Stochastic Analyzer in DRIP

Lakshmi Krishnamurthy
v0.41, 20 January 2014

Introduction

Glossary

1. Wengert ListList of all the non over-writable program variebl(Wengert (1964)) —
can also be seen as a linearization of the compngtgraph. By construction, it is
an intermediate variable.

2. Intermediate Wengert Canonical Variabllbese are intermediate financial variables

those are fixed from the point-of-view of the outgacobians and the input
parameters that serve as computation graph pargo®aptimizers (Figures 1 and
2).

3. Wengert fan-in and fan-ouReduction of a set of initial/intermediate Wengert

variates onto the subsequent set is called fatinopposite is fan-out.
4. Wengert funnelingSame as Wengert fan-in.

Micro-JacobianChange in the calibrated instrument measure @oefiis to unit

change in the quoted instrument measures.

6. Self-JacobianSelf-Jacobian refers to the Jacobian of the @lg€&unction at any

point in the variate to the Objective Functionhe segment nodes, |%(1(Y(—S[)) Self-
K
Jacobian is a type of micro-Jacobian.

7. Derivative Entity The entity whose dynamics are determined by Woduéon of a

stochastic variate, and whose specific facets/measue observable.

8. Path-wise Derivative Estimat(}é%, where V is the value of the derivative, and

X,(0) is the starting value for a specific stochastidate.

9. Non-Parsimonized ParameteParameters that map one-to-one with the input
instrument set, e.g., typical curve bootstrapping.

10. ParsimonizatiorReduction of the parameter space from the inpatsone space.

Overview

1.
2.
3.
4.

AD History: Iri (1991)

Mathematical Foundations: Griewank (2000)

Survey: Berz (1996)

Implementation Tools, Methodologies, Processed, Techniques (Bischof, Hovland,
and Norris (2005))

AD Resourcehttp://www.autodiff.org/

Algorithmic Differentiation in Finance

=

Focus has been primarily on Monte-Carlo methagiek.

Although path-wise optimized sensitivity genemathad been employed earlier
(Glasserman (2004)), Giles and Glasserman (20684)discussed adjoint methods in
path-wise sensitivity generation.

Full extension to LMM based stochastic variatel@tion and a corresponding exotic
(in this case Bermudan) swap option evaluationl@recLiang, and Schneider
(2009)), as well as to correlated defaults and wensitivities (Capriotti and Giles
(2011)).

Capriotti (2011) covers automated Greek germrabut with a focus on automatic
differentiation, and in the context of Monte-Canhethods.

Finally, algorithmic differentiation has alsoemeapplied to addressing the issue of

calibration along with sensitivity generation (Safitirch (2011)).

Document Layout

1.

Introduction

a. Glossary
b. Overview
c. Algorithmic Differentiation in Finance
d. Document Layout
2. Algorithmic Differentiation - Basics
a. Motivation and Advantages
b. Program Sequence Construction Modes
c. Canonicalization — Program Sequence Simplifieally Decomposition
d. Challenges of Automating the Differentiation
e. Wengert Representation and Optimal Program teteiSynthesis
f. Optimization using Pre-accumulation and Checlkathag
g. Financial Application Space Customization
3. Sensitivity Generation During Curve Construction
a. Introduction
b. Curve Jacobian
4. Stochastic Entity Evolution
a. Sensitivity Formulation
b. Sensitivities to Stochastic Latent State Vagaldnd Dynamical Parameters
c. Stochastic Variate Evolution Constrained by i8si
d. Formulation of the Evolution of the Stochastiarite Self-Jacobian
e. Correlated Stochastic Variables Evolution
f. LMM Forward Rate Evolution
5. Formulation of Sensitivities for Pay-off Funetg
a. Formulation of Pay-off Function Stochastic Evioin
b. Path Greek
c. Payoff Sensitivity to the Correlation Matrix
d. Algorithmic Differentiation in the Payoff Sensities Calculation
6. Bermudan Swap Option Sensitivities
a. Base Formulation
b. Greek Estimation

c. LSM Formulation

7. NTD Basket Sensitivities
a. NTD Product Formulation

8. Basket Options

9. References

10. Figures

11. Stochastic Analyzer Software Components
a. Univariate Function Package

b. Univariate Calculus Package

Algorithmic Differentiation - Basics

Motivation and Advantages

1. Definitiont Automatic differentiation is a set of technigdestransforming a
program that calculates the numerical values ahatfon into a program that
calculates numerical values for derivatives of foattion with about the same
accuracy and efficiency as the function values sewes (Bartholomew-Biggs,
Brown, Christianson, and Dixon (2000)).

2. Symbolic DerivativesCalculate the local symbolic derivatives rathert the a)

divided differences, or b) numerical differentigdgitomatic Differentiation -
Wikipedia Entry).

3. Calculation Speedame number of Objective Function Calculatiothasoriginal,

however, potential “chain rule” multiplication facteffects.

4. Accuracy vs. PerformancBue to the usage of symbolics, accuracy of Autama

Differentiation always better than numerical diéfetials; however, due to the chain-
rule issue, may not be always faster.

5. Scalability at infinitesimal variateSince Automatic Differentiation is always

symbolic and therefore infinitesimal, it will autatrcally scale to arbitrarily small
variate infinitesimals — reduced errors due tachitcellation etc:

6. Higher-order derivative®\utomatic Differentiation does not need additiona

objective function evaluations for higher orderidative calculations (beyond the

chain-rule issues); therefore, those are infinitadly correct too.

Program Sequence Construction Modes

1.

N

|

>

|on

Forward Automatic DifferentiatiarExpress the final and the intermediate variables

as a consequence of a computed forward graph,emadhe symbolic forward
derivative graph.
» Effectively computes the gradient of the intermégliaariables to the variates
or the “independent variables” and transmits thenthe graph.

Reverse Automatic Differentiatioxpress the intermediate variables and the input

variates as nodes in the computed reverse graghdezive the symbolic reverse
derivative graph.
» Often may still need the forward path to storedaleulated intermediates
needed on the way back.
» Effectively computes the gradient of the intermesliariables to the
“dependent variables” and transmits them down thely
Speed
» Forward Mode => Speed proportional to n, the nunatbéindependent”
variables
* Reverse Mode => Speed proportional to m, the numb&rependent”
variables
Memory Usage (Ghaffari, Li, Li, and Nie (2007))
* Forward Mode => a) Each Wengert variable, b) Fodwkacobian for each

Wengert, c) Forward Dependency Graph
* Reverse Mode => a) Each Wengert Adjoint, b) Rev@asebian for each
Wengert, c) Forward/Backward Dependency graph

When the difference is minimalVhen the dependence of the final Jacobian

sensitivity step is the dominating factor, and adginting step is not the rate-

determining part, then the performance will alwhgﬁ(n), where n is the number

of sensitivities — for e.g., iy = Z)g , given thatg—y is trivial to calculate, the
X

i=1 i
performance will always b&(n).

» For instance, given a univariate objective func(asin

constrained/unconstrained optimization (e.g., m&aton/minimization)

problems), either forward or reverse Automatic &iéntiation is an equally

good choice for sensitivity generation, owing soperformance.

Canonicalization - Program Statements Simplificatio by

Decomposition

1. Program Line-level decompositid@anonicalization decomposes the

program/statement units into specific analysis. bits
» Canonicalization is commonly used in many areaoafputer science, e.g., in
compiler design/code generation, SKU formulationtsgsis/customization etc.

2. Canonicalization Implementatiolm general, canonicalization and other related

Automatic Differentiation Source Code generati@ntformation techniques should
go hand in hand with optimizing compiled code emissechniques, program active
variable activity analysis.

» Canonicalization sequence should include stepliBfs Hovland, and Norris
(2005)) where you would be able to mark the mathigeda’ Automatically
Differentiable” code segments to separate fronothers during, for instance,
pre-processing etc.

» For true program transformation effectiveness, St type dynamic run-time
analysis is needed in addition to static compiiestdata flow analysis etc.

* In VM oriented languages like Java, the run-time &@ady works, so would it
might make a candidate for embedding AD execut@addive sensitivity
generation in.

3. Equivalence with Wengert Structurir@iven that canonicalization consists of

hoisting all the I-value updates separately witteide effects, it is effectively the
same as Wengert un-rolling and DAG linearization.
4. Limitations with the implementatiofror many of the reasons above, automated

implementations of canonicalization (like otheraamated code generation/re-
structuring) might result in “invisible inefficieres”, and the had-drafted techniques

those are based upon essentially the same priacipdg be more optimal.

5. Post canonicalized Enhancement C@sten that the worst case operation is

division, going fromc :% to dc = a—s

—%ab results in going from 1 function unit
b

execution cost to 4 automatic differentiation exexuunit costs. Typically due to
“weird” functions, the worst-case addition to agtenpost-canonicalized statement is
a factor of 5, not 4.

6. Divided Differences based Differentiation Fadck

Ny & (-1)Cy[x+a(n-2i)
Ax)”/ - ,; y(25)n

Challenges of Automating the Differentiation

1. Deep-dig perspectivRe-purposed Automatic Differentiation perspectwees the
visualization of the computation at the granulaotyhe symbolic functional forms of

the objective function.
a. Objective Function evaluator over-loading =>sTi@quires propagation of the
inner most symbolic graph nodes through the gréwainc=> causes
additional cognitive SKU export!!
b. Objective Function Neighborhood Behavior => Wétlery Wengert variable,
calculation of the set of forward sensitivities dhd reverse Jacobians builds
a local picture of the Objective Function withoatvng to evaluate it.

2. Block-level View FixationSource code transformation techniques are vegsine,

and require highly locally frozen view fixation,dare therefore less cognitive.
Operator overloading techniques enable retentidgheotiomain focus, and are
therefore more cognitive.

a. Naive operator overloading would simply geneadtdock-level (or function
call level) adjoint. This can explode the requistarage, in addition to
generating sub-optimal reverse-mode code. Neettlesention, source code
transformation techniques can be built to overctimse— in practice,

however, many may not quite do it.

3. Complied language Automatic Differentiation implentationWithout the usage of

obfuscating “versatile” templates, auto-generatibmery generic forward/reverse
accumulation code is impossible. Therefore soweel lfunction overloading and
automated program instrumentation techniques agehaed.
a. Further, compiled language source code transfitsmappears to be a vestige
of “smart compiler” efforts of the ‘90s — classitstance of where a simple
idea is “intellectually transmitted” than “built tof the-box”.

4. Symbolic Differentiation Challenges with certainit Functional FormiswWhen you

consider functions such as= % and you see% symbolically, the higher
X

order symbolic differentiations become much moralehnging -

dy__ 1 di(x) d’y_ 2 df(x)_ 1 d’f(x)

dx f2(x) dx " dx® f3(x) dx f?(x) d*x

Thus symbolically handling these series this wayg get of control fast!

and so on for higher orders.

Wengert Representation and Optimal Program Structue Synthesis

1. Combination of Forward/Reverse Modé&srward (n inputs) and reverse (m outputs)

mode represent just two possible (extreme) waysaifrsing through the chain rule.
For n > 1 and m > 1 there is a golden mean, bdirfgthe optimal way is probably
an NP-hard problem (Berland (2006)) — optimal Jasohccumulation is NP-
complete (Naumann (2008)).

N

Wengert Intermediate Fan-in and possibly fan-8ee Figures 1 to 3 for illustrate
this.

* Wengert Intermediate Performance Enhancement tirele exists an
intermediate quantity that is fixed from the pofitview of the output
Jacobians and the input parameters, the perforrmaagde improved (see
Figure 1).

* Reusable Intermediate Performance Improvement elfnput/output

computation leads to sufficient commonality amdmg tVengert intermediate

10

calculation, that may also reduce computation loyruting reuse, thereby
improving efficiency.

* Wengert Funneling Criterion => For non-optimizimgn-parsimonized

Wengert funnelsai/ll:i - ¢, for the Wengert fan to be a funneling fan-in —
i
otherwise rippling out causes huge non-diagonakiblamatrices. This is true
fora) | -> P, b) P->W, and c) W -> O.
3. Standardized Computational Finance Structuresomputational finance (esp.

computational fixed income finance), the payoutdo@/pricer object serves the

function of the intermediate Wengert variate inthceabove. From below this variate

you have the inputs/parameters rippling up, anchfabbove you have the

Jacobians/output measure adjoints feeding dowmn&ig).

* Reactive Tree Upticks => Every intermediate elenmeiiigure 2 is a reactive
tree dependent node from the entity below, so fatimg/adjointing should
happen with every real-time uptick.

* Automatic Differentiation for the Wengert Canongal> This involves the
following:

a. ldentifying the abstractable financial canorirealsable common object
structures (market parameters, product paramgtecsy parameters, etc.)
b. Working out their forward differentials and tteverse adjoints.

* One Financial Automatic Differentiation view => Theermediate Wengert

Canonical View is the conceptual parsimonisatiothefvariate parameters space

and the Jacobian measure space.

Optimization using Pre-accumulation and Check Poinng

1. Pre-accumulatiorAggregation (and possibly caching) of the sewisjtiJacobian

over all the intermediate Wengert's inside a raeftabock/module — thereby only

exposingM for the group unit (not each Wengert inside).

dlnput;

11

a. Pre-accumulation also provides a suitable bayrfdaparallelization.
b. It may also be looked at as the appropriate atlgnich the source code
transformation technique and operator overloadishrnique may “merge”.
2. Cross-country Accumulatio®ame as pre-accumulation, but pre- accumulation
occurs in a specified (forward/reverse), Cross-tguaccumulation need not — in fact

it may be guided by program analysis using Optiwlahgert intermediate

composition techniques.
a. This is also referred to as check pointing.
This typically also requires snapshotting thegpam global and other
execution context parameters at the checkpoint deiss.
c. Works best when the program state is easilynaindnally savable, and

quickly recoverable.
d. Will also work well in conjunction with traditial kernel level check pointing

schemes for fail-over etc:

Algorithmic Differentiation Financial Application S pace Customization

1. Math Modules
* Forward differentials and auto-adjointing of matbdules => May be needed for

most of them.
* Every block, compute the base “value”, forwardeléntial, and reverse adjoint.
» In fact, for every active double-precision variabjesource code transformation

automatic differentiation techniques recursiveljoauatically generate the
doublet(v,\)j. Further, this calculation may also be parallelize

o This particular calculation may also be propagaieithe function call level,
so that the assignment outputs are automaticatigrg¢ed for the

doublet/multiple.

12

2.

|

4.

o Computational structures => Design restrictions alag be imposed by the
computability of the AD of a math module, i.e., iathe financial
MarketParamsContainer be broken down into further parameter units?

Stochastic Variate Automatic Differentiatidavolution of stochastic variates and

their derivative entities may be further optimizgdexploiting sparse-ness of the

multi-factor co-variance matrix, thereby evolvitgtvariate/derivative matrix that is

sparse optimally (as opposed to blind delta burlgsrhay happen when computing
differentials).

» Variance Reduction along the forward path => Ipadific forward path a) does
not need to be traveled, or b) certain forward Véenigtermediates automatically
compute to zero, then these produce zero pathaders. Further, external pre-
computations can be done during the adjoint geioerat

» Delta effects on the Optimal Exercise Dates => Tihjgoses restrictions on how
the path derivatives maybe computed using autorddterentiation. This may
also be used in conjunction with regression ansffigsi estimating optimal
exercise times. That certainly enables adjointraata differentiation techniques
to be used.

» Tangent multi-mode arc derivatives =>

a. ldentifying the circumstances under which theyra-usable
b. Arc derivatives extraction intermediates may dis re-used
c. Depends (as always) on the speed up and mersedy u

Quasi-analytic Computation ModelNo Monte-Carlo evolution needed at all, but

still Wengert intermediate level reformulation nes&ry to enhance the quasi-

analytics analysis (e.g., Copula methods).

* Adjoint-Natural Formulation Mode => Typical formtilan works out the
Wengerts backwards from the final measure (e.g.fremn PV), so they are
automatically amenable to the adjoint mode of aatorrdifferentiation.

Latent State Calibration from Observed ManifesaMees:

» Formulation of the de-convolution the latent sfaten the observed manifest
measure is necessary for the extraction of thetatate parameter set (this is

accomplished by the calibration process).

13

Of course, latent state calibration occurs amoagethastic and the inelastic
dimensions, and the inelastics are parameter set!
Latent state calibration/parameterization etc: ieh#y involve parsimonization —

this is where the models come in.

14

Sensitivity Generation During Curve Construction

Introduction

1.

Advantagesin addition to the usual advantage that AutomBtfterentiation
provides on doing accurate Greeks on the samesrpni@ng, there is no need for
multiple bumped curves anymore — but the propeshiaas need to be calculated.
* Further speed up => The segment micro-Jacobiarsriieduk pre-calculated right
during the calibration - we need to calculate mn;iang—;:i, whereC, is the in
j
coefficient, andg; is the | input.

Curve Calibration DeltaJypical deltas are with respect to the

» dynamical latent state stochastic variates (éhg.fdrward rates)

» calibrated parameters (e.g., the segment splinéceats)

* unit change in the quoted instrument measures (elgp change) - here the
Jacobians need to ripple upwards from the quotgtdument manifest measures.

Span/Segment Elastic Variat€onsider the situation where the latent statesatf

(not its transformation) is explicitly measuredef@are 5 different kinds of latent

state proxies to consider:

@ => Span stochastic latent state evolution variate.

@, => Stochastic latent state evolution variate &grsent k.

* ¢ =>Implied Span Quoted Instrument Manifest Measure

* @ =>Implied Quoted Instrument Manifest MeasureSegment k.

* ¢, => Observed Quoted Instrument Manifest Measur&égment k at precisely

a single variate point — typically, the observasi@ane done at the
anterior/posterior terminal ends of the segment.

Span/Segment variate relatioRsr a given calculated/formulated output manifest

measure= , the following are true by definition:

15

0= 0=
e P lt=t)=dt=t)=|— =
=)=el=1)=[% \Mk

t=t,

_ 0_
© pmal=)=dm= T4 4

t=ty

5. Sensitivities to the elastic variates

* Sensitivity to Stochastic Evolution Variate =a>q_?

» Sensitivity to Implied Span Quoted Instrument Meascpa—_
@

» Sensitivity to Observed Span Quoted Instrument MEB.S>§—_

k

. g—: (Case c) above) is what you need to calculatb¢ldge ratio
k

6. Piece-wise constant segment varifghis case; 0= = a—: = a—:
0b, d¢ 09,

7. Splined segment variatRecall that segment spline coefficient calibmati® simply a

problem of matching to a terminal node (which is ¢fuoted instrument measure at
the terminal node). Thus, for a formulated outfytat node Kk, it is obvious that

0= , 0=

0P, 0¢

e Stochastic Evolution Variate Derivative => For ttase where: refers to the

discount factor, it can be shown that

ex;{ _[d) dt} exp{ TCD dt—j)dt},wherejt<t<§+1.

i=0 t;
a—t fork <
oD, (t) ty j

Thus——%=-D_|t)*<t -t fork =
3D, F() K . j
Ofork > j

16

Quoted Instrument Manifest Measure Derivative =}sTdepends on the actual
et
_[a;‘)fork <j
ty a¢k
t
details of the quadrature. ThM = -Dg (t)* j%fork =
t

L))
Ofork > j

8. Linear Dependence of Integrand Quadratiog many functional formulations in
finance, the calculated product measufg pas a linear dependence on the stochastic

T

ty — -
evolution variate, i.e.z = W[J'dn(t)dt}. This implies thataaT = cfika—_(ti+l ~-t,),
ta

. 0= .
i.e., —ad, only, and not on the quadrature details.
k
Curve Jacobian

1. Representation Jacobidfvery Curve implementation needs to generate the

Jacobian of the following latent state metric usisgorresponding latent state

guantification metric:
» Forward Rate Jacobian to Quote Manifest Measure

» Discount Factor Jacobian to Quote Manifest Measure

» Zero Rate Jacobian to Quote Manifest Measure
2. Calibration Jacobian vs. Monte-Carlo Automatifféddentiation Delta Both of these

are actually path-wise, the difference being that:
Jacobian generated during calibration is part f&rénce, therefore iterative.

Jacobian of Monte-Carlo Automatic Differentiatiantypically path-wise and

non-iterative, therefore it is technically partpsédiction.

17

3. Importance of the representation Self-JacoliR@apresentation Self-Jacobian

computation efficiency is critical, since Jacobadrany functionF(Y) is going to
9Y(t) .
be dependent on the self-Jacom(aaYn&—) because of the chain rule.
K

4. Forward Rate->DF Jacobian

Ft,ts)= 1 ln(aD‘(tA)].

t, —t, an (tB)

OF(toty) - 1 { 1 0D(t,) 1 an(tB)}
oD, (t,) tg—ta|D;(ta) 0D, (t) D, (t;) D, ()|
« F(t,ty) => Forward rate between timgsandt, .

« D,(t) => Discount Factor at timg

5. Zero Rate to Forward Rate Equivalertleis equivalence may be used to

construct the Zero Rate Jacobian From the Forwatd Racobian. Thus the
above equation may be used to extract the ZerorRiate-Jacobian.
6. Zero Rate->DF Jacobian

az(t) _ 1 { 1 an(t)}

oD, (tk)) t—t, | Dy (t) oD, (tk)

« Z(t) => Zero rate at time t

7. Quote->Zero Rate Jacobian

0Q;t) _, { an(t)}
—_(tk to) Df(tk)

0z(t) oD (t)

« Z(t) => Zero rate at time t

8. PV->Quote Jacobian

VA {apvj (t) . aQ, (t)}

0Q, ‘é oD, (t) oD, (t)

9. Cash Rate DF micro-Jacohian

or, 1 1 aD(t)

an (tk) B _an (tj)tj ~tsrarr an (tk)

18

¢ 1, => Cash Rate Quote for tHeGash instrument.
« D, [t;) => Discount Factor at timg

10. Cash Instrument PV-DF micro-Jacobian
OPVene | 1 D, (t,)

aD, (tk) B dD; (tj,SE'I'I'LE)an (tk)

* There is practically no performance impact on awsion of the PV-DF micro-

Jacobian in then adjoint mode as opposed for fatwasde, due to the triviality
of the adjoint.

11. Euro-dollar Future DF micro-Jacohian
0Q, _ap,f) 1 D,(t;) 9D, {t; sraeer)

oD, (tk) B oD, (tk) oD, (tj,START) sz(tj,START) oD, (tk)

* Q; => Quote for the") EDF with start date Of; srarr @nd maturity oft; .

12. Euro-dollar Future PV-DF micro-Jacohian
aPVEDF,j — an (tj) 1 _ Df (tj) an (tj,START)
an (tk) an (tk) an (tj,START) sz(tj,START) an (tk)

* There is practically no performance impact on aosion of the PV-DF micro-

Jacobian in then adjoint mode as opposed for fahwarde, due to the triviality
of the adjoint.
13. Interest Rate Swap DF micro-Jacobian
« Q,DVO01 =PV

Floating, j

Q, => Quote for the"] IRS maturing at; .
« DVO01, =>DVO01 of the swap
* PVigaing,; => Floating PV of the swap

o|Q,bvoL | _o|Pv;

Ioating,jJ

oD, (t) oD (k)
ojQ,pvoL| aQ, ovor +q S2VOL
oD,(t) a0fs) 7 7 aD;(k)

19

* PVoiaing. ZIN() ((t)

PV, I Vrioating, j.) i
"D, [t) = 2Nl ()20 ()aD() le N Df(tk)

14. Interest Rate Swap PV-DF micro-Jacobian

OPVirsi _ <

- P - SN .){(LTI D(ti)—a[ff'i(tk)}

» There is no performance impact on constructiomefRV-DF micro-Jacobian in

then adjoint mode as opposed for forward mode taltiee triviality of the
adjoint. Either way the performance@{nx k), where n is the number of cash
flows, and k is the number of curve factors.
15. Credit Default Swap DF micro-Jacohian
* PVgs; =PV,

Coupon, j I:)\/LOSS,]‘ + I:)VACCRUED,j

j => | CDS Contract with a maturity
« ¢, => Coupon of the'}CDS
* PV, => PV of the full CDS contract

. PV

Coupon, j

=> PV of the Coupon leg of the CDS Contract

* PViccruen,; => PV of the Accrual paid on default

* PVeowponj = CjiN(ti)AiSP(ti)Df(ti)

- —"Zéﬁ"(“::;* 6 IS) I) s NS (0,

¢ PV, = [N ROID, (S, (0

aPVLOSS j i ()

N(O[1- R(t d
0. () j()[()] Df()spo

20

* PV ACCRUED, j = CJ i J‘N(t)A(t tl l)D dSP(t)

I:lt 1

aPVACCRUED i il it ()
oD, (t,) letj N®A.t)D; (t)dS: 1) +C,IZ:11t j NOAG)2 o1)dsp(t)

1

16. Credit Default Swap DF micro-Jacohian

. OPVeos; _ cji{N(n A..t)s(t) 6|, th(t)[cJ.A(ti-l,t)-{l- R(t)}]dP(t)}

» There is no performance impact on constructiomefRV-DF micro-Jacobian in

then adjoint mode as opposed for forward mode toltiee triviality of the
adjoint. Either way the performance(ﬂ{nx k), where n is the number of cash

flows, and k is the number of curve factors.

21

Stochastic Entity Evolution

Stochastic Entity Evolution — Sensitivity Formulation

1. Evolution DynamicsSimplest evolution of stochastic variablegt) will be ones

with constant forward volatilities. Once the dynasiis formulated according to

AL (1) = p (L,)AL+ o (L, t)AW, where (L;,t) is the component drift, and; is
J

the component co-variance to the fadtg(L;,t), subsequent evolution can be

determined.

N

The Eulerized version of the above I (t) = h,uj(i,tj +/h> Jj,(i,tJAZ, ,
|

where h is the time-step, and Z is the Weiner ramdariable.
In the case of forward rates, e.g., the driftslwamstablished by a no-arbitrage

condition binding the forward rate drifts to theariances.

Evolution of the derivative entityDnce the stochastic variate dynamics is estadiish

the dynamics of the observed derivative entity lwamprogressively determined.

|

Derivative Entity Measure path-wise evolutid&volution sequence can be

determined for the individual pay-off measures afl. Whese measures may further

be dependent on the differentials of the derivagingty, so those may also need to be

evolved using automatic differentiation.

4. Derivative Entity Computational efficiency enhamsnt

Using the adjoint automatic differentiation methods

Using optimal combination of forward and adjointauatic differentiation
methods

Further optimizations using sparse-ness of theiffadtor co-variance matrix,
thereby evolving the variate/derivative matrix tlgasparse optimally (as opposed
to blind delta bumps that may happen when compulifigrentials).
Quasi-analytic computation models and automatieidhtiation techniques =>

No Monte-Carlo evolution needed at all, but stikkNgert intermediate level

22

reformulation necessary to enhance the quasi-acmamalysis (e.g., Copula
methods).
5. Derivative Entity Measure Calculatipfinstrument, Manifest Measure] input to

[Instrument, Manifest Measure] output is equivdlentaintained in the Jacobian.
Alternately, the computation may also hold [Lat8tdte calibrated parameter] to

[Instrument, Manifest Measure] Output map.

Sensitivities to Stochastic State Variates and Dymnaical Parameters

1. State VariatesThese are base stochastic entities that chaaetbe actual system
statics/dynamics.
» Sensitivities to the state variates are typicadiysstivities to the “current” (or
starting) realization of these variates — e.gtadgamma.

2. Dynamic Parameterslodel parameters that govern the evolution/equilior

behavior of the state variates, and thereby theesydynamics.
» Examples would be sensitivities to volatility, agdation, etc:
3. Segment/Span CoefficientShese are the additional coefficients serve sitha

interpolated “PROXY” for the segment latent statéha unobserved points in the
segment.

» Sensitivities may also be sought to the coeffigent

Stochastic Variate Evolution Constrained by Splines

1. The forward rates (or indeed any term instrumesdsures) need to evolve such that
o They are continuous at the boundaries
0 The first (and possibly the second) derivativescarginuous at the boundaries
o The boundary conditions (either financial or tensid are retained intact

2. For e.g., the evolution dynamics of the forwaatds (or indeed any term instrument

measures) can still be via LMM, but splines maly Is& applicable to the

23

intermediate nodes, as the segment spline coeftecedjust to the forward rate

nodes.
3. Splines may also be used for any term instrummesatsure determinant (e.g., the
volatility surface maybe also be interpolativelynstructed using splines), so as to

preserve the continuity/smoothness, as opposei@te-wise discreteness.

Formulation of the Evolution of Stochastic VariateSelf-Jacobian

1. Evolution FormulationAx, (t) = 4 (%...x,,t)At +Zm:Jj|(X1...Xn,t)AVV|('[)
=1

ox(t)
ax;(0)

2. Definition of Self-Jacobian Dettal;, =

3. Evolution Sensitivity Formulation

a. i =>Index over the number of underliers (1Yo n
b. |=>Index over the number of independent stettbdactors (1 to m)

o 1) _ A{i 04, (- Xt) 0% (1) } S aw (t){i 00, (%-%t) 0% 1) }

x0T 1E) ox(0) = ox{t) % (0)

d. Eulerized version of the above is:

anx,(t) _ h[zn: ou; (%..x,.t) ax (t) }r\mz“‘:zl (t{i 00, (%.. %) 9 (t)}

x(0) 17 &) O] =UlE) ox()

e. Re-write #1:

c. Then

=1

ax (t+h) Q& . a,u].(t)+ m 9% t)] | ax (t) S (e 9%0)
%0 [" O DICRER Haxk ORPIININQ
-5 4 aﬂj(t)+ c + aajl(t)
whereD; (k,t) = 3, +h 0 \/ﬁg{zl (t+h) o (t)}
Lo laxt+h) | ox(t) ox(t + h) ox(t)
f. Re-write #2.[axtk(o) }—[D(k,t)][a)(k(to)} where[axtk(o) } and[an(to)} are

column matrices, anfD(k,t)] is an n x n square matrix.

24

ax,(0) ox(0)

« This is still forward automatic differentiation mednd is®(n), but you can

0. Re-wiite #3;[M} = D)DKt - h)]...[D(k,O)]{aX—(O)} |

optimize this using specific techniques shown iagserman and Zhao
(1999).

* Another significant optimization can be achievedjointing techniques
[Griewank (2000), Giles and Pierce (2000)].

* To achieve further significant optimization, traosp this, to get the following

adjoint form:

Fx(t + h)T _ [2x(0) T[D(k,o)r[o(k, o {0kt W [D (), which

0% (0) | [ax(0)
actually reduces to vector/matrix as opposed toirfatatrix in the non-
transposed version — this would 8#n?), as opposed t®(n°).
h. The matrix nature c{fD(k,t)] simply arises from the chain rule summation over i
Similar chain rules may be set for the differergiclow Jacobians, etc.
i. Re-castingD; (k,t) from above as
D, (k,t) = Dy pmor(Kit) + Dji orer (Ko t) + Dy voranury (Kit) , we can separate out the
different contributions td, (k,t). a) The termD,, opox(k,t) = 8 is the
contribution due to the previous D, i.(D,.i(k,t ~h). b) The term
ou, (t)

I

ox, (t)

X

D orer (k,t) = h is the contribution from the derivative of theftterm.

do, (t)
ox(t)

c) The teriji,VOLAT,UTY(k,t) = \/HZ{Z, (t+h) } is the contribution from
=1

the volatility derivative.
4. Definition of Self-Jacobian Gamma

o 0x(t)
" ax,(0)9x,(0)

25

6xA(O)6xB (0) =t 6xA(O) 6xB(O)
) 3% | x(t).t %0, | x(t)t
o s[eat)eny (t()ax, (t)j*ﬁzc(““) x(t[)axj (t)j
0 M(C, i(t),tj = haﬂca(j(it))’tj +vhz (t+ h)aac;g((g)’tj

Correlated Stochastic Variables Evolution

1. Continuous Evolution of LMM-type QuantitieSiven)2 => the vector of financial

variables that need to be mapped to the corresponleiner variate€ . In LMM,
for e.g., start withX (0) = {X,(0), X,(0)...., X, (0)} , then the LMM evolutionary

techniques genera® and updateX (t).

* Any continuous entity can be chosen to model catiats, not just LMM —type
asset movements. If the default process can besmondingly transformed to an
asset indicator variable, that may be correlatet thie other asset variables too.

» For a set of correlated variates, the stochasbtuéen equation is:

X, (t+h)=X,(t)+ hyj()z,tj +Jﬁaj()2,tjgpjl(f(,tjzl (t+h).

* Here Jj(i,tj is the variance, an;d’j,(i,t) is the correlation matrix — the

variance is factored out of the covariance matrigroduce the correlation grid.

Z,(t +h) is in the usual i.i.dJ(01).

26

» The corresponding delta is:

* The entry in matrix D is given as:

D =4 +hM+\/ﬁlzm1:zl(t+h) pi'(i’tj@+a(i,tjapj(i’tj

v ox, (t) X (t

S~—

* The corresponding parameter sensitivit w :[D] aL(t)

Ja

o This may be simplified in cases wheareis an explicit function ONLY of

the state evolution variables as:

ox,(t+h) OXj(t)+ha'ui(x’tj
da oa oa

2. Correlated Default Times&/nlike the continuous variables above, if wetare

consider the correlations between default times ©NLis much more efficient to
draw correlated default times — again this coriafeis different from that of
continuous asset value times that results in diefaul

3. Generation of Correlated Default Times

* Generate the vectdf inoepeNDENT .

 Factorize the correlation matrig, to create the Cholesky diagonal matri€es

andC'.
* Use the Cholesky transformation to cre@t@rreiatep from Zinpepenpent USING
Z correLaTED = C Z INDEPENDENT .

* For each entityZi in ZcorreLaTep

27

+\/FIZ::Z, (t +h) @p“(i,t)+q(i,tj—

X=Zi
i. Evaluate the cumulative normg) = [0(01)dx , where(1(01) is a

X=—00
Normal distribution with unit mean and zero vari@anc

ii. 7, peravr =S (y,) Where S is the survival probability for the entity i.

iii. Ingeneral, X, =M, ™(y).

LMM Forward Rate Evolution

1. Importance of the LMM Formulatio2 reasons why it is important:

* LMM is one of the most popularly used formulatiand it is essential to evaluate
the impact the no-arbitrage constrained drift hathe evolution and the impact
on the greeks.

* The lognormal nature of the forward raﬁé) is important in its own right.

2. No-arbitrage constraint specification

Lt+h)=L, (t)+hﬂj[i(t),tj+ﬁzj(t+h)aj(i(t),tj where

PECRET0) pr(tp-l'tp)Lp(t)), o[(0t) =510, andnl) s te

P:'I(l)1+ A(tp—l’tp)l‘p(t
maturity of the first instrument that matures aftfrace, Gatarek, and Musiela

(1997), Jamshidian (1997)].
3. Forward Rate Volatility vs. at-the-swap Swapi@pi/olatility: LMM uses forward

rate volatilities, so there needs to be a conversiep that involves converting the
market observed at-the-money swap option volatiitto LMM forward rate

volatility [Brigo and Mercurio (2001)].

28

4. Self-Jacobian of the extended LMM Formulatids shown in Denson and Joshi
(2009a) and Denson and Joshi (2009b),

oLfiot)_af) "”(L(‘)tjwz G (‘] oL ()

oL o0 & o) ZORNERC R
o0 L) e
oLt)
a”gf((f)) I 3 il
ayj(i(t),tj(n(t)>i):b_5 & bt)l

oL, (t) o p=fi(t)1+A(p-11 tp)Lp()

5. Forward-Rate Evolution MatriXAs expected,

{L(t)] - {%} [D(k,0)]'[D(k,h)]"...[D(k,t —h)]'[D(k,t)]", where

ax(0)

Dij(f_(t),tj(n(t)si):d{uhb y D DAt) 1) +hbZ 1+ h)} hb, L)

p= n(t)1+A(p-17 p)Lp() (1"' A(ti—l'ti)Li (t))2

,andD”(f_(t),tj(/;(t)>i):a{uhb ZJ‘(b, ALyt)L, 1 +\/ﬁbjzj(t+h)}.

)1+A(pl p) p)

6. Variate Jacobian Parameter Sensitivity

oL, (t+h) :aLj(t)+haﬂi(j+\/ﬁzj(t+h)M+iDj([(t),tjaL—(t),

Ja Ja Ja Ja =

L(t)t

where Dij[lz(t),tj is available from above for the two scenarios.

29

Rewrite #1:% =B, (E(t),tj + Z D, (E(t)’tja:—c(:)’ where

o)1) [b %+b_%
1

L) Poa aa}

Bj(E(t),tj = Li(t){\/ﬁZJ(Hh)%Jrh N

p-1
p=1 t)1+A(tp_

30

Formulation of Sensitivities for Pay-off Functions

Formulation of Pay-off Function Stochastic Evolutio

1. Monte-Carlo Path-wise Derivativa2ath-wise derivatives are typically forward
derivatives, not adjoint [Giles and Glasserman @D herefore computation time is

proportional to the number of inputs. Further, @asy to accommodate these in

complex payouts [Capriotti (2011)].

2. Payoff Expectation FormulatioN = E{P(iﬂ [Harrison and Kreps (1979)],

where >2 is the vector of financial variables.

Ny o
o Path Payoff Expectation [Kallenberg (1997)] ¥>= Nl z P(X[iMc]j and

MC iyc =1

s Hp@[ﬁmg}z]-{“f o el |

iye =1 iye =1

2
NMC

Variance =

Path Greek

1. Unbiased Estimate of Path SensitiviBgtimate is unbiased [Kunita (1990), Protter

(1990), Broadie and Glasserman (1996), Glasser@@04]] if

<(Z31((())())> = axa(0)<aY(X)> where x(O) is the starting point for the variate.

31

. Monte-Carlo Greek DefinitiorGreek is defined at the change in Y with respethe

aY(x(t)) _ av(x(t)) ax(t)
ox(0) ox(t) ox(0)”

starting value of x, i.e.x(O). If X is a multi-component

. Now use the earlier formulation

ox(t)

for [—} to establish the path delta. In particular, usihgve,

0% (0)
{av_(t)} {av()} [D(k0)]'[D(k,h)]" ...[D(k,t = h)]'[D(k,t)]", so all the speed up

x(0)] [0x/(0)

advantages associated with the adjoint formuladioove follows.

. Variance in the Greeks in addition to the basses

o

« Cluster all the Path-wise Greeks calculated favarginput (eitherx, (0) or a

parameterd).

» Within that cluster estimate the corresponding &ree

» Usual population sampling variance techniques agdpgh compute the
variance in the Greek.

ox, t)

av(t) _av() | & avi(t) ox,(
oa

. t
. Path Parametetr() Sensitivity = + (
— da da ; ox. (t

axt)

oa

. Now use the earlier

formulation for[} to establish the path parameter sensitivity.

Explicit Pay-off Greek Formulation

oxfe)) S)aga(t)é{aﬁ+hg§__i((;))+mlz:z.(t+h)a;ﬂ(t(t))}a§_c(:)

* Notice that it has additional terms since the exiptlependence ofi,c on a is,
in general, non-zero: otherwisB, (t,a) =0, and the pay-off parameter sensitivity

formulation proceeds precisely along the same lasedelta formulation.

32

. Rewrite #1 ax"g;) _ B,(t,a)+IZ;:D“(a) a(E/) where D, (t,a) is exactly the same
as earlier, andB, (t,a) = hag—iast) +\/H|Z:: Z [+ h)a%'r(t).
.l ax(t+h) ax(t) ax(t+h)| | ax(t)
. Rewrite #2 [T} [B(a,t)] +[D(a, t)][o] where{ o]{ o]

and [B(a,t)] are n x 1 column matrices, a{ﬁi(k,t)] iS an n x n square matrix.
. Rewrite #3Generalizing over all the j's, we get
dx(t +h) S x(t)
_— D(t - fh)]¢|Blt - DIt - .
20 =3t -
. Rewrite #4 Transposing the above we get

{"i(;;“)} Z[Bat eh) Hﬂ[oat—fh H Faﬂ(t)]T{ﬂ[Dat eh)]T}

.
. Implications of rewrite #4Given that[B(a,t)]T and {a%(t)] are now row matrices,
a

and that they are the preceding terms in the setliethe adjoint advantages indicated
earlier continue to be valid. Further the previtarsnulations for[D(a,t)] can be re-
used at the same Eulerian time step.

Adjoint Storage Demand&Remember thaB(a,t)] and[D(a,t)] still need to be

retained in memory during the forward evolutionsieep fo{aaL(t)], so this
a

represents a corresponding increase on the stogggaements.

Payoff Sensitivity to the Correlation Matrix

33

1. Payoff Sensitivity Formulationrrespective of where the stochastic process is

diffusive or not, N _ Z

, where p,, is the correlation matrix.
0o = dZi 0P

2. Financial Variable to Correlated Random Patrtial

* Remember the general theorem thar(zl) qu x)dx thengy (z)

X=—00

« From this, and using, =M, ™(y,), you can derive—a>_<i = q;(ii) oX;
0Zi aq)(xi)

3. Differential of the Cholesky Factorization Matri

n

92 =¥y 0z 9 where—" 0Cn | is given in Smith (1995).
00y 1= m10C,, 00 0P,

e Therefore ov :Z

oV 9z, =iav X, 02, Z Y (j X, 9z
0Py =gz %P = X

a |az ap]k i=1 GQD()ap]k

where 0
Pix

is given from above.

Algorithmic Differentiation in Payoff Sensitivities Calculation

1. Monte-Carlo Path-wise Derivativad2ath-wise derivatives are typically forward

derivatives, not adjoint (Giles and Glasserman 62D herefore computation time is
proportional to the number of inputs.
2. Forward Monte-Carlo evolution variat&he full set forward evolution variates is

still needed for extracting the fields/parametexguired for the delta estimation of the
adjoint path.
3. Corresponding storage requiremeAd$ the variates set (the transition matrices)etc

still need to be maintained, so this represenis@ease in the storage needed.
4. Adjointing vs. Reverse Mod@&ypically adjoint refer©ONLY to the
intermediate/dynamical matrices [Giles (2007), &(2009)], whereaREVERSE

34

refers to calculation of only the relevant outpartsl their sensitivities [Griewank

(2000)].

* Adjointing deals with the evolved latent state spparameters left to right,
therefore technically it is still forward in therte sense — and achieves
optimization by minimizing the matrix<->matrix commations.

* In the non-matrix sense (as in adjoint automafiedintiation), the term reverse
and adjoint are analogous, i.e., adjoint/reverts te a scan backwards from
right to left inside the SAME step, for e.g., adistep.

» Finally, formalized pure “forward” and pure “revefds often theoretical
constructs. Just like hand-rolled code can beatryenptimizers, hand-rolled
algorithmic differentiation code will be better vem for Monte-Carlo sensitivity
runs. However, development productivity gains tatiained by using automated
AD tools are well documented.

Systematic Design Paradigm for using AutomatféeBentiation for Path-wise

Monte-Carlo DerivativesCapriotti and Giles (2011) detail several teches)for
this.

. Cost
« Forward Automatic Differentiation Cost :EM = [2,2.5]
Cost[B]
Cost[B+F +R]

* Reverse Automatic Differentiation Cost =

Coslg] -1

« B =>Base; F => Forward; R => Reverse.

Calibration along with Automatic Sensitivitieg&eration Automatic Differentiation

is natural performance fit in these situations @&@evlaruhn, and Sachs (2009),
Schlenkirch (2011)). Many approaches in this regaud up utilizing intermediate
value theorem to facilitate the formulation (Chieeson (1998), Giles and Pierce
(2000)).

35

Bermudan Swap Option Sensitivities

Base Formulation

1. Option Valuation under Monte-Carlonlike typical closed forms (such Black-

Scholes, Black etc.), volatility does not explicishow up in the PV generation part
for options. Instead, it features intrinsicallyzdhgh the evolution dynamics, and
from the valuation of the underlying that needbéovalued under a specific exercise
scenario.

2. Hx M Bermudan Swap Option Details

» Define the M swap exercise/pay date tenor giigs T, <...<T,, .
« Option exercise datek start from datel,, onwards, i.e.T, O{T,,, T,y .y Ty o} -

* The cash flow stream after the exercise is the paystream

X ={X,, X .0 Xy, .

3. Hx M Exercised Bermudan Swap Valuatiof) = N(T,)A(t,_.t)[Li - R] , Where R is

M
the fixed rate. The Bermudan Swap P\Pi\s{Berm(T,) = E{Z D, (ti)Xi} , whereE[...]

is the expectation operator.
4. Hx M Bermudan Swap Valuation SKU

* Simulate a single path sequencdbf

« For this path, evaluatV(X,) for eachX ={X,, X, 10 Xy } -

* For this path, generate a vectorRWBe,m(Tp) corresponding to each possible
exercise datd, O{T,,, Ty, Ty} -

 Find T, that maximized:’VBe,m(Tp).

« Record{T PV, (T)}.

36

Greek Estimation

1. Hx M Exercised Bermudan Swap Option Delta/PatamSensitivity [Piterbarg
(2004), Capriotti and Giles (2011)]

OPVBerm(Tr) _ a{E_iZ:r: O (ti)Xi } _ E_i a{Df (ti)Xi}—

o) (o) =)

6PVBe,m(Tr) _ a{E |Z:r: o (ti)Xi } — E— a{Df (ti)xi}—

oa oa = oa

2. Individual Cash-flow PV and Greeks [Leclerc,ndgaand Schneider (2009)]
* PV=Dh; (tj)A(tj—l’tlej - RJ

_) 1 = 1 3
« Dy (tj)— |p_:l‘(_1+A tp_l,tp)Lp =PV, = {Ip_:l1+A(tp_l,tp)Lp_}A(tj_l’tjILJ R]

oPV(0)_ @ oPv) onl) o)

« R ber that = | h
emember oL (0) ; oL (t) aL.(0) " eredLK(O)

is given by the

LMM formulation presented earlier.
3. Cash-flow PV Delta

oPV,(t)_ o '{; 1)LD}A(tj-l,tj)[Lj-R]]

o) o0 |t

oPV(t). 4 [, Alat)L -R|
Rl e L v s s (t)}A(‘i'l’“)D* i
PV (t),.
. 6Iﬂ.(t) [J<|]—O

LSM Methodology

37

1. Curve-Fitting to Extract Optimal Exercisgince the simple model of maximizing

PV, (T.) acrossT, gets too cumbersome if the exercise dates arenousie LSM
based optimal exercise determination laid out mngstaff and Schwartz (2001)] can
be used — regresk againstPV,, (T.).

2. Continuous or Fine-grained Call Schedule&sM is highly effective in these

situations. Sampling is reduced to a few evenlgsgaout grid points — such that the
full sample scoping is eliminated.
3. Interpolation between Sampled Nod&ry appropriate inter-nodal

interpolating/splining technique to determiR¥,,(T.) as a function of, is valid —
e.g., constanPV,, (T.) over T, linear/quadratic/polynomiaPV,,, (T.) overT , or

even exponential/hyperbolic tension spline-baB¥g, . (T.) overT, .

38

NTD Basket Sensitivities

NTD Product Formulation

1. Running Index Details

* p=1- n =>Number of Components

* j,k=1- n =>Row, column index of the correlation matrix &ach of the n
components

* |,m=1- n => Factorized Cholesky diagonal matrix for theomponents

« r=>"component in the current draw of ordered defamles; it corresponds
to the current fr-to-default.

* N=>The“N"inNTD (7, =71,).

2. Base NTD Pricing
¢ VNTD =V +V

Loss Premium

+V

Accrued

* Vi =[1-R (@)D (@)N(,)

* Voremum = Ci N(t)D, (t)alt_t) O <7,)

* VAccruaI = Ci N(Tr)Df (Tr)A(t| -1 Tr) D (t| -1 < Tr) D (tl 2 Z-r)
i=1

« O(t= 1) => Default Indicator that is 1 if< 7, and 0 otherwise.
I. To make the computation convenient [Capriott &iles (2010),
Capriotti and Giles (2011), Giles (2009), Chen étasserman
(2008)] O (t < 1) is regularized and smeared out using an apprepriat
proxy, i.e.,0(t<7) OH(t<7).
i. H(t<7) can be the Heaviside function.
iii. The proxyH(t < 7) has a bias, but it can be designed to be much

tighter than the Monte-Carlo accuracy.
3. NTD Sensitivity

39

n

Ny _ ZaVNTD o7,
0Py b1 0T, 0Py

aVNTD - aVLOS + aVPrerr'ium + aVAccrued
or, or, or, a7,
N ; A1-R (D, NG)
or, " or,
Vo, o n oH(t < .)
—remum = ¢ > N(t)D, (6)A® 6)———
an Y rp; (I) f(|) (l—l |) arp

{N(Tr)Df (7)Alt 7 HE, <7)H(E 27,)}
or

p

n 0
VAccruaI = Ca_rpz
i=1

40

Basket Options

n

1. Base Pricing FormulatioV =D (T)Z[V\/ixi(T)— S]+

i=1

2. Basket Options Delta

* Remember from earlier thaetv—(t) = 3 av(t) axj (t) . Here:

ox(0) = 0x(t) ox(0)

W Xp(T)‘S} +WD, (T)* BIack_SchoIes_DeIta(Strikep,T)

S- ZWpo(T)
p#i,p=1

W

where Strikep =

41

References

Bartholomew-Biggs, M., S. Brown, B. Christiansondd.. Dixon (2000): Automatic
Differentiation of AlgorithmsJournal of Computational and Applied Mathematics
124(2000): 171-190.

Berland, H (2006)Automatic Differentiation.

Berz, M., et al. (1996): Computational Differenitigt Techniques, Applications and
Tools,Society for Industrial and Applied Mathematics, Philadelphia, PA.
Bischof, C, P Hovland, and B Norris (2008 the Implementation of Automatic

Differentiation Tools.

Brace, A., D. Gatarek, and M. Musiela (1997): Tharkét Model of Interest-Rate
Dynamics.Mathematical Finance 7: 127-155.

Brigo, D., and F. Mercurio (2001Interest-Rate Models: Theory and Practice,
Springer-Verlag.

Broadie, M., and M. Glasserman (1996): Estimatiagugity Derivative Prices Using
Simulation.Management Science 42: 269-285.

Capriotti, L. (2011): Fast Greeks by Algorithmicférentiation.Journal of
Computational Finance 14 (3} 3-35.

Capriotti, L., and M. Giles (2010): Fast Correlati@reeks by Adjoint Algorithmic
Differentiation.Risk (2010): 79-83.

Capriotti, L., and M. Giles (2011xlgorithmic Differentiation: Adjoint Greeks Made
Easy.

Chen, Z., and P. Glasserman (2008): Sensitivitintedes for Portfolio Credit
Derivatives using Monte-Carl&inance and Sochastics 12 (4) 507-540.

Christianson, B. (1998). Reverse Accumulation anglicit Functions Optimization
Methods and Software 9 (4): 307-322.

Denson, N., and M. Joshi (2009a): Fast and Accuateks for the LIBOR Market
Model, Journal of Computational Finance 14 (4): 115-140.

Denson, N., and M. Joshi (2009b): Flaming Lagdmott Journal 1: 5-6.

42

Ghaffari, H, J Li, Y Li, and Z Nie (2007putomatic Differentiation.

Giles, M. (2007): Monte Carlo Evaluation of Senaites in Computational Finance.
Proceedings of the Eighth HERCMA Conference.

Giles, M. (2009): Vibrato Monte-Carlo Sensitivitji@édonte-Carlo and Quasi Monte-
Carlo Methods 2008, P. L'Ecuyer, and Owen, A., editoiSpringer, New York.
Giles, M., and P. Glasserman (2006): Smoking Adgoifast Monte-Carlo Greeks.
Risk (2006): 92-96.

Giles, M., and N. Pierce (2000): An introductiortihe adjoint approach to design.
Flow, Turbulence, and Control 65: 393-415.

Glasserman, P. (2004tonte-Carlo Methods in Financial Engineering, Springer-
Verlag, New York.

Glasserman, P., and X. Zhao (1999): Fast Greel&rhylation in Foreard Libor
Models.Journal of Computational Finance 3: 5-39.

Griewank, A. (2000)Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, Society for Industrial and Applied Mathematics,
Philadelphia.

Harrison, J., and D. Kreps (1979): Martingales Angitrage in multi-period
Securities Marketslournal of Economic Theory 20 (3) 381-408.

Iri, M (1991): History of Automatic Differentiatioand Rounding Error Estimation,
in: A. Griewank, G. Corliss (Eds.), Automatic Difémtiation of AlgorithmsSociety
for Industrial and Applied Mathematics, Philadelphia, PA, 3-16.

Jamshidian, F. (1997): LIBOR and Swap Market Mo@gld Measures:inance and
Sochastics 1: 293-330.

Kaebe, C., J. Maruhn, and E. Sachs (2009). Adjmasted Monte-Carlo Calibration of
Financial Market Modeld=inance and Sochastics 13 (3): 351-379.

Kallenberg, O. (1997)oundations of Modern Probability Theory, Springer, New
York.

Kunita, H. (1990)S&ochastic Flows and Stochastic Differential Equations,
Cambridge University Press

Leclerc, M., Q. Liang, and I. Schneider (2009):tfdente-Carlo Bermudan Greeks.
Risk (2009): 84-88.

43

Longstaff, F., and E. Schwartz (2001): Valuing Arcan Options by Simulation: A
Simple Least-Squares Approaéteview of Financial Sudies 14: 113-147.
Naumann, U (2008): Optimal Jacobian accumulatidwRscompleteMathematical
Programming 112 (2): 427-441.

Piterbarg, V. (2004): Computing deltas of callablIBOR exotics in Forward LIBOR
Models.Journal of Computational Finance 7(3). 107-144.

Protter, P. (1990&ochastic Integration and Differential Equations, Springer-
Verlag, Berlin.

Schlenkirch, S. (2011). Efficient Calibration oétRlull-White Model. Optimal
Control Applications and Methods 33 (3): 352-362.

Smith, S. (1995): Differentiation of the Choleskigérithm. Journal of
Computational and Graphical Statistics 4 (2): 134-147.

Wengert, R (1964): A Simple Automatic Derivativedhyation Program.
Communications of the ACM 7: 463—-464.

44

Figure 1: Optimal Intermediate Wengert Variable

ES

45

Output
Jacobian

Intermediate
Wengert

Input
Parameters

Figure 2: Computation Financial Object Scheme

Output
Jacobian

Fair
Premiiim
Param 4 Input
Parameters

Intermediate
Wengert Set

46

Figure 3: Wengert Fan-in and fan-out

> n Input
Instrument
T fom
> } p <= n Calibrated parameters
w <= p Wengert Intermediate
<> Variates
D }oom

OOOO> OOOO

<€

} m * k
> < >

k Output Measures per

47

Stochastic Analyzer Software Components

While bulk of stochastic analyzer functionalityfismulation based, the algorithmic

differential functionality is available across 2edunctional packages.

Univariate function package

Univariate Calculus package

Univariate Function Package (org.drip.quant.functian1D)

The univariate function package implements theviddial univariate functions, their

convolutions, and reflections. It contains theduling classes/interfaces:

1.

4.

AbstractUnivariateThis abstract class provides the evaluation efgilren

basis/objective function and its derivatives fapecified variate. Default
implementations of the derivatives are for black,bmon-analytical functions.

UnivariateConvolutionThis class provides the evaluation of the poalug and the

derivatives of the convolution of 2 univariate ftinas for the specified variate.

UnivariateReflectionFor a given variate, this class provides the evaluation and

derivatives of the reflection at- x.
Polynomial This class provides the evaluation of tHeonder polynomial and its
derivatives for a specified variate. The degrepeacies the order of the polynomial.

BernsteinPolynomiallhis class provides the evaluation of Bernsteilyrpomial and

its derivatives for a specified variate. The degnegonent specifies the order of the
Bernstein polynomial.

NaturalLogSeriesElemernithis class provides the evaluation of a singlmtm the

expansion series for the natural log. The expopardmeter specifies which term in
the series is being considered.

ExponentialTensiorThis class provides the evaluation of exponem#iasion basis

function and its derivatives for a specified vagidt can be customized by the choice

of exponent, the base, and the tension parameter.

48

8. HyperbolicTensionThis class provides the evaluation of hyperbtitsion basis

function and its derivatives for a specified vagidt can be customized by the choice
of the hyperbolic function and the tension paramete

9. LinearRationalShapeContrdlhis class implements the deterministic ratistape

control functionality on top of the estimate of thasis splines inside[®,...]]) -

Globally [Xy,....x): y = ﬁ where is the normalized ordinate mapped as
X

- X% _
X = %4

10. QuadraticRationalShapeContrbhis class implements the deterministic rational

X

shape control functionality on top of the estimaftéhe basis splines insidg0,...1)

1 . . .
- Globall .. X) y=—————— where is the normalized ordinate mapped as
Y [XoreX)y 1+ Ax(i=) PP
x= 2%
X =X

11. LinearRationalTensionExponentid@his class provides the evaluation of the
Convolution of the Linear Rational and the Tendtqponential Function and its
derivatives for a specified variate.

Univariate Calculus Package (org.drip.quant.calculg)

The univariate calculus package implements uniteadéference based arbitrary order
derivative, implements differential control setspgnplements several integrand
routines, and multivariate Wengert Jacobian.

1. DerivativeControlDerivativeControl provides bumps needed for nucadly

approximating derivatives. Bumps can be absolutelative, and they default to a
floor.
2. Differential Differential holds the incremental differentidds the variate and the

objective functions.

49

3. WengertJacobiaWengertJacobian contains the Jacobian of thengiee of Wengert

variables to the set of parameters. It exposeftimeving functionality:

o

O O O O o

Set/Retrieve the Wengert variables
Accumulate the Partials

Scale the partial entries

Merge the Jacobian with another
Retrieve the WengertJacobian elements

Display the contents of the WengertJacobian

4. Integrator Integrator implements the following routines fiotegrating the objective

functions:

o

o O O o

Linear Quadrature

Mid-Point Scheme
Trapezoidal Scheme
Simpson/Simpson38 Schemes

Boole Scheme

50

