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Glossary 

 

 

1. Wengert List: List of all the non over-writable program variables (Wengert (1964)) – 

can also be seen as a linearization of the computational graph. By construction, it is 

an intermediate variable. 

2. Intermediate Wengert Canonical Variable: These are intermediate financial variables 

those are fixed from the point-of-view of the output Jacobians and the input 

parameters that serve as computation graph parsimonious optimizers (Figures 1 and 

2). 

3. Wengert fan-in and fan-out: Reduction of a set of initial/intermediate Wengert 

variates onto the subsequent set is called fan-in; the opposite is fan-out. 

4. Wengert funneling: Same as Wengert fan-in. 

5. Micro-Jacobian: Change in the calibrated instrument measure coefficients to unit 

change in the quoted instrument measures. 

6. Self-Jacobian: Self-Jacobian refers to the Jacobian of the Objective Function at any 

point in the variate to the Objective Function at the segment nodes, i.e., 
( )

( )KtY

tY

∂
∂

. Self-

Jacobian is a type of micro-Jacobian. 

7. Derivative Entity: The entity whose dynamics are determined by the evolution of a 

stochastic variate, and whose specific facets/measures are observable. 

8. Path-wise Derivative Estimator: ( )0iX

V

∂
∂

, where V is the value of the derivative, and 

( )0iX  is the starting value for a specific stochastic variate. 

9. Non-Parsimonized Parameters: Parameters that map one-to-one with the input 

instrument set, e.g., typical curve bootstrapping. 

10. Parsimonization: Reduction of the parameter space from the input measure space. 
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1) Overview and Literature Review 

 

 

This paper details the techniques and methodologies behind the sensitivity generation 

software employed in Credit Analytics. It draws heavily on key algorithmic 

differentiation techniques in general, and as applied to finance. It details the variation in 

approach implemented for the different sensitivity builder for (quasi or total) closed form 

versus Monte-Carlo pay-off formulations. 

 

As a technology and practice, algorithmic differentiation techniques have been in use for 

a long time (for history of algorithmic differentiation, see Iri (1991)). Griewank (2000) 

outlines the mathematical foundations, and an elaborate survey of the methodologies, the 

processes, the techniques, and the implementation tools are available from Berz (1996) 

and Bischof, Hovland, and Norris (2005). The de-facto official algorithmic differentiation 

online reference is at http://www.autodiff.org/. 

 

With regards to finance, algorithmic differentiation focus has been primarily on Monte-

Carlo methodologies. Although path-wise optimized sensitivity generation had been 

employed earlier (Glasserman (2004)), Giles and Glasserman (2006) first discussed 

adjoint methods in path-wise sensitivity generation. Full extension to LMM based 

stochastic variate evolution and a corresponding exotic (in this case Bermudan) swap 

option evaluation (Leclerc, Liang, and Schneider (2009)), as well as to correlated defaults 

and their sensitivities (Capriotti and Giles (2011)). Capriotti (2011) covers automated 

Greek generation, but with a focus on algorithmic differentiation, and in the context of 

Monte-Carlo methods. Finally, algorithmic differentiation has also been applied to 

addressing the issue of calibration along with sensitivity generation (Schlenkirch (2011)). 

 

As indicated above, the purpose of this paper is to describe the sensitivity generation 

techniques as employed in Credit Analytics Suite, mostly using algorithmic 

differentiation techniques. It starts with a review of the main algorithmic differentiation 

concepts, the caveats, and applicability – without getting into the details. It then describes 
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the general Monte-Carlo based stochastic financial variate evolution and sensitivity 

formulation as used in Credit Analytics. It then applies it to the calculation of greeks for 

several products, with specific samples considered. Finally, it also considers in some 

detail the application of algorithmic differentiation techniques to curve calibration. 
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2) Algorithmic Differentiation 

 

 

Algorithmic differentiation is a set of techniques for transforming a program that 

calculates the numerical values of a function into a program that calculates numerical 

values for derivatives of that function with about the same accuracy and efficiency as the 

function values themselves (Bartholomew-Biggs, Brown, Christianson, and Dixon 

(2000)). 

 

Algorithmic differentiation aims to exploit the fact that calculation of the local 

derivatives is always symbolic, and thus avoids typical challenges associated a) divided 

differences, or b) numerical differentials (Automatic Differentiation - Wikipedia Entry). 

Further, apart from the “chain rule” multiplication factor effects, the computation 

requires the same number of Objective Function Calculations as the original. 

 

Owing to its usage of local symbolic derivatives, the accuracy of Algorithmic 

Differentiation is always better than numerical differentials. It will automatically scale to 

arbitrarily small variate infinitesimals, thereby have reduced errors due to bit cancellation 

etc: Finally, Algorithmic Differentiation does not need additional objective function 

evaluations for higher order derivative calculations (beyond the chain-rule issues); 

therefore, those are infinitesimally correct too. 

 

Two prototypical program construction modes can be used in algorithmic differentiation 

to achieve differentiation code construction – the forward and the reverse mode of 

algorithmic differentiation. 

 

In the forward mode, the final and the intermediate variables are expressed as a 

consequence of a computed forward graph, and the symbolic forward derivative graph is 

then derived. In effect, this is equivalent to computing the gradient of the intermediate 

variables to the variates or the “independent variables” and transmitting them up the 

graph. 
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In the reverse mode, the final and the intermediate variables are expressed as nodes in the 

computed reverse graph, and the symbolic reverse derivative graph is then derived. 

Effectively, this computes the gradient of the intermediate variables to the “dependent 

variables” and transmits them down the graph. Often the reverse mode may need the 

forward path to store the calculated intermediates needed on the way back. 

 

As can be seen, the run-time of a forward mode algorithmic differentiation is proportional 

to the number of variates or independent variables, and that for the reverse mode is 

proportional to the number of dependent variables. 

 

The memory usage is different across the different modes (see for e.g., Ghaffari, Li, Li, 

and Nie (2007)). In the forward mode, storage is needed for a) each Wengert variable and 

b) the forward Jacobian for each Wengert. In the reverse mode, storage is needed for a) 

each Wengert adjoint, b) the reverse Jacobian for each Wengert, and c) forward/reverse 

dependency graph. 

 

For the purpose of implementing algorithmic differentiation, the constructs of the forward 

and the reverse mode can be theoretical conveniences. In situations where the 

dependence of the final Jacobian sensitivity step is the dominating factor, and the 

adjointing step is not the rate-determining part, then the performance will always be 

( )nΘ , where n is the number of sensitivities – for e.g., if ∑
=

=
n

i
ixy

1

, given that 
ix

y

∂
∂

 is 

trivial to calculate, the performance will always be ( )nΘ . For instance, given a univariate 

objective function (as in constrained/unconstrained optimization (e.g., 

maximization/minimization) problems), either forward or reverse Algorithmic 

differentiation is an equally good choice for sensitivity generation, owing to its 

performance. 

 

While the sensitivity generation discussed here uses the concepts employed in 

algorithmic differentiation, Credit Analytics does not use any tools for automated 
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differential code generation. This is mainly due to performance, but this does introduce 

additional software development/re-use challenges. 

 

First, no matter how minimally intrusive the design is, building for algorithmic 

differentiation introduces its own deep-dig perspective. Re-purposing purely for the 

differentiation perspective forces the visualization of the computation at the granularity 

of the symbolic functional forms of the objective function. 

 

For instance, usage of the objective function evaluator over-loading requires propagation 

of the inner most symbolic graph nodes through the graph chain, which causes export of a 

differential data structure. This results in the alteration/adjustment of the design around 

objective function invocation - with every Wengert variable, calculation of the set of 

forward sensitivities and the reverse Jacobians builds a local picture of the Objective 

Function without having to evaluate it. 

 

Second, source code transformation techniques are very invasive, and require highly 

locally frozen view fixation, and are therefore harder to implement. Operator overloading 

enables retention of the domain focus, and is therefore easier to implement. However, 

naïve operator overloading would simply generate a block-level (or function call level) 

adjoint. This can explode the required storage, in addition to generating sub-optimal 

reverse-mode code. Needless to mention, source code transformation techniques can be 

built to overcome this – in practice, however, many algorithmic differentiation tools may 

not quite do it. 

 

Finally, without the usage of obfuscating “versatile” templates, auto-generation of very 

generic forward/reverse accumulation code is impossible. Therefore source level function 

overloading and automated program instrumentation techniques are very hard. Further, 

just as in the case of compiled language source code transformation “smart compiler” 

efforts of the ‘90s, re-use of the algorithmic differentiation paradigms conceptually 

(rather than “built out-of the-box” through the AD tools) offers clear additional insight 

onto program construction. 
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Canonicalization - Program Statements Simplification by 

Decomposition 

 

Here we discuss techniques used by several algorithmic differentiation tools to achieve 

line-level program decomposition (called canonicalization). Simply put, canonicalization 

decomposes the program/statement units into specific analysis bits. In various forms, 

canonicalization is commonly used in many areas of computer science, e.g., in compiler 

design/code generation, SKU formulation/synthesis/customization etc. 

 

In general, canonicalization and other related algorithmic differentiation source code 

generation/transformation techniques go hand in hand with optimizing compiled code 

emission techniques, program active variable activity analysis – for instance, the 

canonicalization sequence includes steps (Bischof, Hovland, and Norris (2005)) where to 

mark out the “Algorithmically Differentiable” code from the others during, for instance, 

pre-processing etc. For true program transformation effectiveness, however, dynamic 

run-time analysis is needed in addition to static compile time data flow analysis etc. (For 

instance, in VM-based architectures, the run-time comprises of both Hot-Spot and GC, so 

it may make sense to embed algorithmic differentiation execution/selective sensitivity 

generation as well). 

 

Canonicalization may also be viewed as being equivalent to the Wengert Structuring 

described above: Given that canonicalization consists of hoisting all the l-value updates 

separately without side effects, it is effectively the same as Wengert un-rolling and the 

forward DAG linearization. 

 

Estimation of the program execution run-time costs becomes easy once the code is 

canonicalized. Given that the worst case is division, going from 
b

a
c =  to 
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b
b

a

b

a
c ∂−∂=∂

2
 results in going from 1 function unit execution cost to 4 algorithmic 

differentiation execution unit costs. However, often due to presence of high-cost function 

units (such as log, exp, etc), the worst-case addition to a single post-canonicalized 

statement is a factor between 4 and 5. 

 

A final caveat needs to be indicated in regards to the limitations with the implementation 

above. For many of the reasons indicated earlier, automated implementations of 

canonicalization (like other automated code generation/re-structuring) might result in 

“invisible inefficiencies”, and the had-drafted techniques those are based upon essentially 

the same principles may be more optimal. 

 

 

Optimization using Pre-accumulation and Check Pointing 

 

Two other common techniques applied commonly across algorithmic differentiation 

implements are a) pre-accumulation, and b) Cross-country accumulation or Check-

pointing. 

 

Pre-accumulation refers to the process of aggregating (and possibly caching) the 

sensitivity Jacobian over all the intermediate Wengert’s inside a routine/block/module, 

thereby only exposing 
j

i

Input

Output

∂
∂

 for the group unit (not each Wengert inside). Where 

feasible, pre-accumulation also provides a suitable boundary for parallelization. It may 

also be looked at as the appropriate edge at which the source code transformation 

technique and operator overloading technique may “merge”. 

 

Cross-country Accumulation (or Check Pointing) is the same as pre-accumulation, but 

pre- accumulation occurs in a specified (forward/reverse) order, Cross-country 

accumulation need not – in fact it may be guided by program analysis using any of the 

optimal Wengert intermediate composition techniques. This typically also requires 
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snapshotting the program global and other execution context parameters at the checkpoint 

boundaries. Cross-country accumulation works best when the program state is easily and 

minimally savable, and quickly recoverable, and has the additional advantage of working 

well in conjunction with traditional kernel level check pointing schemes for fail-over etc: 

 

 

Optimal Program Structure Synthesis 

 

As indicated earlier, the forward mode (n inputs) and the reverse mode (m outputs) 

represent just two possible (extreme) ways of recursing through the chain rule. For n > 1 

and m > 1 there is a golden mean that corresponds to synthesis of an optimal program 

structure, but finding the optimal way is probably an NP-hard problem (Berland (2006)) – 

optimal Jacobian accumulation is NP-complete (Naumann (2008)). 

 

In Credit Analytics, program structure is optimized by searching for the set of 

intermediate Wengerts below which the independents fan in, and above which the 

dependents fan out. This is illustrated in Figures 1 to 3. If there exists an intermediate 

quantity that is fixed from the point-of-view of the output Jacobians and the input 

parameters, the performance may be improved (see Figure 1). Further, if the input/output 

computation leads to sufficient commonality among the Wengert intermediate 

calculation, that may also reduce computation by promoting reuse, thereby improving 

efficiency. In general, the condition ij
j

i

dMI

dP δ→  results in a Wengert fan-out – otherwise 

rippling out causes huge non-diagonal Markov matrices. Similar fan-in/fan-out constraint 

relations exist at the following boundaries (see Figure 3): a) I -> P, b) P-> W, and c) W -> 

O. 

 

Extending these observations to computational finance (esp. computational fixed income 

finance), the payout/product/pricer object serves the function of the intermediate Wengert 

variate indicated above (Figure 2). From below this variate you have the 

inputs/parameters rippling up, and from above you have the Jacobians/output measure 
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adjoints feeding down. The nodes in Figure 2 also correspond to natural reactive Tree up-

tick boundaries - every intermediate element in Figure 2 is a reactive tree dependent node 

from the entity below, so forwarding/adjointing should happen with every real-time 

uptick. 

 

Thus, algorithmic differentiation for the Wengert variates involves the following: 

• Identifying the abstractable financial canonical/reusable common object structures 

(market parameters, product parameters, pricer parameters, etc.) 

• Working out their forward differentials and the reverse adjoints. 

 

The intermediate Wengert variate view presented above is the conceptual parsimonisation 

of the variate parameters space and the Jacobian measure space. 

 

 

Algorithmic Differentiation Financial Application Space Customization 

 

Here we consider the specifics of some of the customization that may be needed for 

specific areas relevant to Credit Analytics. 

 

Math Modules: Forward differentials and auto-adjointing may be needed for any of the 

math modules where sensitivity needs to be generated, it can go to the extent where, at 

every block, the base “value”, forward differential, and reverse adjoint, are all computed. 

In fact, for every active double-precision variable v, source code transformation 

algorithmic differentiation techniques recursively automatically generate the doublet 








 .

,vv . Further, this calculation may also be parallelized. 

 

Stochastic Variate Algorithmic Differentiation: Evolution of stochastic variates and their 

derivative entities may be further optimized by exploiting sparse-ness of the multi-factor 

co-variance matrix, thereby evolving the variate/derivative matrix that is sparse optimally 

(as opposed to blind delta bumps that may happen when computing differentials). 
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Given that variance reduction techniques are commonly used along the forward path of 

an evolution, these optimizations need to be preserved along the application of the 

algorithmic differentiation techniques as well. For instance, if a specific forward path a) 

does not need to be traveled, or b) certain forward Wengert intermediates automatically 

compute to zero, then these produce zero path derivatives. Further, external pre-

computations can be done during the adjoint generation. 

 

When generating sensitivities, special care needs to be exercised during the presence of 

optimal exercise dates, as they impose restrictions on how the path derivatives maybe 

computed using algorithmic differentiation. In particular the use of polynomial regression 

techniques to estimate the optimal exercise times also eases the introduction of the 

algorithmic differentiation into the code base. 

 

While implementing algorithmic differentiation, the optimal (re) use of tangent multi-

mode arc derivatives comes across at many places. While both the arc derivatives and 

their intermediates may be re-used, the circumstances under which they are effectively 

re-usable depend (as always) on the speed up and memory used. 

 

In quasi-analytic computation Models, no Monte-Carlo evolution needed at all, but still 

Wengert intermediate level reformulation may be necessary to enhance the quasi-

analytics analysis (e.g., Copula methods). Also, these correspond to the Adjoint-Natural 

Formulation Mode, i.e., typical quasi-analytic formulation often works out the Wengerts 

backwards from the final measure (e.g., say from PV), so they are automatically 

amenable to the adjoint mode of algorithmic differentiation. 

 

Calibration and entity-variate focus: While calibrating a curve/surface to a quote for a 

calibration instrument measure, the de-convolving of the instrument entity/measure 

combination is necessary for the extraction of the parameter set (this is what is achieved 

by the calibration process). Of course, calibration occurs among the elastic and the 

inelastic dimensions, and the inelastics are parameter set (Krishnamurthy (2012)). The 

greeks calculated during this process, therefore, need to be accommodative of the 
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calibration set up – in particular, the Jacobian sensitivities needed are to the curve 

parameters, or the measure quotes. 
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3) Sensitivity Generation During Curve Construction 

 

 

The basic premise of sensitivity generation during curve construction is simple: In 

addition to the usual advantage that algorithmic differentiation offers on doing Greeks on 

the same run as pricing, there is no need for multiple bumped curves anymore – but the 

proper Jacobians need to be calculated. Given that the calibration process calibrates the 

segment coefficients, further speed up may be achieved when the segment micro-

Jacobian is pre-calculated right during the calibration (here, we need to calculate the 

Jacobian ,
j

i

f

C

∂
∂

 where iC  is the ith coefficient, and jf  is the jth input). 

 

Depending on the nature of sensitivity sought, typical curve calibration deltas are with 

respect to one of the following: 

• The underlying dynamical stochastic variates (e.g., the forward rates, zero rates, 

discount factors) 

• The calibrated stochastic variate parameters (e.g., the segment spline coefficients) 

• The unit change in the quoted instrument measures (e.g., 1 bp change). Here the 

Jacobians need to ripple upwards from the quoted instrument measures. 

 

To work out the sensitivities, we start by distinguishing between the 5 types of 

span/segment elastic variates: 

• Φ  => Span stochastic evolution variate. 

• kΦ  => Stochastic evolution variate for segment k. 

• φ  => Implied Span Quoted Instrument Measure. 

• kφ  => Implied Quoted Instrument Measure for Segment k. 

• kϕ  => Observed Quoted Instrument Measure for Segment k at precisely a single 

variate point – typically, the observations are done at the anterior/posterior terminal 

ends of the segment. 
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For a given calculated/formulated output measure Ξ , the following are true by definition: 

 

( ) ( )
kk ttktt

kkk tttt
== Φ∂

Ξ∂=
Φ∂
Ξ∂

⇒=Φ==Φ     (3.1) 

 

( ) ( )
kk ttkttk

kkkk tttt
== ∂

Ξ∂=
∂
Ξ∂=

∂
Ξ∂

⇒====
φφϕ

φφϕ     (3.2) 

 

We then identify the sensitivities to the elastic variates as: 

• Sensitivity to Stochastic Evolution Variate => 
Φ∂
Ξ∂

 

• Sensitivity to Implied Span Quoted Instrument Measure => 
φ∂
Ξ∂

 

• Sensitivity to Observed Span Quoted Instrument Measure => 
kϕ∂

Ξ∂
 

• 
kϕ∂

Ξ∂
 (Case c) above) is what you need to calculate the hedge ratio 

 

If the segment variate is piece-wise constant, then 
kkk ϕφ ∂

Ξ∂=
∂

Ξ∂=
Φ∂
Ξ∂

. 

 

Clearly the above relation is not valid if the segment variate is splined. Recall that 

segment spline coefficient calibration is simply a problem of matching to a terminal node 

(which is the quoted instrument measure at the terminal node). Thus, for a formulated 

output Ξ , at node k, it is obvious that 
kk φ∂

Ξ∂≠
Φ∂
Ξ∂

.  If Ξ  refers to the discount factor, it 

can be shown that, where tj < t < tj+1, 

 

( ) ( ){ } ( ) ( )












Φ−Φ−=Φ−= ∑ ∫ ∫∫
=

+j

i

t

t

t

t

jiF

i

i j

dttdttdtttD
0

1

expexp     (3.3) 
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Thus, 

 

( ) ( )
















>
=−

<−
−=

Φ∂
∂ +

jfork

jforktt

jforktt

tD
tD

k

kk

F
k

F

0

*
1

    (3.4) 

 

The sensitivity of the quoted instrument measure, however, depends on the actual details 

of the quadrature. Thus 

 

( ) ( )

































>

=
∂

Φ∂

<
∂

Φ∂

−=
∂

∂
∫

∫
+

jfork

jfork

jfork

tD
tD t

t k

t

t k

F
k

F

k

k

k

0

*

1

ϕ

ϕ

φ
    (3.5) 

 

This is one of the many functional formulations in finance where the calculated product 

measure (Ξ ) has a linear dependence on the stochastic evolution variate, i.e., 

( )











ΦΨ⇒Ξ ∫

b

a

t

t

dtt . This implies that ( )ii
i

ik
k

tt −
Ψ∂
Ξ∂=

Φ∂
Ξ∂

+1δ , i.e., ik
k

αδ
Φ∂
Ξ∂

 only, and not 

on the quadrature details. 

 

 

Curve Jacobian 

 

Every Curve implementation needs to generate the Jacobian for the following measures 

from its parameterized representation scheme: 

• Forward Rate Jacobian 

• Discount Factor Jacobian 
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• Zero Rate Jacobian 

 

Here we define self-Jacobian as 
( )

( )KtY

tY

∂
∂

. Self-Jacobian computation efficiency is critical, 

since Jacobian of any function ( )YF  is going to be dependent on the self-Jacobian 

( )
( )KtY

tY

∂
∂

 because of the chain rule. 

 

Given ( )BA ttF ,  => Forward rate between times At  and Bt , and ( )kf tD  => Discount 

Factor at time kt , the Forward Rate->DF Jacobian is computed as: 

 

( )
( ) ( )

( )
( ) ( )

( )
( )











∂
∂

−
∂
∂

−
=

∂
∂

kf

Bf

Bfkf

Af

AfABkf

BA

tD

tD

tDtD

tD

tDtttD

ttF 111,
    (3.6) 

 

If ( )tZ  is the zero-rate at time t, Zero Rate->DF Jacobian is given from 

 

( )
( ) ( )

( )
( )











∂
∂

−
=

∂
∂

kf

f

fkf tD

tD

tDtttD

tZ 11

0

    (3.7) 

 

Using the Zero Rate to Forward Rate Equivalence, equations (3.6) and (3.7) may be used 

to construct the Zero Rate Jacobian From the Forward Rate Jacobian. 

 

The corresponding Quote->Zero Rate Jacobian is given from 

 

( )
( ) ( ) ( ) ( )

( )










∂
∂

−=
∂
∂

kf

j
kfk

k

j

tD

tQ
tDtt

tZ

tQ
0     (3.8) 

 

Finally the PV->Quote Jacobian is given as: 
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( ) ( )
( )

( )
( )∑

= 











∂
∂

÷
∂
∂

=
∂

∂ n

i if

j

if

j

k

j

tD

tQ

tD

tPV

Q

tPV

1

    (3.9) 

 

Looking at the product level micro-Jacobians, given jr  => Cash Rate Quote for the jth 

Cash instrument, and ( )jf tD  => Discount Factor at time jt , the cash rate DF micro-

Jacobian is given by 

 

( ) ( )
( )
( )kf

jf

STARTjjfkf

j

tD

tD

tttDtD

r

∂
∂

−∂
−=

∂
∂ 11

    (3.10) 

 

The Cash Instrument PV-DF micro-Jacobian is given as: 

 

( ) ( )
( )
( )kf

jf

SETTLEjfkf

jCASH

tD

tD

tDtD

PV

∂
∂

∂
−=

∂
∂

,

, 1
    (3.11) 

 

There is practically no performance impact on construction of the PV-DF micro-Jacobian 

in then adjoint mode as opposed for forward mode, due to the triviality of the adjoint. 

 

Given jQ  => Quote for the jth EDF with start date of STARTjt ,  and maturity of jt , the 

Euro-dollar Future DF micro-Jacobian is 

 

( )
( )
( ) ( )

( )
( )

( )
( )kf

STARTjf

STARTjf

jf

STARTjfkf

jf

kf

j

tD

tD

tD

tD

tDtD

tD

tD

Q

∂
∂

−
∂∂

∂
=

∂
∂ ,

,
2

,

1
    (3.12) 

 

The Euro-dollar Future PV-DF micro-Jacobian is given from 

 

( )
( )
( ) ( )

( )
( )

( )
( )kf

STARTjf

STARTjf

jf

STARTjfkf

jf

kf

jEDF

tD

tD

tD

tD

tDtD

tD

tD

PV

∂
∂

−
∂∂

∂
=

∂
∂ ,

,
2

,

, 1
    (3.13) 
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As for the Cash instrument, there is practically no performance impact on construction of 

the PV-DF micro-Jacobian in then adjoint mode as opposed for forward mode, due to the 

triviality of the adjoint. 

 

Before constructing the Interest Rate Swap DF micro-Jacobian, we define a few terms: 

• jFloatingjj PVDVQ ,01 =  

• jQ  => Quote for the jth IRS maturing at jt . 

• jDV 01  => DV01 of the swap 

• jFloatingPV ,  => Floating PV of the swap 

 

[ ]
( )

[ ]
( ) ( ) ( )kf

j
jj

kf

j

kf

jFloating

kf

jj

tD

dDV
QDV

tD

Q

tD

PV

tD

DVQ

∂
+

∂
∂

=
∂

∂
=

∂
∂ 01

01
01 ,     (3.14) 

 

( ) ( ) ( )
( )∑

= ∂
∂

∆=
∂

j

i kf

if
ii

kf

j

tD

tD
tN

tD
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The Interest Rate Swap PV-DF micro-Jacobian is given from 
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Again, there is no performance impact on construction of the PV-DF micro-Jacobian in 

then adjoint mode as opposed for forward mode, due to the triviality of the adjoint. Either 
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way the performance is ( )kn ×Θ , where n is the number of cash flows, and k is the 

number of curve factors. 

 

Finally, we examine the Credit Default Swap DF micro-Jacobian. 

• jACCRUEDjLOSSjCouponjCDS PVPVPVPV ,,,, +−=  

• j => jth CDS Contract with a maturity jt  

• jc  => Coupon of the jth CDS 

• jCDSPV ,  => PV of the full CDS contract 

• jCouponPV ,  => PV of the Coupon leg of the CDS Contract 

• jACCRUEDPV ,  => PV of the Accrual paid on default 
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The Credit Default Swap DF micro-Jacobian is then given as 
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Again, there is no performance impact on construction of the PV-DF micro-Jacobian in 

then adjoint mode as opposed for forward mode, due to the triviality of the adjoint. Either 

way the performance is ( )kn ×Θ , where n is the number of cash flows, and k is the 

number of curve factors. 
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4) Stochastic Entity Evolution 

 

 

We start with the formulation of the sensitivities for the evolution of the stochastic 

entities. The simplest evolution dynamics of the stochastic variables ( )tLi  will be ones 

with constant forward volatilities. Once the dynamics is formulated according to 

 
 

( ) ( ) ( )∑ ∆+∆=∆
j

jiijiii WtLttLtL ,, σµ      (4.1) 

 

where ( )tLii ,µ  is the component drift, and ( )tLiij ,σ  is the component co-variance to the 

factor ( )tLW ij , , subsequent evolution can be determined. 

 

The discretized, Eulerized version of the above is 

 

( ) ∑ ∆Ζ






+






=∆
→→

l
ljljj txhtxhtx ,, σµ     (4.2) 

 

where h is the time-step, and Z is the Weiner random variable. In the case of forward 

rates, e.g., the drifts can be established by a no-arbitrage condition binding the forward 

rate drifts to their variances. 

 

Once the stochastic variate dynamics is established, the dynamics of the observed 

derivative entity can be progressively determined. 

 

The evolution sequence can be determined for the individual pay-off measures as well. 

These measures may further be dependent on the path-wise differentials of the derivative 

entity, so those may also need to be evolved using algorithmic differentiation. 
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Several techniques have been considered in the literature for enhancing the computational 

efficiency of the derivative entity: 

• Using the adjoint algorithmic differentiation methods 

• Using optimal combination of forward and adjoint algorithmic differentiation 

methods 

• Further optimizations using sparse-ness of the multi-factor co-variance matrix, 

thereby evolving the variate/derivative matrix that is sparse optimally (as opposed to 

delta bumps that may happen when computing differentials). 

• Quasi-analytic computation models and algorithmic differentiation techniques do not 

Monte-Carlo evolution needed at all, but still Wengert intermediate level 

reformulation necessary to enhance the quasi-analytics analysis (e.g., Copula 

methods). 

 

A note on the Derivative Entity Measure Sensitivity: Sensitivity calculations reduce to 

calculating the quoted measure of the set of the input calibrated derivative entity input to 

the quoted measure of the output derivative entity (they are maintained in the Jacobian). 

In practice, however, the sensitivity Jacobian may be computed as sensitivity of the 

calibrated parameter to the output derivative entity Output map. 

 

Before detailing the calculations of the sensitivities, it makes sense to differentiate 

between the different types of variables that serve as the “dependent” variables to which 

we compute the sensitivities. 

 

First are the stochastic state variates. These are base stochastic entities that characterize 

the actual system statics/dynamics. The sensitivities to the state variates are typically 

sensitivities to the “current” (or starting) realization of these variates – e.g., delta, gamma. 

 
The next group is the dynamic parameters. These are the model parameters that govern 

the evolution/equilibrium behavior of the state variates, and thereby the system dynamics. 

Examples would be sensitivities to volatility, correlation, etc: 
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The final group is that of the segment/span coefficients. These coefficients serve act as 

the interpolated “PROXY” for the segments at the unobserved points in the segment. 

Sensitivities may also be sought to these coefficients. 

 

Additional considerations need to be accounted for when treating the stochastic variate 

evolution constrained by splines. The forward rates (or indeed any term instrument 

measures) need to evolve such that 

o They are continuous at the boundaries 

o The first (and possibly the second) derivatives are continuous at the boundaries 

o The boundary conditions (either financial or tensional) are retained intact 

 

For instance, the evolution dynamics of the forward rates (or indeed any term instrument 

measures) can still be via LMM, but splines may still be applicable to the intermediate 

nodes, as the segment spline coefficients adjust to the forward rate nodes. 

 

Splines may also be used for any term instrument measure determinant (e.g., the volatility 

surface maybe also be interpolatively constructed using splines), so as to preserve the 

continuity/smoothness, as opposed to piece-wise discreteness. 

 

We now treat the formulation of the Evolution of Stochastic Variate Self-Jacobian in 

detail. We start with base evolution equation for a stochastic variate 

 

( ) ( ) ( ) ( )∑
=

∆+∆=∆
m

l
lnjlnjj tWtxxttxxtx

1
11 ,...,... σµ     (4.3) 

 

We define the Self-Jacobian (ijJ ) Delta as 

 

( )
( )0j

i
ij x

tx
J

∂
∂=     (4.4) 

 

We now formulate the evolution of the sensitivity. Let: 
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• i => Index over the number of underliers (1 to n) 

• l => Index over the number of independent stochastic factors (1 to m) 

 

Then extending equation (4.3) we get 
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Considering the Euler-discretized version of the above, we get 

 

( )
( )

( )
( )

( )
( ) ( ) ( )

( )
( )
( )∑ ∑∑

= ==









∂
∂

∂
∂

Ζ+








∂
∂

∂
∂

=
∂
∆∂ m

l K

i
n

i i

njl
l

n

i K

i

i

nj

K

j

x

tx

tx

txx
th

x

tx

tx

txx
h

x

tx

1 1

1

1

1

0

,...

0

,...

0

σµ
    (4.6) 

 

Re-write Equation (4.6) to get 
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where 
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Equation (4.8) can be re-cast as 
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where 
( )
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

∂
∂

0kx

tx
 are column matrices, and ( )[ ]tkD ,  is an n x n square 

matrix. 

 

The time evolution of Equation (4.9) can be iterated as 
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While this is still forward algorithmic differentiation mode and is ( )nΘ , this may be 

optimized using specific path-wise techniques shown in Glasserman and Zhao (1999). 

However, further significant optimization can be achieved by adjointing techniques 

[Griewank (2000), Giles and Pierce (2000)]. To achieve this, transpose Equation (4.10) to 

get the following adjoint form: 
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Equation (4.11) reduces to vector/matrix as opposed to matrix/matrix in the non-

transposed version Equation (4.10), and would thus be ( )2nΘ , as opposed to ( )3nΘ . 

 

To gain insight from the components of ( )tkD ji ,  in Equation (4.8), decompose ( )tkD ji ,  

as 

 

( ) ( ) ( ) ( )tkDtkDtkDtkD VOLATILITYjiDRIFTjiPRIORjiji ,,,, ,,, ++=     (4.12) 

 

This separates out the different contributions to ( )tkD ji , . 

a) The term ( ) jiPRIORji tkD δ=,,  is the contribution due to the previous D, i.e., 

( )htkD ji −, . 
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b) The term ( )
( )
( )tx

t
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i
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DRIFTji ∂

∂
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µ
,,  is the contribution from the derivative of the 

drift term. 

c) The term ( ) ( ) ( )
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σ
 is the contribution from the 

volatility derivative. 

 

Finally, we compute the self-Jacobian Gamma ijΓ . We define it as 
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It is fairly straightforward (albeit tedious) to show that 
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where 
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Thus far correlation among the stochastic variables ha s not been treated explicitly – we 

now remove that. We start with by formulating the evolution process for continuously 

evolving stochastic variates. Given 
→
X  => the vector of financial variables that need to be 

mapped to the corresponding Weiner variates 
→
Z . For instance, among forward rates that 

use the LMM dynamics, the evolution sequence may start with 

( ) ( ) ( ) ( ){ }0,...,0,00 21 nXXXX =
→

, after which the LMM evolutionary techniques generate 

→
Z  and update ( )tX

→
. Extensions to model correlations among non-LMM–type asset 

movements is straightforward too, but additional transformation is required. For instance, 

if the default process can be correspondingly transformed to an asset indicator variable, 

that may be correlated with the other asset variables too. 

 

Extending equation (4.3) for a set of correlated variates, the correlated stochastic 

evolution equation can be written as: 
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Here 






 →
tXj ,σ  is the variance, and 







 →
tXjl ,ρ  is the correlation matrix – the variance is 

factored out of the covariance matrix to produce the correlation grid. ( )htl +Ζ  is 

produced by the usual i.i.d. ( )1,0ℵ . Extending the sensitivity formulation analogous to 

Equation (4.9) above, the corresponding delta is: 
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The entry in matrix D is given as: 
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The corresponding parameter sensitivity evolution dynamics are specified by: 

 

( ) [ ] ( )














∂
∂=















∂
+∂

→→

αα
tX

D
htX

    (4.20) 

 

Equation (4.20) may be simplified in cases where α  is an explicit function ONLY of the 

state evolution variables as: 
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An alteration to the above algorithm is needed when needed to generate correlated default 

times efficiently. Unlike the continuous variables above, if we are to consider the 

correlations between default times ONLY, it is much more efficient to draw correlated 

default times – again this correlation is different from that of continuous asset value times 

that results in default. 

 

The algorithm for the generation of Correlated Default Times is as follows: 

• Generate the vector TINDEPENDENZ
→

. 

• Factorize the correlation matrix jkρ to create the Cholesky diagonal matrices C  and 

ΤC . 
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• Use the Cholesky transformation to create CORRELATEDZ
→

 from TINDEPENDENZ
→

 using 

TINDEPENDENCORRELATED ZCZ
→→

= . 

• For each entity i

~

Ζ  in CORRELATEDZ
→

: 

a) Evaluate the cumulative normal ( )∫
Ζ=

−∞=

ℵ=
ix

x

i dxy

~

1,0 , where ( )1,0ℵ  is a Normal 

distribution with unit mean and zero variance. 

b) ( )iiDEFAULTi yS 1
,

−=τ  where iS is the survival probability for the entity i. 

c) In general, ( )iii yMX 1−= . 

 

 

LMM Forward Rate Evolution 

 

We now treat the special case of evolution of the stochastic forward rate using the 

LIBOR Market Model (LMM) dynamics. LMM formulation is particularly important, as 

it is one of the most popularly used formulation, and is essential to evaluate the impact 

the no-arbitrage constrained drift has on the evolution and the impact on the greeks. Of 

course, the results applicable to the lognormal nature of the forward rate ( )tL
→

 are 

important in its own right. 

 

The no-arbitrage constraint specification of LMM is first specified in conjunction with 

the base forward rate evolution dynamics: 
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( ) ( )tLbttL jjj =






→
,σ     (4.24) 

 

( )tη  is the maturity of the first instrument that matures after t [Brace, Gatarek, and 

Musiela (1997), Jamshidian (1997)]. 

 

At this stage, the distinction between the forward rate volatility and at-the-money swap 

option volatility needs to be made. LMM uses forward rate volatilities, so there needs to 

be a conversion step that involves converting the market observed at-the-money swap 

option volatility onto LMM forward rate volatility [Brigo and Mercurio (2001)]. 

 

With the above as base, the self-Jacobian of the forward rate using LMM is easy to 

formulate. As shown in Denson and Joshi (2009a) and Denson and Joshi (2009b), 
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We extend Equations (4.9) and (4.18) to evaluate the forward-rate evolution matrix. As 

expected, 
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Finally, the variate Jacobian Parameter Sensitivity is also straightforward to evaluate. 
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5) Formulation of Sensitivities for Pay-off Functions 

 

 

Having treated the evolution of the stochastic variate in detail, we now attend to the 

formulation of the pay-off function for the stochastic evolution. 

 

Algorithms to estimate Monte-Carlo Path-wise Derivatives are now well established. 

However, path-wise derivatives are typically forward derivatives, not adjoint [Giles and 

Glasserman (2006)]. Therefore computation time is proportional to the number of inputs. 

Further, it is not easy to accommodate these in complex payouts [Capriotti (2011)]. 

 

The Payoff Expectation is given as 

 
















=
→
XPEV Q     (5.1) 

 

[e.g., in Harrison and Kreps (1979)], where 
→
X  is the vector of financial variables. The 

corresponding path Payoff Expectation can be given as [Kallenberg (1997)] 
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and the corresponding variance from 
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Path Greek 

 

 

The Estimate of Path Sensitivity is unbiased [Kunita (1990), Protter (1990), Broadie and 

Glasserman (1996), Glasserman (2004)] if 
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Here ( )0x  is the starting point for the variate. 

 

The path Monte-Carlo Greek is defined at the change in Y with respect to the starting 

value of x, i.e., ( )0x . 
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If x is a multi-component vector 
→
X , then 
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The Pay-off Function Delta is defined simply as 
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The earlier formulation for 
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 may be used to establish the path delta. In 

particular, using Equations (4.9) and (4.18), 
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Thus, all the speed up advantages associated with the adjoint formulation above follows. 

 

In addition to the base Greeks, the Variance in the Greeks may also be computed as 

follows: 

1. Cluster all the Path-wise Greeks calculated for a given input (either ( )0kx  or a 

parameter θ ). 

2. Within that cluster estimate the corresponding Greek. 

3. Usual population sampling variance techniques applied to compute the variance in the 

Greek. 

 

The Path Parameter (α ) Sensitivity may be evaluated as: 
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The earlier formulation for 
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 may be used to establish the path parameter 

sensitivity. 

 

The pay-off Greek may be explicitly formulated as: 
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Additional partial derivative terms arise owing to the explicit dependence of σµ,  on α .  

(Otherwise ( ) 0, =αtB j ). The pay-off parameter sensitivity formulation proceeds 

precisely along the same lines as delta formulation. 
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While ( )α,tD ji  is exactly the same as earlier, ( )α,tB j  is given from 
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x n square matrix. Generalizing over all the j’s, we get 
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Transposing the above we get 
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 are row matrices, and that they are the preceding 

terms in the series, all the adjoint advantages indicated earlier continue to be valid. 

Further the previous formulations for ( )[ ]tD ,α  can be re-used at the same Eulerian time 

step. 

 

The adjointing step above causes additional storage demands. Since ( )[ ]tB ,α  and 

( )[ ]tD ,α  still need to be retained in memory during the forward evolutionary sweep for 
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The next step is to formulate the dependence of the payoff sensitivity to the correlation 

matrix. Irrespective of where the stochastic process is diffusive or not, the sensitivity of 
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Recall that if 
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From this, and using ( )iii yMX 1−= , you get 
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With the above, we are ready to estimate the differential of the Cholesky Factorization 

Matrix. Using 
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as given in Smith (1995), we get 
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Therefore, using 
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 is given from above, we get 
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It is important to note the distinction between adjoint mode sensitivities vs. reverse mode 

algorithmic differentiation. Typically adjoint refers ONLY to the intermediate/dynamical 

matrices [Giles (2007), Giles (2009)], whereas REVERSE refers to calculation of only 

the relevant outputs and their sensitivities [Griewank (2000)]. Adjointing deals with the 

evolved variate space parameters left to right, therefore technically it is reverse in the 

time sense – and achieves optimization by minimizing the matrix<->matrix 

computations. In the sense of adjoint algorithmic differentiation, however, the term 

reverse and adjoint are used synonymously, i.e., adjoint/reverse refer to a scan backwards 

from right to left inside the SAME step, for e.g., a time step. Finally, formalized pure 

“forward” and pure “reverse” is often theoretical constructs. Just like hand-rolled code 

can beat generic optimizers, hand-rolled algorithmic differentiation code will be better – 
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even for Monte-Carlo sensitivity runs. However, development productivity gains to be 

attained by using automated AD tools are well documented. 

 

Capriotti and Giles (2011) detail several techniques for the systematic design paradigm 

for using Algorithmic Differentiation for Path-wise Monte-Carlo Derivatives. 

 

As indicated earlier, the cost associated with the forward and the reverse algorithmic is 

different. 

• Forward Algorithmic Differentiation Cost => 
[ ]

[ ] [ ]5.2,2=+
BCost

FBCost
 

• Reverse Algorithmic Differentiation Cost => 
[ ]

[ ] [ ]5,4=++
BCost

RFBCost
 

• B => Base; F => Forward; R => Reverse. 

 

Algorithmic differentiation can be effectively used in conjunction with other related 

methods to improve performance. For instance algorithmic differentiation is natural 

performance fit in these situations (Kaebe, Maruhn, and Sachs (2009), Schlenkirch 

(2011)). Some approaches in this regard end up utilizing intermediate value theorem to 

facilitate the formulation (Christianson (1998), Giles and Pierce (2000)). 
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6) Bermudan Swap Option Sensitivities 

 

 

In this section, we consider the formulation of the sensitivity evaluation for the Bermudan 

swap option sensitivities. 

 

The details of an H x M Bermudan Swap Option are as follows: 

• Define the M swap exercise/pay date tenor grids MTTT <<< ...10 . 

• Option exercise dates rT  start from date HT  onwards, i.e., { }11,...,, −+∈ MHHr TTTT . 

• The cash flow stream after the exercise is the payment stream { }Mrr XXXX ,...,, 1+

→
= . 

 

Given a fixed rate R, the ith cash flow constituting an exercised Bermudan swap is 

 

( ) ( )[ ]RLttTNX iiiii −∆= − ,1     (6.1) 

 

The Bermudan Swap PV is 
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The following algorithm illustrates the Monte-Carlo methodology for valuing an H x M 

Bermudan Swap Valuation: 

• Simulate a single path sequence of 
→
L . 

• For this path, evaluate ( )iXPV  for each { }Mrr XXXX ,...,, 1+

→
= . 

• For this path, generate a vector of ( )pBerm TPV  corresponding to each possible exercise 

date { }11,...,, −+∈ MHHp TTTT . 

• Find rT  that maximizes ( )pBerm TPV . 

• Record ( ){ }rBermr TPVT , . 
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The analysis of Section 4 can be used in the estimation of the greeks. 

 

Under certain conditions of regularity (Lipschitz continuity), the H x M Exercised 

Bermudan Swap Option Delta/Parameter Sensitivity can become an expectation of path 

derivative [Piterbarg (2004), Capriotti and Giles (2011)] 
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Leclerc, Liang, and Schneider (2009) formulate the individual Cash-flow PV and Greeks 

for the Bermudan swap options. First, the ith cash flow constituting an exercised 

Bermudan swap is 

  

( ) ( )[ ]RLtttDPV jjjjfj −∆= − ,1     (6.5) 

 

The discount factor corresponding to the ith cash flow is 
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Using the relation established earlier 
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Finally, the Cash-flow PV Delta (
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) is calculated as 
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Credit Analytics uses the LSM Methodology to evaluate the optimal exercise dates. 

 

Since the simple model of maximizing ( )rBerm TPV  across rT  gets too cumbersome if the 

exercise dates are numerous – LSM based optimal exercise determination laid out in 

[Longstaff and Schwartz (2001)] can be used – regress rT  against ( )rBerm TPV . Regression 

is then applied to Curve-Fit to extract the optimal exercise date. 

 

LSM is highly effective in situations where the call schedules are continuous or fine-

grained. Sampling is reduced to a few evenly spaced-out grid points – such that the full 

sample scoping is eliminated. 

 



 44

Any appropriate inter-nodal interpolating/splining technique to determine ( )rBerm TPV  as a 

function of rT  is valid – e.g., constant ( )rBerm TPV  over rT , linear/quadratic/polynomial 

( )rBerm TPV  over rT , or even exponential/hyperbolic tension spline-based ( )rBerm TPV  over 

rT . 
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7) NTD Basket Sensitivities 

 

 

In this section, we consider the sensitivities associated with an nth-to-default basket. We 

start with describing the details of an NTD Product, followed by the formulation of its 

greeks. 

 

Details of an NTD Product: 

1. np →= 1  => Number of Components 

2. nkj →= 1,  => Row, column index of the correlation matrix for each of the n 

components 

3. nml →= 1,  => Factorized Cholesky diagonal matrix for the n components 

4. r => rth component in the current draw of ordered default times; it corresponds to the 

current nth-to-default. 

5. N => The “N” in NTD ( rN ττ ≡ ). 

 

The NTD contract contains 3 components, each of which is valued separately during a 

given Monte-Carlo run. 

 

AccruedemiumLossNTD VVVV ++= Pr     (7.1) 

 

The PV of the loss leg is given as 

 

( )[ ] ( ) ( )rrfrrLoss NDRV τττ−= 1     (7.2) 

 

The PV of the premium and the accrual legs are 

 

( ) ( ) ( ) ( )∑
=

− ≤⊥∆=
n

i
riiiifiemium ttttDtNcV

1
1Pr , τ     (7.3) 
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( ) ( ) ( ) ( ) ( )∑
=

−− ≥⊥≤⊥∆=
n

i
riririrfrAccrual tttDNcV

1
11, τττττ     (7.4) 

 

Here ( )τ≤⊥ t  be the default indicator that is 1 if τ≤t , and 0 otherwise. 

 

To make the computation convenient [Capriotti and Giles (2010), Capriotti and Giles 

(2011), Giles (2009), Chen and Glasserman (2008)] ( )τ≤⊥ t  is regularized and smeared 

out using an appropriate proxy, i.e., ( ) ( )ττ ≤Η≅≤⊥ tt . One choice for ( )τ≤Η t  is the 

Heaviside function – it has a bias, but it can be designed to be much tighter than the 

Monte-Carlo accuracy. 

 

Using the formulations of Sections 4) and 5), the NTD Sensitivity can be computed as 

follows: 
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The NTD path derivatives estimator is given as 
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The NTD loss path derivatives estimator is given as 
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The NTD premium path derivatives estimator is given as 
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8) Basket Options 

 

 

In this section we consider the sensitivity generation for Basket Options. The PV for an 

Option Basket may be determined from the Black Scholes relation as: 

 

( ) ( )[ ]∑
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+−=
n

i
iif STXWTDV

1

    (8.1) 

 

As before, the formulations in Sections 4) and 5) may be used to evaluate the 

sensitivities. 

  

Recall from earlier that 
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The Basket Options path derivatives estimator is then given as 
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The strike is given as 
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