SCF 3.0 Changes and Additions
Overview of the Smart Client Framework v3.0
The Smart Client Framework v3.0 represents a significant shift from the v2.x code base. Many of the internals have been refactored to allow the SCF to support alternative UI frameworks to Windows Forms, most notably the Windows Presentation Foundation (WPF). Additionally, the classes and interfaces in the core SCF object model have been enhanced with numerous convenience methods and properties engineered to improve reliability and boost developer productivity.
New Features
Application-Scoped Features
Workbench Information
Two new properties have been introduced in the ContainerWorkItem class: ActiveWorkbench and PrimaryWorkbench. These properties describe the currently active workbench (the workbench that owns the currently focused window) and the primary workbench for the application, respectively. Note that the PrimaryWorkbench property effectively replaces the now-deprecated WorkBench property. These properties can be conveniently accessed from a static context via the CabContext.RootWorkItem property.
Forced Processing of the UI Message Loop
When executing code on the UI thread, it is sometimes desirable to explicitly force the UI message loop to process any queued messages. In SCF v2.x, developers often used the Application.DoEvents() method provided by Windows Forms to achieve this behavior. However, because the standard Smart Client Container in SCF v3.0 is now a WPF application, invoking Application.DoEvents() from within a Windows Forms-based add-in will not achieve the same effect as it did in SCF v2.x. This is due to the way message loops are nested in WPF/Windows Forms interop. To address this issue, a new DoEvents() method has been introduced in the ContainerWorkItem class. Depending on whether the application’s main thread is a Windows Forms or WPF UI thread, invoking the new DoEvents() method will either invoke the legacy Application.DoEvents() method or a custom implementation created specifically for WPF. The WPF implementation will push a new operation onto the dispatcher queue with a priority level of DispatcherPriority.Background and then invoke that operation. This causes all queued operations with a higher priority level to be processed first. Note that any operations with a priority level of DispatcherPriority.Background or lower will not be processed.
Workbench-Scoped Features
Displaying a Wait Cursor
In SCF v2.x, we did not provide a means of controlling when a “wait” mouse cursor is displayed. Consequently, developers would often override and restore the mouse cursor manually. This solution is problematic because multiple applications might display a wait cursor concurrently, and one of those applications might restore the normal cursor while the others still want the wait cursor displayed. This problem is addressed in SCF v3.0 by allowing applications to enter and exit wait cursor “scopes” for a particular workbench. As long as one or more of these scopes is active, a wait cursor will be displayed. The IWorkbench interface exposes three methods to control the display of wait cursors:
void PushWaitCursorOperation()
void PopWaitCursorOperation()
IDisposable EnterWaitCursorScope()
The EnterWaitCursorScope returns an IDisposable object, and is designed to be used in conjunction with a C# ‘using’ block. Once this method is invoked, a new wait cursor scope will be activated. When the code exits the ‘using’ block, the return value is automatically disposed, causing the wait cursor scope terminate. An example is provided below.
using (var waitCursorScope = this.ActiveWorkbench.EnterWaitCursorScope())
{
 // Do work
}
For situations where work begins in one method but ends in another (i.e. asynchronous operations with callbacks), it may not be possible to employ the ‘using’ block. Moreover, it is inconvenient to retain a reference to an IDisposable in order to manually dispose of it in the future. For such scenarios we created the PushWaitCursorOperation and PopWaitCursorOperation methods. Before work is begun, simply invoke PushWaitCursorOperation on the desired workbench. When the work has completed, possibly in different method, one needs only to invoke PopWaitCursorOperation to exit the wait cursor scope. It is critical to ensure that PopWaitCursorOperation is invoked in spite of any errors that might arise while the work is being executed. Thus, any block of code that could produce an error should be surrounded by a try/catch or try/finally block like so:
void BeginWork()
{
 this.ParentWorkbench.PushWaitCursorOperation();
 _workDelegate.BeginInvoke(WorkCompletedCallback, null);
}

void WorkCompletedCallback(IAsyncResult result)
{
 try { _workDelegate.EndInvoke(result); }
 finally { this.ParentWorkbench.PopWaitCursorOperation(); }
}
Note that PopWaitCursorOperation is not idempotent, meaning that the method should be called only once per prior call to PushWaitCursorOperation. Thus, if your work code spans multiple methods, then calls to PopWaitCursorOperation should be placed only within catch blocks where exceptions are re-thrown; calls to PopWaitCursorOperation should placed within a finally block only when the code in the adjoining try block marks the end of the work operation.
Framework Changes
Panel Management
The ISccPanel Interface
In order to support different UI frameworks, there have been several changes to panel management. In SCF 2.x panels, all panels derived from the SccWinFormPanel class. SCF 3.0 represents panels with ISccPanel interface, and both Windows Forms and WPF panels derive implement this interface with the SccWinFormPanel and SccWpfPanel interfaces, respectively. The ApplicationAddIn and WpfApplicationAddIn classes now derive from the ApplicationAddIn<TPanel> class, where the generic parameter TPanel represents the concrete panel type used by the add-in (which must implement the ISccPanel interface). Note that it is recommended to declare panel references using ISccPanel rather than the concrete panel type when possible.
ISccPanel Extension Methods
By leveraging the new extension methods feature in C# 3.0, we SCF 3.0 provides several convenience methods that may be invoked on any ISccPanel implementation. These methods are largely intended to simplify the process of panel management, which previously required sending control messages. The following extension methods have been defined for the ISccPanel interface:
	void Show()
	Shows the panel.

	void Activate()
	Activates (focuses) the panel, calling Show first if necessary.

	void Hide()
	Hides the panel.

	void Close()
	Closes the panel and disposes of its contents.

	bool IsBlurred()
	Returns whether the panel is blurred (disabled by a modal child).

	bool IsLoaded()
	Returns whether the panel is loaded (has been shown but not closed).

	bool IsOpen()
	Returns whether the panel is currently open (shown and not hidden).

	bool IsPopup()
	Returns whether the panel is a pop-up (“floating”) panel.

	bool IsModal()
	Returns whether the panel is modal.

	bool IsModalAndOpen()
	Returns whether the panel is both modal and currently open.

Note that the CdcSoftware.Iaf.SmartClient.Core namespace must be imported in order to utilize these extension methods.
 (
1
)

1

SCF 3.0 Changes and Additions

Overview of the Smart Client Framework v3.0

The Smart Client Framework v3.0 represents a significant shift from the v2.x

code base

. Many of the

internals have been refactored to allow the SCF to support

alternative UI frameworks to Windows

Forms

, most notably the Windows Presentation Foundation (WPF).

Additionally, the classes and

interfaces in the core SCF object model have been e

nhanced with numerous convenience methods and

properties engineered to improve reliability and boost developer productivity.

New Features

Application

-

Scoped Features

Workbench Information

Two new properties have been introduced in the

ContainerWorkItem

cla

ss:

ActiveWorkbench

and

PrimaryWorkbench

. These properties describe the currently active workbench (the workbench

that owns

the currently focused window

) and the primary workbench for the application

, respectively

. Note that

the

PrimaryWorkbench

property

effectively replaces the now

-

deprecated

WorkBench

property. These

properties can be conveniently accessed from a static context via the

CabContext.RootWorkItem

property.

Forced Processing of the UI Message Loop

When executing code on the UI thread, it is

sometimes desirable to

explicitly

force the UI message loop

to process any queued messages

. In SCF v2.x, developers often used the

Application.DoEvents()

method provided by Windows Forms

to achieve this behavior

. However, because the standard

Smart

Clie

nt Container

in SCF v3.0

is now a

WPF

application

, invoking

Application.DoEvents()

from within a

Windows Forms

-

based add

-

in will not achieve the same effect as it did in SCF v2.x. This is due to the

way message loops are nested in WPF/Windows Forms intero

p. To

address this issue, a new

DoEvents()

method has been introduced in the

ContainerWorkItem

class. Depending on whether the application’s

main thread is a Windows Forms or WPF UI thread, invoking the new

DoEvents()

method will either

invoke the legacy

Application.DoEvents()

method or a custom implementation created specifically for

WPF.

The WPF implementation will push a new

operation onto the dispatcher queue with a

priority

level of

DispatcherPriority.Background

and then

invoke that operation

. This cause

s

all queued

operations

with a higher priority

level

to be processed first. Note that any operations with a priority

level

of

DispatcherPriority.Background

or lower

will

not

be processed.

