Fixed Point Search in Credit Analytics

Lakshmi Krishnamurthy
v0.27, 20 January 2014

Introduction

Framework Glossary

=

Hyperspace SearcHyperspace search is a search to determine whéthentity is

inside the zone of a range, e.g., bracketing search
Hyperpoint SearctHyperpoint searches are hard searches that skearah exact

specific point (to within an appropriately estabésd tolerance).

Iterate NodesThis is the set of the traveled nodes (variatgCitve Function
ordered pairs) that contain the trajectory traveled

Iteration Search Primitive$he set of variate iteration routines that geteetiae

subsequent iterate nodes.

Compound iterator search schei®earch schemes where the primitive iteration

routine to be invoked at each iteration are evalliat

RunMap Map that holds the program state at the end df éaration, in the generic
case, this is composed of the Wengert iterate fisid@along with the corresponding
root finder state.

Cost of Primitive (cop)This is the cost of invocation of a single vagidgerator

primitive.

Document Layout

1.
2.

Base Framework
Search Initialization
a. Bracketing
b. Objective Function Failure
c. Bracketing Start Initialization
d. Open Search Initialization
e. Search/Bracketing Initializer Customization Hglics

3. Numerical Challenges in Search
Variate Iteration
Open Search Methods
a. Newton’s Method
6. Closed Search Methods
a. Secant
b. Bracketing Iterative Search
c. Univariate Iterator Primitive
I. Bisection
ii. False Position
iii. Inverse Quadratic
iv. Ridder's
d. Univariate Compound Iterator
i. Brent's Method
ii. Zheng's Method
7. Polynomial Root Search
8. References
9. Figures
10. Fixed Point Search Software Components
a. Execution Initialization
b. Bracketing
c. Execution Customization
d. Fixed Point Search
e. Variate Iteration
f

Initialization Heuristics

Framework

The root search given an objective function iéédoal is achieved by iteratively

evolving the variate, and involves the followingyst:

Search initialization and root reachability deteration Searched is kicked off

by spawning a root variate iterator for the seandfalization process (described
in detalil in the next section).

Absolute Tolerance Determination

Root Search Iteratiohe root is searched iteratively according toftilewing

steps:
1. The iterator progressively reduces the brackethw
2. Successive iteration occurs using either asipgmitive (e.g., using the
bisection primitive), or using a selector schenat thicks the primitives
for each step (e.g., Brent’'s method).
3. For Open Method, instead of 1 and 2, the roudme=s towards
convergence iteratively.

Search Termination Detectioimhe search termination occurs typically based on

the following:
» Proximity to the Objective Function Goal
» Convergence on the variate

* Exhaustion if the number of iterations

The flow behind these steps is illustrated guFe 1.
The “Flow Control Variate” in root search is tl@@bjective Function Distance to

Goal” Metric.

=

Search Initialization

Broadly speaking, root finding approaches cadibeled into a) those that bracket
roots before they solve for them, and b) thosedbatt need to bracket, opting
instead to pick a suitable starting point.
Depending upon the whether the search is a étiagkor an open method, the search
initialization does one the following:

o Determine the root brackets for bracketing methods

0 Locate root convergence zone for open methods
Initialization begins by a search for the staytzone. A suitable starting point/zone is
determined where, by an appropriate choice fortérator, you are expected to reach
the fixed-point target within a sufficient degrdeeliability. Very general-purpose
heuristics often help determine the search stant.zo
Both bracketing and open initializers are hypacg searches, since they search for
something “IN”, not “AT".

Bracketing

1.

Bracketing is the process of localizing the dix@int to within a target zone with the
least required number of Objective Function calboites. Steps are:

o0 Determine a valid bracketing search start

0 Choose a suitable bracket expansion

0 Limit attention to where the Objective Functiordefined (more on this below).
Figure 2 shows the flow for the Bracketing roati

Bracketing methods require that the initial seanterval bracket the root (i.e. the

function values at interval end points have opgosigns).

10.

11.

Bracketing traps the fixed point between twaatarvalues, and uses the intermediate
value theorem and the continuity of the Objectiuadfion to guarantee the
presence/existence of the fixed point between them.

Unless the objective function is discontinudurscketing methods guarantee
convergence (although may not be within the spatifieration limit).

Typically, they do not require the objective ¢tian to be differentiable.

Bracketing iteration primitives’ convergenceigially linear to super-linear.
Bracketing methods preserve bracketing througbomnputation and allow user to
specify which side of the convergence intervaldiest as the root.

It is also possible to force a side selectidarat root has been found, for example, in
sequential search, to find the next root.

Generic root bracketing methods that treabtijective function as a black box will
be slower than targetted ones — so much so thattreconstitute the bulk of the
time for root search. This is because, to accomteaggizneric robustness coupled
with root-pathology avoidance (oscillating brackatrs etc), these methods have to
perform a full variate space sweep without any mggions regarding the location of
the roots (despite this most bracketing algoriticarsnot guarantee isolation of root
intervals). For instance, naive examination of@gective Function’s “sign-flips”
alone can be misleading, especially if you braéiked-points with even numbered
multiplicity within the brackets. Thus, some waysanalyzing the Black Box
functions (or even the closed form Objective Furd) are needed to better
target/customize the bracketing search (of cog@esimony in invoking the number
of objective function calls is the main limitation)

The first step is to determine a valid bracigeBearch start. One advantage with
univariate root finding is that objective functicange validity maybe established
using an exhaustive variate scanner search withiotrfying about combinatorial

explosion.

Objective Function Failure

1. Objective Function may fail evaluation at theaped variate for the following
reason:
o Objective Function is not defined at the specifiadate.
0 Objective Function evaluates to a complex number.
o Objective Function evaluation produces NaN/Infiftlgder-flow/Over-flow
errors.
o In such situations, the following steps are usesteer the variate to a valid
zone.
2. Objective Function undefined at the Bracketimgndidate Variatelf the Objective

Function is undefined at the starting variate,dfagting variate is expanded using the
variate space scanner algorithm described abotee ibbjective Function like what
is seen in Figure 3, a valid starting variate @ilentually be encountered.

3. Obijective Function not defined at any of the didate VariatesThe risk is that the

situation in Figure 4 may be encountered, wherev#iiate space scanner iterator
“‘lumps over” the range over which the objectivedtion is defined. This could be
because the objective function may have become lexmin this case, remember
that an even power of the objective function alas tihe same roots as the objective
function itself. Thus, solving for an even powettloé objective function (like the

square) — or even bracketing for it — may help.

Bracketing Start Initialization

1. Figure 5 shows the flow behind a general-purfoaeket start locator.

2. Once the starting variate search is successidlthe objective function validity is
range-bound, then use an algorithm like bisectooracket the root (as shown in
Figure 6 below).

3. However, if the objective function runs out &f validity range under the variate
scanner scheme, the following steps need to urderta
o If the left bracketing candidate fails, bracketiaglone towards the right using the

last known working left-most bracketing candidatdlze “left edge”.

o Likewise, if the right bracketing candidate faltsacketing is done towards the
left using the last known working right-most braitkg candidate as the “right
edge”.

4. The final step is to trim the variate zone. ddime variate space scanner algorithm,
and the mapped variate/Objective Function evaloatithe tightest bracketing zones

are extracted (Figure 7).

Open Search Initialization

1. Non-bracketing methods use a suitable startimgt po kick off the root search. As is
obvious, the chosen starting point can be criticaletermining the fate of the search.
In particular, it should be within the zone of cergence of the fixed-point root to
guarantee convergence. This means that specialigdibds are necessary to
determine zone of convergence.

2. When the objective function is differentiableg thon-bracketing root finder often
may make use of that to achieve quadratic or higheed of convergence. If the non-
bracketing root finder cannot/does not use theatibge function’s differentiability,
convergence ends up being linear to super-linear.

3. The typical steps for determining the open mgttarting variate are:

o Find a variate that is proximal to the fixed point
o Verify that it satisfies the convergence heuristic

4. Bracketing followed by a choice of an approgrigtimitive variate (such as
bisection/secant) satisfies both, thus could beaal gtarting point for open method
searches like Newton’s method.

5. Depending upon the structure of the Objectiveckan, in certain cases the chain
rule can be invoked to ease the construction ofl#revative — esp. in situations
where the sensitivity to inputs are too high/low.

Search/Bracketing Initializer Heuristic Customization

Specific Bracketing Control Parameters
2. Left/Right Soft Bracketing Start HintShe other components may be used from the

bracketing control parameters.
3. Mid Soft Bracketing Start Hinfhe other components may be used from the

bracketing control parameters.
4. Floor/Ceiling Hard Bracketing EdgeBhe other components may be used from the

bracketing control parameters.
5. Left/Right Hard Search Boundariés this case, no bracketing is done — brackeds ar

used to verify the roots, search then starts dyrect

N o o &

Numerical Challenges in Search

Bit Cancellation
lll-conditioning (e.g., see high order polynohiaots)

"domains of indeterminacy" — existence of siteaitervals around which the
objective function hovers near the target

Continuous, but abrupt changes (e.g., near-@atessian objection function)
Under-flow/over-flow/roundoff errors

root multiplicity (e.g., in the context of polymial roots)
Typical solution is to transform the objectivm£tion to a better conditioned function

— insight into the behavior of the objective carnubed to devise targetted solutions.

10

1.

2.

3

N

Variate Iteration

Viyg =1 (vi , Di) wherev, is the 1 variate and is the root finder state after tHR i

iteration.

Iterate nodes as Wengert variablésrolling the traveled iterate nodes during the

forward accumulation process, as a Wengert list,psoxy to the execution time, and
may assist in targeted pre-accumulation and cheakipg.

. Cognition Techniques of Mathematical Functions

0 Wengert Variate Analysis => Collection of the Wergeariates helps build
and consolidate the Objective Function behavianftbe variate iterate
Wengert nodes — to build a behavioral picture ef@bjective Function.

0 Objective Function Neighborhood Behavior => WitlesvWengert variable,
calculation of the set of forward sensitivities dhd reverse Jacobians builds
a local picture of the Objective Function withoatving to evaluate it.

. Check pointingCurrently implemented using a roving variate/@ffate node
“RunMap”; this is also used to check circularitytive iteration process.

Compound Iterator RunMapor compound iterations, the iteration circularg

determined the doublet/{, 1}, so the Wengert RunMap is really a doublet Multi-

Map.

Hyperpoint univariate fixed point search proxinariterion For hyperpoint checks,
the search termination check needs to explicithpaanodate a “proximity to target”
metric. This may not be then case for hyperspaeeksh

Reqgime crossover indicat@n one side the crossover, the variate is witténfast

convergence zone, so you may use faster Open tpewlike the Newton’s
methods. On the other side, continue using thekbteng techniques.
a. Fast side of the crossover must be customifetadeiding other Halley's
method variants); robust side should also be cugtbite (say False
Position).

11

8. Crossover indicator determinatid¥eed to develop targeted heuristics needed to

determine the crossover indicator.

o Entity that determines the crossover indicator magetermined from the

. . : Xy a1 — X . — .
relative variate shift change®™®—="- and the relative objective function
XN T XNa

changeM .

YN T Yna

9. Types of bracketing primitives

Bracket narrower primitives (Bisection, false pmsi}, and interpolator primitives
(Quadratic, Ridder).
Primitive’s COP determinants: Expressed in termshafracteristic compute units.

a. Number of objective function evaluation (gengrekpensive).

b. Number of variate iterator steps needed.

c. Number of objective function invocation per agyi variate iteration step.
Bracket narrower primitives => Un-informed iteratiprimitives, low invocation
cost (usually single objective function evaluatidm)t low search targeting
quality, and high COP.

Interpolator primitives => Informed iteration pritivies, higher invocation cost
(multiple objective function evaluations, usually Better search targeting

quality, and lower COP.

10. Pre-OF Evaluation Compound Heuristieuristic compound variates are less

informed, but rely heavily on heuristics to extrw subsequent iterator, i.e., pre-OF

evaluation heuristics try to guide the evolutioth@ut invoking the expensive OF

evaluations (e.g., Brent, Zheng).

11. OF Evaluation Compound Heuristichese compound heuristics use the OF

evaluations as part of the heuristics algorithragtablish the next variate => better

informed

12

10.

11.

12.

Open Search Method: Newton’s method

Newton’s method uses the objective functiand it's derivativd’ to iteratively
evaluate the root.
Given a well-behaved functidrand it's derivatived’ defined over reat, the

algorithm starts with an initial guesseffor the root.

o o f(x,)
First iteration yieldsq, = X, ———5% -
f(%)
This is repeated iR ,, = X, —% till a valuex, that is convergent enough is
X,

obtained.
If a is a simple root (root with multiplicity 1), angl =x, —a andé&,,, = X, — @

respectively, then for sufficiently large the convergence is quadratic:

_1f'(x)

Enn = E f(Xn)

Newton’s method only works whéimas continuous derivatives in the root

2
n

neighborhood.

When analytical derivatives are hard to comptaggulate slope through nearby
points, but convergence tends to be linear (likauss.

If the first derivative is not well behaved/daext exit/undefined in the neighborhood
of a particular root, the method may overshoot, @gimdrge from that root.

If a stationary point of the function is encaened, the derivative is zero and the
method will fail due to division by zero.

The stationary point can be encountered ahttial or any of the other iterative
points.

Even if the derivative is small but not zete hext iteration will be a far worse
approximation.

A large error in the initial estimate can cdnite to non-convergence of the
algorithm (owing to the fact that the zone is algsof the neighborhood convergence

zone).

13

13. If a is a root with multiplicityn > 1, then for sufficiently large, the convergence
becomes linears,,, = mT_lgn

14. When there are two or more roots that are dtugether then it may take many
iterations before the iterates get close enougimé&oof them for the quadratic
convergence to be apparent.

15. However, if the multiplicityn of the root is known, one can use the following
modified algorithm that preserves the quadratiozeogence rate (equivalent to using

successive over-relaxation)
Xorr = % ~M—7§

16. The algorithm estimat@safter carrying out one or two iterations, and thea that
value to increase the rate of convergence. Altarelgt the modified Newton’s

method may also be used:

o f(x,)f'(x,) .
o =5 TR 06) = 106)T)]

17. It is easy to show that if'(x,) = 0 and f"(x,) # 0, the convergence in the

neighborhood becomes linear. Furtherf ifx,) # 0 and f"(x,) = 0, convergence

becomes cubic.

18. One way of determining the neighborhood ofrtiwg. Define

where

(a) p is a fixed point ofy [g,g IC[a,b]]
(b) k is a positive constant,

(©) p, DC[a,b], and

(e) g(x)OC[ab]for all xO[a,b].

14

0

19. One sulfficient condition fop, to initialize a convergent sequenh&K}kzo, which

converges to the root= pof f(x) = 0is that(p-J, p+J)and thatd be chosen so

thatMs k<1 forall xd(p-d,p+9).
F{x)f(x)

20. It is easy to show that under specific chofoeshe starting variate, Newton’s
method can fall into a basin of attraction. Thagese&gments of the real number line
such that within each region iteration from anynpdeads to one particular root - can
be infinite in number and arbitrarily small. Algbge starting or the intermediate point
can enter a cycle - the n-cycle can be stabldyeobé&havior of the sequence can be
very complex (forming a Newton fractal).

21. Newton's method for optimization is equivaleniteratively maximizing a local
guadratic approximation to the objective functiBnt some functions are not
approximated well by quadratic, leading to slowvangence, and some have turning
points where the curvature changes sign, leadifgjltce. Approaches to fix this use
a more appropriate choice of local approximati@ntfuadratic, based on the type of
function we are optimizing. [13] demonstrates trseeh generalized Newton rules.
Like Newton's method, they only involve the finatot derivatives of the function, yet
converge faster and fail less often.

22. One significant advantage of Newton’s methathas it can be readily generalized to
higher dimensions.

23. Also, Newton’s method calculates the Jacobidomatically as part of the
calibration process, owing to the reliance on ddiwes — in particular, automatic

differentiation techniques can be effectively putse.

15

Closed Search Methods

Secant

1. Secant method results on the replacement afe¢heative in the Newton’s method
with a secant-based finite difference slope.

2. Convergence for the secant method is slowerttm@aiewton’s method (approx.
order is 1.6); however, the secant method doesagoiire the objective function to be
explicitly differentiable.

3. It also tends to be less robust than the pofmisaoketing methods.

Bracketing Iterative Search

1. Bracketing iterative root searches attempt tmpassively narrow the brackets and to
discover the root within.

2. The first set discusses the goal search unteaterator primitives that are commonly
used to iterate through the variate.

3. These goal search iterator primitives continergegating a new pair of iteration nodes
(just like their bracketing search initializatioaunter-parts).

4. Certain iterator primitives carry bigger “localdst, i.e., cost inside a single iteration,
but may reduce global cost, e.g., by reducing thaber iterations due to faster
convergence.

5. Further, certain primitives tend to be inhengntbre robust, i.e., given enough
iteration, they will find the root within — althobhghey may not be fast.

6. Finally the case of compound iterator searcleses, search schemes where the
primitive iteration routine to be invoked at eatdration is evaluated on-the-fly, are

discussed.

16

7. lterative searches that maintain extended atatess searches pay a price in terms of
scalability — the price depending on the naturetaecamount of state held (e.g.,

Brent’'s method carries iteration selection stateengas Zheng's does not).

Univariate iterator primitive: Bisection

1. Bisection starts by determining a pair of ro@tdietsa andb.
. . atb . .
2. ltiteratively calculates f at = — then uses to replace eithea or b, depending

on the sign. It eventually stops whiglnas attained the desired tolerance.
Bisection relies ohbeing continuous within the brackets.
4. While the method is simple to implement ancatdg (it is a fall-back for less reliable

ones), the convergence is slow, producing a siniglef accuracy with each iteration.

Univariate iterator primitive: False Position

1. False position works the same as bisection,pxhat the evaluation poiotis

linearly interpolatedf is computed at = aflb)+btla) (b)+bf(a) , Wheref(a) andf(b) have
f(b)+ f(a)

opposite signs. This holds obvious similaritieswifte secant method.
False position method also requires tha continuous within the brackets.

3. Itis simple enough, more robust than secanfastdr than bisection, but
convergence is still linear to super-linear.

4. Given that the linear interpolation of the fatsesition method is a first-degree
approximation of the objective function within theackets, quadratic approximation
using Lagrange interpolation may be attempted as

f(X): (X_Xn—l)(x_xn) f oo+ (X—Xn_z)(X—Xn) fos (X_Xn—Z)(X_Xn—l)
(%o = %) = %) " (6 = X)X = %) T (% = X)%, = %,0)

fy

17

where we use the three iteratesp, x,-1 andx,, with their function values;_,, f,-1 and

fn.

5. This reduces the number of iterations at theersge of the function point
calculations.

6. Using higher order polynomial fit for the objeetfunction inside the bracket does
not always produce roots faster or better, sinogay result in spurious inflections
(e.g., Runge’s phenomenan).

7. Further, quadratic or higher fits may also caisaplex roots.

Univariate iterator primitive: Inverse Quadratic

1. Performing a fit of the inverséf instead of avoids the quadratic interpolation
problem above. Using the same symbols as abov@bese can be computed as

a0 -fo\y-f, - \y—f, - \y-f..
f (y)) (fn(—i/— fn—lg§¥n—2 _)fn) ezt (fn(—{ - fn—zggn—l -)fn) s * ((fi/_ fn—zggln - fn—z

)Xn

2. Convergence is faster than secant, but poor weates not close to the root, e.g., if

two of the function valuek-», f,-1 andf, coincide, the algorithm fails.

Univariate iterator primitive: Ridder’s

1. Ridders' method is a variant on the false pmsmnethod that uses exponential
function to successively approximate a root. of
2. Given the bracketing variateg,andx,, which are on two different sides of the root

being sought, the method evaluates x at %11 Xy ;XZ

3. It extracts exponential factar such that f(x)e"x forms a straight line across X,

andxs. X»is calculated from

18

sig] f(x) - f(x)] f(x)
V() - () f(x,)

Ridder’'s method is simpler than Brent's metlaod] has been claimed to perform

X, = X% + (X = %)

about the same.
However, the presence of the square root caterehunstable for many of the

reasons discussed above.

Univariate compound iterator: Brent and Zheng

Brent's predecessor method first combined hisectsecant, and inverse quadratic to
produce the optimal root search for the next itenat
Starting with the bracket poirds andby, two provisional values for the next iterate

are computed; the first given by the secant method, —ﬁ f(b,), and
- -1

the second by bisectiom :%.

If slies betweer, andm, it becomes the next iterdtg 1, otherwise thenis the next
iterate.

. Then, the value of the new contrapoint is chaseh thaf(ax.1) andf(bk.1) have
opposite signs.

Finally, if f(axs1)| < F(bke1)|, thenaw1 is probably a better guess for the solution than
bx+1, and hence the valuesaf, andby.; are exchanged.

. To improve convergence, Brent’'s method requhastwo inequalities must be
simultaneously satisfied.

a) Given a specific numerical tolerande if the previous step used the bisection

method, ifd < |bK —bK_1| , the bisection method is performed and its rassgd for

the next iteration. If the previous step used paéation, then the check becomes

o< |bk—1 - bl<—2| .

19

b) If the previous step used bisectiofs ifb,| < %|bK -h4|, secant is used;
otherwise the bisection used for the next iteratibthe previous step performed
interpolation,|s-b,| < %h_l -h_,| is checked instead.

7. Finally, since Brent's method uses inverse ciedinterpolations has to lie between
(3ac + by) / 4 andby.

8. Brent’s algorithm uses three points for the nexérse quadratic interpolation, or
secant rule, based upon the criterion specifiedabo

9. One simplification to the Brent’'s method adde amore evaluation for the function at
the middle point before the interpolation.

10. This simplification reduces the times for tloaditional evaluation and reduces the
interval of convergence.

11. Convergence is better than Brent's, and asafa$simple as Ridder’s.

20

Polynomial Root Search

1. This section carries out a brief treatment ehpating roots for polynomials.

. While closed form solutions are available folypomials up to degree 4, they may
not be stable numerically.

Popular technigues such as Sturm’s theorem a&sdddtes’ rule of signs are used for
locating and separating real roots.

Modern methods such as VCA and the more pow¥8 use these with
Bisection/Newton methods — these methods are umskthple/Mathematica.

Since the eigenvalues of the companion matr& polynomial correspond to the
polynomial’s roots, common fast/robust methods usdthd them may also be used.
. A number of caveats apply specifically to polynal root searches, e.g., Wilkinson’s
polynomial shows why high precision is needed wt@mputing the roots —
proximal/other ill-conditioned behavior may occur.

Finally, special ways exist to identify/extractiltiplicity in polynomial roots — they
use the fact thd{x) andf'(x) share the root, and by figuring out their GCD.

21

Software Framework Component

Execution Initialization

1. Executionlnitializer implements the initialization execution and custzation
functionality. It performs two types of variatetialization:

0 Bracketing initialization This brackets the fixed point using the braclgtin

algorithm described above. If successful, a pavasiate/Objective Function
coordinate nodes that bracket the root is generadtezse brackets are
eventually used by routines that iteratively detamthe root. Bracketing
initialization is controlled by the parametersBracketingControl Params.

o Convergence Zone initializatioithis generates a variate that lies within the

convergence zone for the iterative determinatiotheffixed point using the
Newton's method. Convergence Zone Determinaticongrolled by the
parameters ilConver genceControl Params.
2. ExecutionlnitializationOutput holds the output of the root initializer calcudati It
contains the following fields:
Whether the initialization completed successfutly humber of iterations, the number of
objective function calculations, and the time takarthe initialization

The starting variate from the initialization

Bracketing

1. BracketingControlParams implements the control parameters for bracketing
solutions. It provides the following parameters:
» The starting variate from which the search for kegiog begins

e The initial width for the brackets

22

* The factor by which the width expands with eaclsiige search
* The number of such iterations.
2. BracketingOutput carries the results of the bracketing initialiaatiln addition to the
fields of Executionl nitializationOutput, BracketingOutput holds the left/right
bracket variates and the corresponding valuestoobjective function.

Convergence

1. ConvergenceControlParams holds the fields needed for the controlling the@iion
of Newton's method. It does that using the follgyyorarameters:
* The determinant limit below which the convergenoeezis deemed to have been
reached.
» Starting variate from where the convergence searkitked off.
» The factor by which the variate expands across #gacdtive search.
* The number of search iterations.
2. ConvergenceOutput extends th&xecutionl nitializationOutput by retaining the
starting variate that results from the convergermree search.
o ConvergenceOutput does not add any new field to

Executionl nitializationOutput.

Execution Customization

1. ExecutionControl implements the core root search execution coatrdl
customization functionality.
a. Itis used for a) calculating the absolutertolee, and b) determining whether
the ObjectiveFunction has reached the goal.
b. ExecutionControl determines the execution termination using its

ExecutionControlParams instance.

23

2. ExecutionControlParams holds the parameters needed for controlling thee@ton
of the root finder.
* ExecutionControlParams fields control the root search in one of the failog
ways:
a. Number of iterations after which the searcheisded to have failed
b. RelativeObjectiveFunction Tolerance Factor which, when reached by the
objective function, will indicate that the fixedipbhas been reached
c. Absolute Tolerance fall-back, which is used ¢tedmine that the fixed point

has been reached when the relative tolerance faetmmes zero

Fixed Point Search

1. FixedPointFinder is the base abstract class that is implementedistpmized
invocations, e.g., Newton's method, or any of tteeketing methodologies.
* It invokes the core routine for determining theefipoint from the goal.
» ExecutionControl determines the execution termination.
2. FixedPointFinder main flow comprises of the following steps:
» Initialize the root search zone by determiningesith) the brackets, or b) the
starting variate.
» Compute the absolut@bjectiveFunction tolerance that establishes the attainment
of the fixed point.
* Launch the variate iterator that iterates the varia
» lterate until the desired tolerance has been aitiain
* Return the root finder output.
3. Root finders that derive from this provide immpkntations for the following:

* Variate initialization They may choose either bracketing initializertrer

convergence initializer - functionality is providéat both in this module.

* Variate IterationVariates are iterated using a) any of the stahgamitive built-

in variate iterators (or custom ones), or b) aatarselector scheme for each

iteration.

24

4. FixedPointFinderOutput holds the result of the root search.
* |t contains the following fields:
0 Whether the search completed successfully
o The number of iterations, the number of objectivection base/derivative
calculations, and the time taken for the search
0 The output from initialization
5. FixedPointFinderNewton customizes th&ixedPointFinder for Open (Newton's)
root finder functionality.
» FixedPointFinderNewton applies the following customization:
» Initializes the fixed point finder by computing tading variate in the
convergence zone
» lterating the next search variate using the Newtorgthod.
6. FixedPointFinderBracketing customizes th&ixedPointFinder for bracketing based
root finder functionality.
* FixedPointFinderBracketing applies the following customization:
o Initializes the root finder by computing the stagtibrackets
0 lIterating the next search variate using one oftlexified variate
iterator primitives.
* FixedPointFinderBracketing does not do compound iterations of the variate
using any schemes - that is done by classes thaicx.
7. FixedPointFinderBrent customizes FixedPointFinderBracketing by applyhne
Brent's scheme of compound variate selector.
» Brent's scheme, as implemented here, is descriimcea
* This implementation retains absolute shifts thaeh@appened to the variate
for the past 2 iterations as the discriminant tregermines the next variate to
be generated.
* FixedPointFinderBrent uses the following parameters specified in
Variatel terationSelector Params:
* The Variate Primitive that is regarded as the "fastthod

* The Variate Primitive that is regarded as the "stbmethod

25

The relative variate shift that determines when"tbbust" method is
to be invoked over the "fast"\

The lower bound on the variate shift between itenstthat serves as
the fall-back to the "robust"

8. FixedPointFinderZheng implements the root locator using Zheng's improseino

Brent's method.

* It overrides thaeterateCompoundVariatmethod inFixedPointFinderBrent

to achieve the desired simplification in the iteratvariate selection.

Variate Iteration

1.

I teratedBracket holds the left/right bracket variates and the egponding values for

the ObjectiveFunction during each iteration.

IteratedVariate holds the variate and the corresponding valuéhier

ObjectiveFunction during each iteration.

Variatel terator Primitive implements the various variate iterator primitivies

implements the following primitives:

Bisection

False Position
Quadratic

Inverse Quadratic
Ridder

It may be readily enhanced to accommodate additimmaitives.

Variatel terator Selector Parameters implements the control parameters for the

compound variate selector scheme used in Brentlsatie

* Brent's method uses the following fieldsMariatel ter ator Selector Parameter s to

generate the next variate:

0 The Variate Primitive that is regarded as the "fastthod

0 The Variate Primitive that is regarded as the "stbmethod

26

o0 The relative variate shift that determines when'tbbust" method is to
be invoked over the "fast"
o The lower bound on the variate shift between itenstthat serves as the

fallback to the "robust".

Initialization Heuristics

InitializationHeuristics implements several heuristics used to kick offfiked point

bracketing/search process. The following custonribgcs are implemented as part of

the heuristics based kick-off:

Custom Bracketing Control Parametefmy of the standard bracketing control

parameters can be customized to kick-off the brtameearch.
Soft Left/Right Bracketing Hint$he left/right starting bracket edges are usesbéts

bracketing initialization hints.

Soft Mid Bracketing HintA mid bracketing level is specified to indicake tsoft

bracketing kick-off.
Hard Bracketing Floor/CeilingA pair of hard floor and ceiling limits are spieeil

as a constraint to the bracketing.

Hard Search Boundarie#\ pair of hard left and right boundaries are sjett to

kick-off the final fixed point search.

These heuristics are further interpreted and deeelanside th&xecutionl nitializer

and theExecutionControl implementations.

27

Figure #1
Fixed Point Search SKU Flow

Fixed Point

Caarrh

v

Extract Starting
Variate/Bracket

v

Has Search

Termination YES

% Fixed Point
Caarrh Daciil

Iterate Variate

28

Figure #2
Bracketing SKU Flow

Bracket

I nhatar Ctart

v

Expand Brackets to Trap

9 Fixed Points

Fixed Point

NO Trapped?

Trim Bracket Zone to
localize Fixed Point

v

29

Figure #3
Objective Function Undefined at the
Starting Variate

A
Objective Function
Vo
< ©
Variate \‘
Starting
Variate
v

30

Figure #4
Obijective Function Undefined at any o
the Candidate Variates

» Variate Scan Jump

Objective Function

riate

<

Tl

Variate i-1 Variate i

31

Figure #5
General Purpose Bracket Start Locator

Bracket Start

I neatar

v

Span the Left Variate

Is the
Objective
Function

i 1 _rci _ _ 1

Span the Right Variate

Is the
Objective
Function

LI USRS - |

YES

NO

NO

32

Found Starting
Point

Figure #6
Bracketing when Objective Function
Validity is Range-bound

A Iteration 1

Iteration i-1

Iteration i

|___—w»Objective Function

Variate Vo \A Vi
< ©) ®
Starting Iteration 1
Variate
\ 4

33

Figure #7
Objective Function Fixed Point

Bracketing

Objective Function

Bracketing Iteration #1

Bracketing Iteration #2

Bracketing Iteration #3

Bracketing Iteration #4

Bracketing Iteration #5

Final Brackets

34

