
Andrew V. Adinetz

Ph.D. Student, Moscow State University

Scientific Supervisor: Voevodin Vl. V.

adinetz@cs.msu.su

mailto:adinetz@cs.msu.su

 Why GPGPU?

 Architecture of Modern GPUs

 Programming a GPGPU

 C$ System and Language:

 Ideas behind

 Current work

 Future Plans

 Why GPGPU?

 Architecture of Modern GPUs

 Programming a GPGPU

 C$ System and Language:

 Ideas behind

 Current work

 Future Plans

 High performance(~200 GFlops)

 On certain classes of tasks

 Availability

 Almost in any computer

 Idle most of the time

 Low cost per Gflops (about $2 / Gflops)

 Trends of grows

 Performance doubles each year

 Image & Video Processing

 Mac OS X Core Image

 Solving of PDEs

 Computational Fluid Dynamics

 Linear Algebra Algorithms

 Financial & Statistical Computations

 Risk Estimation

 Why GPGPU?

 Architecture of Modern GPUs

 Programming a GPGPU

 C$ System and Language:

 Ideas behind

 Current work

 Future Plans

 Arithmetic Instructions

 Scalar & Vector

 Computations of elementary functions

 Control flow instructions

 Memory access

 Why GPGPU?

 Architecture of Modern GPUs

 Programming a GPGPU

 C$ System and Language:

 Ideas behind

 Current work

 Future Plans

 Splitting the algorithm into kernels

 Or shaders

 Loading data into textures

 Setting up the graphics pipeline

 Executing a shader

 Getting output

 Repeating for each pass

 Usually done with OpenGL or DirectX

 Higher-level of abstraction
 Streams & kernels not tied to GPU

 Portability
 Multi-core, CELL

 Basic array operations
 Reduction

 Libraries commercially available
 PeakStream, RapidMind

 Still rather low-level

 Why GPGPU?

 Architecture of Modern GPUs

 Programming a GPGPU

 C$ System and Language:

 Ideas behind

 Current work

 Future Plans

 Function evaluation

 No side effects

 Over a domain

 Independently for each value

 Expresses operations in a more natural way

 Non-local operations

 Non-”one-to-one” operations

 Using .NET Framework

 Eases language development

 Language constructs => library calls

 Easier integration with OOP

 Convenient for programming

 C#-like (with functional-array constructs)

 Writing less code

 Portability

 Array is a special case of functions
 Lazy computations

 Small number of basic operations:
 Superposition

 Reduction

 Several types of functions
 Data-only functions (arrays, maps)

 Code-only functions (members of classes)

 Encapsulated expressions (lazy computations)

type matrix = float (int, int);

matrix mulMat(matrix a, matrix b) {

var c(k, m) = sum(a(k, l) * b(l, m));

return c;

} // end of mulMat()

public static void main(string[] args) {

float[int,int] a, b, c;

a = Utils.readMatrix(args[0]);

b = Utils.readMatrix(args[1]);

c = mulMat(a, b);

Utils.saveMatrix(c, args[2]);

} // end of main()

 Functions as interfaces

 Inheriting from a function

 class SparseMatrix : float (int, int) {…}

 class GridFile : float3 (int, int, in) {…}

 Dot acting as superposition:

 final class float3 {float x, y, z; … }

 float3 (int) f = …;

 f.x – is a function

Source Code

Compiler

Runtime

GPU Backend CPU Backend

GPU Многоядерные CPU

C$:

float(int, int) a, b, c;
c[i, k] = sum(a[i, j] * b[j, k]);

Rk

+ @

@

a i k

@

b k j

GLSL Shader:

uniform sampler2D a, b;
uniform int l;
float4 psmain(int i, int j) : COLOR0 {
float22 c = float22(0, 0, 0, 0);
for(int k = 0; k < l; k++) {
float22 a1 = float22(tex2D(a, i, k));
float22 b1 = float22(tex2D(b, k, j));
c += mul(a, b);

}
return c;

} // end of psmain()

 Why GPGPU?

 Architecture of Modern GPUs

 Programming a GPGPU

 C$ System and Language:

 Ideas behind

 Current work

 Future Plans

 Support for array operations

 Function Application

 Reduction

 No bound variables

 Backends

 ATI DPVM (Close-To-Metal)

 DirectX

 Use of SIMD Instructions

 C$ project is supported by ATI Fellowship award
for Ph.D. Students

 Full-Scale .NET Compiler

 Multi-Core & CELL Support

 Backend support for structured types

 Support for more complex operations

 http://www.codeplex.com/cbucks/ - project site

 http://www.gpgpu.org/ - major GPGPU resource

http://www.codeplex.com/cbucks/
http://www.gpgpu.org/

