basis Function Coefficients to the Edge Parameters

Calibrate the coefficients from the prior Segmerd the Response Value at
the Right Predictor Ordinate and calculate the Biaroof the Segment's
Response Basis Function Coefficients to the Edgenketers

Indicate whether the given segment is monoton@aoliotone, may optionally
indicate the nature of the extrema contained ingidgima/minima/infection)
Clip the part of the Segment to the Right of thecsiied Predictor Ordinate.
Retain all other constraints the same

Clip the part of the Segment to the Left of thec#iped Predictor Ordinate.

Retain all other constraints the same
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o Display the string representation for diagnostigpsges

Spline Stretch Package (org.drip.spline.stretch)

The spline stretch package provides single segarehulti segment interfaces,
builders, and implementations, along with customaratary settings.

1. BoundarySettingsThis class implements the Boundary Settingsdie&rmine the

full extent of description of the stretch's Stdtexports functions that:
» Specify the type of the boundary condition (NATURRLOATING/IS-A-
KNOT)
» Boundary Condition specific additional parameterg.( Derivative Orders
and Matches)
» Static methods that help construct standard boyrsstings

2. SingleSegmentSequen@&ngleSegmentSequence is the interface that espos

functionality that spans multiple segments. Its\aEt instances hold the ordered
segment sequence, the segment control parametdtsf available, the spanning
Jacobian. SingleSegmentSequence exports the falipgroup of functionality:
» Construct adjoining segment sequences in accordaititeéhe segment
control parameters
» Calibrate according to a varied set of (i.e., NATALRFINANCIAL)
boundary conditions
» Estimate both the value, the ordered derivatived,the Jacobian
(quote/coefficient) at the given ordinate
» Compute the monotonicity details - segment/Strétehl monotonicity, co-
monotonicity, local monotonicity.
* Predictor Ordinate Details - identify the left/righredictor ordinate edges,
and whether the given predictor ordinate is a knot

3. SingleSegmentLagrangePolynomiingleSegmentLagrangePolynomial implements

the SingleSegmentSequence Stretch interface usinigagrange Polynomial
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Estimator. As such it provides a perfect fit thravels through all the

predictor/response pairs causing Runge's instabilit

4. MultiSegmentSequencklultiSegmentSequence is the interface that expose

functionality that spans multiple segments. Its\at instances hold the ordered

segment sequence, the segment control parametdrsf available, the spanning

Jacobian. MultiSegmentSequence exports the follpwnoup of functionality:

Retrieve the Segments and their Builder Parameters

Compute the monotonicity details - segment/Strétell monotonicity, co-
monotonicity, local monotonicity

Check if the Predictor Ordinate is in the Stret@née, and return the segment
index in that case

Set up (i.e., calibrate) the individual Segmenttha Stretch by specifying
one/or more of the node parameters and Target (aamst

Set up (i.e., calibrate) the individual Segmerthim Stretch to the Target
Segment Edge Values and Constraints. This is alkedcthe Hermite setup -
where the segment boundaries are entirely locatly s

Generate a new Stretch by clipping all the Segmteritse Left/Right of the
specified Predictor Ordinate. Smoothness Consgaiit be maintained.
Retrieve the Span Curvature/Length, and the B&éS)FE's.

Retrieve the Merge Stretch Manager.

Display the Segments.

5. SegmentSequenceBuild&egmentSequenceBuilder is the interface thaaawmthe

stubs required for the construction of the segragetch. It exposes the following

functions:

Set the Stretch whose Segments are to be calibrated
Retrieve the Calibration Boundary Condition
Calibrate the Starting Segment using the Left Slope

Calibrate the Segment Sequence in the Stretch

6. CkSegmentSequenceBuild@&kSegmentSequenceBuilder implements the

SegmentSequenceBuilder interface to customize sggserquence construction.

Customization is applied at several levels:
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» Segment Calibration Boundary Setting/Segment Bie&dsponse Settings
* Segment Response Value Constraints for the staatidghe subsequent
Segments
7. CalibratableMultiSegmentSequenCGalibratableMultiSegmentSequence implements

the MultiSegmentSequence span that spans muleggiaents. It holds the ordered
segment sequence, segment sequence builder, thersiegpntrol parameters, and, if
available, the spanning Jacobian. It provides &e#aof customization for the
segment construction and state representationatontr

8. MultiSegmentSequenceBuild®&ultiSegmentSequenceBuilder exports Stretch

creation/calibration methods to generate customiesis splines, with customized
segment behavior using the segment control. It egpbe following methods of
Stretch Creation:
» Create an uncalibrated Stretch instance over tbeifsgd Predictor Ordinate
Array using the specified Basis Spline Parametargiie Segment
» Create a calibrated Stretch Instance over the fpaeirray of Predictor
Ordinates and Response Values using the specifist Bplines
» Create a calibrated Stretch Instance over the fspe€redictor Ordinates,
Response Values, and their constraints, usingpbefeed Segment Builder
Parameters
» Create a Calibrated Stretch Instance from the Aoféredictor Ordinates and
a flat Response Value
» Create a Regression Spline Instance over the ggmbaifray of Predictor
Ordinate Knot Points and the Set of the Pointset®ést Fit
9. MultiSegmentSequenceModifiMultiSegmentSequenceModifier exports Stretch

modification/alteration methods to generate custechbasis splines, with
customized segment behavior using the segmentatolttexposes the following
stretch modification methods:
» Insert the specified Predictor Ordinate Knot irite specified Stretch, using
the specified Response Value
* Append a Segment to the Right of the Specifiedt@trasing the Supplied

Constraint
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* Insert the Predictor Ordinate Knot into the spedifstretch

* Insert a Cardinal Knot into the specified Stretttha specified Predictor
Ordinate Location

* Insert a Catmull-Rom Knot into the specified Stinett the specified Predictor

Ordinate Location

Spline Grid/Span Package (org.drip.spline.grid)

The spline grid/span package provides the mukgtstr spanning functionality. It
specifies the span interface, and provides impléatiems of the overlapping and the
non-overlapping span instances. It also implemé@dransition splines with custom
transition zones.
1. SpanSpan is the interface that exposes the functilyrizhind the collection of
Stretches that may be overlapping or non-overlapptrexposes the following stubs:
» Retrieve the Left/Right Span Edge
* Indicate if the specified Label is part of the Mei$tate at the specified
Predictor Ordinate

» Compute the Response from the containing Stretches

* Add a Stretch to the Span

* Retrieve the first Stretch that contains the Ptedi©rdinate

* Retrieve the Stretch by Name

* Calculate the Response Derivative to the Quoteeaspecified Ordinate

» Display the Span Edge Coordinates.
2. OverlappingStretchSpa@®verlappingStretchSpan implements the Span aterf

and the collection functionality of overlapping&thes. In addition to providing a
custom implementation of all the Span interfacéstit also converts the
Overlapping Stretch Span to a non-overlapping Gtr8pan. Overlapping Stretches
are clipped from the Letft.
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Spline PCHIP Package (org.drip.spline.pchip)

The spline PCHIP package implements most varidrtsedocal piece-wise cubic

Hermite interpolating polynomial smoothing functadity. It provides a number of

tweaks for smoothing customization, as well as jgliog enhanced implementations of

Akima, Preuss, and Hagan-West smoothing interpdato

1. AkimalocalClGeneratoAkimalLocalC1Generator generates the local cor@ol
Slope using the Akima (1970) Cubic Algorithm.

2. MinimalQuadraticHaganWesthis class implements the regime using the Hageah
West (2006) Minimal Quadratic Estimator.

3. MonotoneConvexHaganWedthis class implements the regime using the Hageah

West (2006) Estimator. It provides the followingnétionality:

» Static Method to create an instance of Monotone€rHaganWest
* Ensure that the estimated regime is monotone avegon

* If need be, enforce positivity and/or apply ameltmn

* Apply segment-by-segment range bounds as needed

* Retrieve predictor ordinates/response values

4. LocalMonotoneCkGeneratdrocalMonotoneCkGenerator generates customized

Local Stretch by trading of€* for local control. This class implements the fallng
variants: Akima, Bessel, Harmonic, Hyman83, Hymand@ger, Monotone Convex,
as well as the Van Leer and the Huynh/Le Flochténsi It also provides the
following custom control on the resulting':
 Eliminate the Spurious Extrema in the IngZHEntry
« Apply the Monotone Filter in the Inp@'Entry
+ Generate a Vanill€' Array from the specified Array of Predictor Ordieat
and the Response Values
» Verify if the given Quintic Polynomial is Monotonesing the Hyman89
Algorithm, and generate it if necessary
5. LocalControlStretchBuildet ocalControlStretchBuilder exports Stretch

creation/calibration methods to generate customieesis splines, with customized
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segment behavior using the segment control. Itidesvthe following local-control

functionality:

Create a Stretch off of Hermite Splines from thecsiied the Predictor
Ordinates, the Response

Values, the Custom Slopes, and the Segment Butldermeters
Create Hermite/Bessel C1 Cubic Spline Stretch

Create Hyman (1983) Monotone Preserving Stretch

Create Hyman (1989) enhancement to the Hyman (1988ptone
Preserving Stretch

Create the Harmonic Monotone Preserving Stretch

Create the Van Leer Limiter Stretch

Create the Huynh Le Floch Limiter Stretch

Generate the local control C1 Slope using the Aknaic Algorithm
Generate the local control C1 Slope using the Hajast Monotone Convex

Algorithm

Spline B Spline Package (org.drip.spline.bspline)

The spline B Spline package implements the rawth@agrocessed basis B Spline hat

functions. It provides the standard implementati@mnghe monic and the multic B Spline

Segments. It also exports functionality to genenégber order B Spline Sequences.

1. TensionBasisHafl ensionBasisHat implements the common basisumatibn that

forms the basis for all B Splines. It contains l#f€right ordinates, the tension, and

the normalizer.

2. TensionProcessedBasisHa¢nsionProcessedBasisHat implements the procéssed

basis function of the form laid out in the basanfiework outlined in Koch and Lyche

(1989), Koch and Lyche (1993), and Kvasov (2000).
3. BasisHatShapeContr@asisHatShapeControl implements the shape cdintnotion

for the hat basis set as laid out in the frameveartkined in Koch and Lyche (1989),
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Koch and Lyche (1993), and Kvasov (2000). CurreBtgisHatShapeControl
implements the following shape control customizers:

a. Cubic Polynomial with Rational Linear Shape Caolfer

b. Cubic Polynomial with Rational Quadratic Shamatoller

c. Cubic Polynomial with Rational Exponential Sh&ntroller
LeftHatShapeControlLeftHatShapeControl implements the BasisHatShap&Gl

interface for the left hat basis set as laid ouh&basic framework outlined in Koch
and Lyche (1989), Koch and Lyche (1993), and Kvg2000).
RightHatShapeContrdRightHatShapeControl implements the

BasisHatShapeControl interface for the right haidaet as laid out in the basic
framework outlined in Koch and Lyche (1989), Koetdd.yche (1993), and Kvasov
(2000).

CubicRationallLeftRanCubicRationalLeftRaw implements the TensionBaaisH

interface in accordance with the raw left cubicoral hat basis function laid out in
the basic framework outlined in Koch and Lyche @9&och and Lyche (1993), and
Kvasov (2000).

CubicRationalRightRawCubicRationalRightRaw implements the TensionBdais

interface in accordance with the raw right cubitoraal hat basis function laid out in
the basic framework outlined in Koch and Lyche @9&och and Lyche (1993), and
Kvasov (2000).

ExponentialTensionLeftHaExponentialTensionLeftHat implements the

TensionBasisHat interface in accordance with thesbgonential hat basis function
laid out in the basic framework outlined in Koctddryche (1989), Koch and Lyche
(1993), and Kvasov (2000).

ExponentialTensionRightHeExponentialTensionRightHat implements the

TensionBasisHat interface in accordance with thletrexponential hat basis function
laid out in the basic framework outlined in Koctddryche (1989), Koch and Lyche
(1993), and Kvasov (2000).

10. ExponentialTensionLeftRawxponentialTensionLeftRaw implements the

TensionBasisHat interface in accordance with theledt exponential hat basis
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function laid out in the basic framework outlineddoch and Lyche (1989), Koch
and Lyche (1993), and Kvasov (2000).

11. ExponentialTensionRightRa®xponentialTensionRightRaw implements the
TensionBasisHat interface in accordance with thaerrght exponential hat basis
function laid out in the basic framework outlineddoch and Lyche (1989), Koch
and Lyche (1993), and Kvasov (2000).

12. BasisHatPairGeneratd@asisHatPairGenerator implements the generation

functionality behind the hat basis function paiprovides the following

functionality:

a. Generate the array of the Hyperbolic Phy andHd\yunction Pair

b. Generate the array of the Hyperbolic Phy andHdyFunction Pair From
their Raw Counterparts

c. Generate the array of the Cubic Rational PhyRsydHat Function Pair From
their Raw Counterparts

d. Generate the array of the Custom Phy and Ps¥tadtion Pair From their
Raw Counterparts

13. SegmentBasisFunctioBegmentBasisFunction is the abstract class ok@twthe

local ordered envelope functions for the B Spliaesimplemented. It exposes the

following stubs:
a. Retrieve the Order of the B Spline
b. Retrieve the Leading Predictor Ordinate
c. Retrieve the Following Predictor Ordinate
d. Retrieve the Trailing Predictor Ordinate
e. Compute the complete Envelope Integrand - tiliserve as the Envelope
Normalizer
f. Evaluate the Cumulative Normalized Integrandathe given ordinate

14. SegmentMonicBasisFunctidBegmentMonicBasisFunction implements the local

monic B Spline that envelopes the predictor ordisaand the corresponding set of
ordinates/basis functions. SegmentMonicBasisFunctges the left/right

TensionBasisHat instances to achieve its implenientgoals.
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15. SegmentMulticBasisFunctioBegmentMulticBasisFunction implements the local

multic B Spline that envelopes the predictor orthsaand the corresponding set of
ordinates/basis functions. SegmentMulticBasisFonatises the left/right
SegmentBasisFunction instances to achieve its mmgai¢ation goals.

16. SegmentBasisFunctionS8egmentBasisFunctionSet class implements peresggm

function set for B Splines and tension splines.\@el implementations expose
explicit targeted basis functions.

17. SegmentBasisFunctionGeneraegmentBasisFunctionGenerator generates B

Spline Functions of different order. It provideg flollowing functionality:
a. Create a Tension Monic B Spline Basis Function
b. Construct a Sequence of Monic Basis Functions

c. Create a sequence of B Splines of the speafiger from the given inputs.

Tension Spline Package (org.drip.spline.tension)

The tension spline package implements closed farmly of cubic tension splines laid
out in the basic framework outlined in Koch and hg¢1989), Koch and Lyche (1993),
and Kvasov (2000).

1. KLKHyperbolicTensionPhyKLKHyperbolicTensionPhy implements the custom

evaluator, differentiator, and integrator for thekKTension Phy Functions outlined
in the publications above.

2. KLKHyperbolicTensionPsyKLKHyperbolicTensionPsy implements the custom

evaluator, differentiator, and integrator for thekKTension Psy Functions outlined
in the publications above.

3. KochLycheKvasovBasig his class exposes functions that implement tbeia)

guadratic, and the cubic basis B Splines as outlinehe publications above.

4. KochLycheKvasovFamilyThis class implements the basic framework andéahely

of C? Tension Splines outlined above. Functions expbsed implement the Basis
Function Set from:

a. Hyperbolic Hat Primitive Set

95



b. Cubic Polynomial Numerator and Linear RationahDBminator
c. Cubic Polynomial Numerator and Quadratic Rati@enominator

d. Cubic Polynomial Numerator and Exponential Deimator

Spline Sample Package (org.drip.sample.spline)

The spline sample package contains samples thaird#rate the construction and usage
of different basis splines and B Spline Sequences.
1. BasisSplineSeBasisSplineSet implements Samples for the Coctstruand the
usage of various basis spline functions. It denrates the following:
a. Construction of segment control parametersyrohial (regular/Bernstein)
segment control, exponential/hyperbolic tensionme=g control, Kaklis-
Pandelis tension segment control, @&fdHermite
b. Control the segment using the rational shap&aiter, and the
appropriate€*
c. Estimate the node value and the node value i#acuolith the segment, as well
as at the boundaries
d. Calculate the segment monotonicity
2. PolynomialBasisSplind>olynomialBasisSpline implements Samples for the

Construction and the usage of polynomial (both leegand Hermite) basis spline

functions. It demonstrates the following:
a. Control the polynomial segment using the ratishape controller, the

appropriat€®, and the basis function
b. Demonstrate the variational shape optimizatiemalvior
c. Estimate the node value and the node value i#acualith the segment, as well
as at the boundaries
d. Calculate the segment monotonicity and the ¢uregenalty
3. BasisTensionSplineSd&asisTensionSplineSet implements Samples for the

Construction and the usage of various basis splinetions. It demonstrates the

following:
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d.

Construction of Kocke-Lyche-Kvasov tension spegment control
parameters - using hyperbolic, exponential, ratibnear, and rational
guadratic primitives

Control the segment using the rational shap&aiter, and the appropriate

Ck

Estimate the node value and the node value iacuolhth the segment, as well
as at the boundaries

Calculate the segment monotonicity

4. BasisBSplineSeBasisBSplineSet implements Samples for the Coatstm and the

usage of various basis B Spline functions.

5. BasisMonicHatComparisoBasisMonicHatComparison implements the comparison

of the basis hat functions used in the construaticthe monic basis B Splines. It

demonstrates the following:

a.
b.
C.
d.

e.

Construction of the Linear Cubic Rational Raw Hanctions
Construction of the Quadratic Cubic Rational Réav Functions
Construction of the Corresponding Processediderasis Hat Functions
Construction of the Wrapping Monic Functions

Estimation and Comparison of the Ordered Devigat

6. BasisMonicBSplineBasisMonicBSpline implements Samples for the @oieson

and the usage of various monic basis B Splinekertonstrates the following:

a.

b.

C.

Construction of segment B Spline Hat Basis Hanst
Estimation of the derivatives and the basis envempnulative integrands
Estimation of the normalizer and the basis envetapeulative normalized

integrand

7. BasisMulticBSplineBasisMulticBSpline implements Samples for the §torction

and the usage of various multic basis B Splinegethonstrates the following:

a.
b.

C.

Construction of segment higher order B SplineB#sis Functions
Estimation of the derivatives and the basis envempnulative integrands
Estimation of the normalizer and the basis envetapeulative normalized

integrand
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8. BSplineSequenc®SplineSequence implements Samples for the Qarigin and
the usage of various monic basis B Spline Sequettasmonstrates the following:

a. Construction and Usage of segment Monic B S@8eguence

b. Construction and Usage of segment Multic B $pBequence

Stretch Sample Package (org.drip.sample.stretch)

The stretch sample package contains samples thdrdgrate the construction,

modification, and usage of stretches based offftédrdnt basis splines. They illustrate

the computation of the curvature and the lengtlajbes, and construction of best fit

regression spline samples. Finally they bringlitadether in showing how to build latent

state from measurements.

1. StretchEstimatiarStretchEstimation demonstrates the Stretch buddd usage API.
It shows the following:

a. Construction of segment control parametersyruohial (regular/Bernstein)
segment control, exponential/hyperbolic tensionme=g control, Kaklis-
Pandelis tension segment control

b. Perform the following sequence of tests foneegisegment control for a
predictor/response range

i. Assign the array of Segment Builder Parameterse-per segment

ii. Construct the Stretch Instance

iii. Estimate, compute the segment-by-segment nwmnoity and the
Stretch Jacobian

iv. Construct a new Stretch instance by insertipgia of
predictor/response knots

v. Estimate, compute the segment-by-segment moiuitipand the
Stretch Jacobian

c. Demonstrate the construction, the calibratiowl, the usage of Local Control
Segment Spline
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d. Demonstrate the construction, the calibratiowl, the usage of Lagrange
Polynomial Stretch
e. Demonstrate the construction, the calibratiod,the usage of C1 Stretch
with the desired customization.
2. TensionStretchEstimatiomensionStretchEstimation demonstrates the StimidHer

and usage API. It shows the following:
a. Construction of segment control parametersyrohial (regular/Bernstein)
segment control, exponential/hyperbolic tensionme=g control, Kaklis-
Pandelis tension segment control
b. Tension Basis Spline Test using the specifiediptor/response set and the
array of segment custom builder control parameters
c. Complete the full tension stretch estimation glantest
3. StretchAdjusterStretchAdjuster demonstrates the Stretch Manifulaand
Adjustment API. It shows the following:

a. Construct a simple Base Stretch

b. Clip a left Portion of the Stretch to constradeft-clipped Stretch

c. Clip aright Portion of the Stretch to constradight-clipped Stretch

d. Compare the values across all the stretchestablesh a) the continuity in the
base smoothness is, preserved, and b) Continuttgsithe predictor ordinate
for the implied response value is also preserved

4. RegressionSplineEstimatétegressionSplineEstimator shows the sample
construction and usage of Regression Splinesnibdstrates the construction of the

segment's predictor ordinate/response value cortiamand eventual calibration.
5. PenalizedCurvatureEF®enalizedCurvatureFit demonstrates the settingndpthe

usage of the curvature and closeness of fit penglepline. It illustrates in detail the

following steps:
a. Set up the X Predictor Ordinate and the Y RespMalue Set
b. Construct a set of Predictor Ordinates, thes@®ases, and corresponding
Weights to serve as weighted closeness of fit
c. Construct a rational shape controller with tesiced shape controller tension

parameters and Global Scaling
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d. Construct the segment inelastic parameter $h@pj with 2nd order

roughness penalty derivative, and without constrain

e. Construct the base, the base + 1 degree sefuiktdr control

f. Construct the base, the elevated, and the lhdxdis spline stretches

g. Compute the segment-by-segment monotonicitglfdhe three stretches
h. Compute the Stretch Jacobian for all the thiestches

i. Compute the Base Stretch Curvature Penalty Bs&im
J.  Compute the Elevated Stretch Curvature Penatyrtate
k. Compute the Best Fit Stretch Curvature Penatintate
6. PenalizedCurvatureLengthFARenalizedCurvatureLengthFit demonstrates thengett

up and the usage of the curvature, the lengthftandloseness of fit penalizing
spline. This sample shows the following:
a. Set up the X Predictor Ordinate and the Y RespMalue Set
b. Construct a set of Predictor Ordinates, thes®ases, and corresponding
Weights to serve as weighted closeness of fit
c. Construct a rational shape controller with tesiced shape controller tension
parameters and Global Scaling
d. Construct the Segment Inelastic Parameter $h@®j with First Order
Segment Length Penalty Derivative, Second Ordem8agCurvature
Penalty Derivative, their Amplitudes, and withowdr@traint

e. Construct the base, the base + 1 degree sefuiktdr control

—h

Construct the base, the elevated, and the lhdxdis spline stretches
Compute the segment-by-segment monotonicitalfdhe three stretches
Compute the Stretch Jacobian for all the thnestches

i. Compute the Base Stretch Curvature, Length thedest Fit DPE

J. Compute the Elevated Stretch Curvature, Lermtl, the Best Fit DPE

k. Compute the Best Fit Stretch Curvature, Lengtid the Best Fit DPE

7. CustomCurveBuildeiCustomCurveBuilder contains samples that demo todwuild

= @

a discount curve from purely the cash flows. Ityides for elaborate curve builder
control, both at the segment level and at the Stretvel. In particular, it shows the

following:
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a. Construct a discount curve from the discourtbfacavailable purely from the
cash and the euro-dollar instruments
b. Construct a discount curve from the cash flovalable from the swap
instruments
In addition, the sample demonstrates the followwags of controlling curve
construction:
» Control over the type of segment basis spline
« Control over the polynomial basis spline ordr, and tension parameters
» Provision of custom shape controllers (in this qasenal shape controller)

» Calculation of segment monotonicity and convexity

Spline/Stretch Regression Test Package (org.drip.geession.spline)

This package contains the random input regressies on the spline and stretch
instances. Runs regress on C1Hermite, local cosnolothing, single segment
Lagrangians, multi-segment sequences using a yafapline/stretch basis functions
and controls.

1. BasisSplineRegressdasisSplineRegressor implements the custom bpbige

regressor for the given basis spline. As part efrdgression sequence, it executes the
following:

a. Calibrate and compute the left and the rightlian

b. Reset right node and re-run calibration

c. Compute an intermediate value Jacobian

2. HermiteBasisSplineRegressblermiteBasisSplineRegressor implements the

BasisSplineRegressor using the Hermite basis spgressor.
3. LagrangePolynomialStretchRegresd@grangePolynomialStretchRegressor

implements the BasisSplineRegressor using the &degimentLagrangePolynomial

regressor.
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4. LocalControlBasisSplineRegressbocalControlBasisSplineRegressor implements

the local control basis spline regressor for thvemgibasis spline. As part of the
regression run, it executes the following:
a. Calibrate and compute the left and the rightlian
b. Insert the Local Control Hermite, Cardinal, &etmull-Rom knots
c. Run Regressor for the C1 Local Control C1 Slogertion Bessel/Hermite
Spline
d. Compute an intermediate value Jacobian

5. BasisSplineRegressorSBasisSplineRegressorSet carries out regressstingefor

the following series of basis splines:

a. Polynomial Basis Spline, n = 2 basis functiams C*
b. Polynomial Basis Spline, n = 3 basis functicrsj C*
c. Polynomial Basis Spline, n = 4 basis functicrsj C*
d. Polynomial Basis Spline, n = 4 basis functiers]j C*
e. Polynomial Basis Spline, n = 5 basis functi@ms| C*
f.  Polynomial Basis Spline, n = 5 basis functicarsg C?
g. Polynomial Basis Spline, n = 5 basis functiarsj C*
h. Polynomial Basis Spline, n = 6 basis functiarsj C*

Polynomial Basis Spline, n = 6 basis functicarsg C*

j. Polynomial Basis Spline, n = 6 basis functicarsg C*
k. Polynomial Basis Spline, n = 6 basis functicarsj C*
l.  Polynomial Basis Spline, n = 7 basis functicarsgl C*
m. Polynomial Basis Spline, n = 7 basis functiarsj C*
n. Polynomial Basis Spline, n = 7 basis functiens) C*
0. Polynomial Basis Spline, n = 7 basis functicrsj C*

Polynomial Basis Spline, n = 7 basis functicars]j C°

o

Bernstein Polynomial Basis Spline, n = 4 basigfions, andC?

Exponential Tension Spline, n = 4 basis fundaijdfension = 1., an@?

-

s. Hyperbolic Tension Spline, n = 4 basis functjdfension = 1., an€?
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t. Kaklis-Pandelis Tension Spline, n = 4 basis fioms, KP = 2, andC?
u. C1 Hermite Local Spline, n = 4 basis functicarsg C*
v. Hermite Local Spline with Local, Catmull-Rom,ca@ardinal Knots, n = 4

basis functions, an@*

6. BasisSplineRegressionEngimasisSplineRegressionEngine implements the

RegressionEngine class for the basis spline ragrefisctionality.
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