
1

User Guide

2

What is BlackSEO Detector?
Well... That question is not easy to answer.

On the one hand, “BlackSEO Detector” is actually a Ruby Class. On the other hand, a
working proof of concept has been made around this class, and it is called “BlackSEO
Detector” too.

In this document, the name “BlackSEO Detector” will be used to reference the
working proof of concept.

What does BlackSEO Detector do?
BlackSEO Detector uses Interenet search engines, like Bing or Google, to look for
strange contents in web sites. These contents may be indicators of server or
infrastructure compromise.

Afterwards, it checks the server response under a couple of conditons. The results of
these tests may be used to try to find out whether or not there is an actual
compromise.

A report is generated with all the results collected in this process.

Features
BlackSEO Detector works on batch mode. By default it does not output any text. This
way, it can be use for scheduled tasks.

All BlackSEO Detector configuration is made through a configuration file. For details
on its format see “Project Configuration File”.

BlackSEO Detector generates an HTML report file with the information collected.
BlackSEO Detector has the following features:
 Support for Search Engines: Currently, Google Custom Search API and Bing

Search API are implemented. Users can implement their own classes for other
search engines and integrate them into the application.

 Multiple queries: Multiple search engine queries can be combined in a project.
 Language support: Spanish and English translation files are included. Users can

implement their own translation files and integrate them into the application.
 Proxy support. Connections can be made directly, through a proxy or using the

configuration provided by the http_prox environment variable. (Ruby 2 or newer
only)

 E-mail reporting: Test reports can be automatically sent by email.

3

Usage
BlackSEO Detector main file is poc.rb. The only command line argument supported is
the configuration file path. So, you can use something like:

ruby poc.rb path_to_config/config.txt

...or, if your operating system is configured to run Ruby files directly, just:
poc.rb path_to_config/config.txt

Project Configuration File
The details about the Project Configuration File format are provided in the
“Configuration file format” of “Class My_configuration” in the “Software
Components” documentaion.

The configuration options that can be set are:

NAME TYPE DEEFAU
LT
VALUE

COMMENTS

verbose Boolean N When assigned a true value, the
application will show messages as
it makes requests, providing real
time information about its
activities.
Example:
verbose=Y

language String spanish Language to use when creating the
report
Example:
language=english

search_engine Pairs

mandatory

Sets a name to reference a search
engine. The first element of the
pair is the search engine name.
The second element is the name of
the Ruby class that implements the
search engine
Example:
search_engine=!Google!Google_cse

4

search_engine_option Pairs Sets an option for search engine
object initialization.
The first element of the pair is the
search engine name.
The second element of the pair is
the option.
Values will be passed to object
initialization method in the same
order that they are provided in the
configuration file. See “Class
Search_engine”, “Class
Goolge_cse” and “Class Bing_api”
for more details.
Example:
search_engine_option=!Google!abcd
search_engine_option=!Google!efgh

title String Report The main title of the report
Example:
title=BlackSEO Detector test

report_file String

mandatory

Path for the main report file.
If a relative path is provided, the
directory where the configuration file
is located will be used as its base.
Exampe:
report_file=reports/report.html

add_date_time Boolean Y If true, the date and time when the
test started will be appended to the
report file name.
Example:
add_date_time=N

overwrite_report Boolean N If true, when report file already
exists it will be overwritten.
Example:
overwrite_report=Y

proxy String :ENV Proxy server.
Example:
proxy=localhost

proxy_port String Proxy port
Example:
proxy_port=80

proxy_user String Proxy user
Example:
proxy_user=username

5

proxy_password String Proxy password
Example:
proxy_password=password

user_agent Strubg BlackSeo
Detector

User Agent used by the application
to make HTTP requests
Example:
user_agent=Custom UA

max_redirects Integer 5 Maximum number of redirections
to follow when making an HTTP
request
Example:
max_redirects=2

hard_check Boolean N If false, tests for a URL will end as
soon as a problem is found.
Otherwise, all tests will be made
for all URLs.
Example:
hard_check=Y

max_report Integer 25 Maximum number of problems to
investigate in a report. When this
value is met, the rest of the URLs
will not be downloaded.
Example:
max_report=10

max_host Integer 15 Maximum number of problems to
investigate for a host. When this
value is met, the rest of its URLs
will not be downloaded.
Example:
max_host=10

max_folder Integer 5 Maximum number of problems to
investigate in a folder. When this
value is met, the rest of its URLs
will not be downloaded.
Example:
max_folder=1

send_mail Boolean N If true, the generated report will be
sent by email.
Example:
send_mail=Y

mail_server String Server to use for sending email
Example:
mail_server=localhost

6

mail_port Integer :default Port for mail server.
Example:
mail_port=123456

mail_cypher String tls Type of cypher to use in emails.
Valid values are: none, tls, ssl
Example:
mail_cypher=none

mail_user String User name for email
authentication
Example:
mail_user=mailuser

mail_password String Password for email authentication
Example:
mail_password=mailpasswd

mail_auth String Type of authentication for email.
See Net::SMTP documentation for
details
Example:
mail_auth=login

mail_from String Mail sender address
Example:
mail_from=sender@example.com

mail_to String Mail recipient address
Example:
mail_to=admin@example.com

mail_subject String BlackSeo
Detector
Results

Mail message subject
Example:
mail_subject=Test Results

mail_body Multiple
strings

Mail message body.
Lines will be inserted into the mail
body in the order provided in the
configuration file.
The following text replacements
will be made:
- Lines consisting in a single dot
character will be replaced with
empty lines.
- [[problems_found]] will be
replaced with the number of
problems found
- [[report_file]] will be replaced
with tje report file path

7

Example:
mail_body=Tesk completed.
mail_body=.
mail_body=See [[report_file]].

Query Pairs

mandatory

Queries to make to search engines.
The first element of the pair is the
search engine name.
The second element of the pair is
the query to make
Example:
query=!Google!levitra site:example.com

allowed_domain Multiple
strings

Domains to include in the report.
URLs not belonging to these
domains will be ignored.
Redirections pointing to domains
not included in this list will cause a
problem alert in the report.
Example:
allowed_domain=example.com
allowed_domain=example.net

ignore_files Multiple
strings

Regular expressions. URLs
matching them will be ignored
Example:
ignore_files=^.*generate_pdf=

text Multiple
strings

Texts that are used as hints for
problematic situations.
When one of this texts is found
inside a response, URL or
summary, a problem alert will be
generated in the report.
Example:
text=levitra
text=viagra

8

Configuration file example
Langage
language=english

Verbose mode
verbose=y

Search Engines
search_engine==Google - CSE=Google_CSE
search_engine_option==Google - CSE=xxx_ api_key_xxxxx
search_engine_option==Google - CSE=yyy_engine_id_yyyy

search_engine==Bing - API=Bing_api
search_engine_option==Bing - API=zzz_api_key_zzzz

Report title
title=Report for EXAMPLE.COM

Report File
report_file=reports/example.com.html

Must add date and time to file name?
add_date_time=n

Overwrite report file if already exists
overwrite_report=y

Keep looking for problems even if one has already been detected for the URL?
hard_check=y

User agent to use in web access
user_agent=Mozilla/5.0 (Windows NT 6.1; WOW64; rv:32.0) Gecko/20100101 Firefox/32.0

Proxy information. :ENV is used if no configuration is given
proxy=
proxy_port=
proxy_user=
proxy_password=

Queries to make .There may be more than one 'query' line"
query==Google - CSE=site:example.com levitra online
query==Bing - API=site:example.com levitra online

9

Text pointing to problems. There may be more than one 'text' line
text=viagra
text=levitra

Maximum number of redirections to follow for each URL
max_redirects=5

Domain allowed for reporting and redirection.
allowed_domain=example.com
allowed_domain=example.net

Regular expression. URLs that match this regexp will not be analysed
ignore_files=.*generate_pdf

Maximum number of files to download per report, host and folder
max_report=25
max_host=20
max_folder=10

Whether or not to send email with results
send_mail=y

Mail configuration
mail_server=mail.example.com
mail_port=
mail_cypher=tls
mail_user=mailusername
mail_password=mailpassword
mail_auth=login
mail_from=mailusername@example.com
mail_to=mailusername@example.com
mail_subject=BlackSEO Detector Report for EXAMPLE.COM
mail_body=A BlackSEO Detector report for EXAMPLE.COM has been generated
mail_body=.
mail_body=Problems found: [[problems_found]] (se attached file)
mail_body=.
mail_body=Full listing is located at [[report_file]]

10

Adding funcionality

11

Adding Search Engine Support
To add support for another Search Engine you must create a Ruby class.

This class must implement all public methods defined in “Class Search_engine”.
There are some example of implementations in the “searchengines” folder of the
BlackSEO Detector application.

The only method whose parameters may be different from the Search_engine
implementation is initialize.

This class must be included in a Ruby code file with “rb” extension. The name of the
file must be the same one as the Ruby class name.

The file must be located in the “searchengines” folder of the BlackSEO Detector
application

Adding Language Support
To add support for a language, a translation file must be created in the “lang” folder
of the BlackSEO Detector application.

The file extension must be “txt”. The file name must be the language name. For
example: spanish.txt

The file must follow the specifications made in “Translation table file format” and
translate the following definitions:

analysis_omitted_protocol:Analysis omitted for URL with non supported protocol - [[protocol]]
analysis_omitted_regexp:Analysis omitted. URL matches exlusion regexp
analysis_omitted_type:Analysis omitted for [[document_type]] file
authorized_domain:Authorized domain
cache_from:CACHE FROM
cannot_download:Could not download the resource
data:Data
desination_page_problems:Destination page may have security problems. Please check
destination_domain_problems:Destination domain may have security problems. Please check
details_for:Details for
dns_compromise:This may be an indicator of DNS server compromise
external_redirection:EXTERNAL REDIRECTION
file:FILE
fit_to_width:Fit to width

12

folder:FOLDER
forging_referer_of:FORGING REFERER OF
found:FOUND
generated_by:Report generated by BlackSEO Detector
hash_contains_text:URL hash string contains the text "[[text]]"
hide_data:Hide data
hide_show_analysis:Hide / Show analysis data
host:HOST
host_name_contains_text:Host name "[[host]]" contains the text "[[text]]"
html:HTML
html_response:HTML Response
http:HTTP
http_headers:HTTP Headers
info:Info
last_if_redirs:Last ones if redirections were followed
malicious_redirection:Malicious redirection?
max_problems_folder:Maximum number of problems investigated for folder met
max_problems_host:Maximum number of problems investigated for host met
max_problems_report:Maximum number of problems investigated in report met
more_details:Click here for more details
no_files_downloaded:No files were downloaded
no_mailicious_content:Could not find malicious content. Anyway, still there might be issues.
no_problems:No problems found
no_problems_in_url:No problems found in URL
no_redirection:NO EXTERNAL REDIRECTION
no_summary:No result summary to show
no_url_to_translate:Cannot find out URL to translate
not_found:NOT FOUND
number_of_problems_for_folder:Number of problems found for this folder:
number_of_problems_for_host:Number of problems found for this host
path_contains_text:Path "[[path]]" contains the text "[[text]]"
provided_by:Provided by
problems_already_detected:Problems already detected for this file
problems_found:problems found
query_string_contains_text:URL query string contains the text "[[text]]"
redirection_found:Redirection found
redirection_inside_domain:Redirection inside domain
redirection_problems:Redirection problems
redirection_to_authorized:REDIRECTION TO AUTHORIZED DOMAIN
regular_access:REGULAR ACCESS
response_code:Response Code
search_engine:Search Engine
server_compromise:This may be an indicator of server compromise
show_data:Show data

13

summaries:Summaries
summary:Summary
suspicious_content:Suspicious content
test:TEST
title:Title
titles:TITLES
translate_using:TRANSLATE USING [[search_engine]]
unauthorized_content:Unauthorized content? Found: "[[hint]]". Number of occurrences: [[number]]

url:URL
url_index_title:URL and Search engine indexes and titles
using_user_agent_of:USING USER AGENT OF

14

Software Components

15

DATA STRUCTURES

Search_engine_result

Hash used by Search Engine Object to represent a result
Keys:
:url Result URL
:referer URL for the search engine request that provided the result
:document_type Document type (PDF, DOC, etc.)
:title Result title
:summary Result summary
:cache URL for the search engine cache copy of the document
:translate URL for translation of the document
:bot_user_agent Search engine bot User Agent
:s_e_object Search engine object that provide the result

Search_engine_response

Set of results provided by a search engine for a query.
It is an array of Search_engine_result

Deferred_engine_result

Hash used by Deferred Information objects to return URL information for cache or
translation
Keys:
:url URL for document cache or translation
:referer Referer to use when requesting the URL

BSD_result

Hash used by BlackSEO_detector to represent results for a given URL.
Keys are Search engine names
Values are a Search_engine_result data structures provided by the Search Engine

BSD_URL_info

Hash used by BlackSEO_detector to represent the information collected for a URL
Keys are URLs.
Values are BSD_results for that URL.

16

Report_info

Hash used by the report generator to receive items (tipically, report lines or tables)

Keys:
:level Valid values are :alert, :warning, :ok and :info
:info Data item
:headers Headers for tables
:parameters Parameters for text translation

17

CLASSES

Class Translator

This class provides translation for HTML messages.

Instance Methods
 initialize(file_path)

Creates a new instance. Its translation table will be loaded from the file given by
file_path.

 load_table(file, add = false)
Opens the file given by file_path, parses its contents and loads them into the
translation table. If add is false, translation table will be deleted prior to loading
the file.

 translate(input, tokens={})
Translates an input, using the information provided by the hash “tokens”. Tokens
have the format:
<token> => <value>
Where <token> is a Symbol and <value> is a String.

How translation works
If input is a Symbol, it will be looked up in the “tokens” hash to find its translation. If
it is not found, the translation table will be used.

If it is a String, text inside double brackets (“[[...]]”) will be converted to Symbol and
processed as above. The result will be used to replace the brackets and its contents.

Translation table file format
Translation table files are text files whose lines have the format:
<token>:<value>

Where <token> characters may be letters, digits and undesrcores (“_”).
When loaded into the translation table, token will be converted to Symbol.

Empty lines and lines starting with the character “#” are ignored. There may be
blanks at the beginning of the line. All extra blanks at the beginning and the end of
the line will be removed.

18

Class My_configuration

Class used to load and provide configuration information to the application.

Instance Methods
 initialize(definitions)

Creates a new instance and load the configuration option definitions (see below
for details)

 read(file_path)
Loads configuration from the file given by file_path

 []=(option_to_assign, value)
Allows use of brackets as with Hashes. The index should be an option name,
provided as a symbol

 [](option)
Allows use of brackets as with Hashes

 to_s
Converts configuration to a human readable string (...)

Definitions format
The definitions parameter for the initialize method is a Hash with the following keys:
 :name

Name of the parameter. Only letters, digits and underscore (_) are supported.
 :kind

May be one of the following:
 :simple (one value) - This is the default value
 :multiple (array of values)
 :pairs (array of hashes)

 :mandatory
Boolean value; default is false. When true, this configuration option must be
assigned a value before using it

 :type
Type of the values. May be:
 :string This is the default value
 :integer
 :boolean.

When assigning values to a Boolean option, the value will be considered
true if it is one of the following “y”, “t”, “yes” or “true”. This check is not case
sensitive.

 :default
Default value

 :allowed
Sometimes we need to store some values with types different from the one
given to the option. Values in this array will be allowed regardless of their type. If

19

only a value is given, an array will be created with it as its only element.

Configuration file format
The configuration file is a text file. Its lines have the following formats
 <option>=<value>

Used for simple and multiple value options. If it is a simple option, <value> will
be assigned to it. If it is a multiple one, <value> will be added to its array of
values.

 <option>=<sep><key><sep><value>
Used for pairs values. Both instances of <sep> must be the same character. A
hash { key => value } will be added to the array of hashes.

Empty lines and lines starting with “#” will be ignored. All extra blanks at the
beginning and the end will be removed.

20

Class My_HTTP_client

Class for making HTTP / HTTPS requests.

Class Methods
 detect_redirection(response)

Checks a Net::HTTPResponse for redirections. Returns an array with three
elements:
 is_there_a_redirection

True if response contains a redirection
 redirection_type

May be :http or :html
 url_to_redirect

URL for the redirection
 repair_url(url)

Makes correction to a string with a URL to make sure that this URL is valid

Instance Methods
 initialize(user_agent="My HTTP Client", proxy=:ENV, proxy_port=nil,

proxy_user=nil, proxy_password=nil)
Creates a new object with the User Agent and proxy information provided.
Ruby 2 uses the proxy info provided by the environment variable “http_proxy”
when “proxy” = :ENV. If no proxy must be used, proxy should be assigned a nil
value.

 set_server(protocol, server, port=:default, update_cookies=false, usr=nil,
pwd="")
Provides information about the host that will be used. The parameter “protocol”
may be :http or :https. When “update_cookies” is true, cookies returned by the
server will be stored and used in next request. “usr” and “pwd” will be used as
credentials for simple HTTP authentication

 change_cookie(new_cookie)
Sets a cookie. It must be provided as a string

 change_user_agent(new_user_agent)
Sets client user agent

 change_auth(usr, pwd)
Changes credentials for simple HTTP authentication

 post(path="/", get_parameters={}, post_data="", headers={}, retries=2)
Makes a POST request. If there are problems, the maximum number of request
retries will be given by “retries”. “get_parameters” and “headers” will be a hash
of “name” => “value”, being both name and value strings. “post_data” may be a
hash too, to represent a post form, or a string to make a raw POST request

21

 get(path="/", get_parameters={}, headers = {}, retries=2)
Makes a GET request. See “post” method for parameter explanation.

 generic_request(path="/", get_parameters={}, post_data="", headers={},
method=:get, max_retries=2)
Utility method that allows both GET and POST requests. “method” may be :get
or :post. See “post” method for information about other parameters.

22

Class My_mailer

Class to send e-mails

Instance Methods
 initialize(server, port=:default, cypher=:tls, user=nil, password=nil,

auth_type=nil)
Sets server information.
 server

Mail server
 port

May be :default or a port number
 cypher

May be :ssl, :tls or :none
 auth_type

See Net::SMTP documentation for details. A typical value would be :login
 send(body, from, to, subject="", body_content_type="text/plain", attachments

= [], cc=nil, bcc=nil, delim="___MAIL_PART_BEGINS_ENDS")
Sends an e-mail
 body

Text or HTML code for the body
 body_content_type

MIME type for the body. Typical values would be “text/html” or “text/plain”
 attachments

Hash with these keys:
 :file_name : path for the file
 :content_type : MIME type for the file

 delim
String that will be used internally to mark the parts of the message.

23

Class Search_engine

Class to represent a generic Internet Search Engine.

Instance Methods
 initialize(protocol, server, port=:default, path="/", query_parameter="q",

regexps = {}, paging = {},
base_get_parameters ={}, base_post_parameters="", headers={},
user_agent="Search Engine Requester",
search_engine_bot = nil,
max_requests=5,
request_method=:get, update_cookies=false,
query_parameter_method=:get,
proxy=:ENV, proxy_port=nil, proxy_user=nil, proxy_password=nil,
max_redirs=5)

Creates a new instance.
 protocol

May be :http or :https
 server, port and path

Represent the base URL for queries
 query_parameter

Parameter where the query is sent
 regexp

Hash of regular expressions to match result data. Each one, with the
exception of the ones in “:replaces” must have a submatch identified by the
name “data”
 :replaces

Hash of <regexp> => <text> replacements to make before parsing the
HTML response from the search engine

 :begin_result
Regular expression to match the beginning of a result

 :end_results
Regexp to match the ending of all results

 :document_type
Regexp to match the document type of the result

 :title
Regexp to match result title

 :url
Regexp for the URL

 :summary
Regexp for the summary

 :cache
Regexp for the search engine cache URL for the result

24

 :translate
Regexp for the search engine translation of the result

 paging
Information about how to manage result paging. It is a hash with the
following keys:
 :parameter

Parameter name for page number
 :parameter_method

How the parameter is send: :get, :post, :cookie
 :size_parameter

Parameter for page size
 :size_parameter_method

How size parameter is sent: :get, :post, :cookie
 :size_parameter_value

Value to assign to the size parameter
 :size

Actual page size as integer
 base_get_parameters, base_post_parameters, headers

Hashes of “name”=>”value” pairs for parameters
 user_agent

User Agent to use in requests
 search_engine_bot

User Agent of the Search Engine bot
 max_requests

Maximum number of requests to make when “request_all” method is
invoked.

 request_method
How the request is sent: :get, :post

 update_cookies
Whether to update or not cookies with each server response

 query_parameter_method
How the query parameter is sent: :get, :post, :cookie

 proxy, proxy_port, proxy_user, proxy_password
Proxy configuration, if needed. Ruby 2 uses the proxy info provided by the
environment variable “http_proxy” when “proxy” = :ENV. If no proxy must
be used, proxy should be assigned a nil value.

 max_redirs
Maximum number of redirections to follow on each request.

 connect_through(proxy=:ENV, proxy_port=nil, proxy_user=nil,
proxy_password=nil)
Sets proxy information if needed. See above for details on parameters.

 set_deferred(deferred)
Some search engines don’t provide all data in the results page. Cache or

25

translation URLs are examples of information items that may require additional
requests. To avoid making too much requests, these one should be made only if
they are necessary. A deferred information object may manage these scenarios.
See “Deferred information objects” chapter for more details.

 deferred_info(type, result, only_one=false)
Gets information on demand using the deferred object. Returns a
Deferred_engine_result data structure. Parameters:
 type

Kind of data requested: :cache, :translate
 result

The search engine result (see Search_engine_result data structure for
details)

 only_one
True if only a URL is needed. This way, we save search engine requests.

 request(query, page=1)
Makes a request to the search engine for “query” to get a SERP. The number of
the SERP is given by the “page” parameter. Returns a Search_engine_response
data structure.

 request_all(query, pause=1, max_results=1000)
Requests all data from the Search Engine for the given query. “pause” is the
number of seconds to pause before making each request. “max_results” is the
maximum number of results needed. Returns a Search_engine_response data
structure.

26

Class Goolge_cse

Class to make requests to Google. Subclass of Search_engine

Redefined public instance methods
 initialize(key, engine, user_agent="G-API-RubyProg", max_requests=3,

proxy=:ENV, proxy_port=nil, proxy_user=nil, proxy_password=nil)
 key

Google API Key
 engine

Google CSE engine id
 user_agent

User Agent to use in requests
 max_requests

Maximum number of requests to make when “request_all” method is
invoked.

 proxy, proxy_port, proxy_user, proxy_password
Proxy configuration, if needed. Ruby 2 uses the proxy info provided by the
environment variable “http_proxy” when “proxy” = :ENV. If no proxy must
be used, proxy should be assigned a nil value.

Class Bing_api

Class to make requests to Bing. Subclass of Search_engine

Redefined public instance methods
 initialize(key, user_agent="B-API-RubyProg", max_requests=3, proxy=:ENV,

proxy_port=nil, proxy_user=nil, proxy_password=nil)
 key

Bing API Key
 user_agent

User Agent to use in requests
 max_requests

Maximum number of requests to make when “request_all” method is
invoked.

 proxy, proxy_port, proxy_user, proxy_password
Proxy configuration, if needed. Ruby 2 uses the proxy info provided by the
environment variable “http_proxy” when “proxy” = :ENV. If no proxy must
be used, proxy should be assigned a nil value.

27

Deferred information objects

Not actually a class, but a set of methods a Deferred information Object must
provide

Instance Methods
 initialize(user_agent, proxy=:ENV, proxy_port=nil, proxy_user=nil,

proxy_password=nil) :
 user_agent

User Agent to use in requests
 proxy, proxy_port, proxy_user, proxy_password

Proxy configuration, if needed. Ruby 2 uses the proxy info provided by the
environment variable “http_proxy” when “proxy” = :ENV. If no proxy must
be used, proxy should be assigned a nil value.

 connect_through(proxy=:ENV, proxy_port=nil, proxy_user=nil,
proxy_password=nil)
Sets proxy information if needed. See above for details on parameters.

 get_info(type, result, only_one=false)
Gets information on demand. Returns a Deferred_engine_result data structure.
Parameters:
 type

The kind of data requested: :cache, :translate
 result

The search engine result (see Search_engine_result data structure for
details)

 only_one
True if only a URL is needed.

28

Class Report_generator

Class for report generation

Instance methods
 initialize(file, overwrite=false, lang='lang/spanish.txt') :

Create a new instance
 file

Path for the main report file
 overwrite

If true and report file exists, it will be overwritten
 lang

Language file for translations. Must have format as indicated in “Translation
table file format”

 begin(title)
Starts writing the report. The main header for the report will be the one
provided in “title”

 end
Ends the report

 begin_test(title)
Starts a TEST section. Its header will be provided by “title”.

 end_test
Ends a TEST section

 begin_host(host)
Starts a HOST section. Its header will contain the text contained in “host”

 end_host
Ends a HOST section

 begin_folder(folder)
Starts a FOLDER section. Its header will contain the text contained in “folder”

 end_folder
Ends a FOLDER section

 begin_file(file)
Starts a FILE section. Its header will contain the text contained in “file”

 end_file
Ends a FILE section

 not_tested(url, bsd_result, text, params={})
Shows information about a URL for which no tests were made
 url

URL not being tested
 bsd_result

Data structure with info about the URL

29

 text
String or symbol with info about why the URL was not tested. It will be
translated using a Translator object.

 params
Parameters for text translation

 problem(url, bsd_result, analysis, to_highlight)
Shows information about a URL with problems.
 url

The URL
 bsd_result

Data structure with info about the URL
 analysys

Report_info data structure with info about the tests made.
 to_highlight

Array of strings to highlight in the text of responses, summaries, etc.
 def maybe_ok(url, bsd_result)

Shows information about a URL with no problem found.
 url

The URL
 bsd_result

Data structure with info about the URL

Report structure
The report has the following components:
 One main HTML report file, with information about the Search Engine results

and analysis, URL analysis and server responses.
 One detail HTML file for every URL with problems. This one has one column for

every test made. Information about test results, HTTP headers sent by the server
and its HTML contents is provided in this file.

The report uses JavaScript to allow hiding and showing elements of the report and
adjust table columns width.

The detail files are stored in a directory that is stored in the same directory as the
mail report file.

The name of the detail file directory is the same of the mail file with a “.dir” end.

30

Class BlackSEO_detector

Class to analyze unauthorized web modifications used for BlackSEO techniques

Instance methods
 initialize(search_engines, user_agent="BlackSEO-detector", proxy=:ENV,

proxy_port=nil, proxy_user=nil, proxy_password=nil, verbose=true)
Creates a new object
 search_engine

Hash of “search engine name”=>search_engine_object
 user_agent

User Agent to use in requests
 proxy, proxy_port, proxy_user y proxy_password

Proxy configuration, if needed. Ruby 2 uses the proxy info provided by the
environment variable “http_proxy” when “proxy” = :ENV. If no proxy must
be used, proxy should be assigned a nil value.

 investigate(queries, text, report_generator, report_name='Test',
hard_check=false, max_redirects=5, valid_domains=[], ignore_files=[],
max_report=20, max_host=12, max_folder=5)
Makes a test
 queries

Hash of “search engine name” => “query” with the queries to make to each
search engine

 text
Array of texts used as hints to detect unauthorized modifications

 report_generator
Object used for report generation. See “Class Report_generator” for details

 report_name
Main title for the report

 hard_check
If true, the object will keep making tests for a URL even when problems have
already been detected for it. Otherwise, tests will end as soon as a problem
is detected for the URL

 max_redirects
Maximum number of redirections to follow when requesting data to the
server

 valid_domains
Array of domains allowed to be included in the report an to follow
redirections to. If a redirection to a domain not included in this array is
detected, it will not be followed.

 ignore_files
Array of regular expression. URLs matching any one of them will not be
tested

31

 max_report, max_host, max_folder
Maximum number of URLs to investigate for report, host and folder.

32

Table of Contents
User Guide..1

What is BlackSEO Detector?...2
What does BlackSEO Detector do?.. 2
Features..2
Usage..3
Project Configuration File...3
Configuration file example... 8

Adding funcionality.. 10
Adding Search Engine Support...11
Adding Language Support.. 11

Software Components..14
DATA STRUCTURES..15

Search_engine_result...15
Search_engine_response... 15
Deferred_engine_result... 15
BSD_result.. 15
BSD_URL_info...15
Report_info...16

CLASSES.. 17
Class Translator...17

Instance Methods...17
How translation works... 17
Translation table file format...17

Class My_configuration..18
Instance Methods...18
Definitions format.. 18
Configuration file format..19

Class My_HTTP_client.. 20
Class Methods.. 20
Instance Methods...20

Class My_mailer... 22
Instance Methods...22

Class Search_engine...23
Instance Methods...23

Class Goolge_cse.. 26
Redefined public instance methods...26

Class Bing_api...26
Redefined public instance methods...26

Deferred information objects...27
Instance Methods...27

Class Report_generator..28

33

Instance methods...28
Report structure... 29

Class BlackSEO_detector.. 30
Instance methods...30

Table of Contents..32

	UserGuide
	WhatisBlackSEODetector?
	WhatdoesBlackSEODetectordo?
	Features
	Usage
	ProjectConfigurationFile
	Configurationfileexample

	Addingfuncionality
	AddingSearchEngineSupport
	AddingLanguageSupport

	SoftwareComponents
	DATASTRUCTURES
	Search_engine_result
	Search_engine_response
	Deferred_engine_result
	BSD_result
	BSD_URL_info
	Report_info

	CLASSES
	ClassTranslator
	InstanceMethods
	Howtranslationworks
	Translationtablefileformat

	ClassMy_configuration
	InstanceMethods
	Definitionsformat
	Configurationfileformat

	ClassMy_HTTP_client
	ClassMethods
	InstanceMethods

	ClassMy_mailer
	InstanceMethods

	ClassSearch_engine
	InstanceMethods

	ClassGoolge_cse
	Redefinedpublicinstancemethods

	ClassBing_api
	Redefinedpublicinstancemethods

	Deferredinformationobjects
	InstanceMethods

	ClassReport_generator
	Instancemethods
	Reportstructure

	ClassBlackSEO_detector
	Instancemethods

	TableofContents

