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Abstract—With the growth of GPU programmability and 

processing power, GPGPU has become a topic of intensive 

research recently. This research, however, has been impeded by 

the lack of adequate instruments for GPGPU programming. 

In this paper we perform an overview of existing higher-level 

means for GPGPU programming. We also propose an idea of our 

own language, C$, to be used for it and report some of the 

achieved results.   

 
Index Terms—Computer Languages, Parallel Programming, 

GPGPU 

 

I. INTRODUCTION 

General purpose computations on graphics processor units 

(GPGPU) [1] have been a major topic of research in recent 

years.  GPUs have been used, besides others, for acceleration 

of linear algebra computations [2], image processing [3], CFD 

numerical methods [4] and ray tracing [5].  

In most of these works, GPGPU programming has been 

done directly using an API to interact with programmable 

graphics hardware, like OpenGL [6]. Such an approach, 

however, has a number of drawbacks. First, although GLSL 

shader language [7] can be thought of as a high-level 

language, graphics hardware interfaces tend to provide lower-

level access to graphics hardware, and it requires a large 

number of operations to be performed (texture loading and 

binding, frame buffer binding, shader binding etc.) to execute 

a single step (a single shader) of a GPGPU program. This 

complicates development and debugging of a GPGPU 

application. Second, although OpenGL tends to be portable 

between various GPUs and operating systems, different GPUs 

differ in the subset of the shader language they support in 

hardware. Moreover, various GPUs have different hardware 

architectures: e.g., ATI X1k [8] and NVIDIA GeForce 6 and 7 

series process quadruples of floats, while NVIDIA GeForce 8 

series use scalar pipelines. Therefore, array operations, which 

are very typically used in GPGPU programming, need to be 

translated differently to various architectures to achieve higher 

performance. Third, a GPGPU program written in terms of 

OpenGL and shader language is not portable to non-GPU 
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architectures, which, however, have some similar properties, 

such as CELL [9]. 

Therefore, a higher-level means for GPGPU programming 

is required. This being realized, a number of such approaches 

appeared, starting from Brook for GPU [10]. 

The rest of the paper is organized as follows. We overview 

existing approaches to higher-level GPGPU programming in 

section II. In Section III, we present the C$ language, while in 

section IV we discuss the architecture of the underlying 

system and how the language can be translated to a GPU 

program. In section V, we report some of the results currently 

achieved, followed with a brief discussion.  

II. EXISTING APPROACHES TO HIGHER-LEVEL GPGPU 

PROGRAMMING 

After the tediousness of GPGPU programming using bare 

OpenGL had been realized, higher-level approaches started to 

appear. Typically, they provided a certain level of abstraction, 

varying from simple classes wrapping OpenGL or DirectX 

shaders and textures into arrays and kernels, to array 

processing libraries with support for lazy evaluation and JIT 

shader generation. Approaches can also be classified as 

general approaches to GPGPU and domain-specific 

approaches, e.g. image processing libraries on GPU, such as 

CoreImage [11]. Here we shall primarily consider general 

approaches. 

 Historically, Brook GPU [10] has been the first higher-

level GPGPU approach.  Brook GPU is an extension to C 

which adds stream types to the language (written as T<>) and 

kernel functions which operate on streaming types. As 

streaming programming is the basic approach to GPGPU [11], 

the concepts of Brook language (with some limitations) 

mapped relatively straightforwardly to the GPUs available at 

the time, while providing a significantly higher level of 

abstraction than bare OpenGL. A number of GPGPU 

applications, e.g. [5] and [12]. A compiler has been created 

which compiled the Brook code to a sequence of SM 2.0 

shaders and respective API calls. With the appearance of SM 

3.0, however, the language failed to support new features of 

the new shader model, and therefore fell out of use.  

Brook has been a higher-level approach, and has been 

relatively successful for its time. As it worked relatively well 

with streams, it did not provide efficient means for array 

programming and for application of shaders to arrays. The 

complexity of its integration with existing programming 

languages also contributed to its decline, as well as failure to 

support SM 3.0.  
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Sh [14] is a different approach to GPGPU. Instead of 

providing a new language, it uses an existing one (C++) and 

wraps shaders and textures in C++ classes, providing a higher-

level streaming programming abstraction. Sh uses 

metaprogramming to embed shaders directly into C++ 

programs as C++ code. This is achieved by surrounding 

shader code with macros (such as  

SH_BEGIN_FRAGMENT_PROGRAM and 

SH_END_PROGRAM), which, in fact, wraps a shader into 

quotes and a call to shader object constructor. As a subset of 

C++ supported for shader code is relatively small, the 

resulting shaders are relatively easily converted into GLSL 

and passed to graphics hardware. It allows to specify shader 

inputs and outputs directly in C++ code.  

Sh did not aim at providing a very high-level abstraction of 

a GPU; instead, it provided a simple library supported on a 

large number of platforms, which hides tedious calls to 

OpenGL behind easier C++ concepts. It does not, however, 

provide array programming abstractions or higher-level 

abstractions, and shaders for various architectures need to be 

coded individually. 

The next generation of GPGPU libraries started with 

Accelerator [15] library developed at Microsoft Research by 

Tarditi et al. The idea behind the library was to provide a 

library of array programming primitives which are executed 

on GPUs. The class of a 2D GPU-stored floating-point array, 

together with arithmetic and boolean operator overloads for it 

form the basis of the library. As GPUs require 

computationally-intensive shaders in order to run efficiently, 

the array operators are not executed immediately; instead, they 

are executed lazily, and a tree of array operations is formed. 

When the resulting array is read back, the tree is analyzed, and 

a sequence of shaders is generated for it. This sequence of 

shaders is then executed, and the result is read back. A number 

of tests for the Accelerator library has been written, which 

demonstrated that Accelerator-generated code is typically 

within 50% efficiency compared to hand-written shader code, 

being still up to 18 times faster than the same code executed 

on CPU.  

The first version of Accelerator provided only simple 

arithmetic and relational operators on arrays. The second 

version already provides whole-array operations, such as inner 

and outer products together with array shifts and rotations, 

which allows it to be used in practical applications, such as 

image processing or linear algebra operators.  

The Accelerator library is a research project, and is freely 

available for non-commercial applications. A number of 

similar commercial approaches exist, such as RapidMind [16] 

and PeakStream [17]. They use an approach similar to 

Accelerator, combining array programming with lazy 

computations. Unlike Accelerator, those are commercial 

libraries. They also provide support for platforms other than 

GPUs, such Cell BE or multi-core CPUs.  

CUDA [18]  is an implementation of a subset of C language 

which allows to write programs using both GPU and CPU. It 

has been designed by NVIDIA for its GeForce 8 series GPUs, 

and works with these cards only. CUDA adds a set of specific 

libraries to manipulate NVIDIA GPUs. These calls in fact 

resemble library calls used in GPGPU libraries to set up and 

execute kernels. In addition, it provides implementations of 

subsets BLAS and FFT libraries, which can be used to provide 

familiar programming interface for programmers.   

The success of the GPGPU programming approach with the 

use of array programming combined with lazy computations 

motivated us to take a similar approach to GPGPU 

programming. However, integrating array programming into a 

language which does not support it natively causes a number 

of conceptual inconsistencies. First, for each array type and 

dimensionality, a separate class should be declared in the 

language, which requires writing redundant code, together 

with defining each of the operations two times: once for arrays 

and once for simple types. Second, while it is possible to 

override arithmetic and relational operators for such arrays, it 

is impossible to override conditional and loop statements as 

well as conditional operators, which leads to inconsistencies in 

expressing control structures in shader code and in CPU code 

of the program. Moreover, pure application of arithmetical 

operators to arrays in not always the best way to perform array 

operators; it is often easier (e.g., for ray tracing) to express 

GPU algorithms as functions without side effects applied to 

arrays, which is not provided by existing approaches. Finally, 

pure dynamic approaches lack static code analysis, which 

could provide clues for better memory representation and 

breaking the expression tree into shaders.  

III. OUR LANGUAGE FOR GPGPU PROGRAMMING 

We therefore opted to design a language which  would 

provide primitives for GPGPU programming, which we called 

C$ [19]. In the language, we attempted to combine features of 

C# language together with array programming primitives 

which would allow higher-level GPGPU programming. Such 

an approach is quite common for modern parallel 

programming languages, such as Titanium [20] or Chapel 

[21], so we follow it. Technically, our language is based on 

.NET, and array and functional types are translated into .NET 

interfaces. On the one hand, it allows better integrating our 

language with existing languages, such as C#, and thus write 

whole GPGPU programs together with I/O and user 

interaction with a single language. On the other hand, this 

would allow to develop a language and a library 

simultaneously, and use the programming library from other 

.NET languages. 

In our language, we decided to merge arrays and functions; 

thus, an array is a special case of a function. This is achieved 

by interpreting functional types as .NET interfaces, which can 

be implemented by various classes which represent GPU-

mapped arrays, functions associated with methods etc. 

Although the idea is not new, it seems logical in the context of 

lazy computations, which is more common for functional 

programming. This also makes possible better integration of 

arrays with other data structures, such as maps; we also allow 

for user-defined classes to inherit from functional types, which 

allows to represent files, database queries etc. as functions, 

integrating them with lazy evaluation framework and 

potentially reducing the amount of reads from files.  

Merging arrays with functions also allows to express such 

operations as indexing of arrays with arrays as a more natural 

operation of superposition of functions. It also allows to avoid 

introducing a separate type of index sets and regions into the 
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language. Each function in C$ has a domain (possibly finite or 

infinite), which is a special function of type int => T, where T 

is the type of the argument tuple of a function. 

For each standard and user-defined function, functional and 

reduction promotions are applied. Assume there is a float 

op+(float a, float b) addition function (which is, of course, a 

standard one). It is then allowed to pass to it as arguments 

functions (or arrays) which return floating-point values, and 

obtain a new function as a result, which takes arguments of the 

first two functions, and returns the sum of their results. It is 

also possible to pass to the + function a single function 

returning a floating-point value, and reduction operations shall 

be performed on the entire set of values returned by this 

function.   

In order to perform lazy computations, facilities for side-

effect specification are needed, which are introduced into a 

language in the form of a standard void keyword, which 

means a function having side effect in our language. We also 

use C# structural types (which we rename here to final classes 

with certain limitations) with immutability specification to 

support simple elements of OOP in high-performance 

computations. 

As each function has a domain associated with it, it is 

possible to deduce the range of values of loop variables rather 

than explicitly specifying it. So we introduce a concept of a 

bound variable into our language, which can conceptually be 

understood as a loop variable of a parallel loop without any 

loop header. For example, this is how dense matrix 

multiplication is expressed with our language: 

 

type matrix = float (int, int); // matrix functional type alias 

class Utils {  // no global functions or variables 

 matrix mul(matrix a, matrix b) {  

  matrix c(j, l) = + (a(j, k) * b(k, l)); 

  return c; 

 }  // end of mul 

}  // end of class Utils 

 

Here, a matrix is treated as a floating-point function of two 

integer values. a, b, and c are variables, while j, k and l are 

bound variables. The range of bound variables is inferred 

dynamically from the domains of a and b functions, the same 

is true for the domain of the c variable. Because k occurs in 

both a and b indexing (which can be done with brackets as 

well), respective dimensions of a and b matrices are run 

though simultaneously. The * operator performs element 

multiplication, while the + actually performs reduction by all 

bound variables declared inside it and all non-bound 

dimensions (variables j and l are declared outside the 

reduction, and reduction is not performed by them, while k is 

declared inside, and the expression is reduced by it). Bound 

variables are allowed to be used only in functions without side 

effects.  

This makes it relatively easy for the language compiler to 

extract parallel segments of the program. Parallel segments are 

those in which either bound variables or functional or 

reduction promotion is used. The main source of parallelism in 

the language is evaluation of a function without side effects on 

its entire domain. The parallel segments thus perform lazy 

evaluation and construct functional trees, which are compiled 

and translated at the points of actualization. Such points can 

also be defined relatively easy as points where the constructed 

function is passed as an argument to a method with side 

effects, such as methods which save results of computations to 

files, or points where a function is converted to an array (an 

array, unlike a function, is understood strictly imperatively, 

and is always associated with an object inside backend 

memory).   

IV. APPROACHES TO TRANSLATION OF C$ LANGUAGE 

The proposed structure of the C$ system is outlined in 

figure 1.  

  
 

The C$ source code is first processed with the C$ compiler, 

which builds .NET assemblies. An assembly shall contain the 

MSIL code, the classes and attributes which reflect properties 

of C$ entities otherwise not representable in .NET (such as 

whether or not the function has a side effect etc.). Segments of 

parallel code are actually translated in calls to C$ runtime 

which is responsible for lazy computations.  

At the runtime, the DAG of lazy functional computations 

(FDAG) is built. Its leaves contain non-functional values, 

functions (arrays, maps, member functions etc.) and bound 

variables, while its inner nodes contain functional operations 

(apply, reduce etc.). This allows us to treat standard and user-

defined functions alike. After the evaluation of the DAG is 

requested, runtime optimization (such as common 

subexpression elimination, constant propagation, reordering 

etc.) is performed, and the DAG is passed on to the backend. 

The backend is responsible for memory management, code 

generation for target architecture, and machine-dependent 

optimization. The DAG is executed at the backend, and the 

result is made accessible to the runtime.  

Note that a backend is responsible for storing arrays used in 

high-performance segments of the program (while .NET 

memory management is used for other objects). When a 

program issues a request to allocate a memory for a functional 

object (array, map etc.), it is checked whether the backend can 

serve the request. If it can, the memory is allocated on the 

backend, and further computations are also performed there. If 

not, the memory is allocated by .NET and the code is actually 

interpreted in runtime.  

C$ source files (*.cb) C$ Language Compiler 

*.exe file 

MSIL,  C$ Attributes,  Calls to C$ Runtime 

C$ Runtime 

FDAG Creation,  Machine-Independent Optimization 

C$ Backend (GPU, Cell, SMP etc.) 

Machine-Independent Optimization 

Code Generation 

Memory Management 

Fig. 1. The structure of C$ system. 
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Currently we mainly target GPUs as backends. We’re 

planning to have several GPU backends (one for DirectX, one 

for OpenGL, one for ATI boards and one for NVIDIA ones) in 

order to get the best of each of the boards. Although the exact 

format of the FDAG and backend-runtime interface is 

currently under development, we’re planning to make this 

interface open in order for other developers to be able to write 

backend for other architectures, such as Cell BE or multi-core. 

 

V. CURRENT STATE OF WORK AND DISCUSSION 

  We have currently implemented a simple interpreter for a 

subset of C$ language, in order to be able to perform backend 

development together with the development of the first 

version of language specification and the language compiler. 

We’ve also implemented a backend for ATI Data-parallel 

virtual machine (DPVM) [22]. We’re currently able to 

translate simple expressions with floating-point arrays and 

reductions; we do not currently support bound variables.  

The work is currently going on with writing a draft 

language specification together with language compiler to 

.NET (currently we compile the language into custom 

intermediate representation, which shall be deprecated). The 

work is also going on with implementing a DirectX backend. 

The first version of the draft language specification will be 

available soon. We’re also starting development of multi-core 

backend soon. 

We think that, given .NET integration, a C#-like language 

for GPGPU programming and a number of backends, at least 

for GPU and multi-core, will make the system usable enough, 

and will contribute to the popularization of GPGPU 

programming.  
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