

A Developer’s Guide to Yarr

Ray Comas
NP Complete Systems, LLC

Developer’s Guide to Yarr

 Page 2

INTRODUCTION .. 7

WHY LISP? .. 7

THE YARR SYNTAX ... 7

A YARR TUTORIAL .. 8

Creating and manipulating lists .. 9

Symbols and variables .. 10

Arrays .. 11

Closures, functions, and special forms .. 13

Parameter types .. 16

Optional parameters ... 17

Keyword parameters .. 17

Variable arguments .. 18

Return types ... 18

Delegates from closures ... 18

Extension Methods .. 19

Flow control ... 20

Do, Let, Let* .. 20

Cond, If, When ... 20

And, or ... 21

While .. 21

For .. 22

To ... 22

Foreach ... 22

Try, Throw ... 22

Map and Reduce ... 23

Map, Mapcar .. 24

Mapc .. 24

MapList .. 24

Mapl ... 24

Reduce.. 24

Types .. 25

Local declarations .. 26

Symbol Packages ... 26

The keyword package .. 29

Property lists ... 30

The Yarr debugger ... 30

The Console Debugger ... 30

Console debugger commands .. 34

The YarrPad debugger ... 35

Developer’s Guide to Yarr

 Page 3

META-PROGRAMMING .. 39

Macros ... 39

Setf methods .. 40

Reader macros... 41

Dispatch reader macros .. 42

INTERACTION WITH .NET ... 44

Referencing assemblies ... 46

Creating object instances ... 46

Accessing Class Members... 47

ref and out parameters ... 48

Up/Down-casting objects .. 48

Invoking delegates ... 49

HOSTING YARR .. 50

Invoking the Yarr Runtime .. 50

Yarr environments .. 50

Invoking Yarr Code from .7ET Code .. 51

Extending Yarr ... 52

Setf methods .. 54

Reader macros... 54

Dispatch reader macros .. 55

Attributes ... 56

Debugging .. 58

Yarr.IDebuggerBreak ... 58

Yarr.IDebugger .. 60

YARR LANGUAGE REFERENCE .. 62

Data types .. 62

Comments .. 63

Symbols .. 63

Developer’s Guide to Yarr

 Page 4

Expressions .. 64

Exception handling ... 65

Special forms ... 65

And ... 65

Backquote .. 65

Bind-setf-method ... 65

Call ... 66

Cond ... 66

Decf .. 66

Declare ... 67

Defvar .. 67

Do ... 67

Each ... 67

Fn ... 68

For .. 69

Foreach ... 69

Function ... 70

If ... 70

Incf ... 70

Lambda .. 70

Let .. 71

Let* .. 71

Letv .. 72

Macro ... 72

Nullp .. 72

Or ... 72

Quote .. 73

Return ... 73

= / Setq / Setf .. 73

Spawn ... 73

Step .. 73

Symbol-name ... 74

Symbol-value ... 74

To ... 74

Trace .. 74

Try .. 74

Unbind.. 75

Unbind-setf .. 75

While .. 75

Functions ... 75

Append ... 75

Apply.. 75

Aref .. 76

Arithmetic Functions + - * / % ... 76

Array .. 76

Assoc .. 76

Atomp .. 77

Bitwise Functions & | ^ ~ ... 77

Car .. 77

Cdr ... 77

Cxxxr .. 77

Comparison Functions < <= >= > .. 78

Cons ... 78

Developer’s Guide to Yarr

 Page 5

Copylist .. 78

Elt ... 78

Eq ... 78

Eql / == .. 78

Eval .. 79

Evalstring ... 79

Evenp ... 79

Every .. 79

Exit ... 79

First .. 79

Get .. 79

Gensym .. 79

Handle-event .. 80

Identity ... 80

In-package .. 80

Inspect .. 80

Is ... 80

Length .. 80

List ... 80

Listp ... 80

Load ... 80

Macroexpand, Macroexpand-1 .. 81

Make-package .. 81

Map .. 81

Mapc .. 81

Mapcar ... 81

Mapl ... 81

Maplist ... 82

Max .. 82

Md-array .. 82

Member .. 82

Min ... 82

Minusp ... 82

Nconc ... 82

New .. 82

Not ... 82

!= .. 83

Notany .. 83

Notevery ... 83

Nreverse ... 83

Nth ... 83

Oddp ... 83

Plusp ... 83

Pr .. 83

Prl ... 84

Read ... 84

Reduce.. 84

Reference ... 85

Reset ... 85

Rest .. 85

Reverse ... 85

Second .. 85

Shadow ... 85

Some .. 85

The ... 85

Third ... 86

Developer’s Guide to Yarr

 Page 6

Throw ... 86

Type ... 86

Typeof .. 87

Use-package ... 87

Using .. 87

Zerop .. 87

Macros ... 88

Bind-disptch-character ... 88

Bind-macro-character ... 88

Defevent ... 88

Defun.. 88

Defmacro .. 88

Defsetf .. 89

Make-array ... 89

Mapcan ... 89

Mapcon .. 89

Unbind-dispatch-character ... 89

Unbind-macro-character .. 89

When .. 89

System symbols ... 90

error .. 90

environment ... 90

input ... 90

last-exception ... 90

max-recursion-depth .. 90

no-exit .. 90

output ... 91

readtable ... 91

setf-dispatch ... 91

APPENDIX: INTERNAL YARR CLASSES .. 92

Yarr.Functions.. 92

Yarr.SetfFunctions ... 92

Yarr.SpecialForms ... 92

Yarr.Macros ... 92

Yarr.Reader .. 92

APPENDIX: THE COMMAND LINE PROCESSOR .. 93

Command Line Parameters ... 93

Interactive mode ... 94

The Yarr-init.lsp file ... 94

Developer’s Guide to Yarr

 Page 7

Introduction
Yarr is a dynamic lisp-based scripting language for the Microsoft .NET framework. It
was originally developed (as LSharp) by Rob Blackwell at Active Web Solutions, and
released under GPL. Extensive modifications have been made to Rob Blackwell’s
original code base to improve interoperability between scripts and .NET classes, to add
more Common Lisp-like features to the language, and to make the language easier to
integrate into existing .NET Based systems. The current version of Yarr is being
developed and maintained primarily by Ray Comas at NP Complete Systems.

Why Lisp?
Lisp has historically been a popular choice for both scripting and coding complex,
special-purpose software systems, with the Emacs text editor, the AutoCAD/AutoDESK
systems, the Yahoo! online store, and ITA’s airline fare search system (used by Orbitz,
etc.) being some of the more well-known examples. There are several reasons for this: the
language has a simple syntax, it is easy to extend and customize, and the language’s
syntax is extremely regular. Consequently, the language’s parsers and interpreters tend to
be small, straightforward to implement, and easy to maintain. The Yarr runtime system
has a memory footprint of approximately 150K bytes.

Yarr is an interpreted language; it does not create .NET assemblies, although it knows
how to use them. Yarr scripts are not compiled, but they are tokenized when loaded.
These tokens are unique and maintained in a symbol table, so every token requires
storage approximately equal to the size of a pointer (4 bytes on 32-bit systems). Yarr
scripts and data structures therefore have a very compact internal representation.

The Yarr syntax
The basis of all Lisp-like languages is the s-expression (“symbolic expression”), or list.
This is a list of atoms enclosed in parenthesis, for example:

(1 2 3)

(alpha beta Charlie delta)

(an s-expression (with a nested) s-expression)

Notice in the 3rd example than a list can have lists nested within.

Yarr expressions are written as lists, using prefix notation: the first element of a list is
assumed to be a method or function, and the rest of the list is assumed to contain the
arguments.

This reliance on lists gives the language great flexibility. Because Yarr functions are
themselves lists, they can be processed exactly like data. This permits writing programs
which create or manipulate other programs. Yarr provides several features that facilitate
this kind of meta-programming.

Many modern Lisp implementations encourage a functional programming style, and Yarr
is no exception. Most language elements in Yarr are first-class objects, including types

Developer’s Guide to Yarr

 Page 8

and functions, which encourages good programmers to write concise, recursive code.
Yarr scripts can potentially do more work with less written code than programs written in
a procedural language like C#.

Unlike many other scripting languages, it is possible for the hosting application to alter
the Yarr syntax at runtime through the use of reader macros, which are described later in
this document. This allows hosting applications to customize the “look and feel” of the
Yarr scripting code to meet domain-specific requirements.

A Yarr tutorial
Yarr is distributed as a .NET assembly, Yarr.Runtime.dll, which can be incorporated
into other applications. This assembly is the Yarr runtime. To illustrate how to
incorporate the Yarr runtime into an application, two reference applications are provided:
Yarr.exe, and YarrPad.exe.

The Yarr.exe application is a console application, and can be used to run Yarr scripts
from the command line or as part of a batch file. It uses System.Console for input and
output, and has a fairly small footprint.

The YarrPad.exe application is a WPF application. It does not use System.Console for
input and output, but it does capture output written to Console.Out and Console.Error.
YarrPad.exe provides a nicer user interface than Yarr.exe, but has a much larger
footprint.

The tutorial may be taken using either Yarr.exe or YarrPad.exe.

When first invoked, the Yarr applications print a sign-on message:

Welcome to Yarr

This program is free software and is distributed

under the terms of the GNU General Public License.

Build: 1.0.0.0

OS: Microsoft Windows NT 6.0.6001 Service Pack 1

CLR: 2.0.50727.1434

>

At this point, Yarr commands can be typed in.

No language tutorial would be complete without an implementation of “Hello World.”
There are several ways to implement this in Yarr. The most straightforward is using the
built-in prl function:

(prl "Hello World") � Hello World

Developer’s Guide to Yarr

 Page 9

In this document, text before the � is user input, and text after the � is the result of
evaluating the user input.

Since Yarr is a .NET application and knows how to call .NET functions, we can also call
the Console.WriteLine method:

(WriteLine Console "Hello World") � Hello World

Notice that calling .NET methods is done using the standard Lisp syntax: the method
name comes first, then the object, and finally the arguments. As we’ll see later, there

sometimes are advantages to doing it this way, rather than writing (Console.WriteLine

"Hello World"), although that syntax is supported as well:

(Console.WriteLine "Hello World") � Hello World

Creating and manipulating lists

One way to create lists is with the list function:

(list 1 2 3) � (1 2 3)

(list a b (list c d) e) � (a b (c d) e)

In the second example, we created a nested list. The Yarr interpreter evaluates a

function’s parameters before calling the function, so the expression (list c d) is

evaluated first, producing (c d), and then the outer expression is evaluated.

Internally, a list is represented as a pair, called a cons (for “construct”) node. The first
member of the pair is the first element of the list, and the second member is the rest of the
list. For historical reasons, the first element of the cons node is called the car, and the
second element is called the cdr. The functions first and rest are synonyms for car and
cdr:

(car '(a b c)) � a

(first '(a b c)) � a

(cdr '(a b c)) � (b c)

(rest '(a b c)) � (b c)

Notice the use of the quote (') in the above examples. Normally, a function’s parameters
are evaluated before calling the function, so without the quote:

(car (a b c))

The Yarr runtime would try to evaluate (a b c) as a call to some function a (or a call to
a method named a on the .NET object b). The quote prevents this evaluation.

Developer’s Guide to Yarr

 Page 10

The car and cdr functions can be nested to get particular list elements, and there is also
an nth function to get an element at a particular list position (zero-based):

(car (cdr '(a b c))) � b

(cadr '(a b c))� b

(nth 1 '(a b c)) � b

In the second example, the cadr function provides a short-hand for (car (cdr …)).
There are similar functions caar, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr,

cddar, and cdddr that do what is expected.

If we have two objects, and want to create a cons node, we use the cons function:

(cons a '(b c)) � (a b c)

(cons a b) � (a . b)

In the second example, we create a cons node that is not a list: it’s just a pair of objects,
called a dotted pair because of how it is represented. A list has a specific internal
representation using nested cons nodes. In other words, all lists are (nested) cons nodes,
but not all cons nodes are lists.

Lists can be appended together with the append function, which takes any number of list
parameters, appends them all together:

(append '(a b c) '(1 2 3) '(d e f)) � (a b c 1 2 3 d e f)

Symbols and variables

Now that we can create lists, we need a way of storing them for later use. In Yarr, we do
this by binding them to symbols. This is equivalent to assigning an object to a variable in
other programming languages. However, in Yarr symbols are more than just references to
memory locations, and don’t necessarily need to have values bound to them, which is

why we can write expressions such as (list a b) without having to define what a and b
are.

The assignment function in Yarr is =, which for historical reasons has synonyms setq and
setf:

(= bar '(a b c)) � (a b c)

bar � (a b c)

(= foo (+ 3 4 5)) � 12

foo � 12

(* FOO 5) � 60

Note that the assignment function returns the value that was assigned.

Developer’s Guide to Yarr

 Page 11

In the second and third examples, we introduce the arithmetic functions + and *. Most
Yarr arithmetic functions are n-ary, that is, they can take an arbitrary number of
parameters, as shown in the example with the addition function. Note also that Yarr
symbols are case-insensitive, so foo, Foo, fOo, foO, etc. are all the same symbol.

It’s possible to make multiple assignments at once:

(= foo '(a b c) bar '(1 2 3)) � (1 2 3)

bar � (a b c)

foo � (1 2 3)

When making multiple assignments, the value returned is the last one assigned.

The assignment function has more capability than simple value binding, for example:

(= foo '(a b (c d) e)) � (a b (c d) e)

foo � (a b (c d) e)

(= (car foo) f) � f

foo � (f b (c d) e)

(= (nth 2 foo) g) � g

foo � (f b g e)

(= (rest foo) '(x y z)) � (x y z)

foo � (f x y z)

In most cases, if a Yarr expression retrieves a value, then assigning to that expression will
set the value.

Arrays

Yarr has comprehensive support for .NET arrays. The easiest way to define an array is
using the special array syntax:

(= foo #(1 2 3)) � #(1 2 3)

foo � #(1 2 3)

The pound-sign (#) indicates that (1 2 3) is an array, not a list. This syntax is borrowed
from Common Lisp. Continuing the example, we can use the typeof function to see that
this is an actual .NET array:

(typeof foo) � #<System.Int32[]>

We can create arrays of objects as well:

(= foo #(1 a "string" 3.0)) � #(1 a "string" 3.0)

(typeof foo) � #<System.Object[]>

Developer’s Guide to Yarr

 Page 12

If all of the elements of an array are of the same type, then Yarr will create a .NET array
of that type. Otherwise, it will create an array of objects, as shown in the previous
example.

There is also support for nested arrays:

(= foo #(#(1 2 3) #(4 5 6) #(7 8 9)))

� #(#(1 2 3) #(4 5 6) #(7 8 9))

(typeof foo) � #<System.Int32[][]>

The #(…) syntax is just a short-hand for calling the array function, so the following are
equivalent:

#(1 2 3) � #(1 2 3)

(array 1 2 3) � #(1 2 3)

We can also create multidimensional arrays. Again, the syntax is borrowed from
Common Lisp:

(= foo #2a((1 2 3)(4 5 6)(7 8 9))) � #2a((1 2 3)(4 5 6)(7 8 9))

(typeof foo) � #<System.Int32[,]>

The syntax is #nna(…) where nn specifies the rank of the array. The one-dimensional
case is so common that Yarr assumes the “1a,” but it can still be supplied:

(= foo #1a(1 2 3 4)) � #(1 2 3 4)

foo � #(1 2 3 4)

(typeof foo) � #<System.Int32[]>

For rank > 1, the #nna(…) syntax is really a short-hand for calling the md-array

function, so the following are equivalent:

#2a((1 2)(3 4)) � #2a((1 2)(3 4))

(md-array 2 '((1 2)(3 4))) � #2a((1 2)(3 4))

Note that unlike the array function, which puts all of its arguments into a one-
dimensional array, the md-array function explicitly takes a list as an argument and
constructs an array out of it.

Since these are .NET arrays, we can call their various .NET array methods:

(= foo #(1 2 3 4)) � #(1 2 3 4)

(length foo) � 4

foo.length � 4

Note that fields and properties can be accessed directly, so we can use foo.length as

well as (foo.length) or (length foo) to get the value.

Developer’s Guide to Yarr

 Page 13

We can access arrays using the .NET GetValue/SetValue methods, but an easier way is
to use the built-in aref function:

(= foo #(1 2 3 4)) � #(1 2 3 4)

(aref foo 0) � 1

(aref foo 2) � 3

(= bar #2a((1 2)(3 4))) � #2a((1 2)(3 4))

(aref bar 0 0) � 1

(aref bar 0 1) � 2

(aref bar 1 0) � 3

(aref bar 1 1) � 4

(= (aref bar 0 1) 10) � 10

bar � #2a((1 10)(3 4))

The last example shows how to assign values to array elements.

Just as we can reference .NET types directly by name, for example using the symbol
int32 to refer to the type System.Int32, we can also refer to array types using symbol
names. The convention used is that, for a given type T, an array of T is referenced as T*
and a multi-dimensional array of T is referenced as T*n where n is the rank. For
example:

Int32* � #<System.Int32[]> ; Array of Int32

Int32*2 � #<System.Int32[,]> ; Rank 2 array of Int32

Int32** � #<System.Int32[][]> ; Array of array of Int32

Int32*2* � #<System.Int32[,][]> ; Array of rank 2 array of Int32

This gives us a way to create arrays, using the new function:

(new int32* 5) � #(0 0 0 0 0)

(new int32*2 3 2) � #2a((0 0) (0 0) (0 0))

There is also a make-array, which is more efficient than new at making arrays, since it
invokes System.Array.CreateInstance directly instead of going through
System.Activator as new does:

(make-array int32 3 2) � #2a((0 0) (0 0) (0 0))

(make-array int32 5) � #(0 0 0 0 0)

Closures, functions, and special forms

Yarr is a lexically scoped language. When a hosting application invokes the Yarr runtime,
it provides the runtime with a Yarr.Environment instance. This instance provides,
among other things, a symbol table where symbols are defined, and the lexical scope
where symbols are bound to objects. When a Yarr function is defined, Yarr ensures that
the function encloses the environment in which it is defined. When the function is later
invoked, it is invoked in this enclosed environment. This pair—the function, and the

Developer’s Guide to Yarr

 Page 14

associated environment—is called a closure. We will often use the words function and
closure interchangeably.

Flow control is Yarr is handled with special forms. A special form is similar to a closure,
except that it does not have an enclosed environment (it always executes in the same
environment as its caller), and the arguments are not evaluated before the special form is
called. Special forms are the Yarr analog of language keywords, such as if, while, for,
etc. in C#. However, the hosting application can extend Yarr by creating its own special
forms and importing them into the Yarr environment.

Functions in Yarr are defined using the special form fn. For historical reasons, lambda

can be used as a synonym for fn.

The fn special form creates a closure:

(fn (x y) (+ x y))

Creates a closure with two parameters, x and y. The symbols x and y are bound to the
function’s arguments in an environment local to the function. The result of evaluating this
function is the sum of the two arguments:

(= x 10 y 20) � 20 ;; sets x = 10, y = 20

(+ x y) � 30

((fn (x y) (+ x y)) 5 6) � 11

Note the third line of the example: when Yarr evaluates ((fn (x y) (+ x y)) 5 6) it

evaluates the first element of the list, which is (fn (x y) (+ x y)). This evaluates to a

closure taking two arguments. Next, Yarr evaluates (anonymous-closure 5 6) where
anonymous-closure is the closure returned by fn, and the function is invoked with x
bound to 5 and y bound to 6 in the enclosed environment. So the addition adds 5 and 6,
not 10 and 20.

More generally, the syntax for fn is:

(fn (argument-list) statements)

Closures return the value of the last statement executed. It is possible to return from a
closure (or any special form that executes a sequence of statements) at any time by using
the return special form:

((fn (x y) (if (< x y) (return x)) (+ x y)) 3 4)

 � 3

((fn (x y) (if (< x y) (return x)) (+ x y)) 4 3)

 � 7

Developer’s Guide to Yarr

 Page 15

If we want to re-use a closure, we can bind it to a symbol:

(= my-function (fn (x y) (+ x y)))

(my-function 3 4) � 7

The defun macro (macros will be covered later) simplifies the syntax, so that we can
write the equivalent:

(defun my-function (x y) (+ x y))

Up until now, every Yarr statement we’ve evaluated has been evaluated in the root

environment, which is the environment where all of Yarr’s built-in functions are defined.
It’s possible to create local environments, which are the Yarr analogue to creating local
scopes with {…} in C#.

A local environment is automatically created when a Yarr closure is called, which
contains the arguments of the function call. It is also possible to explicitly create a local
environment using the let special form:

(= a 3 b 4) � 4 ;; set a =3, b = 4 “outside” the let

(let ((a 10) (b 20)) ;; set a = 10, b = 20 “inside” the let

 (+ a b)) � 30 ;; evaluated “inside” the let

(+ a b) � 7 ;; evaluated “outside” the let

The syntax for let is:

(let ((var1 val1) (var2 val2) …)

 Statements)

When the statements execute, any references to var1, var2, …, var� are resolved in the
“inner” environment. References to any other symbols are resolved in the “outer”
environment. The result of evaluating the let is the value of the last statement executed.

If only one local variable is required, the let syntax can be simplified a bit:

(let temp 10 (prl temp)) � 10

Now for a more complicated example, let’s examine what it means for something to be a
closure:

(= a 3 b 4)

(let ((a 10) (b 20))

 (defun foo (x) (+ a b x)))

The first statement sets a to 3 and b to 4 in the “outer” environment. Then the let creates
a new environment which sets local copies of a to 10 and b to 20. Finally we define a
closure foo.

Developer’s Guide to Yarr

 Page 16

Where is foo defined? Since foo is not listed as a local symbol for the let, foo is bound in
the outer environment. However, the function that is bound to foo is defined in (and
references symbols a and b in) the “local” environment of the let. So the closure encloses
the “inner” environment, and any invocation of foo will happen in the “inner”
environment, even if we’re no longer “inside” the let:

(= a 3 b 4) � 4

(let ((a 10) (b 20))

 (defun foo (x) (+ a b x))) � foo

 ;; foo defined within the let

(+ a b) � 7 ;; we’re no longer inside the let

(foo 5) � 35 ;; but foo has enclosed the environment

 ;; that the let created, and executes there

This is more than a syntactic trick: foo, or other functions defined in the same
environment, can modify that environment at any time:

(= a 3 b 4) � 4

(let ((a 10) (b 20))

 (defun foo (x) (+ a b x))

 (defun bar (x) (= b x))) � bar

(+ a b) � 7

(foo 5) � 35

(bar 1) � 1 ;; sets b = 1, but where?

(+ a b) � 7 ;; b wasn’t changed “out here”

(foo 5) � 16 ;; b was changed in the “enclosed” environment

One important aspect of Yarr programming is recursion. To facilitate this, every Yarr
closure binds the symbol self to itself in its local environment. This allows us to define
anonymous recursive closures:

((fn (x) (if (== x 1) 1 (* x (self (- x 1))))) 5) � 120

Parameter types

Yarr functions have support for optional parameters, keyword parameters, and variable
number of arguments. These are declared using the &optional, &key, and &rest
symbols in the parameter list definitions.

When specifying parameters, it’s also possible to specify that the corresponding argument
must be of a specific type, for example:

(defun foo ((a int32) (b int32)) (+ a b))

defines a function foo that takes two System.Int32 arguments. If invoked with arguments
that are not System.Int32, an exception is thrown. In general, if the type specified for an
argument has an appropriate op_implicit method defined, then Yarr will try to invoke the
op_implicit method to convert the parameter to the correct type, and will throw an
exception if this fails or if no appropriate op_implicit method exists.

Developer’s Guide to Yarr

 Page 17

Symbols that have the same name as an existing .NET type will resolve to that type. To
specify an array type, we use the following notation:

int32* � #<System.Int32[]> ; Array of Int32

int32** � #<System.Int32[][]> ; Array of Array of Int32

int32*2 � #<System.Int32[,]> ; Rank 2 Array of Int32

int32**2 � #<System.Int32[][,]> ; Array of Rank 2 Array of Int32

So a function that expects an array of strings as its argument can be defined as:

(defun bar ((s string*)) ...)

Optional parameters

Optional parameters are declared using the &optional symbol:

(defun foo (a &optional b) …)

defines a function that takes one or two arguments. If a second argument is provided, it is
bound to b otherwise b is null. Default values for the optional parameters can be
provided:

(defun foo (a &optional b (c 5)) …)

This defines a function that takes one, two, or three arguments. If only one argument is
provided, b is null and c is set to 5. If two are provided, they are bound to a and b, and c
is set to 5. If three are provided, they are bound to a, b, and c.

It’s also possible to specify a type for optional parameters:

(defun foo (a &optional ((b int32)) ((c int32) 5)) …)

specifies that b and c must be System.Int32. Since no default value is specified for b, it
will default to zero if not specified.

Keyword parameters

Keyword parameters are declared using the &key symbol:

(defun foo (&key from to) …)

defines a function that takes two keyword parameters. This function can be invoked in
either of the following equivalent ways:

(foo :from a :to b)

(foo :to b :from a)

Developer’s Guide to Yarr

 Page 18

Yarr automatically assigns the arguments to the correct parameters. Keyword parameters
are automatically optional, and can have default values specified:

(defun foo (&key (from 0) to) …)

If the :from keyword is not provided, from is set to the default value of 0. Parameter
types can also be specified:

(defun foo (&key ((from Int32)) ((to Int32) -1)) …)

This declares the from and to parameters as integers, and sets the value of the to
parameter to -1 if it’s not supplied.

Variable arguments

The &rest symbol is used to specify that all remaining unbound arguments are to be
collected into a list:

(defun foo (a b &rest c) …)

The first two arguments are bound to parameters a and b; any remaining arguments are
collected into a list and bound to parameter c.

Return types

It is also possible to specify that a Yarr function will return a particular type. This is done
with the special :returns keyword after the parameter list:

(fn (a b c) :returns int32 …)

defines a closure that returns a System.Int32. This can be used in a defun as well:

(defun foo (a b c) :returns int32 …)

The :returns and the following type must appear immediately after the parameter
definitions. If not provided, the closure is assumed to return System.Object.

If the closure attempts to return a value other than the specified return type, an attempt
will be made to implicitly cast the value (by looking for a suitable op_implicit), and if
this fails, an exception is thrown.

Delegates from closures

A Yarr closure can provide Action<…>, Func<…>, and Predicate<T> delegates that
can be used to invoke the closure. These are available directly from the Action, Func,

and Predicate properties of the closure object:

• The Action property will return an Action, Action<T>, Action<T1,T2>,
Action<T1,T2,T3>, or Action<T1,T2,T3,T4> delegate, depending on how many
parameters the closure accepts.

Developer’s Guide to Yarr

 Page 19

• The Func property will return a Func<R>, Func<T,R>, Func<T1,T2,R>,
Func<T1,T2,T3,R>, or Func<T1,T2,T3,T4,R> delegate, depending on how
many parameters the closure accepts and the declared closure return type.

• The Predicate property will return a Predicate<T> delegate. The closure must
accept only one argument, and the declared type of that argument will determine
the type T for the delegate. The closure does not have to explicitly return a
Boolean; the runtime will convert the return value to a Boolean automatically:

o 7ulls, empty strings, and default value types (for example, zero for
numeric types, or DateTime.MinValue) will be converted to false

o All other values will be converted to true

The Action, Func, and Predicate properties require that:

• The closure accepts at most four arguments for Action and Func, or exactly one
argument for Predicate

• The closure does not have &key, &optional or &rest parameters

Otherwise an exception will be thrown.

Extension Methods

The Yarr runtime knows about extension methods, allowing us to use them seamlessly:

(= foo #(1 2 3 4 5)) � #(1 2 3 4 5)

(foo.sum) � 15

(average #(1 2 3 4 5)) � 3

This can be combined with the Action, Func, and Predicate delegates mentioned
previously:

(= foo #(1 2 3 4 5)) � #(1 2 3 4 5)

(system.array.FindAll foo

(predicate (fn ((x int32)) (> x 3))))

� #(4 5)

(defun bar ((x int32)) (if (> x 3) (prl x))) � bar

(system.array.foreach #(1 2 3 4 5) bar.action)

�
4

5

Developer’s Guide to Yarr

 Page 20

Flow control

Do, Let, Let*

Yarr has several special forms for flow control. We have already seen one, let¸ which
creates lexical environments. A simpler one is do, which executes each statement in its
list, and returns the value of the last one executed:

(do

 Statement1

 Statement2

 …

 StatementN)

This is the Yarr analogue to putting C# statements between { …}.

The let special form is just a do with a local environment. There are actually two versions
of let, the other being let* (pronounced let-star). The difference is in how the local
symbols are initialized. Let initializes them in the outer environment, while let*

initializes them in order, in the inner environment:

(= a 10) � 10

(let ((a 2) (b (+ a 1))) ;; sets b = 11

 (+ a b)) � 13

(let* ((a 2) (b (+ a 1))) ;; sets b = 3

 (+ a b)) � 5

Cond, If, When

The if special form handles conditionals. Its syntax is:

(if test1 statement1

 test2 statement2

 …

 testN statementN

 else-statement)

the if special form checks each test in order, starting with test1 until it finds one that is
true. Then it evaluates and returns the result of the matching statement. The other
statements are not evaluated. If there is a lone, unpaired statement at the end of the list, it
is considered the “else” statement and is executed if all the tests are false:

(= foo 4) � 4

(if

 (== foo 1) (prl "foo is 1")

 (== foo 2) (prl "foo is 2")

 (prl "foo is neither 1 nor 2"))

� foo is neither 1 nor 2

The if special form is analogous to nested if … else if … else statements in C#. For
historical reasons, cond can be used as a synonym for if, although the syntax is different
from the cond syntax in Common Lisp.

Developer’s Guide to Yarr

 Page 21

The various test forms do not have to explicitly return a Boolean. Yarr will convert other
data types to Boolean as follows:

• Empty strings, numeric zero values (in general, the default value of a value type),
and any null value is considered to be false

• Any other value is considered to be true

This automatic conversion to Boolean occurs wherever Yarr expects a conditional value,
such as the special forms described below.

If the intent is to just execute a collection of statements if a given condition is true, we
can use the when special form:

(when condition statements)

If the condition is true, the statements are evaluated in order. If the condition is false, they
are not. The result is the value of the last statement evaluated.

And, or

The special forms and and or provide short-circuit evaluation of their statements:

(and

 Statement1

 Statement2

 …

 StatementN)

The statements are evaluated in order, until one is fond that returns false, at which time
and returns false. If all of the statements return true, then and returns the value of the
final statement.

(or

 Statement1

 Statement2

 …

 StatementN)

Similarly, the statements are evaluated in order until one is found that returns true, at
which time or returns its value. If all of the statements return false, then or returns false.

While

Looping is handled by the while special form:

(while condition statements)

If the condition is true, the statements are evaluated in an implied do, and then the
condition is checked again. This repeats until the condition is false, at which point while
returns the result of the implied do.

Developer’s Guide to Yarr

 Page 22

The while special form is analogous to a while (…) { … } statement in C#.

For

The built-in for special form has the syntax:

(for initializer condition iterator statements)

The initializer statement is evaluated only once, before the loop starts. If the condition is
true, the loop will then execute: the statements are evaluated in order, followed by the
iterator. The loop repeats until the condition is false. This is analogous to a for(initializer

; condition ; iterator) { …} statement in C#:

(for (= x 0) (< x 10) (++ x) (pr x)) � 0123456789

To

A simpler version of for, when we simply want to increment an indexer, is the to special
form:

(to var limit Statements)

This creates a local lexical environment, sets var to zero, then increments var each time
through the loop. The loop exits when var == limit.

(to x 10 (pr x)) � 0123456789

Foreach

If we have an instance instance of a .NET class that implements IEnumerable, we can
use the foreach special form to iterate over the elements:

(foreach obj instance Statements)

This creates a local lexical environment, binds obj in that environment to each element in
turn, and executes the statements. This is analogous to a foreach (obj in instance) { …}
statement in C#.

Try, Throw

The throw function throws an exception of type Yarr.YarrException:

(throw "message for the exception")

This is the only kind of System.Exception that makes it past the top-level evaluator. If
the evaluator sees an unhandled System.Exception of some other type, the exception is
wrapped in a YarrException and re-thrown. Furthermore, any exception that reaches the
top-level evaluator is bound to the symbol *last-exception* in the top-level environment,
so that it may be inspected by the caller.

Developer’s Guide to Yarr

 Page 23

The try special form is used for exception handling within Yarr. The syntax is:

(try statement

 Catch-statement

 Finally-statement)

First, statement is evaluated. If an exception is thrown during its execution, the exception
is caught, bound to the symbol it in the try’s local environment, and then catch-statement
is evaluated, and its value returned. Regardless of whether or not an exception is caught,
the finally-statement is evaluated. If there was no exception, the value of statement is
returned. The finally-statement is optional.

(try (/ 10 0) (pr "exception caught-") (prl "-finally"))

� exception caught--finally

 (try (/ 10 2) (pr "exception caught-") (prl "-finally")) � 5

� -finally

Map and Reduce

Yarr can map functions to sequences of parameters. For example, suppose we want to
add two lists of numbers, say (1 2 3) and (10 20 30), and we would like to produce (11 22
23) as the result:

(map + '(1 2 3) '(10 20 30))

� (11 22 33)

The map function repeatedly applies the + function in turn, first executing (+ 1 10), then
(+ 2 20), and finally (+ 3 30), and collects the results into a list for us. The map function
can work with any number of parameters, for example:

(map + '(1 2 3) '(10 20 30) '(100 200 300))

� (111 222 333)

The map function also works with anonymous closures:

(map (fn (x y) (+ (* x x) (* y y)))

'(1 2 3) '(4 5 6))

� (17 29 45)

In general, map takes a function and collection of sequences. There should be one
sequence for each parameter required by the function. The function is applied in turn to
each collection of parameters, and the results are captured in a list. This works with any
IEnumeable sequence, for example, to operate on arrays:

(map (fn (x y) (+ (* x x) (* y y)))

#(1 2 3) #(4 5 6))

� (17 29 45)

Note that the result is always a list.

Developer’s Guide to Yarr

 Page 24

It’s also possible to use a method from a static .NET class as the function to map. To do
this, the function special form is used, which wraps the .NET static method in a Yarr
closure so that map can invoke it:

(map (function math.sin) #(0 0.5 1.5 2.0))

� (0 0.479425538604203 0.997494986604054 0.909297426825682)

The reference to (function math.sin) can be abbreviated as #'math.sin:

(map #'math.sin #(0 0.5 1.5 2.0))

� (0 0.479425538604203 0.997494986604054 0.909297426825682)

Yarr provides several mapping functions:

Map, Mapcar

The mapcar function is a synonym for map. It is called mapcar because it maps a
function to successive car’s of sequences.

Mapc

Operates like the map/mapcar function, but does not collect the results in a list. Instead,
it simply returns the first argument sequence:

(map (fn (x) (* x x)) #(1 2 3))

� (1 4 9)

(mapc (fn (x) (* x x)) #(1 2 3))

� #(1 2 3)

MapList

This maps the function to successive cdr’s and collects the results. For example:

(maplist (fn (x) (cons 'foo x)) '(a b c d))

� ((foo a b c d) (foo b c d) (foo c d) (foo d))

Mapl

Operates like maplist, but does not collect the results. Instead it simply returns the first
argument sequence.

Reduce

The mapping functions are often used in conjunction with the reduce function. The
reduce function applies parameters pair-wise to the function that is supplied to it. For
example:

(reduce + '(1 2 3 4))

� 10

(reduce * '(1 2 3 4))

� 24

(reduce #'string.concat '("a" "b" "c" "d"))

� "abcd"

Developer’s Guide to Yarr

 Page 25

In addition to a function and a sequence, reduce accepts the following keyword
parameters:

:start the index to start operating on the sequence

:end the index to stop operating on the sequence

:from-end if true, processes the sequence “right-to-left” instead of “left-to-right”

:initial-value An initial value to use for the reduction

:key a function that will be applied to each element in the sequence prior to
reduction

Some examples:

(reduce + '(1 2 3 4) :start 1 :end 2)

� 5

(reduce – '(1 2 3 4)) ;; == (- (- (- 1 2) 3) 4)

� -8

(reduce – '(1 2 3 4) :from-end true) ;; == (- 1 (- 2 (- 3 4)))

� -2

(reduce + '((1 a) (2 b) (3 c)) :key car)

� 6

(reduce append '((1) (2)) :initial-value '(i n i t))

� (i n i t 1 2)

(reduce append '((1) (2)) :initial-value '(i n i t)

 :from-end true)

� (1 2 i n i t)

Types

Yarr is a strongly-typed language. The types supported by Yarr are those supported by
the .NET runtime. Although symbols and variables are not explicitly declared to be of a
certain type, the runtime does track their data types. The function typeof can be used to
determine the type of a Yarr object:

(= foo 3)

(typeof foo) � #<System.Int32>

(= foo 12345678910111213)

(typeof foo) � #<System.Int64>

(= foo 123.45m)

(typeof foo) � #<System.Decimal>

(= foo 123.10)

(typeof foo) � #<System.Double>

Note that we can bind values of any type to any symbol. The function the is used to
convert values from one type to another:

Developer’s Guide to Yarr

 Page 26

(the type value)

Yarr supports a fairly extensive set of type conversions. If it makes sense to convert one
type to another, the function the can usually figure it out:

(= foo (new Collections.Hashtable))

(= (elt foo "key1") "value1")

(= (elt foo "key2") "value2")

(the Yarr.Cons foo)

� (("key1" . "value1") ("key2" . "value2"))

Local declarations

It is possible to explicitly declare symbols to be of a specific type using the declare
special form:

(declare (foo int32) (bar int32 10))

This declares foo and bar to be of type int32. Any attempt to bind anything other than an
int32 (or a class with an op_implicit cast to int32) will result in an error. When a
variable is declared, its value is set automatically, to null for reference types, or to the
type’s default value (for value types). It is possible to provide a value as part of the
declaration, as in this example.

The declare special form operates on the local environment, so if it is executed in the
context of a let, let*, to, or inside a function definition, it only applies to symbols in those
local environments:

(let ((x 1) (y 2))

 (declare (z int32) 10) ;; a “local variable” for the let

 (+ x y z)) � 13

(= z "a string") � "a string"

 ;; z not declared outside of let, so no error results

In this example, z could have been declared along with x and y:

(let ((x 1) (y 2) ((z int32) 10))

 (+ x y z)) � 3

Symbol Packages

Up to this point, all the symbols that we have used are globally unique, for example, all
references to a symbol named foo refer to the same instance of a Yarr.Symbol with
“foo” as the value of its 7ame property. This means that we can only bind one value to a
symbol.

Sometimes it is convenient for a symbol to have different meanings based on the context
in which we’re using it. For example, if we define a function and bind it the symbol
string, then we can no longer use the symbol string to refer the type System.String. It
also means that if there are multiple developers developing Yarr scripts, they have to be
careful to use unique symbols in their scripts.

Developer’s Guide to Yarr

 Page 27

Yarr packages, loosely based on Common Lisp packages, provide a way around these
limitations. A Yarr package is a collection of symbols that are unique in that package. A
symbol foo in one package can be a different Yarr.Symbol instance from the symbol foo
in another package.

Packages are created with the make-package function. Once a package is created,
symbols can be defined in that package by prefixing the symbol name with the package
name. For example:

(make-package "alice")

� #<Package "alice">

(defun alice:list (a b) (list alice a b))

� alice:list

(in-package "alice")

� #<Package "alice">

(list 3 4)

� (user:alice 3 4)

Let’s examine this line-by-line to see what’s going on. The first statement:

(make-package "alice")

Creates a new symbol package named alice. This allows us to define symbols in that
package.

Next we define a function, and bind it to the symbol list from the alice package:

(defun alice:list (a b) (list alice a b))

Only the symbol list is defined in the alice package. As we will see, the other symbols in
this statement will come from other packages.

The next statement sets the current package to be the alice package:

(in-package "alice")

 The current package is package where symbols will be defined by default, if they are not
prefixed with a package name. Now we invoke the function bound to alice:list:

(list 3 4)

Note that since we set the current package to alice, we can just refer to list. Note what the
function returned:

� (user:alice 3 4)

Developer’s Guide to Yarr

 Page 28

When we initially defined alice:list, the alice package was not the current package. At
startup, Yarr sets the current package to the user package. Therefore, all symbols that are
not prefixed by a package name will be defined in the user package. So the symbol alice
in the function definition was created there.

Continuing our example, suppose we want to redefine alice:list so that all of its symbols
will be created in the alice package:

(defun list (a b) (list alice a b))

� ERROR!!!

Since the current package is the alice package, Yarr will try to find a function bound to
alice:defun. But there isn’t anything bound to alice:defun yet! It turns out that all of
Yarr’s built-in functions are bound to symbols in the system package. Therefore, if the
current package is alice, we must prefix the names of symbols in other packages:

(system:defun list (a b) (system:list alice a b))

� list

(list 3 4)

� (alice 3 4)

It would be nice if we could use all of the various built-in functions bound to symbols in
the system package without having to constantly use the system: prefix in our Yarr
scripts. This is accomplished with the use-package function. Continuing with our
example:

(system:use-package "system")

� True

(cons alice '(bob))

� (alice bob)

Since the symbol alice:cons isn’t defined yet—we have not referenced it in our example
up to now—Yarr will look in the system package for a symbol named cons, and finds the
one with the cons function bound to it. The alice package has inherited the symbols from
the system package. A package can inherit the symbols from any number of other
packages.

Note that this inheritance happens even if we explicitly ask for alice:cons:

(alice:cons alice '(bob))

� (alice bob)

We can verify this using the symbol’s Full7ame property:

(FullName 'alice:cons)

� "system:cons"

Developer’s Guide to Yarr

 Page 29

This is not the case with the alice:list symbol, because it was created before we invoked
use-package:

(FullName 'alice:list)

� "alice:list"

What if we want to bind a value to alice:cons? Since alice:cons is really system:cons,
binding a value to alice:cons will actually replace the current binding of system:cons.
The shadow function is used to define an explicit alice:cons that is distinct from
system:cons:

(shadow "cons")

� True

(FullName 'alice:cons)

� "alice:cons"

We can now bind a value to alice:cons and also reference system:cons:

(= cons "some value")

� "some value"

(system:cons alice '(bob))

� (alice bob)

If we know what packages we want to inherit, and which symbols we want to shadow, we
can specify those in the initial make-package call, so for example we could have
specified the following at the start:

(make-package "alice" :use '("system") :shadow '("list" "cons"))

This creates a package named alice that inherits the symbols from the system package,
and creates explicit alice:list and alice:cons symbols.

The keyword package

It is possible to specify a symbol with an “empty” package name. Examples of these are
the symbols used to tag keyword parameters in function calls. Such symbols are called
keywords, and the package they belong to—which has an empty string as its name—is
called the keyword package. In Yarr, keywords are special in that Yarr will not permit
values to be bound to them:

(= :foo "some value")

� Assign: Cannot bind values to keywords

Keywords are useful whenever we want to use a symbol only for their name, and want to
ensure that no value is bound to the symbol (so that it will evaluate to itself), and that the
symbol will not be created in the current package. In addition to tagging keyword
parameters, we can also use keywords to denote types, for example:

(defun concat ((x :cons) (y :cons)) (append x y))

� concat

Developer’s Guide to Yarr

 Page 30

defines a function that takes two Yarr.Cons instances as parameters, and appends them.
In this example, the symbol :cons is guaranteed to resolve to the type Yarr.Cons because
:cons keyword, and Yarr will not allow a value to be bound to keywords.

Property lists

In Yarr, symbols can be assigned properties, and each property can have a value.
Properties and values are not lexically scoped, and affect the symbol globally. The get
function is used to get and set a symbol’s properties:

;; set foo’s my-prop property to 10

(= (get 'foo 'my-prop) 10) � 10

(let (foo) (= (get 'foo 'my-prop) 20)) � 20

(get 'foo 'my-prop) � 20 ;; This was set from within the let

A symbol can have any number of properties defined. Distinct symbols in different
packages will each have their own property list.

The Yarr debugger

The Yarr runtime provides the ability to single-step through Yarr code, set breakpoints,
and examine the state of the system. Both the YarrPad.exe WPF application and the
Yarr.exe console application provides an interface to this debugger functionality.

For the examples that follow, suppose we have the following Yarr function defined:

(defun my-factn ((n int32))

 (cond (< n 2) 1

 (* n (my-factn (- n 1)))))

The Console Debugger

To invoke the debugger in Yarr.exe, we use the step special form to evaluate an
expression:

(step (my-factn 5))

The debugger starts in single-step mode, and shows us the current form about to be
evaluated:

 0 >> (my-factn 5)

:

The initial 0 at the start of the line indicates the stack depth. The >> indicates that the
expression to the right is about to be evaluated.

The colon (:) is the console debugger’s prompt, indicating that it is waiting for our input.
We can now enter debugger commands. Debugger commands are single key-strokes. To
get a quick help summary, press the H key:

Developer’s Guide to Yarr

 Page 31

***** Debugger Commands *****

 DownArrow or F11 : Step into | + or insert : Add Bkpt

RighttArrow or F10 : Step over | - or delete : Remove Bkpt

 Tab or F5 : Continue | * or T : Toggle Bkpt

 UpArrow or U : Return | B : Print breakpoints

 LeftArrow or R : Set current form/value

 E or Space : Evaluate expression

 C or ? : Print Call Stack

 F : Set Stack Frame

 Escapce or Q : Quit (halt execution)

 G : Quit (continue execution)

***** Debugger Commands *****

:

Pressing the DownArrow or F11 key single-steps the runtime:

: 1 << int32 := System.Int32

1 >> (cond (< n 2)

 1

 (* n (my-factn (- n 1))))

:

The initial 1 indicates the stack depth; the << indicates that we have exited the current
stack frame, and int32 := System.Int32 indicates that the value being returned is the type
System.Int32, which was the result of evaluating the symbol int32. This is happening
because our definition of my-factn specifies that its argument must be an int32, so the
runtime must resolve this symbol to a data type in order to check the argument.

After verifying that the argument is an int32, the Yarr runtime shows the next expression
to be evaluated. Note that the debugger “pretty-prints” the expression, so that it is easier
to see what it will do. We can examine the current call stack by pressing the C key:

***** Top of Stack *****

[1] (cond (< n 2) 1 (* n (my-factn (- n 1))))

[0] (my-factn 5)

****** Call Stack ******

:

If we step two more times with DownArrow or F11:

: 2 >> (< n 2)

: 3 << n := 5

 2 << False

:

We see the runtime evaluate (< n 2) by evaluating n (which is currently 5), then doing the
comparison. At this point, the value false will be returned as the result of (< n 2) the next
time we step the runtime.

Developer’s Guide to Yarr

 Page 32

Suppose we’re only interested in direct calls to my-factn, and only want the runtime to
break when it sees that function called. To add a breakpoint, we can use the + or insert
keys:

:Set Bkpt> my-factn

The Set Bkpt> is our prompt, we type my-factn. The debugger displays the current
breakpoints:

***** Breakpoints *****

 Active: my-factn

***** Breakpoints *****

:

We can now press the Tab or F5 keys to resume execution until the breakpoint is hit:

 3 >> (my-factn (- n 1))

:

Each time we press Tab or F5, the runtime executes to the next my-factn call:

 6 >> (my-factn (- n 1))

:

 9 >> (my-factn (- n 1))

:

At this point, we may want to examine the execution environment, and find out the value
of n. Pressing the spacebar allows us to enter any Yarr expression, and it will be
immediately evaluated:

 9 >> (my-factn (- n 1))

:Eval> n

:= 3

:

The Eval> is the prompt we receive after pressing the spacebar. We entered n, and it
evaluates to 3. We can enter any Yarr expression here. Pressing the spacebar again:

:Eval> (my-factn 5)

:= 120

:

Developer’s Guide to Yarr

 Page 33

Note that the runtime evaluates (my-factn 5) without hitting the breakpoint on my-factn.
When evaluating user input in the debugger, breakpoints are temporarily disabled. We
can even change the value of n if we want:

:Eval> (= n 5)

:= 5

:Eval> n

:= 5

:

Of course, we’re still processing the original my-factn call, as confirmed by pressing C
to show the call stack:

***** Top of Stack *****

[9] (my-factn (- n 1))

[8] (* n (my-factn (- n 1)))

[7] (cond (< n 2) 1 (* n (my-factn (- n 1))))

[6] (my-factn (- n 1))

[5] (* n (my-factn (- n 1)))

[4] (cond (< n 2) 1 (* n (my-factn (- n 1))))

[3] (my-factn (- n 1))

[2] (* n (my-factn (- n 1)))

[1] (cond (< n 2) 1 (* n (my-factn (- n 1))))

[0] (my-factn 5)

****** Call Stack ******

:

We can remove the breakpoint from my-factn with the delete key:

:Unset Bkpt> my-factn

***** Breakpoints *****

***** Breakpoints *****

:

This shows that there are no breakpoints set. Now if we press F5, execution will continue
uninterrupted:

:

1440

>

Note the odd result for (my-factn 5). This is because we changed the value of n during
processing.

Developer’s Guide to Yarr

 Page 34

Console debugger commands

Key pressed Command

DownArrow or F11 Single step

RightArrow or F10 Steps to the next expression at the same stack depth

UpArrow or U Steps to the next expression at the depth of the caller’s
stack frame

Insert or + Sets a breakpoint

Delete or - Removes a breakpoint

T or * Toggles a breakpoint between active and inactive

Tab or F5 Continue execution until a breakpoint is encountered

B Displays breakpoints

C or ? Displays call stack

F Set stack frame (so that the environment at that stack
frame can be examined or modified)

E or Spacebar Evaluate an expression in the execution environment of
the currently selected stack frame

R or LeftArrow If about to evaluate an expression (>>), replace the
expression at this stack frame. If returning a value (<<),
replace the value returned

Escape or Q Exit the debugger and Abort processing

G Exit the debugger and continue processing

Any other key Display quick summary

Developer’s Guide to Yarr

 Page 35

The YarrPad debugger

The YarrPad.exe application also offers an interface into the Yarr debugger. In this case,
the debugger is an interactive WPF window. With the my-factn function previously
defined, the debugger is invoked using the step special form, as before:

(step (my-factn 5))

This brings up the YarrPad debugger window:

The four panes are:

• Upper left: the Yarr expression that is about to be executed. The expression
shown is the one for the selected stack frame in the call stack pane.

• Upper right: the current call stack. In the console debugger, this is obtained via
the C command. In YarrPad, it is displayed here instead. Stack frames can be
selected by clicking on them.

• Lower left: the evaluation pane. In the console debugger, the E or spacebar
command allows for evaluation. In YarrPad, we can type in the evaluation pane at
any time. The expression will be evaluated in the execution environment of the
selected stack frame.

• Lower right: the breakpoints pane. In the console debugger, this is obtained via
the B command. In YarrPad, breakpoints are displayed here instead. Breakpoints
can be toggled (enabled/disabled) by double-clicking on them, or with the right-
click context menu. The context menu also allows adding and removing
breakpoints.

Developer’s Guide to Yarr

 Page 36

The toolbar buttons are:

• (-> (..)) step in to the expression. This is the Down Arrow or F11 command in
the console debugger.

• (..) -> (..) step over the expression. This is the Right Arrrow or F10 command in
the console debugger.

• ((..) ->) step out of the expression. This is the Up Arrow or U command in the
console debugger.

• Run continue until the next breakpoint is hit. This is the Tab or F5 command in
the console debugger.

• Complete quit the debugger and continue execution. This is the G command in
the console debugger.

• Cancel quit the debugger and cancel execution. This is the Q command in the
console debugger.

• Add Bkpt … add a breakpoint. Breakpoints can also be added via the context
menu, by right-clicking in the breakpoints pane.

Pressing the “step in” button a few more times shows the following:

At this point, stack frame #4 is selected. We can obtain the value of n at this frame in the
evaluation pane:

Developer’s Guide to Yarr

 Page 37

We can then select frame #1, and see the value of n in that frame:

As before, we can set breakpoints:

Developer’s Guide to Yarr

 Page 38

And continue execution until the breakpoint is hit:

Selecting Complete from the menu will quit debugging and return the result of the
original call.

Developer’s Guide to Yarr

 Page 39

Meta-Programming
Yarr provides three facilities for extending the language with Yarr code: macros, setf

methods, and reader macros. In addition, it is possible to extend the language by
importing .NET assemblies. This latter method is described elsewhere; in this section, we
concentrate on extending Yarr in Yarr.

Macros

Yarr functions take values as their arguments and return values. By contrast, Yarr macros
take Yarr code as their arguments, and return Yarr code, which is then evaluated.

A Yarr macro consists of a pattern and a set of arguments. The arguments are then used
to macro-expand the pattern into Yarr code, which is then evaluated. Macros are defined
using the macro special form. For example:

(= my-square (macro (x) `(* ,x ,x)))

This macro takes one argument, bound to x, which is any unevaluated Yarr form. The

template to expand is `(* ,x ,x). The back-quote (`) indicates that macro-expansion
will be occurring in the list. Macro-expansion happens wherever the unquote (,) marker
appears. The macroexpand function can be used to see the results of macro-expansion
without actually executing the result:

(macroexpand '(my-square 3)) � (* 3 3)

(macroexpand '(my-square (foo 2))) � (* (foo 2) (foo 2))

Macro-expansion can also “splice” lists into the template. This is done using the splice
marker (,@):

(= my-mac-1 (macro (&rest x) `(list ,@x)))

(= my-mac-2 (macro (&rest x) `(list ,x)))

(macroexpand '(my-mac-1 a b c)) � (list a b c)

(macroexpand '(my-mac-2 a b c)) � (list (a b c))

This example should make clear the difference between unquote (,) and splice (,@).

The built-in macro defmacro simplifies the syntax for macro definition, and could have
been used to define the macros above:

(defmacro my-mac-1 (&rest x) `(list ,@x))

(defmacro my-mac-2 (&rest x) `(list ,x))

Macros, like functions, are a kind of closure, and enclose the environment in which they
are defined.

Developer’s Guide to Yarr

 Page 40

Since macro parameters are usually lists, macro parameter lists provide support for
destructuring. For example, if we want to create a macro that converts input of the form
(a op b) to (op a b), we can define it as follows:

(defmacro infix-to-prefix ((a op b)) `(,op ,a ,b))

(infix-to-prefix (1 + 2)) � 3

Destructuring parameters can also be used to split lists, for example:

(defmacro split ((list-car . list-cdr))

 `(list ',list-car ',list-cdr))

(split (a b c d)) � (a (b c d))

As slightly more complicated example, here’s a macro that swaps the first two elements
of a list:

(defmacro swap-head ((first-elt second-elt . list-cdr))

 `(cons ',second-elt (cons ',first-elt ',list-cdr)))

(swap-head (a b) � (b a)

(swap-head (a b c d)) � (b a c d)

We have already seen various built-in macros. In addition to defmacro, defun, make-

array, and when (among others) are all implemented as macros. Try them with
macroexpand to see what they do behind the scenes.

Setf methods

Previously, we saw that the assignment function =/setq/setf could be used to not only
bind symbols, but to also alter structures such as lists or arrays. For example:

(= (aref foo 1 1) 10)

sets the value of an array element.

What happens behind the scenes is that =/setq/setf examines its arguments, and notices

that 10 needs to be assigned to (aref foo 1 1) so it checks to see if there is a setf

method bound to aref. If there is, the setf method is invoked, and is passed the value 10,

the object foo and the arguments (1 1).

It’s possible to define custom setf methods using the defsetf macro. When a setf method
is invoked, it is passed at least two arguments: the first argument is the value that is to be
set (10 in our example), the second is the object that is to be affected (foo in our
example). If there are additional arguments expected (in our example, (1 1)) then the setf
method must account for them in its argument list.

Developer’s Guide to Yarr

 Page 41

As an example, let’s define our own version of aref that uses Array.SetValue to set an
array value:

(defsetf my-aref (value arr &rest index)

 (arr.setvalue value (the System.Array index)))

With my-aref defined, we can now invoke it:

(= foo #2a((1 2)(3 4))) � #2a((1 2)(3 4))

(= (my-aref foo 1 1) 10) � 10

foo � #2a((1 2)(3 10))

Note that it is possible (in fact, it is desirable) for setf methods to be bound to the same
symbol as regular functions. So, for example, there is a Yarr function first that returns the
first element in an array, and there is also a setf method first that sets the value of the first
element in an array.

Reader macros

Reader macros are functions that can intercept the Yarr input stream. They can then
reformat the input before it reaches the parser. There are various built-in Yarr reader

macros. For example there is a reader macro that reads '(a b c) and converts it (quote

(a b c)), and another that converts input of the form #'foo to (function foo). Also,

the #(…) and #nna(…) array syntax is handled by reader macros that convert these to

(array …) and (md-array …)respectively.

The Yarr reader expects the reader macro to take three parameters:

(fn (reader readtable character) …)

The parameters are:

• Reader – the System.IO.TextReader that is the current input stream. The reader
macro should read from this stream

• Readtable – the readtable from which the reader macro was dispatched

• Character – The character that caused this reader macro to be invoked. This
character has already been read and removed from the input stream

The Yarr reader expects a Yarr.ReadTable instance to be bound to the symbol
readtable, and uses that ReadTable instance to process the input stream. It looks up
each character that it reads from the input stream in the ReadTable, and if there is a
macro defined for that character, the reader invokes the macro and passes it the input
stream, the ReadTable currently in use, and the character that caused the macro to be
called. When the macro returns, the reader continues processing input stream.

To implement custom reader macros, the bind-macro-character macro can be used to
bind a Yarr function in *readtable*, for example:

Developer’s Guide to Yarr

 Page 42

(bind-macro-character #\$ (fn (reader readtable character) …))

Binds a reader macro for the $ character. Note that in Yarr, characters are entered using
#\char, so #\$ specifies the dollar-sign character. As suspected, #\ invokes a reader macro
for reading characters.

Suppose we want to create a reader macro that allowed us to construct symbols that had

any embedded character, including white-space. For example, input of the form !a

symbol! should result in a symbol named “a symbol” including the space. We want to be
able to bind our macro to any character, so if we bind it to $, then it should be able to

parse $a symbol$. We can implement the reader macro as follows:

(defun symbol-reader ((rdr System.IO.TextReader)

 (tbl Yarr.ReadTable)

 (chr Int32))

 (let ((sb (new System.Text.Stringbuilder))

 c)

 (while (and (!= (= c (rdr.Read)) chr)

 (!= c -1))

 (sb.append (the System.Char c)))

 (the Yarr.Symbol (sb.ToString))))

(bind-macro-character #\! symbol-reader)

(bind-macro-character #\$ symbol-reader)

(typeof !a symbol!) � Yarr.Symbol

(typeof $another symbol$) � Yarr.Symbol

Dispatch reader macros

The dispatch macro, which by default is bound to the pound sign (#), is special: it can
invoke other reader macros, and pass them a numeric parameter. This reader macro is
called the dispatch macro, because it can dispatch to other reader macros. For example,
there is an array dispatch reader macro bound to the character a. So when reader sees the
following in the input stream:

#2a((1 2) (3 4))

The reader discards the # character and invokes the dispatch macro. The dispatch macro
then inspects the input stream for an integer, and collects it. In this example, the integer 2
is collected. Then the dispatch macro sees the a, and passes the 2 as a parameter to the
dispatch reader macro bound to a, which in this case is the array reader.

We can write our own dispatch reader macros, and bind these dispatch reader macros by
using the bind-dispatch-character macro. Dispatch reader macros have a signature
similar to reader macros, but contain an extra parameter: the numeric argument collected
by the dispatch macro. For example, suppose we want to write a reader macro that takes

input of the form #baseNxxxx and parses the xxxx part as a number in base base. This

would allow us to enter, for example, hexadecimal numbers such as #16n3ff3:

Developer’s Guide to Yarr

 Page 43

(defun radix-reader ((rdr System.IO.TextReader)

 (tbl Yarr.ReadTable)

 (chr Int32)

 (radix Int32))

 (rdr.read) ; the reader does not discard the character

 ; that we’re bound to, so get rid of it now

 (let ((number 0)

 c)

 (or (> radix 1) (= radix 16)) ; default to base 16

 (while (not (Reader.TerminatingCharP (rdr.peek)))

 (= c (Char.ToLower

 (the System.Char (rdr.read))))

 (or

 (and (>= c #\0) (< (- c #\0) radix))

 (and (>= c #\a) (< (- c #\a -10) radix))

 (throw "Incorrect number format"))

 (= number (+ (* number radix)

 (if (and (>= c #\0) (<= c #\9))

 (- c #\0)

 (- c #\a -10)))))

 number))

(bind-dispatch-character #\# #\n radix-reader)

(bind-dispatch-character #\# #\N radix-reader)

(+ #n1f #8N10) � 39

Note that we can bind our dispatch reader macro to any two-character sequence, not just

#n and #N. If we wanted to use @n and @N instead, we could have done that with:

(bind-dispatch-character #\@ #\n radix-reader)

(bind-dispatch-character #\@ #\N radix-reader)

In this case, we could not also bind a reader macro to @, since we have caused it to be
bound to the dispatch macro.

Developer’s Guide to Yarr

 Page 44

Interaction with .NET
For this section, we assume that we have the following .NET assembly compiled as
TestClass.DLL:

using System;

namespace Test {

public delegate string MyDelegate (int c, string s);

public class TestClass

{

 public static int x = 10;

 public static int GetX ()

{

 return x;

}

 public TestClass()

{

 y = 42;

}

 public TestClass(int y)

{

 this.y = y;

}

public TestClass(TestClass cl)

{

 if (cl == null)

 this.y = 42;

 else

 this.y = cl.y;

}

 public int y;

 public int theY

{

 get { return y; }

 set { y = value; }

 }

 public int GetY() { return y; }

 public void SetY(int newy)

{

 y = newy;

}

 public void GetRefY (ref int param)

 {

 param = y;

 }

Developer’s Guide to Yarr

 Page 45

 public string Callback (int c, string s)

{

 this.y = c;

 return s;

}

public TType Identity<TType>(TType n)

{

 return n;

}

public MyDelegate GetCallback()

{

 return new MyDelegate(Callback);

}

public string GetResult()

 {

 return y.ToString();

 }

}

public class GenericTestClass<T, U>

{

 private T t;

 private U u;

 public T theT

{

 get { return t; }

 set { t = value; }

 }

 public U theU

{

 get { return u; }

 set { u = value; }

 }

 public GenericTestClass(T t, U u)

 {

 this.t = t;

 this.u = u;

 }

 public string GetResult()

 {

 return t.ToString() + u.ToString();

 }

}

}

Developer’s Guide to Yarr

 Page 46

Referencing assemblies

To interact with our TestClasses.DLL assembly, we must first reference it. This is done
with the reference function:

(reference "TestClass")

This ensures that the assembly is loaded. Note that the assembly defines a namespace. If
we want to avoid having to type the namespace to qualify the various classes in the
assembly, we can use the using function:

(using Test)

Creating object instances

Now we can use the new function to create object instances:

(= test-inst-1 (new TestClass)) ;; calls default constructor

(= test-inst-2 (new TestClass 10)) ;; calls other constructor

In Yarr, types are first-class objects. That means we can also do the following:

(= my-type TestClass) ;; bind the TestClass type to my-type

(= test-inst-3 (new my-type 5)) ;; creates a TestClass instance

To instantiate a generic class, we can first create a specialized type using its type

function, and then we can instantiate the specialized type:

(= generic-str-int (type 'GenericTestClass String Int32))

(= gen-test-inst-1 (new generic-str-int "foo" 42))

 � #<Test.GenericTestClass`2[System.String,System.Int32]>

If we don’t care to keep the generic type around for later use, we can just let the new
function handle all of the work in one step:

(= gen-test-inst-2

(new (type 'GenericTestClass String Int32) "bar" 6))

(typeof gen-test-inst-2)

� GenericTestClass`2[System.String,System.Int32]

Calling generic methods is simpler:

(test-inst-1.GenIdentity 5)

� 5

(test-inst-1.GenIdentity "a string")

� "a string"

The generic method is automatically resolved based on its arguments.

Developer’s Guide to Yarr

 Page 47

Accessing Class Members

Now that we have object instances, we can call their methods, and get and set their
properties. We use standard Lisp syntax to do this:

(theY test-inst-1) � 42 ;; get property value

test-inst-1.theY � 42 ;; same as above

(theY test-inst-2) � 10

(= (theY test-inst-1) 27) ;; set property value

(= test-inst-1.theY 27) ;; same as above

(theY test-inst-1) � 27

(GetY test-inst-2) � 10 ;; method call

(SetY test-inst-2 72) ;; method call with arguments

(GetY test-inst-2) � 72

To call static methods, or access static members, use the type instead of the instance:

(GetX TestClass) � 10 ;; Static method call

(TestClass.Getx) � 10 ;; same as above

(= (x TestClass) 10) ;; set a static field

(= TestClass.x 10) ;; same as above

(x TestClass) � 10 ;; get a static field

TestClass.x � 10 ;; same as above

One benefit of using Lisp syntax instead of the usual Instance.Method syntax is that we
can now define Yarr generic functions (in the Lisp sense of generic):

(defun call-GetResult (x) (GetResult x))

(call-GetResult test-inst-2) � "72"

(call-GetResult gen-test-inst-1) � "foo42"

We can call the GetResult() methods in both TestClass and GenericTestClass<T,U>

even though the instances passed to call-GetResult are unrelated.

It is entirely possible for a .NET object to have a method with the same name as a Yarr
function. In such cases, the Yarr interpreter will invoke the Yarr function instead of the
.NET method. To force the interpreter to call the .NET method, use the call special form:

(defun GetResult (&rest args) (prl "No GetResult for you!"))

(GetResult gen-test-inst-2) � No GetResult for you!

(call GetResult gen-test-inst-2) � "bar6"

Developer’s Guide to Yarr

 Page 48

ref and out parameters

To pass a ref or out parameter to a .NET method, either declare the symbol to be of the
correct type, or bind a data element of the correct type to a symbol, then pass the quoted
symbol to the method. For example, to call the DateTime.TryParse method:

(= date-time (new System.DateTime))

(System.DateTime.TryParse "10/10/2006" 'date-time)

date-time � 10/10/2006 12:00:00 AM

(declare (another-date system.datetime))

(System.Date.TryParse "10/15/2006” 'another-date)

another-date � 10/15/2006 12:00:00 AM

The defvar special form allows this to happen in one step:

(DateTime.TryParse "10/17/2006"

(defvar yet-another-date System.DateTime))

Yet-another-date � 10/17/2006 12:00:00 AM

The defvar special form declares the symbol to be of the specified type, just as if it had
been passed to declare.

Up/Down-casting objects

Sometimes, we’ll want to ensure that a particular object type is passed to a .NET method.
This is particularly useful if the method is overloaded, and we want to ensure that the
correct overloaded method is invoked.

(= foo (new TestClass null)) ;; Which constructor to call?

To ensure that the correct overloaded method is invoked, we can cast the object to a
particular type:

(= foo (new TestClass (the Test.TestClass null)))

This will invoke the TestClass(TestClass) constructor. We can do this for any object
instance, not just null values. For example, suppose we construct an instance of
System.Collections.Generic.Dictionary<string, object>:

(= foo (new (type 'Dictionary string object)))

(= (elt foo "bar") '(a b c))

Developer’s Guide to Yarr

 Page 49

Since System.Collections.Generic.Dictionary implements IDictionary, we can invoke
its IDictionary.Contains method via this interface:

(contains (the IDictionary foo) "bar")

 � True

Note that there are some caveats when up-casting: up-cast objects cannot be directly
bound to a symbol, so in particular, if passed as arguments to a closure, the local variable
to which they are bound will not be up-cast. They will be bound to the original objects.

Invoking delegates

The Yarr runtime can directly invoke delegates. Invoking a delegate looks like any other
Yarr function call:

(= deleg (test-inst-1.GetCallback))

(= baz (deleg 99 "Hello"))

baz � Hello

test-inst-1.theY � 99

Developer’s Guide to Yarr

 Page 50

Hosting Yarr

Invoking the Yarr Runtime

The easiest way to use Yarr from a .NET application is:

• Reference the Yarr assembly in the project

• Call Yarr.Runtime.EvalString(string) with the Yarr code you want to execute.
This returns the result of executing the Yarr code.

The Yarr runtime will automatically create an environment in which to execute your
statement:

int result = (int)Yarr.Runtime.EvalString("(+ 1 2 3 4)");

Console.WriteLine("the result is {0}", result);

� the result is 10

Yarr environments

It’s also possible to create an environment in which objects can be bound to symbols.
These can then be referenced from within the Yarr code:

Yarr.Environment env = Yarr.Environment.MakeEnvironment();

int[] array = new int[5];

env["my-array"] = array;

Yarr.Runtime.EvalString("(= (aref my-array 0) 10)", env);

Yarr.Runtime.EvalString("(= foo (+ (aref my-array 0) 5))", env);

int foo = (int)env["foo"];

Console.WriteLine("array[0] = {0}, foo = {1}", array[0], foo);

� array[0] = 10, foo = 15

Let’s examine what this does, line by line. The first line:

Yarr.Environment env = Yarr.Environment.MakeEnvironment();

Creates a new Yarr environment and assigns it to env. This will allow us to execute
subsequent Yarr code in this environment.

int[] array = new int[5];

env["my-array"] = array;

This creates an array of integers and binds it to the symbol my-array in the Yarr
environment that we previously created.

Yarr.Runtime.EvalString("(= (aref my-array 0) 10)", env);

Yarr.Runtime.EvalString("(= foo (+ (aref my-array 0) 5))", env);

Developer’s Guide to Yarr

 Page 51

This executes two Yarr statements. Both statements are executed in the same
environment, namely the one referenced by env.

int foo = (int)env["foo"];

The second Yarr statement (that we executed above) bound a value to the symbol foo.
We can now look up that value in the Yarr environment. Since everything in the
environment is considered to be an object, we have to cast the object we retrieve from
the environment to the proper type.

The two calls to Runtime.EvalString could have been combined into one:

Yarr.Runtime.EvalString(

"(= (aref my-obj 0) 10) (= foo (+ (aref my-obj 0) 5))",

env);

This returns the value of the last expression evaluated (which we’re ignoring in this
example).

Invoking Yarr Code from .NET Code

Once we have a Yarr.Environment instance, we can use it to obtain Yarr.Fn delegates
that can call both built-in Yarr functions as well as closures that have been defined in
Yarr code:

// Create the Yarr environment for this example

Yarr.Environment env = Yarr.Environment.MakeEnvironment();

// Let’s define a Yarr closure, and bind it to "factn"

Yarr.Runtime.EvalString(

"(defun factn (n) (if (< n 2) 1 (* n (factn (- n 1)))))",

env);

// Now let’s call our closure from C#

Yarr.Fn factorial = (Yarr.Fn) env["factn"];

int result = (int)factorial(5);

Console.WriteLine("The factorial of 5 is {0}", result);

� The factorial of 5 is 120

// Now let’s call a built-in Yarr function

Yarr.Fn mult = (Yarr.Fn) env["*"];

result = (int)mult(2, 3, 4, 5);

Console.WriteLine("The factorial of 5 is {0}", result);

Developer’s Guide to Yarr

 Page 52

Examining this line-by-line:

Yarr.Environment env = Yarr.Environment.MakeEnvironment();

This creates a Yarr environment, as in the previous example.

Yarr.Runtime.EvalString(

"(defun factn (n) (if (< n 2) 1 (* n (factn (- n 1)))))",

env);

This defines a closure and binds it to the symbol factn in the Yarr environment.

Yarr.Fn factorial = (Yarr.Fn) env["factn"];

We can look up the object bound to factn. Since factn is bound to a closure, the Yarr
environment creates a delegate for us (of type Yarr.Fn) and returns that delegate. This
will allow us to call the closure:

int result = (int)factorial(5);

All Yarr delegates return object, so we have to cast the return value to the appropriate
type.

Yarr.Fn mult = (Yarr.Fn) env["*"];

Now we want to call the built-in multiplication function of Yarr, which is bound to the
symbol *. As with closures, the Yarr environment creates a delegate for us (again, of type
Yarr.Fn).

result = (int)mult(2, 3, 4, 5);

We can now invoke the built-in multiplication function directly. Note that the Yarr.Fn

delegate allows us to invoke functions and closures with as many parameters as we want.

Extending Yarr

It is also possible to bind static C# methods to Yarr symbols so that they can be invoked
directly from Yarr scripts. A Func<Yarr.Environment, System.Object> delegate can
be used for this purpose.

A method callable from Yarr takes one parameter, the Environment in which the
function is to execute. This environment will also contain the arguments that have been
passed to the function. These will already have been evaluated prior to the function being
called.

Developer’s Guide to Yarr

 Page 53

For example, suppose we have the following function defined:

public static Object MyBuiltInFn(Yarr.Environment env)

{

 // Get the arguments from the environment

 int a = (int)env["a"];

 int b = (int)env["b"];

 // Compute the result

 return a + b;

}

We can now bind it to a symbol and use it from Yarr:

Yarr.Environment env = Yarr.Environment.MakeEnvironment();

Func<Yarr.Environment,Objetct> f =

 new Func<Yarr.Environment,Object>(MyBuiltInFn);

env.BindMethod("my-built-in", f, "((a int32) (b int32))");

int result = (int)Yarr.Runtime

 .EvalString("(my-built-in 3 4)", env);

Console.WriteLine("The result is {0}", result);

� The result is 7

The BindMethod method is used to bind our method to a symbol in the Yarr
environment. The first parameter to BindMethod is the name of the symbol to which the
method is to be bound. The second parameter is a Func<Environment,Object> delegate
for the method, and the third is a string indicating the parameter list for the method. This
can be any valid Yarr parameter list, including &key, &optional, and &rest parameters.
Before the method is invoked, the parameters will be parsed and placed in a local
environment, which is passed as a parameter. For example, consider the method:

public static Object AnotherFn(Yarr.Environment env)

{

 // Get the arguments from the environment

 string s = (string)env["str"];

 int start = (int)env["start"];

 int len = (int)env["length"];

 // Compute the result

 return s.Substring(start, len);

}

We can bind this method as follows:

env.BindMethod("my-substr",

 new Func<Yarr.Environment, Object>(AnotherFn),

 @"((str string) &key ((start int32) 0)

 ((length int32)

 (- str.length start)))");

Note that we specify a complex parameter list: the start and length parameters are
keyword parameters, and the default value of length is a computed expression.

Developer’s Guide to Yarr

 Page 54

When called from Yarr, the runtime will take care of processing the parameters and
placing the appropriate values into the environment, so all that the method has to do is
look them up:

Yarr.Runtime.EvalString("(my-substr \"ABCDE\" :start 2)", env);

� "CDE"

Yarr.Runtime.EvalString("(my-substr \"ABCDE\" :length 3)", env);

� "ABC"

Yarr.Runtime.EvalString(

 "(my-substr \"ABCDE\" :length 3 :start 1", env);

� "BCD"

Setf methods

The same Func<Environment,Object> delegate is used to create setf methods. Setf
method bindings are defined by calling BindSetf, for example:

Yarr.Environment env = Yarr.Environment.MakeEnvironment();

Func<Yarr.Environment,Object> f =

 new Func<Environment,Ojbect>(MyClass.MySetfMethod);

env.BindSetf("my-setf-method", f, "(value object)");

Reader macros

Reader macros can be defined in C# using the Yarr.ReaderMacro delegate. This
delegate is defined as:

public delegate Object ReaderMacro(TextReader textReader,

ReadTable readTable, int macroChar, Environment env);

To implement custom reader macros, the ReadTable instance can be obtained from the
environment, and then reader macros can be assigned to characters by calling the
ReadTable.SetMacroCharacter instance method.

For example, suppose we want to implement the symbol reader, described previously, in
C# rather than as a Yarr function:

public static Object SymbolReader(

 TextReader textReader, ReadTable readTable,

 int macroChar, Environment env)

{

 int c;

 StringBuilder sb = new StringBuilder();

 while ((c = textReader.Read()) != macroChar &&

c != -1)

 sb.Append((char)c);

 return Symbol.FromName(sb.ToString());

}

Developer’s Guide to Yarr

 Page 55

We can now assign our reader macro to the ! and $ characters in a Yarr environment:

ReaderMacro symbolReader = new ReaderMacro(SymbolReader);

Yarr.ReadTable readtable =

(Yarr.ReadTable) environment["*readtable*"];

readtable.SetMacroCharacter('!', symbolReader);

readtable.SetMacroCharacter('$', symbolReader);

Dispatch reader macros

We can write our own .NET dispatch reader macros, and bind these dispatch reader
macros by calling the ReadTable.SetDispatchCharater instance method, and passing it
a Yarr.DispatchReaderMacro delegate:

public delegate Object DispatchReaderMacro(

TextReader textReader, ReadTable readTable,

int macroChar,int argument, Environment env);

For example, suppose we want to implement the previously discussed radix reader as a
C# method instead of as a Yarr function:

public static Object RadixReader(

TextReader textReader, ReadTable readTable,

int macroChar, int radix, Environment env)

{

 // The dispatcher does not discard the character that

 // we’re bound to, so get rid of it now (the macroChar

// parameter is the initial macro dispatch character)

 textReader.Read();

 int number = 0; // Where we’ll accumulate the result

 // if no base is specified, assume hex

 if (radix < 2)

 radix = 16;

 // If the next character is a terminating character,

 // we stop. Note that we don’t want to read the

 // terminating character, because it might be meaningful

 // to the Yarr reader. If we read it, the Yarr reader

 // won’t see it.

 int c;

 while (!Reader.TerminatingCharP(textReader.Peek()))

 {

 c = (int)Char.ToLower((Char)textReader.Read());

 // make sure the character is correct for the

 // base that was specified

 if ((c >= '0' && (c - '0') < radix) ||

 (c >= 'a' && (c - 'a' + 10) < radix))

 {

 if (c >= '0' && c <= '9')

Developer’s Guide to Yarr

 Page 56

 number = number * radix + c - '0';

 else

 number = number * radix + c - 'a' + 10;

 }

 else // syntax error, throw an exception

 throw new YarrException(

"Incorrect number format");

 }

 return number;

}

Now we can bind our dispatch reader macro and use it:

DispatchReaderMacro drm =

new DispatchReaderMacro(RadixReader);

Yarr.ReadTable readtable =

(Yarr.ReadTable) environment["*readtable*"];

readtable.SetDispatchCharacter('#', 'n', drm);

readtable.SetDispatchCharacter('#', 'N', drm);

int result = (int)Yarr.Runtime.EvalString(

"(+ #n1f #8N10)", environment);

Console.WriteLine("Result = {0}", result);

� Result = 39

Attributes

If there are a lot of functions, special forms, setf methods, etc. that we want to bind at one
time, an easier way to do it is to put them all in one class, and use attributes to tag the
functions. The Yarr assembly defines the following attributes:

• PackageAttribute marks a class. Indicates that all of the symbols bound to class
members should be defined in the specified symbol package

• FunctionAttribute marks a static method as being a Yarr function

• SpecialFormAttribute marks a static method as being a Yarr special form

• SetfAttribute marks a static method as being a Yarr setf method

• ReaderMacroAttribute marks a static method as being a reader macro

• DispatchReaderMacroAttribute marks a static method as being a dispatch
reader macro

• EvalAttribute used to mark fields; if the field is a string, causes the string to be
evaluated, and the result bound to the specified symbol (if provided). If the field is
any other object, that object is bound to the specified symbol

This provides us with a convenient way to write a Yarr extension assembly, which
customizes the behavior of Yarr to meet our application’s needs. We can define classes
such as the following:

// A class to extend Yarr

Developer’s Guide to Yarr

 Page 57

[Package("YarrExtender")]

public class YarrExtender {

// Define a Yarr function, bound to two different symbols

// These symbols will be in the YarrExtender package due to

// the PackageAttribute on the class

[Function("my-built-in-1;my-built-in-2", "(arg-list)")]

public static Object MyBuiltInFn(Yarr.Environment env)

{

 …definition…

}

// Define a Yarr special form, also defined in the

// YarrExtender package

[SpecialForm("my-special-frm")]

public static Object MySpecialFrm(Yarr.Cons arg,

 Yarr.Environment env)

{

 …definition…

}

// Define a Yarr setf method

[Setf("my-setf-method", "(arg-list)")]

public static Object MySetfMethod(Yarr.Cons argument,

 Yarr.Environment env)

{

 …definition…

}

// Define a reader macro in the ReadTable bound to

// *readtable* in the current environment

[ReaderMacro('!')]

public static Object MyReaderMacro(TextReader textreader,

 ReadTable readtable,

 int macroChar,

 Environment env)

{

 …definition…

}

// Define a dispatch reader macro in the ReadTable bound

// to *readtable* in the current environment

[DispatchReaderMacro('#','n'),

 DispatchReaderMacro('#','N')]

public static Object MyDispReaderMacro(TextReader textreader,

ReadTable readtable,

int macroChar,

int arg,

Environment env)

{

 …definition…

}

// Define a Yarr macro

Developer’s Guide to Yarr

 Page 58

[Eval("my-macro")]

public static string m = "(macro (n) `(* ,n ,n))";

}

We can then call Environment.ImportClass to import our class into the Yarr runtime:

Yarr.Environment env = Yarr.Environment.MakeEnvironment();

env.ImportClass(typeof(YarrExtender));

This creates bindings for my-built-in-1, my-built-in-2 (a synonym for my-built-in-1),
my-special-frm, my-setf-method, and my-macro, and also binds our reader macro to
the ! character, and binds our dispatch reader macros to the #n and #7 characters.

The Environment.ImportClass method binds all methods before evaluating any strings
tagged with EvalAttribute, so these evaluation strings can make use of the reader
macros, functions, and special forms defined in the class.

Debugging

The Yarr runtime provides a debugger hook. Hosting applications can provide an
instance of a class that implements Yarr.IDebuggerBreak, and the runtime will
interactively invoke the various members of this interface, providing its own IDebugger
instance that can be used to interactively debug running Yarr scripts.

Yarr.IDebuggerBreak

This interface must be implemented by hosting application. There are three methods in
this interface:

• Object DebugBreak (IDebugger debugger, StackFrame currentFrame)

This method is invoked whenever the runtime encounters an active breakpoint.
The method is passed a Yarr.IDebugger instance that provides various
debugging services, and an instance of Yarr.StackFrame that represents the
current stack frame. The return value of this method will replace the expression,
or form that would otherwise be evaluated in the current stack frame. To continue
with the evaluation of the form in the current frame, this method should return
currentFrame.Form.

• void DebugPrint (IDebugger debugger, string comment,

 Environment env)

This method is invoked when the runtime encounters a debug comment.

• Object ReturnValue (IDebugger debugger, StackFrame currentFrame,

 Object value)

This method is invoked whenever the runtime evaluates a form that has an active
breakpoint attached. The value passed to this method as an argument is the value
that is about to be returned by the evaluator. The return value of this method will
replace this value.

Developer’s Guide to Yarr

 Page 59

The Runtime.AttachDebugger method is used to attach an IDebuggerBreak instance to
the runtime:

public class MyDebuggerBreakHandler : IDebuggerBreak

{

 Object DebugBreak (IDebugger debugger,

 StackFrame currentFrame)

 {

 … Implementation …

 }

 void DebugPrint (IDebugger debugger, string comment,

 Environment env)

 {

 … Implementation …

 }

 Object ReturnValue (IDebugger debugger,

 StackFrame CurrentFrame,

 Object value)

 {

 … Implementation …

 }

}

…

Runtime.AttachDebugger(new MyDebuggerBreakHandler());

…

By default, the debugger is inactive. The step special form will automatically activate the
debugger when it is evaluated. It is also possible for the hosting application to explicitly
activate the debugger:

Runtime.EnableDebugger();

This places the runtime in single-step mode, so the IDebuggerBreak methods will be
invoked on every call to eval. The debugger can later be deactivated (but not detached):

Runtime.DisableDebugger();

If the hosting application no longer needs to use the Yarr runtime debugging services, it
can detach from the debugger to improve performance:

Runtime.DetachDebugger();

The runtime remembers breakpoints between debugger activations.

Developer’s Guide to Yarr

 Page 60

Yarr.IDebugger

The Yarr.IDebugger interface, provided as an argument to the IDebuggerBreak
methods above, provides the following methods:

• void AddBreakpoint (Object fn)

sets a breakpoint on object fn. Breakpoints can be set on any object. Note that to
set a breakpoint on a Yarr function or closure, the breakpoint must be set on the
actual function or closure object, not on a symbol bound to it. The hosting
application will have to look up the symbol in the execution environment using
Environment.GetValue() and then invoke AddBreakpoint with the result, for
example:

Object func = stackFrame.ExecutionEnvironment

 .GetValue(Symbol.FromName("my-function"));

debugger.AddBreakpoint(func);

sets a breakpoint on the function bound to the symbol my-function. Note that the
hosting application should use the Environment.GetValue method to get object
bindings for debugging purposes, and should not use the Environment string
indexer or Symbol indexer to get object values. The indexers wrap Yarr objects
with Yarr.Fn delegates to facilitate calling them from .NET code, but the runtime
does not use these delegates internally when evaluating objects. Therefore,
breakpoints set on these delegates will not be encountered.

• void RemoveBreakpoint (Object fn)

removes the breakpoint from object fn. As with AddBreakpoint, the hosting
application is responsible for finding the actual object from which to remove the
breakpoint

• void DisableBreakpoint (Object fn)

disables (but does not remove) the breakpoint on object fn. The runtime will
ignore disabled breakpoints

• void EnableBreakpoint (Object fn)

enables the breakpoint on object fn. By default, AddBreakpoint enables the
breakpoint that it adds, so EnableBreakpoint only needs to be invoked if a
breakpoint has been explicitly disabled by DisableBreakpoint

• bool IsBreakpointEnabled (Object fn)

Returns true if there is a breakpoint enabled on object fn, false if there is no active
breakpoint on object fn

• Object[] GetBreakpoints ()

Returns an array of all objects with breakpoints, regardless of whether the
breakpoint is enabled or not

Developer’s Guide to Yarr

 Page 61

• StackFrame[] GetCallstack ()

obtains an array of StackFrame instances, one for each Yarr stack frame on the
current thread. The top of the stack is at position 0 in the array, and the bottom of
the stack is at the end of the array

• void SetMode (DebuggerMode mode, StackFrame frame, int argument)

sets the debugger mode, which controls how the debugger handles breakpoints.
The mode can be one of the following:

o DebuggerMode.SingleStep puts the debugger in single-step mode. Every call

to eval will trigger a break

o DebuggerMode.StepOver steps over the current form. The runtime will
execute until it encounters a form at the same stack depth as frame, then it will
trigger a break.

o DebuggerMode.RunToPreviousFrame returns from the current form. The
runtime will execute until it encounters a form argument frames up from
frame. For example, the call:

SetMode(DebuggerMode.RunToPreviousFrame, frame, 2);

Will cause the runtime to execute until it encounters a stack frame at the same
level as the frame’s caller’s caller, i.e. two levels up from the frame

o DebuggerMode.RunToBreakpoint the runtime will execute until it
encounters an explicitly set, active breakpoint

o DebuggerMode.RunToCompletion the runtime will execute until it
completes evaluation of the original form. In other words, turns the debugger
off and continues execution

o DebuggerMode.Abort the debugger will abort execution of the original form.
This throws a YarrException, which causes execution to stop and returns to
the top level

Developer’s Guide to Yarr

 Page 62

Yarr language reference

Data types

Yarr supports all .NET data types. New types cannot be created in Yarr, but any types
and classes defined in .NET assemblies can be used in Yarr by referencing the assembly.

When processing numbers, the Yarr reader automatically detects the type of the number
and tries to parse it in the following order:

1. If the number ends with “m” or “M” attempts to parse the number as a
System.Decimal. If this fails, then the “number” is considered to be a symbol

2. Attempts to parse the number as a System.Int32. If this fails …
3. Attempts to parse the number as a System.Int64. If this fails …
4. Attempts to parse the number as a System.Double. If this fails, then the “number”

is considered to be a symbol

Numbers of other types, such as System.Int16, must be explicitly cast as such using the
function the:

(typeof 10) � System.Int32

(typeof (the System.Int16 10)) � System.Int16

Strings are entered enclosed in double quotes:

(typeof "this is a string") � System.String

Individual characters are entered using the syntax #\char:

(typeof #\c) � System.Char

Lists are represented internally as instances of the Yarr.Cons class. The reader parses
sequences enclosed in parentheses and constructs the necessary Yarr.Cons object for
them. The reader also supports Lisp’s “dotted pair” notation:

(car '(a . b)) � a

(cdr '(a . b)) � b

(cdr '(a b)) � (b)

The object to the left of the dot is the car of the cons node, and the object to the right of
the dot is the cdr of the cons node.

The reader can directly parse arrays. A list prefixed with a pound-sign (#) is considered to
be an array, and is parsed accordingly. Optionally, a rank can be specified for an array by
prefixing the list with “#nna” or “#nnA”:

(typeof #(1 2 3 4)) � System.Int32[]

(typeof #2a((1 2) (3 4))) � System.Int32[,]

Developer’s Guide to Yarr

 Page 63

Yarr supports System.Boolean directly. In the context of conditional operators, false,
null, any numeric zero value, DateTime.MinValue, and empty strings are all considered
false. Everything else is considered true.

Types self-evaluate, and are first-class objects, so they can be bound to symbols and
passed as parameters:

(= a-type System.Int32)

(typeof a-type) � #<System.RuntimeType>

a-type � #<System.Int32>

Comments

The semi-colon (;) is a comment character, and marks everything in the input stream up
to the next new-line character as a comment. Multi-line comments are enclosed between
#| and |#:

(= foo 42) ; this is a comment

(= bar 3) #| start of a multi-line comment

(this is ignored) and now the comment ends … |#

Symbols

Symbols in Yarr can be any sequence of characters. Symbols can be either bound or
unbound. A symbol is bound to an object with the =/setq/setf special form. A bound
symbol evaluates to the object bound to it. An unbound symbol evaluates to itself, which
is an instance of the class Yarr.Symbol, except:

• If the symbol name is the same as a type name, and the symbol is unbound, it will
evaluate to the type

• If the symbol can be parsed as a number, it will be considered a number, not a
symbol

Symbols are grouped into symbol packages, and new packages can be created at any
time. A symbol specification of the form package-name:symbol-name references a
symbol named symbol-name in the package named package-name. Packages may
inherit symbols from other packages.

The quote function causes a symbol to evaluate to itself, instead of the object that is
bound to it:

(= foo '(a b c))

(typeof foo) � #<Yarr.Cons>

(typeof (quote foo)) � #<Yarr.Symbol>

(typeof 'foo) � #<Yarr.Symbol>

Quoting a number still produces the number. A reader macro is required to create
symbols with “numeric” names. Note that the quote character (') is a short-hand for the
function quote.

Developer’s Guide to Yarr

 Page 64

Expressions

As was previously mentioned, numbers, types, and unbound symbols evaluate to
themselves. Bound symbols evaluate to the object they are bound to. Lists are evaluated
as follows:

1. The car of the list is evaluated, and is expected to be a macro, special form, function,

closure, or symbol
2. If the car of the list is a macro:

2.1. The remaining elements of the list are left unevaluated. They are considered
arguments, and are bound to the macro’s parameters

2.2. The macro is expanded
2.3. The result of the macro expansion is evaluated

3. If the car of the list is a special form:
3.1. The remaining elements of the list are left unevaluated. They are considered

arguments, and bound to the special form’s parameters
3.2. The special form is invoked

4. If the car of the list is a function (either a built-in function, or a Yarr closure):
4.1. The remaining elements of the list are evaluated in order, producing a list of

values
4.2. The list of values is considered to contain arguments for the closure or function,

and the values are bound to the parameters in the local environment
4.3. The closure or function is invoked

5. If the car of the list is a symbol:
5.1. The symbol’s name is considered to be the name of a .NET delegate, method,

property, or field
5.2. If it is a delegate, the delegate is invoked; the remaining elements of the list are

evaluated in order, and the resulting values are passed as arguments to the
delegate

5.3. If it is not a delegate:
5.3.1. If the symbol is of the form “foo.bar” it is transformed internally to “bar

foo” so that (foo.bar a b c …) will be evaluated as (bar foo a b c …)
5.3.2. The second element of the list is evaluated. The result of the evaluation is

considered to be an instance of a .NET class. If it is a System.Type, then the
method, property, or field is considered to be a static member of that type

5.3.3. The remaining elements of the list are evaluated in order, producing a list
of values. These are considered to be arguments for the .NET method. The
data types of these values are used to determine which overloaded method
should be called

5.3.4. The .NET method (determined by the first element of the list) is invoked
on the .NET object (determined by the second element of the list), and is
passed the evaluated values as its parameters. If any of the values is a
Yarr.Symbol, then the corresponding parameter is assumed to be a ref or
out parameter, and the result will be bound to the specified symbol when the
method returns

Developer’s Guide to Yarr

 Page 65

Exception handling

Any exception thrown during the evaluation of Yarr expressions is caught by the Yarr
runtime’s top-level evaluator. The exception object is bound to the symbol *last-

exception* and, if the exception is not of type Yarr.YarrException, it is wrapped in a
Yarr.YarrException. After being bound (and possibly wrapped), the exception is
rethrown. Callers into the Yarr runtime therefore only have to catch exceptions of type
Yarr.YarrException, and if they require more information, they can obtain the actual
exception object from the Yarr environment.

There is also a built-in Yarr try special form that can be used to catch and handle
exceptions from within Yarr code.

Special forms

The Yarr runtime contains the following built-in special forms:

And
(and

expression1

expression2

…

expressionN)

Evaluates each expression in turn. If an expression is false, no further expressions are
evaluated, and the and special form evaluates to false. If all expressions evaluate to true,
the and special form evaluates to the value of expression�.

Backquote
(backquote template)

`template

Performs substitution on template. The template is examined for symbols prefixed with
either an unquote tag (,) or a splice (,@) tag. Unquoted symbols are replaced by the
object bound to them. Spliced symbols are assumed to be bound to lists, and are replaced
by the list elements:

(= foo ‘(a b c))

Foo � (a b c)

`(x ,foo y ,@foo z) � (x (a b c) y a b c z)

The backqouote special form evaluates to the expanded template.

Bind-setf-method

(bind-setf-method symbol expression)
Binds a setf method to a symbol. The first argument is the symbol to which the setf
method will be bound. The second argument is an expression, which is evaluated and is
expected to produce a closure. This closure is bound to the symbol as a setf method.

The bind-setf-method special form evaluates to the closure that was bound.

Developer’s Guide to Yarr

 Page 66

Call
(call method-name object expression1 expression2 … expressionN)

Calls a .NET method. The first argument is an unbound symbol or string. This specifies
the method that is to be called. The second argument is evaluated, and is expected to
produce a .NET object instance. If this is an instance of System.Type, then the method is
considered to be a static method on that type.
The remaining expressions are evaluated in order, producing a list of values. These are
considered to be arguments for the .NET method. The data types of these values are used
to determine which overloaded method should be called. The .NET method (determined
by the first argument) is invoked on the .NET object (determined by the second
argument), and is passed the evaluated values as its parameters. If any of the values is a
Yarr.Symbol, then the corresponding parameter is assumed to be a ref or out parameter,
and the result will be bound to the specified symbol when the method returns.

The call special form evaluates to the return value of the .NET method. If it is a void
method, the call special form evaluates to null.

Cond
(cond

 test1 expression1

 test2 expression2

 test3 expression3

 …

 testN expressionN

 else-expression)

Performs conditional execution. Each test is evaluated in turn. If it evaluates to false, the
corresponding expression is not evaluated. If it evaluates to true, the corresponding
expression is evaluated, becomes the result of evaluating the cond special form, and no
further tests or expressions are evaluated.

If the final else-expression is reached (this expression is optional), it is evaluated and its
value becomes the result of evaluating the cond special form. If no else-expression exists,
and all tests are false, then the cond special form evaluates to null.

Decf
(decf symbol [amount])

(-- symbol)

Decrements the value bound to symbol by amount. The amount parameter is optional, and
defaults to 1. If symbol is bound to an object, then decf will try to invoke the appropriate

op_subtraction method. The (-- symbol) special form behaves like post-fix -- in C# or
C++: it decrements the value bound to symbol but returns the pre-decremented value. If

symbol is bound to an object, then -- will attempt to invoke the appropriate
op_decrement method.

Developer’s Guide to Yarr

 Page 67

Declare
(declare (symbol1 type1 [value1])

 (symbol2 type2 [value2])

 …

 (symbolN typeN [valueN]))

Declares each symbol in the current environment to be of a specific type, and optionally
bind them to an initial value. If no value is specified, the symbol is bound to null (if type

is a reference type) or the type’s default value (if type is a value type). Evaluates to the
final value that was set.

Defvar
(defvar symbol type &rest arguments)

Declares symbol in the current environment to be of the specific type. If arguments are
provided, the new function is then invoked, with type and argumentss passed as
parameters, and the result of the call to new is bound to symbol. Otherwise symbol is
bound to null (if type is a reference type) or the types’s default value (if type is a value
type). The defvar special form evaluates to symbol.

Do
(do

 expression1

 expression2

 …

 expressionN)

Evaluates each expression in turn. The do special form evaluates to the value of the last
expression.

Each
(each symbol IEnumeralbe-object

expression1

expression2

…

expressionN)

Iterates over an IEnumerable collection. The first argument is expected to be a symbol.
The second argument is evaluated, and is expected to produce an instance of an
IEnumerable class. The special form will create a local environment, and will bind
symbol in the local environment to each element of the IEnumerable class in turn. For
each element, it will evaluate the expressions one at a time in order, in the local
environment.

The each special form evaluates to the value of the last expression.

Developer’s Guide to Yarr

 Page 68

Fn
(fn (parameters)

expression1

expression2

…

expressionN)

Creates a Yarr closure. The first argument is a parameter list for the closure. When the
closure is subsequently invoked, the arguments will be bound to these parameters, and
the expressions will be evaluated in order. The result of invoking the closure will be the
value of the last expression evaluated. When the closure is invoked, the symbol self will
be bound to the closure, allowing the closure to recursively invoke itself.

The fn special form evaluates to the closure it creates.

Parameter Lists

Parameter lists contain one symbol for each argument that will be passed. They are bound
to the arguments in order. The special tags &optional, &key, and &rest result in special
handling of the arguments.

The &optional tag denotes that all subsequent parameters are optional:

(fn (a &optional b) …)

defines a clousre that takes one or two arguments. If a second argument is provided, it is
bound to b otherwise b is null. Default values may be specified for the optional
parameters:

(fn (a &optional b (c default-value)) …)

defines a function that takes one, two, or three arguments. If only one argument is
provided, b is null and c is set to default-value. If two are provided, they are bound to a
and b, and c is set to 5. If three are provided, they are bound to a, b, and c.

The &key tag denotes that all subsequent parameters are keyword parameters:

(fn (&key from to) …)

defines a function that takes two keyword parameters. This function can be invoked in
either of the following equivalent ways:

((closure) :from a :to b)

((closure) :to b :from a)

The Yarr interpreter automatically assigns the arguments to the correct parameters.
Keyword parameters are automatically optional, and can have default values specified:

(fn (&key (from default-value) to) …)

Developer’s Guide to Yarr

 Page 69

If the :from keyword is not provided, from is set to default-value.

The &rest tag causes all arguments not already bound to parameters to be collected into a
list, and bound to the parameter immediately following the &rest tag.

When specifying parameters, an optional type may be provided using the following
syntax:

• Symbol – specifying a symbol, as in all of the examples above, indicates that an
argument of any type can be bound to the symbol

• (symbol type) – for parameters that are not optional or keyword parameters,
indicates that symbol will be bound to the argument, and that the argument must
be of type type

• (symbol default) – for optional and keyword parameters, indicates that an
argument of any type can be bound to the symbol, and if no argument is specified,
the symbol will be bound to the value of default

• ((symbol type) [default]) – for optional and keyword parameters, indicates that the
argument passed must be of type type, and optionally defaults to default if no
argument is provided

For
(for init-expression test-expression iter-expression

 Expression1

 Expression2

 …

 expressionN)

First evaluates init-expression, which is evaluated only once. Then, if test-expression
evaluates to true, loops over each expression in turn, and evaluates iter-expression.
Repeats this process until test-expression evaluates to false, at which point the for loop
evaluates to the value of the last expression.

Foreach
(foreach symbol IEnumeralbe-object

expression1

expression2

…

expressionN)

This is a synonym for each.

Developer’s Guide to Yarr

 Page 70

Function
(function function-reference)

If function-reference is a closure or delegate, evaluates to that closure or delegate.
Otherwise function-reference is assumed to be a reference to a .NET method, creates a
closure wrapping that method, and evaluates to that closure. The There is a reader macro
bound to #' that converts input of the form #'foo to (function foo).

Example:

(apply #’Console.Writeline '("{0} {1}" "hello" "world"))

� hello world

(apply #’+ '(1 2 3)) � 6

(eq + #’+) � True

If
(if

 test1 expression1

 test2 expression2

 test3 expression3

 …

 testN expressionN

 else-expression)

This is a synonym for cond.

Incf
(incf symbol [amount])

(++ symbol)

Increments the value bound to symbol by amount. The amount parameter is optional, and
defaults to 1. If symbol is bound to an object, then incf will try to invoke the appropriate

op_addition method. The (++ symbol) special form behaves like post-fix ++ in C# or
C++: it increments the value bound to symbol but returns the pre-incremented value. If
symbol is bound to an object, then ++ will attempt to invoke the appropriate
op_increment method.

Lambda
(lambda (parameters)

expression1

expression2

…

expression)

This is a synonym for fn, and exists for historical reasons.

Developer’s Guide to Yarr

 Page 71

Let

First form:
(let var value

expression1

expression2

…

expressionN)

Second form:
(let (local-declarations)

expression1

expression2

…

expressionN)

Creates a local lexical environment, with local symbols bound, and executes each
expression in the local environment. The let special form evaluates to the value of the last
expression.

There are two forms of let. The first form creates a single local symbol, and binds it to
the result of evaluating value.

The second form permits multiple local symbols to be declared. A local-declaration can
be just a symbol, or it can be a list with two elements. If it is a list, the first element is
expected to be a either a symbol or a list of the form (symbol type). The second element is
evaluated, and the result is bound to the symbol. If a type is specified, the symbol is
declared to be of that type in the local environment. The various initialization expressions
for the local symbols are evaluated in the caller’s environment.

Let*

First form:
(let* var value

expression1

expression2

…

expressionN)

Second form:
(let* (local-declarations)

expression1

expression2

…

expressionN)

Creates a local lexical environment, with local symbols bound, and executes each
expression in the local environment. The result of evaluating the special form is the value
of the last expression evaluated.

Like the let special form, except that let* evaluates the initialization expressions for the
local symbols in order, in the local environment.

Developer’s Guide to Yarr

 Page 72

Letv
(letv (variables-list) (values-list)

expression1

expression2

…

expressionN)

Creates a local lexical environment, binding each symbol in variables-list to the
corresponding value in values-list, and then executes each expression in the local
environment. The result is the value of the last expression.

Macro
(macro (argument-list)

expression1

expression2

…

expressionN)

Creates a Yarr macro. The first argument is a parameter list for the macro. When the
macro is subsequently expanded, the arguments will be bound to these parameters, and
the expressions will be evaluated in order. The result of expanding the macro will be the
value of the last expression evaluated.

Parameter lists

Macro parameter lists are similar to function parameter lists, and support &optional,
&key, and &rest. However, parameter types cannot be specified. The macro parameter
list supports &body, which is identical to &rest, and can be used to improve readability
of code if used to denote a parameter that is a collection of expressions that will used as
the body of a definition (for example, see the definitions of the defun or defmacro
macros). Parameters that are not &key, &optional, or &body/&rest support
destructuring.

The macro special form evaluates to the value of macro that it creates, i.e. the result of
the macro-expansion is evaluated.

Nullp
(null object)

Returns true if object is null, false otherwise.

Or
(or

expression1

expression2

…

expressionN)

Evaluates each expression in turn. If an expression is true, no further expressions are
evaluated, and the or special form returns that expression’s value. If all expressions
evaluate to false, the or special form evaluates to false.

Developer’s Guide to Yarr

 Page 73

Quote
(quote object)

'object
The quote special form evaluates to its (unevaluated) argument.

Return
(return value)

When encountered as a top-level form in a flow-control special form: and, do, for,
each/foreach, let, let*, or, to, while; or at the top-level in a closure or macro, causes that
special form, closure, or macro to stop processing and return value. If evaluated as part of
a cond or if special form, it is considered to be part of the enclosing form. Otherwise (for
example, if encountered as a parameter to a function), simply evaluates to value.

= / Setq / Setf
(= lvalue1 expression1

 lvalue2 expression2

 …

 lvalueN expressionN)

Assigns values. Each lvalue is examined in turn, and is expected to be either a symbol or
a list.

• If it is a symbol, the corresponding expression is evaluated and the symbol is
bound to its value

• If it is a list
o The first element of the list is examined, and is expected to be a symbol.
o If there is a setf method bound to the symbol, it is invoked, and is passed

as arguments:
� The value of the corresponding expression
� The second element of the lvalue list
� The value of any remaining elements in the lvalue list, in order

o If there is no setf method bound to the symbol, it is assumed to be a
property or field of a .NET class instance, which is expected to be the
second element of the lvalue list. The Yarr runtime attempts to set this
field or property to the value of the corresponding expression

Setq, Setf, and = are synonymous. The preferred syntax is to use =; the other two exist
for historical reasons. The =/Setq/Setf special form evaluates to the value of the last
expression.

Spawn
(spawn expression)

Evaluates expression in a new thread. Evaluates to the System.Threading.Thread that is
created to evaluate expression.

Step
(step expression)

evaluates expression in the debugger. The debugger is activated, and then single-steps
into expression.

Developer’s Guide to Yarr

 Page 74

Symbol-name
(symbol-name symbol)

Returns the name of the symbol symbol as a string.

Symbol-value
(= (symbol-value symbol) value)

Returns the value bound to a symbol. A setf method symbol-value is also available that
can be used to dereference a symbol, and set the resulting symbol’s value. For example:

(= foo bar)

(= (symbol-value foo) 10)

foo � bar

bar � 10

To
(to var end-value

expression1

expression2

…

expressionN)

Creates a local environment, binds the symbol var to zero (var declared in the local
environment as a System.Int32), then evaluates each expression in turn. After the last
expression is evaluated, the value of var is incremented, and if it is less than end-value,
the loop is repeated. When the value of var reaches end-value, the to special form
evaluates to the value of the last expression.

Trace
(trace filename

expression1

expression2

…

expressionN)

Traces the evaluation of expressions. Each expression is evaluated in turn; the trace
evaluates to the value of the last expression evaluated. The file filename will contain a
call trace of every function call, macro expansion, and method invocation, and the
corresponding return values.

Try
(try expression catch-expression [finally-expresssion])

Evaluates expression with exception handling. The expression is evaluated in a local
environment. If an exception is thrown during the evaluation of expression, it is caught,
bound to the symbol it in the local environment, and the try special form evaluates the
catch-expression. If the finally-expression exists, it will be evaluated last, regardless of
whether or not an exception is thrown. If no exception is thrown, the try special form
evaluates to the value of expression. If an exception is thrown, the try special form
evaluates to the value of catch-expression.

Developer’s Guide to Yarr

 Page 75

Unbind
(unbind symbol1 symbol2 … symbolN)

Unbinds symbols from the Yarr environment. If the objects bound to these symbols are
no longer referenced, they can be garbage collected by the .NET runtime. The unbind
special form evaluates to the last symbol that was unbound.

Unbind-setf
(unbind-setf symbol1 symbol2 … symbolN)

Unbinds setf methods from symbols. A setf method must be explicitly unbound from a
symbol before a new setf method can be bound to that symbol. The unbind-setf special
form evaluates to the last symbol that had its setf method unbound.

While
(while condition

expression1

expression2

…

expressionN)

Loops while a condition is true. The condition is evaluated, and if it evaluates to true,
each expression is evaluated in turn. This repeats until the condition evaluates to false, at
which point the while special form evaluates to the value of the last expression.

Functions

The Yarr runtime contains the following built-in functions:

Append
(append list1 list2 … listN)

Appends list1 list2 … list� together and returns the result. Append is non-destructive,
and calls copylist to create shallow copies of each list.

Apply
(apply function list)

Applies the function, closure, special form, or macro function to the list list, and returns
the result. The list can be “loosely” defined, for example:

(apply function obj1 obj2 … objN (list-items))

is equivalent to:

(apply function (obj1 obj2 … objN list-items))

Developer’s Guide to Yarr

 Page 76

Aref
(aref array index1 index2 … indexN)

Returns the element array[index1,index2,…,index�] of a rank � array. There is also a
built-in aref setf method that sets the value of array[index1,index2,…,index�].

Arithmetic Functions + - * / %
 (+ number1 number2 … numberN)

Adds all of the numbers and returns the sum. For object types, Yarr will attempt to call
an appropriately-defined op_addition or op_unaryplus method.

 (- number1 number2 … numberN)

Subtracts number2 … number� from number1 and returns the result. For objects types,
will attempt to call an appropriately-defined op_subtraction or op_unaryminus method.

 (* number1 number2 … numberN)

Multiplies the numbers and returns the product. For object types, will attempt to call an
appropriately-defined op_multiply method.

 (/ number1 number2 … numberN)

Divides number1 by number2 … number� and retuns the quotient. For object types, will
attempt to invoke an appropriately-defined op_division method.

(% number1 number2)

(mod number1 number2)

Computes and returns number1 (mod number2). Mod and % are synonyms. The two
numbers must be integer types. For object types, will attempt to invoke an appropriately-
defined op_modulus method.

The arithmetic functions will return the most general type of their arguments, for example
if adding System.Int32 numbers, the result will be a System.Int32, but if one of the
numbers is a System.Double, the result will be a System.Double. In particular, the
division function will do integer division if all of its arguments are integer types.

Array
(array obj1 obj2 … objN)

#(obj1 obj2 … objN)

Constructs a one-dimensional array containing obj1 obj2 … obj�. If the objects are all of
the same type, the array will be of that type, otherwise it will be a System.Object[].

Assoc
(assoc key a-list)

Searches an association list for the member with the specified key. An association list is a
list of cons nodes, and the car of each element is assumed to be a key value. The assoc
function searches the association list until it finds an element whose key matches key, and
then returns that element. If no element is found, assoc returns null.

Developer’s Guide to Yarr

 Page 77

Atomp
(atomp object)

Returns true if object is an atom, false otherwise.

Bitwise Functions & | ^ ~
(& number1 number2 … numberN)

Computes and returns the bitwise and of number1 number2 … number�. For object
types, will attempt to invoke an appropriately-defined op_bitwiseand method.

(| number1 number2 … numberN)

Computes and returns the bitwise or of number1 number2 … number�. For object types,
will attempt to invoke an appropriately-defined op_bitwiseor method.

(^ number1 number2 … numberN)

Computes and returns the bitwise exclusive-or of number1 number2 … number�. For
object types, will attempt to invoke an appropriately-defined op_bitwiseexclusiveor

method.

(~ number)

Computes and returns the bitwise inversion of number. For object types, will attempt to
invoke an appropriately-defined op_onescomplement method.

Car
(car cons)

Returns the first element of the cons node. The built-in setf method car sets the first
element of a cons node.

Cdr
 (cdr cons)

Returns the second element of the cons node. The built-in setf method cdr sets the second
element of the cons node.

Cxxxr

The functions caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr,

cddar, and cdddr are short-hand for (car(car …)),(car(cdr …)),…,(car(car(car

…))),…,(cdr(cdr(cdr …))). Each has a corresponding built-in setf method.

Developer’s Guide to Yarr

 Page 78

Comparison Functions < <= >= >
(< number1 number2 … numberN)

Returns true if number1 < number2 < … < number�, otherwise returns false. For object
types, will attempt to invoke an appropriately-defined op_lessthan method.

(<= number1 number2 … numberN)

Returns true if number1 <= number2 <= … <= number�, otherwise returns false. For
object types, will attempt to invoke an appropriately-defined op_lessthanequal method.

(> number1 number2 … numberN)

Returns true if number1 > number2 > … > number�, otherwise returns false. For object
types, will attempt to invoke an appropriately-defined op_greaterthan method.

(>= number1 number2 … numberN)

Returns true if number1 >= number2 >= … >= number�, otherwise returns false. For
object types, will attempt to invoke an appropriately-defined op_greaterthanequal

method.

Cons
(cons car-value cdr-value)

Creates and returns a cons node from the given car-value and cdr-value.

Copylist
(copylist cons)

Returns a shallow copy of the cons node cons.

Elt
(elt object index)

Returns the element at index index on the object object. This is useful for obtaining items
from .NET collections, and there is also a corresponding setf method. For example:

(= foo (new System.Collections.Hashtable))

(= (elt foo "a") 10)

(elt foo "a") � 10

Eq
(eq obj1 obj2 … objN)

Returns true of all of the obj reference the same object (reference equality), otherwise
returns false.

Eql / ==
(eql obj1 obj2 … objN)

(== obj1 obj2 … objN)

If obj1.Equals(obj2), obj2.Equals(obj3), … , .Equals(obj�) (value equality), returns
true, otherwise returns false. Eql and == are synonyms.

Developer’s Guide to Yarr

 Page 79

Eval
(eval form)

Evaluates its argument (assumed to be a Yarr expression) and returns the result of the
evaluation.

Evalstring
(evalstring string)

Evaluates its argument (assumed to be a string containing Yarr code) and returns the
result of the evaluation.

Evenp
(evenp number)

Returns true if number is an even number, false otherwise.

Every
(every function list1 list2 … listN)

Evaluates function, passing it the first element of each list as an argument (so function
should expect as many arguments as there are lists). If this value is true, continues
evaluating function, passing it the next element of each list, until one of the lists runs out
of elements or an evaluation is false. Returns true if every evaluation of function was
true; returns false if any evaluation of function was false. Stops evaluating function once
a false value is encountered.

Exit
(exit exit-code)

Exits the current process. If an exit-code is provided, it is the exit code of the process. If
the symbol *no-exit* is bound in the current environment, then exit does nothing.

First
 (first list)

A synonym for car. There is also a built-in setf method first.

Get
(get symbol property)

Gets the value for a symbol’s specified property. There is also a setf method get for
setting a symbol’s property value.

Gensym
(gensym)

Generates and returns a unique symbol. Each call to gensym will generate a new unique
symbol.

Developer’s Guide to Yarr

 Page 80

Handle-event
(handle-event object event-name closure)

Registers the Yarr function closure as an event handler for the event-name event of the
.NET object object. The closure must have the following signature:

(fn (sender args) …)

Identity
(identity obj)

The identity function; returns its argument. Intended for use with functions that require a
function as an argument, but for which a no-op is desired.

In-package
(in-package package-name)

Sets the current package to the package named package-name. If no such package exists,
an exception is thrown.

Inspect
(inspect object)

Reflects over the object object, and writes the object definition to the
System.TextWriter bound to the symbol *output*. If the symbol *output* is not bound
to a System.TextWriter, then inspect does nothing.

Is
(is type object)

If object is of type type, returns true otherwise returns false.

Length
(length object)

If object is null, returns zero. Otherwise, if object is an instance of a .NET class that
implements a Length method or property, it invokes that method and returns the value. If
object is an instance of a .NET class that does not implement a Length method or
property, then length returns null.

List
(list obj1 obj2 … objN)

Creates and returns the list (obj1 obj2 … objN)

Listp
(listp object)

Returns true if object is a cons node, false otherwise.

Load
(load filename)

Loads the Yarr script in the file filename and evaluates every expression in the file in an
implied do block. Evaluates to result of the last expression in the script. If filename is
explicitly a DLL, it is assumed to be a Yarr extension assembly, and the classes in the

Developer’s Guide to Yarr

 Page 81

assembly are imported into the current environment. In this case, the load function
evaluates to the imported assembly

Macroexpand, Macroexpand-1
(macroexpand '(macro obj1 obj2 … objN))

(macroexpand-1 '(macro obj1 obj2 … objN))

Expands the Yarr macro macro, using obj1 obj2 … obj� as the macro’s arguments, and
returns the resulting macro expansion without evaluating it. The macroexpand-1
function will expand the macro once; the macroexpand function will iteratively expand
the macro until a non-macro results:

(defmacro macro-1 (x) `(macro-2 ,x))

(defmacro macro-2 (x) `(* ,x ,x))

(macroexpand-1 '(macro-1 3)) � (macro-2 3)

(macroexpand '(macro-1 3)) � (* 3 3)

Make-package
(make-package package-name &key use shadow)

Creates or modifies a symbol package. If the package named package-name does not
exist, it is created. If the use parameter is present, it is assumed to be a list of existing
packages and these symbols are inherited by the package. If the shadow parameter is
present, it is assumed to be a list of symbol names, and these are created in the package.

Map
(map function list1 list2 … listN)

Invokes function function, providing it each element in the lists in turn as its arguments,
collects the return values into a list of values, and returns that list of values. For example:

(map + ’(1 2 3) ’(4 5 6) ’(7 8 9)) � (12 15 18)

Mapc
(mapc function list1 list2 … listN)

Invokes function function, providing it each element in the lists in turn as its arguments.
Like map, except that mapc does not collect the return values. Instead, it returns list1.

Mapcar
(mapcar function list1 list2 … listN)

This is a synonym for map and exists for historical reasons.

Mapl
(maplist function list1 list2 … listN)

Like maplist, but does not collect the return values. Instead, it returns list1.

(maplist append ’(a b c) ’(1 2 3))

� ((a b c 1 2 3) (b c 2 3) (c 3))

Developer’s Guide to Yarr

 Page 82

Maplist
(maplist function list1 list2 … listN)

Like map, but applies function to the list of successive cdr of each list:

(maplist append ’(a b c) ’(1 2 3))

� ((a b c 1 2 3) (b c 2 3) (c 3))

Max
(max number1 number2 … numberN)

Returns the maximum value of number1 number2 … number�

Md-array
(md-array rank list)

#ranka(…)

Transforms list into a multi-dimensional array of rank rank, and returns the array. If
every object in the list is of the same type, the array created will be of that type, otherwise
the array will be a System.Object[].

Member
(member object IEnumerable-object)

If object is contained in IEnumerable-object, returns true. Otherwise returns false. Note
that Yarr cons nodes implement IEnumerable.

Min
(min number1 number2 … numberN)

Returns the minimum value of number1 number2 … number�

Minusp
(minusp number)

Returns true if number is a negative number, false otherwise.

Nconc
(nconc list1 list2 … listN)

Destructively concatenates list1 list2 … list� into a new list, and returns that list. Unlike
append, the nconc function directly modifies its arguments to stitch them together.

New
(new type arg1 arg2 … argN)

Creates a new instance of a .NET class, passing arg1 arg2 … arg� as arguments to the
class constructor, and returns the instance. If type is a generic type, then arg1 is expected
to be a System.Type[] array, which is used to resolve the generic parameters of the type.

Not
(not value)

If value is false, returns true, otherwise returns false.

Developer’s Guide to Yarr

 Page 83

!=
(!= obj1 obj2 … objN)

Returns the equivalent of (not (== obj1obj2 … objN))

Notany
(notany function list1 list2 … listN)

Evaluates function, passing it the first element of each list as an argument (so function
should expect as many arguments as there are lists). If this value is false, continues
evaluating function, passing it the next element of each list, until one of the lists runs out
of elements or an evaluation is false. Returns true if every evaluation of function was
false; returns false if any evaluation of function was true. Stops evaluating function once
a true value is encountered.

Notevery
(notevery function list1 list2 … listN)

Evaluates function, passing it the first element of each list as an argument (so function
should expect as many arguments as there are lists). If this value is true, continues
evaluating function, passing it the next element of each list, until one of the lists runs out
of elements or an evaluation is false. Returns false if every evaluation of function was
true; returns true if any evaluation of function was false. Stops evaluating function once
a false value is encountered.

Nreverse
(nreverse list)

Destructively rearranges list so that its items are in reverse order. Unlike reverse, the
nreverse function does not create any new cons nodes. Instead the existing cons nodes of
list are rearranged.

Nth
(nth N IEnumerable-object)

Returns the �’th item in IEnumerable-object. There is also a built-in setf method that can
set the value of this item.

Oddp
(oddp number)

Returns true if number is an odd number, false otherwise.

Plusp
(plusp number)

Returns true if number is a positive number, false otherwise.

Pr
(pr [target] obj1 obj2 … objN)

Writes the .ToString() representation of each object in turn to target, which is expected
to be either a System.IO.TextWriter, or one of the symbols debug or trace (which
should be quoted). If the first argument is not one of these, then pr will use the object

Developer’s Guide to Yarr

 Page 84

bound to *output* as its target. If the output target is a System.IO.TextWriter instance,
the pr function will write to that instance. If the target is the symbol trace, the pr

function will write using System.Diagnostics.Trace.Write. If the target is the symbol
debug, the pr function will write to the IProfiler.Comment method of the IProfiler

instance currently attached to the Yarr runtime. The default profiler attached to the
runtime will write using System.Diagnostics.Debug.Write.

Prl
(prl [target] obj1 obj2 … objN)

Like pr, but writes a newline after the last object.

Read
(read [textreader [eof-value]])

Reads, parses (but does not evaluate), and returns the next Yarr expression from the
System.IO.TextReader textreader. If an eof-value is specified, the reader will return that
value if textreader is already at EOF, otherwise it will return -1 if textreader is at EOF.
If no textreader is specified, the read function will read form the
System..IO.TextReader bound to the *input* symbol.

Reduce
(reduce function sequence

 &key key start end initial-value from-end)

Uses function to combine the elements of the sequence. The function must accept two
arguments, which will be either elements of sequence or the result of previous function
evaluations, and the function must also be able to accept no arguments.

The keyword parameters are:

Key if supplied, specifies a function that is applied to each element of sequence
before it is processed by function

Start if supplied, starts processing sequence at this position. If not provided,
starts processing at position 0

End if supplied, stops processing sequence at this position. If not provided,
stops processing at the last element of sequence

Initial-value
 if supplied, this is passed along to function along with the first sequence

element to be processed

From-end

 if true, then function is applied so that it is right-associative. Otherwise it
will be left-associative

The result of reduce is the combined result of function being applied to successive pairs
of elements of sequence. If sequence contains exactly one element, and no initial-value is
given, then that element is returned and function is not called. If sequence is empty and
an initial-value is given, then the initial-value is returned and function is not called. If
sequence is empty and no initial-value is given, then function is called with zero
arguments, and reduce returns whatever function does. This is the only case where the
function is called with no arguments.

Developer’s Guide to Yarr

 Page 85

Reference
(reference assembly-name1 assembly-name2 … assembly-nameN)

References the named assemblies, so that Yarr can access them. If any of the assemblies
are not yet loaded into the current System.AppDomain, they are loaded at this time.
Returns the System.Assembly instance of the last assembly in the list.

Reset
(reset)

Resets the current lexical environment, deleting all symbol bindings that are not built-in
Yarr objects. Evaluates to null.

Rest
(rest list)

A synonym for cdr. There is also a built-in setf method rest.

Reverse
(reverse list)

Returns a copy of list, with the elements in reverse order.

Second
(second list)

A synonym for cadr. There is also a built-in setf method second.

Shadow
(shadow symbol-names &optional package)

Creates the symbols specified by symbol-names, which can be either a single symbol
name or a list of symbol names, in the package specified by package. If package is not
provided, the symbols are created in the current package.

Some
(some function list1 list2 … listN)

Evaluates function, passing it the first element of each list as an argument (so function
should expect as many arguments as there are lists). If this value is false, continues
evaluating function, passing it the next element of each list, until one of the lists runs out
of elements or an evaluation is true. Returns true if some evaluation of function was true;
returns false if all evaluations of function were false. Stops evaluating function once a
true value is encountered.

The
(the type object)

Attempts to convert object to type type. If type is Yarr.Cons, the function can convert
any of the following types of object to a Yarr.Cons:

• System.String

• System.Array

• System.Collections.Hashtable

• System.Collections.SortedArray

Developer’s Guide to Yarr

 Page 86

• System.Data.DataRow

• System.Data.DataTable

• Any class that implements ICollection

• Any class that implements IEnumerable

If object is a Yarr.Cons, the function can convert the Yarr.Cons instance to any of the
following types:

• System.String

• System.Array

• System.Collections.Hashtable

• System.Collections.Queue

• Systems.Collections.Stack

• Systems.Collections.SortedList

The function will convert any type to System.String by calling the object’s ToString()

method.

When converting any object to System.Boolean, any numeric zero value, null, and any
empty System.String is converted to false; everything else is converted to true.

A null can be cast to any reference type (but not to any value type), and the Yarr runtime
will track that null’s type.

If the function cannot figure out how to covert object to type, it will look for
appropriately defined op_explicit and op_implicit methods on the specified type. If none
are found, it invokes System.Convert.ChangeType() as a last resort.

Third
(third list)

A synonym for caddr. There is also a built-in setf method third.

Throw
(throw exception-message)

Throws an exception. If exception-message is an exception object, it is thrown. Otherwise
throws a new Yarr.YarrException, and sets the exception’s message property to
exception-message.ToString(). Since this function throws an exception, it does not
return.

Type
(type base-type &rest args)

Creates a specific instance of a generic type. If base-type is not generic, evaluates to
base-type. Otherwise, args are considered to be types, and these are used to resolve base-

type into a specific type.

Developer’s Guide to Yarr

 Page 87

Example:
(type 'int32) � #<System.Int32>

(type 'dictionary string string)

�#<System.Collections.Generic.Dictionary`2[System.String,

 System.String]>

Note that the base-type should be quoted since it is not a valid .NET type as specified (the
actual .NET type name is decorated to indicate the number of generic parameters).

Typeof
(typeof object)

Returns the System.Type instance for the object’s type.

Use-package
(use-package package-name-list &optional package)

Specifies that the package package should inherit the symbols from the packages
specified by package-name-list, which can be either a single package name or a list of
package names. If package is not specified, the symbols will be inherited by the current
package.

Using
(using namespace1 namespace2 … namespaceN)

Registers the namespaces with the Yarr runtime, so that types defined in those
namespaces can be referenced in Yarr code without fully qualifying the types with their
namespace.

Zerop
(zerop number)

Returns true if number is zero, false otherwise.

Developer’s Guide to Yarr

 Page 88

Macros

The Yarr runtime contains the following built-in macros:

Bind-disptch-character
(bind-macro-character dispChar char function)

Sets the Yarr function as the dispatch reader macro for dispChar and char. The function
should have the following signature:

(fn (reader readtable chr arg) …)

Matching the signature of the Yarr.DispatchReaderMacro delegate.

Bind-macro-character
(bind-macro-character char function)

Sets the Yarr function as the reader macro for char. The function should have the
following signature:

(fn (reader readtable chr) …)

which matches the signature of the Yarr.ReaderMacro delegate.

Defevent
(defevent event-name object parameter-list

 expression1

 expression2

 …

 expressionN)

Defines an event handler for event event-name on object object. The parameter-list and
expressions are used to create a Yarr closure that handles the event. This macro is a
wrapper for the handle-event function.

Defun
(defun name parameter-list

 Expression1

 Expression2

 …

 ExpressionN)

Defines a Yarr closure using the parameter-list and expressions, and binds it to the
symbol name.

Defmacro
(defmacro name parameterlist

 Expression1

 Expression2

 …

 expressionN)

Defines a Yarr macro using the parameter-list and expressions, and binds it to the symbol
name.

Developer’s Guide to Yarr

 Page 89

Defsetf
(defsetf name parameterlist

 Expression1

 Expression2

 …

 expressionN)

Defines a Yarr setf method using the parameter-list and expressions, and binds it to the
symbol name.

Make-array
(make-array type rank-array [bound-array])

Creates a .NET System.Array instance of type type. The rank-array parameter is
expected to be a System.Int32[] or System.Int64[], and specifies the size of each rank of
the array. The bound-array is optional. If provided, it must be of the same size and type
as rank-array, and specifies the lower bound for each rank. If rank-array is omitted, the
resulting array will be zero-based by default.

Mapcan
(mapcan function list1 list2 … listN)

Like map, but uses nconc to combine the results into one list.

Mapcon
(mapcon function list1 list2 … listN)

Like maplist, but uses nconc to combine the results into one list.

Unbind-dispatch-character
(unbind-dispatch-character dispChar char)

Unbinds the dispatch reader macro assigned to dispChar and char.

Unbind-macro-character
(unbind-macro-character char)

Unbinds the reader macro assigned to char.

When
(when test-expression

expression1

expression2

…

expressionN)

Evaluates the test-expression. If it evaluates to true, evaluates each expression in turn,
and returns the value of the last expression. If the test-expression evaluates to false,
returns null.

Developer’s Guide to Yarr

 Page 90

System symbols

The Yarr runtime makes use of the following symbols:

error

The Yarr runtime expects a System.IO.TextWriter to be bound to *error*. All error
messages are written to this stream. If *error* is unbound, then all error messages are
suppressed. The command-line interpreter binds this symbol to Console.Error by
default; in hosted applications, this symbol will be unbound, and it is the responsibility of
the hosting application to bind it if it is needed.

environment

Every Yarr.Environment instance binds itself to this symbol.

input

The Yarr runtime expects a System.IO.TextReader to be bound to *input*. If the read
function is not provided with a System.IO.TextReader, it will use the object bound to
input in the current environment as its input stream. The command-line interpreter
binds this symbol to Console.In by default. In hosted applications, this symbol will be
unbound, and it is the responsibility of the hosting application to bind it if it is needed. If
read is called, and it cannot resolve a System.IO.TextReader to read from, an exception
is thrown.

last-exception

Whenever the Yarr runtime encounters an exception outside of a try expression, it binds
the exception object to *last-exception*. Hosting applications can then obtain the
exception object from the environment, if it is needed.

max-recursion-depth

The Yarr runtime tracks the recursion depth of every Yarr function. When a function is
called, its recursion depth is incremented, and when a function exits, its recursion depth is
decremented. If *max-recursion-depth* is bound to an integer, the runtime will throw
an exception whenever a function’s recursion depth reaches this value. If not bound, then
recursion is allowed to happen until the stack overflows, which often results in a fatal
application error.

The command-line interpreter binds this symbol to the value 1000 by default. In hosting
applications, this symbol will be unbound, and it is the responsibility of the hosting
application to bind it if so desired.

no-exit

If this symbol is bound, the exit function will throw an exception. If this symbol is
unbound, the exit function will terminate the hosting process.

Developer’s Guide to Yarr

 Page 91

output

The Yarr runtime expects a System.IO.TextWriter, or one of the symbols debug or
trace to be bound to *output*. Functions such as pr, prl, etc. will write to this stream by
default. If *output* is unbound, then all such messages are suppressed. The command-
line interpreter binds this symbol to Console.Out by default; in hosted applications, this
symbol will be unbound, and it is the responsibility of the hosting application to bind it if
it is needed.

readtable

This symbol is bound to an instance of Yarr.ReadTable. This is automatically bound
when an environment is created with Environment.MakeEnvironment; hosting
applications can also create their own Yarr.ReadTable instances, and are free to re-bind
this symbol to their custom ReadTable. The Environment.ImportClass method will
import reader macros and dispatch reader macros to whichever ReadTable instance
happens to be bound to *readtable* at the time.

setf-dispatch

Internally, setf methods are actually symbol properties. The Yarr runtime sets the value
of a symbol’s *setf-dispatch* property to the corresponding setf method for that symbol.

Developer’s Guide to Yarr

 Page 92

Appendix: Internal Yarr classes
These classes are marked as public, but should not be used directly without first
examining the Yarr source code to understand how they behave. These classes implement
all of the built-in Yarr functions, special forms, setf methods, and reader macros. On
startup, the Yarr runtime creates a default, top-level environment, and these classes are
imported into this default environment by the Environment.ImportClass method.

Yarr.Functions

Contains the implementation of all built-in Yarr functions. Each function is tagged with a
[Function()] attribute, which determines the runtime binding of the function when it is
imported into the default environment.

Yarr.SetfFunctions

Contains the implementation of all built-in Yarr setf methods. Each function is tagged
with a [Setf()] attribute, which determines the runtime binding of the function when it is
imported into the default environment.

Yarr.SpecialForms

Contains the implementation of all built-in Yarr special forms. Each function is tagged
with a [SpecialForm()] attribute, which determines the runtime binding of the special
form when it is imported into the default environment.

Yarr.Macros

Contains the definition of all built-in Yarr macros, as well as any additional Yarr code
that needs to be executed as part of system start-up. Each definition is tagged with an
[Eval()] attribute, which determines the runtime binding of the definition when it is
imported into the default environment.

Yarr.Reader

Contains the implementation of all built-in Yarr reader macros. Each function is tagged
with one or more [ReaderMacro()] or [DispatchReaderMacro()] attribute, which
determines the runtime binding of the function when it is imported into the default
environment.

Developer’s Guide to Yarr

 Page 93

Appendix: The Command Line Processor

The Yarr.exe program is a sample application that illustrates how to host the Yarr
runtime and use the runtime’s debugging hooks. It provides a simple command-line
interface for Yarr.

The command line processor, by default, runs in interactive mode, providing a read-eval-
print loop that permits the user to interactively evaluate Yarr expressions. If parameters
are passed to Yarr.exe, then it runs in batch mode and exits when it is finished processing
the command line.

The very first action performed by the command-line processor, even before it processes
the command line arguments, is to look for the Yarr-init.lsp in the directory where
Yarr.exe resides. If this file is found, it is loaded using the load Yarr function. The file is
loaded regardless of whether the command line processor will run in interactive mode or
batch mode.

Command Line Parameters

The syntax for invoking the command line processor is:

Yarr.exe [-i] [-s] [-v] [-x Yarr-expr]* [-r assembly-ref]* filename*

The supported command line parameters are:

-i interactive mode: enter interactive mode after processing command line

-s silent: Don’t clear the screen or print the start-up banner in interactive

mode. Banner is never printed in batch mode

-v verbose: prints result of evaluating command line. By default, nothing is
printed when processing the command line

-d debug mode: enables debugger (assumes interactive mode)

-x expression: the next parameter is considered a Yarr expression and is

evaluated. If verbose (-v) is set, prints the result of the evaluation.
Multiple –x expressions may be specified, and they will be processed in
order

-r reference: the next parameter is an assembly to reference. This can be
either a filename, or an assembly name reference (to reference an
assembly in the GAC). Equivalent to the references function in Yarr.
Multiple –r references may be specified, and they processed in order

Developer’s Guide to Yarr

 Page 94

Filename import/load: if a filename is specified, and ends in .dll, it is assumed to be
an assembly with Yarr extensions, and attempts to import the classes in
the assembly into the Yarr runtime. Otherwise the file is considered to be a
Yarr script and is loaded (equivalent to the load function in Yarr).
Multiple files may be specified on the command line, and they will be
processed in order

At startup, before loading the Yarr-init.lsp file, the command line arguments are pushed
onto a System.Collections.Generic.Stack<string> instance, which is bound to the
symbol *command-line-args* in the Yarr environment. The first (left-most) command
line argument will be at the top of the stack, and the last (right-most) argument will be at
the bottom. As the command line arguments are processed, they are popped off the stack.
As each filename loaded, the Yarr code in the file can examine and process any
remaining command line arguments. Any arguments popped off the stack will not be seen
by the command line processor.

Interactive mode

If operating in interactive mode, the command line processor attaches a debugger break
handler to the runtime. This allows the user to enter the debugger via the step Yarr
function, as previously described. If operating in batch mode, then no debugger break
handler is attached, and the step function simply evaluates its argument. If invoked using
the –d command line parameter (debug mode), then the debugger will always be active,
not just when step is used, and will break on any encountered breakpoint or exception.
This will degrade performance, but is useful when debugging Yarr scripts.

The Yarr-init.lsp file

The very first thing the command-line processor does when it starts is to look for a file
named Yarr-init.lsp in the same directory as the Yarr.exe. If found, this file is loaded
using the Yarr load function. The default Yarr-init.lsp file included in the Yarr
distribution does the following:

• Binds the *input*, *output* and *error* symbots to the streams Console.In,
Console.Out, and Console.Error

• Sets *max-recursion-depth*

• Loads the pretty-printer extension DLL, pprint.dll, which defines the pprint
function. This function formats Yarr expressions so that they are easier to read. It
is used by the command-line debugger.

• Defines the following functions to facilitate debugging:
o (debug-on) enables the debugger, and sets it to “run to breakpoint” mode
o (single-step) enables the debugger, and sets it to “single step” mode
o (debug-off) disables the debugger
o (add-bkpt obj) enables the debugger and sets a breakpoint on object obj
o (remove-bkpt obj) removes a breakpoint
o (disable-bkpt obj) disables (but does not remove) a breakpoint
o (enable-bkpt obj) enables a previously-disabled breakpoint

