Package | Description |
---|---|
org.drip.math.calculus | |
org.drip.math.function | |
org.drip.math.grid | |
org.drip.math.sample | |
org.drip.math.solver1D | |
org.drip.math.spline |
Modifier and Type | Method and Description |
---|---|
static double |
Integrator.Boole(AbstractUnivariate au,
double dblLeft,
double dblRight)
Compute the function's integral within the specified limits using the Boole rule.
|
static double |
Integrator.LinearQuadrature(AbstractUnivariate au,
double dblLeft,
double dblRight)
Compute the function's integral within the specified limits using the LinearQuadrature technique.
|
static double |
Integrator.MidPoint(AbstractUnivariate au,
double dblLeft,
double dblRight)
Compute the function's integral within the specified limits using the Mid-point rule.
|
static double |
Integrator.Simpson(AbstractUnivariate au,
double dblLeft,
double dblRight)
Compute the function's integral within the specified limits using the Simpson rule.
|
static double |
Integrator.Simpson38(AbstractUnivariate au,
double dblLeft,
double dblRight)
Compute the function's integral within the specified limits using the Simpson 3/8 rule.
|
static double |
Integrator.Trapezoidal(AbstractUnivariate au,
double dblLeft,
double dblRight)
Compute the function's integral within the specified limits using the Trapezoidal rule.
|
Modifier and Type | Class and Description |
---|---|
class |
BernsteinPolynomial
BernsteinPolynomial provides the evaluation of the BernsteinPolynomial and its derivatives for a specified
variate.
|
class |
ExponentialTension
ExponentialTension provides the evaluation of the Exponential Tension Function and its derivatives for a
specified variate.
|
class |
HyperbolicTension
HyperbolicTension provides the evaluation of the Hyperbolic Tension Function and its derivatives for a
specified variate.
|
class |
NaturalLogSeriesElement
NaturalLogSeriesElement implements an element in the natural log series expansion.
|
class |
Polynomial
Polynomial provides the evaluation of the n-th order Polynomial and its derivatives for a specified
variate.
|
class |
RationalShapeControl
RationalShapeControl implements the deterministic rational shape control functionality on top of
interpolating basis splines inside - [0,...,1) - Globally [x_0,...,x_1):
y = 1 / [1 + lambda * x * (1-x)]
where is the normalized ordinate mapped as
x => (x - x_i-1) / (x_i - x_i-1)
|
class |
UnivariateConvolution
This class provides the evaluation of the Convolution au1 * au2 and its derivatives for a specified
variate.
|
class |
UnivariateReflection
UnivariateReflection provides the evaluation f(1-x) instead of f(x) for a given f.
|
Constructor and Description |
---|
UnivariateConvolution(AbstractUnivariate au1,
AbstractUnivariate au2)
Construct a PolynomialMirrorCross instance
|
UnivariateReflection(AbstractUnivariate au)
UnivariateReflection constructor
|
Modifier and Type | Class and Description |
---|---|
class |
Span
This class implements the span that spans multiple segments.
|
Modifier and Type | Method and Description |
---|---|
AbstractUnivariate |
SegmentControlParams.getShapeController()
Retrieve the Segment Shape Controller
|
Constructor and Description |
---|
SegmentControlParams(java.lang.String strBasisSpline,
BasisSetParams bsbp,
SegmentInelasticParams segParams,
AbstractUnivariate auShapeControl)
SpanParams constructor
|
Modifier and Type | Method and Description |
---|---|
static SegmentControlParams |
SpanInterpolator.BernsteinPolynomialSegmentControlParams(int iNumBasis,
SegmentInelasticParams segParams,
AbstractUnivariate rsc)
Build Bernstein Polynomial Segment Control Parameters
|
static SegmentControlParams |
SpanInterpolator.ExponentialTensionSegmentControlParams(double dblTension,
SegmentInelasticParams segParams,
AbstractUnivariate rsc)
Build Exponential Tension Segment Control Parameters
|
static SegmentControlParams |
SpanInterpolator.HyperbolicTensionSegmentControlParams(double dblTension,
SegmentInelasticParams segParams,
AbstractUnivariate rsc)
Build Hyperbolic Tension Segment Control Parameters
|
static SegmentControlParams |
SpanInterpolator.KaklisPandelisSegmentControlParams(int iKPTensionDegree,
SegmentInelasticParams segParams,
AbstractUnivariate rsc)
Build Kaklis-Pandelis Segment Control Parameters
|
static SegmentControlParams |
SpanInterpolator.PolynomialSegmentControlParams(int iNumBasis,
SegmentInelasticParams segParams,
AbstractUnivariate rsc)
Build Polynomial Segment Control Parameters
|
Modifier and Type | Method and Description |
---|---|
static double |
VariateIteratorPrimitive.MultiFunction(double dblX1,
double dblX2,
double dblX3,
double dblY1,
double dblY2,
double dblY3,
AbstractUnivariate of,
double dblOFTarget,
FixedPointFinderOutput rfop)
Iterate for the next variate using the multi-function method
|
Constructor and Description |
---|
ExecutionControl(AbstractUnivariate of,
ExecutionControlParams ecp)
ExecutionControl constructor
|
ExecutionInitializer(AbstractUnivariate of,
ConvergenceControlParams ccp)
ExecutionInitializer constructor
|
FixedPointFinderBracketing(double dblOFGoal,
AbstractUnivariate of,
ExecutionControl ec,
int iIteratorPrimitive)
FixedPointFinderBracketing constructor
|
FixedPointFinderBrent(double dblOFGoal,
AbstractUnivariate of)
FixedPointFinderBrent constructor
|
FixedPointFinderNewton(double dblOFGoal,
AbstractUnivariate of)
FixedPointFinderNewton constructor
|
FixedPointFinderZheng(double dblOFGoal,
AbstractUnivariate of)
FixedPointFinderZheng constructor
|
Modifier and Type | Method and Description |
---|---|
static AbstractUnivariate[] |
SegmentBasisSetBuilder.BernsteinPolynomialBasisSet(PolynomialBasisSetParams polybsbp)
This class implements the elastic coefficients for the segment using Bernstein polynomial basis
splines inside - [0,...,1) - Globally [x_0,...,x_1):
y = Sum (A_i*B^i(x)) i = 0,...,n (0 and n inclusive)
where x is the normalized ordinate mapped as
x => (x - x_i-1) / (x_i - x_i-1)
and B^i(x) is the Bernstein basis polynomial of order i.
|
static AbstractUnivariate[] |
SegmentBasisSetBuilder.ExponentialTensionBasisSet(ExponentialTensionBasisSetParams etbsbp)
This function implements the elastic coefficients for the segment using tension exponential basis
splines inside - [0,...,1) - Globally [x_0,...,x_1).
|
AbstractUnivariate |
SegmentCk.getShapeControl()
Retrieve the Shape Control
|
static AbstractUnivariate[] |
SegmentBasisSetBuilder.HyperbolicTensionBasisSet(ExponentialTensionBasisSetParams etbsbp)
This function implements the elastic coefficients for the segment using tension hyperbolic basis
splines inside - [0,...,1) - Globally [x_0,...,x_1).
|
static AbstractUnivariate[] |
SegmentBasisSetBuilder.KaklisPandelisBasisSet(KaklisPandelisBasisSetParams kpbsbp)
Construct KaklisPandelis from the polynomial tension basis function set
y = A * (1-x) + B * x + C * x * (1-x)^m + D * x^m * (1-x)
|
static AbstractUnivariate[] |
SegmentBasisSetBuilder.PolynomialBasisSet(PolynomialBasisSetParams polybsbp)
This class implements the elastic coefficients for the segment using polynomial basis splines inside -
[0,...,1) - Globally [x_0,...,x_1):
y = Sum (A_i*x^i) i = 0,...,n (0 and n inclusive)
where x is the normalized ordinate mapped as
x => (x - x_i-1) / (x_i - x_i-1)
|
Modifier and Type | Method and Description |
---|---|
static SegmentCk |
SegmentBasisSetBuilder.CreateCk(double dblX0,
double dblX1,
AbstractUnivariate[] aAUBasis,
AbstractUnivariate auShapeControl,
SegmentInelasticParams segParams)
Build the Ck instance from the Basis Set
|
static SegmentCk |
SegmentBasisSetBuilder.CreateCk(double dblX0,
double dblX1,
AbstractUnivariate[] aAUBasis,
AbstractUnivariate auShapeControl,
SegmentInelasticParams segParams)
Build the Ck instance from the Basis Set
|