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Introduction

Framework Glossary

1. Self-JacobianSelf-Jacobian refers to the Jacobian of the Gbgé&unction at any

av(t)

point in the variate to the Objective Functionhe segment nodes, |%m
K

2. Point-Measure State-TransfarRoint-Measure transform refers to the one-to-one

transform between a state measure at a predidorade and its corresponding
observation (e.g., discount factor from zero-coupond price observations).
3. Convolved-Measure State-Transfo@onvolved-Measure transform refers to the

many-to-one transform between a state metric/pt@dardinate combination to a
given observation, i.e., a set of state metric/igtedordinate pairs together imply an
observation (e.g., zero rates from swap fair prgmia

4. Discount-Curve Native Forward Curnkeor discount curves built out of instruments

dependent on forward rates, those rates and tisemwht curve usage ranges together

constitute the discount curve’s native forward eurange.

Overview

1. Smoothness Criterion EvolutipBmoothness formulation is related to the

minimization of strain energy (Schwarz (1989)), #mel relation to Natural cubic
spline (Burden and Faires (1997)), financial cuggtine (Adams (2001)) has been
explored.

2. Empirical vs. Theoretical Curve Builder Frameworkangari (1997) and Lin (2002)

discuss this in detail.
* Theoretical Term Structure posit explicit term stwue for a variable known as

short rate of interest whose values are extraptessibly, from a statistical



analysis of market variables (Vasicek (1977), Gogersall, and Ross (1985),
Rebonato (1998), Barzanti and Corradi (1998), Galutb Tilman (2000)).

» For bonds/treasuries see Nelson and Siegel (1B&fpent (1993), Svensson
(1994), Soderlind and Svensson (1997), Tangga&@i7(1 Effectiveness of such
treatments is examined in Christensen, Diebold,Redebusch (2007), and
Coroneo, Nyholm, and Vidova-Koleva (2008).

* Hybrid methods use empirically determined yieldveunside of a theoretical
model (Hull and White (1990), Heath, Jarrow, andtdo (1990), Ron (2000)).

* A complete description of yield curve constructismiven in Andersen and
Piterbarg (2010).
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Desired Curve Builder Features

Discount Curves

Exact instrument quote matdboes the builder scheme successfully constrect th

curve if the quotes do not pose arbitrage? Conlerfee inexact matches, does the
builder algorithm converge rapidly, and minimaloerfHagan and West (2006),
Hagan and West (2008))?

Implied Forward Rate§ aken to be typically 1m or 3m forwards — how

smooth/positive/continuous are they (McCulloch &edhin (2000))?

. Locality How local is the interpolating builder? If an utps changed, does the
interpolator change only nearby, or is there spdfdo non-adjacent far-off
segments?

Stability of the Forward Ratedow sensitive are the forward rates to changbeén

inputs? The Jacobian analysis below shows thetsefamlseveral splining scenarios.
a. Forward rates are chosen for the curve behaxamination because it is the
most elemental entity whose continuous/smooth bdeh&/meaningful to the
practitioner.
. Hedge LocalityDoes most of the delta risk for a given instrubgat assigned to the
hedging instruments that have maturities clos@eaqtven instrument?

Sequential vs. Tenor DeltAoes the cumulative tenor delta equal to theegage

(i.e., parallel shifted) delta? Le Floc’h (2013pexines the importance of this.



Curve Construction Methodology

Base Methodology

1. Instrument SetupConstruct the calibration instruments, and sethegnstrument

baseline. This includes initializing the span/segtseas well as the “tuning
parameter” to achieve the desired “inner” and theér” calibrations.
2. Span/segment stretch set Galibrate the segments one by one using therasibio

measures/inputs.
3. Tuning AdjustmentAdjust tuners to achieve the desired “boundaoyidition.

State Span Design Components

1. Base Quantification Metric Retrievdlhis refers to the functionality for retrieval of

the State Quantification Metric Response Valueférént predictor ordinates, the
relative values, and canonical (possibly categriepresentations.

2. Targeted State Metric Computatidrhis functionality computes state/model specific

targeted state metrics (e.g., LIBOR for a discdlumve, | Spread etc) that may be
absolute or relative.
3. Sensitivity JacobiarThis functionality provides for the ability to act sensitivity

Jacobian at the following levels:

* Cross Quantification Metric (Quantification Metfido Quantification Metric 2)
Sensitivity Jacobian

» External Manifest Metric to Quantification Metriesitivity Jacobian

4. Calibration Input Manifest Measure RetrieVEtis functionality records and

retrieves the calibration input manifest measutesd other relevant calibration

details.



* It needs to be remembered that the calibrationtin@nifest measure set need not
just be instrument quotes, but also “event” ratehsas user specified turns meant
to account for items such as year-end yield adjests) periods of high activity
etc: (Ametrano and Bianchetti (2009), Kinlay and @809)). In the case of
turns, they may be modeled as discrete latent gtates across specific pairs of
dates, of a user-specified magnitude.

* Exogenously specified State Differentials => Ad justed, certain state attributes
maybe exogenously specified (e.g., turns, base3, €hese state shift
differentials may be applied before or after thigdcation step.

5. Scenario State Span Re-constructifms functionality re-constructs the state using

adjusted, bumped, or otherwise scenario-tweakedtdjgation metrics and/or
manifest measures.

6. Boot State Sparhis functionality is used in boot state spanste;ithere needs to be

the ability to set the boot values at the node &ramd the build the segment.
7. Non-linear State Spaifihis functionality sets up the non-linear fixediut extraction

process and the corresponding target match crtevaluator.

Curve Calibration From Instruments/Quotes

1. Construction from Single Instrument/Quote: Hethere is only one type

instrument/quote set to be calibrated from, yousienply “spline” through the

constituent segments. In particular, if there areaue limitations/constraints, then

spline construction may be achieved directly friwa points (e.g., bond yield curve).

* Questionable if quote interpolation is necessangf@n the single instrument set,
since this results in double interpolation — thistfon the quote space, and the
second on the span/segment canonical space.

2. Construction from Diverse/Multiple Instrument/@ea Set Given a diverse set of

instruments and/or quotes, we need canonical godependent/quote-transforming
measure formulation that is valid across the fudtiument stretch.

3. Curve Span/Segment Latent State Quantificatiefri®!




» For discount curves, this can be the discount fatoo rate/forward rate.

» For forward curves, this can be the absolute fodwate/forward rate basis.

» For credit curves, this can be survival factor/clative hazard rate/ forward
hazard rate.

» For recovery curves, this can be the expectedrass/ery, of the forward
loss/recovery.

Cumulative vs. Forward Quantification Metrithe cumulative span quantification

metric Z and the forward segment quantification methicare related as
o= —a(ZQS)

~

, Where S is the span variate (specifically th@tenin this case).

Physics of Quantification Metric Constraintéore generally® = 5(2731%J '

where [0 comes from the physics of the process. For theodist curve, the credit

curve, and the recovery cur\#Z,S,a—Zj = @ :
0S 0S

Cumulative Quantification Metric from Forward &hiification Metric (or Span from

Segment)Cumulatives may be extracted from forwards usivegquadrature

formulation, as they are integrands over the segaiemension. For

t
[o(s)s
survival/discount/recovery curves=2>———

Structure of cumulative vs. Forwakbrward quantification metric is more sharp-

edged/swinging than cumulative quantification neetwhich, by virtue of the

guadrature construct, is smoother.

» Therefore, single instrument/quote interpolatioryipa able to use the forward
guantification metric, and imply the cumulative gtiication metric.

* Multiple instrument/quote should use the cumulathanifest metric, and perhaps
imply the forward quantification metric using tregsent <-> span

transformation relationship.

8. Constraints on the forward Quantification MetBepends on the driver physics.

e For survival curve® > 0, and this is a hard constraint.



e For discount curve, there are no such constraints.
* For recovery curve, the constraint is tigat 0.

9. Constraints on the cumulative Quantification fiéetAgain depends on the stochastic

variate driver physics.

» For survival curve, if Z is the cumulative survidredzard rateZ > 0, and it
should be monotonically decreasing - this is a lcartstraint.

» For discount curve, if Z is the discount factoertlZ = 0. Beyond this there are
no constraints.

10. Challenges with interpolating in the forwardatification Metric spaceFor

survival/discount, due to the exponential naturéhefformulation, splining oi® can
very often cause the prior two constraints to lodated — so relatively speaking, the
choice is less stable.

11. Span/Segment Quantification Metric Relationship

» Discontinuity in the cumulative quantification metautomatically implies
discontinuity in the forward quantification metric.

» Continuous, but non-differentiable cumulative qufegation metric implies
discontinuity in the forward quantification metric.

» Continuity in the first derivative of cumulative gputification metric implies
continuous, non-differentiable forward quantificatimetric.

» Continuity in the first/second/third derivative @imulative (using, e.g., quartic
splines) quantification metric implies continuofisst/second differentiable
forward quantification metric.

» Certain splines become problematic for highly umesegment lengths, e.g.,
cubic splines will be unsatisfactory for the sitaatwhere you start with close set
of nodes and move to a sparser set (Burden anesHdi®97)). This is because the
curve is too convex and bulging for points far avirayn each other.

12. Span Quantification Metric — “Effective” Ratef#ard RateThis can simply be

defined as¢ = - Iog![(Z) , WhereZ is either the discount factor (for the discount

curve) or the survival factor (for the survival ee). This needs to be matched for 4
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powers (quartic) for polynomial spline, or for taréerivatives for non-polynomial

(e.g., tension) splines.

Calibration Considerations

1. Exponential/Hyperbolic Tension Splines as a NdtBasis for DF representation

This is popular (Sankar (1997), Securities Induatrgt Financial Markets Association

(2004), Andersen (2005)) because the discountrfaatgply goes asia_I "
Obviously this basis will not be suitable for fomd&ero rates.
* The Trouble with the High-Tension Tension SpliresTihis causes the segment
responses to be almost linear with the predicharefore:
o For big gaps in the predictor ordinates, “lineahcoon become a huge
problem.
o NASTY, NASTY low-tenored forward’s starting neaeteegment edges.
o High Tension implies high local forward interessiflg above).
o0 While Renka (1987) shows an automatic way to ektmaspecify the
tension, the resulting* presents fundamentally no more of an advantage
than aC' cubic (Le Floch (2013)).
o Other issues with the impact of automatic selects@® Preuss (1978))
and the corresponding implications for sensitigitiemain.

2. Sensitivity of the Forward Rate to the Spot MeasThe forward rate/DF sensitivity

to the spot quote is not just low, but also endpngglucing multiple matching results.

* In particular, the presence of root multiplicitytinn a single segment (as is the
case for polynomial splines) reduces the calibrattoa needle in a haystack
search — with huge demands on intelligent heusigtiaced on the searcher.

3. Pay Date DF Pre-computatiorhis method is outlined in Kinlay/Bai, and is N@T

robust method, for the following reasons:
» |t starts by estimating the DF's parametricallyiigsconstant forwards) between

dates.

11



* Fine pay date grids (owing to, say, diverse/ovgiilag instrument types, and
diverse/overlapping quote types) means that tleepotation grid becomes highly

clustered, and this produces challenges for malinyirsgp techniques.

4. Non-linear DVOiThe DVO1 termZIjAj D, (tj), or more generally, the DVO1-type
j=1

terms, is non-linear on both the discount factat e forward rate — this is what
makes the curve calibration using the Kinlay/Bal #me Andersen schemes difficult.

* Relating the discount factor the forward rate asxghmay really help simplify

(t)-1
the formulation.D, (t) = qrj 1 1 . Heren(t)-1
=1 1+ (ti -1 —1)Li 1+ (t _tn(t)—l)Ln(t)—l

refers to the instrument maturity that precededithe t.

5. No Arbitrage Conditions

« No Arbitrage for Rates implies thdorwards> 0 => %[r (t)}]= 0, although this

can easily seen to be violated in several instances

* Options => Arbitrage free Implied Volatility Surfador Call Options (Homescu

aaKzz [ct.K)]=0.

(2011)) :>%[C(t, K)|20 and
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Curve Construction Formulation

Linearized Discount Curve Calibration from Instruments

1. Cash flow PV Linearity in Discount Factor and\®wal: Simply put, PV =CxD,,

or more generallPV =CxD, xS, whereC is the cash flowD; is the discount

factor, andS; is the survival probability. The challenge is ésoast the measure

computation in a manner that retains the formuteliloearity in the latent state (it is

already linear inD, and S, so that simplifies things a bit).

Re-casting all the product/measure calibration lasear equation depends on the

product/measure combination, but many typical fdatons satisfy this criterion.

2. Different Linearized Discount Curve Formulations

Single Segment Giant Spline => Use all the marksteovations to construct all
the linearization constraints to synthesize onatgiaulti-basis spline.

One Spline Segment per adjacent cash flow pairhkis gives maximal control,
but ends up being way too computationally invohesltheir will be as many
spline segments as there are cash flow pairs.

One Spline Segment per Instrument Maturity => Heumique spline segment
will be used between 2 adjacent calibration insentmaturities. This ordering is
identical to typical instrument level bootstrapping

Transition Spline => This retains the spline clugter each instrument group.
This representation is valuable when you haveunstints assembling in cluster
(as cash/EDF/swaps etc:, which is obviously a gimacrangement). Judicious
choice of knots and instruments etc: reduce thaadsof jumps/bumps, although

can still be a challenge.

3. Nomenclature

Instrument Set =*+=1...a

Segment exclusive to instrumenspans the timeg_, - ;.
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* Instrumentl hasb cash flows indexed by: j = 0,...,b-1

» Segment ’s spline coefficientsy, are determined bl/’s cash flows and market
quotes.

» Each Segment has=0,...,n—1, i.e., n basis function set representing the
discount factor.

 Instrumentl’s cash flow j has a pay date df .

4. Importance of some of the Linear Algebra OperatiWhile most of what is used in

spline systems for linearized curve building carmbtleieved using a robust linear
system solver (e.g., Gauss Elimination, see Piessolsky, Vetterling, and
Flannery (1992)), robust matrix inversion algorihare needed for Jacobian
estimation.

Segment Linear Discount Curve Calibration from Instuments

1. Step #1ldentify and sort instruments by their maturities
* In between two maturities lies a segment, and tineecstart date demarcates the
start of the first (exclusive) segment.
2. Step #2For each instrument, extract the coefficientadtediscount factor (which
corresponds to the net cash flow at that node).

3. Step #3Say that the market PV quote of instrumenm Q. This indicates

b-1 b-1 b-1
Q :ZCpr (tn): ZCpr (tjl)+ ZCan (tjl)
i=0 j=0t; <114 j=0.t; >114

5. Step #4Given that all segmerit cash flows whose pay date is less thabelong to

the prior periods, their discount factors shoulctcbmputable. Thus,

b-1
R= >.cD (tj,) should be pre-computed.

i=0t; <114
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6. Step #5The segment specific constraint now becomes

Q=R+ fcn Dy (th)3 bZ_iCpr (tjl):Q| -R.

=0t >114 j=0.ty >114
7. Step #6In terms of the segment spline coefficients and the segment basis

functions f, , the constraint gets re-specified as follows:

+ b (tj|)=20ﬁ fi (tjl)

b-1 b-1 n-1
« Q-R= YD (tju):> > aaf (til)
i=0ty >7114 j=0,ty >114 i=0

b-1
* Again, notice thaQ, = Zaj, f; (t“) can be pre-computed. Thus, the above

i=0,ty >714
b-1
becomes > a,Q,=Q -R.
=0t >114
8. Step #70f course, in generd], need not just be the P — it just needs to be any

measure linearizable in the discount factor.
9. CashD, Coefficient

« Given a rate calibration measure D, (r,) =

1+r7,
10. EDE D, Coefficient
- D (7,
« Given a rate calibration measure D) +D,(r,)=0.
1+n (T| - Tl—l)

« Given a price based calibration measgre- PD, (r,,)+ D, (r;) = 0.

b-1
11. Fixed StreanD, Coefficient Given a price measurg, B = ZcA(tj_l,tj)Df (t)

J

JES— J':0
wherec is the coupon.

12. Floating Strean, Coefficient Given a price measure,

LN

R =Y sAlt.t)D, {t,)+[D; (t,)- D, t,)], wheres is the floater spread.

j=0
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13. IRS D, Coefficient

* For a par swap IRFjxed- Floating=0 =>

n

ZCA(ti—Pti )Df (ti )—jZZSA(tj_l,tj )Df (tj )+[Df (to)_ Df (tm)] =0.

i=1

* Given a price measure,

p= k_):ch(tj_l,tj)Df t,)+ isa(tj_l,tj)of (t,)+[D; () D; (t.)]-

14. Bond D, _Coefficient

b-1 N-1
* Given a dirty price measur@, R =) cD; (tj )+ > N, D, (tj).
n=0

j=0
* Given ayield measure, the yield can be convedetd dirty price measure .

» Given a spread over TSY measure, it may also beerted to the dirty price

measureR through the yield.

Curve Jacobian

1. Representation Jacobidfvery Curve implementation needs to generate the

Jacobian of the following latent state metric usitsgorresponding latent state
guantification metric:

* Forward Rate Jacobian to Quote Manifest Measure
» Discount Factor Jacobian to Quote Manifest Measure
» Zero Rate Jacobian to Quote Manifest Measure

2. Importance of the representation Self-Jacobampresentation Self-Jacobian

computation efficiency is critical, since Jacobadrany functionF(Y) is going to
2Y(t) .
be dependent on the self-Jaco% because of the chain rule.
K

3. Forward Rate->DF Jacobian

16



CF)- 1Aun(6Df(tA)].

tg —t an(tB)

oD, (t,) (t)ep () D/ (k) D, ()

«  F(t,ty) => Forward rate between times andt, .

aF(tA,'[B): 1 1 an(tA) 1 an(tB)
tg —ts | Dy -

. Df(tk) => Discount Factor at timg

4. Zero Rate to Forward Rate Equivaleritkis equivalence may be used to

construct the Zero Rate Jacobian From the Forwatd Bacobian. Thus the
above equation may be used to extract the ZerorRiate-Jacobian.
5. Zero Rate->DF Jacobian

oz(t) _ 1 { 1 an(t)}

an(tk) ) t—t | Dy (t) an(tk)

« Z(t) => Zero rate at time t

6. Analytical Sensitivity vs. Quote Bumped Sendiivin general, when dealing

with the splined mechanisms for curve cooking,alymot be accurate to depend

on the quote bumped sensitivity, because it mayugnithrowing it to a totally

different curve builder scheme (Le Floc’h (2013)).

» Also, analytical sensitivities may be estimatedhtiguring the calibration
itself. However, analytical-to-quote sensitivitiegplies two-stage Jacobian —
the Jacobian of the quote to the state represensatinen the Jacobian of the
state representation to the sensitivity measure.

* In-situ Calibration Sensitivites => Measure to stsgnsitivities maybe
generated quiet readily, depending on the calibmatiode.

o For linear calibrator, this is simply the statealaan inverse.

o0 In some non-linear search techniques (esp. opeslikecthe
Newton’s method, but with the closed schemes af,wehsitivity
Jacobians are automatically (or using light adjestthgenerated as
part of the calibration itself.

» Spline coefficient sensitivity to segment/node itspe> High sensitivity of

the spline coefficients to the node inputs acrpsegific stretches indicates

17



instability in curve (re-) construction and theresponding deltas (i.e.,
spurious deltas and leakage). Le Floc’h (2013) exesthis for several

standard interpolating estimators in use.

7. Derivative to Quote Jacobian via the DiscountdialLatent State

c=0,...,d -1 Calibration Components
Q. = Gys---,04, Corresponding Quotes

Let's say the Derivative PV i® = Zmloj D, (t,)= 9P _ Zmloj 9 ()
=1 Jdq. = aq,

what is typically needed to estimate product-totgqeensitivities via the

D, t;)

) 0 -
Discount Factor latent state+saf—'.

C

. Thus

8. Quote->Zero Rate Jacobian

Q) _, { 6Qj(t)}
—_(tk to) Df(tk)

oz(t) oD (t)

Z(t) => zero rate at time t

9. PV->Quote Jacobian

oD, (t) oD t)

=2

PV (t) o {apvj(t) an(t)}
0Q =

10. Cash Rate DF micro-Jacohian

or, 1 1 oD t)

an(tk) B _an (tj)tj _tSTARTan(tk)

r, => Cash Rate Quote for tHe Gash instrument.

D; (tj) => Discount Factor at timg

11. Cash Instrument PV-DF micro-Jacobian

OPVeash __ 1 oD, (tj)
aD,(t,) D {t; sern) 9D, ()

There is practically no performance impact on awasion of the PV-DF

micro-Jacobian in the adjoint mode as opposedaddiward mode, due to

the triviality of the adjoint.
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12. Euro-dollar Future DF micro-Jacohian
6Qj oD, ('[J-) 1 D, (tj) oD; (tj,START)

an(tk) B an(tk) oD, (tj,START) sz(tj,START) oD, (tk)

* Q; => Quote for the") EDF with start date Of; srarr @nd maturity oft; .

13. Euro-dollar Future PV-DF micro-Jacohian
al:)VEDF,j — an (tj) 1 _ Df (tj) an (tj,START)
an (tk) an (tk) an (tj,START) Df 2(tj,START) an (tk)

» There is practically no performance impact on awasion of the PV-DF

micro-Jacobian in then adjoint mode as opposetbfarard mode, due to the
triviality of the adjoint.
14. Interest Rate Swap DF micro-Jacobian
« Q,DVO01 =PV,

Floating, j

«  Q, => Quote for the"] IRS maturing at; .
« DVO01, =>DVO01 of the swap
*  PVioaing; => Floating PV of the swap

0|Q,0VOL| _ 9|PVigaing,]
oD, (t,) an(tk)

alQ,pvor| DVOL +Q dDVO01,
aD; (&) aD() 1 oD (1)

dDVO1

] =iN(ti)Ai

* PVoaing ZIN() (t)

oPV, j i aD; (t)

aDF"’(a""j“ 2N@)AD ()aD() 2INGR S

15. Interest Rate Swap PV-DF micro-Jacobiee Hull (2002) for the preliminaries.

aPVlRS,i - j b ( ) |
. 2 (tk)-ZN(ti)A(t_l l){(J -1, ) Df(ti)%}

oD, (t.) oD,
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» There is no performance impact on constructiomefRV-DF micro-Jacobian
in then adjoint mode as opposed for forward mode,td the triviality of the
adjoint. Either way the performance&l(nx k), where n is the number of
cash flows, and k is the number of curve factors.

16. Credit Default Swap DF micro-Jacohian
PV, = PV, -PV, +PV

CDS, j Couponj LOSSj ACCRUED)]

j => | CDS Contract with a maturity
- ¢, => Coupon of the'} CDS
e PVg,; => PV of the full CDS contract

. PV,

Coupon j

=> PV of the Coupon leg of the CDS Contract

*  PViccruen; => PV of the Accrual paid on default

¢ PVCouponj = Cj ZJ: N (ti )AISP(tI )Df (ti )

) a:gio(iio)nj =G é N(ti )AiSP(ti )j:::)); ((::()) + alﬁfitk)gl\l&‘ )AiSF,(ti )Df (ti)

¢ PVioss; = [NOI-ROID, (§dS.

D, (1

oPV,
—— = jN(t)[l R .50

oD, (t,)
¢ PVycoruen; =63 [NOAGL)D, (S.0)

aPVACCRUEDj _ i ()
. ) Z N(A(t,)D; (t)dSo(t)+C,|Zl:tIN(t)A(ttl )2 ()ds,:()

i-1

17. Credit Default Swap DF micro-Jacohian
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—

OPVeos, =cj_zj;{N(ti I 0s) 22 8 [N AG..t) {2 R(t)}]dP(t)}

There is no performance impact on constructiomefRV-DF micro-Jacobian
in then adjoint mode as opposed for forward mode,td the triviality of the

adjoint. Either way the performance@(nx k), where n is the number of

cash flows, and k is the number of curve factors.
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Spanning Spline

Formulation and Set up

1. Spline vs. Boot Spaifror the purposes of this discussion, the maiteinhce

between spline and boot span is that, in boot gharsegment boundaries HAVE to
line up with the instrument maturity edges. Inisplspans, however, additional
criterion-based knots may be used to determinédladaries (e.g., parametric knot
insertion in line with regression spline approaghes

2. Basic SetupAll instruments and quotes fall into one set @fistraints as
b-1
> ¢,D, (t“):QI , Wherel =1,...a.
i=0

* Ingenerala<b, so you havéh —a degrees of freedom.

3. Local Ordinate Re-formulatioifhe spline extends fromy, . — t,_;. Setting

b-1

% = b loar Z ( ) ZCJID ( jl)' Further'Df(tSTART):Df(X:o):l'

tyy _tSTART = j=0

4. Basis FormulatiarSetting D, (x) = Za. f.(x),

|
[y

b-1 n-1 n-1 b
=>c¢.af (tj):QI = Za{ c f (tj)} =Q. Thus, ifn=a, there now ara
i=0

j=0 i=0 j=0
equations an@é unknowns.

5. Monotonicity Preservation in Spanning SplinEise heterogeneity of the calibration

instruments demands special techniques for monotgmhaintenance (Hagan West

(2006) described in detail earlier was a sample).

» Stringent monotonic constraints introduced by Hyr{E883) was relaxed by
Dougherty, Edelman, and Hyman (1989), and thiswaks well in practice in
its ability to maintain monotonicity (Ametrano aBdéanchetti (2009), Le Floc’h
(2013), also implemented in Quantlib (2009)).
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6.

7.

* Intermediate filter constraints introduced by S#af{1990) and their variants
treated in some detail by Huynh (1993) — all sufifem the same unnatural
“dip”s or cook bumps.

Pros As always, the degrees of freedom may be expabegohda to allow for

optimizing spline construction (covered in the selbuilder section).

Cons With many basis functions (esp. for polynomialky inevitable Runge’s

phenomenon takes over.

Challenges with the Spanning Spline Approach

1.

Problems with Cubic Polynomial SplinEoo well known to documented — spurious

inflection, too much concavity/convexity at widelgparated predictor nodes (esp. in

long end), and no guarantee of positivity whererdds

* Asnoted in Le Floc’h (2013), monotone variantgl{iding Hagan and West
(2006), Wolberg and Alfy (1999), Hyman (1983)) bétstandard cubic spline
have differing degrees of problems since they t#iesrgt to model the entire span
with a single representation.

Problems with Quartic SplingVhile this makes the interpolation very smooth

(Adams and van Deventer (1994), van Deventer aaid 1997), Adams (2001), Lim

and Xiao (2002), Quant Financial Research (20@3¢)stiffness needed for shape-

preservation is completely lost. Other troublesvls cubic splines (spurious
inflection, too much concavity/convexity at widelgparated predictor nodes (esp. in
long end), and no guarantee of positivity whererdd} as well Runge’s swings are

also present.
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Monotone Decreasing Splines

Motivation

1. These are spline basis functions that monottipidacrease over the given interval.

Valuable for representing discount factors.
2. Why represent discount factors? Because thefiayare linearizable in them, so
working with them implies working with the lineaates space representation, and all

the advantages that come with that.

Exponential Rational Basis Spline

—t
1. Basis Function Se i,e't, ©
1+t 1+t

2. Monotone Decreasing Natuieach of the above basis functions is decrea&iog.

the functional form to be monotonically decreascuyservatively speaking, this
imposes the demand thig® = 0} for everyi .

» Alternatively, we may also require that no infentixist within the given

segment, but that is hard to enforce.

Exponential Mixture Basis Set

1. Motivation Since the discounting function goeseds, an exponential mixture basis
such ase™*" may be a good choice, as they are both intuitiseyotone, and linear
combinations of them produce convexity/concavity.

2. Basis Function Sefe™'} for i 00,...,n-1.
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+ ChoosingA : Since forC? continuity we require 4 basis functions, we choose

Aoor =0, Ays A and A, - Apoor =0 accounts for adjusting jumps.

Floor

=1%, A

Floor Low! “"Medium?

* Typical values can bel;, =0, A = 5%, and Ay, = 25%.

Floor Low Medium

» Parallel with Tension Splines =4 are comparable to tension splines.

«  With this choice,C* may be maintained fdk > 2, thereby making the forwards
continuous, preserving locality, imparting segmaantvexity/concavity. Thus all
the smoothing schemes may be maintained.

Similarity with exponential/hyperbolic tensioplises Very similar in formulation.

However, given that with exponential/hyperboliciba®t spline at one of basis

functions has a non-negative exponential arguntieat,basis function becomes

monotonically increasing.

» Further, while estimation of the exponential tengi@eds to be done extraneously
(Renka (1987)), here we appeal to the intuitivespdsy as shown.
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Hagan West (2006) Smoothness Preserving Spanninglip

Monotone/Convexity Preserving Estimator

1. PremiseThis is primarily focused on a quadratic integodl but it also contains
heterogeneously inserted sub-segment knots inteffechieve the desired

monotonicity, convexity, and positivity effect.

2. Philosophy

* This is mainly meant for forward rates inside finenalthough bit more general

outside of it.

* The observation séz}i”:l is simply a quantity conserved on a per-segmesispa

: . 1
e.g., the segment mean of the state variate respoesz = j y(t)dt.
I, -T,

i i-1 T,
« y(t) is positive and piece-wise quadratic insiddmf,7,] .
* The node response valye at the predicate ordinate is linearly interpolated
from the observations & and z,, (obviously edges will be treated slightly

differently).

» Based on the specified monotonicity maintenancecandexity preservation

criteria, the algorithm identifies and inserts ksx@ero or more knots may need to

be inserted.
« The quadratic interpolant is essentially a Be€eHermite interpolant.
* Finally, similarity response value may be applieddositivity, and range-
bounded-ness.
3. Steps
* Infer the response node valye at the predicate ordinate is linearly

interpolated from the observationszand z,, as:

-T T, —T .
o y=——Lz + Lz foriz0n
i _ +1 _
L~ Ty AT f)
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1
0 w=4—§m—4]

_ 1
0 Yy=2 =52
Work out the “Z-score” metric Withiv[1ri e ri] :
O G.,= y(ri—l)_ Z=Y1"4
o g=yr)-z=y-3
o Further, we work in the local predictor ordinateaspx , where

_I-r5,

X .
L =T,

Apply the appropriate adjustments for the monotityimnvexity enforcement at

the appropriate zones:
o Caseg,_, >0, _%gi—l 20 2-29, [OR] g, <0, _%gi—l <g <-29:

Here, the functiorg(r) = g,_,(1- 4x+3x?)+ g, (- 2x+3x?) can be used
unchanged, as the original construct is alreadyatome and convex.

o Caseg,,> 0g,2-29_, [OR] g_, <0, g, =<-2g,_,: Here, insert a knot

atn =9 %20 e segment univariate now becomegkr) =g, , for

0 9.

X=1

2
—} forn<x<1.
1-n

0<x<n,andg(r)=g_ +(g - gi_l)[
1 Ly
o Caseg_>0,0>g >_Egi_1 [OR] g,,,<0, 0<g, <_§gi—1- Here,

insert a knot afy =3g—‘;. The segment univariate now becomes:
i T Yi-1

2
g(T): Ji1 +(gi - gi—l){%} for 0sx<n, andg(r): g; for

n<x<l1.
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o Caseg,;,20, g 20[OR] g_ <0, g <0: Here, insert a knot at

n :L. SettingA = —ﬂ, the segment univariate now
g *t0., g +94

2
becomesg(r)=A+(g,_, - A){%} for 0<x<z, and

2
a(r)=A+(g, —A){%} for p<x<1.

Positivity Preserving Estimator

1. Positivity of the interpolanHagan and West (2006) guarantee this by seteéng h

following bounds:

A boundo, Yo ,221]

» y,=bound0,y, 2]

« y,=bound0,y;,2* min(z,z.,)] fori #0,n

Ameliorating Estimator

1. Amelioration (i.e., Smoothing) of the InterpdlarBteps

* #1: Expand the Range at the edges => Add an intat¥he beginning and at the
end.

o 7,=1,-(r,-1,) andzO:zl—L_;O(zz—zl)

TZ 0
_ _ r,— 7,4
0 I,u=T, + (Tn - z-n—l) and Zn =4 +ﬁ(zn - Zn—l)
n n-2

o Complete the linear interpolation of the resporesgate across all the

intervals as before.
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* #2: Set the Extraneous Bounds Parametrically/Engliyi => Assume that the
left and the right mini-max bounds are set extrasgofor each segment, i.e.,

yi,LeftMin ’ yi,LeftMax’ yi,RightMin’ and yi,RightMax are eXtraneOUS|y Set' They may be Set
either point-by-point, or using another parametitwa This ensures locality, at

expense ofc*, however.
o Check if the given response value is inside ofsiecified range, i.e.,

min(yi,LeftMax1 yi,RightMax)2 yl 2 ma‘x(yi,LeftMim yi,RightMin)' Set as fOHOWS:
* If y| < min(yi,LeftMax’ yi,RightMax)’ yl = min(yi,LeftMax’ yi,RightMax) .

o 1y, > MaXY, Lewins Yimignvin)» Y = MY, et Y mighioan)-
o0 Otherwise:

o Iy <min(Y, nunme Yorgrnad » Yi = MY, Cerarmer Y righiner)-

o 1Y, > MaXY, Lo Yimgnvin)s Y = MY, i Y o)

* #3: Re-work the edges =>

1 1
o If |yo _Zo|>§|Y1_Zo| , theny, = 21—§|y1—20|.

1 1
o If |yn - Zn| >§|yn—1 - Zn|’ then Yn =14, +E|yn—1 - Zn|

o If y, is already explicitly specified (as the zero-daterin some markets)

use that instead.
o Finally, if needed re-apply the positivity enforoemh across all the

segments as before.

Harmonic Spline Extension to the Framework above

1. Harmonic Splines and Continuous Limiters ext@mdie Floc’h (2013) applies the
harmonic splines originally introduced by Fritseida@Butland (1984), and extends the

monotonicity preserving limiters of Van Leer (19&t)d Huynh (1993) by using

rational functions.
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Harmonic Forwards in Hagan-We€buple of interesting items to note: Given

M., :% on substitutingy, = -zt,, you getz,, =-m,and-s =-+ f,.

i+1 i

Estimation of the node forwards using HarmongamApply the above now to get
1 - L _ti—1+2(ti+1_ti)£+ b =1 +2(ti _ti—l)i if zz,,>0,andf =0
fi 3(ti a” —1) 4 3(ti a7 f —1) Z,

otherwise. After this, the regular Hagan-West mayapplied without the need to

enforce monotonic or convexity constraints, a®owms monotonic/convex by

construction.

Minimal Quadratic Estimator

1. Design Philosophylhe algorithm extracts the spline coefficientsgag in mind the

following:
« Formulate using a"2degree quadratic polynomial for each segment
e Maintain the Conserved Quantities
* Maintain the Segment Edge Continuities
* Optimize for the linear combination of two penadtie
o Jump of the inter-segment discontinuities on thet fierivatives
0 Curvature of the second derivative
Step #1: Preservation of the Conserved QuafétyThis results in the following

equation:z = a, +%bh +%qh2

Step #2: Edge Continuity Constraiat,, = a +Qh +ch?.

Step #3: Minimize the Penalty

« Jump of the inter-segment discontinuities on tret fierivatives
3, =[h +2¢h b, =l -b.,)+26h [ =(b -b..)* +4gh (b -b.,)+ 46 °h?

« Curvature of the second derivativg =[h « 2¢ | = 4¢°h’
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» Complete Penalty Formulation =>
P(w)=a, +[L-w)J, =[h + 26 =46"h’ + daxh ( - b.,)
oP(«) oP(w)

. T0= 8ch’ +4axh (b —qﬂ):o:T =8h*>0, so minimum exists.

5. Equation Set and Unknowns Analysis

e z=a +%bh +%qh2 => One per segment =tn —1) Equations

e a,=a+hh+ qhz => One per common edge r—2) Equations

« 2ch*+ach(b -b,,)=0 => One each for alt uptoc,, => (n- 2) Equations
* Total number of linear equations 3n -5

* Total number of unknowns =3n-3

* As always, the final 2 conditions from natural afirtial, or the not-a-knot

clamped boundary conditions.
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Penalizing Closeness of Fit and Curvature Penalty

1. Basic SetupAs described in the companion Spline Library Dueatation,
* Gross Penalizer = Fitness Match Penalizer + Cured®enalizer

. D=1p.+a0,
q

% 2
_ 9"y
e [O.= I(axmj dx

X
2. Estimation ofA : While the segment spline coefficients are comgise minimizing

[0, A is often extraneously supplied as a tuner thdesdhe prefect high degree of

fit to the curvature. Tanggaard (1997) suggestsgusifew methods to estimade

» Using the GCV criterion as demonstrated by Craveh\Wahba (1979) and
Wahba (1990).

* From the smoothing spline viewpoint, set the nundfdrasis functions, then
search for the correspondinig using the technique listed in Tanggaard (1997).

3. Measurement Filtering vs. Best Fit Weighted Respe These approaches are very

similar, in that the Best Fit Weighted Responseért” the calibrated spline basis
and their coefficients to accommodate the measurte the uncertain sense
(potentially by incorporating measurement uncetyain
a. If the measurement uncertainty/variance is ekjliknown, the Andersen
(2005), the Tanggaard (1997), and/or the GCV teples may be used to
extract better estimate for - through Andersen RM$* estimator,
Craven/Wahba’s GCV, or Tanggaard’s trace-basegktimator.

b. Differences => However, it needs to be rementb#rat, for current curve

construction methodologies, a key requirementasythmatches (i.e., exactly
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reproducing state estimations) — which is not yipéctl case for the filtered
state estimations.

4. Effectiveness of State Representation QuantificdMetric The combination of

curvature penalty, the length penalty, and theerless of fit penalty must be taken
together to gauge the effectiveness of the chosmmt@ication Metric/Smoothing
spline scheme set. Alternatively, full simulatimfgshe manifest metric (with induced
noise terms as explained in for e.g., Fisher, Ngchkd Zervos (1994)) and their
corresponding evaluations are also appropriateoadth they tend to be time

consuming (and possibly overkill).
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Extrapolation in Curve Construction

1. Latent State Choice for the Extrapolaffine quantification metric used to

extrapolate the latent state may be completelgifit from that used to infer
within the span.
» This clearly indicates that the span spans thapatated range as well.

Further, the extrapolator should be a propertyhef3pan, not any stretch.

2. Extrapolator Constructiort the span edges, th@* continuity constraints may

be passed onto the extrapolator as well. Thesetakaythe form of the stretch
boundary conditions (natural/financial etc).

3. State Space Extrapolation using Synthetic Olasiens This is really what it is.
In particular, to get the desired left/right bounydiaehavior, you may insert
synthetic observations at either end to produce@seaed custom behavior (this

may also be used in lieu of the explicit boundamydition specification).
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Multi-Pass Curve Construction

Motivation

1. Introduction This is composed of one shape preserving pafisedinferable state
guantification metric, followed by on or more “sntbimg passes”.

2. Shape Preserving Pa3$&e shape preservation pass occurs on the “nagisignate”

measure, preferably one that is linearly infermednf the manifest measure. The

primary objective of the shape preservation pass msaintain the monotonicity, the

convexity, the locality, and possibly the posititf the quantification metric.

» The output of the shape-preserving pass is a spémeoquantification metric that
is “well-behaved”, and one that contains a newo§étruthness” nodes on which
the eventual smoothing can be done.

3. Shape Preservation Variants

* Linear in the discount Factor Quantification Metrie They are obviously the
best shape preserver (owing to the perfectionemtatch and zero curvature
penalty), but they no inherent convexity/concaintyhem, so it gets harder fort
the smoothing stage.

» Constant forward rate bootstrapping may also bd.use

4. Smoothing Pass$lere you smooth on the appropriate quantificati@tric that is

deemed to be a better hidden-state characterizer.

5. Advantages of the Shape-Preserving :Pass

» Separation between Shape-preservation and smoothing

» Choice of convenient, yet potentially different net across shape-preserving
and smoothing.

» The final state representation quantification ncateed not be linear on the

manifest measure.
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» The granularity/precision of fit of the curve autatmally adjusts with
information (i.e., cash flow event dates such asdades), thereby making it
inherently more precise.

» PCHIP techniques may be applied more convenientiyne smoothing pass.

» Other closeness of fit techniques (such as leastreg methodologies, etc: )
become much more relevant on the smoothing pass.

6. Disadvantages of the Shape-Preserving: Pass

» Calculation overhead penalty associated with tre¢ pass (although, by choosing
linearity between manifest measure/quantificatieiria and the quantification
metric/ quantification metric combinations this atdse impact maybe reduced).

» Atrtifacts produced during shape-preservation (gghiere will be artifacts
associated with just about any basis represenjation

Bear Sterns Multi-Pass Curve Building Techniques

1. DENSE MethodologyThis method is outlined in Nahum (2004).

» Cash/Forwards => Piece-wise constant forwards. Bpneads imposed as
needed.

» Swaps => Shape Preserving uniform tension splines.

* RAW Swaps Inputs => Quarterly swap rates are neimmied from the curve
constructed in the earlier stage.

* From these new swap quotes, a new curve is cotstiusing quarterly constant
forward rates (constant forward rates methodolegailed RAW).

2. DUAL DENSE MethodologyAgain, this method is outlined in Nahum (2004).

» Short end (Cash/Futures) => Daily forwards (i.enstant daily forwards or cdf)

latent state implied.

* Long End => Same methodology as DENSE, exceptfnbn-uniform tension

that is applied across quarterly swap contracts.
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Transition Spline (Or Stitching Spline)

Motivation

1. Spline per Instrument Groupingnother possibility is to use transition splire t

bridge across different instrument groups — thgady needs to adjust to the

smoothness/truthness constraints of each of ttiment groups.

Essentially, transition splines connect spline fesiacross instrument group

(each instrument essentially belongs to its owmspdluster).

Design

May use discontinuous Hermite splines in the ttaosarea, or higher order basis
(say, with an appropriat€® constraint), or even an optimizing transition seli
Instrument choice is critical if we are to avoideg transition slopes (esp. tight
group gaps, and steep measure drops). These dlenglea in any mechanism,
but possibly a lot more here.

Construct single instrument spanning spline curtres) demarcate/spec out the
instrument range, finally bridge in the transitgplines.

Transition splines may also be used to stitch loiti@ry instruments together,
each belonging to its own separate group, althauighard to find a practical
need for such a construct.

In general, instrument group boundaries need nictlgtcoincide with the
instrument termination nodes (esp. in case oftstitcsplines). Boundaries may

be inserted using any of the appropriate knot tisetechniques.

Advantages

These preserve the curve character embedded inredalment grouping, which
can be a sub-set of a vaster instrument set.

By retaining the localization to the correspondimgfrument grouping, the hedges
produces by the transition spline may, in pringiplke better than those produced

by the typical ones.
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4. Disadvantages
» Of course, by construction, they do not allow feedapping instrument groups

(which, however, may not be a problem in the pcattivorld). This forces a
decision on the instrument set choices and boueslari
» Technically, the single “natural spline boundarpdition” is not applicable
across all the unprocessed instrument groups 4sthésally what is compromised.
o How much the effectiveness is compromised dued¢@tove may be
estimated using targeted metrics, say the span DPE.

5. Transition Segment in the Transition Splimbis needs at leagk + 2 basis

functions for representation, as it needs to “noat the left stretch and the right
stretch k +k for each of theC* continuity spec - plus 2 more, one at each end to
match up the point node).

6. Using Transition Splines for Calibration Instremh SelectionAs shown in Figures 2

and 3 below, the transition stretch representdjime 2 is narrower, and therefore
more abrupt/jumpy (with corresponding implicatidasthe forward rates) than that

in Figure 3. A criteria based approach is necedsatigvelop this.

Stretch Modeling Using Transition Splines

1. Information Propagation across Stretcldbthe truthness/smoothness information

of the predecessor stretch is captured by thechtsetalibrated span parameters. Any

state inference for predictors in a given domaiedseto be deferred to the domain’s

span stretch.

» The corollary to the above is that trailing streshvill typically need information
from the leading stretches for state inferencetegton (leading/trailing here are
set in regards to the inference flow (or informatftow)). Applied to discount
curve cooking, the leading stretch that uses aasthuiments is essentially self-
calibrating, whereas the trailing stretch of swagtnuments is going to rely on

information that comes out of the cash calibrat®oing into swap segments, the
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information will propagated in the form of RVC’g they will need to be handled
right from the left-most segment of each stretch.

* Regular Stretches vs. Finance Curve Stretches £typial stretch construction,
all you need is the transmission of the segmeisetgment continuity constraints
through C*. For segment curve builders, however,

Constrant(Segmen) = f (Segmen...,Segment,), i.e., more construction
information in addition to just th€* is required (mostly via explicit evaluation

of arbitrary points in earlier segments’ stretches)

2. Response Stretchédarkov response state variables may follow dgtbehavior in

different predictor stretches. For example, thealisit factor/zero rate/swap rate may
be characterized using one set of representatmrtbd cash stretch, whereas the

swap stretch may use a different set.

3. Why Response Stretches existit simply because of the instrument choicesictor
the front end, swap for the back end, etc:), dhese a more fundamental driver?
Can’t say one way or the other, but the fact isemgirically attempt to match point-
by-point in a left to right manner (we do this tgHaithout compromising the
empirical characteristics of each instrument gralp.call each of these groups
manifest groups, since they could be result of ifpgroduct manifest measures).

4. Manifest Group Contribution to the Response 8i&trength Say that a signal

strength contribution to a specific response signpftoportional to its liquidity (to
improve accuracy, you may make it sided liquidig.you move from left to right in
the predictor space, by working it in terms of liqeidity-fade of the left stretch to

the liquidity-explode of the right stretch, you mag able to characterize the response
space more naturally (with less dependence onaixglitching splines, or on
artificially inserted knots).

5. Liquidity-Fade and Liquidity-Explosion in prac#i In practice the actual predictor

ordinates across the manifest stretches will baliscrete for tracking the liquidity-
fade and liquidity-explosion. Thus, it may be mappropriate to operate on predictor
windows. If convenient and admissible, the predistmdow boundaries may also

coincide with the segment boundaries.
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Stretch Partition/Isolation in Transition Splines

1. Definitiort A given calibratable predictor ordinate/resporesdization space is called
a span. The span is partitioned into stretchest®ies can be either core stretches or
transition stretches. Both the core stretches laadransition stretches are built from
segments (within which the response values magpesented using basis splines).
Core stretch are inferred to truthness and the #imess signals, and the transition
stretches provide the explicit bridge between tire stretches that may not be
possible using the plain core stretch represemstio

2. Information Pattem With a higher unit, information propagation ssaciated with

each sub-unit entities below. Across peer unifermation exchange is materially
similar in nature. Across higher units, informatexchange may be more
parsimonious (although it may still happen betwesrer entities belonging to the
higher units).

3. Information Localization and Transmissidntra-segment information propagation

occurs through smoothness constraints sudbas

4. Stretch-Level Information Localization the spline case, this happens though

boundary-condition delimitation/isolation (i.e. tagl/financial/clamped boundary

conditions based isolation is applicable to withisingle stretch).

5. Stretch-Stretch Transmissiorhese are not bound by the equivalent isolation
constraints, therefore the connecting/transitidmsp need to have a qualitatively
different nature.

6. Transition/Connecting SplineBy definition, since they are the bridge betwésn

stretches, they need to have greater degreeseafdine for a complete bridge.

Knot Insertion vs. Transition Splines
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1. Equivalenceln some sense, they are equivalent in that imgeknots also attempts

to complete the bridge. However, transition spliaesmore customizable, since the
splines that flank the knots are assumed in thealitire to be variants of the others.

Advantages on Knot InsertibRemember that transition splines neidt+ 2 basis

function. Thus, for highk, you are stuck with higher-order polynomials og.),
along with all the Runge’s oscillations/instabégithat it brings. Suitable choice of
knots may minimize this.

Advantage of Transition Splin&nots are stretch response altering (via ti@sir

criteria), whereas transition splines enable e&ehch to retain their character.

Overlapping Stretches

1.

PremiseBy definition, stretch fade-out and stretch exi@@xiomatizations imply
predictor ordinate overlapping stretches.
Stretch Boundarie§ach stretch constituting an overlapping streeads to have its

boundaries identified. Whab not necessarily overlap are the smoothness
constraints.

Overlapping Stretch — Problem Statement

* Predictor Ordinate Stretches overlap.

» Stretches (and by implication, their predicate em)@re contained/telescoped.

®* Smoothness constraints may not overlap, in whiske tlaey are posited to be

distinct in each of the constituent stretches.

* Truthness should be strictly telescopically corgdiiocalized, i.e., there is a

manifest measurement exclusivity to each stretch.

® A consequence of this is that the inferred stagparse variable will be

propagated, but not (necessarily) the smoothnéssian.
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Index/Tenor Basis Swaps

Component Layout and Motivation

1. Basis Swap MarkeAlthough Basis Swaps did exist even earlier (Tongln and
Porfirio (2003), Morini (2008)), post-crisis segntaion (attributable, among other
things, to the preference towards receiving higteguency payments) intensified
these differentials (Mercurio (2009)).

2. Origins of Basis Swap Existendg principle, these are expected to represent

embedded duration counter-party credit risk. Th@tf model should couple
embedded credit risk with the sided flow dynamics (the credit quality of the
counter-party that enters into the long/short sifie greater frequency leg, etc :)

3. The Discounting Curve&Challenges regarding the uniqueness in relatidhd

instrument choice for building the discount curawé been identified by Henrard

(2007). The issues stem primarily from the uncelialized nature of deposits and

forwards, therefore, these are typically replace®IS/EONIA and Futures

(Madigan (2008)).

* Interest Rate Swap continues to be used for tlfeodig curve calibration, as it
possesses the following characteristics:

o Par IRS’es are collateralized at inception.

o Collateral margining may be applied over time.

o IRS is the only liquidly available fix-float swaand as such effectively
implies just a single forward curve.

» Convexity adjustment for extracting the rate frartufe/forward price => Since
futures/forwards act effectively as a zero coupond) the transformation of price
to the latent zero/forward rate requires a dynalhvickatility based curve
evolution model. Sophisticated, comprehensive agures are available in
literature (see for e.g., Kirikos and Novak (1998ckel and Kawai (2005), Brigo
and Mercurio (2006), Piterbarg and Renedo (20@®yymon practitioner
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approaches, however, employ simpler approachesasuttte Hull-White one-
factor short-rate model (Hull and White (1990)).

4. Multi Curve vs. Forward Smoothne&aiven that the discount curve and the forward

curve are essentially distinct in the multi-curageht state, the stringent demands that

all forwards stay smooth (as in the single discaumve that covers all the basis

curve scenarios) may be relaxed.

» Forwards Implied in the Discount Curve => Sinceftirevards are used only for
the “core” tenor pillars in the discount curve,ytilose forwards need to be
smooth (e.g., 6M forwards). By discount curve cargton this will typically be
the case, as the forwards period will always stedddan fully a single reset
pillar.

5. Point- vs. Convolved-Measure State Transform

* Point-Measure transform refers to the one-to-omesfiorm between a state
measure at a predictor ordinate and its correspgrabservation (e.g., discount
factor from zero-coupon bond price observationsjc&Sthese may be expressed
as straightforward transformations, the observasiate non-linearity may be
easily accommodated.

» Convolved measure-state transforms introduce wieagféectively observation
constraints across predictor ordinate/state regpomsibinations. Non-linearity
introduces complications, therefore usage of sghiased linearization constraints
are highly effective.

6. Reset-Date Forward-Rate Pair Constraint in Dist@urve BuildingThe yM tenor

(e.g., YM = 6M ) may be extracted only at the reset start/end (d&jgending on the
reset rate-rime axis label) from the discount curnee, only the pair
<yM , ForwardyM> makes sense. In other words, this is the onlpfséates for which

the information on forward rates is available. Biply may be an option at the other

dates.

* yM Tenor/DF Relationship =PV, =Zm:A(j -1 j)FyM (tJ.)Df (tj). ForPV,, to

j=1

be telescoped away inteV,,, = D; (t,)- D, (t,-), the requirements are: Period
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Accrual End Date == Period Reset End Date == Pd?mylDate. This is the main

reason why the period dates are adjusted beforeateflows are rolled out.

7. Alternative View: Discount Curve IS thgM Forward CurveTo automatically
ensure uniqueness and consistency of the lateatsgiace, it may also be more
restrictively imposed that the natiy® Forward Curve be implied entirely off of the
discount curve. Thus, the natiy® Forward Curve may now be implied at all nodes,

not just at the reset nodes as postulated earlés.automatically eliminates the state
basis between these measures; further, thislisstitoo restrictive in terms of the

nativeyM Forward Curve smoothness for same reasons aebefor

8. Basis between thgM Forward Curve and the Discount Cur@ven that basis

constraints are of paramount consideration in atierkets, why not look at the basis
between discount curve and its native forward cerieis is because neither the
latent state underpinning the forward curve or theterpinning the discount curve is
entirely observable (unlike, say basis betweenrallzmd the issuer’s underlying
CDS). Thus an extraneous observation model is sapeBy convention, the current
practice achieves this by construction — the foatioh mandates that the discount
curve and the “discounting-native” forward curvedbernate quantification metrics

of the same latent state.

Formulation

1. Float-Float Swap Setupphe phenomenology and flow details laid out igufe 5 are

based off of descriptions and details provided3iyA (2000), Ametrano and

Bianchetti (2009), Bianchetti (2009)). The two sviegs are:

* The "*known” or the “Reference” leg. Forwards ofstheg come from the discount
curve’s IRS contracts, and 6M LIBOR/EURIBOR is thest common such
tenor. We generalize this with a basis spread the.“effective” forward is

Feu + S,y » WhereF,,, and S, stand for the corresponding forward and the

spread.
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* The “unknown” or the “Derived” leg with a tenor aM . Forwards of this leg are
computed from the corresponding basis market qudtesgeneralize this with a
basis spread, i.e., the “effective” forwardhg, +S,,, , whereF,,, and S,,, stand

for the corresponding forward and the spread.

2. Basic Formulation Setup

. PV, = 2A( i -1 )Fult)+ Sw D, )
. PV, :az:A(a—la)[FeM(ta)+SeM]Df(ta)

* Equivalence ofS,,, andS,,, => Since bothS,, andS,,, are additive, we work

in a space that is essentially an adjusted fonnatedspace, with

Fom.ag = Fem ¥ Ssu @nd Fy oq = Fv + Sy - While this is straightforward to

accommodate in the case@¥ , from a calibration point-of-view, we work off
of a biasedxM space, and re-adjust back after splining.

3. Basis Swap Calibration FormulatioRV,,, = PV;,, implies that

52012 )l 10, )= 32801 )0, ()= 3280 -1 )01 )

j>my j=1
. For all but the left most basis swap,>0.

4. Basis Swap Calibration Constraint Specification

b m
© Setl, = ZA(a_l’a)FGM,Adj(ta)Df (ta)_ZA(j -1 j)FxM,Adj(tj)Df (tj)' Notice that

a=1 j=1

0., maybe fully computed from before.
»  Recognize thaf,, ,,({t)=> A f(t).
i=1

» Combine above to get the calibration constraint
= SalS a2l k)
i=1 >m
5. Reference/Derived Par Spread Relatiéios parity,
PVRe ference+ DVO]‘Re ferenceSRe ference+ I:)VDerived + DVO]‘DerivedSDerived . Settlng SDerived = 01
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_ PVRe ferecne+ I:)VDerived . . _ PVRe ferecne+ I:)VDerived
SRe ferecne — . LIkeWISe’ SDerived -
DVO]Re ferecne DVOlDerived

Remember that botBy, /recne@Nd Soerives CAN DE Negative.
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Multi-Stretch Merged Curve Construction

Motivation

1. Discount Curve composed of Forward Rate Stretcftee discount curve span may

be viewed as being composed of overlapping/nonkapping forward rate stretches,
i.e., adjacent or otherwise 3M Tenor forward stieGM Tenor forward stretch, etc:
This visualization is a consequence of the reptasien of the “single discount curve
latent state”, whose alternate/parallel quantifaratmetrics are composed off of these
stretches of forward rates that share the latate space with the global discount
curve.

2. Out-of-Native Stretch Arbitragéf one seeks a forward rate outside these ststch

for the given tenor/index combination, there cambexpectations of no-arbitrage,

i.e., there will be a basis between the forwardlieapby this latent space

guantification metric and the forward rate undansideration.

» Likewise, if inside the stretch, there should bemplied basis, since the diver
latent state is identical/fully correlated.

3. Merging/de-merging of the Latent State alongRhedictor Ordinatedf you imagine

the rates state space being characterized byod lsgent states (which may be highly
correlated), each state may ideally be charactébyea quantification metric that is
native to the state physical view. Thus, the uatfan of the sub-states in a stretch
may be viewed as state-merging (i.e., one quaatiin metric may be inferred from
another within a merged space via a trivial tramsfdion).

4. Probit-based Latent State Merger AnalyS§iszen that the discount/forward latent

states merge/de-merge, it might it particularly aatde to a common-factor probit
(or even a logistic) analysis of the merger drigmamics. The challenge would then

be to link the driver dynamics to the maturity lthpeedictor ordinate.
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Merge Stretch Calibration

1. Cross-Stretch Calibratioflearly the latent state span characterized hipre

stretches will in turn be composed of latent stagéege sub-stretches. The merged
stretch may be followed by de-merged stretch, etc:

2. Calibration Challenges

* What would be most optimal cross-representatioiéthe merge sub-stretch
(i.e., the state representation needs to be snfiooboth the discount factor latent
state as well as the forward curve latent state)?

* On the other hand in the solitary segment subestygou may have more
representation freedom, but may still need to cavar the smoothness
constraints from the merged sub-stretch. How cenbtl done? Can the transition
spline treatment above be effectively employed hémeother words, what would
be appropriate transition zone applicable to thestetch?
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Spline-Based Credit Curve Calibration

1. Overview Andersen (2003) has made an initial effort irs ttegard.
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Inference-Based Curve Construction

Curve Smoothing in Finance

1. Unconstrained Curve Smoothing
* Applicable primarily for rates/semi-liquid FX curseSmoothing can be done
here without constraints.
* Smoothing may also be applicable to the quotea fgiwven instrument across
several days.
* Smoothing may also be applied over a single dayecdrparticularly to model the
switch over from instrument to instrument (e.giween EDF and Swaps).

2. Constrained Curve Smoothimgpplicable, for e.g., to the case of a hazardeuihe

smoothing basis functions/weights combination ngustrantee, from a formulation
PoV, that the implied hazard rate is always greti@n zero.
3. Liquidity Based Weighted Signal Smoothing

» Fidelity at the “liquid bonds” / benchmark bond esd
* Lower fidelity penalty, but higher smoothness pgnfdr the less liquid bonds
» Penalty measure is calculated off of the relatigeidlity ranking measure (for
e.g., TRACE)
4. Non Bayesian Liguidity Based Smoothing

» Liquidity indicator serves as a roughness/fidatitggnifier/dampener

» Also need to penalize for over-parameterized siangI AIC/BIC (also CV/GCV —
given that this is essentially a frequentist case).

* These can be applied not just for bonds, but al38,Cates, FX — even less liquid
ones.

5. Bayesian Extension to the abogay parametrically specified distribution needs t

evolve using a hyper-prior, and the Wahba paramBaiyesian priors need evolving

too.
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6. Nodal Jacobian/Sensitivity Impaéts always study the impact on the locality of the

perturbation, as well as the ease of Jacobian astim— esp. if the calibration needs
to occur through MCMC, non-linear optimization etc:

7. Mixtures of splines and smoothness penalfissalways estimate the impact on

monotonicity, convexity, shape preservation etbe-category item checks in
Goodman’s paper.

Knot Selection TipsNeed some tips in both situations — frequentist Bayesian.

Suggestion on the locally adaptive ParametricmF&xamine the knot-to-knot

smoothness and penalty by using additional lo@aptive microstructure
parameters and their implications.

10. Goodman and Eilers/Marx Talking Point Issu&sterion check for these specific

“goodness” checks.

Bayesian Curve Calibration

1. Bayesian based past knowledge incorporationmwival probabilities Given that the

prior’s, the posterior's and the likelihood’s atepmobabilities, perhaps the best
starting point is for applying it to the problemwgidating the survival probabilities
and recovery rates based on price observations.

2. Curve Updating technigueNeed grand new formulation techniques that asedha

on AD and Bayesian methodologies as part of theecupdating strategies based
upon individual incoming observations and theiesgth signals.

3. Curve Construction off of hard/soft signdtiard Signals are typically the truthness

signals. Typically reduce to one calibration pareanper hard observation, and they
include the following:

» Actual observations => Weight independent truehtrass signals

* Weights => Potentially indicative of the truthnéssd signal strength

Soft signals are essentially signals extracted frdarence schemes. Again, typically
reduce to one calibration parameter per soft im&aunit, and they include the

following:
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* Smoothness signals => Continuity, first, second, lsigher-order derivatives
match — one parameter per match.

» Bayesian update metrics => Inferred using Bayesiathodologies such as
maximum likelihood estimates, variance minimizatiand error minimization
techniques.

4. No-arbitrage hard signalSimply indicates thahe given hard observation is out of

bounds and irreconcilable (i.e., no solution camdomd) within the axiomatic
inference space dictated by:
I. The parameter sequence implied by the otheofdedrd signals.
ii. The model axiom schemes.
iii. The inference rules.
» Directionality “bias” is inherent in calibration.(g, left to right, ordered sequence
set, etc:) — this simplifies the problem spaceifmantly. Therefore, the same
directional bias also exists in the calibration alaskquence.

5. Parameter Space Explosi@gsenerally not a problem as long as it is segment-

localized (in matrix parlance, as long the transitmatrix is tri-diagonal, or close to
it), i.e., local information discovery does noteaff far away nodes/segments.
» Also maybe able to use optimization techniquesino them.

6. Live Calibrated Parameter Updatitdse automatic differentiation to:

» Estimate parametric Jacobians (or sub-coefficiantanlacobians) to the
observed product measures.

* Re-adjust the shifts using the hard-signal strength

» Update the parameters from the calculated shifts.

* Re-construct the curve ever so periodically (feulare-build, as opposed to the
incrementals).

* Remember that AD based parametric updates breastemess (including
continuity as Bayesian MLE’s) — so use a tolerandée shift if this is
acceptable.

7. Causality Bayesian Network DAG For Credit CuBrglding: See Figure 1.
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DAG searches are not really needed, since herenthgpe formulated

conceptually/axiomatically, as opposed to beingldisthed through a search

mechanism.

8. Financial First Principles SKWollowing concepts are the core components that ¢

be used to create the curve construction SKU:

Time Value of Money.

Latent Default Indicator.

Recovery on Default.

Imbalance premium/discount (for FX, Basis Swaps) et

9. Financial Signal AnalysidNeed special analysis techniques to pick outrietends”

from “concept jumps”, even for highly liquid instnents.

Liquidity-based Signal Extraction =>

Identify a liquidity metric

Imply the “perfect liquidity” — the point at whidhere is no premium
Compute the liquidity metric for each security

Regress (or conceptually determine, or fit) theds# spread to inverse
liquidity (remember that even benchmarks only Havige liquidity, not
infinite) for each security

Try to slap in a secular “event premium” acrosshadl instruments, over and

above liquidity

10. Systemic Finance Variables Evoluti@iven that every measurement is uncertain to

within bounds, it stands to reason that everyidistion is also a true distribution (to

within the tolerance provided by the correspondiufficient statistics, and over a

finite observation window) of the technical stafelree world (i.e., technical =

fundamental + a bias).

11. Technical to Fundamental Bias Estimatidhis should result from the flow of the

information. Non-technical/Fundamental may possii@yestimated using a bias

correction applied to the technical signal — BagieSrequentist techniques may be of

value here.

Proxy for non-technical behavior => Identify thenamarket proxies for the

fundamental drivers, and estimate market driversoasibly lagging indices.
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12. Bayesian Decomposition of Technical Signedggeneral, the signal core drivers are

limited (like systemic/idiosyncratic factors — attatively, the latent state
guantification metric), but the product specificnifast measures are more varied.
Bayesian frameworks well suited for these.

13. Financial Stretch IdentificatioBayesian classification techniques can be readily

adapted for these purposes — in fact, with aburelahdata, these techniques are

very appropriate now.

Sequential Curve Estimation

1. Calibration Framework Driver€alibration is considered to occur FOR a hidden

stateS, which is quantified using the quantification nietk . X is estimated from

the manifest measund .

2. Product-Measure Point-of-Viewrom the Dempster-Shaefer/Kalman Filter/Linear

Quadratic Estimator point-of-view, the Kalm#h matrix probabilistically
transforms the hidden state quantification metriart observation measure, e.g., the
latent forward rate manifests itself through thepwate.

3. Segment/Span Nomenclature vs. Curve CalibrabonédhclatureCall the Curve

Calibrator the Dempster-Shaefer Calibrator. Untes: t
* LSQM (Latent State Quantification Metric) => Elastiariate
» State Dimensions (Tenor Axis, X/Y Axis of predi&pr> Inelastic Variates

* Thus, the predictors are inelastic, and the ressoare elastic.

4. Linearization of LSQM over the predictor ax&se KalmanH observation

transformer should just linearizd onto the space oK over the predictor
dimensions. Non-linearity oK over the predictors is handled through basis eplin

5. Hidden State Evolution vs. Hidden State Repitasiem The KalmanH matrix is

more of a state modeling and state representatairxii.e., the update part that is

fully local to the current time slice) that alredalyngs in the manifest measure

LSQM transformation model.
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6. The Curve BuildeH matrix Due to the above, the curve builddr matrix needs to

accommodate the 2 possible uncertainties:

* Uncertainty in the manifest measure

* Uncertainty in the manifest measure LSQM transformation model. If this
transformation is non-parametric, then treat itesain/deterministic. If it is

parametric, then use MLE/MAP to the handle the patar estimation.

7. UKF Techniques applied to evolve the Curve BarilH matrix Potential non-

linearity in the curve buildeH may be handled using the Jacobian EKF and/or the

sigma-point UKF schemes.

8. The Curve BuildeF matrix The Curve buildeir Matrix dictates the evolution

fromt tot,, asLSQM,, = F x LSQM . This should be explicitly

posited/formulated. Again, use splining to lineariz
9. Financial Noise Covariance Estimatiday be able to extraneously determine these

covariance independent of the state evolution m@flebt, we may have to rely on
technigues such as ALS (Rajamani (2007), RajamahRawlings (2009)).
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Appendix A: Some Trivial Analytical Bond Math Results

Price when Yield Equals Coupdaiven the following:

* Annualized Coupon =>

« Payment frequency =%

» Per period yield =>y
* Per Period Coupon Payment sx%

* Number of coupon periods to maturity ¥>
0 (r/f) 1 D¢ 1 1-d" .,

e PV = + = + =cd +d" where
m Ly ry) 2 (L+y)" (@+y)  1-d

-1
1+y’

* Now, if you are just past a coupon pay (so tharcke= dirty), and ifPV =1,

n

1 1
then we gefl =cd +d"=>d=—""=vy=c. QED.
g 1-d 1+c y Q

Par Yield Dirty Price at a non-coupon Ddteé is the accrual fraction corresponding

. . & c C 1
to th d, theldV,,,, = + —+..t —+ -
0 the accruing perio Dirty (1+ y)g (1+ y)g 1 (1+ y)g (1+ y);
& 1 : c 1 1+ &
= PV, = + + = )
S Py Py 2P Py LR P P

56



© N o o bk~ Db PRE

Appendix B: Per-trade Risk Isolation Components

Underlier Security Price Market Risk
Discount Factor Risk

Forward Rate Risk

Currency/FX Risk

Basis Risk (on any Risk Factor)
Funding Risk

Collateral Risk

Counter-party Risk
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Figure 2: Transition Splines — Low Width Transition Stretch
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Figure 3: Transition Splines — High Width Transition Stretch
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Figure 4: Transition Splines — Segment <-Stretch Layout
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Figure 5: Float-Float Swap Set-up
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Curve Builder Software Components

The Curve Builder Software Components are impleeteatross 6 core functional

packages, 3 sample packages, and 2 regressigatksiges.

The core functional packages are:

» Latent State Representation Package

Latent Curve State Package

» Latent State Estimation Package
* Latent State Creation package

* Analytics Definition Package

* Rates Analytics Package

* Rates Sample Package

* Credit Sample Package

* Bloomberg Sample Package

» Curve Regression Package

» Curve Jacobian Regression Package

Latent State Representation Package (org.drip.stateepresentation)

The latent state representation package implentieatstent state, the quantification
metric/manifest measure, its labels, the mergécsti@nd its manager. It contains the
following classes/interfaces:

1. LatentStatelLabel atentStateLabel is the interface that contdieslabels inside the

sub-stretch of the alternate state. The functipnds derivations implement provide
fully qualified label names and their matches.

2. LatentStateMergeSubStrettlatentStateMergeSubStretch implements merged

stretch that is common to multiple latent states identified by the start/end date
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predictor ordinates, and the Latent State Labeimkthods provide the following
functionality:
» Identify if the specified predictor ordinate belsrtg the sub stretch
* Shift that sub stretch start/end
» |dentify if the this overlaps the supplied sub tetne and coalesce them if possible
* Retrieve the label, start, and end

3. MergeSubsStretchManagdfiergeSubStretchManager manages the different

discount-forward merge stretches. It provides fiometlity to create, expand, or
contract the merge stretches.
4. LatentStateMetricMeasurkatentStateMetricMeasure holds the latent staeis

estimated, its quantification metric, and the cgponding product manifest measure,
and its value that it is estimated off of during ttalibration run.
5. LatentStatel atentState exposes the functionality to manifgeulae hidden Variable's

Latent State. Specifically it exports functions to:

* Retrieve the Array of the LatentStateMetricMeasure

* Produce node shifted, parallel shifted, and cust@anifest-measure tweaked
variants of the Latent State

* Produce parallel shifted and custom quantificatieiric tweaked variants of the
Latent State

Latent State Estimator Package (org.drip.state.estator)

The latent state estimator package provides funality to estimate the latent state,
local/global state construction controls, constregpresentation, and linear/non-linear
calibrator routines. It contains the following das/interfaces:

1. StretchRepresentationSp&tretchRepresentationSpec carries the calibration

instruments and the corresponding calibration patanset in LSMM instances.
Together, these inputs are used for constructirgnéire latent state stretch.
StretchRepresentationSpec exports the followingtfanality:

» Alternate ways of constructing custom Stretch regméations
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e Retrieve indexed instrument/LSMM
* Retrieve the full set calibratable instrument/LSMM

2. PredictorResponseWeightConstralriedictorResponseWeightConstraint holds the

Linearized Constraints (and, optionally, their qusénsitivities) necessary needed for

the Linear Calibration. Linearized Constraints expressed a€; = > W y(>qj)

where x; is the predictor ordinate at node y is the responsdy is the weight
applied for the Response andC; is the value of constraint The function can

either be univariate function, or weighted splimsib set. To this end, it implements

the following functionality:

* Update/Retrieve Predictor/Response Weights and @hete Sensitivities

* Update/Retrieve Predictor/Response Constraint \éadnel their Quote
Sensitivities

» Display the contents of PredictorResponseWeightCains

3. SmoothingCurveStretchPararsnoothingCurveStretchParams contains the

Parameters needed to hold the Stretch. It providegionality to:

* The Stretch Best fit Response and the correspor@imge Sensitivity

* The Calibration Detail and the Curve Smootheningu@ification Metric
* The Segment Builder Parameters

4. GlobalCurveControlParam&lobalControlCurveParams enhances the

SmoothingCurveStretchParams to produce globallioauged curve smoothing.
Currently, GlobalControlCurveParams uses custonmtbary setting and spline
details to implement the global smoothing pass.

5. LocalCurveControlParamkocalControlCurveParams enhances the

SmoothingCurveStretchParams to produce locallyoooiged curve smoothing. Flags
implemented by LocalControlCurveParams controlfthlewing:

» The C1 generator scheme to be used

* Whether to eliminate spurious extrema

* Whether or not to apply monotone filtering.
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6. CurveStretchCurveStretch expands the regular Multi-Segmerst&t to aid the
calibration of Boot-strapped Instruments. In pafac, CurveStretch implements the
following functions that are used at different &s@f curve construction sequence:
* Mark the Range of the "built" Segments
» Clear the built range mark to signal the start tseah calibration run
» Indicate if the specified Predictor Ordinate iddiesthe "Built" Range
* Retrieve the MergeSubStretchManager

7. RatesSegmentSequenceBuild@atesSegmentSequenceBuilder holds the logic

behind building the bootstrap segments containg¢kdargiven Stretch. It extends the
SegmentSequenceBuilder interface by implementistjcnizing the calibration of
the starting as well as the subsequent segments.

8. LinearCurveCalibratot inearCurveCalibrator creates the discount cspen from

the instrument cash flows. The span constructioy Imeacustomized using specific
settings provided in GlobalControlCurveParams.

9. NonlinearCurveCalibratoNonlinearCurveCalibrator calibrates the discoamd

credit/hazard curves from the components and th&tes. NonlinearCurveCalibrator

employs a set of techniques for achieving thisbcation.

» It bootstraps the nodes in sequence to calibrateuhve

* In conjunction with splining estimation techniquisnay also be used to perform
dual sweep calibration. The inner sweep achievesalbration of the segment
spline parameters, while the outer sweep calibitgestively for the targeted
boundary conditions

» It may also be used to custom calibrate a singbrdst Rate/Hazard Rate Node
from the corresponding Component

* CurveCalibrator bootstraps/cooks both discountesiand credit curves

10. RatesCurveScenarioGeneraf®atesCurveScenarioGenerator uses the interest rat

calibration instruments along with the componetibcator to produce scenario
interest rate curves. RatesCurveScenarioGeneygioally first constructs the actual
curve calibrator instance to localize the intellige around curve construction. It then
uses this curve calibrator instance to build irdinal curves or the sequence of node

bumped scenario curves. The curves in the set maylarray, or tenor-keyed.
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11. CreditCurveScenarioGenerat@reditCurveScenarioGenerator uses the hazard rate

calibration instruments along with the componetibcator to produce scenario
hazard rate curves. CreditCurveScenarioGenergtaratiy first constructs the actual
curve calibrator instance to localize the intellige around curve construction. It then
uses this curve calibrator instance to build irdinl curves or the sequence of node

bumped scenario curves. The curves in the set maylarray, or tenor-keyed.

Latent Curve State Package (org.drip.curve.state)

The latent curve state package provides implementbf latent state representations of

discount curve, forward curve, zero curve, credive, FX Basis curve, and FX forward

curve. It contains the following classes/interfaces

1.

DiscountFactorDiscountCurvBiscountFactorDiscountCurve manages the

Discounting Latent State, using the Discount Faasothe State Response

Representation. It exports the following functiotyal

* Compute the discount factor, forward rate, or e zate from the Discount
Factor Latent State

» Create a ForwardRateEstimator instance for thengivdex

» Retrieve Array of the Calibration Components arelrth
LatentStateMetricMeasure's

* Retrieve the Curve Construction Input Set

» Compute the Jacobian of the Discount Factor Leiéate to the input Quote

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custafting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

NonlinearDiscountFactorDiscountCurWonlinearDiscountFactorDiscountCurve

manages the Discounting Latent State, using thedfdrRate as the State Response

Representation. It exports the following functiotyal
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Boot Methods - Set/Bump Specific Node Quantificathetric, or Set Flat Value
Boot Calibration - Initialize Run, Compute Calibcat Metric

Compute the discount factor, forward rate, or e zate from the Forward Rate
Latent State

Create a ForwardRateEstimator instance for thengivdex

Retrieve Array of the Calibration Components arelrth
LatentStateMetricMeasure's

Retrieve the Curve Construction Input Set

Compute the Jacobian of the Discount Factor L&#ate to the input Quote
Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

Synthesize scenario Latent State by parallel/custufting/custom tweaking the
manifest measure

Serialize into and de-serialize out of byte array

ZeroRateDiscountCurv&eroRateDiscountCurve manages the Discountingritat

State, using the Zero Rate as the State Respopsedeatation. It exports the

following functionality:

Compute the discount factor, forward rate, or ta®zate from the Zero Rate
Latent State

Create a ForwardRateEstimator instance for thengivdex

Retrieve Array of the Calibration Components arelrth
LatentStateMetricMeasure's

Retrieve the Curve Construction Input Set

Compute the Jacobian of the Discount Factor L&#ate to the input Quote
Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

Synthesize scenario Latent State by parallel/custafting/custom tweaking the
manifest measure

Serialize into and de-serialize out of byte array
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4. DerivedZeroRateDerivedZeroRate implements the delegated Zero€urv

functionality. Beyond discount factor/zero rate gaitation at specific cash pay
nodes, all other functions are delegated to theeeladd discount curve.

5. FlatForwardDiscountCurv&latForwardDiscountCurve manages the Discounting

Latent State, using the Forward Rate as the Sedpddse Representation. It exports

the following functionality:

* Boot Methods - Set/Bump Specific Node QuantificatiMetric, or Set Flat Value

» Boot Calibration - Initialize Run, Compute Caliboat Metric

» Compute the discount factor, forward rate, or e zate from the Forward Rate
Latent State

» Create a ForwardRateEstimator instance for thengivdex

» Retrieve Array of the Calibration Components areirth
LatentStateMetricMeasure's

* Retrieve the Curve Construction Input Set

» Compute the Jacobian of the Discount Factor La&¢ae to the input Quote

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

6. BasisSplineForwardRatBasisSplineForwardRate manages the Forward Latent

State, using the Forward Rate as the State Resgasesentation. It exports the
following functionality:

» Calculate implied forward rate / implied forwardedacobian

» Serialize into and de-serialize out of byte arrays

7. ForwardHazardCreditCurvEBorwardHazardCreditCurve manages the Survival

Latent State, using the Hazard Rate as the StajgoRse Representation. It exports
the following functionality:
* Boot Methods - Set/Bump Specific Node QuantificatMetric, or Set Flat Value

» Boot Calibration - Initialize Run, Compute Calibcat Metric
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Compute the survival probability, recovery ratettar hazard rate from the
Hazard Rate Latent State

Retrieve Array of the Calibration Components arelrth
LatentStateMetricMeasure's

Retrieve the Curve Construction Input Set

Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

Serialize into and de-serialize out of byte array

DerivedFXForwardDerivedFXForward manages the constant forwared&X

Forward Curve holder object. It exports the follogrifunctionality:

Extract currency, currency pair, spot epoch and Bjo

Compute Zero/boot-strap Basis, as well as boopdiesis DC

Compute the spot implied rate/implied rate nodes

Retrieve Array of the Calibration Components arelrth
LatentStateMetricMeasure's

Retrieve the Curve Construction Input Set

Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

Synthesize scenario Latent State by parallel/custufting/custom tweaking the
manifest measure

Serialize into and de-serialize out of byte array

DerivedFXBasisDerivedFXBasis manages the constant forward lisied FX

Basis Curve holder object. It exports the followfogctionality:

Extract currency, currency pair, spot epoch, spgtand whether the basis is
boot-strapped

Compute the FX Forward Array

Retrieve Array of the Calibration Components arelrth

LatentStateMetricMeasure's
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* Retrieve the Curve Construction Input Set

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

Latent State Creator Package (org.drip.state.creato

The latent curve state package provides implementabf the constructor factories that
create discount curve, forward curve, zero curkggit curve, FX Basis curve, and FX
forward curve. It contains the following classesifaces:

1. DiscountCurveBuilderThis class contains the builder functions thatstuct the

discount curve (comprising both the rates and tbeodnt factors) instance. It
contains static functions that build different tgp# discount curve from 3 major
types of inputs:

* From a variety of ordered DF-sensitive calibratiostruments and their quotes
* From an array of ordered discount factors

* From a serialized byte stream of the discount curstance

2. ZeroCurveBuilderThis class contains the builder functions thatstauct the zero

curve instance. It contains static functions thaldodifferent types of zero curve
from 2 major types of inputs:

* From a source discount curve, a set of coupon gerend the Zero Bump

* From a serialized byte stream of the Zero curviaimse

3. CreditCurveBuilderThis class contains the builder functions thatstauct the credit

curve (comprising both survival and recovery) inst& It contains static functions
that build different types of credit curve from &jar types of inputs:
* From a variety of ordered credit-sensitive calilmainstruments and their quotes

* From an array of ordered survival probabilities
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* From a serialized byte stream of the credit cungtaince

4. FXForwardCurveBuilderThis class contains the baseline FX Forward cooukler

object. It contains static functions that build F&rward curves from the 3 major
inputs:

* An ordered array of Forward FX

* An ordered array of Forward Basis Points

* A byte Stream representing the serialized instaftiee FXForwardCurve

5. EXBasisCurveBuilderThis class contains the baseline FX Basis cunielér object.

It contains static functions that build FX Basisvas from the 3 major inputs:
* An ordered array of Forward FX
* An ordered array of Forward Basis Points

* A byte Stream representing the serialized instahtkee FXBasisCurve

Analytics Definition Package (org.drip.analytics.dénition)

The analytics definition package provides defimt®f the generic curve, discount
curve, forward curve, zero curve, credit curve,Basis curve, and FX forward curve,
turns list, and their construction inputs. It consathe following classes/interfaces:

1. CurveConstructoninputSeturveConstructioninputSet interface contains the

Parameters needed for the Curve Calibration/Estimalt's methods expose access
to the following:

» Calibration Valuation Parameters

» Calibration Quoting Parameters

» Array of Calibration Instruments

* Map of Calibration Quotes

* Map of Calibration Measures

» Double Map of the Date/Index Fixings

2. CurveSpanConstructioninp@urveSpanConstructioninput contains the Paraseter

needed for the Curve Calibration/Estimation. Itteams the following:
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5.

» Calibration Valuation Parameters

» Calibration Quoting Parameters

» Calibration Market Parameters

» Calibration Pricing Parameters

» Array of Calibration Stretch Representation

* Map of Calibration Quotes

* Map of Calibration Measures

» Double Map of the Date/Index Fixings

» Additional functions provide for retrieval of thb@ve and specific instrument
guotes. Derived Classes implement Targeted Curlibr@trs.

ShapePreservingCCIShapePreservingCCIS extends the

CurveSpanConstructioninput Instance. Additionatlgxposes the Shape Preserving
Linear Curve Calibrator.

BootCurveConstructioninpuBootCurveConstructioninput contains the Pararseter

needed for the Curve Calibration/Estimation. Itteams the following:

« Calibration Valuation Parameters

» Calibration Quoting Parameters

» Array of Calibration Instruments

* Map of Calibration Quotes

* Map of Calibration Measures

» Double Map of the Date/Index Fixings

Curve Curve extends the Latent State to abstract thetifonality required among all
financial curve. It exposes the following functitiba

» Set the Epoch and the Identifiers

» Set up/retrieve the Calibration Inputs

* Retrieve the Latent State Metric Measures

CreditCurveCreditCurve is the stub for the survival curvadtionality. It extends
the Curve object by exposing the following functon

» Set of curve and market identifiers

* Recovery to a specific date/tenor, and effectie®very between a date interval
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Hazard Rate to a specific date/tenor, and effettazard rate between a date
interval

Survival to a specific date/tenor, and effectivevatal between a date interval
Set/unset date of specific default

Generate scenario curves from the base credit ¢tlatgparallel/custom)
Set/unset the Curve Construction Inputs, LaterteStand the Manifest Metrics

Serialization/De-serialization to and from Byte &ys

ExplicitBootCurve In ExplicitBootCurve, the segment boundaries ey line up

with the instrument maturity boundaries. This featis exploited in building a boot-

strappable curve. Functionality is provides setlifiient State at the Explicit Node,

adjust the Latent State at the given Node, or senanon Flat Value across all

Nodes.

ExplicitBootCreditCurveExplicitBootCreditCurve exposes the functionality

associated with the bootstrapped Credit Curve.

FXForwardCurveFXForwardCurve implements the curve represerttieg

FXForward nodes. It extends the Curve class, apdsss the following

functionality:

Retrieve the spot parameters (FX Spot, Spot Datktlee currency pair)
Calculate the Zero set of FX Basis/Zero Rate nade®sponding to each basis
node

Bootstrap basis points/discount curves correspgniinhe FXForward node set

Imply the zero rate to a given date from the FXFahcurve

10. FXBasisCurveFXBasisCurve implements the curve representieg-kBasis nodes.

It extends the Curve class, and exposes the faligpinctionality:

Retrieve the spot parameters (FX Spot, Spot Dateflae currency pair)
Indicate if the basis has been bootstrapped

Calculate the Complete set of FX Forward correspantb each basis node

Rates Analytics Package (org.drip.analytics.rates)
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The rates analytics package provides definitiorth@fdiscount curve, the forward curve,
the zero curve, the discount factor and the forwate estimators, the turns list, and their
construction inputs. It contains the following das/interfaces:

1. DiscountFactorEstimatobiscountFactorEstimator is the interface thatasgs the

calculation of the Discount Factor for a specifav&reign/Jurisdiction Span. It

exposes the following functionality:

* Curve Epoch Date

» Discount Factor Target/Effective Variants - to Sfied Julian Dates and/or
Tenors

» Forward Rate Target/Effective Variants - to Spedfiulian Dates and/or Tenors

» Zero Rate Target/Effective Variants - to Specifietian Dates and/or Tenors

* LIBOR Rate and LIBORO01 Target/Effective Variant® -Specified Julian Dates
and/or Tenors

» Curve Implied Arbitrary Measure Estimates

2. ForwardRateEstimatoForwardRateEstimator is the interface that expdise

calculation of the Forward Rate for a specific bkndéexposes methods to compute
forward rates to a given date/tenor, extract timedod rate index and the Tenor.

3. Turn Turn implements rate spread at discrete timesgdanontains the turn amount
and the start/end turn spans.

4. TurnListDiscountFactofTurnListDiscountFactor implements the discountiaged

off of the turns list. Its functions add a turntarsce to the current set, and
concurrently apply the discount factor inside thege to each relevant turn.

5. RatesLSMMRatesLSMM contains the Rates specific Latent S¢tiefor the Rates
Curve. Current it holds the turn list discount &act

6. SmoothingCCISSmoothingCCIS enhances the Shape Preserving fo€IS

smoothing customizations. It exposes the shapemieg discount curve and the

smoothing curve stretch parameters.

7. DiscountForwardEstimatoRiscountForwardEstimator exposes the "native" oov

curve associated with the specified discount cubhvexposes functionality to extract
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forward rate index/tenor, as well as to computefdineard rate implied off of the
discount curve.
8. ForwardCurveForwardCurve is the stub for the forward curvectionality. It

extends the Curve object by exposing the folloviingctions:

* The name/epoch of the forward rate instance

* The index/currency/tenor associated with the fodwvate instance

» Forward Rate to a specific date/tenor

* Generate scenario-tweaked Latent State from thefoasard curve
corresponding to mode adjusted (flat/parallel/congtmanifest
measure/quantification metric.

» Retrieve array of latent state manifest measusgtument quantification metric,
and the array of calibration components.

» Set/retrieve curve construction input instrumens.se

9. DiscountCurveDiscountCurve is the stub for the discount curwectionality. It

extends the both the Curve and the DiscountFadion&®r instances by

implementing their functions, and exposing thedwihg:

* Forward Rate to a specific date/tenor, and effeatate between a date interval

» Discount Factor to a specific date/tenor, and éffediscount factor between a
date interval

» Zero Rate to a specific date/tenor

* Value Jacobian for Forward rate, discount factod zero rate

* Cross Jacobian between each of Forward rate, dis¢actor, and zero rate

* Quote Jacobian to Forward rate, discount factat,zamo rate

* QM (DF/Zero/Forward) to Quote Jacobian

* Latent State Quantification Metric, and the quacaiion metric transformations

* Implied/embedded ForwardRateEstimator

* Turns - set/unset/adjust

10. ExplicitBootDiscountCurveExplicitBootDiscountCurve exposes the functiomnalit

associated with the bootstrapped Discount Curve.

* Generate a curve shifted using targeted basiseatfgpnodes
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» Generate scenario tweaked Latent State from thefoasard curve
corresponding to mode adjusted (flat/parallel/congtmanifest
measure/quantification metric

* Retrieve array of latent state manifest measusg&tument quantification metric,
and the array of calibration components

» Set/retrieve curve construction input instrumeis se

11. ZeroCurveZeroCurve exposes the node set containing theczeve node points. In
addition to the discount curve functionality thaautomatically provides by

extension, it provides the functionality to caldeléhe zero rate.

Bloomberg Sample Package (org.drip.sample.bloombeyg

The Bloomberg Sample Package implements the Blomyitbealls CDSW, SWPM, and
YAS.

1. CDSW CDSW replicates Bloomberg's CDSW functionality.

2. SWPM:SWPM replicates Bloomberg’s SWPM functionality.

3. YAS:YAS replicates Bloomberg’s YAS functionality.

Credit Sample Package (org.drip.sample.credit)

The Credit Sample Package demonstrates the cati¢ analytics functionality —
construction of credit curves, pricing of CDS ard<basket, and retrieve the built-in
pre-constructed CDX baskets and CDS closes.

1. CDSBasketAPICDSBasketAPI contains a demo of the CDS baskétSample. It

shows the following:

* Build the IR Curve from the Rates' instruments
* Build the Component Credit Curve from the CDS imstents
» Create the basket market parameters and add thedndistount curve and the

credit curves to it
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Create the CDS basket from the component CDS aidwieights
Construct the Valuation and the Pricing Parameters
Generate the CDS basket measures from the valugtepricer, and the market

parameters

CDSLiveAndEODAPICDSLiveANndEODAPI is a fairly comprehensive sample

demonstrating the usage of the EOD and Live CDS€API functions. It

demonstrates the following:

Retrieves all the CDS curves available for the giE©D

Retrieves the calibrated credit curve from the G uments for the given CDS
curve name, IR curve name, and EOD. Also show4@esurvival probability
and hazard rate

Displays the CDS quotes used to construct therdosiedit curve

Loads all available credit curves for the giverveulD built from CDS
instruments between 2 dates and displays the paome@g 5Y quote

Calculate and display the EOD CDS measures fooastprting CDS based off

of a specific credit curve

CreditAnalyticsAPI CreditAnalyticsAPI contains a demo of the CDS Kities API

Sample. It illustrates the following:

Credit Curve Creation: From flat Hazard Rate, andhfan array of dates and
their corresponding survival probabilities
Create Credit Curve from CDS instruments, and recthe input measure quotes

Create an SNAC CDS, price it, and display the caollpss cash flow

StandardCDXAPIStandardCDXAPI contains a demo of the CDS baAlkét

Sample. It shows the following:

Construct the CDX.NA.IG 5Y Series 17 index by naand series
Construct the on-the-run CDX.NA.IG 5Y Series index

List all the built-in CDX - their names and destiops

Construct the on-the run CDX.EM 5Y corresponding tolY
Construct the on-the run ITRAXX.ENERGY 5Y corresdomgto T - 7Y
Retrieve the full set of date/index series set TRAXX.ENERGY
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Rates Sample Package (org.drip.sample.rates)

The Rates Sample Package demonstrates the caanatgtics functionality —

construction of rates and forward curves (shapsgpveng/smoothing/transition spline

variants) and pricing of rates, treasury, and rageket products.

1. HaganWestForwardinterpolatdris sample illustrates using the Hagan and West

(2006) Estimator. It provides the following funciality:

Set up the Predictor ordinates and the responseval

Construct the rational linear shape control with specified tension

Create the Segment Inelastic design using the @lCamvature Penalty
Derivatives

Build the Array of Segment Custom Builder Contrar&#meters of the KLK
Hyperbolic Tension Basis Type, the tension, thersag inelastic design control,
and the shape controller

Setup the monotone convex stretch using the abetiags, and with no linear
inference, no spurious extrema, or no monotonexifiig applied

Setup the monotone convex stretch using the abettiags, and with linear
inference, no spurious extrema, or no monotonexifiiy applied

Compute and display the monotone convex output tegHinear forward state
Compute and display the monotone convex output thghharmonic forward

State

2. ShapeDFZerolLocalSmootShapeDFZeroLocalSmooth demonstrates the usage of

different local smoothing techniques involved ie thiscount curve creation. It shows

the following:

» Construct the Array of Cash/Swap Instruments aett Quotes from the given set of

parameters

* Construct the Cash/Swap Instrument Set StretctdBuil

» Set up the Linear Curve Calibrator using the follayyparameters:

0 Cubic Exponential Mixture Basis Spline Set
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o

C* =2, Segment Curvature Penalty = 2

0 Quadratic Rational Shape Controller

o

Natural Boundary Setting

» Set up the Akima Local Curve Control parameterfobews:

o

o

o

C' Akima Monotone Smoothener with spurious extrenmaiahtion and
monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

C* =2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

* Set up the Harmonic Local Curve Control paramedsrillows:

o

o

o

C' Harmonic Monotone Smoothener with spurious extretimination and
monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

C* =2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

* Set up the Hyman 1983 Local Curve Control parametsifollows:

o

o

o

C'Hyman 1983 Monotone Smoothener with spurious exdrelimination
and monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

C* =2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

* Set up the Hyman 1989 Local Curve Control parametsifollows:

o

C'Akima Monotone Smoothener with spurious extrem@aietation and

monotone filtering applied
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o

o

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

Ck =2, Segment Curvature Penalty = 2
Quadratic Rational Shape Controller

Natural Boundary Setting

» Set up the Huynh-Le Floch Delimited Local Curve @ohparameters as follows:

o

o

o

C' Huynh-Le Floch Delimited Monotone Smoothener veiflurious extrema
elimination and monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

Ck =2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

» Set up the Kruger Local Curve Control parametef®lisvs:

o

o

o

C' Kruger Monotone Smoothener with spurious extrehmaigation and
monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

C* =2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

» Construct the Shape Preserving Discount Curve plyig the linear curve

calibrator to the array of Cash and Swap Stretches

» Construct the Akima Locally Smoothened Discountweusy applying the linear

curve calibrator and the Local Curve Control par@mseto the array of Cash and

Swap Stretches and the shape-preserving discourd cu

» Construct the Harmonic Locally Smoothened Discdlumve by applying the linear

curve calibrator and the Local Curve Control par@mseto the array of Cash and

Swap Stretches and the shape preserving discotud cu
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Construct the Hyman 1983 Locally Smoothened Dist@umve by applying the
linear curve calibrator and the Local Curve Conpalameters to the array of Cash
and Swap Stretches and the shape preserving discowe

Construct the Hyman 1989 Locally Smoothened DistQumve by applying the
linear curve calibrator and the Local Curve Conpaameters to the array of Cash
and Swap Stretches and the shape preserving disoawe

Construct the Huynh-Le Floch Delimiter Locally Srttoened Discount Curve by
applying the linear curve calibrator and the LdCalve Control parameters to the
array of Cash and Swap Stretches and the shapengresdiscount curve
Construct the Kruger Locally Smoothened Discountv€uly applying the linear
curve calibrator and the Local Curve Control par@mseto the array of Cash and
Swap Stretches and the shape preserving discotud cu

Cross-Comparison of the Cash/Swap Calibrationunstnt "Rate" metric across the
different curve construction methodologies

Cross-Comparison of the Swap Calibration InstruniBate” metric across the
different curve construction methodologies for qusnce of bespoke swap
instruments

ShapePreservingDFZeroSmadiinapePreservingDFZeroSmooth demonstrates the

usage of different shape preserving and smootkicigiiques involved in the

discount curve creation. It shows the following:

o Construct the Array of Cash/Swap Instruments aed Quotes from the given
set of parameters

o Construct the Cash/Swap Instrument Set StretctdBuil

0 Set up the Linear Curve Calibrator using the follayyparameters:

0 Cubic Exponential Mixture Basis Spline Set

0o C¥=2, Segment Curvature Penalty = 2

(@)

Quadratic Rational Shape Controller

(@)

Natural Boundary Setting
0 Set up the Global Curve Control parameters asvi@iio
0 Zero Rate Quantification Metric

0 Cubic Polynomial Basis Spline Set
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0o C*=2, Segment Curvature Penalty = 2
0 Quadratic Rational Shape Controller
o Natural Boundary Setting
0 Set up the Local Curve Control parameters as falow
o C'Bessel Monotone Smoothener with no spurious extemanation
and no monotone filter
0 Zero Rate Quantification Metric
0 Cubic Polynomial Basis Spline Set
o C* =2, Segment Curvature Penalty = 2
o Quadratic Rational Shape Controller
o Natural Boundary Setting
o Construct the Shape Preserving Discount Curve plyig the linear curve
calibrator to the array of Cash and Swap Stretches
o Construct the Globally Smoothened Discount Curvapplying the linear curve
calibrator and the Global Curve Control parametiethie array of Cash and Swap
Stretches and the shape preserving discount curve
o Construct the Locally Smoothened Discount Curvapplying the linear curve
calibrator and the Local Curve Control parameterthé array of Cash and Swap
Stretches and the shape preserving discount curve
o0 Cross-Comparison of the Cash/Swap Calibrationuns®nt "Rate" metric across
the different curve construction methodologies
o0 Cross-Comparison of the Swap Calibration InstruriBate" metric across the
different curve construction methodologies for qusance of bespoke swap
instruments

CustomDiscountCurveBuilde€CustombDiscountCurveBuilder discount curve

calibration and input instrument calibration quigteovery. It shows the following:

o Construct the Array of Cash/Swap Instruments aed Quotes from the given
set of parameters

0 Construct the Cash/Swap Instrument Set Stretcld8uil

o0 Set up the Linear Curve Calibrator using the follmyyparameters:

0 Cubic Exponential Mixture Basis Spline Set
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0o C*=2, Segment Curvature Penalty = 2

o0 Quadratic Rational Shape Controller

o Natural Boundary Setting
Construct the Shape Preserving Discount Curve plyeng the linear curve
calibrator to the array of Cash and Swap Stretches
Cross-Comparison of the Cash/Swap Calibrationuns#nt "Rate" metric across

the different curve construction methodologies

5. CustomDiscountCurveReconcil&ustomDiscountCurveReconciler demonstrates

the multi-stretch transition custom discount cureastruction, turns application,

discount factor extraction, and calibration quateovery. It shows the following

steps:

o

o

o

Setup the linear curve calibrator

Setup the cash instruments and their quotes fdoragibn

Setup the cash instruments stretch latent stategeptation - this uses the
discount factor quantification metric and the "fatenifest measure

Setup the swap instruments and their quotes fdrrasibn

Setup the swap instruments stretch latent stateseptation - this uses the
discount factor quantification metric and the "fatenifest measure

Calibrate over the instrument set to generate acweanlapping latent state span
instance

Retrieve the "cash" stretch from the span

Retrieve the "swap" stretch from the span

Create a discount curve instance by converting@weelapping stretch to an
exclusive non-overlapping stretch

Compare the discount factors and their monotonémtytted from the discount
curve, the non-overlapping span, and the "swaptdtracross the range of tenor
predictor ordinates

Cross-Recovery of the Cash Calibration Instrum&até" metric across the
different curve construction methodologies

Cross-Recovery of the Swap Calibration Instrum&te" metric across the

different curve construction methodologies
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Create a turn list instance and add new turn igs&n
Update the discount curve with the turn list
Compare the discount factor implied the discoumtewvith and without

applying the turns adjustment

6. DiscountCurveQuoteSensitivithiscountCurveQuoteSensitivity demonstrates the

calculation of the discount curve sensitivity te ttalibration instrument quotes. It

does the following:

o

o

o

Construct the Array of Cash/Swap Instruments aea tQuotes from the given
set of parameters
Construct the Cash/Swap Instrument Set StretcldBuil
Set up the Linear Curve Calibrator using the follmyyarameters:

o Cubic Exponential Mixture Basis Spline Set

o C* =2, Segment Curvature Penalty = 2

0 Quadratic Rational Shape Controller

o Natural Boundary Setting
Construct the Shape Preserving Discount Curve plyeng the linear curve
calibrator to the array of Cash and Swap Stretches
Cross-Comparison of the Cash/Swap Calibrationunstnt "Rate" metric across
the different curve construction methodologies
Display of the Cash Instrument Discount Factor @ulaicobian Sensitivities

Display of the Swap Instrument Discount Factor @ulzicobian Sensitivities

7. TemplatedDiscountCurveBuildéfemplatedDiscountCurveBuilder sample

demonstrates the usage of the different pre-busic@int Curve Builders. It shows

the following:

o Construct the Array of Cash Instruments and theiot@s from the given set
of parameters

o Construct the Array of Swap Instruments and theiot®s from the given set
of parameters

0 Construct the Cubic Tension KLK Hyperbolic Discotraictor Shape
Preserver
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o Construct the Cubic Tension KLK Hyperbolic Discotraictor Shape
Preserver with Zero Rate Smoothening applied

o Construct the Cubic Polynomial Discount Factor @hRapeserver

o Construct the Cubic Polynomial Discount Factor hRapeserver with Zero
Rate Smoothening applied

o Construct the Discount Curve using the Bear St&EBHSE Methodology

0 Construct the Discount Curve using the Bear St&\LDENSE
Methodology

o0 Cross-Comparison of the Cash Calibration Instrurfi@ate" metric across
the different curve construction methodologies

o0 Cross-Comparison of the Swap Calibration InstruniBate" metric across
the different curve construction methodologies

o Cross-Comparison of the generated Discount Factosa the different curve

construction Methodologies for different node psint

8. CustomForwardCurveBuildeCustomForwardCurveBuilder contains the sample

demonstrating the full functionality behind cregtimghly customized spline based

forward curves.

The first sample illustrates the creation and usddgke xM-6M Tenor Basis Swap:

Construct the 6M-xM float-float basis swap

Calculate the corresponding starting forward rét@fothe discount curve
Construct the shape preserving forward curve o€wbic Polynomial Basis
Spline

Construct the shape preserving forward curve o@oértic Polynomial Basis
Spline

Construct the shape preserving forward curve oHygerbolic Tension Based
Basis Spline

Set the discount curve based component market paeasn

Set the discount curve + cubic polynomial forwaundve based component
market parameters

Set the discount curve + quartic polynomial forwamdve based component

market parameters
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Set the discount curve + hyperbolic tension forwam/e based component
market parameters
Compute the following forward curve metrics for leat cubic polynomial
forward, quartic polynomial forward, and KLK Hypeiliz tension forward
curves:

0 Reference Basis Par Spread

o Derived Basis Par Spread
Compare these with a) the forward rate off of tisealnt curve, b) The LIBOR

rate, and c) The Input Basis Swap Quote

The second sample illustrates how to build andthesforward curves across various

tenor basis. It shows the following steps:

Construct the Discount Curve using its instrumamts quotes

Build and run the sampling for the 1M-6M Tenor BaSivap from its instruments
and quotes

Build and run the sampling for the 3M-6M Tenor BaSivap from its instruments
and quotes

Build and run the sampling for the 6M-6M Tenor BaSivap from its instruments
and quotes

Build and run the sampling for the 12M-6M Tenor Ba&wap from its

instruments and quotes

RatesAnalyticsAPIRatesAnalyticsAPI contains a demo of the Rateslyits API

Usage. It shows the following:

Build a discount curve using: cash instruments dBQF instruments only, IRS
instruments only, or all of them strung together

Re-calculate the component input measure quotestiie calibrated discount
curve object

Compute the PVDF Wengert Jacobian across all steuiments used in the curve

construction

10. TreasuryCurveAPTreasuryCurveAPI contains a demo of constructiod usage of

the treasury discount curve from government bopdts It shows the following:

Create on-the-run TSY bond set
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Calibrate a discount curve off of the on-the-ruelgs and calculate the implied
zeroes and DF's
Price an off-the-run TSY

11. RatesLiveAndEODAPRatesLiveAndEODAPI contains the sample API

demonstrating the usage of the Rates Live and H@EXibns. It does the following:

Pulls all the closing rates curve names (of ang,typcl. TSY) that exist for a
given date

Load the full IR curve created from all the singlerency rate quotes (except
TSY) for the given currency and date

Calculate the discount factor to an arbitrary desieg the constructed curve
Retrieve the components and their quotes that imemtonstructing the curve,
and display them

Load all the rates curves available between thesdat the currency specified,
and step through

Load all the Cash quotes available between thesdatehe currency specified,
and step through

Load all the EDF quotes available between the datethe currency specified,
and step through

Load all the IRS quotes available between the databe currency specified,
and step through

Load all the TSY quotes available between the datethe currency specified,

and step through

12. MultiLegSwapAPI MultiLegSwapAPI illustrates the creation, invaoat, and usage

of the MultiLegSwap. It shows how to:

Create the Discount Curve from the rates instrument
Set up the valuation and the market parameters
Create the Rates Basket from the fixed/float steeam

Value the Rates Basket
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Curve Regression Package (org.drip.regression.curye

The Curve Regression Package demonstrates thewmeregression functionality —

regression of discount curve, credit curve, FX fami¥basis curve, and zero curves.

1. DiscountCurveRegressdiscountCurveRegressor implements the regressbon
analysis for the Discount Curve. DiscountCurveRegpe regresses 11 scenarios:
* #1: Create the discount curve from a set 30 ingnim(cash/future/swap)

» #2: Create the discount curve from a flat discoate

» #3: Create the discount curve from a set of disttagators

* #4: Create the discount curve from the implied alistt rates
* #5: Extract the discount curve instruments and egiot

» #6: Create a parallel shifted discount curve

« #7: Create a rate shifted discount curve

» #8: Create a basis rate shifted discount curve

» #9: Create a node tweaked discount curve

» #10: Compute the effective discount factor betw2elates

» #11: Compute the effective implied rate betweem2sl

2. ZeroCurveRegressaferoCurveRegressor implements the regressiolysiaaet for

the Zero Curve. The regression tests consistsedioffowing:
» Build a discount curve, followed by the zero curve

* Regressor #1: Compute zero curve discount factors
* Regressor #2: Compute zero curve zero rates

3. CreditCurveRegressdCreditCurveRegressor implements the regressioansdysis

for the Credit Curve. CreditCurveRegressor regse$escenarios:
* #1: Create an SNAC CDS

e #2: Create the credit curve from a set of CDS umsénts

» #3: Create the credit curve from a flat hazard rate

* #4: Create the credit curve from a set of survprababilities

* #b5: Create the credit curve from an array of haraies

* #6: Extract the credit curve instruments and quotes
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#7: Create a parallel hazard shifted credit curve

#8: Create a parallel quote shifted credit curve

#9: Create a node tweaked credit curve

#10: Set a specific default date on the crediteurv

#11:. Compute the effective survival probabilityweén 2 dates

#12: Compute the effective hazard rate betweenésda

4. FXCurveRegressoFXCurveRegressor implements the regression asalgs for the

FX Curve. FXCurveRegressor implements 3 regreSsisis:

#1: FX Basis and FX Curve Creation: Construct aéivard Curve from an
array of FX forward nodes and the spot

#2: Imply the FX Forward given the domestic anekifgn discount curves

#3a: Compute the domestic and foreign basis givemtarket FX forward

#3b: Build the domestic/foreign basis curve giviem ¢orresponding basis nodes
#3c: Imply the array of FX forward points/PIPs froine array of basis and

domestic/foreign discount curves

5. CreditAnalyticsRegressionEngin@reditAnalyticsRegressionEngine implements the

RegressionEngine for the curve regression. It #uel€reditCurveRegressor,

DiscountCurveRegressor, FXCurveRegressor, and ZeveRegressor, and launches

the regression engine.

Product Curve Jacobian Regression Package

(org.drip.regression.curveJacobian)

The Product Curve Jacobian Regression packagesaui regression across the core

suite of products Jacobian to the curve— Cash, BD#& Fix-float IRS. It also implements

the Curve Jacobian Regression Engine.

1. CashJacobianRegressorSesashJacobianRegressorSet implements the regressio

analysis set for the Cash product related Sertsitieicobians. Specifically, it

computes the PVDF micro-Jack.
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EDFJacobianRegressorSeEDFJacobianRegressorSet implements the regression

analysis set for the EDF product related Sensjtidatcobians. Specifically, it
computes the PVDF micro-Jack.

IRSJacobianRegressorS&SJacobianRegressorSet implements the regression

analysis set for the IRS product related Sengjtiléicobians. Specifically, it
computes the PVDF micro-Jack.

DiscountCurveJacobianRegressor®escountCurveJacobianRegressorSet

implements the regression analysis for the fukalist curve (built from
cash/future/swap) Sensitivity Jacobians. Speclficalcomputes the PVDF micro-
Jack.

CurveJacobianRegressionEngi@earveJacobianRegressionEngine implements the

RegressionEngine for the curve Jacobian regresiiadds the
CashJacobianRegressorSet, the EDFJacobianRegretssheS
IRSJacobianRegressorSet, and the DiscountCurvada€dgressorSet, and

launches the regression engine.
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