
 1

Abstract—With the growth of GPU programmability and

processing power, GPGPU has become a topic of intensive

research recently. This research, however, has been impeded by

the lack of adequate instruments for GPGPU programming.

In this paper we perform an overview of existing higher-level

means for GPGPU programming. We also propose an idea of our

own language, C$, to be used for it and report some of the

achieved results.

Index Terms—Computer Languages, Parallel Programming,

GPGPU

I. INTRODUCTION

General purpose computations on graphics processor units

(GPGPU) [1] have been a major topic of research in recent

years. GPUs have been used, besides others, for acceleration

of linear algebra computations [2], image processing [3], CFD

numerical methods [4] and ray tracing [5].

In most of these works, GPGPU programming has been

done directly using an API to interact with programmable

graphics hardware, like OpenGL [6]. Such an approach,

however, has a number of drawbacks. First, although GLSL

shader language [7] can be thought of as a high-level

language, graphics hardware interfaces tend to provide lower-

level access to graphics hardware, and it requires a large

number of operations to be performed (texture loading and

binding, frame buffer binding, shader binding etc.) to execute

a single step (a single shader) of a GPGPU program. This

complicates development and debugging of a GPGPU

application. Second, although OpenGL tends to be portable

between various GPUs and operating systems, different GPUs

differ in the subset of the shader language they support in

hardware. Moreover, various GPUs have different hardware

architectures: e.g., ATI X1k [8] and NVIDIA GeForce 6 and 7

series process quadruples of floats, while NVIDIA GeForce 8

series use scalar pipelines. Therefore, array operations, which

are very typically used in GPGPU programming, need to be

translated differently to various architectures to achieve higher

performance. Third, a GPGPU program written in terms of

OpenGL and shader language is not portable to non-GPU

Manuscript received April 10, 2007. This work was supported in part by

ATI (now division of AMD) under its fellowship award for Ph.D. students.

A. V. Adinetz is a Ph.D. student at Moscow State University, Faculty of

Computational Mathematics and Cybernetics, Moscow, 119992 Russia

(corresponding author to provide phone: 926-2833921; e-mail: adinetz@

cs.msu.su).

architectures, which, however, have some similar properties,

such as CELL [9].

Therefore, a higher-level means for GPGPU programming

is required. This being realized, a number of such approaches

appeared, starting from Brook for GPU [10].

The rest of the paper is organized as follows. We overview

existing approaches to higher-level GPGPU programming in

section II. In Section III, we present the C$ language, while in

section IV we discuss the architecture of the underlying

system and how the language can be translated to a GPU

program. In section V, we report some of the results currently

achieved, followed with a brief discussion.

II. EXISTING APPROACHES TO HIGHER-LEVEL GPGPU

PROGRAMMING

After the tediousness of GPGPU programming using bare

OpenGL had been realized, higher-level approaches started to

appear. Typically, they provided a certain level of abstraction,

varying from simple classes wrapping OpenGL or DirectX

shaders and textures into arrays and kernels, to array

processing libraries with support for lazy evaluation and JIT

shader generation. Approaches can also be classified as

general approaches to GPGPU and domain-specific

approaches, e.g. image processing libraries on GPU, such as

CoreImage [11]. Here we shall primarily consider general

approaches.

 Historically, Brook GPU [10] has been the first higher-

level GPGPU approach. Brook GPU is an extension to C

which adds stream types to the language (written as T<>) and

kernel functions which operate on streaming types. As

streaming programming is the basic approach to GPGPU [11],

the concepts of Brook language (with some limitations)

mapped relatively straightforwardly to the GPUs available at

the time, while providing a significantly higher level of

abstraction than bare OpenGL. A number of GPGPU

applications, e.g. [5] and [12]. A compiler has been created

which compiled the Brook code to a sequence of SM 2.0

shaders and respective API calls. With the appearance of SM

3.0, however, the language failed to support new features of

the new shader model, and therefore fell out of use.

Brook has been a higher-level approach, and has been

relatively successful for its time. As it worked relatively well

with streams, it did not provide efficient means for array

programming and for application of shaders to arrays. The

complexity of its integration with existing programming

languages also contributed to its decline, as well as failure to

support SM 3.0.

A Higher-Level and Portable Approach for

GPGPU Programming

Andrew V. Adinetz

 2

Sh [14] is a different approach to GPGPU. Instead of

providing a new language, it uses an existing one (C++) and

wraps shaders and textures in C++ classes, providing a higher-

level streaming programming abstraction. Sh uses

metaprogramming to embed shaders directly into C++

programs as C++ code. This is achieved by surrounding

shader code with macros (such as

SH_BEGIN_FRAGMENT_PROGRAM and

SH_END_PROGRAM), which, in fact, wraps a shader into

quotes and a call to shader object constructor. As a subset of

C++ supported for shader code is relatively small, the

resulting shaders are relatively easily converted into GLSL

and passed to graphics hardware. It allows to specify shader

inputs and outputs directly in C++ code.

Sh did not aim at providing a very high-level abstraction of

a GPU; instead, it provided a simple library supported on a

large number of platforms, which hides tedious calls to

OpenGL behind easier C++ concepts. It does not, however,

provide array programming abstractions or higher-level

abstractions, and shaders for various architectures need to be

coded individually.

The next generation of GPGPU libraries started with

Accelerator [15] library developed at Microsoft Research by

Tarditi et al. The idea behind the library was to provide a

library of array programming primitives which are executed

on GPUs. The class of a 2D GPU-stored floating-point array,

together with arithmetic and boolean operator overloads for it

form the basis of the library. As GPUs require

computationally-intensive shaders in order to run efficiently,

the array operators are not executed immediately; instead, they

are executed lazily, and a tree of array operations is formed.

When the resulting array is read back, the tree is analyzed, and

a sequence of shaders is generated for it. This sequence of

shaders is then executed, and the result is read back. A number

of tests for the Accelerator library has been written, which

demonstrated that Accelerator-generated code is typically

within 50% efficiency compared to hand-written shader code,

being still up to 18 times faster than the same code executed

on CPU.

The first version of Accelerator provided only simple

arithmetic and relational operators on arrays. The second

version already provides whole-array operations, such as inner

and outer products together with array shifts and rotations,

which allows it to be used in practical applications, such as

image processing or linear algebra operators.

The Accelerator library is a research project, and is freely

available for non-commercial applications. A number of

similar commercial approaches exist, such as RapidMind [16]

and PeakStream [17]. They use an approach similar to

Accelerator, combining array programming with lazy

computations. Unlike Accelerator, those are commercial

libraries. They also provide support for platforms other than

GPUs, such Cell BE or multi-core CPUs.

CUDA [18] is an implementation of a subset of C language

which allows to write programs using both GPU and CPU. It

has been designed by NVIDIA for its GeForce 8 series GPUs,

and works with these cards only. CUDA adds a set of specific

libraries to manipulate NVIDIA GPUs. These calls in fact

resemble library calls used in GPGPU libraries to set up and

execute kernels. In addition, it provides implementations of

subsets BLAS and FFT libraries, which can be used to provide

familiar programming interface for programmers.

The success of the GPGPU programming approach with the

use of array programming combined with lazy computations

motivated us to take a similar approach to GPGPU

programming. However, integrating array programming into a

language which does not support it natively causes a number

of conceptual inconsistencies. First, for each array type and

dimensionality, a separate class should be declared in the

language, which requires writing redundant code, together

with defining each of the operations two times: once for arrays

and once for simple types. Second, while it is possible to

override arithmetic and relational operators for such arrays, it

is impossible to override conditional and loop statements as

well as conditional operators, which leads to inconsistencies in

expressing control structures in shader code and in CPU code

of the program. Moreover, pure application of arithmetical

operators to arrays in not always the best way to perform array

operators; it is often easier (e.g., for ray tracing) to express

GPU algorithms as functions without side effects applied to

arrays, which is not provided by existing approaches. Finally,

pure dynamic approaches lack static code analysis, which

could provide clues for better memory representation and

breaking the expression tree into shaders.

III. OUR LANGUAGE FOR GPGPU PROGRAMMING

We therefore opted to design a language which would

provide primitives for GPGPU programming, which we called

C$ [19]. In the language, we attempted to combine features of

C# language together with array programming primitives

which would allow higher-level GPGPU programming. Such

an approach is quite common for modern parallel

programming languages, such as Titanium [20] or Chapel

[21], so we follow it. Technically, our language is based on

.NET, and array and functional types are translated into .NET

interfaces. On the one hand, it allows better integrating our

language with existing languages, such as C#, and thus write

whole GPGPU programs together with I/O and user

interaction with a single language. On the other hand, this

would allow to develop a language and a library

simultaneously, and use the programming library from other

.NET languages.

In our language, we decided to merge arrays and functions;

thus, an array is a special case of a function. This is achieved

by interpreting functional types as .NET interfaces, which can

be implemented by various classes which represent GPU-

mapped arrays, functions associated with methods etc.

Although the idea is not new, it seems logical in the context of

lazy computations, which is more common for functional

programming. This also makes possible better integration of

arrays with other data structures, such as maps; we also allow

for user-defined classes to inherit from functional types, which

allows to represent files, database queries etc. as functions,

integrating them with lazy evaluation framework and

potentially reducing the amount of reads from files.

Merging arrays with functions also allows to express such

operations as indexing of arrays with arrays as a more natural

operation of superposition of functions. It also allows to avoid

introducing a separate type of index sets and regions into the

 3

language. Each function in C$ has a domain (possibly finite or

infinite), which is a special function of type int => T, where T

is the type of the argument tuple of a function.

For each standard and user-defined function, functional and

reduction promotions are applied. Assume there is a float

op+(float a, float b) addition function (which is, of course, a

standard one). It is then allowed to pass to it as arguments

functions (or arrays) which return floating-point values, and

obtain a new function as a result, which takes arguments of the

first two functions, and returns the sum of their results. It is

also possible to pass to the + function a single function

returning a floating-point value, and reduction operations shall

be performed on the entire set of values returned by this

function.

In order to perform lazy computations, facilities for side-

effect specification are needed, which are introduced into a

language in the form of a standard void keyword, which

means a function having side effect in our language. We also

use C# structural types (which we rename here to final classes

with certain limitations) with immutability specification to

support simple elements of OOP in high-performance

computations.

As each function has a domain associated with it, it is

possible to deduce the range of values of loop variables rather

than explicitly specifying it. So we introduce a concept of a

bound variable into our language, which can conceptually be

understood as a loop variable of a parallel loop without any

loop header. For example, this is how dense matrix

multiplication is expressed with our language:

type matrix = float (int, int); // matrix functional type alias

class Utils { // no global functions or variables

 matrix mul(matrix a, matrix b) {

 matrix c(j, l) = + (a(j, k) * b(k, l));

 return c;

 } // end of mul

} // end of class Utils

Here, a matrix is treated as a floating-point function of two

integer values. a, b, and c are variables, while j, k and l are

bound variables. The range of bound variables is inferred

dynamically from the domains of a and b functions, the same

is true for the domain of the c variable. Because k occurs in

both a and b indexing (which can be done with brackets as

well), respective dimensions of a and b matrices are run

though simultaneously. The * operator performs element

multiplication, while the + actually performs reduction by all

bound variables declared inside it and all non-bound

dimensions (variables j and l are declared outside the

reduction, and reduction is not performed by them, while k is

declared inside, and the expression is reduced by it). Bound

variables are allowed to be used only in functions without side

effects.

This makes it relatively easy for the language compiler to

extract parallel segments of the program. Parallel segments are

those in which either bound variables or functional or

reduction promotion is used. The main source of parallelism in

the language is evaluation of a function without side effects on

its entire domain. The parallel segments thus perform lazy

evaluation and construct functional trees, which are compiled

and translated at the points of actualization. Such points can

also be defined relatively easy as points where the constructed

function is passed as an argument to a method with side

effects, such as methods which save results of computations to

files, or points where a function is converted to an array (an

array, unlike a function, is understood strictly imperatively,

and is always associated with an object inside backend

memory).

IV. APPROACHES TO TRANSLATION OF C$ LANGUAGE

The proposed structure of the C$ system is outlined in

figure 1.

The C$ source code is first processed with the C$ compiler,

which builds .NET assemblies. An assembly shall contain the

MSIL code, the classes and attributes which reflect properties

of C$ entities otherwise not representable in .NET (such as

whether or not the function has a side effect etc.). Segments of

parallel code are actually translated in calls to C$ runtime

which is responsible for lazy computations.

At the runtime, the DAG of lazy functional computations

(FDAG) is built. Its leaves contain non-functional values,

functions (arrays, maps, member functions etc.) and bound

variables, while its inner nodes contain functional operations

(apply, reduce etc.). This allows us to treat standard and user-

defined functions alike. After the evaluation of the DAG is

requested, runtime optimization (such as common

subexpression elimination, constant propagation, reordering

etc.) is performed, and the DAG is passed on to the backend.

The backend is responsible for memory management, code

generation for target architecture, and machine-dependent

optimization. The DAG is executed at the backend, and the

result is made accessible to the runtime.

Note that a backend is responsible for storing arrays used in

high-performance segments of the program (while .NET

memory management is used for other objects). When a

program issues a request to allocate a memory for a functional

object (array, map etc.), it is checked whether the backend can

serve the request. If it can, the memory is allocated on the

backend, and further computations are also performed there. If

not, the memory is allocated by .NET and the code is actually

interpreted in runtime.

C$ source files (*.cb) C$ Language Compiler

*.exe file

MSIL, C$ Attributes, Calls to C$ Runtime

C$ Runtime

FDAG Creation, Machine-Independent Optimization

C$ Backend (GPU, Cell, SMP etc.)

Machine-Independent Optimization

Code Generation

Memory Management

Fig. 1. The structure of C$ system.

 4

Currently we mainly target GPUs as backends. We’re

planning to have several GPU backends (one for DirectX, one

for OpenGL, one for ATI boards and one for NVIDIA ones) in

order to get the best of each of the boards. Although the exact

format of the FDAG and backend-runtime interface is

currently under development, we’re planning to make this

interface open in order for other developers to be able to write

backend for other architectures, such as Cell BE or multi-core.

V. CURRENT STATE OF WORK AND DISCUSSION

 We have currently implemented a simple interpreter for a

subset of C$ language, in order to be able to perform backend

development together with the development of the first

version of language specification and the language compiler.

We’ve also implemented a backend for ATI Data-parallel

virtual machine (DPVM) [22]. We’re currently able to

translate simple expressions with floating-point arrays and

reductions; we do not currently support bound variables.

The work is currently going on with writing a draft

language specification together with language compiler to

.NET (currently we compile the language into custom

intermediate representation, which shall be deprecated). The

work is also going on with implementing a DirectX backend.

The first version of the draft language specification will be

available soon. We’re also starting development of multi-core

backend soon.

We think that, given .NET integration, a C#-like language

for GPGPU programming and a number of backends, at least

for GPU and multi-core, will make the system usable enough,

and will contribute to the popularization of GPGPU

programming.

REFERENCES

[1] GPGPU.org. http://www.gpgpu.org/.

[2] Linear algebra operators for GPU implementation of

numerical algorithms. Kruger, Jens and Westermann,

Rudiger. Los Angeles, California : ACM Press, 2005.

International Conference on Computer Graphics and

Interactive Techniques.

[3] GPUCV: A framework for image processing acceleration

with graphics processors. Farrugia, J. P., et al. Toronto,

Ontario, Canada : IEEE, 2006. IEEE International Conference

on Multimedia & Expo (ICME 2006).

[4] A multigrid solver for boundary value problems using

programmable graphics hardware. Goodnight, Nolan, et al.

San Diego, California : Eurographics Association, 2003.

SIGGRAPH/EUROGRAPHICS Workshop On Graphics

Hardware. pp. 102 - 111. ISBN ~ ISSN:1727-3471 , 1-58113-

739-7.

[5] Ray tracing on programmable graphics hardware.

Purcell, Timothy J., et al. Los Angeles, California : ACM

Press, 2005.

[6] OpenGL.org. http://www.opengl.org.

[7] Kessenich, John, Baldwin, Dave and Rost, Randi. The

OpenGL Shading Language. September 7, 2006.

[8] ATI Technologies Inc. Radeon X1800 Shader

Architecture. 2005.

[9] IBM Corporation. Cell Broadband Engine Architecture.

s.l. : IBM Corporation, October 3, 2006.

[10] Brook for GPUs: stream computing on graphics

hardware. Buck, Ian, et al. Los Angeles, California : ACM

Press, 2004. pp. 777 - 786.

[11] Apple Inc. Mac OS X Core Image.

http://www.apple.com/macosx/features/coreimage/.

[12] Mapping computational concepts to GPUs. Harris,

Mark. Los Angeles, California : ACM Press, 2005. ACM

SIGGRAPH 2005 Courses.

[13] KD-tree acceleration structures for a GPU raytracer.

Foley, Tim and Sugerman, Jeremy. Los Angeles,

California : ACM Press, 2005 .

SIGGRAPH/EUROGRAPHICS Workshop On Graphics

Hardware. pp. 15 - 22. ISBN:1-59593-086-8.

[14] Sh Web Site. http://libsh.org/.

[15] Accelerator: using data parallelism to program GPUs for

general-purpose uses. Tarditi, David, Puri, Sidd and

Oglesby, Jose. San Jose, California, USA : ACM Press, 2006

Proceedings of the 12th international conference on

Architectural support for programming languages and

operating systems. pp. 325 - 335. SESSION: Embedded and

special-purpose systems.

[16] Rapid Mind Inc. Web Site. http://www.rapidmind.net/.

[17] PeakStream Inc. Web Site.

http://www.peakstreaminc.com/.

[18] NVIDIA Corporation. NVIDIA CUDA Complete

Unified Device Architecture. February 12, 2007.

[19] Adinetz, Andrew V. C$ Project Web Site.

http://www.codeplex.com/cbucks.

[20] Bonachea, Dan, et al. Titanium Language Reference

Manual version 2.20. [ed.] P. L. Hilfinger. August 2006.

[21] Cray Inc. Chapel Language Speicifcation 0.702. s.l. :

Cray Inc., 2005.

[22] A performance-oriented data parallel virtual machine for

GPUs. Peercy, Mark, Segal, Mark and Gerstmann, Derek.

Boston, Massachusetts : ACM Press, 2006 . ACM

SIGGRAPH 2006 Sketches. ISBN:1-59593-364-6.

