Algorithmic Sendgitivity Generation in Credit Analytics

Lakshmi Krishnamurthy
v0.34, 8 Mar 2013

Glossary

. Wengert ListList of all the non over-writable program variebl(\Wengert (1964)) —
can also be seen as a linearization of the compngtgraph. By construction, it is
an intermediate variable.

Intermediate Wengert Canonical Variablbese are intermediate financial variables

those are fixed from the point-of-view of the outgacobians and the input
parameters that serve as computation graph pargo®aptimizers (Figures 1 and
2).

Wengert fan-in and fan-ouReduction of a set of initial/intermediate Wengert

variates onto the subsequent set is called fatinopposite is fan-out.
Wengert funnelingSame as Wengert fan-in.

Micro-JacobianChange in the calibrated instrument measure @oefiis to unit

change in the quoted instrument measures.

. Self-JacobianSelf-Jacobian refers to the Jacobian of the Qibg&unction at any

point in the variate to the Objective Functionhe segment nodes, mm Self-

o¥(t)

Jacobian is a type of micro-Jacobian.

Derivative Entity The entity whose dynamics are determined by vioéuéon of a

stochastic variate, and whose specific facets/measue observable.

Path-wise Derivative Estimatolai, where V is the value of the derivative, and

0X(0)
X,(0) is the starting value for a specific stochastidate.

Non-Parsimonized ParametdPsirameters that map one-to-one with the input

instrument set, e.g., typical curve bootstrapping.

10. ParsimonizatiorReduction of the parameter space from the inpatsone space.

1) Overview and Literature Review

This paper details the techniques and methodoldgiesd the sensitivity generation
software employed in Credit Analytics. It draws ViBaon key algorithmic
differentiation techniques in general, and as a&pipio finance. It details the variation in
approach implemented for the different sensititatyder for (quasi or total) closed form

versus Monte-Carlo pay-off formulations.

As a technology and practice, algorithmic differatndon techniques have been in use for
a long time (for history of algorithmic differentian, see Iri (1991)). Griewank (2000)
outlines the mathematical foundations, and an etbsurvey of the methodologies, the
processes, the techniques, and the implementaids @re available from Berz (1996)
and Bischof, Hovland, and Norris (2005). The dedaafficial algorithmic differentiation
online reference is dittp://www.autodiff.org/.

With regards to finance, algorithmic differentiatitocus has been primarily on Monte-
Carlo methodologies. Although path-wise optimizedsstivity generation had been
employed earlier (Glasserman (2004)), Giles andg<&lianan (2006) first discussed
adjoint methods in path-wise sensitivity generatieull extension to LMM based
stochastic variate evolution and a correspondimgieXin this case Bermudan) swap
option evaluation (Leclerc, Liang, and Schneid®0@), as well as to correlated defaults
and their sensitivities (Capriotti and Giles (201Dapriotti (2011) covers automated
Greek generation, but with a focus on algorithniffecentiation, and in the context of
Monte-Carlo methods. Finally, algorithmic differextion has also been applied to
addressing the issue of calibration along with isertg generation (Schlenkirch (2011)).

As indicated above, the purpose of this paper deteribe the sensitivity generation
techniques as employed in Credit Analytics Suitestty using algorithmic
differentiation techniques. It starts with a reviefathe main algorithmic differentiation

concepts, the caveats, and applicability — witlgmiting into the details. It then describes

the general Monte-Carlo based stochastic finaveahte evolution and sensitivity
formulation as used in Credit Analytics. It therpbgs it to the calculation of greeks for
several products, with specific samples considdfexdlly, it also considers in some

detail the application of algorithmic differentiati techniques to curve calibration.

2) Algorithmic Differentiation

Algorithmic differentiation is a set of techniquies transforming a program that
calculates the numerical values of a function amfrogram that calculates numerical
values for derivatives of that function with abtlue same accuracy and efficiency as the
function values themselves (Bartholomew-Biggs, Brp@hristianson, and Dixon
(2000)).

Algorithmic differentiation aims to exploit the faihat calculation of the local
derivatives is always symbolic, and thus avoidécipchallenges associated a) divided

differences, or b) numerical differentialsufomatic Differentiation - Wikipedia Entry).

Further, apart from the “chain rule” multiplicatiéexctor effects, the computation

requires the same number of Objective Functionations as the original.

Owing to its usage of local symbolic derivativdss ticcuracy of Algorithmic
Differentiation is always better than numericafaiéntials. It will automatically scale to
arbitrarily small variate infinitesimals, therebgve reduced errors due to bit cancellation
etc: Finally, Algorithmic Differentiation does noeed additional objective function
evaluations for higher order derivative calculasigheyond the chain-rule issues);

therefore, those are infinitesimally correct too.

Two prototypical program construction modes camnged in algorithmic differentiation
to achieve differentiation code construction —fthrevard and the reverse mode of

algorithmic differentiation.

In the forward mode, the final and the intermediatgables are expressed as a
consequence of a computed forward graph, and thbdic forward derivative graph is
then derived. In effect, this is equivalent to conimpy the gradient of the intermediate
variables to the variates or the “independent W&l and transmitting them up the
graph.

In the reverse mode, the final and the intermediat@bles are expressed as nodes in the
computed reverse graph, and the symbolic reverseatige graph is then derived.
Effectively, this computes the gradient of the intediate variables to the “dependent
variables” and transmits them down the graph. Oterreverse mode may need the

forward path to store the calculated intermediateded on the way back.

As can be seen, the run-time of a forward moderilhgnic differentiation is proportional
to the number of variates or independent varialaled,that for the reverse mode is

proportional to the number of dependent variables.

The memory usage is different across the diffemeodes (see for e.g., Ghaffari, Li, Li,
and Nie (2007)). In the forward mode, storage edee for a) each Wengert variable and
b) the forward Jacobian for each Wengert. In tlvense mode, storage is needed for a)
each Wengert adjoint, b) the reverse Jacobianaitin /engert, and c) forward/reverse

dependency graph.

For the purpose of implementing algorithmic differation, the constructs of the forward
and the reverse mode can be theoretical conversielrcsituations where the
dependence of the final Jacobian sensitivity stdhe dominating factor, and the

adjointing step is not the rate-determining p&entthe performance will always be

©(n), where n is the number of sensitivities — for dfgy = Z)g , given thatg—y IS
X

— .
trivial to calculate, the performance will always @(n). For instance, given a univariate
objective function (as in constrained/unconstraioptimization (e.g.,
maximization/minimization) problems), either fondaor reverse Algorithmic
differentiation is an equally good choice for s&mgy generation, owing to its

performance.

While the sensitivity generation discussed hera tise concepts employed in

algorithmic differentiation, Credit Analytics doaset use any tools for automated

differential code generation. This is mainly dug&sformance, but this does introduce

additional software development/re-use challenges.

First, no matter how minimally intrusive the designbuilding for algorithmic
differentiation introduces its own deep-dig perspec Re-purposing purely for the
differentiation perspective forces the visualizataf the computation at the granularity

of the symbolic functional forms of the objectiwettion.

For instance, usage of the objective function emaluover-loading requires propagation
of the inner most symbolic graph nodes throughgtgh chain, which causes export of a
differential data structure. This results in thie@tion/adjustment of the design around
objective function invocation - with every Wengeatriable, calculation of the set of
forward sensitivities and the reverse Jacobiansi®ai local picture of the Objective

Function without having to evaluate it.

Second, source code transformation techniquesesydrwasive, and require highly
locally frozen view fixation, and are therefore derto implement. Operator overloading
enables retention of the domain focus, and is tbexeasier to implement. However,
naive operator overloading would simply generaitak-level (or function call level)
adjoint. This can explode the required storagegdidition to generating sub-optimal
reverse-mode code. Needless to mention, sourcet@ugormation techniques can be
built to overcome this — in practice, however, malgorithmic differentiation tools may

not quite do it.

Finally, without the usage of obfuscating “versgtiemplates, auto-generation of very
generic forward/reverse accumulation code is imptessTherefore source level function
overloading and automated program instrumentagohrtiques are very hard. Further,
just as in the case of compiled language source tradsformation “smart compiler”
efforts of the ‘90s, re-use of the algorithmic drntiation paradigms conceptually
(rather than “built out-of the-box” through the Abols) offers clear additional insight

onto program construction.

Canonicalization - Program Statements Simplification by

Decomposition

Here we discuss techniques used by several algodttiifferentiation tools to achieve
line-level program decomposition (called canoniation). Simply put, canonicalization
decomposes the program/statement units into spexciilysis bits. In various forms,
canonicalization is commonly used in many areaoafputer science, e.g., in compiler

design/code generation, SKU formulation/synthesgfmmization etc.

In general, canonicalization and other relatedrélymic differentiation source code
generation/transformation techniques go hand il léth optimizing compiled code
emission techniques, program active variable dgtaumalysis — for instance, the
canonicalization sequence includes steps (Bist¢hmiland, and Norris (2005)) where to
mark out the “Algorithmically Differentiable” codeom the others during, for instance,
pre-processing etc. For true program transformagftectiveness, however, dynamic
run-time analysis is needed in addition to stadimpile time data flow analysis etc. (For
instance, in VM-based architectures, the run-tioragrises of both Hot-Spot and GC, so
it may make sense to embed algorithmic differeiminaéxecution/selective sensitivity

generation as well).

Canonicalization may also be viewed as being etprvdo the Wengert Structuring
described above: Given that canonicalization cesmsihoisting all the |-value updates
separately without side effects, it is effectividg same as Wengert un-rolling and the

forward DAG linearization.

Estimation of the program execution run-time cé&somes easy once the code is

- . e a
canonicalized. Given that the worst case is divisgning fromc = b to

oc = %a —b%ab results in going from 1 function unit executiorstio 4 algorithmic

b
differentiation execution unit costs. However, oftkie to presence of high-cost function
units (such as log, exp, etc), the worst-case iatdib a single post-canonicalized

statement is a factor between 4 and 5.

A final caveat needs to be indicated in regardbédimitations with the implementation
above. For many of the reasons indicated earli#onaated implementations of
canonicalization (like other automated code ger@rae-structuring) might result in
“invisible inefficiencies”, and the had-drafted beiques those are based upon essentially

the same principles may be more optimal.

Optimization using Pre-accumulation and Check Pointing

Two other common techniques applied commonly aatggsrithmic differentiation
implements are a) pre-accumulation, and b) Crosstcp accumulation or Check-

pointing.

Pre-accumulation refers to the process of aggmgéind possibly caching) the

sensitivity Jacobian over all the intermediate Wetig inside a routine/block/module,

o0utp
n

thereby only eXpOSingalpTltjti for the group unit (not each Wengert inside). Véher
i

feasible, pre-accumulation also provides a suithblendary for parallelization. It may

also be looked at as the appropriate edge at whe&kource code transformation

technique and operator overloading technique magrgad’.

Cross-country Accumulation (or Check Pointing)hie same as pre-accumulation, but
pre- accumulation occurs in a specified (forwanéree) order, Cross-country
accumulation need not — in fact it may be guidegimgram analysis using any of the

optimal Wengert intermediate composition technigiéss typically also requires

snapshotting the program global and other executioiext parameters at the checkpoint
boundaries. Cross-country accumulation works bésinwhe program state is easily and
minimally savable, and quickly recoverable, and thasadditional advantage of working

well in conjunction with traditional kernel leveheck pointing schemes for fail-over etc:

Optimal Program Structure Synthesis

As indicated earlier, the forward mode (n input) éhe reverse mode (m outputs)
represent just two possible (extreme) ways of ngrthrough the chain rule. Forn > 1
and m > 1 there is a golden mean that correspansimthesis of an optimal program
structure, but finding the optimal way is probabtyNP-hard problem (Berland (2006)) —
optimal Jacobian accumulation is NP-complete (Naun(@008)).

In Credit Analytics, program structure is optimizegsearching for the set of
intermediate Wengerts below which the independmi$n, and above which the
dependents fan out. This is illustrated in Figurés 3. If there exists an intermediate
guantity that is fixed from the point-of-view ofatoutput Jacobians and the input
parameters, the performance may be improved (ggereeL). Further, if the input/output
computation leads to sufficient commonality amdmg ¥Wengert intermediate
calculation, that may also reduce computation loyrating reuse, thereby improving
efficiency. In general, the conditiodncl\j% - ¢; results in a Wengert fan-out — otherwise
J
rippling out causes huge non-diagonal Markov mesriSimilar fan-in/fan-out constraint
relations exist at the following boundaries (segufe 3): a) | -> P, b) P-> W, and c) W ->
0.

Extending these observations to computational iegesp. computational fixed income
finance), the payout/product/pricer object sertesfunction of the intermediate Wengert
variate indicated above (Figure 2). From below #aigate you have the

inputs/parameters rippling up, and from above yavefthe Jacobians/output measure

10

adjoints feeding down. The nodes in Figure 2 atsoespond to natural reactive Tree up-
tick boundaries - every intermediate element irufé@ is a reactive tree dependent node
from the entity below, so forwarding/adjointing sihab happen with every real-time

uptick.

Thus, algorithmic differentiation for the Wengedriates involves the following:
* Identifying the abstractable financial canonicalga&ble common object structures
(market parameters, product parameters, pricenpseas, etc.)

* Working out their forward differentials and the eese adjoints.

The intermediate Wengert variate view presentedealsthe conceptual parsimonisation

of the variate parameters space and the Jacobiasungespace.

Algorithmic Differentiation Financial Application Space Customization

Here we consider the specifics of some of the coigiation that may be needed for

specific areas relevant to Credit Analytics.

Math Modules Forward differentials and auto-adjointing mayneeded for any of the
math modules where sensitivity needs to be gerteriitean go to the extent where, at
every block, the base “value”, forward differenti@hd reverse adjoint, are all computed.
In fact, for every active double-precision variabjesource code transformation

algorithmic differentiation techniques recursivalytomatically generate the doublet

(V,Vj. Further, this calculation may also be parallelize

Stochastic Variate Algorithmic Differentiatio&volution of stochastic variates and their

derivative entities may be further optimized by lexing sparse-ness of the multi-factor
co-variance matrix, thereby evolving the variateidgive matrix that is sparse optimally

(as opposed to blind delta bumps that may happe&mwbmputing differentials).

11

Given that variance reduction techniques are conynged along the forward path of
an evolution, these optimizations need to be pvesealong the application of the
algorithmic differentiation techniques as well. Fwstance, if a specific forward path a)
does not need to be traveled, or b) certain forwdetigert intermediates automatically
compute to zero, then these produce zero pathaders. Further, external pre-

computations can be done during the adjoint geioarat

When generating sensitivities, special care nezbe exercised during the presence of
optimal exercise dates, as they impose restricibonsow the path derivatives maybe
computed using algorithmic differentiation. In peutar the use of polynomial regression
techniques to estimate the optimal exercise tinsseases the introduction of the

algorithmic differentiation into the code base.

While implementing algorithmic differentiation, tloptimal (re) use of tangent multi-
mode arc derivatives comes across at many pladei¢e Woth the arc derivatives and
their intermediates may be re-used, the circumstanader which they are effectively

re-usable depend (as always) on the speed up amdnpesed.

In quasi-analytic computation Models, no Monte-@avVolution needed at all, but still
Wengert intermediate level reformulation may beassary to enhance the quasi-
analytics analysis (e.g., Copula methods). Alsesé¢hcorrespond to the Adjoint-Natural
Formulation Mode, i.e., typical quasi-analytic faration often works out the Wengerts
backwards from the final measure (e.g., say fron) B¥Y they are automatically

amenable to the adjoint mode of algorithmic diffeiation.

Calibration and entity-variate focudrhile calibrating a curve/surface to a quote for a

calibration instrument measure, the de-convolvihtpe instrument entity/measure
combination is necessary for the extraction ofgameter set (this is what is achieved
by the calibration process). Of course, calibraboours among the elastic and the
inelastic dimensions, and the inelastics are paeset (Krishnamurthy (2012)). The

greeks calculated during this process, theref@egdno be accommodative of the

12

calibration set up — in particular, the Jacobiamsg#ities needed are to the curve

parameters, or the measure quotes.

13

3) Sensitivity Generation During Curve Construction

The basic premise of sensitivity generation dugagye construction is simple: In
addition to the usual advantage that algorithmiiledentiation offers on doing Greeks on
the same run as pricing, there is no need for plalbumped curves anymore — but the
proper Jacobians need to be calculated. Givertiibatalibration process calibrates the
segment coefficients, further speed up may be aetliezhen the segment micro-
Jacobian is pre-calculated right during the catibra(here, we need to calculate the

Jacobian%%, whereC, is the I" coefficient, andf, is the " input).
j

Depending on the nature of sensitivity sought,dgpcurve calibration deltas are with

respect to one of the following:

* The underlying dynamical stochastic variates (¢hg forward rates, zero rates,
discount factors)

* The calibrated stochastic variate parameters (g segment spline coefficients)

* The unit change in the quoted instrument measergs (L bp change). Here the

Jacobians need to ripple upwards from the quotsidument measures.

To work out the sensitivities, we start by distirgiing between the 5 types of
span/segment elastic variates:

* & => Span stochastic evolution variate.

* ®, => Stochastic evolution variate for segment k.

* ¢ =>Implied Span Quoted Instrument Measure.

* @ =>Implied Quoted Instrument Measure for Segment k

* ¢, => Observed Quoted Instrument Measure for Segkahprecisely a single

variate point — typically, the observations area@lahthe anterior/posterior terminal

ends of the segment.

14

For a given calculated/formulated output meastirehe following are true by definition:

0= 0=
O (t=t)=t =t — = 31
k(k) (k) - aq) t=ty ‘aq)k t=ty ()
0= (0= 0=
o =qlt=t)=dt=t :—:‘—(p‘ =|— (3.2
=alt=t)=dt=t) 29, " logl. |0l

We then identify the sensitivities to the elastciates as:

» Sensitivity to Stochastic Evolution Variate =§>&:§

» Sensitivity to Implied Span Quoted Instrument Meascpg—:
@

» Sensitivity to Observed Span Quoted Instrument MEB.S>;—:
k

. 6_: (Case c) above) is what you need to calculatdeldge ratio
k

If the segment variate is piece-wise constant, H%n = 9= = 6_:
ov, 0¢ 09,

Clearly the above relation is not valid if the segvariate is splined. Recall that
segment spline coefficient calibration is simplgrablem of matching to a terminal node
(which is the quoted instrument measure at theiteimode). Thus, for a formulated

output =, at node k, it is obvious th%?q% 2 0=

. If = refers to the discount factor, it
« 04

can be shown that, where<tt < {.4,

D, (t) = extf- [@ (t)ct} = exp|— zjq> (t)dt - jqaj (t)dt} 33)

i=0 ; t

15

Thus,

t., —t fork<j
=-D.(t)*{t -t fork = j (3.4)
Ofork > j

oD (t)
oD,

The sensitivity of the quoted instrument measuogydver, depends on the actual details

of the quadrature. Thus

%%
I a;q)fork <j
t, 0 k
oD (t) L) .
=-D.(t)*< | —Ffork = j (3.5
oa (t) J)
Ofork > j

This is one of the many functional formulationdimance where the calculated product

measure £) has a linear dependence on the stochastic eooluériate, i.e.,

ow o,

ty = = =
== q{ | qb(t)dt]. This implies thata% = 5ika—‘(ti+1), i.e., a—‘aaik only, and not
ta k

on the quadrature detalils.

Curve Jacobian

Every Curve implementation needs to generate tt@hian for the following measures
from its parameterized representation scheme:
* Forward Rate Jacobian

e Discount Factor Jacobian

16

e Zero Rate Jacobian

aY(t)

Here we define self-Jacobian as+% . Self-Jacobian computation efficiency is critical,

ov(t)

since Jacobian of any functidﬁ(Y) Is going to be dependent on the self-Jacobian

aY(t)

av(t)

because of the chain rule.

Given F(t,,t,) => Forward rate between timesandt,, and D, (t,) => Discount

Factor at timd, , the Forward Rate->DF Jacobian is computed as:

Flut) 1 [1 o)1 o) o
() 64D, t

If Z(t) is the zero-rate at time t, Zero Rate->DF Jacolsigiven from

az(t) 1 { 1 aD,(t)

D,) t-t, Df(oaof(m} 57

Using the Zero Rate to Forward Rate Equivalenceagons (3.6) and (3.7) may be used
to construct the Zero Rate Jacobian From the FarRate Jacobian.

The corresponding Quote->Zero Rate Jacobian isignaen

Finally the PV->Quote Jacobian is given as:

17

oPV,(t) & [PV (t) | aQ(t)
ant _é{an(tit)Tan(i)} 49

Looking at the product level micro-Jacobians, giver> Cash Rate Quote for tHe |
Cash instrument, anD, (tj) => Discount Factor at timg , the cash rate DF micro-
Jacobian is given by

a, 1 1 D)

=- (3.10)
an(tk) an(tj)tj _tSTART an(tk)

The Cash Instrument PV-DF micro-Jacobian is given a

(3.11)
oD, (tk) oD (tj,SE'I'I'LE)an t

OPVorsi; _ 1 aD, (t;)
(t,)

k

There is practically no performance impact on awasion of the PV-DF micro-Jacobian

in then adjoint mode as opposed for forward mode,td the triviality of the adjoint.

Given Q; => Quote for the") EDF with start date of; srarr @nd maturity ot , the

Euro-dollar Future DF micro-Jacobian is

0Q _oap) 1 Dily) Dt ereer) (3.12)
an (tk) an (tk) an (tj,START) sz(tj,START) an (tk)
The Euro-dollar Future PV-DF micro-Jacobian is gif'®m
aPVEDF,j — an (tj) 1 _ Df (tj) an (tj,START) (3_13)

an (tk) an (tk) an (tj,START) sz(tj,START) an (tk)

18

As for the Cash instrument, there is practicallypeoformance impact on construction of
the PV-DF micro-Jacobian in then adjoint mode gsospd for forward mode, due to the

triviality of the adjoint.

Before constructing the Interest Rate Swap DF miawobian, we define a few terms:
+ Q,DVO0L =PV,

Floating, j
« Q, => Quote for the"] IRS maturing at; .
« DVO01 =>DVO01 of the swap

. PV

Floating, j

=> Floating PV of the swap

9lQ,DVOL| 9|PViouns;] . 9Q, dDV 01,

= JERS DVOlL +Q — L (3.14
o) k) o) %) O

dbvo1l oD, (t,)

= Nt)A, 3.15
o) 2o G
j

PVeicating,j = ZliN(ti)Ain(ti) (3.16)
OPVerong,; j N(t)A D, (t o, j IN(t)A. 9D, 1) 3.17
an(tk) IZ:]; (I)I f(l)an(tk) iZ:];l (|) Ian(tk) ()

The Interest Rate Swap PV-DF micro-Jacobian isrgfv@m

=N)P -0 02 e

an (tk) an (tk) an

Again, there is no performance impact on constonctif the PV-DF micro-Jacobian in

then adjoint mode as opposed for forward mode toltiee triviality of the adjoint. Either

19

way the performance i@(nx k), where n is the number of cash flows, and k is the

number of curve factors.

Finally, we examine the Credit Default Swap DF midacobian.
PV, =PV, -PV

CDS, j Coupon, j LOSS, j + PVACCRUED j

j => | CDS Contract with a maturity
« ¢, => Coupon of thé') CDS

PVeps,; => PV of the full CDS contract
* PVeupm; => PV of the Coupon leg of the CDS Contract

* PViccruen,; => PV of the Accrual paid on default

PVeoupon j = C; ZJ: N(ti)AiSP(ti)Df (ti) (3.19)

—az\éioff:g'j =e Y N{A (ti)gg:((tt'k)) - (t)Z]:N() S.(t)D,(t) (3.20)

i=1 i=1

l

Vioss; = [NOL-ROID, (t)dS. () (3.21)

0

0PV, oss ,
oD, t,)

j N©OR-RO] (())dsp(t) (322)

PVaccruen.j = 6 Z]:]. N(t)A(t,t_,)D, (t)dSP © (323

=1,

20

aPVACCRUEDJ _ i ()
aD, (t,) th N(®AL)D,)dsp(t)+C];tJ‘1N(t)A(t,tl 2 ()dSP(t)

i-1

(3.24)

The Credit Default Swap DF micro-Jacobian is theermgas

0PVeps; _

ey o)t - oot - ket

(3.25)

Again, there is no performance impact on constonatif the PV-DF micro-Jacobian in
then adjoint mode as opposed for forward mode toltiee triviality of the adjoint. Either
way the performance i@(nx k), where n is the number of cash flows, and k is the

number of curve factors.

21

4) Stochastic Entity Evolution

We start with the formulation of the sensitivitfes the evolution of the stochastic

entities. The simplest evolution dynamics of threekastic variables. (t) will be ones

with constant forward volatilities. Once the dynasiis formulated according to

AL (1) = w4 (L tat+ Y o, (L. Haw, (4.0)

where (L, ,t) is the component drift, and; (L, ,t) is the component co-variance to the

factorw, (L,,t), subsequent evolution can be determined.

The discretized, Eulerized version of the above is
Ax () = hyj(;(,tj +\/EZJ“(;<,tjAZ| (4.2)
|

where h is the time-step, and Z is the Weiner ramdariable. In the case of forward
rates, e.g., the drifts can be established by arbitrage condition binding the forward

rate drifts to their variances.

Once the stochastic variate dynamics is establjgheddynamics of the observed

derivative entity can be progressively determined.
The evolution sequence can be determined for theidual pay-off measures as well.

These measures may further be dependent on thevissttdifferentials of the derivative

entity, so those may also need to be evolved wggyithmic differentiation.

22

Several techniques have been considered in tmatiite for enhancing the computational

efficiency of the derivative entity:

* Using the adjoint algorithmic differentiation metiso

» Using optimal combination of forward and adjoing@ithmic differentiation
methods

» Further optimizations using sparse-ness of theiffadtor co-variance matrix,
thereby evolving the variate/derivative matrix ttsasparse optimally (as opposed to
delta bumps that may happen when computing difeisih

* Quasi-analytic computation models and algorithnifiecentiation techniques do not
Monte-Carlo evolution needed at all, but still Werigntermediate level
reformulation necessary to enhance the quasi-acabmalysis (e.g., Copula

methods).

A note on the Derivative Entity Measure Sensitivignsitivity calculations reduce to
calculating the quoted measure of the set of thetinalibrated derivative entity input to
the quoted measure of the output derivative efitilgy are maintained in the Jacobian).
In practice, however, the sensitivity Jacobian tm@ygomputed as sensitivity of the

calibrated parameter to the output derivative g@iitput map.

Before detailing the calculations of the sensiidgt it makes sense to differentiate
between the different types of variables that ses/the “dependent” variables to which

we compute the sensitivities.

First are the stochastic state variates. Thesbam® stochastic entities that characterize
the actual system statics/dynamics. The sens#s/it the state variates are typically

sensitivities to the “current” (or starting) reaiion of these variates — e.g., delta, gamma.

The next group is the dynamic parameters. Thesthamnodel parameters that govern
the evolution/equilibrium behavior of the stateiates, and thereby the system dynamics.

Examples would be sensitivities to volatility, cgdation, etc:

23

The final group is that of the segment/span caefiits. These coefficients serve act as
the interpolated “PROXY” for the segments at thelhserved points in the segment.

Sensitivities may also be sought to these coeffisie

Additional considerations need to be accountedvfoen treating the stochastic variate
evolution constrained by splines. The forward réesndeed any term instrument
measures) need to evolve such that

0 They are continuous at the boundaries

0 The first (and possibly the second) derivativescarginuous at the boundaries

o The boundary conditions (either financial or tensid are retained intact

For instance, the evolution dynamics of the forwates (or indeed any term instrument
measures) can still be via LMM, but splines maly ls& applicable to the intermediate

nodes, as the segment spline coefficients adjusetéorward rate nodes.
Splines may also be used for any term instrumeisore determinant (e.g., the volatility
surface maybe also be interpolatively constructdgusplines), so as to preserve the

continuity/smoothness, as opposed to piece-wisgaleness.

We now treat the formulation of the Evolution ob&tastic Variate Self-Jacobian in

detail. We start with base evolution equation fetahastic variate

B, () = 21, (. 3)AL+ Y 0, (%, AW () (4.3)

1=1

We define the Self-Jacobiad() Delta as

_ ox(t)
%= 50

(4.4

We now formulate the evolution of the sensitivitet:

24

i => Index over the number of underliers (1 to n)

* | =>Index over the number of independent stochdattors (1 to m)

Then extending equation (4.3) we get

anx, (t) =At[ia'uj (%..%,.t) x t }_Zm:AWl(t){iaan (%..x,,t) ox [t } 4.5)

x (0 1F xl) ()] = = o) ox(0)

Considering the Euler-discretized version of thevah we get

anx(t) [op (%%, t) ox m n 90, (t) axt)
el P D P s

Re-write Equation (4.6) to get

ox;(t+h) @ . a,u_j(t)+ m . a0, (1)) | ax (t) _< ax(t)
_Z|:5n ha>q(t) \/EIZ:;,{ZI(t h))H ZDji(k1t)

where

D;(kt)=0, + h‘?;):—i((tt)) +\/Eé{zl (t+ h)aa” (t)} (4.8)

Equation (4.8) can be re-cast as

25

where[a;)(:kzog])} and{ ox{) } are column matrices, ar{ﬂ)(k,t)] iS an n x n square

matrix.

The time evolution of Equation (4.9) can be itedeads

[W(t - h)} - [D(c[o(kt - h)]...[D(k,O)][ox(0) } (410

ox.(0) ox.(0)

While this is still forward algorithmic differentian mode and i$(n), this may be
optimized using specific path-wise techniques show@lasserman and Zhao (1999).
However, further significant optimization can béi@ved by adjointing techniques
[Griewank (2000), Giles and Pierce (2000)]. To aghkithis, transpose Equation (4.10) to

get the following adjoint form:

Fx(t + h)T _ [2(0) T[D(k,O)]T[D(k, Wl t-n D] @41

Equation (4.11) reduces to vector/matrix as opposedatrix/matrix in the non-

transposed version Equation (4.10), and would Itiw@(nz), as opposed té)(n3).

To gain insight from the components Bf, (k,t) in Equation (4.8), decompos; (k,t)

as
Dji (k’t) = Dji,PRIOR(k’t)+ Dji,DRIFT (k!t)"' Dji,VOLATILITY(k1t) (4.12)

This separates out the different contribution®tgk,t).
a) The termD; qnor(k,t) = J; is the contribution due to the previous D, i.e.,

D, (k,t—h).

26

b) ThetermD e (kit) = h p '

drift term.

c) The termD, v anury(Kit) = \/Fi{zl (t+ h)aa“((t))} is the contribution from the

volatility derivative.

Finally, we compute the self-Jacobian GamimaWe define it as

(1)
00 Y

It is fairly straightforward (albeit tedious) to®l that

i~ {300 e o 2 o0
(4.14)
where
5 (c, ;(t),tj = h%;((ﬂ&? +Vhz (t+ h)azaz(;:)(’:)j (4.15)
and

o[X0 j

- 00, [;((t j
o) +vhZ (t+h)——~~< (4.16)

Mi(c, i(t),tj =h——3— ox(t)

27

Thus far correlation among the stochastic variab&es not been treated explicitly — we

now remove that. We start with by formulating thelation process for continuously
evolving stochastic variateGiven X => the vector of financial variables that neet¢o

mapped to the corresponding Weiner varigtesFor instance, among forward rates that
use the LMM dynamics, the evolution sequence may giith

)2(0) ={X,(0), x,(0).....X,,(0)}, after which the LMM evolutionary techniques geter

Z and update)i(t). Extensions to model correlations among non-LMNetgsset

movements is straightforward too, but additionahsformation is required. For instance,
if the default process can be correspondingly foanged to an asset indicator variable,
that may be correlated with the other asset vaggatao.

Extending equation (4.3) for a set of correlatedates, the correlated stochastic

evolution equation can be written as:

X, (t+h)=X,(t)+ hyj(i,tj +\/Eaj(>2,tjépj,(>2,tjz, (t+h) (4.17)

Here Jj(i,tj is the variance, an@j,(i,tj is the correlation matrix — the variance is

factored out of the covariance matrix to produaedbrrelation gridZ, (t + h) is

produced by the usual i.i.ﬂ](O,l). Extending the sensitivity formulation analogoas t

Equation (4.9) above, the corresponding delta is:

(4.18)

The entry in matrix D is given as:

28

D, =4, +hM+\/ﬁZm:Z,(t+h) pj,(g,tjmw(i’tjapf j

X, (t) =1
(4.19)

The corresponding parameter sensitivity evolutipmagnics are specified by:

ax(t+h) =[D] ax() (4.20)

oa 0

Equation (4.20) may be simplified in cases wherés an explicit function ONLY of the

state evolution variables as:

—

o) 010, #0) o))

oa Ja oa

(4.21)

An alteration to the above algorithm is needed wiesded to generate correlated default
times efficiently. Unlike the continuous variabkdsove, if we are to consider the
correlations between default times ONLY, it is mucbre efficient to draw correlated
default times — again this correlation is differéoin that of continuous asset value times
that results in default.

The algorithm for the generation of Correlated Déféimes is as follows:

e Generate the vectaf inpepenpenT .

* Factorize the correlation matrig, to create the Cholesky diagonal matri€¢zsand

C'.

29

* Use the Cholesky transformation to cre@i@rreLaten from Zinoepenpent USING
Z correLatep = C Z INDEPENDENT .

» For each entityZ; in ZcorreLaten
x=Z;

a) Evaluate the cumulative normgl = J.D(O;L)dx , whereJ(01) is a Normal

X=—00
distribution with unit mean and zero variance.

b) 7, eranr = S () where§ is the survival probability for the entity i.

c) Ingeneral X, =M, *(y,).

LMM Forward Rate Evolution

We now treat the special case of evolution of tbetgstic forward rate using the
LIBOR Market Model (LMM) dynamics. LMM formulatiors particularly important, as
it is one of the most popularly used formulationd & essential to evaluate the impact

the no-arbitrage constrained drift has on the diailiand the impact on the greeks. Of

course, the results applicable to the lognormaineatf the forward ratd:.(t) are

important in its own right.

The no-arbitrage constraint specification of LMMirst specified in conjunction with

the base forward rate evolution dynamics:
L(t+h)=L 1)+ hyj(i(t),t) +hz i+ h)aj(i(t),tj 4.22)

I (i(t),tj =bL, (1) Z) fj’AA(E{’;’ ftpp))LLpp(zt)) (4.23)

p=n(

30

o (I:(t),tj “bL{) (424

/7(t) is the maturity of the first instrument that mawsiafter t [Brace, Gatarek, and

Musiela (1997), Jamshidian (1997)].

At this stage, the distinction between the forwate volatility and at-the-money swap
option volatility needs to be made. LMM uses fordveaite volatilities, so there needs to
be a conversion step that involves converting thekat observed at-the-money swap

option volatility onto LMM forward rate volatilityBrigo and Mercurio (2001)].

With the above as base, the self-Jacobian of ttveafal rate using LMM is easy to
formulate. As shown in Denson and Joshi (2009a)amson and Joshi (2009b),

L0 4 h—aﬂj(i(t)’t)+ﬁzj(t+h)6aj(i(t)’tj 0L (425)

oL, (t+h)
) L) (oL (0)

oL (0) oL(0) =| aLt)

=0;b (4.26)

M(f?(t)»kb,—% > bl)ul)

oL, (t) p=f7(t)1+A(tp—11tp)Lp(t)

(4.28)

31

We extend Equations (4.9) and (4.18) to evaluaddhward-rate evolution matrix. As
expected,

kxtg)]] kxtg] [P o) [Dlk.h)"..{Dkst ~ h) [D{.t)]

(4.29)

o, (L0t <1)= 5{1% $ Bt) | oo,)} (b L ()

perl) 1+ A(t t)L () 1+A(ti—1’ti)|—i (t))2

p-11*p/=p

(4.30)

Dij(i(t),tj(ly(t)>i):5{1+ hb, Z’: bA(Pl t)Lo(0) +\/_bJZ](t+h)} (4.31)

P’]t (plp

Finally, the variate Jacobian Parameter Sensitigigiso straightforward to evaluate.

oL (t+h) oL (t)+h<"ﬂ(L(t)’t
da da oa

j+\/FZj(t+h)%+ 4

(4.32)

Dij(li(t),tj is available from above for the two scenarioated in detail earlier. Re-

oL, (t+h)

casting as

32

J

o
ol S
18
&
+
ol s
LK)
o
o
—
— | =
+— o
|
— S
pt
— W.
a3 &
INET
= |
|+
—
I

‘+hi
p=n(t

33

5) Formulation of Sensitivitiesfor Pay-off Functions

Having treated the evolution of the stochasticatarin detail, we now attend to the

formulation of the pay-off function for the stochiasvolution.

Algorithms to estimate Monte-Carlo Path-wise Deties are now well established.
However, path-wise derivatives are typically fordiderivatives, not adjoint [Giles and
Glasserman (2006)]. Therefore computation timeapg@rtional to the number of inputs.

Further, it is not easy to accommodate these imptexapayouts [Capriotti (2011)].

The Payoff Expectation is given as

el o

[e.g., in Harrison and Kreps (1979)], wheXeis the vector of financial variables. The

corresponding path Payoff Expectation can be gasejKallenberg (1997)]

v=_t szp(i[im]j (5.2)

NMC imc =1

and the corresponding variance from

e E) &) .

2
NMC

34

Path Greek

The Estimate of Path Sensitivity is unbiased [Ka(it990), Protter (1990), Broadie and
Glasserman (1996), Glasserman (2004)] if

<6Y(X)>= o)<aY(x)> (5.4)

ox(0
Here x(0) is the starting point for the variate.

The path Monte-Carlo Greek is defined at the chamgewith respect to the starting

value of x, i.e.,x(0).

aY(x aY(x(t)) ox
.20 s

If x is a multi-component vectoX , then

aY)[()Z(t } " aY[X (t)} o ()

ox,(0) & ox(t) ox(0)

35

The earlier formulation fo{ax—(t)} may be used to establish the path delta. In

ox(0)

particular, using Equations (4.9) and (4.18),

[av—(t)}] [aV—@}T[D(k’O)]T[D(k, h)...[ok - Dk (58)

ox(0)] [x(0)
Thus, all the speed up advantages associatedivethdjoint formulation above follows.

In addition to the base Greeks, the Variance irGreeks may also be computed as
follows:

1. Cluster all the Path-wise Greeks calculatedfgiven input (eithex, (0) or a

parameterd).
2. Within that cluster estimate the correspondinge®.

Usual population sampling variance techniqugdieqh to compute the variance in the

Greek.

The Path Parametea() Sensitivity may be evaluated as:

av(t) _ov(), 5 av (t) o, (t)

da da “Sox(t) oa

The earlier formulation fo[aax—(t)} may be used to establish the path parameter
a

sensitivity.

The pay-off Greek may be explicitly formulated as:

36

0o 40, 552 o ()+;{5 +ha§i((tt))+\/ﬁgzl(t+h)aa“t(t

(5.10)

Additional partial derivative terms arise owingthe explicit dependence gf,g on a .
(OtherwiseB, (t,a) = 0). The pay-off parameter sensitivity formulatiompeeds

precisely along the same lines as delta formulation

ox(t+h) _ n %)
da "’ a

(5.11)

While D, (t,a) is exactly the same as earli(t,a) is given from

B,(t,a)= ha”—"(t) +\/FzmlzI (t+ h)ag—i,(t) (5.12)

oa =1

["’*S;)} [Blar)]+ [D(at)]["’;f,)] (513

Her{a x((;[; h)] {aaxg)], and[B(a,t)] are n x 1 column matrices, afd(k.t)] is an n

X n square matrix. Generalizing over all the j'g get

42k -] -

Transposing the above we get

(1)

] (5.14)

37

{%T ;[Bat eh) HH[D a,t-fh) H Fa()ﬂﬂ[Dat eh)]T}

(5.15)

.
Given that[B(a,t)]T and {a%c(:)] are row matrices, and that they are the preceding

terms in the series, all the adjoint advantagesateld earlier continue to be valid.
Further the previous formulations ffﬂb(a,t)] can be re-used at the same Eulerian time

step.

The adjointing step above causes additional stategeands. SincEB(a,t)] and

[D(a,t)] still need to be retained in memory during theviend evolutionary sweep for

ax(t . o .
{a—()] this represents a corresponding increase ortdhege requirements.
a

The next step is to formulate the dependence gbalyeff sensitivity to the correlation

matrix. lIrrespective of where the stochastic predesliffusive or not, the sensitivity of

the pay-off to the correlation matrix entpy, (aa_v) is given as
Pik

Recall that if

X=z

38

From this, and using, = M, (y;), you get

X _ (5 X
Pizolz |- (518
0z [j<"1’(><i) >

With the above, we are ready to estimate the @iffeal of the Cholesky Factorization

Matrix. Using(;CJ as given in Smith (1995), we get
ik

0Z &8 9Z oG,

apjk =1 mzlacm ap,-k

(5.19)

Therefore, usinggi is given from above, we get
Pik

OV &V IZ LAV X, 0Z _ & oV (j X, 9z
= = = 7 |- 2 P4 (520
2 2 2 0(X;) 99,

It is important to note the distinction betweenasalj mode sensitivities vs. reverse mode
algorithmic differentiation. Typically adjoint ref'eONLY to the intermediate/dynamical
matrices [Giles (2007), Giles (2009)], wher&dsVERSE refers to calculation of only
the relevant outputs and their sensitivities [Gaak (2000)]. Adjointing deals with the
evolved variate space parameters left to rightefioee technically it is reverse in the
time sense — and achieves optimization by miningitire matrix<->matrix

computations. In the sense of adjoint algorithniffecentiation, however, the term
reverse and adjoint are used synonymously, i.@irdfteverse refer to a scan backwards
from right to left inside the SAME step, for e.g.time step. Finally, formalized pure
“forward” and pure “reverse” is often theoreticahstructs. Just like hand-rolled code

can beat generic optimizers, hand-rolled algorithdifferentiation code will be better —

39

even for Monte-Carlo sensitivity runs. However, elepment productivity gains to be
attained by using automated AD tools are well dosnted.

Capriotti and Giles (2011) detail several technggiee the systematic design paradigm

for using Algorithmic Differentiation for Path-widdonte-Carlo Derivatives.

As indicated earlier, the cost associated withféineard and the reverse algorithmic is
different.
Cost[B+F]

» Forward Algorithmic Differentiation Cost =>————— = [2,2.5]
Cost[B]
* Reverse Algorithmic Differentiation Cost Sos[B+F +R = [4,5]
Cost[B]

e B =>Base; F => Forward; R => Reverse.

Algorithmic differentiation can be effectively usedconjunction with other related
methods to improve performance. For instance dlgoic differentiation is natural
performance fit in these situations (Kaebe, Maramd Sachs (2009), Schlenkirch
(2011)). Some approaches in this regard end uginglintermediate value theorem to
facilitate the formulation (Christianson (1998))&siand Pierce (2000)).

40

6) Bermudan Swap Option Senditivities

In this section, we consider the formulation of seasitivity evaluation for the Bermudan

swap option sensitivities.

The details of an H x M Bermudan Swap Option arfobews:

« Define the M swap exercise/pay date tenor giigs T, <...<T,, .

» Option exercise dateg start from datél,, onwards, i.e.T. O{T,, T 1Ty _1}.

* The cash flow stream after the exercise is the payrstreamf(={X,, X, ;10 Xy } -

Given a fixed rate R, th& icash flow constituting an exercised Bermudan s&ap
X, = N(Tu)A(ti—l’ti)[Li - R] (6.1)

The Bermudan Swap PV is

PV,..(T) = E[i D, (t)xi} (6.2)

i=r

The following algorithm illustrates the Monte-Carteethodology for valuing an H x M

Bermudan Swap Valuation:

* Simulate a single path sequenceliof

- For this path, evaluatBV(X.) for eachX ={X,, X, ..,....X,,}.

* For this path, generate a vectorRWBe,m(Tp) corresponding to each possible exercise
dateT, O{T,, Tuup Ty} -

* Find T, that maximizeSDVBerm(Tp).

® Record{Tr ' PVBerm(Tr)} '

41

The analysis of Section 4 can be used in the estimaf the greeks.

Under certain conditions of regularity (Lipschiantinuity), the H x M Exercised
Bermudan Swap Option Delta/Parameter Sensitivitylmacome an expectation of path
derivative [Piterbarg (2004), Capriotti and Gil@911)]

L, (0) oL, (0)

0PV (T) a{E[ZD (ti)xi} _ E{Za{l(?%t(());(}} (63)

ia{Df(ti)xi}} 6

i=r oa

oa oa

i) 2500) {

Leclerc, Liang, and Schneider (2009) formulateititvidual Cash-flow PV and Greeks
for the Bermudan swap options. First, teash flow constituting an exercised

Bermudan swap is
PV, =D, {t; alt oty)L - Rl (65)

The discount factor corresponding to theash flow is

P 1 _ e 1 _
Df(tj)_umzpvj_{um}A(ﬁ_l,tJ){Lj R (66)

42

Using the relation established earlM -3 0PV, (t) oL, (t)

dL(0) = aL(t) a(0)

oL (t)

(the path derivatives estimat%}lm is given by the LMM formulation presented
K

the delta is evaluated

earlier).
Finally, the Cash-flow PV Delt vild (t)) is calculated as
g o)

PV o |[Z 1
oL, (t) _aL‘(t)HP: 1+ tp)I_D}A(tj_l,tj)[Lj —R]} (6.7)

PV, (t)[j oi]= {5‘] At - RJ}A(IH,'[J- . t) (68)

oL, (t) 1+ At ()
PV, (t)y. .
oL () [i<i]=0 (6.9

Credit Analytics uses the LSM Methodology to evétuhie optimal exercise dates.

Since the simple model of maximiziigy,, (T,) acrossT. gets too cumbersome if the

exercise dates are numerous — LSM based optimatisgaletermination laid out in

[Longstaff and Schwartz (2001)] can be used — sxjfeagainstPV,,, (T,). Regression

is then applied to Curve-Fit to extract the optimetrcise date.
LSM is highly effective in situations where thelcdhedules are continuous or fine-

grained. Sampling is reduced to a few evenly spacedrid points — such that the full

sample scoping is eliminated.

43

Any appropriate inter-nodal interpolating/spliniteghnique to determinBVBe,m(Tr) asa

function of T is valid — e.g., constar®V,_ (T) over T, linear/quadratic/polynomial

r

PV,

Berm

(Tr) overT,, or even exponential/hyperbolic tension splineekid%VBe,m(Tr) over

T.

r

44

7) NTD Basket Sendgitivities

In this section, we consider the sensitivities asgod with an nth-to-default basket. We

start with describing the details of an NTD Prodémiiowed by the formulation of its

greeks.

Details of an NTD Product:

1.
2.

p =1 - n =>Number of Components
j,k=1 - n =>Row, column index of the correlation matrix &ach of the n

components

[,m=1 - n => Factorized Cholesky diagonal matrix for theomponents

r => " component in the current draw of ordered defamiés; it corresponds to the
current f-to-default.

N =>The “N”in NTD (r =7,).

The NTD contract contains 3 components, each othvisi valued separately during a

given Monte-Carlo run.

VNTD = V + V

Loss Premium

+ VAccrued (7 1)

The PV of the loss leg is given as

Vies =[1-R (@)D, (7, N(z,) (7.2)

The PV of the premium and the accrual legs are

45

Here [(t < 7) be the default indicator that is 1ti& 7, and 0 otherwise.

To make the computation convenient [Capriotti ané<$x2010), Capriotti and Giles
(2011), Giles (2009), Chen and Glasserman (ZOD]E{)]S r) is regularized and smeared
out using an appropriate proxy, i.&(t < 7) C H(t < 7). One choice foH(t < 7) is the
Heaviside function — it has a bias, but it can ésighed to be much tighter than the

Monte-Carlo accuracy.

Using the formulations of Sections 4) and 5), tAReDN\Sensitivity can be computed as

follows:

Vo - Zn: Ny arp

(7.5)
00y =1 0T, 0P,

The NTD path derivatives estimator is given as

Ny _ WVys , OV

Loss + Premium +6VAccrued

or or arp or

p p

(7.6)

p

The NTD loss path derivatives estimator is given as

New _ AB-REIDENG)Y

rp
arp arp

The NTD premium path derivatives estimator is giaen

46

a\/Premmm — CO_

6r

LN, 06) MR g

Accrual = CJDZ

47

8) Basket Options

In this section we consider the sensitivity genierator Basket Options. The PV for an

Option Basket may be determined from the Black &shielation as:
Vv =D, ()3 WX (r)-s]" ©1
i=1

As before, the formulations in Sections 4) and 8y 1ne used to evaluate the

sensitivities.

Recall from earlier tha%a v

. t=T
* V(t :VBO(T)

The Basket Options path derivatives estimatores tfiven as

= [ZW X (T)—S} +WD, (T)* Black_Scholes_Delta(Srrike,,T)

(8.2)

The strike is given as

S- 2WX,(T)
Strike, = "’*"‘;; (8.3)

48

References

Bartholomew-Biggs, M., S. Brown, B. Christiansondd.. Dixon (2000): Automatic
Differentiation of AlgorithmsJournal of Computational and Applied Mathematics
124 (2000): 171-190.

Berland, H (2006)Automatic Differentiation.

Berz, M., et al. (1996): Computational Differenitigt Techniques, Applications and
Tools, Society for Industrial and Applied Mathematics, Philadelphia, PA.
Bischof, C, P Hovland, and B Norris (2008 the Implementation of Automatic

Differentiation Tools.

Brace, A., D. Gatarek, and M. Musiela (1997): Tharkét Model of Interest-Rate
Dynamics.Mathematical Finance 7: 127-155.

Brigo, D., and F. Mercurio (2001Interest-Rate Models: Theory and Practice,
Springer-Verlag.

Broadie, M., and M. Glasserman (1996): Estimatiagugity Derivative Prices Using
Simulation.Management Science 42: 269-285.

Capriotti, L. (2011): Fast Greeks by Algorithmicférentiation.Journal of
Computational Finance 14(3): 3-35.

Capriotti, L., and M. Giles (2010): Fast Correlati@reeks by Adjoint Algorithmic
Differentiation.Risk (2010): 79-83.

Capriotti, L., and M. Giles (2011xlgorithmic Differentiation: Adjoint Greeks Made
Easy

Chen, Z., and P. Glasserman (2008): Sensitivitintedes for Portfolio Credit
Derivatives using Monte-Carl&inance and Sochastics 12 (4): 507-540.

Christianson, B. (1998). Reverse Accumulation anglicit Functions Optimization
Methods and Software 9 (4): 307-322.

Denson, N., and M. Joshi (2009a): Fast and Accuateks for the LIBOR Market
Model, Journal of Computational Finance 14 (4): 115-140.

Denson, N., and M. Joshi (2009b): Flaming Lagdmott Journal 1: 5-6.

49

Ghaffari, H, J Li, Y Li, and Z Nie (2007putomatic Differentiation.

Giles, M. (2007): Monte Carlo Evaluation of Senaites in Computational Finance.
Proceedings of the Eighth HERCMA Conference.

Giles, M. (2009): Vibrato Monte-Carlo Sensitivitji@édonte-Carlo and Quasi Monte-
Carlo Methods 2008, P. L'Ecuyer, and Owen, A., editoiSpringer, New York.
Giles, M., and P. Glasserman (2006): Smoking Adgoifast Monte-Carlo Greeks.
Risk (2006): 92-96.

Giles, M., and N. Pierce (2000): An introductiortihe adjoint approach to design.
Flow, Turbulence, and Control 65: 393-415.

Glasserman, P. (2004tonte-Carlo Methods in Financial Engineering, Springer -
Verlag, New York.

Glasserman, P., and X. Zhao (1999): Fast Greel&rhylation in Foreard Libor
Models.Journal of Computational Finance 3: 5-39.

Griewank, A. (2000)Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, Society for Industrial and Applied Mathematics,
Philadelphia.

Harrison, J., and D. Kreps (1979): Martingales Angitrage in multi-period
Securities Marketslournal of Economic Theory 20 (3): 381-408.

Iri, M (1991): History of Automatic Differentiatioand Rounding Error Estimation,
in: A. Griewank, G. Corliss (Eds.), Automatic Difémtiation of AlgorithmsSociety
for Industrial and Applied Mathematics, Philadelphia, PA, 3-16.

Jamshidian, F. (1997): LIBOR and Swap Market Mo@gld Measures:inance and
Sochastics 1: 293-330.

Kaebe, C., J. Maruhn, and E. Sachs (2009). Adjmastd Monte-Carlo Calibration of
Financial Market Modeld=inance and Sochastics 13 (3): 351-379.

Krishnamurthy, L. (2012)A Sample Calibration Framework.

Kallenberg, O. (1997} oundations of Modern Probability Theory, Springer, New
York.

Kunita, H. (1990)Sochastic Flows and Stochastic Differential Equations,

Cambridge University Press.

50

Leclerc, M., Q. Liang, and I. Schneider (2009):tfdente-Carlo Bermudan Greeks.
Risk (2009): 84-88.

Longstaff, F., and E. Schwartz (2001): Valuing Aircan Options by Simulation: A
Simple Least-Squares Approa&eview of Financial Studies 14: 113-147.
Naumann, U (2008): Optimal Jacobian accumulatidsRscompleteMathematical
Programming 112 (2): 427-441.

Piterbarg, V. (2004): Computing deltas of callablBOR exotics in Forward LIBOR
Models.Journal of Computational Finance 7(3): 107-144.

Protter, P. (1990&ochastic Integration and Differential Equations, Springer -
Verlag, Berlin.

Schlenkirch, S. (2011). Efficient Calibration oétRlull-White Model. Optimal
Control Applications and Methods 33 (3): 352-362.

Smith, S. (1995): Differentiation of the Choleskigérithm. Journal of
Computational and Graphical Statistics 4 (2): 134-147.

Wengert, R (1964): A Simple Automatic Derivativedtivation Program.
Communications of the ACM 7: 463—-464.

51

Figure 1: Optimal Intermediate Wengert Variable

ES

52

Output
Jacobian

Intermediate
Wengert

Input
Parameters

Figure 2: Computation Financial Object Scheme

Fair Output
Premiiim Jacobian
I ntermediate
Wengert Set

Param 4 Input
Parameters

53

Figure 3: Wengert Fan-in and fan-out

> n Input
I nstrument
T }om
<«—> } p <= n Calibrated parameters
w <=p Wengert I ntermediate
<> Variates
>} rom

OOOO> OOOO

<€

}m*k
> < >

k Output M easures per

54

