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Introduction 

 

 

Framework Glossary 

 

1. Self-Jacobian: Self-Jacobian refers to the Jacobian of the Objective Function at any 

point in the variate to the Objective Function at the segment nodes, i.e., 
( )

( )KtY

tY

∂
∂

. 

2. Point-Measure State-Transform: Point-Measure transform refers to the one-to-one 

transform between a state measure at a predictor ordinate and its corresponding 

observation (e.g., discount factor from zero-coupon bond price observations). 

3. Convolved-Measure State-Transform: Convolved-Measure transform refers to the 

many-to-one transform between a state metric/predictor ordinate combination to a 

given observation, i.e., a set of state metric/predictor ordinate pairs together imply an 

observation (e.g., zero rates from swap fair premia). 

4. Discount-Curve Native Forward Curve: For discount curves built out of instruments 

dependent on forward rates, those rates and their discount curve usage ranges together 

constitute the discount curve’s native forward curve range. 

 

 

Overview 

 

1. Smoothness Criterion Evolution: Smoothness formulation is related to the 

minimization of strain energy (Schwarz (1989)), and the relation to Natural cubic 

spline (Burden and Faires (1997)), financial cubic spline (Adams (2001)) has been 

explored. 

2. Empirical vs. Theoretical Curve Builder Frameworks: Zangari (1997) and Lin (2002) 

discuss this in detail. 

• Theoretical Term Structure posit explicit term structure for a variable known as 

short rate of interest whose values are extracted, possibly, from a statistical 
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analysis of market variables (Vasicek (1977), Cox, Ingersall, and Ross (1985), 

Rebonato (1998), Barzanti and Corradi (1998), Golub and Tilman (2000)). 

• For bonds/treasuries see Nelson and Siegel (1987), Diament (1993), Svensson 

(1994), Soderlind and Svensson (1997), Tanggaard (1997). Effectiveness of such 

treatments is examined in Christensen, Diebold, and Rudebusch (2007), and 

Coroneo, Nyholm, and Vidova-Koleva (2008). 

• Hybrid methods use empirically determined yield curve inside of a theoretical 

model (Hull and White (1990), Heath, Jarrow, and Morton (1990), Ron (2000)). 

• A complete description of yield curve construction is given in Andersen and 

Piterbarg (2010). 
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Desired Curve Builder Features 

 

 

Discount Curves 

 

1. Exact instrument quote match: Does the builder scheme successfully construct the 

curve if the quotes do not pose arbitrage? Conversely, for inexact matches, does the 

builder algorithm converge rapidly, and minimal error (Hagan and West (2006), 

Hagan and West (2008))? 

2. Implied Forward Rates: Taken to be typically 1m or 3m forwards – how 

smooth/positive/continuous are they (McCulloch and Kochin (2000))? 

3. Locality: How local is the interpolating builder? If an input is changed, does the 

interpolator change only nearby, or is there spillover to non-adjacent far-off 

segments? 

4. Stability of the Forward Rates: How sensitive are the forward rates to change in the 

inputs? The Jacobian analysis below shows the results for several splining scenarios. 

a. Forward rates are chosen for the curve behavior examination because it is the 

most elemental entity whose continuous/smooth behavior is meaningful to the 

practitioner. 

5. Hedge Locality: Does most of the delta risk for a given instrument get assigned to the 

hedging instruments that have maturities close to the given instrument? 

6. Sequential vs. Tenor Delta: Does the cumulative tenor delta equal to the aggregate 

(i.e., parallel shifted) delta? Le Floc’h (2013) examines the importance of this. 
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Curve Construction Methodology 

 

 

Base Methodology 

 

1. Instrument Setup: Construct the calibration instruments, and set up the instrument 

baseline. This includes initializing the span/segments, as well as the “tuning 

parameter” to achieve the desired “inner” and the “outer” calibrations. 

2. Span/segment stretch set up: Calibrate the segments one by one using the calibration 

measures/inputs. 

3. Tuning Adjustment: Adjust tuners to achieve the desired “boundary” condition. 

 

 

State Span Design Components 

 

1. Base Quantification Metric Retrieval: This refers to the functionality for retrieval of 

the State Quantification Metric Response Value at different predictor ordinates, the 

relative values, and canonical (possibly categorical) representations. 

2. Targeted State Metric Computation: This functionality computes state/model specific 

targeted state metrics (e.g., LIBOR for a discount Curve, I Spread etc) that may be 

absolute or relative. 

3. Sensitivity Jacobian: This functionality provides for the ability to extract sensitivity 

Jacobian at the following levels: 

• Cross Quantification Metric (Quantification Metric 1 to Quantification Metric 2) 

Sensitivity Jacobian 

• External Manifest Metric to Quantification Metric Sensitivity Jacobian 

4. Calibration Input Manifest Measure Retrieval: This functionality records and 

retrieves the calibration input manifest measure set and other relevant calibration 

details. 
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• It needs to be remembered that the calibration input manifest measure set need not 

just be instrument quotes, but also “event” rates such as user specified turns meant 

to account for items such as year-end yield adjustments, periods of high activity 

etc: (Ametrano and Bianchetti (2009), Kinlay and Bai (2009)). In the case of 

turns, they may be modeled as discrete latent state jumps across specific pairs of 

dates, of a user-specified magnitude. 

• Exogenously specified State Differentials => As just noted, certain state attributes 

maybe exogenously specified (e.g., turns, bases, etc:). These state shift 

differentials may be applied before or after the calibration step. 

5. Scenario State Span Re-construction: This functionality re-constructs the state using 

adjusted, bumped, or otherwise scenario-tweaked quantification metrics and/or 

manifest measures. 

6. Boot State Span: This functionality is used in boot state spans. Here, there needs to be 

the ability to set the boot values at the node knots, and the build the segment. 

7. Non-linear State Span: This functionality sets up the non-linear fixed-point extraction 

process and the corresponding target match criterion evaluator. 

 

 

Curve Calibration From Instruments/Quotes 

 

1. Construction from Single Instrument/Quote Set: If there is only one type 

instrument/quote set to be calibrated from, you can simply “spline” through the 

constituent segments. In particular, if there are no value limitations/constraints, then 

spline construction may be achieved directly from the points (e.g., bond yield curve). 

• Questionable if quote interpolation is necessary for even the single instrument set, 

since this results in double interpolation – the first on the quote space, and the 

second on the span/segment canonical space. 

2. Construction from Diverse/Multiple Instrument/Quote Set: Given a diverse set of 

instruments and/or quotes, we need canonical quote-independent/quote-transforming 

measure formulation that is valid across the full instrument stretch. 

3. Curve Span/Segment Latent State Quantification Metric: 
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• For discount curves, this can be the discount factor/zero rate/forward rate. 

• For forward curves, this can be the absolute forward rate/forward rate basis. 

• For credit curves, this can be survival factor/cumulative hazard rate/ forward 

hazard rate. 

• For recovery curves, this can be the expected loss/recovery, of the forward 

loss/recovery. 

4. Cumulative vs. Forward Quantification Metric: The cumulative span quantification 

metric Ζ  and the forward segment quantification metric Φ  are related as 

( )
S

S

∂
Ζ∂

⇒Φ , where S is the span variate (specifically the tenor – in this case). 

5. Physics of Quantification Metric Constraints: More generally, 








∂
Ζ∂ℑ⇒Φ
S

SZ ,, , 

where ℑ  comes from the physics of the process. For the discount curve, the credit 

curve, and the recovery curve 
( )

S

S

S
SZ

∂
Ζ∂=









∂
Ζ∂ℑ ,, . 

6. Cumulative Quantification Metric from Forward Quantification Metric (or Span from 

Segment): Cumulatives may be extracted from forwards using the quadrature 

formulation, as they are integrands over the segment dimension. For 

survival/discount/recovery curves 

( )

t

dSS
t

∫Φ
=Ζ 0 . 

7. Structure of cumulative vs. Forward: Forward quantification metric is more sharp-

edged/swinging than cumulative quantification metric, which, by virtue of the 

quadrature construct, is smoother. 

• Therefore, single instrument/quote interpolation may be able to use the forward 

quantification metric, and imply the cumulative quantification metric. 

• Multiple instrument/quote should use the cumulative manifest metric, and perhaps 

imply the forward quantification metric using the segment <-> span 

transformation relationship. 

8. Constraints on the forward Quantification Metric: Depends on the driver physics. 

• For survival curve, 0≥Φ , and this is a hard constraint. 
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• For discount curve, there are no such constraints. 

• For recovery curve, the constraint is that 0≥Φ . 

9. Constraints on the cumulative Quantification Metric: Again depends on the stochastic 

variate driver physics. 

• For survival curve, if Z is the cumulative survival/hazard rate, 0≥Ζ , and it 

should be monotonically decreasing - this is a hard constraint. 

• For discount curve, if Z is the discount factor, then 0≥Ζ . Beyond this there are 

no constraints. 

10. Challenges with interpolating in the forward Quantification Metric space: For 

survival/discount, due to the exponential nature of the formulation, splining on Φ  can 

very often cause the prior two constraints to be violated – so relatively speaking, the 

choice is less stable. 

11. Span/Segment Quantification Metric Relationship: 

• Discontinuity in the cumulative quantification metric automatically implies 

discontinuity in the forward quantification metric. 

• Continuous, but non-differentiable cumulative quantification metric implies 

discontinuity in the forward quantification metric. 

• Continuity in the first derivative of cumulative quantification metric implies 

continuous, non-differentiable forward quantification metric. 

• Continuity in the first/second/third derivative of cumulative (using, e.g., quartic 

splines) quantification metric implies continuous, first/second differentiable 

forward quantification metric. 

• Certain splines become problematic for highly uneven segment lengths, e.g., 

cubic splines will be unsatisfactory for the situation where you start with close set 

of nodes and move to a sparser set (Burden and Faires (1997)). This is because the 

curve is too convex and bulging for points far away from each other.  

12. Span Quantification Metric – “Effective” Rate/Hazard Rate: This can simply be 

defined as 
t

)log(Ζ−=ζ , where Ζ  is either the discount factor (for the discount 

curve) or the survival factor (for the survival curve). This needs to be matched for 4 
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powers (quartic) for polynomial spline, or for three derivatives for non-polynomial 

(e.g., tension) splines. 

 

 

Calibration Considerations 

 

1. Exponential/Hyperbolic Tension Splines as a Natural Basis for DF representation: 

This is popular (Sankar (1997), Securities Industry and Financial Markets Association 

(2004), Andersen (2005)) because the discount factor simply goes as ∫
− fdt

e . 

Obviously this basis will not be suitable for forward/zero rates. 

• The Trouble with the High-Tension Tension Splines is: This causes the segment 

responses to be almost linear with the predictor, therefore: 

o For big gaps in the predictor ordinates, “linear” can soon become a huge 

problem. 

o NASTY, NASTY low-tenored forward’s starting near the segment edges. 

o High Tension implies high local forward interest (using above). 

o While Renka (1987) shows an automatic way to extract to specify the 

tension, the resulting 1C  presents fundamentally no more of an advantage 

than a 1C  cubic (Le Floch (2013)). 

o Other issues with the impact of automatic selection (see Preuss (1978)) 

and the corresponding implications for sensitivities remain. 

2. Sensitivity of the Forward Rate to the Spot Measure: The forward rate/DF sensitivity 

to the spot quote is not just low, but also ends up producing multiple matching results. 

• In particular, the presence of root multiplicity within a single segment (as is the 

case for polynomial splines) reduces the calibration to a needle in a haystack 

search – with huge demands on intelligent heuristics placed on the searcher. 

3. Pay Date DF Pre-computation: This method is outlined in Kinlay/Bai, and is NOT a 

robust method, for the following reasons: 

• It starts by estimating the DF’s parametrically (using constant forwards) between 

dates. 
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• Fine pay date grids (owing to, say, diverse/overlapping instrument types, and 

diverse/overlapping quote types) means that the interpolation grid becomes highly 

clustered, and this produces challenges for many splining techniques. 

4. Non-linear DV01: The DV01 term ( )jf

n

j
jj tDl∑

=

∆
1

, or more generally, the DV01-type 

terms, is non-linear on both the discount factor and the forward rate – this is what 

makes the curve calibration using the Kinlay/Bai and the Andersen schemes difficult. 

• Relating the discount factor the forward rate as shown may really help simplify 

the formulation. ( ) ( )
( )

( )( ) ( ) 11

1

1 1 1

1

1

1

−−

−

= − −+




















−+
= ∏

tt

t

i iii
f LttLtt

tD
ηη

η

. Here ( ) 1−tη  

refers to the instrument maturity that precedes the time t. 

5. No Arbitrage Conditions: 

• No Arbitrage for Rates implies that 0>forwards  => ( )[ ] 0≥
∂
∂

ttr
t

, although this 

can easily seen to be violated in several instances. 

• Options => Arbitrage free Implied Volatility Surface for Call Options (Homescu 

(2011)) => ( )[ ] 0, ≥
∂
∂

KtC
t

 and ( )[ ] 0,2

2

≥
∂
∂

KtC
K

. 
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Curve Construction Formulation 

 

 

Linearized Discount Curve Calibration from Instruments 

 

1. Cash flow PV Linearity in Discount Factor and Survival: Simply put, fDCPV ×= , 

or more generally Pf SDCPV ××=  where C  is the cash flow, fD is the discount 

factor, and PS  is the survival probability. The challenge is to re-cast the measure 

computation in a manner that retains the formulation linearity in the latent state (it is 

already linear in fD and PS , so that simplifies things a bit). 

• Re-casting all the product/measure calibration as a linear equation depends on the 

product/measure combination, but many typical formulations satisfy this criterion. 

2. Different Linearized Discount Curve Formulations: 

• Single Segment Giant Spline => Use all the market observations to construct all 

the linearization constraints to synthesize one giant multi-basis spline. 

• One Spline Segment per adjacent cash flow pair => This gives maximal control, 

but ends up being way too computationally involved, as their will be as many 

spline segments as there are cash flow pairs. 

• One Spline Segment per Instrument Maturity => Here a unique spline segment 

will be used between 2 adjacent calibration instrument maturities. This ordering is 

identical to typical instrument level bootstrapping. 

• Transition Spline => This retains the spline cluster per each instrument group. 

This representation is valuable when you have instruments assembling in cluster 

(as cash/EDF/swaps etc:, which is obviously a typical arrangement). Judicious 

choice of knots and instruments etc: reduce the chances of jumps/bumps, although 

can still be a challenge. 

3. Nomenclature: 

• Instrument Set => al ,...,1=  

• Segment exclusive to instrument l  spans the times ll ττ →−1 . 
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• Instrument l  has b  cash flows indexed by j : 1,...,0 −⇒ bj  

• Segment l ’s spline coefficients ilα  are determined by l ’s cash flows and market 

quotes. 

• Each Segment has 1,...,0 −= ni , i.e., n  basis function set representing the 

discount factor. 

• Instrument l ’s cash flow j  has a pay date of jlt . 

4. Importance of some of the Linear Algebra Operations: While most of what is used in 

spline systems for linearized curve building can be achieved using a robust linear 

system solver (e.g., Gauss Elimination, see Press, Teukolsky, Vetterling, and 

Flannery (1992)), robust matrix inversion algorithms are needed for Jacobian 

estimation. 

 

 

Segment Linear Discount Curve Calibration from Instruments 

 

1. Step #1: Identify and sort instruments by their maturities. 

• In between two maturities lies a segment, and the curve start date demarcates the 

start of the first (exclusive) segment. 

2. Step #2: For each instrument, extract the coefficient of each discount factor (which 

corresponds to the net cash flow at that node). 

3. Step #3: Say that the market PV quote of instrument l  is lQ . This indicates 

( ) ( ) ( )∑∑∑
−

>=

−

≤=

−

= −−

+==
1

,0

1

,0

1

0 11

b

tj
jlfjl

b

tj
jlfjl

b

j
jlfjll

ljlljl

tDctDctDcQ
ττ

 

5. Step #4: Given that all segment l  cash flows whose pay date is less than 
1−iτ belong to 

the prior periods, their discount factors should be computable. Thus, 

( )∑
−

≤= −

=Ρ
1

,0 1

b

tj
jlfjll

ljl

tDc
τ

 should be pre-computed. 
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6. Step #5: The segment specific constraint now becomes 

( ) ( ) ll

b

tj
jlfjl

b

tj
jlfjlll QtDctDcQ

ljlljl

Ρ−=⇒+Ρ= ∑∑
−

>=

−

>= −−

1

,0

1

,0 11 ττ
. 

7. Step #6: In terms of the segment spline coefficients ilα  and the segment basis 

functions ilf , the constraint gets re-specified as follows: 

• ( ) ( )∑
−

=

=
1

0

n

i
jlililjlf tftD α  

• ( ) ( )∑ ∑∑
−

>=

−

=

−

>= −−

⇒=Ρ−
1

,0

1

0

1

,0 11

b

tj

n

i
jlililjl

b

tj
jlfjlll

ljlljl

tfctDcQ
ττ

α  

• Again, notice that ( )∑
−

>= −

=Ω
1

,0 1

b

tj
jljljll

ljl

tf
τ
α  can be pre-computed. Thus, the above 

becomes ll

b

tj
ljl Q

ljl

Ρ−=Ω∑
−

>= −

1

,0 1τ
α . 

8. Step #7: Of course, in general lQ  need not just be the P – it just needs to be any 

measure linearizable in the discount factor. 

9. Cash fD  Coefficient: 

• Given a rate calibration measure lr , ( )
ll

lf r
D

τ
τ

+
=

1
1

. 

10. EDF fD  Coefficient: 

• Given a rate calibration measure lr , 
( )

( ) ( ) 0
1 1

1 =+
−+

−

−

−
lf

lll

lf D
r

D
τ

ττ
τ

. 

• Given a price based calibration measure lP , ( ) ( ) 01 =+− − lflfl DDP ττ . 

11. Fixed Stream fD  Coefficient: Given a price measure lP , ( ) ( )∑
−

=
−∆=

1

0
1,

b

j
jfjjl tDttcP , 

where c  is the coupon. 

12. Floating Stream fD  Coefficient: Given a price measure lP , 

( ) ( ) ( ) ( )[ ]mff

b

j
jfjjl tDtDtDttsP −+∆=∑

−

=
− 0

1

0
1, , where s is the floater spread. 
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13. IRS fD  Coefficient: 

• For a par swap IRS, 0=− FloatingFixed  => 

( ) ( ) ( ) ( ) ( ) ( )[ ] 0,, 0
1

1
1

1 =−+∆−∆ ∑∑
=

−
=

− mff

m

j
jfjj

n

i
ifii tDtDtDttstDttc . 

• Given a price measure lP , 

( ) ( ) ( ) ( ) ( ) ( )[ ]mff

b

j
jfjj

b

j
jfjjl tDtDtDttstDttcP −+∆+∆= ∑∑

−

=
−

−

=
− 0

1

0
1

1

0
1 ,, . 

14. Bond fD  Coefficient: 

• Given a dirty price measure lP , ( ) ( )∑∑
−Ν

=

−

=

+=
1

0

1

0 η
jfj

b

j
jfl tDNtcDP . 

• Given a yield measure, the yield can be converted to the dirty price measure lP . 

• Given a spread over TSY measure, it may also be converted to the dirty price 

measure lP  through the yield. 

 

 

Curve Jacobian 

 

1. Representation Jacobian: Every Curve implementation needs to generate the 

Jacobian of the following latent state metric using its corresponding latent state 

quantification metric: 

• Forward Rate Jacobian to Quote Manifest Measure 

• Discount Factor Jacobian to Quote Manifest Measure 

• Zero Rate Jacobian to Quote Manifest Measure 

2. Importance of the representation Self-Jacobian: Representation Self-Jacobian 

computation efficiency is critical, since Jacobian of any function ( )YF  is going to 

be dependent on the self-Jacobian 
( )

( )KtY

tY

∂
∂

 because of the chain rule. 

3. Forward Rate->DF Jacobian: 
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• ( ) ( )
( )














∂
∂

−
=

Bf

Af

AB
BA tD

tD

tt
ttF ln

1
, . 

• ( )
( ) ( )

( )
( ) ( )

( )
( )











∂
∂

−
∂
∂

−
=

∂
∂

kf

Bf

Bfkf

Af

AfABkf

BA

tD

tD

tDtD

tD

tDtttD

ttF 111,
. 

• ( )BA ttF ,  => Forward rate between times At  and Bt . 

• ( )kf tD  => Discount Factor at time kt  

4. Zero Rate to Forward Rate Equivalence: This equivalence may be used to 

construct the Zero Rate Jacobian From the Forward Rate Jacobian. Thus the 

above equation may be used to extract the Zero Rate micro-Jacobian. 

5. Zero Rate->DF Jacobian: 

• ( )
( ) ( )

( )
( )











∂
∂

−
=

∂
∂

kf

f

fkf tD

tD

tDtttD

tZ 11

0

 

• ( )tZ  => Zero rate at time t 

6. Analytical Sensitivity vs. Quote Bumped Sensitivity: In general, when dealing 

with the splined mechanisms for curve cooking, it may not be accurate to depend 

on the quote bumped sensitivity, because it may end up throwing it to a totally 

different curve builder scheme (Le Floc’h (2013)). 

• Also, analytical sensitivities may be estimated right during the calibration 

itself. However, analytical-to-quote sensitivities implies two-stage Jacobian – 

the Jacobian of the quote to the state representations, then the Jacobian of the 

state representation to the sensitivity measure. 

• In-situ Calibration Sensitivites => Measure to state sensitivities maybe 

generated quiet readily, depending on the calibration mode. 

o For linear calibrator, this is simply the state Jacobian inverse. 

o In some non-linear search techniques (esp. open ones like the 

Newton’s method, but with the closed schemes as well), sensitivity 

Jacobians are automatically (or using light adjustment) generated as 

part of the calibration itself. 

• Spline coefficient sensitivity to segment/node inputs => High sensitivity of 

the spline coefficients to the node inputs across specific stretches indicates 
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instability in curve (re-) construction and the corresponding deltas (i.e., 

spurious deltas and leakage). Le Floc’h (2013) examines this for several 

standard interpolating estimators in use. 

7. Derivative to Quote Jacobian via the Discount Factor Latent State: 

• 1,...,0 −⇒ dc  Calibration Components 

• 10,..., −⇒ dc qqq  Corresponding Quotes 

• Let’s say the Derivative PV is ( ) ( )
∑∑

== ∂
∂

◊=
∂
∂

⇒◊=
m

j c

jf
j

c

m

j
jfj q

tD

q

P
tDP

11

. Thus 

what is typically needed to estimate product-to-quote sensitivities via the 

Discount Factor latent state is 
( )
c

jf

q

tD

∂
∂

. 

8. Quote->Zero Rate Jacobian: 

• 
( )

( ) ( ) ( ) ( )
( )











∂
∂

−=
∂
∂

kf

j
kfk

k

j

tD

tQ
tDtt

tZ

tQ
0  

• ( )tZ  => Zero rate at time t 

9. PV->Quote Jacobian: 

• 
( ) ( )

( )
( )
( )∑

= 











∂
∂

÷
∂
∂

=
∂

∂ n

i if

j

if

j

k

j

tD

tQ

tD

tPV

Q

tPV

1

 

10. Cash Rate DF micro-Jacobian: 

• ( ) ( )
( )
( )kf

jf

STARTjjfkf

j

tD

tD

tttDtD

r

∂
∂

−∂
−=

∂
∂ 11

 

• jr  => Cash Rate Quote for the jth Cash instrument. 

• ( )jf tD  => Discount Factor at time jt  

11. Cash Instrument PV-DF micro-Jacobian: 

• ( ) ( )
( )
( )kf

jf

SETTLEjfkf

jCASH

tD

tD

tDtD

PV

∂
∂

∂
−=

∂
∂

,

, 1
 

• There is practically no performance impact on construction of the PV-DF 

micro-Jacobian in the adjoint mode as opposed to the forward mode, due to 

the triviality of the adjoint. 
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12. Euro-dollar Future DF micro-Jacobian: 

• ( )
( )
( ) ( )

( )
( )

( )
( )kf

STARTjf

STARTjf

jf

STARTjfkf

jf

kf

j

tD

tD

tD

tD

tDtD

tD

tD

Q

∂
∂

−
∂∂

∂
=

∂
∂ ,

,
2

,

1
 

• jQ  => Quote for the jth EDF with start date of STARTjt ,  and maturity of jt . 

13. Euro-dollar Future PV-DF micro-Jacobian: 

• ( )
( )
( ) ( )

( )
( )

( )
( )kf

STARTjf

STARTjf

jf

STARTjfkf

jf

kf

jEDF

tD

tD

tD

tD

tDtD

tD

tD

PV

∂
∂

−
∂∂

∂
=

∂
∂ ,

,
2

,

, 1
 

• There is practically no performance impact on construction of the PV-DF 

micro-Jacobian in then adjoint mode as opposed for forward mode, due to the 

triviality of the adjoint. 

14. Interest Rate Swap DF micro-Jacobian: 

• jFloatingjj PVDVQ ,01 =  

• jQ  => Quote for the jth IRS maturing at jt . 

• jDV01  => DV01 of the swap 

• jFloatingPV ,  => Floating PV of the swap 

• 
[ ]

( )
[ ]

( )kf

jFloating

kf

jj

tD

PV

tD

DVQ

∂
∂

=
∂

∂ ,01
 

• 
[ ]

( ) ( ) ( )kf

j
jj

kf

j

kf

jj

tD

dDV
QDV

tD

Q

tD

DVQ

∂
+

∂
∂

=
∂

∂ 01
01

01
 

• ( ) ( ) ( )
( )∑

= ∂
∂

∆=
∂

j

i kf

if
ii

kf

j

tD

tD
tN

tD

dDV

1

01
 

• ( ) ( )∑
=

∆=
j

i
ifiiijFloating tDtNlPV

1
,  

• ( ) ( ) ( ) ( ) ( ) ( )
( )∑∑

== ∂
∂

∆+
∂

∂∆=
∂

∂ j

i kf

if
iii

j

i kf

i
ifii

kf

jFloating

tD

tD
tNl

tD

l
tDtN

tD

PV

11

,  

15. Interest Rate Swap PV-DF micro-Jacobian: See Hull (2002) for the preliminaries. 

• ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )∑

=
−













∂
∂−

∂
∂

−∆=
∂
∂ j

i kf

i
if

kf

if
ijiii

kf

jIRS

tD

l
tD

tD

tD
lctttN

tD

PV

1
1

, ,  
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• There is no performance impact on construction of the PV-DF micro-Jacobian 

in then adjoint mode as opposed for forward mode, due to the triviality of the 

adjoint. Either way the performance is ( )kn×Θ , where n is the number of 

cash flows, and k is the number of curve factors. 

16. Credit Default Swap DF micro-Jacobian: 

• jACCRUEDjLOSSjCouponjCDS PVPVPVPV ,,,, +−=  

• j => jth CDS Contract with a maturity jt  

• jc  => Coupon of the jth CDS 

• jCDSPV ,  => PV of the full CDS contract 

• jCouponPV ,  => PV of the Coupon leg of the CDS Contract 

• jACCRUEDPV ,  => PV of the Accrual paid on default 

• ( ) ( ) ( )ifi

j

i
PiijjCoupon tDtStNcPV ∑

=

∆=
1

,  

• ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )ifi

j

i
Pii

kf

j

kf

if
i

j

i
Piij

kf

jCoupon tDtStN
tD

c

tD

tD
tStNc

tD

PV
∑∑

==

∆
∂

∂
+

∂
∂

∆=
∂

∂

11

,  

• ( )∫ −=
jt

PfjLOSS tdStDtRtNPV
0

, )()](1)[(  

• ( )
( )
( )∫ ∂

∂
−=

∂
∂ jt

P
kf

f

kf

jLOSS tdS
tD

tD
tRtN

tD

PV

0

, )()](1)[(  

• ( )∑ ∫
=

−

−

∆=
j

i

t

t

PfijjACCRUED

i

i

tdStDtttNcPV
1

1,

1

)(),()(  

• ( ) ( ) ( ) ( )
( )∑ ∫∑ ∫

=
−

=
−

−−
∂
∂

∆+∆
∂

∂
=

∂
∂ j

i

t

t

P
kf

f
ij

j

i

t

t

Pfi
kf

j

kf

jACCRUED
i

i

i

i

tdS
tD

tD
tttNctdStDtttN

tD

c

tD

PV

1
1

1
1

,

11

)(),()()(),()(

 

17. Credit Default Swap DF micro-Jacobian: 
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• ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ }[ ] ( )∑ ∫

=
−−













−−∆+












∂
∂

∆=
∂
∂

−

j

i

t

t

ij
kf

if
iiiij

Kf

jCDS
i

i

tdPtRttctN
tD

tD
tStttNc

tD

PV

1
11

,

1

1,,

 

• There is no performance impact on construction of the PV-DF micro-Jacobian 

in then adjoint mode as opposed for forward mode, due to the triviality of the 

adjoint. Either way the performance is ( )kn×Θ , where n is the number of 

cash flows, and k is the number of curve factors. 
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Spanning Spline 

 

 

Formulation and Set up 

 

1. Spline vs. Boot Span: For the purposes of this discussion, the main difference 

between spline and boot span is that, in boot span, the segment boundaries HAVE to 

line up with the instrument maturity edges. In spline spans, however, additional 

criterion-based knots may be used to determine the boundaries (e.g., parametric knot 

insertion in line with regression spline approaches). 

2. Basic Setup: All instruments and quotes fall into one set of constraints as 

( ) l

b

j
jlfjl QtDc =∑

−

=

1

0

, where al ,...,1= . 

• In general, ba < , so you have ab −  degrees of freedom. 

3. Local Ordinate Re-formulation: The spline extends from 1−→ bSTART tt . Setting 

STARTb

STARTi
i tt

tt
x

−
−=

−1

, ( ) ( )∑∑
−

=

−

=

⇒
1

0

1

0

b

j
jlfjl

b

j
jlfjl xDctDc . Further, ( ) ( ) 10 === xDtD fSTARTf . 

4. Basis Formulation: Setting ( ) ( )∑
−

=

=
1

0

n

i
iif xfxD α , 

( ) ( ) l

b

j
jijl

n

i
il

b

j

n

i
jiijl QtfcQtfc =








⇒=⇒ ∑∑∑ ∑

−

=

−

=

−

=

−

=

1

0

1

0

1

0

1

0

αα . Thus, if an = , there now are a  

equations and a  unknowns. 

5. Monotonicity Preservation in Spanning Splines: The heterogeneity of the calibration 

instruments demands special techniques for monotonicity maintenance (Hagan West 

(2006) described in detail earlier was a sample). 

• Stringent monotonic constraints introduced by Hyman (1983) was relaxed by 

Dougherty, Edelman, and Hyman (1989), and this was works well in practice in 

its ability to maintain monotonicity (Ametrano and Bianchetti (2009), Le Floc’h 

(2013), also implemented in Quantlib (2009)). 
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• Intermediate filter constraints introduced by Steffen (1990) and their variants 

treated in some detail by Huynh (1993) – all suffer from the same unnatural 

“dip”s or cook bumps. 

6. Pros: As always, the degrees of freedom may be expanded beyond a  to allow for 

optimizing spline construction (covered in the spline builder section). 

7. Cons: With many basis functions (esp. for polynomials), the inevitable Runge’s 

phenomenon takes over. 

 

 

Challenges with the Spanning Spline Approach 

 

1. Problems with Cubic Polynomial Spline: Too well known to documented – spurious 

inflection, too much concavity/convexity at widely separated predictor nodes (esp. in 

long end), and no guarantee of positivity where desired. 

• As noted in Le Floc’h (2013), monotone variants (including Hagan and West 

(2006), Wolberg and Alfy (1999), Hyman (1983)) of the standard cubic spline 

have differing degrees of problems since they are attempt to model the entire span 

with a single representation. 

2. Problems with Quartic Spline: While this makes the interpolation very smooth 

(Adams and van Deventer (1994), van Deventer and Inai (1997), Adams (2001), Lim 

and Xiao (2002), Quant Financial Research (2003)), the stiffness needed for shape-

preservation is completely lost. Other troubles as with cubic splines (spurious 

inflection, too much concavity/convexity at widely separated predictor nodes (esp. in 

long end), and no guarantee of positivity where desired) as well Runge’s swings are 

also present. 
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Monotone Decreasing Splines 

 

 

Motivation 

 

1. These are spline basis functions that monotonically decrease over the given interval. 

Valuable for representing discount factors. 

2. Why represent discount factors? Because the pay-offs are linearizable in them, so 

working with them implies working with the linear rates space representation, and all 

the advantages that come with that. 

 

 

Exponential Rational Basis Spline 

 

1. Basis Function Set: 








++

−
−

t

e
e

t

t
t

1
,,

1

1
,1  

2. Monotone Decreasing Nature: Each of the above basis functions is decreasing. For 

the functional form to be monotonically decreasing, conservatively speaking, this 

imposes the demand that { }0=iβ  for every i . 

• Alternatively, we may also require that no infection exist within the given 

segment, but that is hard to enforce. 

 

 

Exponential Mixture Basis Set 

 

1. Motivation: Since the discounting function goes as te− , an exponential mixture basis 

such as tie λ−  may be a good choice, as they are both intuitively monotone, and linear 

combinations of them produce convexity/concavity. 

2. Basis Function Set: { }tie λ−  for 1,...,0 −∈ ni . 
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• Choosing iλ : Since for 2C  continuity we require 4 basis functions, we choose 

0=Floorλ , Lowλ , Mediumλ , and Highλ . 0=Floorλ  accounts for adjusting jumps. 

• Typical values can be: 0=Floorλ , %1=Lowλ , %5=Mediumλ , and %25=Highλ . 

• Parallel with Tension Splines => iλ  are comparable to tension splines. 

• With this choice, kC  may be maintained for 2≥k , thereby making the forwards 

continuous, preserving locality, imparting segment convexity/concavity. Thus all 

the smoothing schemes may be maintained. 

3. Similarity with exponential/hyperbolic tension splines: Very similar in formulation. 

However, given that with exponential/hyperbolic basis set spline at one of basis 

functions has a non-negative exponential argument, that basis function becomes 

monotonically increasing. 

• Further, while estimation of the exponential tension needs to be done extraneously 

(Renka (1987)), here we appeal to the intuitive physics, as shown. 
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Hagan West (2006) Smoothness Preserving Spanning Spline 

 

 

Monotone/Convexity Preserving Estimator 

 

1. Premise: This is primarily focused on a quadratic interpolant, but it also contains 

heterogeneously inserted sub-segment knots in effect to achieve the desired 

monotonicity, convexity, and positivity effect. 

2. Philosophy: 

• This is mainly meant for forward rates inside finance, although bit more general 

outside of it. 

• The observation set { }n

iiz 1=  is simply a quantity conserved on a per-segment basis, 

e.g., the segment mean of the state variate response, i.e., ( )∫
−−−

=
i

i

dttyz
ii

i

τ

τττ
11

1
. 

• ( )ty  is positive and piece-wise quadratic inside of [ ]ii ττ ,1− . 

• The node response value iy  at the predicate ordinate iτ  is linearly interpolated 

from the observations at iz and 1+iz  (obviously edges will be treated slightly 

differently). 

• Based on the specified monotonicity maintenance and convexity preservation 

criteria, the algorithm identifies and inserts knots. Zero or more knots may need to 

be inserted. 

• The quadratic interpolant is essentially a Bessel 1C  Hermite interpolant. 

• Finally, similarity response value may be applied for positivity, and range-

bounded-ness. 

3. Steps: 

• Infer the response node value iy  at the predicate ordinate iτ  is linearly 

interpolated from the observations at iz and 1+iz  as: 

o i
ii

ii
i

ii

ii
i zzy

11

1
1

11

1

−+

+
+

−+

−

−
−+

−
−=

ττ
ττ

ττ
ττ

 for ni ,0≠  
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o [ ]1110 2
1

zyzy −−=  

o [ ]nnnn zyzy −−= −12
1

 

• Work out the “Z-score” metric within [ ]ii ττ ,1− : 

o ( ) iiiii zyzyg −=−= −−− 111 τ  

o ( ) iiiii zyzyg −=−= τ  

o Further, we work in the local predictor ordinate space x , where 

1

1

−

−

−
−=

ii

ix
ττ
ττ

. 

• Apply the appropriate adjustments for the monotonicity/convexity enforcement at 

the appropriate zones: 

o Case 01 >−ig , 11 2
2
1

−− −≥≥− iii ggg  [OR] 01 <−ig , 11 2
2
1

−− −≤≤− iii ggg : 

Here, the function ( ) ( ) ( )22
1 32341 xxgxxgg ii +−++−= −τ  can be used 

unchanged, as the original construct is already monotone and convex. 

o Case 01 >−ig , 12 −−≥ ii gg  [OR] 01 <−ig , 12 −−≤ ii gg : Here, insert a knot 

at 
1

12

−

−

−
+=

ii

ii

gg

ggη . The segment univariate now becomes: ( ) 1−= igg τ  for 

η≤≤ x0 , and ( ) ( )
2

11 1 








−
−−+= −− η

ητ x
gggg iii  for 1≤< xη . 

o Case 01 >−ig , 12
1

0 −−>> ii gg  [OR] 01 <−ig , 12
1

0 −−<< ii gg : Here, 

insert a knot at 
1

13

−

−

−
=

ii

i

gg

gη . The segment univariate now becomes: 

( ) ( )
2

11 






 −−+= −− η
ητ x

gggg iii  for η<≤ x0 , and ( ) igg =τ  for 

1≤≤ xη . 
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o Case 01 ≥−ig , 0≥ig  [OR] 01 ≤−ig , 0≤ig : Here, insert a knot at 

1−+
=

ii

i

gg

gη . Setting 
1

1

−

−

+
−=Α

ii

ii

gg

gg
, the segment univariate now 

becomes: ( ) ( )
2

1 






 −Α−+Α= − η
ητ x

gg i  for η<≤ x0 , and 

( ) ( )
2

1 








−
−Α−+Α=

η
ητ x

gg i  for 1≤≤ xη . 

 

 

Positivity Preserving Estimator 

 

1. Positivity of the interpolant: Hagan and West (2006) guarantee this by setting he 

following bounds: 

• [ ]100 2,,0 zyboundy =  

• [ ]nnn zyboundy 2,,0=  

• ( )[ ]1,min*2,,0 += iiii zzyboundy  for ni ,0≠  

 

 

Ameliorating Estimator 

 

1. Amelioration (i.e., Smoothing) of the Interpolant - Steps: 

• #1: Expand the Range at the edges => Add an interval at the beginning and at the 

end. 

o ( )0101 ττττ −−=−  and ( )12
02

01
10 zzzz −

−
−−=

ττ
ττ

 

o ( )11 −+ −+= nnnn ττττ  and ( )1
2

1
1 −

−

−
+ −

−
−+= nn

nn

nn
nn zzzz

ττ
ττ

 

o Complete the linear interpolation of the response variate across all the 

intervals as before. 
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• #2: Set the Extraneous Bounds Parametrically/Empirically => Assume that the 

left and the right mini-max bounds are set extraneously for each segment, i.e., 

LeftMiniy , , LeftMaxiy , , RightMiniy , , and RightMaxiy ,  are extraneously set. They may be set 

either point-by-point, or using another parametrization. This ensures locality, at 

expense of kC , however. 

o Check if the given response value is inside of the specified range, i.e., 

( ) ( )RightMiniLeftMiniiRightMaxiLeftMaxi yyyyy ,,,, ,max,min ≥≥ , set as follows: 

• If ( )RightMaxiLeftMaxii yyy ,, ,min< , ( )RightMaxiLeftMaxii yyy ,, ,min= . 

• If ( )RightMiniLeftMinii yyy ,, ,max> , ( )RightMiniLeftMinii yyy ,, ,max= . 

o Otherwise: 

• If ( )RightMaxiLeftMaxii yyy ,, ,min< , ( )RightMaxiLeftMaxii yyy ,, ,min= . 

• If ( )RightMiniLeftMinii yyy ,, ,max> , ( )RightMiniLeftMinii yyy ,, ,max= . 

• #3: Re-work the edges => 

o If 0100 2
1

zyzy −>− , then 0110 2
1

zyzy −−= . 

o If nnnn zyzy −>− −12
1

, then nnnn zyzy −+= −12
1

. 

o If 0y  is already explicitly specified (as the zero-day rate in some markets) 

use that instead. 

o Finally, if needed re-apply the positivity enforcement across all the 

segments as before. 

 

 

Harmonic Spline Extension to the Framework above 

 

1. Harmonic Splines and Continuous Limiters extension: Le Floc’h (2013) applies the 

harmonic splines originally introduced by Fritsch and Butland (1984), and extends the 

monotonicity preserving limiters of Van Leer (1974) and Huynh (1993) by using 

rational functions. 
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2. Harmonic Forwards in Hagan-West: Couple of interesting items to note: Given 

ii

ii
i tt

yy
m

−
−=

+

+
+

1

1
1 , on substituting iii tzy −= , you get ii mz −=+1 , and ii fs +−=− . 

3. Estimation of the node forwards using Harmonic mean: Apply the above now to get 

( )
( )

( )
( ) 111

11

11

11 1
3

21
3

21

+−+

−+

−+

+−

−
−+−+

−
−+−=

iii

iiii

iii

iiii

i ztt

tttt

ztt

tttt

f
 if 01 >+ii zz , and 0=if  

otherwise. After this, the regular Hagan-West may be applied without the need to 

enforce monotonic or convexity constraints, as it now is monotonic/convex by 

construction. 

 

 

Minimal Quadratic Estimator 

 

1. Design Philosophy: The algorithm extracts the spline coefficients keeping in mind the 

following: 

• Formulate using a 2nd degree quadratic polynomial for each segment 

• Maintain the Conserved Quantities 

• Maintain the Segment Edge Continuities 

• Optimize for the linear combination of two penalties: 

o Jump of the inter-segment discontinuities on the first derivatives 

o Curvature of the second derivative 

2. Step #1: Preservation of the Conserved Quantity Set: This results in the following 

equation: 2

3
1

2
1

iiiiii hchbaz ++=  

3. Step #2: Edge Continuity Constraint: 2
1 iiiiii hchbaa ++=+ . 

4. Step #3: Minimize the Penalty: 

• Jump of the inter-segment discontinuities on the first derivatives 

[ ] ( )[ ] ( ) ( ) 22
1

2
1

2
1

2
11 4422 iiiiiiiiiiiiiiiii hcbbhcbbhcbbbhcbJ +−+−=+−=−+= ++++  

• Curvature of the second derivative [ ] 222
2 42 iiiii hcchJ =•=  
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• Complete Penalty Formulation => 

( ) ( ) [ ] ( )1
222

22 4421 +−+=•=−+= iiiiiiiiii bbhchcchJJP ωωωω  

• ( ) ( ) ( )
080480 2

1
2 >=

∂
∂

⇒=−+⇒=
∂

∂
+ i

i
iiiiii

i

h
c

P
bbhchc

c

P ωωω
, so minimum exists. 

5. Equation Set and Unknowns Analysis: 

• 2

3
1

2
1

iiiiii hchbaz ++=  => One per segment => )1( −n  Equations 

• 2
1 iiiiii hchbaa ++=+  => One per common edge => )2( −n  Equations 

• ( ) 02 1
2 =−+ +iiiiii bbhchc ω  => One each for all ic  up to 2−nc  => )2( −n  Equations 

• Total number of linear equations => 53 −n  

• Total number of unknowns => 33 −n  

• As always, the final 2 conditions from natural, financial, or the not-a-knot 

clamped boundary conditions. 
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Penalizing Closeness of Fit and Curvature Penalty 

 

 

1. Basic Setup: As described in the companion Spline Library Documentation, 

• Gross Penalizer = Fitness Match Penalizer + Curvature Penalizer 

• CFq
ℜ+ℜ=ℜ λ1

 

• ( )∑
−

=

−=ℜ
1

0

2
q

p
pppF YyW  

• ∫
+










∂
∂=ℜ

1
2

l

l

x

x
m

m

C dx
x

y
 

2. Estimation of λ : While the segment spline coefficients are computed by minimizing 

ℜ , λ  is often extraneously supplied as a tuner that trades the prefect high degree of 

fit to the curvature. Tanggaard (1997) suggests using a few methods to estimate λ : 

• Using the GCV criterion as demonstrated by Craven and Wahba (1979) and 

Wahba (1990). 

• From the smoothing spline viewpoint, set the number of basis functions, then 

search for the corresponding λ  using the technique listed in Tanggaard (1997). 

3. Measurement Filtering vs. Best Fit Weighted Response: These approaches are very 

similar, in that the Best Fit Weighted Response “steers” the calibrated spline basis 

and their coefficients to accommodate the measurements in the uncertain sense 

(potentially by incorporating measurement uncertainty). 

a. If the measurement uncertainty/variance is explicitly known, the Andersen 

(2005), the Tanggaard (1997), and/or the GCV techniques may be used to 

extract better estimate for λ  - through Andersen RMS 2γ  estimator, 

Craven/Wahba’s GCV, or Tanggaard’s trace-based λ  estimator. 

b. Differences => However, it needs to be remembered that, for current curve 

construction methodologies, a key requirement is the 2γ  matches (i.e., exactly 
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reproducing state estimations) – which is not the typical case for the filtered 

state estimations. 

4. Effectiveness of State Representation Quantification Metric: The combination of 

curvature penalty, the length penalty, and the closeness of fit penalty must be taken 

together to gauge the effectiveness of the chosen Quantification Metric/Smoothing 

spline scheme set. Alternatively, full simulations of the manifest metric (with induced 

noise terms as explained in for e.g., Fisher, Nychka, and Zervos (1994)) and their 

corresponding evaluations are also appropriate, although they tend to be time 

consuming (and possibly overkill). 
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Extrapolation in Curve Construction 

 

 

1. Latent State Choice for the Extrapolator: The quantification metric used to 

extrapolate the latent state may be completely different from that used to infer 

within the span. 

• This clearly indicates that the span spans the extrapolated range as well. 

Further, the extrapolator should be a property of the Span, not any stretch. 

2. Extrapolator Construction: At the span edges, the kC  continuity constraints may 

be passed onto the extrapolator as well. These may take the form of the stretch 

boundary conditions (natural/financial etc). 

3. State Space Extrapolation using Synthetic Observations: This is really what it is. 

In particular, to get the desired left/right boundary behavior, you may insert 

synthetic observations at either end to produce the desired custom behavior (this 

may also be used in lieu of the explicit boundary condition specification). 



 35

 

Multi-Pass Curve Construction 

 

 

Motivation 

 

1. Introduction: This is composed of one shape preserving pass on the inferable state 

quantification metric, followed by on or more “smoothing passes”. 

2. Shape Preserving Pass: The shape preservation pass occurs on the “native designate” 

measure, preferably one that is linearly inferred from the manifest measure. The 

primary objective of the shape preservation pass is to maintain the monotonicity, the 

convexity, the locality, and possibly the positivity of the quantification metric. 

• The output of the shape-preserving pass is a span on the quantification metric that 

is “well-behaved”, and one that contains a new set of “truthness” nodes on which 

the eventual smoothing can be done. 

3. Shape Preservation Variants: 

• Linear in the discount Factor Quantification Metric => They are obviously the 

best shape preserver (owing to the perfection in the match and zero curvature 

penalty), but they no inherent convexity/concavity in them, so it gets harder fort 

the smoothing stage. 

• Constant forward rate bootstrapping may also be used. 

4. Smoothing Pass: Here you smooth on the appropriate quantification metric that is 

deemed to be a better hidden-state characterizer. 

5. Advantages of the Shape-Preserving Pass: 

• Separation between Shape-preservation and smoothing. 

• Choice of convenient, yet potentially different metrics across shape-preserving 

and smoothing. 

• The final state representation quantification metric need not be linear on the 

manifest measure. 
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• The granularity/precision of fit of the curve automatically adjusts with 

information (i.e., cash flow event dates such as pay dates), thereby making it 

inherently more precise. 

• PCHIP techniques may be applied more conveniently on the smoothing pass. 

• Other closeness of fit techniques (such as least squares methodologies, etc: ) 

become much more relevant on the smoothing pass. 

6. Disadvantages of the Shape-Preserving Pass: 

• Calculation overhead penalty associated with the dual pass (although, by choosing 

linearity between manifest measure/quantification metric and the quantification 

metric/ quantification metric combinations this adverse impact maybe reduced). 

• Artifacts produced during shape-preservation (again, there will be artifacts 

associated with just about any basis representation). 

 

 

Bear Sterns Multi-Pass Curve Building Techniques 

 

1. DENSE Methodology: This method is outlined in Nahum (2004). 

• Cash/Forwards => Piece-wise constant forwards. Turn Spreads imposed as 

needed. 

• Swaps => Shape Preserving uniform tension splines. 

• RAW Swaps Inputs => Quarterly swap rates are now re-implied from the curve 

constructed in the earlier stage. 

• From these new swap quotes, a new curve is constructed using quarterly constant 

forward rates (constant forward rates methodology is called RAW). 

2. DUAL DENSE Methodology: Again, this method is outlined in Nahum (2004). 

• Short end (Cash/Futures) => Daily forwards (i.e., constant daily forwards or cdf) 

latent state implied. 

• Long End => Same methodology as DENSE, except for the non-uniform tension 

that is applied across quarterly swap contracts. 
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Transition Spline (Or Stitching Spline) 

 

 

Motivation 

 

1. Spline per Instrument Grouping: Another possibility is to use transition spline to 

bridge across different instrument groups – this simply needs to adjust to the 

smoothness/truthness constraints of each of the instrument groups. 

• Essentially, transition splines connect spline families across instrument group 

(each instrument essentially belongs to its own spline cluster). 

2. Design: 

• May use discontinuous Hermite splines in the transition area, or higher order basis 

(say, with an appropriate kC  constraint), or even an optimizing transition spline. 

• Instrument choice is critical if we are to avoid steep transition slopes (esp. tight 

group gaps, and steep measure drops). These are challenges in any mechanism, 

but possibly a lot more here. 

• Construct single instrument spanning spline curves, then demarcate/spec out the 

instrument range, finally bridge in the transition splines. 

• Transition splines may also be used to stitch in arbitrary instruments together, 

each belonging to its own separate group, although it is hard to find a practical 

need for such a construct. 

• In general, instrument group boundaries need not strictly coincide with the 

instrument termination nodes (esp. in case of stitch-in splines). Boundaries may 

be inserted using any of the appropriate knot insertion techniques. 

3. Advantages: 

• These preserve the curve character embedded in each instrument grouping, which 

can be a sub-set of a vaster instrument set. 

• By retaining the localization to the corresponding instrument grouping, the hedges 

produces by the transition spline may, in principle, be better than those produced 

by the typical ones. 
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4. Disadvantages: 

• Of course, by construction, they do not allow for overlapping instrument groups 

(which, however, may not be a problem in the practical world). This forces a 

decision on the instrument set choices and boundaries. 

• Technically, the single “natural spline boundary condition” is not applicable 

across all the unprocessed instrument groups – this is really what is compromised. 

o How much the effectiveness is compromised due to the above may be 

estimated using targeted metrics, say the span DPE. 

5. Transition Segment in the Transition Spline: This needs at least 22 +k  basis 

functions for representation, as it needs to “mate out” the left stretch and the right 

stretch ( kk +  for each of the kC  continuity spec - plus 2 more, one at each end to 

match up the point node). 

6. Using Transition Splines for Calibration Instrument Selection: As shown in Figures 2 

and 3 below, the transition stretch represented in figure 2 is narrower, and therefore 

more abrupt/jumpy (with corresponding implications for the forward rates) than that 

in Figure 3. A criteria based approach is necessary to develop this. 

 

 

Stretch Modeling Using Transition Splines 

 

1. Information Propagation across Stretches: All the truthness/smoothness information 

of the predecessor stretch is captured by the stretch’s calibrated span parameters. Any 

state inference for predictors in a given domain needs to be deferred to the domain’s 

span stretch. 

• The corollary to the above is that trailing stretches will typically need information 

from the leading stretches for state inference/estimation (leading/trailing here are 

set in regards to the inference flow (or information flow)). Applied to discount 

curve cooking, the leading stretch that uses cash instruments is essentially self-

calibrating, whereas the trailing stretch of swap instruments is going to rely on 

information that comes out of the cash calibration. Going into swap segments, the 
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information will propagated in the form of RVC’s, so they will need to be handled 

right from the left-most segment of each stretch. 

• Regular Stretches vs. Finance Curve Stretches => For typical stretch construction, 

all you need is the transmission of the segment-to-segment continuity constraints 

through kC . For segment curve builders, however, 

( ) ( )10,...,int −= Ni SegmentSegmentfSegmentConstra , i.e., more construction 

information in addition to just the kC  is required (mostly via explicit evaluation 

of arbitrary points in earlier segments’ stretches). 

2. Response Stretches: Markov response state variables may follow distinct behavior in 

different predictor stretches. For example, the discount factor/zero rate/swap rate may 

be characterized using one set of representations for the cash stretch, whereas the 

swap stretch may use a different set. 

3. Why Response Stretches exist: Is it simply because of the instrument choice (cash for 

the front end, swap for the back end, etc:), or is there a more fundamental driver? 

Can’t say one way or the other, but the fact is we empirically attempt to match point-

by-point in a left to right manner (we do this today) without compromising the 

empirical characteristics of each instrument group. We call each of these groups 

manifest groups, since they could be result of specific product manifest measures). 

4. Manifest Group Contribution to the Response Signal Strength: Say that a signal 

strength contribution to a specific response signal is proportional to its liquidity (to 

improve accuracy, you may make it sided liquidity). As you move from left to right in 

the predictor space, by working it in terms of the liquidity-fade of the left stretch to 

the liquidity-explode of the right stretch, you may be able to characterize the response 

space more naturally (with less dependence on explicit stitching splines, or on 

artificially inserted knots). 

5. Liquidity-Fade and Liquidity-Explosion in practice: In practice the actual predictor 

ordinates across the manifest stretches will be too discrete for tracking the liquidity-

fade and liquidity-explosion. Thus, it may be more appropriate to operate on predictor 

windows. If convenient and admissible, the predictor window boundaries may also 

coincide with the segment boundaries. 
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Stretch Partition/Isolation in Transition Splines 

 

1. Definition: A given calibratable predictor ordinate/response realization space is called 

a span. The span is partitioned into stretches. Stretches can be either core stretches or 

transition stretches. Both the core stretches and the transition stretches are built from 

segments (within which the response values may be represented using basis splines). 

Core stretch are inferred to truthness and the smoothness signals, and the transition 

stretches provide the explicit bridge between the core stretches that may not be 

possible using the plain core stretch representations. 

2. Information Patterns: With a higher unit, information propagation is associated with 

each sub-unit entities below. Across peer units, information exchange is materially 

similar in nature. Across higher units, information exchange may be more 

parsimonious (although it may still happen between lower entities belonging to the 

higher units). 

3. Information Localization and Transmission: Intra-segment information propagation 

occurs through smoothness constraints such as kC . 

4. Stretch-Level Information Localization: In the spline case, this happens though 

boundary-condition delimitation/isolation (i.e., natural/financial/clamped boundary 

conditions based isolation is applicable to within a single stretch). 

5. Stretch-Stretch Transmission: These are not bound by the equivalent isolation 

constraints, therefore the connecting/transition splines need to have a qualitatively 

different nature. 

6. Transition/Connecting Splines: By definition, since they are the bridge between the 

stretches, they need to have greater degrees of freedom for a complete bridge. 

 

 

Knot Insertion vs. Transition Splines 
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1. Equivalence: In some sense, they are equivalent in that inserting knots also attempts 

to complete the bridge. However, transition splines are more customizable, since the 

splines that flank the knots are assumed in the literature to be variants of the others. 

2. Advantages on Knot Insertion: Remember that transition splines need 22 +k  basis 

function. Thus, for high k , you are stuck with higher-order polynomials (for e.g.), 

along with all the Runge’s oscillations/instabilities that it brings. Suitable choice of 

knots may minimize this. 

3. Advantage of Transition Spline: Knots are stretch response altering (via their kC  

criteria), whereas transition splines enable each stretch to retain their character. 

 

 

Overlapping Stretches 

 

1. Premise: By definition, stretch fade-out and stretch explode axiomatizations imply 

predictor ordinate overlapping stretches. 

2. Stretch Boundaries: Each stretch constituting an overlapping stretch needs to have its 

boundaries identified. What do not necessarily overlap are the smoothness 

constraints. 

3. Overlapping Stretch – Problem Statement: 

• Predictor Ordinate Stretches overlap. 

• Stretches (and by implication, their predicate ranges) are contained/telescoped. 

• Smoothness constraints may not overlap, in which case they are posited to be 

distinct in each of the constituent stretches. 

• Truthness should be strictly telescopically contained/localized, i.e., there is a 

manifest measurement exclusivity to each stretch. 

• A consequence of this is that the inferred state response variable will be 

propagated, but not (necessarily) the smoothness criterion. 
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Index/Tenor Basis Swaps 

 

 

Component Layout and Motivation 

 

1. Basis Swap Market: Although Basis Swaps did exist even earlier (Tuck man and 

Porfirio (2003), Morini (2008)), post-crisis segmentation (attributable, among other 

things, to the preference towards receiving higher frequency payments) intensified 

these differentials (Mercurio (2009)). 

2. Origins of Basis Swap Existence: In principle, these are expected to represent 

embedded duration counter-party credit risk. The “good” model should couple 

embedded credit risk with the sided flow dynamics (i.e., the credit quality of the 

counter-party that enters into the long/short side of the greater frequency leg, etc :) 

3. The Discounting Curve: Challenges regarding the uniqueness in relation to the 

instrument choice for building the discount curve have been identified by Henrard 

(2007). The issues stem primarily from the uncollateralized nature of deposits and 

forwards, therefore, these are typically replaced by OIS/EONIA and Futures 

(Madigan (2008)). 

• Interest Rate Swap continues to be used for the discount curve calibration, as it 

possesses the following characteristics: 

o Par IRS’es are collateralized at inception. 

o Collateral margining may be applied over time. 

o IRS is the only liquidly available fix-float swap, and as such effectively 

implies just a single forward curve. 

• Convexity adjustment for extracting the rate from future/forward price => Since 

futures/forwards act effectively as a zero coupon bond, the transformation of price 

to the latent zero/forward rate requires a dynamical volatility based curve 

evolution model. Sophisticated, comprehensive approaches are available in 

literature (see for e.g., Kirikos and Novak (1997), Jackel and Kawai (2005), Brigo 

and Mercurio (2006), Piterbarg and Renedo (2006)); common practitioner 
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approaches, however, employ simpler approaches such as the Hull-White one-

factor short-rate model (Hull and White (1990)). 

4. Multi Curve vs. Forward Smoothness: Given that the discount curve and the forward 

curve are essentially distinct in the multi-curve latent state, the stringent demands that 

all forwards stay smooth (as in the single discount curve that covers all the basis 

curve scenarios) may be relaxed. 

• Forwards Implied in the Discount Curve => Since the forwards are used only for 

the “core” tenor pillars in the discount curve, only those forwards need to be 

smooth (e.g., 6M forwards). By discount curve construction this will typically be 

the case, as the forwards period will always straddle/span fully a single reset 

pillar. 

5. Point- vs. Convolved-Measure State Transform: 

• Point-Measure transform refers to the one-to-one transform between a state 

measure at a predictor ordinate and its corresponding observation (e.g., discount 

factor from zero-coupon bond price observations). Since these may be expressed 

as straightforward transformations, the observation-state non-linearity may be 

easily accommodated. 

• Convolved measure-state transforms introduce what are effectively observation 

constraints across predictor ordinate/state response combinations. Non-linearity 

introduces complications, therefore usage of spline-based linearization constraints 

are highly effective. 

6. Reset-Date Forward-Rate Pair Constraint in Discount Curve Building: The yM  tenor 

(e.g., MyM 6⇒ ) may be extracted only at the reset start/end date (depending on the 

reset rate-rime axis label) from the discount curve, i.e., only the pair 

yMForwardyM ,  makes sense. In other words, this is the only set of dates for which 

the information on forward rates is available. Splining may be an option at the other 

dates. 

• yM  Tenor/DF Relationship => ( ) ( ) ( )∑
=

−∆=
m

j
jfjyMyM tDtFjjPV

1

,1 . For yMPV  to 

be telescoped away into ( ) ( )jffyM tDtDPV −= 0 , the requirements are: Period 



 44

Accrual End Date == Period Reset End Date == Period Pay Date. This is the main 

reason why the period dates are adjusted before the cash flows are rolled out. 

7. Alternative View: Discount Curve IS the yM  Forward Curve: To automatically 

ensure uniqueness and consistency of the latent state space, it may also be more 

restrictively imposed that the nativeyM  Forward Curve be implied entirely off of the 

discount curve. Thus, the nativeyM  Forward Curve may now be implied at all nodes, 

not just at the reset nodes as postulated earlier. This automatically eliminates the state 

basis between these measures; further, this is still not too restrictive in terms of the 

nativeyM  Forward Curve smoothness for same reasons as before. 

8. Basis between the yM  Forward Curve and the Discount Curve: Given that basis 

constraints are of paramount consideration in other markets, why not look at the basis 

between discount curve and its native forward curve? This is because neither the 

latent state underpinning the forward curve or that underpinning the discount curve is 

entirely observable (unlike, say basis between a bond and the issuer’s underlying 

CDS). Thus an extraneous observation model is necessary. By convention, the current 

practice achieves this by construction – the formulation mandates that the discount 

curve and the “discounting-native” forward curve be alternate quantification metrics 

of the same latent state. 

 

 

Formulation 

 

1. Float-Float Swap Setup: The phenomenology and flow details laid out in Figure 5 are 

based off of descriptions and details provided by ISDA (2000), Ametrano and 

Bianchetti (2009), Bianchetti (2009)). The two swap legs are: 

• The “known” or the “Reference” leg. Forwards of this leg come from the discount 

curve’s IRS contracts, and 6M LIBOR/EURIBOR is the most common such 

tenor. We generalize this with a basis spread, i.e., the “effective” forward is 

MM SF 66 + , where MF6 and MS6  stand for the corresponding forward and the 

spread. 
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• The “unknown” or the “Derived” leg with a tenor of xM . Forwards of this leg are 

computed from the corresponding basis market quotes. We generalize this with a 

basis spread, i.e., the “effective” forward is xMxM SF + , where xMF and xMS  stand 

for the corresponding forward and the spread. 

2. Basic Formulation Setup: 

• ( ) ( )[ ] ( )∑
=

+−∆=
m

j
jfxMjxMxM tDStFjjPV

1

,1  

• ( ) ( )[ ] ( )∑
=

+−∆=
b

a
afMaMM tDStFaaPV

1
666 ,1  

• Equivalence of xMS  and MS6  => Since both xMS  and MS6  are additive, we work 

in a space that is essentially an adjusted forward rate space, with 

MMAdjM SFF 66,6 +→  and xMxMAdjxM SFF +→, . While this is straightforward to 

accommodate in the case of M6 , from a calibration point-of-view, we work off 

of a biased xM  space, and re-adjust back after splining. 

3. Basis Swap Calibration Formulation: MxM PVPV 6=  implies that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑
==>

−∆−−∆=−∆
l

l

m

j
jfjAdjxM

b

a
afaAdjM

m

mj
jfjAdjxM tDtFjjtDtFaatDtFjj

1
,

1
,6, ,1,1,1

. For all but the left most basis swap, 0>lm . 

4. Basis Swap Calibration Constraint Specification: 

• Set ( ) ( ) ( ) ( ) ( ) ( )∑∑
==

−∆−−∆=ℵ
lm

j
jfjAdjxM

b

a
afaAdjMm tDtFjjtDtFaa

1
,

1
,6 ,1,1 . Notice that 

mℵ  maybe fully computed from before. 

• Recognize that ( ) ( )∑
=

=
n

i
iiAdjxM tftF

1
, β . 

• Combine above to get the calibration constraint 

( ) ( ) ( )∑ ∑
= > 








−∆=ℵ
n

i

m

mj
jfjiim

l

tDtfjj
1

,1β . 

5. Reference/Derived Par Spread Relations: For parity, 

DerivedDerivedDerivedferenceferenceference SDVPVSDVPV 0101 ReReRe +++ . Setting 0=DerivedS , 
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ferecne

Derivedferecne
ferecne DV

PVPV
S

Re

Re
Re 01

+
−= . Likewise, 

Derived

Derivedferecne
Derived DV

PVPV
S

01
Re +

−= . 

Remember that both ferecneSRe and DerivedS can be negative. 
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Multi-Stretch Merged Curve Construction 

 

 

Motivation 

 

1. Discount Curve composed of Forward Rate Stretches: The discount curve span may 

be viewed as being composed of overlapping/non-overlapping forward rate stretches, 

i.e., adjacent or otherwise 3M Tenor forward stretch, 6M Tenor forward stretch, etc: 

This visualization is a consequence of the representation of the “single discount curve 

latent state”, whose alternate/parallel quantification metrics are composed off of these 

stretches of forward rates that share the latent state space with the global discount 

curve. 

2. Out-of-Native Stretch Arbitrage: If one seeks a forward rate outside these stretches 

for the given tenor/index combination, there can be no expectations of no-arbitrage, 

i.e., there will be a basis between the forward implied by this latent space 

quantification metric and the forward rate under consideration. 

• Likewise, if inside the stretch, there should be no implied basis, since the diver 

latent state is identical/fully correlated. 

3. Merging/de-merging of the Latent State along the Predictor Ordinates: If you imagine 

the rates state space being characterized by a set of latent states (which may be highly 

correlated), each state may ideally be characterized by a quantification metric that is 

native to the state physical view. Thus, the unification of the sub-states in a stretch 

may be viewed as state-merging (i.e., one quantification metric may be inferred from 

another within a merged space via a trivial transformation). 

4. Probit-based Latent State Merger Analysis: Given that the discount/forward latent 

states merge/de-merge, it might it particularly amenable to a common-factor probit 

(or even a logistic) analysis of the merger driver dynamics. The challenge would then 

be to link the driver dynamics to the maturity based predictor ordinate. 
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Merge Stretch Calibration 

 

1. Cross-Stretch Calibration: Clearly the latent state span characterized by multiple 

stretches will in turn be composed of latent state merge sub-stretches. The merged 

stretch may be followed by de-merged stretch, etc: 

2. Calibration Challenges: 

• What would be most optimal cross-representation inside the merge sub-stretch 

(i.e., the state representation needs to be smooth for both the discount factor latent 

state as well as the forward curve latent state)? 

• On the other hand in the solitary segment sub-stretch, you may have more 

representation freedom, but may still need to carry over the smoothness 

constraints from the merged sub-stretch. How can this be done? Can the transition 

spline treatment above be effectively employed here? In other words, what would 

be appropriate transition zone applicable to the sub-stretch? 
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Spline-Based Credit Curve Calibration 

 

 

1. Overview: Andersen (2003) has made an initial effort in this regard. 
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Inference-Based Curve Construction 

 

 

Curve Smoothing in Finance 

 

1. Unconstrained Curve Smoothing: 

• Applicable primarily for rates/semi-liquid FX curves. Smoothing can be done 

here without constraints. 

• Smoothing may also be applicable to the quotes for a given instrument across 

several days. 

• Smoothing may also be applied over a single day curve – particularly to model the 

switch over from instrument to instrument (e.g., between EDF and Swaps). 

2. Constrained Curve Smoothing: Applicable, for e.g., to the case of a hazard curve. The 

smoothing basis functions/weights combination must guarantee, from a formulation 

PoV, that the implied hazard rate is always greater than zero. 

3. Liquidity Based Weighted Signal Smoothing: 

• Fidelity at the “liquid bonds” / benchmark bond nodes 

• Lower fidelity penalty, but higher smoothness penalty for the less liquid bonds 

• Penalty measure is calculated off of the relative liquidity ranking measure (for 

e.g., TRACE) 

4. Non Bayesian Liquidity Based Smoothing: 

• Liquidity indicator serves as a roughness/fidelity magnifier/dampener 

• Also need to penalize for over-parameterized fits using AIC/BIC (also CV/GCV – 

given that this is essentially a frequentist case). 

• These can be applied not just for bonds, but also CDS, rates, FX – even less liquid 

ones. 

5. Bayesian Extension to the above: Any parametrically specified distribution needs to 

evolve using a hyper-prior, and the Wahba parametric Bayesian priors need evolving 

too. 
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6. Nodal Jacobian/Sensitivity Impact: As always study the impact on the locality of the 

perturbation, as well as the ease of Jacobian estimation – esp. if the calibration needs 

to occur through MCMC, non-linear optimization etc: 

7. Mixtures of splines and smoothness penalties: As always estimate the impact on 

monotonicity, convexity, shape preservation etc: - the category item checks in 

Goodman’s paper. 

8. Knot Selection Tips: Need some tips in both situations – frequentist and Bayesian. 

9. Suggestion on the locally adaptive Parametric Form: Examine the knot-to-knot 

smoothness and penalty by using additional locally adaptive microstructure 

parameters and their implications. 

10. Goodman and Eilers/Marx Talking Point Issues: Criterion check for these specific 

“goodness” checks. 

 

 

Bayesian Curve Calibration 

 

1. Bayesian based past knowledge incorporation of survival probabilities: Given that the 

prior’s, the posterior’s and the likelihood’s are all probabilities, perhaps the best 

starting point is for applying it to the problem of updating the survival probabilities 

and recovery rates based on price observations. 

2. Curve Updating techniques: Need grand new formulation techniques that are based 

on AD and Bayesian methodologies as part of the curve updating strategies based 

upon individual incoming observations and their strength signals. 

3. Curve Construction off of hard/soft signals: Hard Signals are typically the truthness 

signals. Typically reduce to one calibration parameter per hard observation, and they 

include the following: 

• Actual observations => Weight independent true truthness signals 

• Weights => Potentially indicative of the truthness hard signal strength 

Soft signals are essentially signals extracted from inference schemes. Again, typically 

reduce to one calibration parameter per soft inference unit, and they include the 

following: 
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• Smoothness signals => Continuity, first, second, and higher-order derivatives 

match – one parameter per match. 

• Bayesian update metrics => Inferred using Bayesian methodologies such as 

maximum likelihood estimates, variance minimization, and error minimization 

techniques. 

4. No-arbitrage hard signals: Simply indicates that the given hard observation is out of 

bounds and irreconcilable (i.e., no solution can be found) within the axiomatic 

inference space dictated by: 

i. The parameter sequence implied by the other set of hard signals. 

ii. The model axiom schemes. 

iii. The inference rules. 

• Directionality “bias” is inherent in calibration (e.g., left to right, ordered sequence 

set, etc:) – this simplifies the problem space significantly. Therefore, the same 

directional bias also exists in the calibration nodal sequence. 

5. Parameter Space Explosion: Generally not a problem as long as it is segment-

localized (in matrix parlance, as long the transition matrix is tri-diagonal, or close to 

it), i.e., local information discovery does not affect far away nodes/segments. 

• Also maybe able to use optimization techniques to trim them. 

6. Live Calibrated Parameter Updating: Use automatic differentiation to: 

• Estimate parametric Jacobians (or sub-coefficient micro-Jacobians) to the 

observed product measures. 

• Re-adjust the shifts using the hard-signal strength. 

• Update the parameters from the calculated shifts. 

• Re-construct the curve ever so periodically (for a full re-build, as opposed to the 

incrementals). 

• Remember that AD based parametric updates break smoothness (including 

continuity as Bayesian MLE’s) – so use a tolerance in the shift if this is 

acceptable. 

7. Causality Bayesian Network DAG For Credit Curve Building: See Figure 1. 
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• DAG searches are not really needed, since here they maybe formulated 

conceptually/axiomatically, as opposed to being established through a search 

mechanism. 

8. Financial First Principles SKU: Following concepts are the core components that can 

be used to create the curve construction SKU: 

• Time Value of Money. 

• Latent Default Indicator. 

• Recovery on Default. 

• Imbalance premium/discount (for FX, Basis Swaps, etc.) 

9. Financial Signal Analysis: Need special analysis techniques to pick out “event trends” 

from “concept jumps”, even for highly liquid instruments. 

• Liquidity-based Signal Extraction => 

• Identify a liquidity metric 

• Imply the “perfect liquidity” – the point at which there is no premium 

• Compute the liquidity metric for each security 

• Regress (or conceptually determine, or fit) the bid-ask spread to inverse 

liquidity (remember that even benchmarks only have finite liquidity, not 

infinite) for each security 

• Try to slap in a secular “event premium” across all the instruments, over and 

above liquidity 

10. Systemic Finance Variables Evolution: Given that every measurement is uncertain to 

within bounds, it stands to reason that every distribution is also a true distribution (to 

within the tolerance provided by the corresponding sufficient statistics, and over a 

finite observation window) of the technical state of the world (i.e., technical = 

fundamental + a bias). 

11. Technical to Fundamental Bias Estimation: This should result from the flow of the 

information. Non-technical/Fundamental may possibly be estimated using a bias 

correction applied to the technical signal – Bayesian/frequentist techniques may be of 

value here. 

• Proxy for non-technical behavior => Identify the non-market proxies for the 

fundamental drivers, and estimate market drivers as possibly lagging indices. 
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12. Bayesian Decomposition of Technical Signals: In general, the signal core drivers are 

limited (like systemic/idiosyncratic factors – alternatively, the latent state 

quantification metric), but the product specific manifest measures are more varied. 

Bayesian frameworks well suited for these. 

13. Financial Stretch Identification: Bayesian classification techniques can be readily 

adapted for these purposes – in fact, with abundance of data, these techniques are 

very appropriate now. 

 

 

Sequential Curve Estimation 

 

1. Calibration Framework Drivers: Calibration is considered to occur FOR a hidden 

state S
r

, which is quantified using the quantification metric X
r

. X
r

 is estimated from 

the manifest measure M
r

. 

2. Product-Measure Point-of-View: From the Dempster-Shaefer/Kalman Filter/Linear 

Quadratic Estimator point-of-view, the Kalman H
r

 matrix probabilistically 

transforms the hidden state quantification metric to an observation measure, e.g., the 

latent forward rate manifests itself through the swap rate. 

3. Segment/Span Nomenclature vs. Curve Calibrator Nomenclature: Call the Curve 

Calibrator the Dempster-Shaefer Calibrator. Under this: 

• LSQM (Latent State Quantification Metric) => Elastic Variate 

• State Dimensions (Tenor Axis, X/Y Axis of predictors) => Inelastic Variates 

• Thus, the predictors are inelastic, and the responses are elastic. 

4. Linearization of LSQM over the predictor axes: The Kalman H
r

 observation 

transformer should just linearize M
r

 onto the space of X
r

 over the predictor 

dimensions. Non-linearity of X
r

 over the predictors is handled through basis splines. 

5. Hidden State Evolution vs. Hidden State Representation: The Kalman H
r

 matrix is 

more of a state modeling and state representation matrix (i.e., the update part that is 

fully local to the current time slice) that already brings in the manifest measure � 

LSQM transformation model. 
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6. The Curve Builder H
r

 matrix: Due to the above, the curve builder H
r

 matrix needs to 

accommodate the 2 possible uncertainties: 

• Uncertainty in the manifest measure 

• Uncertainty in the manifest measure � LSQM transformation model. If this 

transformation is non-parametric, then treat it as certain/deterministic. If it is 

parametric, then use MLE/MAP to the handle the parameter estimation. 

7. UKF Techniques applied to evolve the Curve Builder H
r

 matrix: Potential non-

linearity in the curve builder H
r

 may be handled using the Jacobian EKF and/or the 

sigma-point UKF schemes.  

8. The Curve Builder F
r

 matrix: The Curve builder F
r

 Matrix dictates the evolution 

from it  to 1+it  as ii LSQMFLSQM ×=+

r

1 . This should be explicitly 

posited/formulated. Again, use splining to linearize. 

9. Financial Noise Covariance Estimation: May be able to extraneously determine these 

covariance independent of the state evolution model (if not, we may have to rely on 

techniques such as ALS (Rajamani (2007), Rajamani and Rawlings (2009)). 



 56

 

Appendix A: Some Trivial Analytical Bond Math Results 

 

 

1. Price when Yield Equals Coupon: Given the following: 

• Annualized Coupon => r  

• Payment frequency => f  

• Per period yield => y  

• Per Period Coupon Payment => 
f

r
c =  

• Number of coupon periods to maturity => n  

• ( )
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• Now, if you are just past a coupon pay (so that clean == dirty), and if 1=PV , 

then we get cy
c

dd
d

d
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1 . QED. 

2. Par Yield Dirty Price at a non-coupon Date: If ξ  is the accrual fraction corresponding 

to the accruing period, then 
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Appendix B: Per-trade Risk Isolation Components 

 

 

1. Underlier Security Price Market Risk 

2. Discount Factor Risk 

3. Forward Rate Risk 

4. Currency/FX Risk 

5. Basis Risk (on any Risk Factor) 

6. Funding Risk 

7. Collateral Risk 

8. Counter-party Risk 
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Figure 1: Causality Bayesian Network DAG For Credit Curve Building 
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Figure 2: Transition Splines – Low Width Transition Stretch 
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Figure 3: Transition Splines – High Width Transition Stretch 
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Figure 4: Transition Splines – Segment <-> Stretch Layout 
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Figure 5: Float-Float Swap Set-up 
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Curve Builder Software Components 

 

 

The Curve Builder Software Components are implemented across 6 core functional 

packages, 3 sample packages, and 2 regression test packages. 

 

The core functional packages are: 

• Latent State Representation Package 

• Latent Curve State Package 

• Latent State Estimation Package 

• Latent State Creation package 

• Analytics Definition Package 

• Rates Analytics Package 

• Rates Sample Package 

• Credit Sample Package 

• Bloomberg Sample Package 

• Curve Regression Package 

• Curve Jacobian Regression Package 

 

 

Latent State Representation Package (org.drip.state.representation) 

 

The latent state representation package implements the latent state, the quantification 

metric/manifest measure, its labels, the merge stretch and its manager. It contains the 

following classes/interfaces: 

1. LatentStatelLabel: LatentStateLabel is the interface that contains the labels inside the 

sub-stretch of the alternate state. The functionality its derivations implement provide 

fully qualified label names and their matches. 

2. LatentStateMergeSubStretch: LatentStateMergeSubStretch implements merged 

stretch that is common to multiple latent states. It is identified by the start/end date 
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predictor ordinates, and the Latent State Label. Its methods provide the following 

functionality: 

• Identify if the specified predictor ordinate belongs to the sub stretch 

• Shift that sub stretch start/end 

• Identify if the this overlaps the supplied sub stretch, and coalesce them if possible 

• Retrieve the label, start, and end 

3. MergeSubStretchManager: MergeSubStretchManager manages the different 

discount-forward merge stretches. It provides functionality to create, expand, or 

contract the merge stretches. 

4. LatentStateMetricMeasure: LatentStateMetricMeasure holds the latent state that is 

estimated, its quantification metric, and the corresponding product manifest measure, 

and its value that it is estimated off of during the calibration run. 

5. LatentState: LatentState exposes the functionality to manipulate the hidden Variable's 

Latent State. Specifically it exports functions to: 

• Retrieve the Array of the LatentStateMetricMeasure 

• Produce node shifted, parallel shifted, and custom manifest-measure tweaked 

variants of the Latent State 

• Produce parallel shifted and custom quantification metric tweaked variants of the 

Latent State 

 

 

Latent State Estimator Package (org.drip.state.estimator) 

 

The latent state estimator package provides functionality to estimate the latent state, 

local/global state construction controls, constraint representation, and linear/non-linear 

calibrator routines. It contains the following classes/interfaces: 

1. StretchRepresentationSpec: StretchRepresentationSpec carries the calibration 

instruments and the corresponding calibration parameter set in LSMM instances. 

Together, these inputs are used for constructing an entire latent state stretch. 

StretchRepresentationSpec exports the following functionality: 

• Alternate ways of constructing custom Stretch representations 
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• Retrieve indexed instrument/LSMM 

• Retrieve the full set calibratable instrument/LSMM 

2. PredictorResponseWeightConstraint: PredictorResponseWeightConstraint holds the 

Linearized Constraints (and, optionally, their quote sensitivities) necessary needed for 

the Linear Calibration. Linearized Constraints are expressed as ( )∑=
i

ijij xyWC  

where ijx is the predictor ordinate at node i , y  is the response, iW  is the weight 

applied for the Response i , and jC is the value of constraintj . The function can 

either be univariate function, or weighted spline basis set. To this end, it implements 

the following functionality: 

• Update/Retrieve Predictor/Response Weights and their Quote Sensitivities 

• Update/Retrieve Predictor/Response Constraint Values and their Quote 

Sensitivities 

• Display the contents of PredictorResponseWeightConstraint 

3. SmoothingCurveStretchParams: SmoothingCurveStretchParams contains the 

Parameters needed to hold the Stretch. It provides functionality to: 

• The Stretch Best fit Response and the corresponding Quote Sensitivity 

• The Calibration Detail and the Curve Smoothening Quantification Metric 

• The Segment Builder Parameters 

4. GlobalCurveControlParams: GlobalControlCurveParams enhances the 

SmoothingCurveStretchParams to produce globally customized curve smoothing. 

Currently, GlobalControlCurveParams uses custom boundary setting and spline 

details to implement the global smoothing pass. 

5. LocalCurveControlParams: LocalControlCurveParams enhances the 

SmoothingCurveStretchParams to produce locally customized curve smoothing. Flags 

implemented by LocalControlCurveParams control the following: 

• The C1 generator scheme to be used 

• Whether to eliminate spurious extrema 

• Whether or not to apply monotone filtering. 
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6. CurveStretch: CurveStretch expands the regular Multi-Segment Stretch to aid the 

calibration of Boot-strapped Instruments. In particular, CurveStretch implements the 

following functions that are used at different stages of curve construction sequence: 

• Mark the Range of the "built" Segments 

• Clear the built range mark to signal the start of a fresh calibration run 

• Indicate if the specified Predictor Ordinate is inside the "Built" Range 

• Retrieve the MergeSubStretchManager 

7. RatesSegmentSequenceBuilder: RatesSegmentSequenceBuilder holds the logic 

behind building the bootstrap segments contained in the given Stretch. It extends the 

SegmentSequenceBuilder interface by implementing/customizing the calibration of 

the starting as well as the subsequent segments. 

8. LinearCurveCalibrator: LinearCurveCalibrator creates the discount curve span from 

the instrument cash flows. The span construction may be customized using specific 

settings provided in GlobalControlCurveParams. 

9. NonlinearCurveCalibrator: NonlinearCurveCalibrator calibrates the discount and 

credit/hazard curves from the components and their quotes. NonlinearCurveCalibrator 

employs a set of techniques for achieving this calibration. 

• It bootstraps the nodes in sequence to calibrate the curve 

• In conjunction with splining estimation techniques, it may also be used to perform 

dual sweep calibration. The inner sweep achieves the calibration of the segment 

spline parameters, while the outer sweep calibrates iteratively for the targeted 

boundary conditions 

• It may also be used to custom calibrate a single Interest Rate/Hazard Rate Node 

from the corresponding Component 

• CurveCalibrator bootstraps/cooks both discount curves and credit curves 

10. RatesCurveScenarioGenerator: RatesCurveScenarioGenerator uses the interest rate 

calibration instruments along with the component calibrator to produce scenario 

interest rate curves. RatesCurveScenarioGenerator typically first constructs the actual 

curve calibrator instance to localize the intelligence around curve construction. It then 

uses this curve calibrator instance to build individual curves or the sequence of node 

bumped scenario curves. The curves in the set may be an array, or tenor-keyed. 
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11. CreditCurveScenarioGenerator: CreditCurveScenarioGenerator uses the hazard rate 

calibration instruments along with the component calibrator to produce scenario 

hazard rate curves. CreditCurveScenarioGenerator typically first constructs the actual 

curve calibrator instance to localize the intelligence around curve construction. It then 

uses this curve calibrator instance to build individual curves or the sequence of node 

bumped scenario curves. The curves in the set may be an array, or tenor-keyed. 

 

 

Latent Curve State Package (org.drip.curve.state) 

 

The latent curve state package provides implementations of latent state representations of 

discount curve, forward curve, zero curve, credit curve, FX Basis curve, and FX forward 

curve. It contains the following classes/interfaces: 

1. DiscountFactorDiscountCurve: DiscountFactorDiscountCurve manages the 

Discounting Latent State, using the Discount Factor as the State Response 

Representation. It exports the following functionality: 

• Compute the discount factor, forward rate, or the zero rate from the Discount 

Factor Latent State 

• Create a ForwardRateEstimator instance for the given Index 

• Retrieve Array of the Calibration Components and their 

LatentStateMetricMeasure's 

• Retrieve the Curve Construction Input Set 

• Compute the Jacobian of the Discount Factor Latent State to the input Quote 

• Synthesize scenario Latent State by parallel shifting/custom tweaking the 

quantification metric 

• Synthesize scenario Latent State by parallel/custom shifting/custom tweaking the 

manifest measure 

• Serialize into and de-serialize out of byte array 

2. NonlinearDiscountFactorDiscountCurve: NonlinearDiscountFactorDiscountCurve 

manages the Discounting Latent State, using the Forward Rate as the State Response 

Representation. It exports the following functionality: 
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• Boot Methods - Set/Bump Specific Node Quantification Metric, or Set Flat Value 

• Boot Calibration - Initialize Run, Compute Calibration Metric 

• Compute the discount factor, forward rate, or the zero rate from the Forward Rate 

Latent State 

• Create a ForwardRateEstimator instance for the given Index 

• Retrieve Array of the Calibration Components and their 

LatentStateMetricMeasure's 

• Retrieve the Curve Construction Input Set 

• Compute the Jacobian of the Discount Factor Latent State to the input Quote 

• Synthesize scenario Latent State by parallel shifting/custom tweaking the 

quantification metric 

• Synthesize scenario Latent State by parallel/custom shifting/custom tweaking the 

manifest measure 

• Serialize into and de-serialize out of byte array 

3. ZeroRateDiscountCurve: ZeroRateDiscountCurve manages the Discounting Latent 

State, using the Zero Rate as the State Response Representation. It exports the 

following functionality: 

• Compute the discount factor, forward rate, or the zero rate from the Zero Rate 

Latent State 

• Create a ForwardRateEstimator instance for the given Index 

• Retrieve Array of the Calibration Components and their 

LatentStateMetricMeasure's 

• Retrieve the Curve Construction Input Set 

• Compute the Jacobian of the Discount Factor Latent State to the input Quote 

• Synthesize scenario Latent State by parallel shifting/custom tweaking the 

quantification metric 

• Synthesize scenario Latent State by parallel/custom shifting/custom tweaking the 

manifest measure 

• Serialize into and de-serialize out of byte array 
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4. DerivedZeroRate: DerivedZeroRate implements the delegated ZeroCurve 

functionality. Beyond discount factor/zero rate computation at specific cash pay 

nodes, all other functions are delegated to the embedded discount curve. 

5. FlatForwardDiscountCurve: FlatForwardDiscountCurve manages the Discounting 

Latent State, using the Forward Rate as the State Response Representation. It exports 

the following functionality: 

• Boot Methods - Set/Bump Specific Node Quantification Metric, or Set Flat Value 

• Boot Calibration - Initialize Run, Compute Calibration Metric 

• Compute the discount factor, forward rate, or the zero rate from the Forward Rate 

Latent State 

• Create a ForwardRateEstimator instance for the given Index 

• Retrieve Array of the Calibration Components and their 

LatentStateMetricMeasure's 

• Retrieve the Curve Construction Input Set 

• Compute the Jacobian of the Discount Factor Latent State to the input Quote 

• Synthesize scenario Latent State by parallel shifting/custom tweaking the 

quantification metric 

• Synthesize scenario Latent State by parallel/custom shifting/custom tweaking the 

manifest measure 

• Serialize into and de-serialize out of byte array 

6. BasisSplineForwardRate: BasisSplineForwardRate manages the Forward Latent 

State, using the Forward Rate as the State Response Representation. It exports the 

following functionality: 

• Calculate implied forward rate / implied forward rate Jacobian 

• Serialize into and de-serialize out of byte arrays 

7. ForwardHazardCreditCurve: ForwardHazardCreditCurve manages the Survival 

Latent State, using the Hazard Rate as the State Response Representation. It exports 

the following functionality: 

• Boot Methods - Set/Bump Specific Node Quantification Metric, or Set Flat Value 

• Boot Calibration - Initialize Run, Compute Calibration Metric 
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• Compute the survival probability, recovery rate, or the hazard rate from the 

Hazard Rate Latent State 

• Retrieve Array of the Calibration Components and their 

LatentStateMetricMeasure's 

• Retrieve the Curve Construction Input Set 

• Synthesize scenario Latent State by parallel shifting/custom tweaking the 

quantification metric 

• Synthesize scenario Latent State by parallel/custom shifting/custom tweaking the 

manifest measure 

• Serialize into and de-serialize out of byte array 

8. DerivedFXForward: DerivedFXForward manages the constant forward based FX 

Forward Curve holder object. It exports the following functionality: 

• Extract currency, currency pair, spot epoch and spot FX 

• Compute Zero/boot-strap Basis, as well as boot-strap basis DC 

• Compute the spot implied rate/implied rate nodes 

• Retrieve Array of the Calibration Components and their 

LatentStateMetricMeasure's 

• Retrieve the Curve Construction Input Set 

• Synthesize scenario Latent State by parallel shifting/custom tweaking the 

quantification metric 

• Synthesize scenario Latent State by parallel/custom shifting/custom tweaking the 

manifest measure 

• Serialize into and de-serialize out of byte array 

9. DerivedFXBasis: DerivedFXBasis manages the constant forward basis based FX 

Basis Curve holder object. It exports the following functionality: 

• Extract currency, currency pair, spot epoch, spot FX, and whether the basis is 

boot-strapped 

• Compute the FX Forward Array 

• Retrieve Array of the Calibration Components and their 

LatentStateMetricMeasure's 
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• Retrieve the Curve Construction Input Set 

• Synthesize scenario Latent State by parallel shifting/custom tweaking the 

quantification metric 

• Synthesize scenario Latent State by parallel/custom shifting/custom tweaking the 

manifest measure 

• Serialize into and de-serialize out of byte array 

 

 

Latent State Creator Package (org.drip.state.creator) 

 

The latent curve state package provides implementations of the constructor factories that 

create discount curve, forward curve, zero curve, credit curve, FX Basis curve, and FX 

forward curve. It contains the following classes/interfaces: 

1. DiscountCurveBuilder: This class contains the builder functions that construct the 

discount curve (comprising both the rates and the discount factors) instance. It 

contains static functions that build different types of discount curve from 3 major 

types of inputs: 

• From a variety of ordered DF-sensitive calibration instruments and their quotes 

• From an array of ordered discount factors 

• From a serialized byte stream of the discount curve instance 

2. ZeroCurveBuilder: This class contains the builder functions that construct the zero 

curve instance. It contains static functions that build different types of zero curve 

from 2 major types of inputs: 

• From a source discount curve, a set of coupon periods, and the Zero Bump 

• From a serialized byte stream of the Zero curve instance 

3. CreditCurveBuilder: This class contains the builder functions that construct the credit 

curve (comprising both survival and recovery) instance. It contains static functions 

that build different types of credit curve from 3 major types of inputs: 

• From a variety of ordered credit-sensitive calibration instruments and their quotes 

• From an array of ordered survival probabilities 
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• From a serialized byte stream of the credit curve instance 

4. FXForwardCurveBuilder: This class contains the baseline FX Forward curve builder 

object. It contains static functions that build FX Forward curves from the 3 major 

inputs: 

• An ordered array of Forward FX 

• An ordered array of Forward Basis Points 

• A byte Stream representing the serialized instance of the FXForwardCurve 

5. FXBasisCurveBuilder: This class contains the baseline FX Basis curve builder object. 

It contains static functions that build FX Basis curves from the 3 major inputs: 

• An ordered array of Forward FX 

• An ordered array of Forward Basis Points 

• A byte Stream representing the serialized instance of the FXBasisCurve 

 

 

Analytics Definition Package (org.drip.analytics.definition) 

 

The analytics definition package provides definitions of the generic curve, discount 

curve, forward curve, zero curve, credit curve, FX Basis curve, and FX forward curve, 

turns list, and their construction inputs. It contains the following classes/interfaces: 

1. CurveConstructonInputSet: CurveConstructionInputSet interface contains the 

Parameters needed for the Curve Calibration/Estimation. It's methods expose access 

to the following: 

• Calibration Valuation Parameters 

• Calibration Quoting Parameters 

• Array of Calibration Instruments 

• Map of Calibration Quotes 

• Map of Calibration Measures 

• Double Map of the Date/Index Fixings 

2. CurveSpanConstructionInput: CurveSpanConstructionInput contains the Parameters 

needed for the Curve Calibration/Estimation. It contains the following: 
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• Calibration Valuation Parameters 

• Calibration Quoting Parameters 

• Calibration Market Parameters 

• Calibration Pricing Parameters 

• Array of Calibration Stretch Representation 

• Map of Calibration Quotes 

• Map of Calibration Measures 

• Double Map of the Date/Index Fixings 

• Additional functions provide for retrieval of the above and specific instrument 

quotes. Derived Classes implement Targeted Curve Calibrators. 

3. ShapePreservingCCIS: ShapePreservingCCIS extends the 

CurveSpanConstructionInput Instance. Additionally, it exposes the Shape Preserving 

Linear Curve Calibrator. 

4. BootCurveConstructionInput: BootCurveConstructionInput contains the Parameters 

needed for the Curve Calibration/Estimation. It contains the following: 

• Calibration Valuation Parameters 

• Calibration Quoting Parameters 

• Array of Calibration Instruments 

• Map of Calibration Quotes 

• Map of Calibration Measures 

• Double Map of the Date/Index Fixings 

5. Curve: Curve extends the Latent State to abstract the functionality required among all 

financial curve. It exposes the following functionality: 

• Set the Epoch and the Identifiers 

• Set up/retrieve the Calibration Inputs 

• Retrieve the Latent State Metric Measures 

6. CreditCurve: CreditCurve is the stub for the survival curve functionality. It extends 

the Curve object by exposing the following functions: 

• Set of curve and market identifiers 

• Recovery to a specific date/tenor, and effective recovery between a date interval 
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• Hazard Rate to a specific date/tenor, and effective hazard rate between a date 

interval 

• Survival to a specific date/tenor, and effective survival between a date interval 

• Set/unset date of specific default 

• Generate scenario curves from the base credit curve (flat/parallel/custom) 

• Set/unset the Curve Construction Inputs, Latent State, and the Manifest Metrics 

• Serialization/De-serialization to and from Byte Arrays 

7. ExplicitBootCurve: In ExplicitBootCurve, the segment boundaries explicitly line up 

with the instrument maturity boundaries. This feature is exploited in building a boot-

strappable curve. Functionality is provides set the Latent State at the Explicit Node, 

adjust the Latent State at the given Node, or set a common Flat Value across all 

Nodes. 

8. ExplicitBootCreditCurve: ExplicitBootCreditCurve exposes the functionality 

associated with the bootstrapped Credit Curve. 

9. FXForwardCurve: FXForwardCurve implements the curve representing the 

FXForward nodes. It extends the Curve class, and exposes the following 

functionality: 

• Retrieve the spot parameters (FX Spot, Spot Date, and the currency pair) 

• Calculate the Zero set of FX Basis/Zero Rate nodes corresponding to each basis 

node 

• Bootstrap basis points/discount curves corresponding to the FXForward node set 

• Imply the zero rate to a given date from the FXForward curve 

10. FXBasisCurve: FXBasisCurve implements the curve representing the FXBasis nodes. 

It extends the Curve class, and exposes the following functionality: 

• Retrieve the spot parameters (FX Spot, Spot Date, and the currency pair) 

• Indicate if the basis has been bootstrapped 

• Calculate the Complete set of FX Forward corresponding to each basis node 

 

 

Rates Analytics Package (org.drip.analytics.rates) 
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The rates analytics package provides definitions of the discount curve, the forward curve, 

the zero curve, the discount factor and the forward rate estimators, the turns list, and their 

construction inputs. It contains the following classes/interfaces: 

1. DiscountFactorEstimator: DiscountFactorEstimator is the interface that exposes the 

calculation of the Discount Factor for a specific Sovereign/Jurisdiction Span. It 

exposes the following functionality: 

• Curve Epoch Date 

• Discount Factor Target/Effective Variants - to Specified Julian Dates and/or 

Tenors 

• Forward Rate Target/Effective Variants - to Specified Julian Dates and/or Tenors 

• Zero Rate Target/Effective Variants - to Specified Julian Dates and/or Tenors 

• LIBOR Rate and LIBOR01 Target/Effective Variants - to Specified Julian Dates 

and/or Tenors 

• Curve Implied Arbitrary Measure Estimates 

2. ForwardRateEstimator: ForwardRateEstimator is the interface that exposes the 

calculation of the Forward Rate for a specific Index. It exposes methods to compute 

forward rates to a given date/tenor, extract the forward rate index and the Tenor. 

3. Turn: Turn implements rate spread at discrete time spans. It contains the turn amount 

and the start/end turn spans. 

4. TurnListDiscountFactor: TurnListDiscountFactor implements the discounting based 

off of the turns list. Its functions add a turn instance to the current set, and 

concurrently apply the discount factor inside the range to each relevant turn. 

5. RatesLSMM: RatesLSMM contains the Rates specific Latent State MM for the Rates 

Curve. Current it holds the turn list discount factor. 

6. SmoothingCCIS: SmoothingCCIS enhances the Shape Preserving CCIS for 

smoothing customizations. It exposes the shape preserving discount curve and the 

smoothing curve stretch parameters. 

7. DiscountForwardEstimator: DiscountForwardEstimator exposes the "native" forward 

curve associated with the specified discount curve. It exposes functionality to extract 
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forward rate index/tenor, as well as to compute the forward rate implied off of the 

discount curve. 

8. ForwardCurve: ForwardCurve is the stub for the forward curve functionality. It 

extends the Curve object by exposing the following functions: 

• The name/epoch of the forward rate instance 

• The index/currency/tenor associated with the forward rate instance 

• Forward Rate to a specific date/tenor 

• Generate scenario-tweaked Latent State from the base forward curve 

corresponding to mode adjusted (flat/parallel/custom) manifest 

measure/quantification metric. 

• Retrieve array of latent state manifest measure, instrument quantification metric, 

and the array of calibration components. 

• Set/retrieve curve construction input instrument sets. 

9. DiscountCurve: DiscountCurve is the stub for the discount curve functionality. It 

extends the both the Curve and the DiscountFactorEstimator instances by 

implementing their functions, and exposing the following: 

• Forward Rate to a specific date/tenor, and effective rate between a date interval 

• Discount Factor to a specific date/tenor, and effective discount factor between a 

date interval 

• Zero Rate to a specific date/tenor 

• Value Jacobian for Forward rate, discount factor, and zero rate 

• Cross Jacobian between each of Forward rate, discount factor, and zero rate 

• Quote Jacobian to Forward rate, discount factor, and zero rate 

• QM (DF/Zero/Forward) to Quote Jacobian 

• Latent State Quantification Metric, and the quantification metric transformations 

• Implied/embedded ForwardRateEstimator 

• Turns - set/unset/adjust 

10. ExplicitBootDiscountCurve: ExplicitBootDiscountCurve exposes the functionality 

associated with the bootstrapped Discount Curve. 

• Generate a curve shifted using targeted basis at specific nodes 



 84

• Generate scenario tweaked Latent State from the base forward curve 

corresponding to mode adjusted (flat/parallel/custom) manifest 

measure/quantification metric 

• Retrieve array of latent state manifest measure, instrument quantification metric, 

and the array of calibration components 

• Set/retrieve curve construction input instrument sets 

11. ZeroCurve: ZeroCurve exposes the node set containing the zero curve node points. In 

addition to the discount curve functionality that it automatically provides by 

extension, it provides the functionality to calculate the zero rate. 

 

 

Bloomberg Sample Package (org.drip.sample.bloomberg) 

 

The Bloomberg Sample Package implements the Bloomberg’s calls CDSW, SWPM, and 

YAS. 

1. CDSW: CDSW replicates Bloomberg’s CDSW functionality. 

2. SWPM: SWPM replicates Bloomberg’s SWPM functionality. 

3. YAS: YAS replicates Bloomberg’s YAS functionality. 

 

 

Credit Sample Package (org.drip.sample.credit) 

 

The Credit Sample Package demonstrates the core credit analytics functionality – 

construction of credit curves, pricing of CDS and CDS basket, and retrieve the built-in 

pre-constructed CDX baskets and CDS closes. 

1. CDSBasketAPI: CDSBasketAPI contains a demo of the CDS basket API Sample. It 

shows the following: 

• Build the IR Curve from the Rates' instruments 

• Build the Component Credit Curve from the CDS instruments 

• Create the basket market parameters and add the named discount curve and the 

credit curves to it 
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• Create the CDS basket from the component CDS and their weights 

• Construct the Valuation and the Pricing Parameters 

• Generate the CDS basket measures from the valuation, the pricer, and the market 

parameters 

2. CDSLiveAndEODAPI: CDSLiveAndEODAPI is a fairly comprehensive sample 

demonstrating the usage of the EOD and Live CDS Curve API functions. It 

demonstrates the following: 

• Retrieves all the CDS curves available for the given EOD 

• Retrieves the calibrated credit curve from the CDS instruments for the given CDS 

curve name, IR curve name, and EOD. Also shows the 10Y survival probability 

and hazard rate 

• Displays the CDS quotes used to construct the closing credit curve 

• Loads all available credit curves for the given curve ID built from CDS 

instruments between 2 dates and displays the corresponding 5Y quote 

• Calculate and display the EOD CDS measures for a spot starting CDS based off 

of a specific credit curve 

3. CreditAnalyticsAPI: CreditAnalyticsAPI contains a demo of the CDS Analytics API 

Sample. It illustrates the following: 

• Credit Curve Creation: From flat Hazard Rate, and from an array of dates and 

their corresponding survival probabilities 

• Create Credit Curve from CDS instruments, and recover the input measure quotes 

• Create an SNAC CDS, price it, and display the coupon/loss cash flow 

4. StandardCDXAPI: StandardCDXAPI contains a demo of the CDS basket API 

Sample. It shows the following: 

• Construct the CDX.NA.IG 5Y Series 17 index by name and series 

• Construct the on-the-run CDX.NA.IG 5Y Series index 

• List all the built-in CDX - their names and descriptions 

• Construct the on-the run CDX.EM 5Y corresponding to T - 1Y 

• Construct the on-the run ITRAXX.ENERGY 5Y corresponding to T - 7Y 

• Retrieve the full set of date/index series set for ITRAXX.ENERGY 
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Rates Sample Package (org.drip.sample.rates) 

 

The Rates Sample Package demonstrates the core rates analytics functionality – 

construction of rates and forward curves (shape preserving/smoothing/transition spline 

variants) and pricing of rates, treasury, and rates basket products. 

1. HaganWestForwardInterpolator: This sample illustrates using the Hagan and West 

(2006) Estimator. It provides the following functionality: 

• Set up the Predictor ordinates and the response values 

• Construct the rational linear shape control with the specified tension 

• Create the Segment Inelastic design using the Ck and Curvature Penalty 

Derivatives 

• Build the Array of Segment Custom Builder Control Parameters of the KLK 

Hyperbolic Tension Basis Type, the tension, the segment inelastic design control, 

and the shape controller 

• Setup the monotone convex stretch using the above settings, and with no linear 

inference, no spurious extrema, or no monotone filtering applied 

• Setup the monotone convex stretch using the above settings, and with linear 

inference, no spurious extrema, or no monotone filtering applied 

• Compute and display the monotone convex output with the linear forward state 

• Compute and display the monotone convex output with the harmonic forward 

state 

2. ShapeDFZeroLocalSmooth: ShapeDFZeroLocalSmooth demonstrates the usage of 

different local smoothing techniques involved in the discount curve creation. It shows 

the following: 

• Construct the Array of Cash/Swap Instruments and their Quotes from the given set of 

parameters 

• Construct the Cash/Swap Instrument Set Stretch Builder 

• Set up the Linear Curve Calibrator using the following parameters: 

o Cubic Exponential Mixture Basis Spline Set 
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o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

• Set up the Akima Local Curve Control parameters as follows: 

o 1C  Akima Monotone Smoothener with spurious extrema elimination and 

monotone filtering applied 

o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

• Set up the Harmonic Local Curve Control parameters as follows: 

o 1C  Harmonic Monotone Smoothener with spurious extrema elimination and 

monotone filtering applied 

o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

• Set up the Hyman 1983 Local Curve Control parameters as follows: 

o 1C Hyman 1983 Monotone Smoothener with spurious extrema elimination 

and monotone filtering applied 

o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

• Set up the Hyman 1989 Local Curve Control parameters as follows: 

o 1C Akima Monotone Smoothener with spurious extrema elimination and 

monotone filtering applied 
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o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

• Set up the Huynh-Le Floch Delimited Local Curve Control parameters as follows: 

o 1C  Huynh-Le Floch Delimited Monotone Smoothener with spurious extrema 

elimination and monotone filtering applied 

o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

• Set up the Kruger Local Curve Control parameters as follows: 

o 1C  Kruger Monotone Smoothener with spurious extrema elimination and 

monotone filtering applied 

o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

• Construct the Shape Preserving Discount Curve by applying the linear curve 

calibrator to the array of Cash and Swap Stretches 

• Construct the Akima Locally Smoothened Discount Curve by applying the linear 

curve calibrator and the Local Curve Control parameters to the array of Cash and 

Swap Stretches and the shape-preserving discount curve 

• Construct the Harmonic Locally Smoothened Discount Curve by applying the linear 

curve calibrator and the Local Curve Control parameters to the array of Cash and 

Swap Stretches and the shape preserving discount curve 
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• Construct the Hyman 1983 Locally Smoothened Discount Curve by applying the 

linear curve calibrator and the Local Curve Control parameters to the array of Cash 

and Swap Stretches and the shape preserving discount curve 

• Construct the Hyman 1989 Locally Smoothened Discount Curve by applying the 

linear curve calibrator and the Local Curve Control parameters to the array of Cash 

and Swap Stretches and the shape preserving discount curve 

• Construct the Huynh-Le Floch Delimiter Locally Smoothened Discount Curve by 

applying the linear curve calibrator and the Local Curve Control parameters to the 

array of Cash and Swap Stretches and the shape preserving discount curve 

• Construct the Kruger Locally Smoothened Discount Curve by applying the linear 

curve calibrator and the Local Curve Control parameters to the array of Cash and 

Swap Stretches and the shape preserving discount curve 

• Cross-Comparison of the Cash/Swap Calibration Instrument "Rate" metric across the 

different curve construction methodologies 

• Cross-Comparison of the Swap Calibration Instrument "Rate" metric across the 

different curve construction methodologies for a sequence of bespoke swap 

instruments 

3. ShapePreservingDFZeroSmooth: ShapePreservingDFZeroSmooth demonstrates the 

usage of different shape preserving and smoothing techniques involved in the 

discount curve creation. It shows the following: 

o Construct the Array of Cash/Swap Instruments and their Quotes from the given 

set of parameters 

o Construct the Cash/Swap Instrument Set Stretch Builder 

o Set up the Linear Curve Calibrator using the following parameters: 

o Cubic Exponential Mixture Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

o Set up the Global Curve Control parameters as follows: 

o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 
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o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

o Set up the Local Curve Control parameters as follows: 

o 1C Bessel Monotone Smoothener with no spurious extrema elimination 

and no monotone filter 

o Zero Rate Quantification Metric 

o Cubic Polynomial Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

o Construct the Shape Preserving Discount Curve by applying the linear curve 

calibrator to the array of Cash and Swap Stretches 

o Construct the Globally Smoothened Discount Curve by applying the linear curve 

calibrator and the Global Curve Control parameters to the array of Cash and Swap 

Stretches and the shape preserving discount curve 

o Construct the Locally Smoothened Discount Curve by applying the linear curve 

calibrator and the Local Curve Control parameters to the array of Cash and Swap 

Stretches and the shape preserving discount curve 

o Cross-Comparison of the Cash/Swap Calibration Instrument "Rate" metric across 

the different curve construction methodologies 

o Cross-Comparison of the Swap Calibration Instrument "Rate" metric across the 

different curve construction methodologies for a sequence of bespoke swap 

instruments 

4. CustomDiscountCurveBuilder: CustomDiscountCurveBuilder discount curve 

calibration and input instrument calibration quote recovery. It shows the following: 

o Construct the Array of Cash/Swap Instruments and their Quotes from the given 

set of parameters 

o Construct the Cash/Swap Instrument Set Stretch Builder 

o Set up the Linear Curve Calibrator using the following parameters: 

o Cubic Exponential Mixture Basis Spline Set 
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o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

o Construct the Shape Preserving Discount Curve by applying the linear curve 

calibrator to the array of Cash and Swap Stretches 

o Cross-Comparison of the Cash/Swap Calibration Instrument "Rate" metric across 

the different curve construction methodologies 

5. CustomDiscountCurveReconciler: CustomDiscountCurveReconciler demonstrates 

the multi-stretch transition custom discount curve construction, turns application, 

discount factor extraction, and calibration quote recovery. It shows the following 

steps: 

o Setup the linear curve calibrator 

o Setup the cash instruments and their quotes for calibration 

o Setup the cash instruments stretch latent state representation - this uses the 

discount factor quantification metric and the "rate" manifest measure 

o Setup the swap instruments and their quotes for calibration 

o Setup the swap instruments stretch latent state representation - this uses the 

discount factor quantification metric and the "rate" manifest measure 

o Calibrate over the instrument set to generate a new overlapping latent state span 

instance 

o Retrieve the "cash" stretch from the span 

o Retrieve the "swap" stretch from the span 

o Create a discount curve instance by converting the overlapping stretch to an 

exclusive non-overlapping stretch 

o Compare the discount factors and their monotonicity emitted from the discount 

curve, the non-overlapping span, and the "swap" stretch across the range of tenor 

predictor ordinates 

o Cross-Recovery of the Cash Calibration Instrument "Rate" metric across the 

different curve construction methodologies 

o Cross-Recovery of the Swap Calibration Instrument "Rate" metric across the 

different curve construction methodologies 
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o Create a turn list instance and add new turn instances 

o Update the discount curve with the turn list 

o Compare the discount factor implied the discount curve with and without 

applying the turns adjustment 

6. DiscountCurveQuoteSensitivity: DiscountCurveQuoteSensitivity demonstrates the 

calculation of the discount curve sensitivity to the calibration instrument quotes. It 

does the following: 

o Construct the Array of Cash/Swap Instruments and their Quotes from the given 

set of parameters 

o Construct the Cash/Swap Instrument Set Stretch Builder. 

o Set up the Linear Curve Calibrator using the following parameters: 

o Cubic Exponential Mixture Basis Spline Set 

o 2=kC , Segment Curvature Penalty = 2 

o Quadratic Rational Shape Controller 

o Natural Boundary Setting 

o Construct the Shape Preserving Discount Curve by applying the linear curve 

calibrator to the array of Cash and Swap Stretches 

o Cross-Comparison of the Cash/Swap Calibration Instrument "Rate" metric across 

the different curve construction methodologies 

o Display of the Cash Instrument Discount Factor Quote Jacobian Sensitivities 

o Display of the Swap Instrument Discount Factor Quote Jacobian Sensitivities 

7. TemplatedDiscountCurveBuilder: TemplatedDiscountCurveBuilder sample 

demonstrates the usage of the different pre-built Discount Curve Builders. It shows 

the following: 

o Construct the Array of Cash Instruments and their Quotes from the given set 

of parameters 

o Construct the Array of Swap Instruments and their Quotes from the given set 

of parameters 

o Construct the Cubic Tension KLK Hyperbolic Discount Factor Shape 

Preserver 
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o Construct the Cubic Tension KLK Hyperbolic Discount Factor Shape 

Preserver with Zero Rate Smoothening applied 

o Construct the Cubic Polynomial Discount Factor Shape Preserver 

o Construct the Cubic Polynomial Discount Factor Shape Preserver with Zero 

Rate Smoothening applied 

o Construct the Discount Curve using the Bear Sterns' DENSE Methodology 

o Construct the Discount Curve using the Bear Sterns' DUALDENSE 

Methodology 

o Cross-Comparison of the Cash Calibration Instrument "Rate" metric across 

the different curve construction methodologies 

o Cross-Comparison of the Swap Calibration Instrument "Rate" metric across 

the different curve construction methodologies 

o Cross-Comparison of the generated Discount Factor across the different curve 

construction Methodologies for different node points 

8. CustomForwardCurveBuilder: CustomForwardCurveBuilder contains the sample 

demonstrating the full functionality behind creating highly customized spline based 

forward curves. 

The first sample illustrates the creation and usage of the xM-6M Tenor Basis Swap: 

• Construct the 6M-xM float-float basis swap 

• Calculate the corresponding starting forward rate off of the discount curve 

• Construct the shape preserving forward curve off of Cubic Polynomial Basis 

Spline 

• Construct the shape preserving forward curve off of Quartic Polynomial Basis 

Spline 

• Construct the shape preserving forward curve off of Hyperbolic Tension Based 

Basis Spline 

• Set the discount curve based component market parameters 

• Set the discount curve + cubic polynomial forward curve based component 

market parameters 

• Set the discount curve + quartic polynomial forward curve based component 

market parameters 
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• Set the discount curve + hyperbolic tension forward curve based component 

market parameters 

• Compute the following forward curve metrics for each of cubic polynomial 

forward, quartic polynomial forward, and KLK Hyperbolic tension forward 

curves: 

o Reference Basis Par Spread 

o Derived Basis Par Spread 

• Compare these with a) the forward rate off of the discount curve, b) The LIBOR 

rate, and c) The Input Basis Swap Quote 

The second sample illustrates how to build and test the forward curves across various 

tenor basis. It shows the following steps: 

• Construct the Discount Curve using its instruments and quotes 

• Build and run the sampling for the 1M-6M Tenor Basis Swap from its instruments 

and quotes 

• Build and run the sampling for the 3M-6M Tenor Basis Swap from its instruments 

and quotes 

• Build and run the sampling for the 6M-6M Tenor Basis Swap from its instruments 

and quotes 

• Build and run the sampling for the 12M-6M Tenor Basis Swap from its 

instruments and quotes 

9. RatesAnalyticsAPI: RatesAnalyticsAPI contains a demo of the Rates Analytics API 

Usage. It shows the following: 

• Build a discount curve using: cash instruments only, EDF instruments only, IRS 

instruments only, or all of them strung together 

• Re-calculate the component input measure quotes from the calibrated discount 

curve object 

• Compute the PVDF Wengert Jacobian across all the instruments used in the curve 

construction 

10. TreasuryCurveAPI: TreasuryCurveAPI contains a demo of construction and usage of 

the treasury discount curve from government bond inputs. It shows the following: 

• Create on-the-run TSY bond set 
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• Calibrate a discount curve off of the on-the-run yields and calculate the implied 

zeroes and DF's 

• Price an off-the-run TSY 

11. RatesLiveAndEODAPI: RatesLiveAndEODAPI contains the sample API 

demonstrating the usage of the Rates Live and EOD functions. It does the following: 

• Pulls all the closing rates curve names (of any type, incl. TSY) that exist for a 

given date 

• Load the full IR curve created from all the single currency rate quotes (except 

TSY) for the given currency and date 

• Calculate the discount factor to an arbitrary date using the constructed curve 

• Retrieve the components and their quotes that went into constructing the curve, 

and display them 

• Load all the rates curves available between the dates for the currency specified, 

and step through 

• Load all the Cash quotes available between the dates for the currency specified, 

and step through 

• Load all the EDF quotes available between the dates for the currency specified, 

and step through 

• Load all the IRS quotes available between the dates for the currency specified, 

and step through 

• Load all the TSY quotes available between the dates for the currency specified, 

and step through 

12. MultiLegSwapAPI: MultiLegSwapAPI illustrates the creation, invocation, and usage 

of the MultiLegSwap. It shows how to: 

• Create the Discount Curve from the rates instruments 

• Set up the valuation and the market parameters 

• Create the Rates Basket from the fixed/float streams 

• Value the Rates Basket 
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Curve Regression Package (org.drip.regression.curve) 

 

The Curve Regression Package demonstrates the core curve regression functionality – 

regression of discount curve, credit curve, FX forward/basis curve, and zero curves. 

1. DiscountCurveRegressor: DiscountCurveRegressor implements the regression set 

analysis for the Discount Curve. DiscountCurveRegressor regresses 11 scenarios: 

• #1: Create the discount curve from a set 30 instruments (cash/future/swap) 

• #2: Create the discount curve from a flat discount rate 

• #3: Create the discount curve from a set of discount factors 

• #4: Create the discount curve from the implied discount rates 

• #5: Extract the discount curve instruments and quotes 

• #6: Create a parallel shifted discount curve 

• #7: Create a rate shifted discount curve 

• #8: Create a basis rate shifted discount curve 

• #9: Create a node tweaked discount curve 

• #10: Compute the effective discount factor between 2 dates 

• #11: Compute the effective implied rate between 2 dates 

2. ZeroCurveRegressor: ZeroCurveRegressor implements the regression analysis set for 

the Zero Curve. The regression tests consists of the following: 

• Build a discount curve, followed by the zero curve 

• Regressor #1: Compute zero curve discount factors 

• Regressor #2: Compute zero curve zero rates 

3. CreditCurveRegressor: CreditCurveRegressor implements the regression set analysis 

for the Credit Curve. CreditCurveRegressor regresses 12 scenarios: 

• #1: Create an SNAC CDS 

• #2: Create the credit curve from a set of CDS instruments 

• #3: Create the credit curve from a flat hazard rate 

• #4: Create the credit curve from a set of survival probabilities 

• #5: Create the credit curve from an array of hazard rates 

• #6: Extract the credit curve instruments and quotes 
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• #7: Create a parallel hazard shifted credit curve 

• #8: Create a parallel quote shifted credit curve 

• #9: Create a node tweaked credit curve 

• #10: Set a specific default date on the credit curve 

• #11: Compute the effective survival probability between 2 dates 

• #12: Compute the effective hazard rate between 2 dates 

4. FXCurveRegressor: FXCurveRegressor implements the regression analysis set for the 

FX Curve. FXCurveRegressor implements 3 regression tests: 

• #1: FX Basis and FX Curve Creation: Construct a FX forward Curve from an 

array of FX forward nodes and the spot 

• #2: Imply the FX Forward given the domestic and foreign discount curves 

• #3a: Compute the domestic and foreign basis given the market FX forward 

• #3b: Build the domestic/foreign basis curve given the corresponding basis nodes 

• #3c: Imply the array of FX forward points/PIPs from the array of basis and 

domestic/foreign discount curves 

5. CreditAnalyticsRegressionEngine: CreditAnalyticsRegressionEngine implements the 

RegressionEngine for the curve regression. It adds the CreditCurveRegressor, 

DiscountCurveRegressor, FXCurveRegressor, and ZeroCurveRegressor, and launches 

the regression engine. 

 

 

Product Curve Jacobian Regression Package 

(org.drip.regression.curveJacobian) 

 

The Product Curve Jacobian Regression package carries out regression across the core 

suite of products Jacobian to the curve– Cash, EDF, and Fix-float IRS. It also implements 

the Curve Jacobian Regression Engine. 

1. CashJacobianRegressorSet: CashJacobianRegressorSet implements the regression 

analysis set for the Cash product related Sensitivity Jacobians. Specifically, it 

computes the PVDF micro-Jack. 
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2. EDFJacobianRegressorSet: EDFJacobianRegressorSet implements the regression 

analysis set for the EDF product related Sensitivity Jacobians. Specifically, it 

computes the PVDF micro-Jack. 

3. IRSJacobianRegressorSet: IRSJacobianRegressorSet implements the regression 

analysis set for the IRS product related Sensitivity Jacobians. Specifically, it 

computes the PVDF micro-Jack. 

4. DiscountCurveJacobianRegressorSet: DiscountCurveJacobianRegressorSet 

implements the regression analysis for the full discount curve (built from 

cash/future/swap) Sensitivity Jacobians. Specifically, it computes the PVDF micro-

Jack. 

5. CurveJacobianRegressionEngine: CurveJacobianRegressionEngine implements the 

RegressionEngine for the curve Jacobian regression. It adds the 

CashJacobianRegressorSet, the EDFJacobianRegressorSet, the 

IRSJacobianRegressorSet, and the DiscountCurveJacobianRegressorSet, and 

launches the regression engine. 

 


