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Introduction 

 

 

Framework Symbology and Terminology 

 

1. Response Values: The nodal segment calibration values are also referred to as 

response values. 

2. C0, C1, and C2 Continuity: C0 refers to base function continuity. C1 refers to the 

continuity in the first derivative, and C2 refers to continuity in the second. 

3. Parameterized Splines: Here the space formulation is in the local variate space that 

spans 0 to 1 within the given segment – this is also referred to as piece-wise 

parameterization. This automatically renders the coefficient matrix banded (often tri-

diagonal) 

4. Bias: This is the left hand term in the Spline Objective Function – essentially 

measures the exactness of fit. 

5. Variance: This is the right hand term in the Spline Objective Function – essentially 

measures the curvature/roughness. 

 

 

Motivation, Advantage and Purpose 

 

1. Definition: “Spline is a sufficiently smooth polynomial function that is piecewise-

defined, and possesses a high degree of smoothness at the places where the 

polynomial pieces connect (which are known as knots).“ [Spline (Wiki), Judd (1998), 

Chen (2009)] 

2. Advantages: 

a. Lower degree, gets rid of oscillation associated with the higher degrees 

[Runge’s phenomenon (Wiki)] 

b. Easy, accurate higher degree smoothness specification 
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3. Applications: 

• Polynomial interpolation 

• Function approximation 

• Surface/contour representation 

• Computer graphics 

• CAD 

• Functional Solution Proxy (Differential Equations, Sensitivity Jacobians etc) 

• Segment/span Calibration 

• Model Inference Extraction 

• Functional Basis Decomposition 

• Image/Signal processing 

• Finance (e.g., Curve Construction) 

 

 

Literature Review 

 

1. Basic Spline: Covered in [Spline (Wiki), Bartels, Beatty, and Barsky (1987), Judd 

(1998), Fan and Yao (2005), Chen (2009), Katz (2011)]. 

2. History: Schoenberg (1946), Ferguson (1964), Epperson (1998). 

 

 

Purpose of the Document 

 

1. Spline design/SKU objectives, state-of-the art survey. 

2. Calibration SKU establishment, and techniques 

3. Spline type categorizations 

4. Design objective match criteria establishment 

5. Mathematical Local/global formulation 

6. Jacobian 

7. Span/Segment Control Parameters 
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8. Multi-dimensional Splines 

9. Smoothing Spline / Variational Techniques 

10. Surface Construction / Fitting / Image / Contour Representation 

11. Spline Analytics software SKU partitioning and construction 

12. API Usage and Samples discussion 
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Spline Builder SKU 

 

 

Design Objectives behind Interpolating Splines 

 

1. Symbols and Definition: 

• Good overview of the desired characteristics is provided in Goodman (2002). 

• Data: { } Niii xxxxNiRyx <<<<<=∈ ......;,...,0,, 10
2  

• Interpolating function: ( ) [ ] [ ]RRxxfyxf Nii ⇒→= 2
0,:;  

• Optional Actual Function: ( )xg  

2. Monotonicity : ( )ixf  increases with increase in iy  (and vice versa). 

• Truly monotonic means that the segment extrema match ( )xg  extrema. 

• Co-monotone => ( )ixf  increases with increase in iy  within the segment (and 

vice versa) 

o Strictly co-monotone implies that sub-segment monotonicity must also 

be met, so “local monotonicity” where monotonicity matches between 

( )ixf  and iy  at the segment level, is what is accepted – here, there can be 

an inflection among segments in the immediate proximity of the data 

extrema. 

• At most, one extremum is allowed in { }ii xx 1, + . 

3. Convexity: ( )ixf  should also be convex wherever iy  is convex (and vice versa). 

• At the segment level this becomes co-convex. As before strict co-convexity is 

often highly restrictive, so local convexity is preferred. The earlier established 

conditions should also satisfy convexity criteria. 

• Desirable to have at most one inflection in { }ii xx 1, + . 

4. Smoothness: Smoothness (also called shape-preserving) corresponds to the least 

curvature. Even C0 can be “smooth”, and so is Ck. 
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5. Locality : Locality  means that the dependence of ( )xf  is primarily only on ( )ixf  and 

( )ixf . This is advantageous to schemes that locally modify/insert the points. 

6. Approximation Order : Approximation Order  indicates the smallest polynomial 

degree at which ( )xf  departs from ( )xg  as the density of x  increases. More 

formally, it is the m in ( )mhOgf ≈− , where { }1,...,0:max 1 −=−= + Nixxh ii . 

• For spline segments where ( )xg  through ( )xg  are specified locally, the first 

degree of departure should the first degree of non-continuity infinitesimally for 

both polynomial and non-polynomial splines, i.e., it should be 1+k  where the 

continuity criterion is kC . 

7. Other Desired Criteria: 

• The interpolating proxy ( )xf  should be able to replicate the target ( )xg . 

• Fairness – loosely a measure of “pleasing to the eye”. 

• Possible ( )xf  invariance under variate scaling/reflection. 

• Controlled derivative behavior => Small changes in x produce small changes in 

( )xf . 

8. Assessment of Monotonicity and Convexity: An individual segment can be assessed 

to be monotone/convex etc:, but from the data PoV, peaks, valleys, and inflection 

occur only at the knots. These can be assessed only at the span level. 

 

 

Spline Calibration Framework 

 

1. Definition: Calibration is the process specifying “mandatory” and “desirable” classes 

of inputs to fully determine the elastic properties. 

• It makes sense to generate the calibration micro-Jacobians right at the calibration 

time. 

2. Two types of static fields: Elastic and inelastic 

• Elastic Fields => Unconstrained change of elastic fields do not force adjustment 

response (i.e., force disequilibrium). 
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o Typically elastic fields correspond to more volatile properties (e.g., 

temperature of a solid body, quotes of the instruments etc.) 

• Inelastic Fields => Unconstrained change of inelastic field forces re-adjustment 

response (i.e., disequilibrium, followed by stabilization) 

o Typically inelastic fields correspond to constitutive properties (e.g., 

dimensions of a solid body, instruments composing a curve, etc) 

o Inelastic properties may also impose invariant, calibration independent 

edge/boundary behavioral constraint on the elastic ones. 

3. Calibrator Creation: On creation, objects acquire specific values for the constitutive 

inelastic fields. Volatile elastic fields may as yet be undefined. 

• Setting of the elastic fields => Elastic fields adjust or vary to the combination of 

inelastic fields + inputs (external), and are set by the calibration process. 

• Change of inputs => Change of external calibration inputs changes only those 

elastic properties, not the inelastic ones. 

4. Calibration is Inference: Since calibrated parameters are used for eventual prediction, 

calibration is essentially inference. Bayesian classification (an alternate calibration 

exercise) is inference too. 

5. Calibration and entity-variate focus: 

• De-convolving the instrument entity/measure combination is necessary for the 

extraction of the parameter set (this is accomplished by the calibration process). 

• Of course, calibration occurs among the elastic and the inelastic dimensions, and 

the inelastics are parameter set! 

• Parameter calibration/parameterization etc: inherently involve parsimonization – 

this is where the models come in. 

6. Curve Construction off of hard/soft signals: Hard Signals are typically the truthness 

signals. Typically reduce to one calibration parameter per hard observation, and they 

include the following: 

• Actual observations => Weight independent true truthness signals 

• Weights => Potentially indicative of the truthness hard signal strength 
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Soft signals are essentially signals extracted from inference schemes. Again, typically 

reduce to one calibration parameter per soft inference unit, and they include the 

following: 

• Smoothness signals => Continuity, first, second, and higher-order derivatives 

match – one parameter per match. 

• Bayesian update metrics => Inferred using Bayesian methodologies such as 

maximum likelihood estimates, variance minimization, and error minimization 

techniques. 

7. Calibration Boundary Condition: If the calibration metric is based off of a derivative 

whose degree is greater than that used to compose the interpolated segments, then the 

metric will become discontinuous, and thus calibration will fail. For e.g., if you 

impose continuity only across the first derivatives of all the segments, then a 

calibration metric that depends on the 2nd derivative (e.g., financial boundary 

conditions) will fail. 

8. Directionality Bias: Directionality “bias” is inherent in calibration (e.g., left to right, 

ordered sequence set, etc:) – as noted earlier, this simplifies the solution space 

significantly. Therefore, the same directional bias also exists in the calibration nodal 

sequence. 

9. Head Node Calibration: Calibration of the head node is typically inherently different 

from the other nodes, because the inputs needed/used by it could be different. The 

other nodes use continuity/smoothness parameters, which the head node does not. 

10. Parameter Space Explosion: Generally not a problem as long as it is segment-

localized (in matrix parlance, as long the transition matrix is tri-diagonal, or close to 

it), i.e., local information discovery does not affect far away nodes/segments. 

• Also maybe able to use optimization techniques to trim them. 

11. Live Calibrated Parameter Updating: Use automatic differentiation to: 

• Estimate parametric Jacobians (or sub-coefficient micro-Jacobians) to the 

observed product measures. 

• Re-adjust the shifts using the hard-signal strength. 

• Update the parameters from the calculated shifts. 
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• Re-construct the curve ever so periodically (for a full re-build, as opposed to the 

increments). 

• Remember that AD based parametric updates break smoothness (including 

continuity as Bayesian MLE’s) – so use a tolerance in the shift if this is 

acceptable. 

12. Span/Segment Elastic Variates: There are 5 different kinds. 

• Φ  => Span stochastic evolution variate. 

• kΦ  => Stochastic evolution variate for segment k. 

• φ  => Implied Span Quoted Instrument Measure. 

• kφ  => Implied Quoted Instrument Measure for Segment k. 

• kϕ  => Observed Quoted Instrument Measure for Segment k at precisely a single 

variate point – typically, the observations are done at the anterior/posterior 

terminal ends of the segment. 

13. Spline Segment Calibrator: Spline segment calibration has an asymmetrical 

dependence on the left/right calibration value. For a given span, the calibration of the 

non-left most segment depends only on the right most value – the other coefficients 

come from the prior segments. The left most segment, of course, uses both the 

left/right values for calibration. 

 

 

Base Formulation 

 

1. Base Mathematical formulation: 

• ( ) ( )∑
−

=

=
1

0

n

i
ii xfaxy , therefore 

( ) ( )
∑

−

=

=
1

0

n

i
r

i
r

ir

r

dx

xfd
a

dx

xyd
. 

• From known nodes { }00 , yx  and { }11, yx , we can draw the 2 linear equations for 

ia : 

o ( ) ( )∑
−

=

=
1

0

00
n

i
ii fay  
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o ( ) ( )∑
−

=

=
1

0

11
n

i
ii fay  

• From known nodal derivatives ( ){ }r
k k

xyx
100 ,

=
, where ( )

0

0

x

k

k

k dx

yd
xy 








= , we can 

draw the following r linear equations for ia : 

o ( ) ( )
0

1

0

0
xx

n

i
k

i
k

ik
dx

xfd
ay

=

−

=
∑ 








=  where rk ,...,1⇒  

2. Linear of Segment Coefficients to the Response Values ( iy ): In all the spline 

formulations, the Jacobian 
i

j

y

C

∂
∂

 is constant (independent of the response values 

themselves, or their nodal derivative inputs). 

3. Analogies to energy minimization over stretches/surfaces 

• Include notes on segment naturalization 

4. Span Boundary Specification: 

• “Natural” Spline – Energy minimization problem 

• “Financial” Spline 

5. Right Segment Locality Reduction: As you go from the left segment to the right 

segment, the local segment perturbation impact diminishes due to the fact that 

information gets transmitted (through the C1, and C2 continuity constraints) to the 

right from the left. Locality is enhanced if, in some sense, “local” information > the 

transmitted information. Interpolating splines strive to achieve this. 

6. Discrete Segment Mesh vs. Inserted Knots: Inserting knot point is similar to 

discretizing the segment into multiple grids, with one key difference: 

• Discretization uses the same single spline across all the grid units of the segment. 

• Inserted knots introduce additional splines – on between each knot pair. 

7. Segment Elastics: These are effectively the same as shape controller, i.e., the 

following are the shape controlling elastic parameter set: 

• Tension σ  

• Number of basis n  

• Continuity kC  
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• Optimizing derivative set order m  

 

 

B-Splines 

 

1. B-Spline Context Fixation: As postulated by de Boor et. al., B Splines have a 

geometric interpolant context – thereby with the correspondingly strong 

CADG/curve/surface construction focus. Geometric smoothening occurs as a natural 

part of this. 

• The B Spline generation scheme has a recurrence-based iterative polynomial 

generator that admits coinciding control points facilitates surface construction, 

although there are a lot of similarities with shape-preserving interpolation splines. 

2. Lagrange Polynomial vs. kth Order B-Spline Interpolant: Higher order B-Splines are 

defined by the recurrence ( ) 1,1,11,,, 1 −++− −+= kikikikiki BBB εε  where 
iki

i
ki tt

tt

−
−=
−+ 1

,ε  

and ( ) ( ) 11 == tXtB ii  if 1+<< ii ttt , and ( ) ( ) 01 == tXtB ii  otherwise. 

• Coinciding knots => 011 =→= + iii Btt . 

3. Recursive Interpolant Scheme: B Spline formulation is recursively interpolant, i.e., 

the order k spline is interpolant over the order 1−k  splines on nodes i  and 1+i  - this 

formulation automatically ensures 2−kC  nodal continuity. 

• As shown in Figure 4, the left interpolator stretch [ ]1, −+ kii  contains the 

interpolator pivot at it , and the right interpolator stretch [ ]kii ++ ,1  contains the 

interpolator pivot at 1+it . 

• The following provides the insight behind the B Spline interpolation formulation. 

qpB ,  spans all the segments between the nodes [ ]qp... . Thus, it is natural to have 

the interpolator span that segment too. 

• Further, the formulation symmetry between the left pivot at 1, −kiB  and the right 

pivot at 1,1 −+ kiB  retains the interpolation symmetry – among other things, it is 

responsible for ensuring the 2−kC  symmetry. 
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4. B-Spline Order Relationships: Assuming no coincident knots, the following 

statements are all EQUIVALENT/TRUE: 

• 1+n  knot points. 

• nth order B Spline. 

• Polynomial of degree 1−n . 

• Continuity of 2−nC . 

5. Expository Formulation: 

• ∑
=

+=
k

j
jiijki XB

0
, α  

• ∏
−=

− ==
0

1
,01,0 ...

kj
jiikii εεεα  where 

1

1
,

−++

−+

−
−

=
jiji

ji
ji tt

tt
ε  

• [ ]∏
=

−+−=
k

l
liik

1
11 εα  where 

1

1
1

−++

−+
−+ −

−
=

lili

li
li tt

ttε  

6. Spline Coefficient Partition of Unity: Using the earlier formulation ∑
=

+=
k

j
jiijki XB

0
, α , 

it is easy to show that 1
0

=∑
=

k

j
ijα . This simply follows from the recursive nodal 

interpolation property. 

7. Smoothness Multiplicity Order Linker: # smoothness conditions at knot + the 

multiplicity at the knot = B-Spline Order. 

8. Starting Node de-biasing: Left node is always weighted by ki,ε  in the interpolation 

scheme, but the left node asymmetry is maintained because the denominator in 

1

1
,

−++

−+

−
−

=
jiji

ji
ji tt

tt
ε  - 1−++ − jiji tt  - increases in length. 

9. Other Single B-Spline Properties: 

• ikB  is a piece-wise polynomial of degree k<  ( 1−k  if the knots are distinct, 

lesser if the some of the knots coincide). 

• ikB  is zero outside of ),[ kii tt + . 

• ikB  is positive in the open interval ],...,[ kii tt + . 
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10. Formulation off of Starting Node and Starting Order: Given the starting node i  and 

the starting order k , the contribution to the node mi +  (i.e., m nodes after the start) 

and the order  (i.e., n nodes after start) can be “series”ed as 

( ) ( ) nkminkminkmi BnkmimiBnknkmiB −++−+−+ −+→−+Β+−→+−+Ν= ,1,, ,11,  

• Nodal B-Spline Recursion Stepper: 

( ) ( )










−
−










−
−

=

−→+−+→+℘=−→+−+Ν

++−++

−++

++−++

+

11

1,1,

minkmi

nkmi

minkmi

mi

tt

tt

tt

tt

nknkmiminknkmi

 

• Spline Order B Spline Recursion Stepper: 

( ) ( )










−
−










−
−

=

−→−+→−+℘=−+→−+Β

++−++

++

++−++

+

1

1

1

,1,1

minkmi

mi

minkmi

mi

tt

tt

tt

tt

nknkmiminkmimi

 

11. Cardinal B-Spline Knot Sequence: Knot sequence Ζ  => Uniformly spaced knots, 

simplifying the interpolant/recursive analysis significantly - { },...2,1,0,1,2..., −−⇒Ζ . 

• Also all Cardinal B-Splines of a given order k are translates of each other. 

• Cardinal B-Spline Order 2: 

Range 2,iB  2,1+iB  

10 <≤ t  t  0  

21 <≤ t  t−2  1−t  

32 <≤ t  0  t−3  

 

• Cardinal B-Spline Order 3: 2,12,3, 2

3

2 +
−+= iii B

t
B

t
B  

Range 3,iB  
t

Bi

∂
∂ 3,  

10 <≤ t  2

2

1
t  t  

21 <≤ t  ( )362
2

1 2 −+− tt  32 −− t  
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32 <≤ t  ( )23
2

1 −t  3−t  

 

12. Non-coinciding B Spline Segment Relations: 

• 11, == ii XB  if 1+<≤ ii ttt  

• 01, == ii XB  outside 

• 1
12

2
0

1
2, X

tt

tt
X

tt

tt
B

ii

i

ii

i
i 









−
−

+








−
−

=
++

+

+

 

• 2
23

3
1

12

1
2,1 X

tt

tt
X

tt

tt
B

ii

i

ii

i
i 









−
−

+








−
−

=
++

+

++

+
+  

• 2,1
3

3
2,

2
3, +

++

+

+









−
−

+








−
−

= i
iii

i
i

ii

i
i B

tt

tt
B

tt

tt
B  

Range 2,iB  2,1+iB  3,iB  

1+<≤ ii ttt  
ii

i

tt

tt

−
−

+1

 0  
ii

i

ii

i

tt

tt

tt

tt

−
−

−
−

++ 12

 

21 ++ <≤ ii ttt  
ii

i

tt

tt

−
−

+

+

2

2  
12

1

++

+

−
−

ii

i

tt

tt
 

12

1

13

3

12

2

2 ++

+

++

+

++

+

+ −
−

−
−

+
−
−

−
−

ii

i

ii

i

ii

i

ii

i

tt

tt

tt

tt

tt

tt

tt

tt
 

32 ++ <≤ ii ttt  0  
13

3

++

+

−
−

ii

i

tt

tt
 

12

2

3

3

++

+

+

+

−
−

−
−

ii

i

ii

i

tt

tt

tt

tt
 

 

13. Bernstein B-Spline Knot Sequence: Knot sequence { }1,...,1,0,...,0⇒Ξ  - { }0,...,0  occurs 

µ  times, and { }1,...,1  occurs ν  times. 

• [ ] ( ) ( ) νµ

νµ
νµνµ tttB −+= 1
!!

!
,,  for 10 <≤ t . 

• [ ]tB ,,νµ  has 1−ν  derivatives at 0=t , and 1−µ  derivatives at 1=t  - this is also 

referred to as ν  smoothness conditions at 0=t , and µ  smoothness conditions at 

1=t . 

14. B-Spline vs. Spline: B-Spline is just a single polynomial that is valid across a set of 

knots. “Spline” is a linear combination of such B Splines – i.e., the set of all the ikB ’s. 
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15. Spline Definition: ∑=
i

iiktk aBS ,  where 1Rai ∈ . ia ’s are the coefficients – or nodal 

points { }ii ax ,  - that can be interpolated. 

 

 

B Spline Derivatives 

 

1. B-Spline Derivative Formulation: 

• 
r

ki
r

iki

ki
r

ki
r

iki
r

ki
r

iki

i
r

ki
r

iki
r

ki
r

t

B

tt

tt

t

B

tt

r

t

B

tt

tt

t

B

tt

r

t

B

∂
∂










−
−

+
∂

∂









−
−

∂
∂










−
−

+
∂

∂









−
=

∂
∂ −+

++

+
−

−+
−

++

−

−+
−

−
−

−+

1,1

1
1

1,1
1

1

1,

1
1

1,
1

1

,

 

2. B Spline Order 3 Nodal Slopes: The slopes match across the left and the right segment, as 

shown below, thereby making iB ,3  1C  continuous. 

Range Left Slope Right Slope 

it  - 0 

1+it  
ii

i

tt

tt

−
−

+

+

2

1  
ii

i

tt

tt

−
−

+

+

2

1  

2+it  
12

3

++

+

−
−

ii

ii

tt

tt
 

12

3

++

+

−
−

ii

ii

tt

tt
 

3+it  0  - 

 

3. B Spline Continuity Condition: From the B Spline derivative formulation it is clear that if 

both 1, −kiB  and 1,1 −+ kiB  are 3−kC  continuous, then kiB ,  will be 2−kC  continuous. Given 

that B Spline order 3 is 1C  continuous, by induction, kiB ,  is 2−kC  continuous. 

 

 

Local Interpolating Splines 
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1. Hermite Cubic Splines: The “local information” here takes the form of user specified 

left/right slopes. 

a. 2 User Specified local slopes + 2 points => 4 sets of equations. Solve for the 

coefficients. 

b. C1 continuity is maintained, and C2 continuity is not. 

c. Segment control is completely local. 

2. Catmull-Rom Cubic Splines: Instead of explicitly specifying the left/right segment 

slopes, they are inferred from the “averages” of the prior and the subsequent points, i.e., 






 −=
→

−

→

+

→

112

1
iii ppτ , and 




 −=
→→

+

→

+ iii pp 21 2

1τ . Here 
→

iτ refers to the slope vector, and 
→

ip  to 

the point vector. 

a. Again, C1 continuity is maintained, and C2 continuity is not. 

b. Segment control is not completely local, but still local enough – it only depends 

on the neighborhood of 3 points. 

3. Cardinal Cubic Splines: This is a generalization of the Catmull-Rom spline with a 

tightener coefficient σ , i.e., ( ) 




 −−=
→

−

→

+

→

111
2

1
iii ppστ , and ( ) 




 −−=
→→

+

→

+ iii pp 21 1
2

1 στ . 

0>σ  corresponds to tightening, and 0<σ  corresponds to loosening. 

a. Again, C1 continuity is maintained, and C2 continuity is not. 

b. Segment control is “local” in the Catmull-Rom sense - it only depends on the 

neighborhood of 3 points. 

 

 

Space Curves and Loops 

 

1. Space Curve Reproduction: Here is one way to construct loops that are not possible using 

the ordered variates, i.e., nxxx <<< ...21 . 

• If the ordering nxxx <<< ...21  is switched out in favor of the DAG { }jj yx , , where 

the DAG vertices correspond to the loop trace, normal splines may be used to 

represent space curve loops. 
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2. Second Degree Parameterization: However, on using a second-degree parameterization of 

x and y such as ( )ufx X=  and ( )ufy Y= , it may be possible to enforce the order 

nuuu <<< ...21 . The corresponding control points are [ ] [ ]nn xuxu ,..., 11  and 

[ ] [ ]nn yuyu ,..., 11 . 

a. Side effect of this – is that you need to work on two pairs of splines – one each for 

( )ufx X=  and ( )ufy Y= . 

b. This can offer additional customization and freedom in the design of the surface, 

at the expense of computing additional splines. 

3. Closed Loops: Further, if the start/end points coincide, this corresponds to a closed loop 

that satisfies the C2 continuity criterion. 

a. This also implies that no extra head/tail C1 slope specifications are required. 

 

 

Spline Calibration 

 

1. Spline Segment Calibrator: Spline segment calibration has an asymmetrical dependence 

on the left/right calibration value. For a given span, the calibration of the non-left most 

segment depends only on the right most value – the other coefficients come from the 

prior segments. The left most segment, of course, uses both the left/right values for 

calibration. 

2. Bayesian Techniques in Spline Calibration: Frequentist and Bayesian techniques such as 

MLE and MAP regression ought to be possible in the calibration of the spline 

segment/span coefficients. 

3. Span-to-segment constraint transmission 

4. Number of unknowns analysis 

 

 

Spline Jacobian 
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1. Chain Rule vs. Matrix Operations of Linear Basis Function Combination: When it comes 

to extracting variate Jacobian of coefficients from boundary inputs, these are absolutely 

equivalent – in fact, the coefficient Matrix is in reality a Jacobian itself. 

• Matrix entry as a Jacobian => Every entry of the Matrix A  where YAX =  is actually 

a Jacobian entry, i.e., 
j

i
ij X

Y
A

∂
∂

= . 

2. Self-Jacobian: Given an ordered pair { }ii yx ,  that needs to be interpolated/splined across, 

the self-Jacobian is defined as the vector 
( )
( )ixy

xy

∂
∂

. 

o Self-Jacobian tells you the story of sensitivity/perturbability of the interpolant 

(y) around non-local points. Among the splines, quadratic and greater splines 

cause fairly non-banded, dispersed Jacobians, indicating that the impact is non-

local; linear splines produce simple banded/tri-diagonal Jacobians; and tension 

splines produce a combination of the two depending on the tension parameter. 

o Further Jacobian of any function ( )YF  is going to be dependent on the self-

Jacobian 
( )

( )KtY

tY

∂
∂

 because of the chain rule. 

 

 

Polynomial Spline 

 

1. Base functional specification (Linear, Quadratic, Cubic, Quartic, Polynomial) 

2. Linear, Quadratic, Cubic, Quartic, Polynomial Basis Functions 

• Cubic Splines and Inflection Knots => Problem with the inflection knot points with 

cubic splines is that the “inflection” is now an extraneously supplied constraint, and 

in general may not be consistent with the C2 criterion. 

3. Segment interpolation relation 

4. Control point analysis 

5. Truth-ness specification 

6. Smoothness constraint 

7. Span-to-segment constraint transmission 
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8. Number of unknowns analysis 

9. Solving for coefficients 

 

 

Shape Preserving Tension Spline 

 

1. Shape Controller Parameter Types: 

• Specified extraneously as part of the basis function formulation itself (e.g., 

hyperbolic/exponential tension splines) 

• Specified by over-determination of the basis function set (e.g., ν  splines) 

• Specified by using a shape controller basis set that is de-coupled from the model 

basis function set (e.g., partitioned rational splines) 

2. Shape Control as part of Basis Function formulation: 

• Each basis function is typically formulated as a linear interpolant of a particular rth 

derivative across a segment, i.e., y
x

y r
r

r

σ−
∂
∂

 is proportional to 1x  in that segment. 

• Advantage is that you can control the switch between the rth derivative and the 0th 

derivative of y by controlling σ . 

• You can also explicitly formulate it to achieve kC  continuity across segments – 

and k can vary independently of r. 

3. Drawbacks of Shape Control as part of Basis Function formulation: 

• σ  may not map well to the curvature/shape departure minimization metrics. 

• The formulation constraint restricts the choice of basis functions, giving rise to 

possibly unwieldy ones (troubles with exponential/hyperbolic functions are well-

documented). 

4. Shape Control using over-determined Basis Function Set: 

• Choose any set of basis Functions (e.g., based on simplicity/ease of use/model 

propriety). 

• Over-specify the set so that additional coefficients are available for explicit and 

flexible shape control 
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• Explicit shape control formulation => this comes out a minimization exercise of a 

“shape departure penalty” function. 

5. Drawbacks of Shape Control using Over-determined Basis Function formulation: 

• Ease of use, more model/physics targeted, but comes with extra complexity that 

trades in flexibility 

• Formulation Complexity => Incorporating variational techniques for enforcing 

compliance by penalizing shape departure. 

• Functional implementation complexity 

• Jacobian estimation complexity => Now nn×  basis functions for which we need 

Jacobian. 

• Algorithmic complexity => Need more robust basis inversion/linearization 

techniques. 

6. Potentially Best of Both – Partitioned Basis and Shape Control: 

• Basis function set chosen from physics and other considerations 

• Shape Control achieved using targeted Shape Controllers 

• Used in conjunction with over-determined/other shape control techniques. 

7. Drawbacks of Using Partitioned Basis Functions: 

• Choice of shape controllers crucial and non-trivial – they have to satisfy the 

segment edge and shape variational constraints 

• Need clear and well-specified formulations to match/satisfy the appropriate 

metrics of shape preservation 

• Formulation Complexity – all calibrations and Jacobians need to incorporate the 

partitioned basis right during the formulation stage 

8. Partitioned vs. Integrated Tension Splines: Partitioned splines are designed such that 

the interpolant functional and the shape control functional are separated by 

formulation (e.g., rational splines). Integrated tension splines are formulated such that 

the shape preservation is an inherent consequence of the formulation, and there is no 

separation between the interpolant and the shape control functionality. 

• Customization is easier with partitioning on either the control design or the shape 

preservation dimension. 
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9. Explicit Shape Preservation Control in Partitioned Splines: 
β
α=y , where α  is the 

interpolant, and β  is the shape controller. Typically α  is determined (among other 

things) by the continuity criterion kC , and β  contains an explicit design parameter 

for shape control (for e.g., λ  in the case of rational splines). 

10. Shape Control Design: Asymptotically, depending on the shape design parameter λ , 

β
α

 should switch between linear and polynomial (i.e., typically cubic – Qu and 

Sarfraz (1997)). Further, design β  such that 110 == ββ , so that 00 α=y  and 

11 α=y . 

11. Rational Cubic Spline Formulation: 

• Rational functions under tension was introduced by Spath (1974), and formulation 

expanded in the general tension setting by Preuss (1976). 

• ( ) β
α

λ
=

−+
+++=
xx

dxcxbxa
y

11

32

, where 32 dxcxbxa +++=α , and ( )xx −+= 11 λβ  

(Delbourgo and Gregory (1983), Delbourgo and Gregory (1985a), Delbourgo and 

Gregory (1985b), Delbourgo (1989)). 

• 0→λ  makes it cubic, and ∞→λ  makes it linear. 

12. Rational Cubic Spline Coefficients: 

• ''.0'.0.0.1 0010 yyyya +++=  

• ''.0'.1.0. 0010 yyyyb +++= λ  

• ''.
2

1
'..0. 0010 yyyyc +++−= λλ  

• ( )[ ] ''.
2

1
'.1.1.1 0010 yyyyd 







−++−++−= λ  

13. Rational Cubic Spline Derivatives: 

• 32 dxcxbxa +++=α  

• 232 dxcxb
dx

d ++=α
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• dxc
dx

d
62

2

2

+=α
 

• ( )xx −+= 11 λβ  

• ( )x
dx

d
21−= λβ

 

• λβ −=
2

2

dx

d
 

• 
2β

βααβ
dx

d

dx

d

dx

dy −
=  

• 
2

2

2

2

2

2
2

2

2 22

β

βαββαβαβαβ
dx

d

dx

d

dx

d

dx

d

dx

d

dx

yd
−







+−
=  

14. Designing iλ  for the Segment Infection/Extrema Control: 

• If there are “physics” hints, the segment iλ  can be designed to push out/pull in the 

inflections and/or extrema out of (or into) the segment. 

• Monotonizing Parameters for Rational Splines (Gregory (1984), Gregory (1986)) 

=> ( ) ( )[ ]
ii

ii
iiii yy

xx
xfxf

−
−++=

+

+
+

1

1
1

''µλ , again for 1+<< ii xxx . 

• 3−≥iµ  makes it monotone in this segment. 

• 2−=iµ  produces a rational quadratic. 

• Convergence is ( )4hΘ  in all cases. 

15. Co-convex choice for λ : A similar analysis can be done to make the spline co-

convex, but the corresponding formulation requires a non-linear solution for iλ . 

16. Generalized Shape Controlling Interpolator: Given a pair of points 

{ } { } { } { }212211 ,1,0,, yyyxyx →⇒→ , a 0C  spline 0S , and a kC  spline kS , we define 

a shape controlling interpolator spline CS  by ( ) ( ) ( )[ ]2
0

1

xSxS
xS

k

C −
∝ , with the 

constraints ( ) ( ) 110 ==== xSxS CC . 

• Rational Shape Controller described earlier meets these requirements. 
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17. Generically Partitioned Spline Derivative: 

• ( ) ( ) ( )xxxy βα=  

• 
xxx

y

∂
∂+

∂
∂=

∂
∂ βαβα

 

• 
2

2

2

2

2

2

2
xxxxx

y

∂
∂+

∂
∂

∂
∂+

∂
∂=

∂
∂ βαβαβα

 

• More generally ∑
=

−

−

∂
∂

∂
∂=

∂
∂ n

r
r

r

rn

rn

r
n

n

n

xx
C

x

y

0

βα
 

18. Partitioned Interpolating Spline Coefficient: Given 110 == ββ , 

• 00 α=y  

• 11 α=y  

• [ ] [ ]
0

0
000

00
00






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∂
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

∂
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== xx
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xxxx
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x
xx

xx
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• Likewise, 
000

2

2

0

0

2

2

0

2

2

2
xxxx

y

x ∂
∂

∂
∂−

∂
∂−

∂
∂=

∂
∂ βαβαα

 

• Partitioned input micro-Jack for cubic interpolator: 

o { } { } { } { } 0010 ''.0'.0.0.1 yyyya +++=  

o ''.0'.1.0. 0010
0

yyyy
x

b +++








∂
∂−= β

 

o ''.
2

1
'..0.

2

1
00

0
10

0

2
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0
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x

yy
xx

c +




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
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

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c 
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
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19. Interpolating Polynomial Splines of Degree n: Given ∑
=

=
n

i

i
i xy

0

α , )1,0[∈x  

• Polynomial Basis Series for Representation => Taylor series uses the 

polynomial basis series for representation, and is popular because of the 

reasons below (other basis may be more cognitive, and derivative 

representation using them may be more intuitive as well). 
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i. Mathematical simplicity 

ii. Completeness. 

• Native link of polynomials to derivatives => Given that derivatives are 

natively linked polynomial basis function representations, all the lower degree 

polynomial basis functions (i.e., degree < derivative order) get eliminated, 

thus only allowing the higher order to survive. 

• Polynomial kC  Derivative => ri
n

ri
i

ri
n

i
ir

r

x
ri

i
x

ri

i

x

y −

=

−

= −
=

−
=

∂
∂

∑∑ )!(

!

)!(

!

0

αα  

• 00 y=α  

• 
0

!

1

=









∂
∂=

x
r

r

r
x

y

r
α , [ ]1,1 −∈ nr  
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−

= =

−
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
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20. Polynomial Interpolating Spline Coefficient micro-Jack: 
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∂
∂
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21. Curvature Design in Integrated Tension Splines: Cubic spline is interpolant on 
2

2

x

y

∂
∂

 

across the nodes, and linear spline is interpolant on y. Thus, y
x

y 2
2

2

σ−
∂
∂

 (the tension 

spline interpolant) offers the tightness vs. curvature smoothness trade-off. 

• Tightness vs. Smoothness Generalization => y
x

y k
k

k

σ−
∂
∂

 is linear in x, given k is 

even. Of course, for 2=k  this describes a tension spline (hyperbolic or 

exponential). Schweikert (1966) used 4=k to improve the shape preservation 

characteristics. 

• Interpolant and Tension Splines => Tension splines with 0≠σ  can never be a 

polynomial order interpolant – only polynomial splines of order k (and degree 

1−k ) are 2−kC  continuous and interpolant! 

22. Basis Function Interpolant: 

• y
x

y 2
2

2

σ−
∂
∂

 that is linear in x is satisfiable only by hyperbolic and exponential 

splines. 

• y
x

y 4
4

4

σ−
∂
∂

 that is linear in x is satisfiable by hyperbolic, exponential, or 

sinusoidal splines. 

• More generally, y
x

y n
n

n

σ−
∂
∂

 that is linear in x, and where 24 += mn  and 

,...1,0=m  is satisfied only by hyperbolic and exponential splines. 

• y
x

y n
n

n

σ−
∂
∂

 that is linear in x, and where mn 4=  and ,...1,0=m  is satisfied only 

by hyperbolic, exponential, or sinusoidal splines. 

23. Integrated Tension Spline Types: Both exponential and hyperbolic basis splines with 

a linear spline satisfy y
x

y 2
2

2

σ−
∂
∂

. 

• Exponential Basis Splines: 












−
−

− ++ iiii xx

x

xx

x

eex 11 ,,,1
σσ
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• Hyperbolic Basis Splines: 
















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x

xx

x
x

11

sinh,cosh,,1
σσ

 

24. Exponential Basis Functions: 

• Base Segment Formulation => 

o 0101 xx

x

xx

x

DeCeBxAy −
−

− +++=
σσ

 

o σεσε δγβεα −+++= eey  

• Global <-> Local => 

o 0BxA+=α  

o ( )01 xxB −=β  

o 01

0

xx

x

Ce −=
σ

γ  

o 01

0

xx

x

De −
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=
σ

δ  

• Local <-> Global => 

o 01

0
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x
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σ

δ  

o 01

0
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x
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=
σ

γ  

o 
01 xx

B
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o 
01

0
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x
A

−
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• Co-efficient Calibration => 

o 
2
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0
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α y
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

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

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• Coefficient to Input Sensitivity Grid => 
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• Local Derivatives => 
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• Global <-> Local Derivatives => 
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25. Hyperbolic Basis Functions: 

• Base Segment Formulation => 
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• Coefficient to Input Sensitivity Grid => 
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• Local Derivatives => 

o ( ) ( )[ ]σεδσεγσβ
ε

coshsinh ++=
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o ( ) ( )[ ]σεδσεγσ
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sinhcosh2
2

2

+=
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o ( ) ( )[ ]σεδσεγσ
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coshsinh3
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3

+=
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o ( ) ( )[ ]σεδσεγσ
ε

sinhcosh +=
∂
∂ r

r

r y
 if r is even. 

o ( ) ( )[ ]σεδσεγσβδ
ε

coshsinh1 ++=
∂
∂ r

rr

r y
 if r is odd. 

• Global <-> Local Derivatives => 

o ( ) ε∂
∂

−
=
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∂ y
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y

01

1
 

o ( ) 2
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2
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2 1
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∂ y
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o ( ) 3
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3
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3 1

ε∂
∂

−
=

∂
∂ y

xxx

y
 

26. Segment interpolation relation – reduction onto linear/cubic spline 

27. Switch between linear and cubic spline 

28. Alternate specifications of the segment interpolation (Trojand (2011)) 

29. Localized and normalized tension (Trojand (2011)) 

o Finding σ when f is bound. 

� To get the minimum tension factor required we need to find the zeros of f’ 

(Renka (1987)). 

o Finding σ when f’ is bound. 

� To get the minimum tension factor required we need to find the zeros of f’ 

(Renka (1987)). 

o Finding σ from the bound values of convexity/concavity (Renka (1987)). 

30. Problems with Hyperbolic/Tension Splines: 

• Hyperbolic and exponential functions are time consuming to compute (Preuss 

(1976)), Lynch (1982)). 

• They are somewhat unstable to wide parameter ranges (Spath (1969), Sapidis, 

Kaklis, and Loukakis (1988)). 

• They have been gradually pushed out by ν  splines (Nielson (1974)) and rational 

splines. 
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Optimizing Spline Basis Function Jacobian 

 

1. Coefficient- Value Micro-Jacobian: YFA =  where 

• A is the matrix of the basis coefficients { }111210 ,...,,...,,...,,, −++ nkr aaaaaa  

• Y is the matrix (column valued) of the values (RHS). In particular, it is the 

boundary segment calibration nodal values in the following order: 
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• F is the matrix of the coefficients of the basis function values and their 

derivatives. It is the following 2D Matrix: 

o ( )01,...0;0 0 ==⇒−== xfFnjl jj  

o ( )11,...0;1 1 ==⇒−== xfFnjl jj  

o 
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o jlQnjnkl ,1,...,0;1,...,2 ⇒−→−+→  where 
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2. Coefficient-Value Micro-Jacobian: Given YFA = , the coefficient-value micro-Jack 

is [ ]ij
j

i F
y

a 1−=
∂
∂

. 

 

 

Shape Preserving ν  Splines 

 

1. Generic ν  Spline Formulation: Approach here is somewhat similar to Foley (1988), 

although different language/symbology. 

• p-set Basis Splines per each Segment. 

• n Data Points 
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• Penalty of degree m 

• kC  Continuity Criterion 

• Data Point Set: { }ii yx ,  

• Spline Objective Function: 

( ) ( ) ( )
2^1

1

2^
2^^ 1

1

,,,,, 



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
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2. Number of Unknowns Analysis: In the above, mp > , and km ≤ . 

• Number of equations from the end points per segment => 2. 

• Number of equations from the coefficients determined by the kC  Continuity 

Criterion: k . 

• Number of equations from the Shape Optimization Formulation: 

[ ]1,0 +−∈ mpw . 

• Total number of equations: 2++ wk . 

• Number of coefficients per segment => 1+p . 

3. Node matching constraints: Given that we are examining shape preserving splines, on 

applying the node match criterion ( )iPi xY
^

µ=  to 






Λ
→
λµ ,,,,,

^

pnmk  formulated 

earlier, we get 
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






Λ
→
λµ ,,,,,

^

pnmkNM  is the node matched Spline Objective Function. 

4. Generic Curvature Optimization Formulation: Using the above, the curvature 

optimization for spline basis function inside a local segment i corresponds to 
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∫
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5. Generic Curvature Optimization Minimizer: Given the basis function set 
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6. Generic Coefficient Constrained Optimization Setup: 00
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7. Polynomial Formulation for 






Λ
→
λµ ,,,,,

^

pnmkNM : For the set of polynomial basis 

functions, we set ( ) ( ) ∑
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ijiP xxpx
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, αµµ  on a segment-by-segment basis. 
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10. Minimization of ( )pmki ,,Λ : 
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• Since 
( )

qq

ij

i pmk β
α

=
∂

Λ∂
2

2 ,,
 and 0>qqβ , iqα  corresponds to the minimum of 

( )pmki ,,Λ . 

• Thus, if 0=ix  and 11 =+ix , qjβ  becomes 
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11. Polynomial ν  Splines – Number of unknowns: 

• Number of coefficients (unknown) => 1+p  

• Number of Nodal Start/End Values (known) => 2 

• Number of Calibrated coefficients from the kC  criterion (known): k  

• Net number of unknowns: 121 −−=−−+ kpkp . 

12. Ordered Unknown Coefficient Set in Polynomial ν  Splines: Given that ∑
=

=
p

j

j
iji xy

0

α , 

0iα  through ikα , as well as ipα , are known. 

• iqα  where pqk <≤+1  are the unknown coefficients. 

• For e.g., for 1C  cubic polynomial spline, the number of unknowns are 

.11131 =−−=−− kp  

13. Maximum number of equations available from Optimizing ν  Splines: Number of 

equations available from the optimization is mpmp −=+−− 11 . 

• Determinacy criterion => Thus if 1−−<− kpmp , or 1+> km , there are no 

solutions! 

• Alternatively, for completeness, derive m from k as 1+= km  for completeness. 

• Finally, if 2−< pkinput , optimizing run is needed. 

14. Advantage of Basis Curve Optimizing Formulation: This formulation can 

readily/easily incorporate linearized constraints in an automatic manner – as long as 

the explicit constraints are re-cast to be specified with the current segment. 
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Penalty Minimization Risk Function 

 

1. Penalty Minimizer Estimator Metric: Choice of the “normalized curvature area” 

shown in figures 5) and 6) are two possible penalty estimator choices. Obviously, 

closer the area is to zero, the better the penalizing match is. 

2. Dimensionless Penalizing Fit Metric: Choosing the representation in 5), and 

recognizing that the segment is set in the flat base ( )1,0 , we can derive the 

representation in 7). 

3. Dimensionless Curvature Penalty Estimator (DCPE): Using Figure 7), we now define 

DCPE as 
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4. Pros/Cons of the above Representation of DCPE: If the basis functions have near-

delta functional forms (Figure 8), DCPE will still remain 0≈ , and the metric is not 

very meaningful in that case. Fortunately, such delta-type basis functions are rare. 

5. Aggregate DCPE Measure: Need a consolidated DCPE metric that spans across all 

the segments in a span, i.e., the span DCPE. 

 

 

Bernstein Polynomial 

 

1. Bernstein Polynomial of degree n, and term ν : ( ) ( ) νν
νν

−−= nn
n xxCxb 1,  where 

n,...,0=ν . 

• Bernstein Polynomial Convenience Re-cast #1: ( ) ( )
( )!
1

!
!, νν

νν

ν −
−=

−

n

xx
nxb

n

n . 

• Bernstein Polynomial Convenience Re-cast #2: ( ) ( ) ( ) ( )cxFbxFcbxP cb ,1,!, −+=  

where ( )
!

,
b

x
bxF

b
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2. Derivative of the Bernstein Polynomial: 
( ) ( ) ( )
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• Bernstein Polynomial Re-cast #2 Derivative: 
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3. Bernstein Recurrence: ( ) ( ) ( ) ( )xxbxbxxb nnn 1,11,, 1 −−− +−= ννν . 

4. Reduction of B-Splines to Bernstein’s Polynomial: From the recurrence relation, it is 

clear that this is exactly the same recurrence as that for B-splines, except that it 

happens over repeating knots at 0=x  and 1=x . 

• Further, 1,0 =ib  for 10 <≤ x , and 0,0 =ib  otherwise. 

 

 

Other Tension Splines 

 

1. Kaklis-Pandelis Tension Spline: As described in Kaklis and Pandelis (1990), here 

( )[ ] ( ) [ ] [ ]ttdttctxftxftf ii m
i

m
iii −+−++−= + 111)( 1 , where 

ii

i

xx

xx
t

−
−=

+1

, and im  is the 

Kaklis-Pandelis shape-controlling tension polynomial exponent. 

• 2=im  corresponds to the cubic spline interpolant on [ ]1, +ii xx . 

• ∞→im  corresponds to linear interpolant on [ ]1, +ii xx . 

2. Manni’s Tension Spline: The methodology is explained in detail in Manni (1996a), 

Manni and Sablionniere (1997), and Manni and Sampoli (1998). Here, 

[ ])()( 1 xqpxf iii
−=  on [ ]1, +ii xx  where ip and iq are cubic polynomials. Further, iq is 

strictly increasing in [ ]1, +ii xx , so that 1−
iq  is well defined (Manni (1996b)). 

• The boundary conditions are: iii dxf =)(' ; further, we impose that iiii dxp λ=)(' , 

ii xq λ=)(' , 11)(' ++ = iiii dxp µ , and iii xq µ=+ )(' 1 (see Manni (2001)). The claim is 

that if 1== ii µλ , xxqi =)( , thus if becomes cubic. Also if 0== ii µλ , if  

reduces to linear. 
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Smoothing Splines 

 

1. Process Control using Weights: Dimensionless units (such as Reynolds’ number) can 

effectively account for the ratio of competing natural forces. Similar use can be done for 

process control to be able to guide/control between 2 or more competing objectives. For 

example in the instance of the smoothing spline: 

• First Objective => Closeness of match using the most faithful reproducer, or curve fit. 

• Second Objective => Smoothest curve through the given points, without necessarily 

fitting them – of course, “smoothest” possible “curve” is a straight line. 

2. Penalizing Smootheners: Penalizing smootheners are the consequence of Bayes 

estimation applied on the Quadratic Penalties with Gaussian Priors (also referred to with 

maxim “The Penalty is the Prior”). 

• In the case of non-Gaussian priors, the smoothing estimation process is called the 

Generalized Linear Model. 

3. Smoothing Spline Formulation: Given nxxx <<< ...21 , and the function µ  that fits the 

points [ ]ii Yx ,  from ( )ii xY µ= . The smoothing spline estimate 
^

µ  is the minimizer 
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• 






Λ λµ,
^

 is the Spline Objective Function. 

• 
n

1
 is needed to the left term to make it finite as ∞→n , otherwise λ  will also have 

to be infinite. 

• The derivative “k” corresponds to what makes 
( )















∂
∂

k

k

x

x
^

µ
 linear. Thus, for cubic 

splines, k = 2. 

4. Bias Curvature/Variance Fit Trade-off: Smaller the λ , the more you will fit for bias (low 

curvature penalty). Bigger the λ , more you fit for curvature/roughness penalty. 
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5. Curvature Penalty Minimizer Spline: It can be theoretically shown that the curvature 

penalty minimizer spline is a cubic spline. Here is how. 

• First, notice that any spline of degree >= 0 can reproduce the knot inputs. 

• By default, curvature corresponds to k = 2. Thus, 
( )















∂
∂

2

^
2

x

xµ
 varies linearly inside a 

segment, thus this becomes the least possible curvature. 

• Higher order splines will have a non-linear curvature. 

• Lesser order (spline order less than 3) will violate the C2 continuity constraint. 

6. Smoothing Output Criterion: 

• Speed of Fitting 

• Speed of Optimization 

• Boundary Effects 

• Sparse, Computationally Efficient Designs 

• Semi-Parametric Models 

• Non-normal Data 

• Ease of Implementation 

• Parametrically determinable Limits 

• Specialized Limits 

• Variance Alteration/inflation 

• Adaptive Flexibility Possible 

• Adaptive Flexibility Available 

• Compactness of Results 

• Conservation of data distribution moments 

• Easy Standard Errors 

7. Smoothing vs. Over-fitting: Since λ  is a control parameter, it can always be attained by a 

parametric specification. To estimate optimal value of λ  against over-fitting, use one of 

the following other additional criteria to penalize the extra parameters used in the fit, 

such as the following. Each one of them comes with its own advantages/disadvantages. 

• Cross-validation 

• Global Cross-Validation 
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• Akaike Information Criterion 

• Bayesian Information Criterion 

• Deviance 

• Kullback-Leibler Divergence metric 

8. Segment Stiffness Control: λ  may also be customized to behave as a segment stiffener or 

a penalty/stiffness controller, thus providing extra knobs for the optimization control. 

9. Extension to k-Curvature Penalty: For the case where k > 2, we would need to choose a 

k+1 degree spline to retain linearity of the segment k-curvature – therefore, a k+1 degree 

spline is the k-curvature penalty minimizer spline. This also preserves the Ck continuity 

constraint. 

10. Relation of Lagrangian to Smoothing Spline: 

• Lagrangian objective function is used to optimize a multi-variate function ( )yxL ,  to 

incorporate the constraint ( ) cyxg =,  as ( ) ( ) ( )[ ]cyxgyxLzyx −+=Λ ,,,, λ . Here λ  

is the Lagrange multiplier. 

• Optimized formulation of the smoothing spline is given by minimizing the spline 

objective function (a form of optimization) 
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constraint constant defined analogous to the constraint constant in the Lagrangian 

objective function: 
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Density Smoothing 
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1. Base Density Smoothing Formulation: Log-likelihood density smoothing is analogous 

to maximizing the multinomial likelihood histogram 






∏
=

m

i

y
i

ip
1

log , where iy  is the 

empirical observation count, and ip  is the probability of finding an observation in the 

cell i . 

 

 

Alternate Smootheners 

 

1. Compendium of Smoothing Methods: 

• Kernel Smoothing with or without binning. 

• Local Regression with or without binning. 

• Smoothing Splines with or without band solvers. 

• Regression splines with fixed/adaptive knots. 

• Penalizing B Splines. 

2. Kernel Bandwidth Selector: Kernel bandwidth selection is analogous to the optimal 

knot point selection employed in the regression spline schemes. 

• Remember that the kernel methods essentially use the periodic functions as their 

basis functions. 

3. Polynomial Regression Splines: This does curve fitting/regression analysis using 

selective insertion/removal of knots. Knots are added according to the Rao criterion, 

and removed according to the Wald criterion. 

• Log Splines are a customization of the polynomial regression splines targeted for 

density estimation. The log of the density is modeled as a cubic spline. 

 

 

Multi-dimensional Splines 
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1. Symmetrical Multi-dimensional variates: The trivial univariate ordering 

nxxx <<< ...21  needs revising in the context of certain multivariates, e.g., 

symmetrical multivariates. 

• A general “distance from focal node” it  makes to more sense to set in the 

ascending order. Thus ( ) ( )22 ... FiFii zzxxt −++−= , where [ ]FF zx ,...,  are the 

multivariate nodes corresponding to the focal node. 

• Use Cartesian/radial/axial basis functions to formulate the segments in terms of 

the surface vector coefficients in “symmetrical variate” situations. 

2. Surface Energy Minimization: Surface energy minimization using the “sigma” 

tension parameter – formulate equation. 

• Thin plate splines are an effective way to achieve surface energy minimization, 

i.e., for a 2D surface, the smoothing spline surface may be created by the 

minimization of the following least squares surface spline objective function 
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. Again, apparently this is more appropriate if 21,xx  are symmetrical. 

3. Non-symmetrical multi-dimensional Variates: Again, considering 2D as an example, 

it makes sense to use the basis splines separately across both 21,xx , as in 
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Spline Library Software Components 

 

Functionality behind Spline Library is available across 3 packages – univariate function 

package, the Span/Segment package, and the Spline Basis function set package. 

 

 

Univariate Function Package (org.drip.math.function) 

 

The univariate function package implements the individual univariate functions, their 

convolutions, and reflections. It contains the following classes/interfaces: 

• AbstractUnivariate: This abstract class provides the evaluation of the given 

basis/objective function and its derivatives for a specified variate. Default 

implementations of the derivatives are for black-box, non-analytical functions. 

• BernsteinPolynomial: This class provides the evaluation of Bernstein polynomial and 

its derivatives for a specified variate. The degree exponent specifies the order of the 

Bernstein polynomial. 

• ExponentialTension: This class provides the evaluation of exponential tension basis 

function and its derivatives for a specified variate. It can be customized by the choice 

of exponent, the base, and the tension parameter. 

• HyperbolicTension: This class provides the evaluation of hyperbolic tension basis 

function and its derivatives for a specified variate. It can be customized by the choice 

of the hyperbolic function and the tension parameter. 

• NaturalLogSeriesElement: This class provides the evaluation of a single term in the 

expansion series for the natural log. The exponent parameter specifies which term in 

the series is being considered. 

• Polynomial: This class provides the evaluation of the nth order polynomial and its 

derivatives for a specified variate. The degree n specifies the order of the polynomial. 
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• RationalShapeControl: This class provides the evaluation of the rational shape control 

spline basis described above. The tension parameter set in the constructor customizes 

the spline. 

• UnivariateConvolution: This class provides the evaluation of the point value and the 

derivatives of the convolution of 2 univariate functions for a specified variate. 

• UnivariateReflection: For a given variate x , this class provides the evaluation and 

derivatives of the reflection at x−1 . 

 

 

Segment/Span Layout Package (org.drip.math.grid) 

 

This package implements the layout of the n-D grid functionality in accordance with the 

calibration schema set out earlier. 

• Inelastics: This class the inelastic fields of the given segment – in this case the 

start/end co-ordinates. 

• Segment: This abstract class extends Inelastics, and incorporates segment specific 

inelastic parameters. Interpolating segment spline functions and their coefficients are 

implemented/calibrated in the overriding spline classes. It provides functionality for 

assessing the various segment attributes: 

o Segment Monotonicity. 

o Interpolated Function Value, the ordered derivative, and the corresponding 

Jacobian. 

o Segment Local/Global Derivative. 

o Evaluation of the Segment Micro-Jack. 

o Head / Regular Segment calibration - both of the basis function coefficients 

and the Jacobian. 

• SegmentControlParameters: This class holds the parameters the guide the creation 

and the behavior of the segment. It holds the segment elastic/inelastic parameters and 

the named basis function set. 
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• SegmentMonotonicity: This class contains the monotonicity details related to the 

given segment. Indicates whether the segment is monotonic, and if not, whether it 

contains a maximum, a minimum, or an inflection. 

• Span: This class implements the span that spans multiple segments. It holds the 

ordered segment sequence, the segment control parameters, and, if available, the 

spanning Jacobian. It exports the following group of functionality: 

o Construct adjoining segment sequences in accordance with the segment 

control parameters 

o Calibrate according to a varied set of (i.e., NATURAL/FINANCIAL) 

boundary conditions 

o Interpolate both the value, the ordered derivatives, and the Jacobian at the 

given ordinate 

o Compute the monotonicity details - segment/span level monotonicity, co-

monotonicity, local monotonicity. 

o Insert knots 

It also exports several static span creation/calibration methods to generate 

customized basis splines, with customized segment behavior using the segment 

control. 

 

 

Basis Spline Package (org.drip.math.spline) 

 

This package implements the basis set across the different splines – their creation, the 

segment level calibration, the customization, and segment-level inference values. 

o BasisSetParams: This stub class holds out per-segment basis set parameters. 

o ExponentialTensionBasisSetParams: This class implements per-segment parameters 

for the exponential tension basis set - currently it only contains the tension parameter. 

o KaklisPandelisTensionBasisSetParams: This class implements per-segment 

parameters for the Kaklis-Pandelis basis set - currently it only holds the polynomial 

tension degree. 
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o PolynomialBasisSetParams: This class implements per-segment basis set parameters 

for the polynomial basis spline - currently it holds the number of basis functions. 

o SegmentBasisSetBuilder: This class implements the basis set and spline builder for 

the following types of splines: 

o Exponential basis tension splines 

o Hyperbolic basis tension splines 

o Polynomial basis splines 

o Bernstein Polynomial basis splines 

o Kaklis Pandelis basis tension splines 

The elastic coefficients for the segment using kC  basis splines inside )1,...,0[  - 

globally ),...,[ 10 xx  are extracted for ( ) ( )xollerShapeContrxCorInterpolaty k *,=  

where x  is the normalized ordinate mapped as: 
1

1

−

−

−
−→

ii

i

xx

xx
x . The inverse 

quadratic/rational spline is a typical shape controller spline used. 

o SegmentCk: This concrete class extends segment, and implements the segment's kC  

based spline functionality. It exports the following: 

o Calibration => Head Calibration, Regular Calibration 

o Estimated Segment Elastics => The Basis Functions and their coefficients, 

kC , the shape controller 

o Local Point Evaluation => Value, Ordered Derivative 

o Local Monotonicity 

o Local coefficient/derivative micro-Jack, and value/coefficient micro-Jack 

o Local Jacobians => Value Micro Jacobian, Value Elastic Jacobian, Composite 

Value Jacobian 

o SegmentConstraint: This class holds the segment coefficient constraints and their 

values. 

o SegmentInelasticParams: This class implements basis per-segment elastics parameter 

set. Currently it contains kC  and the segment specific constraints. 
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Figure #1 
SEGMENT/SPAN Structure Layout 
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Figure #2 
BASIS SPLINE HIERARCHY 
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Figure #3 
THIRD ORDER SECOND DEGREE SPLINE 
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Figure #4 
B SPLINE INTERPLATION SCHEME 
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Figure #5 
PENALTY MINIMIZER METRIC - #1 
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Figure #6 

PENALTY MINIMIZER METRIC - #2 
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Figure #7 
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Figure #8 
NEAR-DELTA DCPE 
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