

[image: didago]
BizTalk Software Factory v3
By Jean-Paul Smit (www.didago.nl)
Introduction
[bookmark: _GoBack]The BizTalk Software Factory (BSF) adds guidance for creating BizTalk Server 2010 solutions to Visual Studio 2010.

Guidance means:
· Generating a consistent project structure for you
· Assisting in putting BizTalk artifacts in the right place
· Shortening the number of clicks for basic tasks
· Implementing best practices by example
· Support for unit tests
· Support for using other great community tools like
· BizUnit 4.0
· BizTalk Deployment Framework 5.0
· BizTalk Solution Instrumentation Framework 1.4

Guidance brings you:
· Consistency in your BizTalk projects
· Quickly starting new projects or proof of concepts
· Quickly getting new developers up to speed in existing projects
· More productive developers
Installation

BSF is developed using the Guidance Automation Toolkit (GAT) and it depends on the Guidance Automation Extensions (GAX) and the Visual Studio SDK. To be able to use the BSF these packages must be installed.
There is a dependency between GAT and GAX so you need to install in the order specified.

Go to the Visual Studio 2010 Extension Manager.
[image:]

Go to the online gallery and search for GAX. The GAX 2010 will show up just like in the picture below.

[image:]

Click on ‘Download’ and agree the license terms to install the extension. After installation you need to restart Visual Studio.

Next the SDK needs to be installed.
Searching for ‘SDK’ will have the following result.

[image:]

By clicking on ‘Download’ you’re taken to a webpage because the SDK cannot be installed from within Visual Studio itself.
Alternatively you can download it from this location:
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=21307c23-f0ff-4ef2-a0a4-dca54ddb1e21&displaylang=en

After the SDK has been installed you can install the GAT 2010 like you did with GAX 2010.

Now the prerequisites are installed you can install the BizTalk Software Factory v3.
Just double-click the VSIX file (BizTalkSoftwareFactory.vsix).

[image:]

And follow the instructions to install it into Visual Studio.

[image:]

Basically you can start using it now, but if you want to utilize the BSF to its fullest extent, you need to install these prerequisites as well.
· BizUnit 4.0 – http://bizunit.codeplex.com
· This framework is used to implement the unit test facilities of the BSF. If you’re not going to use it, which I would not advise, you can skip this install.
· BizTalk Deployment Framework 5.0 – http://btdf.codeplex.com
· This framework is used to support the deployment facilities of the BSF. If you’re using a different approach, like the features BizTalk is providing or for example the PowerShell provider for BizTalk (http://psbiztalk.codeplex.com), then you can skip this install.
Getting started with the BizTalk Software Factory
The BizTalk Software Factory provides guidance on several levels during development. This chapter will discuss all features that it provides.
Starting a new Solution
To use the BSF, just launch Visual Studio 2010 and start the wizard to create a new project.
Under the ‘Guidance Packages’ template you’ll find the just installed “BizTalk Software Factory” package with the “BizTalk Software Factory Solution” project template.
[image:]

Specify a solution name and location.
After clicking “Ok” the project creation wizard of the BSF will start with the following dialog.
The wizard contains two pages.

[image:]

On the first page you specify the namespace and application name of the BizTalk Server project. Besides that you can define what project types you need in your solution.
For the ‘Schemas’, ‘Mappings’, ‘Orchestration’ and ‘Pipelines’ project, a BizTalk Server project will be generated.
The ‘Business Component’ and ‘Unit Test’ project selection creates C# class libraries.
Finally the ‘Deployment Framework’ generates the necessary deployment files to be able to work with the BizTalk Deployment Framework.

After clicking ‘Next’ the second wizard page is displayed.
On this page there is a checkbox with which you can specify if you want a multi-project solution or a single-project solution.
A single-project solution will generate a single BizTalk Server project and create folders for the individual artifacts like schemas, mappings, orchestrations and pipelines.
Business components cannot be part of a BizTalk Server project, so it will be added as C# class library.
In a multi-project solution scenario, every individual artifact will get its own BizTalk Server project.
Single-project is most suitable for demo or proof of concept scenarios, where multi-project is better in real project scenarios.

Next to the project structure, you can also define a custom strong name key on this wizard page or let the BSF generate one for you.
[image:]

In case of a single-project solution, this would be the generated project structure.

[image:]
If ‘Multi-Project Solution’ would have been checked, this is the outcome.

[image:]

All artifacts are in separate projects and the necessary references are applied.

Also in every project the assembly name and default namespace is set.

[image:]

And the BizTalk Application name has been filled in.

[image:]

Now the project structure is ready, the next step in development can be done
Adding artifacts to projects
After the project structure is generated, the artifacts need to be added to the projects. To assist in putting the correct artifact in the correct project, also the guidance can help.
While all artifacts still can be added the regular way, the guidance only lets you add the correct artifact. For example if you want to add a schema, the context menu only displays the schema option. Right-click on the schemas project and follow the ‘Add’ context menu. This works the same for other artifacts.

[image:]
Adding a Schema
When adding a schema to a project, the regular dialog shows up.
[image:]

Specify a name for the schema and click ‘Add’.
Next the familiar schema editing dialog shows up, but some values are pre filled in.
First the root node name is equal to the schema name to keep consistency.

[image:]

Second, the target namespace has been set according to best practices.
[image:]

Adding a Mapping
The mapping can be added the same way as the schema, via the guidance context menu.
The dialog that is then presented is also familiar, besides the fact that you don’t need to specify a name. This name will be derived from the schemas you select, so just click ‘Add’.

[image:]

After clicking ‘Add’ a totally new dialog shows up, this simplifies adding a map dramatically.

[image:]

Just two drop downs to specify the source and destination schema. Opposed to the regular dialog it saves you a dozen clicks.
The schemas in both drop downs are derived from the Schemas project and referenced schema assemblies.
If you have selected the source and destination schema, click ‘Finish’. Next the mapping will be generated and the following message box will be displayed.
[image:]

Behind the scenes the BSF has renamed the mapping and set the schemas and Visual Studio needs to reload the mapping. Just click ‘Yes’ and the mapping is ready to be filled in.

[image:]

In the event of a schema with multiple roots, the same approach can be used.
Like any other schema a schema with multiple root nodes will be displayed in the drop down boxes with the name of the schema. When you click “Finish” Visual Studio will try to create the map to find out that the schema has multiple root nodes. It then will show a dialog where you can select the correct root node.

[image:]
After the wizard finishes, the map is renamed to contain the source and destination schema as a naming convention.

Adding an Orchestration

Again, the approach is similar to adding a schema, via the guidance context menu.
The regular ‘Add Orchestration’ dialog will show up.
There is no additional guidance in creating an orchestration, besides that the BizTalk Instrumentation Solution Framework assembly is already available and referenced.
[image:]

This library allows for ETW logging. If you want to know more about this, please search for “Technical Whitepaper - Instrumentation Best Practices for High Performance BizTalk Solutions”.
By adding a simple line of code in an expression shape, high speed logging is added to your orchestration.

Adding a Pipeline
The approach is similar to adding a schema, via the guidance context menu.
No further guidance available.

Adding a Business Component
A business component is different from the other projects because it is not a BizTalk Server project but a C# class library.
There no context menu guidance, but the project comes with a pre-defined ‘SampleClass.cs’ file.

[image:]

The class has a correct namespace and also the serializable attribute has been set by default.
Also some standard ETW logging code is available as an example.

Adding a Unit Test

One of the most important parts of a project is testing, so the BSF supports unit tests. These tests can be done to a basic level by Visual Studio, for schemas and mappings, but for the more advanced testing BizUnit is used.

To simplify the utilization of unit tests, they are generated for you. On the Unit Test project there is a context menu providing the generation of tests for mappings, schemas and orchestrations.
[image:]

When one of the options has been selected, a familiar dialog shows up where the requested artifact can be selected.

[image:]

If an artifact has been selected, click ‘Finish’ and the test classes and test data are generated.
When the unit test wizard for a schema has finished, this is what the unit test project looks like.

[image:]

In the ‘TestData’ folder an XML file has been placed to contain the data the schema has to be validated against. This test data must be specified by the developer.
Also a class file has been generated to host the unit test, which can be executed using Visual Studio unit testing.
The schema test is executed using the testing facilities BizTalk has added to Visual Studio.

Unit testing a map happens in a similar way. Also a source input XML file is placed in the ‘TestData’ folder and a class is generated. This class contains both a Visual Studio supported unit test as well as a BizUnit supported unit test for the mapping. This test has to be detailed with the location of the source schema XSD in order to run. Within the unit test XPath expressions can be used to test the output.

Finally also for orchestrations a unit test can be generated. This unit test also generates an input XML data file in the ‘TestData’ folder and a class that contains a sample test to be executed using BizUnit.
This class can be changed to reflect real unit test scenarios.

Adding Rules and Policies
For adding Business Rules Engine (BRE) rules and policies there is a solution folder available.
[image:]

Using the Deployment Framework
To deploy BizTalk solutions several approaches can be used:
· Visual Studio
· BTSTask
· BizTalk Administration Console
· PowerShell Provider for BizTalk
· BizTalk Deployment Framework

The BizTalk Deployment Framework is the most extended framework available for deploying BizTalk solutions. Therefore a lot of developers are familiar with it and is it available in the BSF.
If you’re not familiar with this framework, please go to Codeplex to get up to speed about.
When the project structure was generated, the necessary items were added to the ‘Solution Items’ folder.

[image:]

The files ‘BuildDebugMsi.bat’ and ‘BuildReleaseMsi.bat’ have been customized to build using the adjusted deployment project file (btdfproj).
This deployment project file has been customized by the BSF as much as possible.
When the solution has been build, it can be deployed using the tools that have been added to Visual Studio when the deployment framework was installed.

[image:]
2

Pagina 2 van 15
BizTalk Software Factory for BizTalk Server 2010	pagina 2 van 15
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image1.jpeg

image31.jpeg

