

Acceptance Test Engineering – BETA DRAFT Page 1

COMMUNITY PREVIEW LICENSE

This document is a preliminary release that may be changed substantially prior to final commercial

release. This document is provided for informational purposes only and Microsoft makes no warranties,

either express or implied, in this document. Information in this document, including URL and other

Internet Web site references, is subject to change without notice. The entire risk of the use or the

results from the use of this document remains with the user. Unless otherwise noted, the companies,

organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in

examples herein are fictitious. No association with any real company, organization, product, domain

name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all

applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,

no part of this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or

otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property

rights covering subject matter in this document. Except as expressly provided in any written license

agreement from Microsoft, the furnishing of this document does not give you any license to these

patents, trademarks, copyrights, or other intellectual property.

Ó 2008 Microsoft Corporation. All rights reserved.

Microsoft are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Acceptance Test Engineering – BETA DRAFT Page 2

How to read the Beta

This Beta is a nearly complete draft of a book that is currently being written.

There are production notes, hand drawn graphics, and other rough edges. We

have included the entire Draft Table of Contents. However, there are a number of

empty sections in the actual text. If you see an empty section, assume we will fill

in the section before we complete the book.

To offer feedback, please edit the documents directly and use the New Comment

feature in Word (under the Review tab) as you choose. The documents are

already setup to track your changes, so when you are done, you can email the file

back to the person who sent it to you. We will read every piece of feedback,

whether or not we act on it.

Acceptance Test Engineering – BETA DRAFT Page 3

Who Should Read This Guide

This guide is intended for anyone who is involved in the process of deciding the degree to which a

software-intensive product meets the acceptance criteria of those who commissioned its construction.

Specifically, this guide will help you if the any of the following apply to you:

· You are involved in deciding whether to accept the software as it is being built. This is the

acceptance decision.

· You are involved in collecting data that the person making the acceptance decision requires to

make that decision. This is acceptance testing.

· You are involved in deciding whether the product is ready to be seen by the people involved in

the acceptance decision or acceptance testing. This is the readiness decision.

· You are involved in collecting data that the person making the readiness decision requires to

make that decision. This is readiness assessment.

· You are involved in defining the expectations against which the readiness assessment or

acceptance testing activities will be conducted. This is a combination of requirements gathering

and test design.

· You are involved in managing any of the preceding activities.

This guide describes the practices used by people in the preceding roles. If any of them describes your

role, you should find something of interest in this guide.

The Gating Model (readiness versus acceptance) is described in more detail in Part I, together with the

actual Decision-Making Model and the roles people play within that model. Each decision is based on

data collected from a number of other roles within the project. This guide includes advice about how to

conduct these data-gathering activities—this makes it of interest to anyone involved in these activities.

Some of these activities depend on the business model. This guide may be of interest to people in the

following traditional roles:

· Customer

· Customer Proxy

· Business User

· End User

· Business Analyst

· Product Owner

· Product Manager

Acceptance Test Engineering – BETA DRAFT Page 4

· Project Manager

· Development Manager

· Systems Architect

· Test Manager

· Tester

· Test Specialist

· Development Lead

· Developer

· Security Architect

· Security Assessor

· Project Auditor

Acceptance Test Engineering – BETA DRAFT Page 5

How to Read This Guide

This guide is structured into three parts:

· Part I. This part provides an overview of acceptance testing and explains several models that are

useful in conceptual thinking about acceptance testing. It also includes items that are necessary

for planning acceptance testing. This part is intended to be read from beginning to end.

· Part II. This part is a collection of what is referred to as thumbnails. A thumbnail is a short

overview of a practice that explains what it is, when you may want to use it, the risks that it

mitigates, and an overview of how to perform the practice. Thumbnails also include a list of

references to papers, books, and other resources that provide more complete descriptions of

the practice in question. The main purpose of a thumbnail is to describe a topic well enough to

provide an overview, serve as a mental reminder for someone who has used the practice on

how to do it, and give someone unfamiliar with the practice enough information about the

practice and its applicability to determine if they want to learn more about it. Some of these

topics and practices have entire books written about them that describe the concepts in greater

detail and depth than this guide could possibly do. This part is intended to be used as a

reference; most readers will not read it from beginning to end.

· Part III. This part is a collection of sample artifacts generated by applying different practices in a

fictional real-world situation for Global Bank. These artifacts are embedded in a series of case

studies of what the Global Bank team may have produced while building the application. The

case studies provide some context to the individual artifacts. They also provide cross-references

to the practices described in Part II. The artifacts are intended to be used as way to learn more

about how to perform a practice; they can also be used as templates for your own artifacts.

Deciding How to Start

The way you approach this guide will depend on what role you have and what you want to learn about

acceptance testing. Depending on what you want to do, you will want to apply different strategies. This

section describes various approaches to reading this guide.

Get an Overview of Acceptance Practices and Processes

Start by reading Part I if you want to do any or all of the following:

· Learn general information about acceptance testing.

· Find acceptance testing practices.

· Create a project plan.

Acceptance Test Engineering – BETA DRAFT Page 6

· Justify a project plan.

· Justify an approach used for acceptance testing.

· Validate that you are on track with your acceptance testing strategy or approach.

· Get your project un-stuck.

· Determine where there may be gaps in your acceptance testing approach or strategy.

After reading Part I, you may want to skim particular practices of interest in Part II and the

corresponding samples in Part III.

Decide the Acceptance Practices to Use on Your Project

Start by reading Part I to get an overview of possible practices, and then refer to the thumbnails in Part II

for specific practices you are considering. Each thumbnail includes a section titled "When to Use It,"

which includes advice about when the practice should be used, and a section titled "Limitations," which

provides hints about when the practice should not be applied.

Learn How to Perform a Specific Acceptance Practice

Start by finding a thumbnail in Part II if you want to do any of the following:

· Learn a specific acceptance testing practice or strategy.

· Teach a specific acceptance testing practice or strategy to someone else.

· Review a specific acceptance testing practice.

· Find more information and related resources to consult about a particular practice.

After you locate the thumbnail for the specific practice you want to learn about, read it and any related

samples in Part III. If you need more detailed information about the practice, see the "References"

section in the thumbnail.

Get a Template for a Specific Artifact

Start by finding an example in Part III if you want to do any of the following:

· Find a template for a specific artifact.

· Learn how to fill in a specific artifact.

Find the example you want in Part III, remove the sample information, and populate it appropriately. If

you need to review the practice that generated the example, the example lists all the appropriate

thumbnails to refer to in Part II.

Acceptance Test Engineering – BETA DRAFT Page 7

Plan the Execution of the Practices on Your Project

Start by reading Part I to get an overview of how the practices fit together and support each other. In

particular, the sections on the Decision-Making Model, Doneness Model, and individual Test Lifecycle

Model may be of particular interest. After that, review the specific thumbnails in Part II, paying

particular attention to the subsection, "Test Life Cycle Applicability" in the section, "When to Use It." In

Part III, each sample artifact is accompanied by a notation that indicates at what point in the

hypothetical project the artifact was produced. Note that some artifacts appear at several points in the

project timeline because they evolve over time.

Find Tools for Doing Acceptance Testing

Although some of the case studies illustrate using specific tools, the primary focus of this guide is on

describing practices.

Note: By the time you read this guide, the tools used when writing the guide may have been

supplanted by newer tools.

The choice of tools used while writing this guide should not be interpreted as an endorsement of any

tool, nor should it be interpreted as an indication that any tool used is the best one for the job.

However, you may find it useful to use your favorite search engine to look up the tool used and possibly

find more current alternatives.

Acceptance Test Engineering – BETA DRAFT Page 8

Table of Contents

Contents
COMMUNITY PREVIEW LICENSE ..1
How to read the Beta ...2
Who Should Read This Guide ...3
How to Read This Guide ...5
Table of Contents...8
Part One: How to Think About Acceptance.. 12

How Do We Accept Software? ... 13
Decision-Making Model.. 16
Project Context Model... 25
System (Under Test) Model .. 28
Process Model ... 33
Risk Model .. 40
Doneness Model .. 44
Planning for Acceptance ... 51
Concern Resolution Model .. 64
Assessing Software ... 65
Test Lifecycle Model... 70

Part Two - Practices .. 74

Test Processes ... 75
Test-Last Acceptance .. 76
Incremental Acceptance Testing ... 79
Acceptance Test Driven Development .. 82
Regression Testing .. 87

Styles of Testing .. 91
Exploratory Testing... 93
Script-Driven Testing .. 99

Planning Practices ... 104
Project Chartering ... 105

 Customer Proxy Selection
Risk Assessment ... 110
Test Strategy ... 115
Test Planning .. 119
Planning Test Automation .. 126

 Test Effort Estimation
Test Outsourcing ... 131
Done-Done Checklist .. 136

Requirements Practices ... 139
Gathering Requirements ... 140
Product Design .. 146

 User Modeling

User Stories ... 150

Use Case Modeling ... 154

Functional Test Design Practices .. 158
Functional Testing... 159
Scenario-based Testing ... 164
Soap Opera Testing ... 170
Workflow Testing ... 175
Use Case Testing ... 179

Acceptance Test Engineering – BETA DRAFT Page 9

Interface Testing ... 183
Business Rule Test .. 187
Ubiquitous Language .. 192

Automating Functional Tests .. 195
Automated Functional Test Execution .. 197
Recorded Test Automation ... 202
Programmatic Test Automation .. 208
Keyword-Driven Test Automation ... 212
Record & Refactor .. 218
Data-Driven Test Automation ... 224

Operational Acceptance Testing .. 228
Installation Testing .. 229

Para-functional Testing Practices .. 233
Para-functional Testing ... 235

 Security Testing

 Threat Modeling

 Security Test Planning

Fuzz Testing .. 238
Compatibility Testing ... 243
Usability Testing ... 247

 Accessibility Testing

 Regulatory Compliance Testing

Test Management Practices ... 252
Test Asset Management .. 253
Test Evolution ... 257
Cycle-Based Test Management ... 263

Session-Based Test Management .. 266

 Test Status Reporting

 Paired/Collaborative Testing

 Assessing Test Effectiveness

Bug Management Practices ... 271

Bug Management System ... 272
Bug Backlog Analysis ... 277
Bug Triage .. 280

Test Oracles ... 285
Human Test Oracle ... 286
Hand-Crafted Test Oracle ... 290
Previous Result Test Oracle .. 294
Comparable System Test Oracle ... 298

Test Condition Identification Practices ... 302
Test Efficiency Maximization Practices .. 303

Combinatorial Test Optimization .. 304
Part Three: Samples .. 307

GBS ITPS Project Charter ... 308
ITPS User Stories .. 318
Testing Functional Requirements .. 323
Global Bank ITPS Threat Model ... 340
Fuzz Testing Sample ... 349
"Soap Opera" test: ITPS Notification .. 352
ITPS Test Planning Example .. 355
GBS Test Strategy ... 355
ITPS Test Plan ... 357
Release Readiness Checklist ... 361
Feature Done-Done Checklist ... 361
Regression Testing Matrix .. 362

Acceptance Test Engineering – BETA DRAFT Page 10

Test Automation Strategy for Global Bank ITPS Project ... 364
Test Automation Strategy for Global Bank ... 364
Functional Acceptance Testing ... 380
Testing the Global Bank ITPS Notifications Settings for CSRs ... 399
Recording and Refactoring Tests .. 405
Combinatorial Test Optimization .. 413
Ensuring Usability of ITPS Notification Configuration .. 420
Sample Exploratory Session Report .. 436

Acceptance Test Engineering – BETA DRAFT Page 11

Acceptance Test Engineering – BETA DRAFT Page 12

Part One: How to Think About

Acceptance

Acceptance Test Engineering – BETA DRAFT Page 13

How Do We Accept Software?

This guide is about accepting software. Accepting software involves acceptance testing, but it is much

more than that. This guide uses the following terms very specifically:

Acceptance refers to the act of assessing whether a piece of software or a system meets the customers'

expectations. It includes both the acceptance decision and any acceptance testing activities required to

collect the data on which the acceptance decision is based. The pre-decision testing activities can be

considered "readiness" testing; this concept is described more later in this guide. Both the acceptance

testing and the acceptance decision can be relegated to a separate acceptance phase of the project or

they can be done throughout the project, which is known as Incremental Acceptance Testing.

What Is Acceptance Testing?

The concept of acceptance testing means different things to different people. In simple terms,

acceptance testing is the set of activities you perform to gather the information to answer the question,

"Would this software meet the expectations of our customers?" This decision is usually composed of

several decisions, each with supporting activities. Therefore, to define acceptance testing, it may be

useful to understand the process by which the decision(s) are made. This process may involve several

organizational entities, each with one or more decision-makers. The software is typically passed

between the organizational entities for them to decide whether the software is ready to go through the

next step (this is considered a portal that is referred to as a "gate"). This process is introduced in more

detail in the section "Gating Model" and follow up with a more detailed description of the decision-

making process in the section that describes a "Decision Making Model."

Mental Models for Acceptance Testing

While writing this guide, it was a struggle to determine a suitable definition of acceptance testing. To

assist with this, several mental models of various aspects of acceptance testing were created. The

models were then tested against numerous examples from project experiences. The models were also

tested with the people on the board of advisors for the project. This was an iterative process.

It is important to note that the first models failed their acceptance tests! That was a great lesson about

to better craft the models for testability before release. One type of refactoring based on feedback was

to extend an existing model. Another type of refactoring was to create a new model. The key

breakthrough was when the Decision-Making Model was discovered—it is the key to understanding

what acceptance testing is about. The Decision-Making Model ties together most of the concepts

around accepting a system. It builds on the Gating Model. The Gating Model describes the key gates as

we move from requirements and development and into testing and production; it also describes how

the decision to accept the system is made and by whom. The decisions are not made in a vacuum; there

�����������	�
����������������	������	� ��������

�

�������������	
���������������������������	�����	��������������	
����������������������������

��	����������������	�������������������������	���������������

�����	�������
�����
����������

���������������������������	����������������������	������

�
�

����
	��	�������	�������	�����
	����	����	��������	�����

�� �����!	������������
��������	�������������	
��	
����������	����������������������

����������������	����	������	������
�	���	������	��	��	
����"��"������

�� #�����	�"!������!	���������������������	��	����������������	
����������	���	������

����	�������������������	����������������	���$����	���
������������	������	�������

������������������	�������������������
	����	���������	���������������	����

�� %�	����&	����!	��������������������������������������	����
��	��������
����������

������	����������������
������������������������	�������������������������������������

�	���������	���	������������

�� '�����!	�������������������������������	
�����	
����"����������������������
��	��

��	����������	������������������	��
����	������������
����	��������������

�� (����!	�������������	����������	������	
���������������		�)��	�������������

�	���*�����)�������$������������	��������������������	�����	���	����������������

Acceptance Test Engineering – BETA DRAFT Page 15

prioritize the acceptance criteria and the kinds of information to gather to help make the

acceptance decision. It also describes several different risk mitigation strategies, including

the following:

◦ Do something earlier to buy reaction time.

◦ Do additional activities to reduce likelihood of something occurring.

· Process Model. This describes the range of choices for how to sequence the activities of

software specification, development and acceptance. It feeds into the Doneness Model .

· Doneness Model. This elaborates how to decide whether to release?

Later chapters introduce other models that build on this core model:

· Test Lifecycle Model. This describes how to gather information for making readiness and

acceptance decisions.

· Concern Resolution Model. This describes how to handle any concerns that are raised during

readiness assessment and the acceptance decision.

Acceptance Test Engineering – BETA DRAFT Page 16

Decision-Making Model

The decision-making model describes the three distinct phases software may go through as it is assessed

for acceptability by whoever makes the acceptance decision:

· Readiness decision. The software is prepared during the construction phase. The exit from the

construction phase is gated by a decision about whether the software is sufficiently finished to

be released into the acceptance testing phase. This is the readiness decision.

· Acceptance decision. The software is assessed for acceptability during the acceptance phase.

Exit from the acceptance phase is gated by the decision about whether the software meets

enough of the acceptance criteria to warrant being accepted. This is the acceptance decision.

After it goes through this gate, the software enters the manufacturing process (for shrink-

wrapped products) or the deployment process (for server-based products), which ultimately

make the software available for individual users to decide whether to use it.

· Usage decision. Each user can decide for himself or herself whether to use the software. There

may be a cost for using the software (such as, a purchase or subscription price) or a cost for not

using the software (such as threat of firing or reduced productivity). There should also be a

benefit to using the software. But each user decides for himself or herself; this decision does

not directly impact whether the software is accepted because these decisions are made later.

Figure 1 illustrates…

Figure 1

Decision-making model overview

Acceptance Test Engineering – BETA DRAFT Page 17

This section elaborates on how the first two decisions are made and who makes them in a variety of

business models. The decisions are not made in a vacuum; they require information that must be made

available through activities. Figure 2 illustrates this process for a single decision:

Figure 2

Decision-making model sample activities

The diamond on the right side of Figure 2 represents the decision to be made based on the test results

(the decision can be either the readiness decision or the acceptance decision). The test results are based

on the testing/assessment activity, which assesses the system-under-test against the expectations. The

expectations of the system-under-test were defined based on the users' requirements. All of these

activities are executed within the context of a test plan.

Many of the practices in Part II describe how to do the assess activity, and other practices describe ways

to define the expectations based on the needs. That is one of the reasons this guide has a number of

requirements-related practices—it is not about testing, it is about acceptance, and acceptance is based

on expectations.

The Six Abstract Roles

The job titles of the decision makers vary greatly from business model to business model and across

business domains, so this guide uses abstract role names to describe the roles within the decision

making model. This guide also provides a list of common aliases. However, be aware that many of the

names are highly overloaded and that your "customer" (to pick just one example) may be an entirely

different role than the one mentioned as an alias here. To see how the abstract role names map to job

titles within organizations in specific business models, see the sidebar about decision-making model

stereotypes.

Acceptance Test Engineering – BETA DRAFT Page 18

Readiness Decision-Maker

The readiness decision maker makes the final readiness decision based on input from others. When a

single person performs this role, the job title might be something like Chief Engineer, Project Manager,

Development Manager, or VP of Engineering. This role could also be played by a committee, but this is

uncommon.

Development Team

The development team builds the software. Generally, this team includes user experience designers,

graphic artists, requirements analysts, software developers, and documentation specialists. In other

words, this team includes anyone who is involved in any way in the actual construction, customization,

or integration of the software.

Readiness Assessors

The readiness assessors assess the readiness of the software for acceptance testing. They provide

information that is used to make the readiness decision. The job titles involved depends very much on

the nature of the project and the organization, but it typically includes roles such as developers, testers,

and documentation writers. In effect, a readiness assessor can be anyone who might be asked to

provide an opinion on whether the software is ready. In some cases, this opinion is based on formal

testing activities, but it might also be based on technical reviews or even qualitative inputs.

Acceptance Decision-Maker

The acceptance decision-maker is the person or committee who decides whether to accept the

software. In a product company, a job title for this role might be Product Manager, but in an information

technology (IT) environment, this role is typically filled by a customer, product owner, business lead, or

business sponsor.

Acceptance Testers

Acceptance testers provide data on acceptability of the product. They perform activities to assess to

what degree the product meets the expectations of the customer or end user. They provide data to the

acceptance decision maker. They may be dedicated testing staff, end users asked to do testing, or

anywhere in between in skill set.

Users

Users make individual usage decisions. Each user decides whether to use the product as it is when it is

shipped or deployed. Their feedback might be used to adjust the requirements for the next release, but

they rarely affect the acceptance decision for the current release.

Acceptance Test Engineering – BETA DRAFT Page 19

Making the Three Decisions

This section describes how the preceding six abstract roles are involved in making the three decisions.

Making the Readiness Decision

The readiness decision is made by the readiness decision maker(s). The readiness decision is an exit gate

with a decision about whether to let the product be seen beyond the boundaries of the supplier

organization. The decision is based on readiness assessment (which is based on the features included

and the quality of those features) done by the readiness assessors. The decision can be made by a single

person (such as a Chief Engineer) or by a committee (such as engineers, architects, or other project

stakeholders), but it is a single decision. The software is either ready or it is not ready. If it is not ready,

there may be a list of concerns that need to be addressed before it will be considered ready. For more

information, see Concern Resolution Model.

There may have been a number of earlier decision-making checkpoints as part of the development

process (such as "requirements complete," "design complete," or "code complete"). These are beyond

the scope of this guide because they are neither directly part of the readiness decision nor are they

easily tested.

Making the Acceptance Decision

The acceptance decision is made by the person (or persons) playing the Acceptance Decision Maker role.

The decision is summarized by the question, "Should we accept the software and put it into use

delivering value to our organization?" There may be additional contractual consequences of the making

the acceptance decision, such as a commitment to pay the supplier, the start of a predefined warranty

period, and so on. But these should not be the primary considerations when making the decision. The

decision should be whether the software is "finished" enough to be deployed or shipped. For more

information about the definition of "finished," see the section, "Doneness Model." For more information

about the complete definition of the system attributes that may be considered when making the

acceptance decision, see the section, "System Model."

The definition of "finished" is influenced by several factors, including the following:

· Minimum credible release of functionality. This is based on whatever critera the product

owner decides are important, such as market surveys, competitive analysis, or economic

analysis.

· Minimum quality requirement for the product.

· Hard deadlines. These can include trade show dates, regulatory deadlines, or contractual

obligations. For more information, see "Project Context Model."

The acceptance decision is made based on data acquired from a number of sources and activities.

Acceptance testing generates much of the data needed to make the acceptance decision. This data

includes the following:

Acceptance Test Engineering – BETA DRAFT Page 20

· Pass/fail results of all tests that were performed as part of your acceptance testing. This could

verify both functional requirements and parafunctional requirements.

· Feature completeness -

· Readiness assessment data. This can be factored into the acceptance decision if it is available

from the supplier.

The acceptance decision is all about maximizing value and minimizing risk. Time has a direct value in that

time spent collecting more data through testing has a direct cost (the cost of resources consumed in

gathering the data) and an indirect cost (the deferral of benefit that can only be realized once the

system is accepted). Risk has cost that could be calculated as the sum of the cost of all possible negative

events multiplied by the probability of their occurrence1. In concept, when the cost of risk exceeds the

cost of delay, more testing should be performed. When the cost of more testing exceeds the risk cost

that would be reduced (by reducing probability of one or more events occurring or by reducing the

expected cost given the event does occur), you can decide to accept the product without further

testing.2 Examples of costs of risk might include the following:

· Cost of patching software

· Cost of manual workarounds

· Cost of maintaining specialized resources for software maintenance

· Losing customers that need that specific features

Making the Usage Decision

Each potential user of the system has to make a personal decision about whether to use the software.

This decision is different from the acceptance decision in that it is made many times by different people

or organizations. In fact, there may be several tiers of these decisions as companies decide whether to

adopt a product (or a new version thereof) and departments or individuals decide whether to comply

with the organizational decision. The important consideration from the perspective of this guide is that

these decisions happen after the acceptance decision and do not directly influence the acceptance

decision. They may indirectly influence in one of the following two ways:

· Prospectively. Usage decisions may indirectly influence the acceptance decision by

communicating the individual acceptance criteria to the product owner in response to market

1 This kind of calculation is not frequently done but our perceptions of risk are inherently based on an

intuitive interpretation of the circumstances along these lines.

2 Risk that could contribute to injury or death are often treated as special but even these can usually be

reduced to monetary consequence based on factors such as impact on the person or their dependents,

cost of damages in lawsuits, cost of damage to company reputation, etc.

Acceptance Test Engineering – BETA DRAFT Page 21

research or surveys. This type of criteria may also be submitted to the product owner through

unsolicited inputs, such as feature requests or bug reports.

· Retroactively. Usage decisions my indirectly influence the acceptance decision by providing

feedback on the release product indicating a lack of satisfaction in either functionality or

quality. This may influence the acceptance decision criteria in the future, but it rarely causes the

acceptance decision already made to be revisited. The notable exception would be the

discovery of "severity 1" bugs in critical functionality that might result in a recall of the release

software.

Roles vs. Organizations

The roles described in this decision-making model may be played by people in several different

organizations. The primary value of discussing organization here is in making it easier to map

terminology from various organization models to better understand who plays which decision-making

role. If the organizational model does not help in this endeavour, it can be ignored.

When the software is being built by a different organization than the one who commissioned its

construction, the organization that commissioned the software is often referred to as the customer, and

the organization that is building the software is the supplier. This is true whether the organizations in

question are separate, unrelated companies or simply departments within a single company. For

example, the IT department is typically a supplier of systems to the core business departments (such as

Transportation or Manufacturing.) and support departments (such as Human Resources or Finance).

When acceptance testing is outsourced to a third-party test organization, it is often referred to as the

(third-party) test lab (a kind of supplier of services) to distinguish it from the supplier of the software.

An organization that buys and deploys shrink-wrapped software can also be referred to as a customer,

and the organization they buy it from may be referred to as the vendor or supplier. The fact that the

vendor contracts the work to an outsourcer (another vendor of which they are the customer) illustrates

the problem with using the term "customer" to describe the product owner as advocated in extreme

programming.

<figure x: Multiple Customers and Suppliers)

A (Customer) buys shrink-wrap from B (Supplier). B (Customer) outsources Development to C

(Supplier). C (Customer) outsources readiness assessment to D (Supplier).

Decisions and Releases

The following sections discuss how the decision making model applies in various circumstances.

Acceptance Test Engineering – BETA DRAFT Page 22

Conditional Acceptance/Readiness

Frequently, the acceptance decision maker accepts a product with conditions. Accepting a product with

conditions is a short-hand way of saying, "The product is not acceptable yet, but it is close to meeting

our criteria for MCR and MQR. If you address the following concerns (and we find nothing new in the

subsequent round of acceptance testing), we intend to accept the product in the next pass through the

decision making process."

Conditional acceptance brings the process back to the construction/development phase of the gating

model, but this time with a much better idea of exactly what must be done to make it through both the

readiness decision and the acceptance decision on the next round.

Multi-Release Products

For the most part, long-lived multi-release systems can be thought of as simply a sequence of individual

products, where each product is being individually assessed for readiness and acceptance. Each release

goes through the entire decision making process. Figure x illustrates an example of this process.

<figure x. needed>

R0->R1->R2->R3

With sequence of decision (RD, AD, etc.) feeding into each from below-left.

The set of criteria for each of the decisions leading to each of the releases is selected from the set of

criteria in effect at the time of the project (which may vary from those that were in effect for earlier

releases.) An example of this is that the Sarbanes-Oxley Act (SOX) was enacted in 2002, so all

subsequent releases required compliance with this act as a readiness and/or acceptance criteria.

Alpha and Beta Releases

Alpha and beta releases are ways to use end users as testers to gather more data about the product as it

might be used "in the real world." Each alpha release and beta release can be considered a separate

release with its own release decision and acceptance decision. (“I accept this alpha release as having

sufficient functionality and quality to warrant releasing to users to collect feedback …”

<figure y. needed>

A0->B0->R0->->A1->B1->R1->R2->R3

With sequence of decision (RD, AD, etc.) feeding into each from below-left.

Note that both the MCR and MQR for an alpha release are typically lower than that needed for a beta

release, which is lower than needed for a general release. For example, the MCR may be the core set of

functionality without having all the features. The MQR may be "no severity 1 bugs" and "works for up to

10 users (versus the 1,000 required in production)."

Acceptance Test Engineering – BETA DRAFT Page 23

[Rohit will give an example]

Software Maintenance

Any time software needs to be maintained (such as when small changes are made to the software and

those changes are deployed), you are, in effect, creating a minor dot release of the software that needs

to go through the entire decision-making cycle yet again. It is common to look for ways to reduce the

cost of gathering the data to support the acceptance decision. Some ways of doing this increase the risk

of possibly missing newly created bugs (also known as "regression bugs") by reducing the amount of

testing (for example, risk-based test planning) while others simply reduce the effort to get similar test

coverage (for example, automated regression testing).

Another unique aspect of software maintenance relates to the warranty period on a software release.

Any changes that need to be made to the software should be made in the source code management

(SCM) system. When building multiple releases, there may be ongoing development for the next release

that should not, under any circumstances, be inserted into the production system along with the

warranty bug fixes. This requires managing separate code streams or branches during the warranty

period and ensuring that all warranty fixes are also applied to the new development code stream. For

practical strategies for using source code management systems, see [SCM].

References

Berczuk, Stephen P. and Brad Appleton. Software Configuration Management Patterns: Effective

Teamwork, Practical Integration. Addison Wesley Professional. 2002.

The Math

Grigori likes to express complex flows as math, so here’s an early description of the content of this

chapter:

RD=f(X) and AD=f(G)

Where:

X=RA(P,MCR,MQR)

MQR= Minimum Quality Requirment =f(K)

MCR= Miniumum Credible Release=f(K)

K=Project Context=f(budget, purpose, market research, competitive analysis)

 =f(who,what,when,where,how,…)

G=AT(P,MCR,MQR)

P=The product being tested

Acceptance Test Engineering – BETA DRAFT Page 24

Acceptance Test Engineering – BETA DRAFT Page 25

Project Context Model

The Project Context Model is a way to better understand the goals of the project and the constraints

under which it must operate. It is not a formal model; instead, it is a set of information to be collected

and factored into other activities. It includes information such as the following:

· Business goals. An example question to gather information for these is, "What is the business

value to be provided by the system and how is it to be achieved (strategy)?"

· Scope. An example question to gather information for this is "What functionality is in scope and

what is out of scope for this project?"

· Stakeholders and users. An example question to gather information for these is "Who are the

intended users and who are the other project and system stakeholders?"

· Budget. An example question to gather information for this is "How much money is available to

achieve the business goal?"

· Hard deadlines. An example question to gather information for these is "What deadlines must

be met for the project to be considered a success?" Examples of hard deadlines include trade

shows, contractual deadlines, and regulatory deadlines.

· Constraints. An example question to gather information for these is "What resources (such as

people, space, and equipment) are available to the project?" A follow-up question might include

"Which resources are negotiable and which are hard constraints?"

The next sections provide more information about each of these.

Business Goals

Too many projects are run with a majority of the staff not understanding (or even caring about) the

business goals of the project. Sometimes this is the result of deliberate decisions by management, and

sometimes it is inadvertent. Either way, expect to get suboptimal results if each team member is

focused on optimizing his or her own job assignment instead of ensuring that business goals are

achieved.

As a bare minimum, everyone on the project should have a clear understanding of what the project is

expected to deliver and how that will provide value to the business. Example of different ways to add

value to the business include cost reduction, increased sales, more satisfied users, and improved market

perception/branding.

Acceptance Test Engineering – BETA DRAFT Page 26

Scope

The scope of the project should be directly influenced by business goals. At the broadest levels, the

scope can be defined in terms on the types of users you expect to support and the types of functionality

you will supply them. It is just as important to consider what you do not plan to deliver as what you will

deliver; otherwise, you risk wasting a lot of time and energy discussing and possibly building and testing

functionality that was supposed to be excluded.

Stakeholders and Users

Accepting software requires the involvement of various stakeholders. Some are directly involved in the

acceptance testing and decision-making process, while others need to have their interests protected

even though they are not involved.

Users

The most obvious usage goal holders are the people (or systems) who are to use the core functionality

of the system. Typically, these people are referred to as the users." They are the ones who use a Web

site for doing their banking, entertainment, or online shopping; use an application for executing one or

more steps of a business process; or operate a combined software/hardware product such as a medical

imaging system. But these are not the only people interacting with the system. Other users include the

people who administer the system by populating the catalog of the online store or set up the content in

an online entertainment system; the people who run diagnostics on and maintain the system. There are

also people (or systems) who install the system, start it, monitor its status, and shut it down when the

servers need maintenance. They all have requirements with respect to how they use the system. For

more information about users and their goals, see the User Modeling activity in Part II of this guide.

System Stakeholders

There are also stakeholders [ACUC] who will not directly interact with the system when it is in operation

but who expect the system to look out for their interests as it is used (or abused) by others. For

example, a system that contains personal information about someone has that person as a stakeholder

even if they themselves do not directly interact with the system. This is an example of a parafunctional

requirement.

Project Stakeholders

Products and IT systems are usually developed within a project. There may be many defined roles within

the project, some of which may be played by users or system stakeholders and some by unique parties.

These project stakeholders may be involved in the acceptance testing or acceptance decision-making

process without being a direct system stakeholder or user. For example, the product manager or

product owner may never use the system, nor be a system stakeholder, but they definitely have a stake

in the acceptance decision process. The business sponsor of an IT project may never use the system or

Acceptance Test Engineering – BETA DRAFT Page 27

even view a report it generates, but the person in this role has a clear stake in the outcome in the form

of the expected business benefits in return for the investment of time and money.

Communication Between Stakeholders

The likelihood of acceptance of a software-intensive system is directly proportional to the effectiveness

of the communication between who commissioned the software (loosely referred to as the "customer")

and the team building the software. The requirements and the tests are part of this communication. The

communication is made much more effective if there is a common Ubiquitous Language that everyone

agrees to use consistently.

Budget

Hard Deadlines

All projects face deadlines of one sort or another. Some projects routinely miss many of these deadlines.

When the business consequence of missing a deadline is significant, you should take the appropriate

measures to ensure that the deadlines are not missed. Therefore, it is essential to understand which

deadlines are arbitrary (such as in "It would be really great if we could have that functionality by

September") or critical (such as in "We need to demonstrate this functionality at the trade show in

September and failure to do so could significantly affect our fourth quarter sales and our share price.")

Constraints

Most projects operate under some kind of constraints. Constraints can include people and skills or

facilities and equipment. Sometimes these constraints can be loosened, while they are strictly limited at

other times. A company may not be able to hire additional staff or recruit people with specific skills; in

these cases, the company needs to create the best possible plan that allows them to meet their goals

without hiring additional staff. This may result in very different plans than if they were able to hire

additional staff.

Acceptance Test Engineering – BETA DRAFT Page 28

System (Under Test) Model

Requirements and Acceptance

The acceptance of a software-intensive system is clearly related to whether it meets the requirements.

The process of assessing whether it meets the requirements involves the process of testing the software

using test cases that are in some way related to the requirements. Therefore, requirements are an

important component of the acceptance process even if they are not directly a testing-related artifact.

This guide includes some key requirements-gathering techniques to illustrate how the requirements are

related to testing and acceptance.

The term "requirements" is somewhat contentious. Some people believe that you merely need to talk to

potential users and ask them for their requirements. Frequently, this is referred to as requirements

elicitation or requirements gathering.

<need a picture showing users providing Requirements consisting of Use Cases or User Stories>

Some people believe that requirements cannot be gathered like strawberries; instead, they believe

requirements gathering must be based on the definition of a product that is designed to meet the

potential users' needs. This guide summarizes this process as product design and it acts as a placeholder

for a wide range of activities that may involve specialized skills.

< need a picture showing users needs being fed into a Product Design activity which then leads to

Requirements consisting of Use Cases or User Stories>

A related topic is how we verify that the requirements truly satisfy the needs to the users. This can be

done as part of an acceptance testing phase, but that is rather late to discover that what you built is

going to require significant changes before it will meet the users' needs. Therefore, this guide advocates

acceptance testing of the proposed product design (not the software design) before the software is

built. Techniques such as paper prototyping and Wizard of Oz can be used to verify that you are

"building the right system" very early in the project while there is still time to adjust the product design.

For information about these techniques, see the Usability Testing thumbnail.

Types of Requirements

The requirements, however derived, are typically divided into two broad categories, functional

requirements and non-functional requirements (also known as extra-functional requirements or

parafunctional requirements). Functional requirements describe the functionality to be provided to

users or administrators of the software-intensive system. Non-functional requirements transcend the

functionality. Different techniques are used for describing the various kinds of requirements and for

verifying that those requirements are met.

Acceptance Test Engineering – BETA DRAFT Page 29

Figure 3

Diagram of functional requirements and non-functional requirements

Functional Requirements

Functional requirements describe how various types of users expect the system to help them do their

jobs. (For information about different types of users, see "Error! Reference source not found." later in

this chapter.) The functional requirements, whether gathered directly or derived from a product design,

can be organized and communicated a number of different ways, including the following:

· Use cases

· User stories

· Feature lists

· Scenarios

· Protocol specifications

· Functional specifications

· State models

This guide highlights a small set of popular requirements practices. They are used to illustrate how the

requirements practices and artifacts are related to the tests you may use during acceptance of a

Functionality 1

Functionality 2

Functionality 3

P
e

rfo
rm

a
n

c
e

Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1

Functionality 2Functionality 2Functionality 2Functionality 2Functionality 2Functionality 2Functionality 2

Functionality 3Functionality 3Functionality 3Functionality 3Functionality 3Functionality 3

S
c
a

la
b

ility

Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1Functionality 1

Functionality 2Functionality 2Functionality 2Functionality 2Functionality 2Functionality 2Functionality 2

Functionality 3Functionality 3Functionality 3Functionality 3Functionality 3Functionality 3

U
s
a

b
ility

S
e

c
u

rity

…

Parafunctional
Requirements

Functional
Requirements

Acceptance Test Engineering – BETA DRAFT Page 30

software-intensive system. The User Modeling activity is used to capture salient information about the

users of the software. Use Case Modeling is used to capture what the users want the system to help

them achieve. User Stories are used to break the functionality of the system into very small but still

useful and testable chunks that can be built in just a few days or weeks. These requirements activities

and artifacts help you understand the types of tests you may need to execute to gather the data on

which the acceptance decision is made.

Parafunctional Requirements

Parafunctional requirements are requirements that describe general qualities or behaviors of the system

that span specific usage scenarios. Frequently, these requirements are traced back to protection of

various stakeholders who may or may not be users of the system in question.

Unlike functional requirements, which vary greatly from system to system, there is a fairly standard list

of types of parafunctional requirements. Many of these requirements end with the suffix "ility" because

they describe characteristics the whole system needs to support either while it is in use or as part of its

overall system life cycle.

Requirements that the system needs to satisfy while it is operating include the following:

· Availability. This is when the system needs to be available for use.

· Data integrity. This means the data needs to be stored and processed in a way that it can be

reliably retrieved without changing its original value.

· Safety. This means the system should not cause physical or emotional harm to a user.

· Recoverability. This means that when the system fails, it should restore its previous state

without undue hardship to the user of the platform.

· Accessibility. This means that people with diverse limitations can use the system. It may need

to conform to standards like those stated by the Americans with Disabilities Act (ADA) or other

regulatory or standards bodies.

· Supportability. This means it should be economical to provide support to users of the product.

· Reliability. This means the software should work well and resist failure in all situations.

· Robustness. This means the software should take abuse and still function (fault tolerance).

· Usability. This means the software should be easy to use by its intended users.

· Security. This means the software should protect against unauthorized use or intrusion.

· Scalability. This means the software should be capable of being scaled up or scaled down to

accommodate more users or cycles.

· Performance. This is the speed or throughput benchmarks the software needs to meet.

· Installability. This means the software should be easy to install onto a target platform.

Acceptance Test Engineering – BETA DRAFT Page 31

· Compatibility. This means it needs to work with identified external components and

configurations.

Requirements related to the total cost of ownership or product life cycle include the following:

· Testability. This is identifying the ways the software should be testable.

· Maintainability. This is the ease with which the software is to evolve, fix, and enhance.

· Portability. This is the ease with which the software can be ported or reused elsewhere.

· Localizability. This is the ease with which the software can be published in another language.

· Reusability. This is the ease with which the source code can be used in other circumstances.

· Extensibility. This is the ability to economically enhance the software with other features and

add-ons.

· Configurability. This is the ease with which the software can be prepared to be used on a

variety of different platforms or for slightly different uses and operations.

The preceding list of types of parafunctional requirements is not intended to be exhaustive. It also is not

intended to be universal; some of these requirements may be irrelevant for some software-intensive

systems. Part of the art of requirements gathering or engineering is deciding which ones are important

and which ones are not. Those that are important need to be made explicit and incorporated into the

test plans; those that are not important can probably be ignored (but the risk of ignoring them should be

assessed before doing so.)

Most of the requirements cut across the use cases of the system. That is, they apply to many, if not all,

of the discrete chunks of functionality described in the functional requirements. Note that some forms

of parafunctional requirements can be described at least partially in functional terms; security is a good

example. You can say that User Role X should be prevented from changing the value of field F on screen

S.

The key to testing conformance with parafunctional requirements is the classification of each of these

requirements indicating to what degree the project stakeholders care about the requirement. For

example, on a personal Web application, you may not care about scalability because there will be only

one user, but on a large e-commerce application, scalability is very important. It is worth reviewing this

list of parafunctional requirements and consciously deciding how important each one is to the success of

your product or project. The following table lists the goals, importance, and rationale of a variety of

attributes.

Attribute Goal Importance Rationale

Web site performance under

load
Less than 500 milliseconds

response time
High Major source of

revenue

Acceptance Test Engineering – BETA DRAFT Page 32

Web server capacity under

load
At least 300 TPS

Graceful degradation under

load

Medium Large number of users

Reliability/availability 7x24x52 Critical Users require instant

satisfaction when

worried about their

money

Usability Easily discoverable High Most users will use

infrequently

Acceptance Test Engineering – BETA DRAFT Page 33

Process Model

The software process has a significant impact on how acceptance testing is performed. This section

describes the process continuum with two distinct process stereotypes on the opposite ends.

Waterfall/Tayloristic Processes

The waterfall approach (also known as the Tayloristic approach) involves organizing the project into a

series of distinct phases. Each phase contains a specific type of work (such as requirements analysis) and

has specific entry and exit criteria. The phases do not overlap. The entry and exit criteria synchronize the

activities delivering the functionality to cause them to occur at pretty much the same time. Figure 1

illustrates this.

Figure 1

Waterfall approach phases

Within a phase, the work is broken out. For example, within the requirements phase, the work may be

divided between analysts by requirement topic, but during the construction phase, work may be divided

among the developers by module. The handoffs between phases are usually in the form of documents,

except that the handoff from construction to testing also involves the code base. Readiness assessment

is done by the supplier organization after all the construction is completed; acceptance testing is

performed by the customer after the software is deemed to be ready.

Phased Development/Multiple Release Projects

It is commonly accepted that the longer a project goes before delivering software, the higher the

probability of failure. One way to combat this is to use a phased delivery model of multiple releases or

code drops. Figure 2 illustrates this model.

Construction

H
ig

h
-L

e
v
e

l
P

la
n
n

in
g

R
e
q
u

ir
e
m

e
n
ts

A
n
a
ly

s
is

A
rc

h
ie

c
tu

re
&

 D
e
s
ig

n

T
e
s
tin

g

D
e
p
lo

ym
e
n
t

time

F
u
n
ct

io
n
a
lit

y

From: “Concept to Product Backlog” by Gerard Meszaros

Acceptance Test Engineering – BETA DRAFT Page 34

Figure 2

Phased delivery model

In this approach, the planning phase, requirements analysis phase, and design phase are performed

once early in the project while the construction phase, test phase, and deployment phase are repeated

several times. The work within each phase is decomposed the same way as for single-release projects. If

the functionality built in the second release overlaps the functionality in the first release, the testing and

deployment must encompass the entire functionality. Figure 3 illustrates this.

Figure 3

Overlapping functionality diagram

Agile Processes

Most agile methods use an iterative and incremental approach to development. After an initial planning

period, the project duration is broken into development iterations that deliver increments of working

software. Figure 4 illustrates…

H
ig

h
-L

e
ve

l
P

la
n
n

in
g

R
e
q
u

ir
e
m

e
n
ts

A
n
a
ly

si
s

A
rc

h
ie

ct
u
re

&
 D

e
si

g
n Construction

T
e
st

D
p
ly

Construction

T
e
st

D
p
ly

time
F

u
n
ct

io
n
a
lit

y

Construction

T
e
st

D
p
ly

t

Construction

T
e
st

D
p
ly

t

H
ig

h
-L

e
ve

l
P

la
n
n
in

g

R
e
q
u
ir
e
m

e
n
ts

A
n
a
ly

si
s

A
rc

h
ie

ct
u
re

&
 D

e
si

g
n Construction

T
e
st

D
p
ly

Construction

T
e
st

D
p
ly

time

F
u
n
ct

io
n
a
lit

y

Construction

T
e
st

D
p
ly

t

T
e
st

D
p
ly

t

Acceptance Test Engineering – BETA DRAFT Page 35

Figure 4

Iterations diagram

Figure 4 illustrates two iterations, each of which starts with an iteration planning session and ends with

some acceptance testing. In each iteration, the work is broken down into features or user stories, each

of which independently goes through the entire software development life cycle. Note how the

predeployment testing spans the functionality built in both iterations. The “onsite customer” or proxy,

who is readily accessible to the development team, is responsible for describing the details of the

requirements to the developers. It is also their responsibility to define the acceptance tests for each

feature or user story. They provide these tests to the developers as a more detailed version of the

requirements description in a process known as “Acceptance Test Driven Development.”

This allows the developers to execute the acceptance tests as part of the development cycle. When tests

pass for that feature or user story, they turn over the functionality to the customer (proxy) for

immediate "incremental acceptance testing." Therefore, readiness assessment at the feature level starts

immediately after the developer believes all or most of the functionality is built. There may also be a

round of acceptance testing performed at the end of the iteration, as illustrated by the medium-sized

testing bars in the Figure 4. The breakout between readiness assessment and acceptance testing is

illustrated in Figure 5.

H
ig

h
-L

e
ve

l
P

la
n
n
in

g

|<---Iteration--->|

F
u
n
ct

io
n
a
lit

y

time

ß----Iteration--->|

Acceptance Test Engineering – BETA DRAFT Page 36

Figure 5

Acceptance Test Engineering – BETA DRAFT Page 37

Readiness assessment and acceptance testing comparison

Note how each developer works on a series of features one feature at a time. Immediately after the

functionality is complete, the software is turned over to the customer for acceptance testing. In this

implementation, readiness assessment is the responsibility of the developers (possibly aided by

supplier-side test professionals) for each feature before declaring the feature "finished." This requires

that the acceptance tests were supplied by the customer before development is finished at the latest

and ideally before development even starts. This practice is known as acceptance test–driven

development (ATDD) or storytest-driven development (STDD).

Acceptance test–driven development has two key benefits. First, any concern found by the customer

during acceptance testing can be discussed with the developers while they still remember the details of

how they implemented the functionality. Second, the defects or deficiencies can be addressed

immediately before the developer moves on to the next feature instead of being stockpiled for a "bug-

fixing phase." This is one of the key reasons co-located agile project teams frequently do not use a

formal bug-tracking database; one sticky note per bug on a bugs board promotes high visibility with very

low management overhead.

Multi-Release Agile Projects

Most agile methods advocate "deliver early, deliver often." In theory, the result of any development

iteration could be determined, after the fact, to be sufficient to be put into production. This would lead

directly to the deployment activities. In practice, most agile projects plan on more than one release to

production and the iterations are then planned to deliver the necessary functionality. Figure 6 illustrates

this concept.

Note how there is a testing cycle for the second release which includes regression testing of the

functionality delivered in the first release.

Kanban-based Agile Process

Some agile methodologies dispense with iterations in favor of allowing a fixed number of features in

progress at any time. This is designed to emphasize the concept of a continuous flow of working code

for the customer to accept. From an acceptance testing perspective, these Kanban-based methods still

H
ig

h
-L

e
v
e

l
P

la
n

n
in

g

|<--- Release 1 -->|

|<--- Release 2 -->|

F
u

n
c
tio

n
a

lit
y

time

Acceptance Test Engineering – BETA DRAFT Page 38

do incremental acceptance testing at the feature level and formal/final acceptance testing before each

release, but there is no logical point at which to trigger the interim acceptance testing that would have

been done at iteration's end in iteration-based agile methods.

It is important to note here that there are never more than three features in progress at any one time.

In other words, there are only three development "slots," and a slot becomes available for another

feature only after it has finished its incremental acceptance testing. This is similar to how Kanban are

used to control the inventory in factory production lines.

Process As a Set of Continuum

Although "agile" and "waterfall" are two named styles of projects, they really are just named

stereotypes consisting of certain combinations of characteristics. It is easy to imagine the decision on

each of these characteristics as being the setting of a process slider. For example, the Number of

Releases slider might have stops at releases 1, 2, 3, and so on. The Iteration slider could have values of 1,

2, 3, and so on, which indicate whether there are intermediate checkpoints or values of -1, -2, -3

indicating the number of development slots available in a Kanban-based system. Another dimension

might be Integration Frequency, with settings of Big Bang, Major Milestone, Quarterly, Monthly,

Biweekly, Weekly, and Daily.

The following table summarizes the positions of these sliders for what is considered to be a stereotypical

project of each kind. These positions are not definitive or complete, but they challenge you to create

your own sliders and settings for your context.

Sliders: Pure

Waterfall

Checkpointed

Waterfall

Agile

(Iteration)

Agile

(Kanban)

Number of

releases

1 1 2 or more 2 or more

Number of

iterations

1 2–6 4 or more 1

Maximum number

of features in

No maximum No maximum 1 iteration’s

worth

Less than the

number of

H
ig

h
-L

e
ve

l
P

la
n
n
in

g

F
u
n
ct

io
n
a
lit

y

time

Acceptance Test Engineering – BETA DRAFT Page 39

progress team members

Integration

frequency

Big Bang Quarterly Daily or hourly Daily or hourly

Requirement-to-

test duration

Months or

years

Months Days Days

Test timing Separate

phase

Separate phase Mostly

incremental

Mostly

incremental

Release criteria Scope-based Scope-based Time-boxed Time-boxed

Average

Requirement

effort

Person

months

Person months Person days Person days

Average task

effort

Person days

or weeks

Person days or weeks Person hours Person hours

Work style Tayloristic Tayloristic Collaborative Collaborative

Skills Highly

specialized

Highly specialized Generalists Generalists

Determining

progress

Earned value

calculated

based on

WBS

Earned value

calculated based on

WBS

True value

delivered in

working code

True value

delivered in

working code

Working

remaining

Estimate

duration of

remaining

tasks

Estimate duration of

remaining tasks

Estimated time

for remaining

features

Estimated time

for remaining

features

In the preceding table, Checkpointed Waterfall means a project with several interim milestones, each

defined in terms of a chunk of functionality that will be complete but not delivered.

Acceptance Test Engineering – BETA DRAFT Page 40

Risk Model

Risk is a nebulous concept that means different things to different people. In general, though, when

something is perceived to be risky, people are more likely to be worried. It is useful to create a more

concrete model of risk that helps you make decisions about your projects.

What Could Possibly Go Wrong? Risk Assessment

One way to define risk is by asking what keeps you awake at night? More specifically, what might

happen and what would be the consequences if it did happen?

You can make the discussion of risk more meaningful by translating nebulous concerns into concrete

events that could happen and talking about the likelihood that it might happen and the consequences if

it does happen.

For example, suppose you ordered some critical hardware for your test lab, without which you cannot

conduct certain types of acceptance testing that you need to make the acceptance decision. What could

possibly go wrong? The following are some examples:

· The hardware could be destroyed in transit.

· The wrong hardware is shipped either through an ordering error or a fulfillment error.

· The hardware could be defective.

For each of the preceding events, you can estimate the likelihood that it will occur and assess the impact

on your project if it did occur. Performing these two calculations separately helps you to better

understand the risk.

P
ro

b
a

b
ili

ty

Lo
w

M

e
d

iu
m

 H

ig
h

Low Medium High

Acceptance Test Engineering – BETA DRAFT Page 41

Consequence

In Figure x, the two areas on either side of the diagonal and the diagonal itself represent three degrees

of risk. The green risk regime represents low risk, the red risk regime represents high risk, and the yellow

risk regime represents moderate risk. In general, risks that fall in the same risk regime are equally

important to mitigate.

Should We Do Something About It? Risk Management

After you understand the risks for your project, what can you do about them? There are three possible

courses of action:

· You can accept the probability and consequence that a particular event might happen.

· You can perform activities to reduce the likelihood of it happening.

· You can perform activities to reduce the consequence if it does happen.

The course you choose depends on a number of factors, including the following:

· The factors you have control over, such as the following:

◦ If there are no courses of action that could reduce the likelihood of something

happening, you may be forced to focus on trying to reduce the consequence. For

example, the only way to avoid an extreme weather event might be to move to a

different area, which may simply exchange one set of extreme weather events for a

different set.

◦ If there is no way to reduce the consequence of an event, you need to focus on reducing

the likelihood of it occurring. For example, it is usually better (and economically more

feasible) to try to reduce the likelihood of a heart attack by exercising and eating well

than to try to improve the probability of surviving it by hiring a heart specialist to be at

your side at all times.

· The relative cost of the options available to use. If it is much cheaper to reduce the likelihood

than the consequence, you should first focus on lowering the likelihood and vice versa. Note

that the cost is typically non-linear and gets more expensive the closer to zero you try to drive

the likelihood or consequence.

· The cost of risk reduction relative to the cost you would incur if the risk occurred. For example,

if a parking ticket costs twice as much as paying for the parking and there is only a 20 percent

chance of getting caught and ticketed, you may choose to take the chance by not paying for

parking.

Acceptance Test Engineering – BETA DRAFT Page 42

How Can Testing Help? Risk Mitigation Strategies

If you decide to mitigate a risk, how you go about it depends on the nature of the risk. Risks that relate

to the possibility of delivering a defective product are amenable to risk mitigation through some form of

testing. Risks that relate to discovering something too late can be mitigated by activities that move

discovery earlier.

Doing Something Earlier

Many risks on projects are related to time. Will something happen in time? If it happens too late, will

you have time to react without affecting the project timeline?

A good example of this is the late discovery of missed or misunderstood requirements. When this

discovery occurs during the acceptance testing phase of a project shortly before the product is expected

to be turned over to users, the impact (of the discovery) may be a significant delay in achieving the

business benefits expected from the system. In this case, you can reduce the impact of the discovery by

doing the acceptance testing activities earlier in the project.

The incremental acceptance testing practice used on many agile projects is one way to move discovery

of misunderstood requirements earlier in the project so there is plenty of time to address them.

Document-driven projects can also reap the benefits of incremental acceptance testing by moving to an

incremental delivery model where the system is built in functional modules that can be acceptance

tested as they become available.

Doing Something Different

An extreme form of "too late" discovery is when you do not discover it at all and a problem is found by a

user. If the problem is severe enough to have serious repercussions, the consequences can be

disastrous. The high-profile losses or theft of customers' private information is just one example of

something discovered "too late." These types of risk may require additional activities to reduce the

likelihood of their occurrence. The solution often lies in doing additional kinds of testing to improve the

likelihood that a certain class of defect, if it exists, is found in time. Many test authoring practices are

focused on ways to define additional tests that improve the test coverage (from a risk coverage instead

of a code coverage perspective).

Summary

A risk management model and a way to track risks and risk mitigation is important on all types of

projects. This allows for tracking efforts to reduce the chances of a risk occurring, to mitigate the

consequences of the risk when it occurs, or both. For more information about how to use a model like

this, see Risk Assessment [TN].

Acceptance Test Engineering – BETA DRAFT Page 43

Acceptance Test Engineering – BETA DRAFT Page 44

Doneness Model

A Model for determining when we are done.

The definition of done depends on several factors. First, what is it that we are trying to decide whether it

is done? The second is what is it done enough for. Some examples:

1. Is a User Story ready for acceptance testing by a business tester?

2. Is a software-intensive system (e.g. software product) ready for an alpha test with a friendly

user community?

3. Is a software-intensive system ready for the design close milestone?

The definition of done is different for each of these examples.

For a user story, being ready for acceptance testing may be determined by answering the question “Is it

passing all the acceptance tests defined by the product owner?”

Release Criteria – Doneness of Entire Systems

When determining doneness of a software system for release to users, doneness is a very binary

decision. Either we are done, or we are not. We cannot be “half done” any more than we can be “half at

home”! There are two main criteria for determining if a system is done:

1. Are enough high value, customer-defined features included to make the release worthwhile?

2. Is the quality of the feature implementations high enough to be usable?

 The first criteria, also known as Minimum Credible Release (MCR), or Minimum Marketable Product

(MMP), is typically decided while planning the release although it may be revisited as the project is

being executed and more is learned about the system context (business requirements, etc.) and the

technical capabilities of the supplier (delivery team.)

Given acceptance test results for each feature, it is fairly simple to determine what percentage of

features is done. This is the number of features during Readiness that the supplier has determined pass
their critical acceptance tests divided by the total number of features for the release.

The second criteria, also known as Minimum Quality Requirement (MQR), is what we are constantly

testing against while we build and test the software. To be able to say whether a feature has met the

MQR we need to have the acceptance tests defined for that feature; this is our per-feature definition of

“What done looks like.”

These two criteria are displayed in the following diagram:

Acceptance Test Engineering – BETA DRAFT Page 45

The graph on the left shows the completeness of each feature at point X in time; the one on the right

two weeks later. Each column represents a feature with the width of each column being the estimated

effort to build the feature. The line labeled RAT is when the feature is deemed ready for acceptance

testing by virtue of having conducted the readiness assessment. It is the per-feature equivalent of the

readiness decision (RD) we make at the system level. The space between the RAT line and the line
labeled MQR is when acceptance testing is done.

The line labeled MCR is the demarcation between the features that must be present (left of the line) and

those that are optional (right of the line; omitted in these diagrams) for this release. Numbering from

the left starting from 1, features 5 through 7 were completed (deemed ready) in this time period.

Features 8-10 were previously in progress before this time period and were not completed. Features 11

and 12 were started but not finished.

The product is deemed acceptable when all features pass all their acceptance tests. This is the top right

corner of the graph where the lines labeled MQC and MCR intersect. When the rectangle below/left of
this point is entirely colored in, the product is accepted. To simplify the discussion we have deliberately

ignored the para-functionality requirements but we could just treat each set of para-functional tests as

another “feature bar” from the perspective of measuring “doneness”.

We need to talk about incremental vs. big bang parafunctionality testing somewhere. Ironically,

waterfall treats this as a phase (a row just below the RAT line) while Agile would treat is as a feature that

has parts implemented in different iterations. This could be an interesting graphic to draw. Grigori, I

know what I want and I need to pair with you to draw it for me.

Would it be worthwhile to factor out the discussion of doneness of individual features (currently %AT
passing for agile and % Phases Completed or % Earned Value for Waterfall) into a separate discussion

titled something like “Feature Readiness – Doneness of Individual Features”??? While it is unlikely that

Waterfall projects would use %AT, agile projects could use % Earned Value.)

Acceptance Test Engineering – BETA DRAFT Page 46

Defining “What Done Looks Like”

For each chunk of functionality we have decided to deliver (let’s call it a “feature” for now) we need to

define the Minimum Quality Requirement in the form of a set of Acceptance Tests that must pass before

the customer will accept the feature. The set of acceptance tests for a release is merely the aggregate of

the acceptance tests for all the features (“functional tests”) plus the acceptance tests for each of the

para-functional requirements (the “para-functional tests”) that we deem mandatory.

Determining “Readiness”

“Readiness” is what we call it when the supplier believes the product is “done enough” to ask the

product owner to consider accepting the product. This implies that the supplier has a reasonably

accurate understanding of how the customer will conduct the acceptance testing. (In some cases, the

supplier’s “readiness tests” may be much more stringent than the acceptance tests the customer will

run.) This understanding is known as the “acceptance criteria” and is usually captured in the form of

acceptance tests. Ideally, the acceptance tests are provided to the supplier by the customer before the

software is built to avoid playing “battleship” ™ or “Blind man’s bluff” and the consequent rework when

the supplier guesses wrong.

Communicating “Percent Doneness”

Yes, we said you are either “Done” or “Not Done (Yet)” . But in practice it is important to be able to

clearly communicate “how close to done” we are. Or more specifically, “what remains to do before we

can say we are “done””. This is the amount of work left for each feature that has not yet passed all its

acceptance tests summed over all the features that are part of the MCR. When looking at our graphic,

we are asking “What percentage of the rectangle below/left of MQR/MCR is colored in?”

 How clearly we can communicate this depends on the project management methodology we are using.

The following diagram shows snapshots of completeness for 3 different project styles:

Acceptance Test Engineering – BETA DRAFT Page 47

The first row of graphs represents a classic waterfall or phase, document-driven style of project

management. The bottom represent a classic eXtreme Programming project. The middle row represents

a project using an incremental style of development with longer feature cycles than the XP project.

Notice the difference in how the colored parts of the graph advance towards the top right corner.

Communicating Percent Done on Agile Projects

An Agile project can very simply divide the number of features that are accepted by the customer by the
total number of features schedule for the release. This gives us the percent done. We can make it more

accurate by weighting it by the estimated cost (width of the feature column.) If we want percent

remaining(or conversely the number that remain to be accepted (burndown = total – down).

In the following diagram we have snapshots of how “done” each feature is at various points in time.

Each mini graph represents a point in time. The height of the colored-in portion of each feature bar

represents what degree that feature is done. A simple way to calculate this is dividing the number of

acceptance tests passing by the total number of acceptance tests for that feature.

Note how agile projects focus on reducing the length of time that a particular feature is in development.

(The goal is to complete each feature in the same iteration it was started in, or at worst case, the very
next iteration.) This allows the customer to do incremental acceptance testing as each feature is

delivered. Any bugs found can be scheduled for fixing at the appropriate time (which may be right away

or in subsequent iterations.) Plotting the number of features left to be “done” against time we get a

“burn down chart” like this:

Acceptance Test Engineering – BETA DRAFT Page 48

Rather than having 100% of the features 50% done at the halfway point of the project, Agile projects

strive to have 50% of the features 100% done. This gives the customer options should specification and

development of the functionality take longer than expected (not uncommon). They can decide whether

to adjust (reduce) the product scope to deliver on time or to adjust (delay) the delivery date to include

all functionality. It also means that the work of readiness assessment and acceptance testing are spread

out more or less evenly across the project. (It would be useful to show a chart of this to contrast with

the waterfall version of the same chart.)

A somewhat less agile project might look like this:

Most features are taking several iterations to complete and acceptance testing only starts (on this

example project) after all features are deemed ready. Deficiencies found during acceptance testing (e.g.

missed requirements) need to be fixed much more quickly because they are found very late in the

project.

Communicating Percent Done on Tayloristic Projects

Tayloristic projects have more of a challenge since the phases/milestones synchronize development in
such a way as to ensure that all functionality is available for testing at roughly the same time. This

prevents our using “% functionality accepted” as a meaningful predictive measure of progress. Instead,

Tayloristic projects usually ask someone to declare what percentage each feature is done. For example,

the developer may say they are 80% done coding and debugging (though this number is often stuck at

80 for many weeks in a row!) Given the subjective nature of estimation techniques, waterfall projects

often choose to use techniques such as “Earned Value” to come up with a “degree of doneness” metric.

Unfortunately, these techniques are prone to error, fudging and are both difficult and time-consuming

to produce and maintain.

Time

Fe

at

ur

es

lef

Acceptance Test Engineering – BETA DRAFT Page 49

In this Taylorist version of the diagram we can see how phased/waterfall development encourages us to

work in parallel on many features because each feature is synchronized by gating mechanisms such as

the Requirements Frozen, Design Complete and Coding Complete milestones. This means that all the
features are available for acceptance testing at roughly the same time and must be finished acceptance

testing in a very short period of time. This has implications for the staffing levels required for the

readiness assessment and acceptance testing roles. (It would be useful to show a chart of this to

contrast with the agile version of the same chart.) When development is late, the period for RA/AT is

further shortened and the RA/AT resources further stressed. It also has implications on the impact of

finding bugs during the testing (the fixes are on the critical path to delivery.)

Plotting the number of features left to be “done” against time we get a “burn down chart” like this:

Time

Fe

at

ur

es

lef

Acceptance Test Engineering – BETA DRAFT Page 50

Sidebar: Degrees of Doneness – another dimension

6 level of done (D1-D6) in our process of content creation

 D1=author

 D2=reviewer

 D3=content/product owner

 D4= external reviewers (advisors + community)

 D5=content tester/editor
 D6=product owner (final content signoff)

Plus additional X:

 D7=copyeditor

 D8=page proofs

 D9=sent to publisher signoff

Acceptance Test Engineering – BETA DRAFT Page 51

Planning for Acceptance

A narrative introduction to the models and practices surrounding the planning of acceptance testing

and decision-making. Still to be added:

· Testing Model

·

Acceptance is an important event in the lifecycle of a system; it is important enough that it should be

the result of a carefully thought through process. The test plan is the end result of all this thinking. Like

most such documents, it can serve an important role in communicating the plan but the real value lies in

the thinking that went into producing it.

Test Planning builds on the work done during Project Chartering which defines the initial project scope.

In test planning we define the scope of the testing that will be done, select the test strategy and drill

down to detailed testing plans that define who will do what, when and where.

Most projects prepare a Test Plan that lays out, amongst other things:

· The scope of the acceptance process and the breakdown into readiness assessment and

acceptance testing phases

· the overall test strategy including both manual and automated testing

· the activities, testing and otherwise, that will be carried out in each of the phases (readiness &

acceptance),

· what types of skills will be required to carry out the activities

· What other resources (e.g. facilities, equipment, etc) will be utilized to carry out the activities

· When each of the activities will be done (timeframe and in what sequence if relevant)

What Are Our Test Objectives

Before we can even start thinking about how we will go about accepting the software we need to have a

clear understanding of the scope of the project and the software that it will be delivering. Most

organizations have some kind of Project Chartering activity that defines the product vision or scope. It

may also include a risk assessment activity. The risk assessment activity involves brainstorming all the

potentially negative events that could cause the project grief. For each possible event we classify the

likelihood as low, medium or high and impact as low, medium or high. Anything ranked Medium/High or

High/High needs to be addressed. Some risks may cause us to change the way plan our project while

Acceptance Test Engineering – BETA DRAFT Page 52

others may cause us to take on specific test planning activities. Together, the vision/scope and risk

assessment help drive the test strategy definition and test planning.

Lessons Learned from Agile

The agile software development community has shown us that it is possible to produce consistently

high-quality software without significantly increasing the effort by integrating testing throughout the

development lifecycle. This has led to a rethinking of the role of testing (the activity) and test (the

organization.)

Brian Marick, a leading contributor to the agile community “with a testing slant”
3 has defined a model

that helps us understand the purpose behind the different kinds of tests we could execute.

<inserted Marick Model – Purpose of Tests>

This diagram classifies various kinds of testing we can do along two key dimensions:

· Business Facing vs Technology Facing

· Support Development vs. Critique the Product

Tests that Support Development

Tests can support development by helping us understand what the product is supposed to do before we

build it. These are the tests that we can prepare in advance and run them as we build the system. As

part of the readiness assessment, the supplier team can run these tests to self-assess whether the

system implements the necessary functionality.

3 From Brian Marick’s website: http://exampler.com/

Acceptance Test Engineering – BETA DRAFT Page 53

The tests in this column fall into two categories: the business facing tests that describe what the system

should do in terms understandable by the business or product owner, and the technology facing tests

that describe how the software should work beneath the covers.

Business Facing

The business facing tests that drive development are the functional tests (A.K.A. acceptance tests or

customer tests.) These tests elaborate on the requirements and the very act of writing these tests can

expose missing or ambiguous requirements. When we prepare these tests before development has

started we can be sure that development understands what they need to build. This is called

Acceptance-Test-Driven Development.

If we prepare the functional acceptance tests after development is done or we prepare them in parallel

with development and don’t share them (so-called “independent verification”) the tests do not help us

build the right product but instead act as an alternative interpretation of the requirements. If they fail

when we finally run them, we must have a discussion as to which interpretation of the requirements is

more accurate: the one implemented by the development team in the code base or the one

implemented in the functional tests by the test team.

These tests may be run manually or they may be automated. The latter allows the supplier to run them

throughout the development cycle to ensure that all specified functionality is correctly implemented.

Yes, the customer will want to run additional acceptance tests to make the final acceptance decision but

supplying a set of tests to the supplier organization early so they can drive development will go a long

way towards building the product right. This is much more likely to happen when the tests are easy and

cheap to run, and that requires automated execution (see the Automated Functional Test Execution

thumbnail.) These tests may be implemented as Programmatic Tests but are more typically

implemented using Keyword-Driven Test Automation.

Technology Facing

There are many tests used by development that are not business facing. Developers may prepare unit

tests to verify that the code they wrote has successfully achieved the design intent. This is how they

determine that they built the code right (as opposed to building the right product.) Test-driven

development (TDD) is when developers implement automated unit tests before they build the code the

tests verify. This development process has been shown to significantly improve the quality of the

software in several ways including better software structure, reduced software complexity, and fewer

defects found during acceptance testing. These tests are ever more frequently automated using

members of the xUnit testing framework [XTP].

Tests that Critique the Product

Given that the product has implemented the right functionality, we need to know whether the product

meets the parafunctional requirements. These tests support the acceptance decision. We do this by

assessing the parafunctional attributes of the system after it has been (at least partially) built. These

tests critique the product rather than driving the development process. They tell us whether it is good

Acceptance Test Engineering – BETA DRAFT Page 54

enough from a parafunctional perspective. We can divide these tests into the two categories Business

Facing and Technology Facing.

Technology Facing

Technology facing tests that critique the product measure how well the product meets technically-

oriented quality attributes. Many of the “-ilities” fall into this category:

· Scalability

· Availability

· Exploratory testing

· Etc.

These tests provide metrics we can use when deciding whether the product is ready to be shipped. In

most cases, these tests will be run as part of readiness assessment because of their technical nature.

However, a customer charged with deciding whether or not to accept a product may be interested in

seeing the results and comparing them with the minimum requirement. They may even hire a third

party test lab to conduct the testing on their behalf. (See the Test Outsourcing thumbnail.)

Business Facing

If functional tests are used to drive development to build the product per the requirements, how do we

make sure we are building the right product? The business facing tests that critique the product fulfill

this role. These tests assess the product (either as built or as proposed) for fitness for purpose. Examples

of tests that critique the product from a business perspective include:

· Usability Testing

· Accessibility Testing

· Exploratory testing

These tests typically cannot be automated because they are highly subjective and some even require us

to observe people trying to use the product to achieve their goals.

What Testing Will We Do? And Why?

Now that we’ve introduced a way of reasoning about the kinds of tests we can get on with deciding

what kinds of tests we need to run and which to automate. This is our overall test strategy. It helps us

determine how to best address our testing needs at the lowest cost.

Test Strategy

Defining the test strategy may be considered to be part of the test planning process or a distinct activity.

Either way, the purpose of defining a test strategy is to make some high level decisions about what kinds

of testing need to be done and how they will be executed. One of the key decisions is what kinds of tests

Acceptance Test Engineering – BETA DRAFT Page 55

should be automated and which approach to testing should be used for manual tests. The goal of these

decisions is to try to minimize project risk while also minimizing the time and effort spent testing the

software.

In previous sections we’ve introduced the concepts of functional and parafunctional requirements. As

part of the test strategy we need to decide where to focus. Testing cannot prove that software works

correctly; it can only prove that it doesn’t. Therefore we could spend an infinite amount of time testing

and still not prove the software is perfect. The test strategy is about maximizing the ROI of testing by

identifying the testing activities that will mitigate the risks most effectively. And this implies that some

requirements may be tested less thoroughly, by choice.

We also need to decide whether we will do all the acceptance testing at the end of the project (Test Last

Acceptance A.K.A. Testing Phase or Big Bang Testing) or incrementally as functionality becomes available

(Incremental Acceptance.) Incremental acceptance requires changes in how the project is planned and

how the software is developed to ensure a continuous stream of functionality is delivered starting fairly

early in the project. The payback is that misunderstood and missed requirements are discovered much

sooner thereby allowing time for remediation off the critical path of the project.

Another strategic decision may relate to test oracles; our source of truth. How will we define what a

correct outcome looks like? Is there a comparable system that we can use as an oracle? (See

Comparable System Test Oracle.) Can we hand-craft expected results (See Hand-Crafted Test Oracle.) Or

will we need to use a Human Test Oracle? If so, what can we do from a design-for-testability perspective

to reduce the dependency on human test oracles?

Manual Testing

For functional testing, the key strategy decisions related to how we will execute the tests. When we

execute the tests manually we need to decide how much freedom we grant the testers.

 At one extreme of the test freedom scale we have freestyle exploratory testing in which the tester can

test whatever they feel is important. At the other end we have scripted testing in which testers attempt

Acceptance Test Engineering – BETA DRAFT Page 56

to follow a well-defined test script. In between we have chartered exploratory testing with charters of

varying degrees of freedom including scenarios, user roles/personas and charters. Scripted testing

involves having an expert prepare detailed tests script to be executed much later by some else (or a

computer when automated.) There is very little opportunity for test design during test execution.

Exploratory testing is a powerful approach to testing that leverages the intelligence of the tester to

maximize the bugs found in a fixed amount of time. Unlike scripted testing, the tester is encouraged to

come up with new things to try while they are executing tests. Hence it is described as “simultaneous

test case design and execution with an emphasis on learning.” [KANER]

Automated Testing

Automated testing covers a wide range of topics. Automated execution of functional tests is one. Some

kinds of parafunctional tests pretty much require automated execution because of the nature of the

testing being done. A commonly overlooked area for automation is the use of “power tools” while doing

manual testing. Tools can also be used to generate test data. The various uses of test automation need

to be determined on a project by project basis. This process is described in the Planning Test

Automation thumbnail.

Maximizing Automation ROI

An effective test automation strategy strives to maximize the ROI of the investment in automation.

Therefore, the tests we automate should cost less, at least in the long run, than we would have spent

executing the comparable tests manually. Some tests are so expensive to automate that we’ll never

recoup the investment. These tests should be run manually.

Automating the Right Tests

So, how do we ensure that we get the best possible ROI for our test automation investment? We need

to focus our energies on:

1. Tests that have to be automated by their very nature

2. Tests that are inherently easier to execute using a computer than a human

3. Tasks (not tests) that can make manual (or automated) testing faster and more effective.

Automated Execution of Functional Tests

Automated functional test execution is a powerful way to get rapid feedback on the quality of the

software we produce. When used correctly, it can actually prevent defects from being built into the

product; when used incorrectly, it can rapidly turn into a black hole into which time and effort are

sucked. When automated regression tests are run frequently, as in before every code check-in, they can

prevent new defects from being inserted into the product during enhancement or maintenance

activities. Providing the supplier with automated acceptance tests ahead of time can ensure the supplier

builds the right product the first time and not as a result of test&fix cycles. See the Acceptance Test

Driven Development thumbnail for how this works.

Acceptance Test Engineering – BETA DRAFT Page 57

A common strategy on projects that have an extensive suite of automated tests is to run these tests first

as a form of regression test as the first activity in a test cycle; a form of extended smoke test. This

ensures that the software functions properly (to the extent of the automated test coverage) before a

human tester spends any time doing manual testing.

The key to effective automated functional testing is to use an appropriate tool for each kind of test; one

size does not fit all. The two most common approaches to automated test preparation are test recording

(see Recorded Test thumbnail) and test scripting. Recorded tests are easy to produce but are often hard

to maintain. Scripted tests can either be Programmatic Test Automation, which involves technical

people writing code to test the code, or Keyword-Driven Test Automation which allows non-technical

people to write tests using a much more constrained testing vocabulary. Because these tests are

typically written in the ubiquitous language defined for the product they are also much easier to

understand than most programmatic tests. Whatever approach we choose, we want to think beyond

the initial test authoring and consider the lifecycle costs of the tests. Recorded Test tools do have their

uses. They can be used to quickly record throwaway test suites to support the development while they

refactor testability into the system-under-test. They can also be used in a Record and Refactor style as a

way of quickly building up a collection of keywords or test utility methods to be used in keyword-driven

tests or programmatic tests, respectively.

Keyword-driven testing involves specifying test scripts in a non-programmatic style. The steps of the test

are data interpreted by a keyword language interpreter. Another style of Data-Driven Test automation is

the reuse of a test script with multiple data sets. This is particularly effective when we can generate test

data, including inputs and expected outputs, using a comparable system test oracle. Then we run the

data-driven test once for each set of inputs/outputs. Commercial Recorded Test tools typically provide

support for this style of testing and often include minimal support for refactoring of the recorded test

scripts into parameterized scripts by replacing the constant values from the recorded test with variables

or placeholders to replaced by values from the data file.

Test Automation Pyramid

The test automation pyramid is a good way to visual the impact of different approaches to test

automation. When test automation is an afterthought, the best we can usually do is to user GUI-based

test automation tools to drive the system-under-test.

<insert Gerard’s inverted pyramid graphic>

These tests are often very difficult to automate and very sensitive to any changes in the application.

Because they run through the GUI, they also tend to take a long time to execute. So we end up with a

large number of slow, fragile tests.

An important principle when automating tests is to use the simplest possible interface to access the

logic we want to verify. Agile projects that use test-driven development techniques attack this problem

at multiple levels. They do detailed unit testing of individual methods and classes. The do automated

testing of larger-grained components to verify that the individual units were integrated properly. They

augment this with use case or workflow tests at the system level. At each higher level they try to focus

Acceptance Test Engineering – BETA DRAFT Page 58

on testing those things they couldn’t test at the lower levels. This leaves them with much fewer use case

and functional tests to automate.

<insert Gerard’s proper pyramid graphic>

They are always looking for ways to reduce the effort involved. One way they achieve this is to minimize

the overlap between the unit tests and the functional tests. A specific example of this is the use of

Business Unit Tests to test business logic without having to go through the user interface. Another

technique is the use of Subcutaneous Workflow Tests to test business workflows without being forced

to access the functionality through the user interface. Both of these approaches require the system to

be designed for testability.

Automated Testing of Parafunctional Requirements

Many kinds of parafunctional tests require the use of automated test tools. Many of these tools are

specially crafted for the specific purpose of assessing the system with respect to a particular kind of

parafunctional requirement. Common examples include performance testing tools that generate load to

see how the system copes with high transaction rates.

Automation as Power Tools for Manual Testers

Automated tests provide a high degree of repeatability. This works very effectively as a change detector

but is won’t likely find bugs that have always been there. For that we need human testers who are

continually looking for ways to break the software. For human testers to be effective they need to be

able to focus on the creative task of dreaming up and executing new test scenarios, not the mundane

tasks of setting up test environments, comparing output files or generating or cleansing large amounts

of test data. A lot of these tasks can be made fairly painless through appropriate use of automation.

We can provide automated scripts to:

· Set up test environments

· Generate test data

· Compare actual output files or databases with test oracles

· Tear down test environments

Automated Test Generation

One of the holy grails of software testing is automated test generation. “Push one button and our tool

will generate all the tests you’ll ever need and run them, too.” We think we are still some distance from

this being a reality but there are some selected situations where automated test generation is practical.

One example is combinatorial test optimization. Suppose we have a module we are testing that takes

five different parameters each of which could be any one of 4 values. Each of the values causes the

Acceptance Test Engineering – BETA DRAFT Page 59

module to behave somewhat differently but in different way. To test this effectively, we would have to

test 1024 (4*4*4*4*4) different combinations. This isn’t very practical. We can use a tool like AllPairs

that analyses our five dimensions and generates a minimal set of 5-value tuples that will verify each

interaction of a particular pair of values at least once.

If we need a large dataset we can write a program to generate one with known characteristics. If we

need to test how particular transactions behave when the system is stressed we an write a program that

uses up all the memory or disk-space or CPU on command. These are all examples of power tools that

make our human tester more effective.

Readiness vs Acceptance

As we described in the Gating Model and Decision Making Model chapters, the acceptance of software

can be divided, at least logically, into two separate decisions. The readiness decision is made by the

supplier organization before giving the software to the customer who makes the acceptance decision. A

key decision is which tests are run as part of readiness assessment and which are run as part of

acceptance testing. In most cases, the readiness assessment will be much more extensive than the

acceptance testing. When functional tests are automated, they will likely be run in readiness assessment

and the software would not be released to acceptance testing until the tests all pass. This results in a

better quality product being presented to the customer for acceptance testing.

Who Will Accept the System?

Ultimately, the acceptance decision belongs to the customer. In some cases the customer may not be a

single person. In these cases we may have a customer team or committee that makes the acceptance

decision using some sort of democratic or consensus-based process. In other cases the customer may be

unavailable. In these cases we may need a Customer Proxy to act as the “goal donor” who both provides

requirements and makes the acceptance decision. The proxy may be either a delegate picked by the

single customer, a mediator between a group of customers or a surrogate who acts on behalf of a large

group of anonymous customers. The latter role is often called the product manager. The Customer

Proxy Selection thumbnail describes this process in more detail.

A related question is who will do the acceptance testing? And by extension, who will do the readiness

assessment. This very much depends on the business model and the capabilities and skill set of the

parties involved. The sidebar “Decision-Making Model Stereotypes” enumerates a number of common

scenarios. When either the supplier or the customer feels they need assistance conducting the readiness

assessment or acceptance testing, they may resort to a Test Outsourcing model. The third party test lab

would do the assessment but the readiness decision or acceptance decision still belongs to the supplier

and customer respectively.

Acceptance Test Engineering – BETA DRAFT Page 60

When Will We do the Testing?

The test plan needs to address when the testing will be done. Some testing activities will be done by the

supplier as part of readiness assessment while others are the responsibility of the customer who will be

deciding whether to accept the product. The test plan needs to drill this down to further detail to the

point where we have an understanding of how much time we need for readiness assessment and

acceptance testing and what we’ll use that time for.

One way to plan testing is to define a testing phase of the project after all new functionality

development is completed. This testing phase would consist of several time-boxed test cycles each of

which contains both readiness assessment and acceptance testing activities. Within the test cycle we

make a readiness decision before involving the customer in the acceptance testing. In the early test

cycles this readiness decision is “Is it good enough to bother having the customer test it?” as it is

valuable to get customer feedback on the software even if we know there are some defects. The test

cycles each result in a number of concerns that need to be investigated. Any concerns that need

software changes are then addressed by the supplier and a new release candidate is built. This sets the

stage for the next test cycle. We repeat this process until the release candidate is accepted by the

acceptance decision maker(s).

Within each test cycle we likely have a predefined set of testing activities; these may be laid out as a

Pert or Gantt chart to reflect timing and interdependencies. We may choose to reuse the same plan for

each of the test cycles or we could define a unique plan for each cycle. In practice, with good automated

regression testing in place, we should find fewer and fewer defects each test cycle so a risk-based

approach to planning the subsequent cycles could result in shorter cycle times and faster time to

market. We may also deliberately choose to defer some kinds of testing activities to later test cycles or

to do them in earlier test cycles.

An alternative to using a plan-driven approach within the test cycle is to use a more iterative style

known as Session-Based Test Management. We create a prioritized backlog of testing activities that we

address in a series of test sessions. As new concerns are identified in test sessions we may add

additional test activities to the test backlog. The key is to keep the backlog prioritized by the value of the

testing. This value is typically based on the expected degree of risk reduction. The depth of the backlog

gives us an idea of how much testing work we have left (a testing burndown chart) and whether we are

making headway by addressing concerns or losing ground (backlog is increasing in depth.) Session-

Based Test Management is commonly used with exploratory testing.

Where Will We do the Testing?

The test plan needs to identify where the testing will be done. When all the testing will be done in

house, the primary consideration is which physical (or virtual) environments will be used. This is

particularly important when new environments need to be created or shared environments need to be

booked. If we lack physical resources or the skills to do the testing we may choose to do test outsourcing

to a 3rd party test lab.

Acceptance Test Engineering – BETA DRAFT Page 61

We also need to define the criteria for moving the software between the environments. The transition

from the readiness assessment environment to the acceptance environment is governed by the

readiness assessment criteria. When developers have their own individual development environments

we also need criteria for when software can be submitted into the team’s integration environment

where readiness assessment will occur. These criteria are often called the Done-Done Checklist because

the definition of done is more stringent than what a developer typically calls done.

How Long Will the Testing Take?

The most common answer is “How much time do we have?” And, the time available is often not long

enough to gather enough data to make a high confidence readiness or acceptance decision. This answer

is not quite as flippant as it sounds because of the nature of testing. We cannot prove it works correctly;

we can only disprove it by finding bugs. Given an infinite amount of time to test, we probably wouldn’t

find many more defects that half an infinity. So, we really need to determine what is barely sufficient to

get enough confidence that we understand the quality level. This requires at least a minimal level of

test estimation to establish the lower bound of the time and effort we need to expend.

If we are planning to automate tests, we’ll want to have an effort estimate for the automation. In most

cases, we want separate estimates for the construction of the automation infrastructure and the the

preparation of the tests because of the different skills and knowledge needed to do the two jobs. This is

discussed in more detail in the Test Automation Planning thumbnail.

How Will We Determine Our Test Effectiveness?

A learning organization is one that is constantly striving to improve how it works. This involves

understanding how well we are doing today and trying new approaches to see whether they make us

more effective. Measuring effectiveness requires Test Metrics. These metrics measure two key areas of

performance:

4. How are we doing at executing our test plan? That is, how much work is left before we know

enough to make the readiness or acceptance decision?) See the Test Status Reporting

thumbnail for more information.

5. How effective is our testing? See the Assessing Test Effectiveness thumbnail for more

information.

How Will We Manage any Concerns?

The purpose of testing is to identify any concerns with the software. Many of these concerns will require

changes to the software either because something was implemented incorrectly (a bug) or because the

customer realized that what they had requested will not satisfy the business need (an enhancement).

Acceptance Test Engineering – BETA DRAFT Page 62

The test plan needs to lay out how these concerns will be managed and tracked, what is the process for

deciding what needs to be changed and what is acceptable.

As we conduct the various readiness assessment and acceptance activities, we note any concerns that

come up. Upon further investigation, these concerns can fall into the following categories:

· Bug or defect

· Requirements Change

· Project Issue

· Non-concern

Each of these is addressed differently

Bugs or Defects

Bugs are problems found in the software that require a software change. The bugs need to be

understood well enough to make decisions about what to do about them. A common process for doing

this is known as Bug Triage which divides the bugs into three categories with respect to the next

milestone or release: Must Fix, Would Like to Fix (if we have time) and Won’t Fix. Of course, the

software must be retested after the fixes have been done which is why we typically have multiple test

cycles.

Requirements Changes

The customer may have realized that even though the supplier delivered what the customer asked for, it

won’t provide the expected value. The customer should have the right and responsibility for making the

business decision about whether to delay the release to make the change or continue with the less

Acceptance Test Engineering – BETA DRAFT Page 63

useful functionality. Once we’ve decided to include a change in this release we can treat it more or less

the same as a but from a tracking and retest perspective.

Other Issues

Some concerns that are exposed do not require changes to the software. They may be project issues

that need to be tracked to resolution, additional things that should be tested, and so on. These typically

don’t get tracked in the bug management system as most projects have other means for tracking them.

And other concerns may be noted but deemed to be not a concern at all.

Summary

This chapter has introduced the activities and practices involved in planning our testing effort. A key

activity is the definition of our test strategy as this is what guides us as we strive to maximize the ROI of

our efforts. There is a place for both automated and manual testing on most projects as the two

approaches are complementary. Automated functional tests are highly effective change detectors that

go a long way towards preventing new bugs from being introduced during software maintenance

activities. Care has to be taken to use the appropriate functional test automation tools to avoid the

slow, fragile tests quagmire. Manual testing, especially exploratory testing, is highly effective at finding

unforeseen bugs that we would even think might exist. The use of power tools by human testers can

increase the effectiveness of manual testing significantly.

References

[XTP] Meszaros, Gerard, “xUnit Test Patterns – Refactoring Test Code”, 2007 Addison-Wesley

Professional.

Acceptance Test Engineering – BETA DRAFT Page 64

Concern Resolution Model

Need to provide some text to go with this diagram:

Acceptance Test Engineering – BETA DRAFT Page 65

Assessing Software

In the previous chapters we have introduced many of the concepts around how we plan the assessment

of the product against the minimum credit release (MCR) and minimum quality requirement (MQR) to

which we have agreed. In this chapter we’ll introduce the various techniques that we use as we do the

assessment.

Assessment is a generic term we can use to describe the activities, testing or otherwise, that we use to

evaluate the system-under-test. Some of these activities are focussed on preparing and executing tests

while others may be review activities. Some of the activities are done as part of readiness assessment by

the software supplier while others may be done by the customer under the banner of acceptance

testing. Either way, the mechanics of the practices don’t change much at all. The practices do vary,

however, on the kind of requirement we are assessing. Functional requirements have one set of

techniques while para-functional requirements have a different set. We’ll deal with both of these later

in this chapter.

Let’s start the discussion with an overview of the lifecycle of an individual tests, something that is both

functional and para-functional tests do share.

Individual Test Lifecycle

Every single test, however simple or complex, whether manual or automated, goes through a number of

stages during its lifetime. This lifecycle looks something like this:

The states of the lifecycle are:

Conception – An acceptance test is conceived to address a particular risk.

Authoring – The test is written either in detailed step form or some kind of outline of what needs

to be done.

Scheduled – The execution of the test is planned or scheduled for a specific timeframe and

resources (people, test environment(s), etc.)

Execution – The test is executed against the system under test.

Assessment – The results of the test are assessed against the expectations. (This may occur as part of

execution or separately.)

Acceptance Test Engineering – BETA DRAFT Page 66

Reporting – The assessed test results are aggregated and reported.

Actioning – The test results may result in either further testing being identified and/or bug reports

being created and triaged.

Maintainance – Each test is an asset that must be maintained so that it can provide value in the future.

Some tests spend a lot of time in each state while others may pass through the states very quickly. For

example, in automated functional testing we might spends weeks preparing a complex test, wait several

weeks before we can first execute it, and then run it several times a day. In contrast, during a single one

hour exploratory manual testing session, the tester may conceive of several test conditions, design a

test to explore it, learn something about the system-under-test, conceive several more test conditions

and design tests to explore them all in the space of a few minutes. The automated tests will spend most

of their lifetime in the maintenance state while exploratory tests are very ethereal; there isn’t a

concrete representation that needs to be maintained.

Let’s examine these each of these states in a bit more detail.

Test Conception

At some point, someone decides that we need to verify one or more specific test conditions. At this time

the test is just a figment of someone’s imagination. It starts its transition from an implicit requirement

to one that is much more explicit. It might appear in a list of tests associated with a feature, requirement

or user story. Typically, it will just be a test name with no associated detail.

The techniques for conceiving tests include:

· Group Brainstorming,

· Risk-based test identification,

· Model-based test generation

Now that the test exists in concept, we can start moving it through its lifecycle.

Test Authoring / Test Design

Test authoring or test design is where the test goes from being a named item on a list to becoming more

fully formed. It may also involve making decisions around how to organize test conditions (things to test)

into test cases (the sequences of steps we execute).

The techniques for design tests include:

· Use case based testing – Using use cases as the starting point for our tests (see th Functional

Testing

· Paired/collaborative testing – Working together to design better test cases.

· Scenario-based testing – using real-world usage scenarios to inspire the design of test cases.

Acceptance Test Engineering – BETA DRAFT Page 67

· Soap-opera testing – Using exaggerated real-world usage scenarios to inspire the design of test

cases.

·

· Etc.

If we have too many combinations of … we can use Combinatorial Test Optimization to reduce the

number of distinct combinations we test. Examples include:

· Many independent variations or exceptions in a use case.

· Many different paths through a state model.

· Algorithms that take many independent input values that each affect the expected outcome.

· Many system configurations that should all behave the same way.

Test Scheduling

Once a test has been identified and authored, we need to arrange for it to be executed. There are a

number of techniques for planning the execution of tests including:

· Test Cycles with or without detailed (e.g. Gantt-based) plans

· Session-based testing

· Automated immediate execution as part of Continuous Integration

· Spot checking by a customer

· Ad hoc or self-organized testing based on Big Visible Charts

Test Execution and Assessment

Once authored and scheduled, we need to actually run the tests against the SUT. Depending on the kind

of test in question they may be executed manually by a person, by automated testing tool, or by a

person using some automated tools to provide support. Depending on the tools involved, the pass/fail

status of the tests may be determined as they are executed or there may be a separate assessment step.

<insert Test Execution Diagram here>

Test Runner interacts with SUT to generate the Actual Result

Evaluation Mechanism compares against Expected Result (a.k.a. Test Oracle) to generate the

Test Result

<end diagram>

Acceptance Test Engineering – BETA DRAFT Page 68

Evaluation Mechanisms

The actual results must be compared to whatever we expect the system to produce. The latter is the

test oracle. The former is sometimes call a comparator, especially when it is automated.

1. A person compares the actual results obtained against implicit (mental) models of what they

expect. The comparison can be anywhere between highly deterministic or highly subjective. This

is known as a Human test oracle.

2. A human tester or a computer compares actual result with expected results (explicit) that may

be:

· Previously generated by the same system and certified correct; a previous result test oracle.

· Hand-crafted (true/deterministic or heuristic); a hand-crafted test oracle

· From a comparable system (current or legacy); a comparable system oracle

Either way, the comparison can look for anything between a very high-level (abstract) match or bit-by-

bit match. Human testers may use subjective criteria for the comparison while computers require more

objective criteria.

Test Reporting

Once a number of tests has been executed and assessed we can report on the test results. A good test

report helps all the project stakeholders understand where the project stands relative to the release

gate. See the Gating Model for more details on what information might affect this decision. Test

reporting includes both test status reporting to indicate how much test effort remains and test

effectiveness reporting which describes our level of confidence in our tests. These are described in more

detail in the Test Status Reporting thumbnail.

Test Actioning

The purpose of executing tests is to learn about our product by reflecting on the report and make

intelligent decisions. The Gating Model describes the “release decision” but before we can make that

decision we may need to fix some of the defects we have found. The Bug Triaging process is used to

make the “Is it good enough” decision by determining which bugs need to be fixed before we can

release. (See the “Doneness Model” for more details.)

The primary techniques applicable at this stage are:

- Bug prioritization or triage (see Bug Triage thumbnail.)

- Cause-effect analysis

- Bug backlog analysis

The common bug backlog reports include:

- Bug burndown

Acceptance Test Engineering – BETA DRAFT Page 69

- Bug aging

- Bug trends

- Bug correlations (e.g. with features, components, subsystems, teams)

Test Maintenance

Some kinds of tests hold their value longer than others; some kinds of tests deteriorate very quickly

because they are so tightly coupled to the SUT that even small changes to the SUT make them obsolete.

Tests that are expected to be used more than once may warrant making an upfront investment to

ensure that they are repeatable and robust.

Useful techniques include:

- Building maintainability into the tests (abstraction from the details of the interface you are

working with)

- Designing the system-under-test for testability

o e.g. Subcutaneous testing - layered application where you can execute beneath the UI

Refactoring the tests to improve maintainability (See the Test Evolution, Refactoring and

Maintenance thumbnail.)

Assessing Functional Requirements

Assessing Para-functional Requirements

Acceptance Test Engineering – BETA DRAFT Page 70

Test Lifecycle Model

Each acceptance test goes through a number of stages during its lifetime. These are:

Conception – An acceptance test is conceived to address a particular risk.

Authoring – The test is written either in detailed step form or some kind of outline of what needs

to be done.

Scheduled – The execution of the test is planned or scheduled for a specific timeframe and

resources (people, test environment(s), etc.)

Executed – The test is executed against the system under test.

Assessed – The results of the test are assessed against the expectations. (This may occur as part of

execution or separately.)

Reported – The assessed test results are aggregated and reported.

Actioned – The test results may result in either further testing being identified and/or bug reports

being created and triaged.

Maintained – Each test is an asset that must be maintained so that it can provide value in the future.

Test Conception

At this point, the test is just a figment of someone’s imagination. It starts its transition from an implicit

requirement to one that is much more explicit. It might appear in a list of tests associated with a feature,

requirement or user story. Typically, it will just be a test name with no associated detail.

The techniques for conceiving tests include:

Acceptance Test Engineering – BETA DRAFT Page 71

· Group Brainstorming,

· Risk-based test identification,

· Model-based test generation

· Etc.

Test Authoring

This is where the test goes from being a named item on a list to becoming more fully formed. It may also

involve making decisions around how to organize or pre-factor tests and the strategic decisions around

how tests of a particular kind will be executed (manually or automated.)

The techniques for authoring tests include:

· Paired/collaborative testing,

· Scenario-based testing,

· Soap-opera testing,

· Etc.

Test Scheduling

Once a test has been identified and authored, we need to arrange for it to be executed. There are a

number of techniques for planning the execution of tests including:

· Session-based testing

· Test Cycles

· Automated immediate execution as part of CI

· Spot checking by a customer

· Ad hoc or self-organized testing based on Big Visible Charts

Test Execution and Assessment

Once authored and scheduled, we need to actually run the tests against the SUT. Depending on the kind

of test in question they may be executed manually by a person, by automated testing tool, or by a

person using some automated tools to provide support. Depending on the tools involved, the pass/fail

status of the tests may be determined as they are executed or there may be a separate assessment step.

<insert Test Execution Diagram here>

Acceptance Test Engineering – BETA DRAFT Page 72

Test Runner interacts with SUT to generate the Actual Result

Evaluation Mechanism compares against Expected Result (a.k.a. Test Oracle) to generate the

Test Result

<end diagram>

Evaluation Mechanisms

3. Human compares actual results against implicit (mental models) or explicit artifacts. The

comparison can be anywhere between highly deterministic or highly subjective.

4. Computer compares with stored expected results (explicit):

· Previously generated and certified correct

· Hand-crafted (true/deterministic or heuristic)

· Comparable system (current or legacy)

Either way, the comparison can look for anything between a very high-level (abstract) match or bit-by-

bit match.

Test Reporting

Once a number of tests has been executed and assessed we can report on the test results. A good test

report helps all the project stakeholders understand where the project stands relative to the release

gate. See the Gating Model for more details on what information might affect this decision.

The common reports include:

- Bug burndown

- Bug aging

- Bug trends

- Bug correlations (e.g. with features, components, subsystems, teams)

Test Actioning

The purpose of executing tests is to learn about our product by reflecting on the report and make

intelligent decisions. The Gating Model describes the “release decision” but before we can make that

decision we may need to fix some of the defects we have found. The Bug Triaging process is used to

make the “Is it good enough” decision by determining which bugs need to be fixed before we can

release. (See the “Doneness Model” for more details.)

The primary techniques applicable at this stage are:

Acceptance Test Engineering – BETA DRAFT Page 73

- Bug triaging

- Cause-effect analysis

Test Maintenance

Some kinds of tests hold their value longer than others; some kinds of tests deteriorate very quickly

because they are so tightly coupled to the SUT that even small changes to the SUT make them obsolete.

Tests that are expected to be used more than once may warrant making an upfront investment to

ensure that they are repeatable and robust.

Useful techniques include:

- Building maintainability in (abstraction from the details of the interface you are working with)

- Designing for testability

o e.g. Subcutaneous testing - layered application where you can execute beneath the UI

- Refactoring the tests for testability

Acceptance Test Engineering – BETA DRAFT Page 74

Part Two - Practices

Acceptance Test Engineering – BETA DRAFT Page 75

Test Processes

This chapter focuses on practices related to how we incorporate readiness assessment and acceptance

testing into the software development project lifecycle. The integration of test execution and

acceptance decision making activities within the project varies based on the style of development

process used:

· Test Last Acceptance, also called Big Bang Acceptance or Acceptance Test Phase, is used on

most waterfall projects. It leaves all acceptance testing activities to a separate phase of the

project just before the software is to be deployed. This concentrates the utilization of the test

resources into a short period of time but leaves the project open to finding significant

shortcomings too late to be addressed without impacting the release dates.

· Incremental Acceptance is commonly used on agile projects. It involves doing acceptance

testing activities frequently throughout the project. It gives the customer the opportunity to

learn from each increment of functionality and discover what they really need. It requires that

the acceptance decision maker be available throughout the entire project to accept each small

chunk of additional functionality.

These are the traditional uses of acceptance tests: making the acceptance decision. Butt here are other

potential uses for the tests that we will use for deciding whether to accept the software. They are:

· Acceptance Test Driven Development involves providing the supplier or development team not

just the requirements but also a set of tests that will be used to assess the product when

making the acceptance decision. This allows the developers to gain a better understanding of

what the customer is expecting. This practice is often used on agile projects in conjunction with

incremental acceptance. It can result in significantly reduced acceptance test failure rates in the

first pass of acceptance testing.

· Regression Testing is another use for the tests that we design and execute. The tests act as a

detector of change in the system-under-test. In particular, we want to discover any unexpected

changes in behavior that may have occurred as we fixed bugs or added new functionality.

Regression tests may be designed specifically for the purpose or we may reuse tests that were

initially used for readiness assessment or acceptance testing.

Acceptance Test Engineering – BETA DRAFT Page 76

Test-Last Acceptance

The acceptance decision is made at a single point in time, near the end of the project, based on the

results of one or more cycles of acceptance testing. Test-last acceptance means that acceptance testing

is done at the same time as the decision -- after all development and readiness assessment activities

have been completed.

Known Aliases

· Big Bang Acceptance

· Waterfall Acceptance

· Final Acceptance

When to Use It

Use a Big Bang Acceptance test phase when the development of the software is done out-of-sight and

when the supplier is not prepared to provide incremental builds for incremental acceptance testing or

the customer is not capable/interested to provide timely feedback on those builds.

Process / Lifecycle Applicability

Transcends the phases of the individual test lifecycle. Waterfall projects tend to have a large acceptance

test phase at the end of the project. Agile projects often combine incremental acceptance testing

throughout the project with a much shorter final acceptance test cycle at the end of the project.

Risks Mitigated

The risks addressed include:

· The end users would find the software unusable even though the supplier may think it is ready.

Limitations

Significant shortcomings may be found too late to do anything about them in the current product

release.

Acceptance Test Engineering – BETA DRAFT Page 77

How to Do It

1. Identify the kinds of acceptance testing to be done.

2. Decide when software development must be completed by.

3. Define one or more test cycles to execute after development is complete.

Examples

· If a call center development team does user acceptance testing after all software development

is completed.

· If a web development team has an onsite customer who does incremental acceptance testing

followed by a short cycle of final acceptance testing.

Implementation Options

All the testing could be done at the end or we can combine Big Bang acceptance testing with

incremental acceptance testing.

Big Bang Acceptance

On many waterfall projects there is a single separate testing phase after all development is completed.

This may consist of separate readiness assessment (done by the supplier) and acceptance testing (done

by the customer or their proxy) sub phases. Typically, it is the first time that testers or customers have

had a chance to use the product. Almost certainly it is the first time the customer has had a chance to

say whether any of the functionality is acceptable (meets their requirements.) A separate testing phase

typically consists of several test cycles interspersed with bug-fixing activity.

Incremental Feature Acceptance

Agile projects typically have a customer who accepts individual features as they are completed. The final

acceptance phase is used primarily as a regression testing mechanism to ensure that the previously

accepted features still work as they did before although it may also add some whole product acceptance

criteria. The final acceptance phase usually consists of only one or two test cycles with a minimal bug-

fixing window because the expectation is that not many bugs will be found / need to be fixed.

Incremental feature acceptance can be considered a form of conditional acceptance. The customer is

essentially saying “If this feature of the product continues to work this way (and I don’t change my mind

in the meantime) I will accept the product during the final acceptance phase.”

Acceptance Test Engineering – BETA DRAFT Page 78

Rationale

We cannot do acceptance testing until the code is available and the code isn’t available until the end of

a waterfall project. Therefore, we cannot make the final product-level acceptance decision until all the

code has been completed.

Related Topics

· Cycle-based Test Management is how testing is typically managed on waterfall projects with big

bang acceptance testing.

· Incremental Acceptance Testing is the main alternative to big bang acceptance testing.

· One can still do Acceptance Test Driven Development when doing big bang acceptance test

management; the tests are designed or prepared earlier and executed during the acceptance

testing phase.

References

Books:

· tbd

Online Resources:

· tbd

Acceptance Test Engineering – BETA DRAFT Page 79

Incremental Acceptance Testing

Rather than leaving the entire acceptance testing effort to the end of the project, we organize the

development of functionality so that individual features can be acceptance tested as soon as they are

deemed ready by the supplier team.

Known Aliases

· Incremental Development

· Agile Development

When to Use It

Incremental Acceptance Testing is highly advised on any project where there is risk associated with the

requirements being unclear or uncertain. Unclear (i.e. poorly described or ambigious) requirements can

be made clearer through the use of concrete examples or acceptance tests. Uncertain (i.e. unknown or

unstable) requirements often require the customer to learn more about what the system could do for

them. One of the most effective ways to help the customer to learn is to deliver working functionality to

them that they can then try using. This often helps the customer understand better what it is they really

need as opposed to what they thought they needed or what they asked for. The sooner this learning

happens, the more time the supplier has to change the product into what the customer has learned they

really need and this can avoid last-minute panics and/or delayed deliveries.

Test Lifecycle Applicability

This practice may affect all phases of the test lifecycle. It must be addressed during the planning phase

of the project lifecycle.

Risks Mitigated

The risks addressed include:

· The customer discovers that the product they requested does not address their real business

need.

· The customer learns during formal, big-bang acceptance testing that critical capabilities are

missing.

Acceptance Test Engineering – BETA DRAFT Page 80

Limitations

TBD

How to Do It

Planning Incremental Acceptance Testing

1. Break the functionality of the product into features that can be tested individually.

2. Minimize dependencies between features as much as possible.

3. Prioritize the features based on business value; focus on the high-value features.

4. Prioritize the features based on requirements or technical risk.

5. Schedule the highest risk features for earliest development, followed by the highest business

value features.

Executing Incremental Acceptance Testing

6. Select the highest priority feature.

7. Prepare acceptance tests for the feature.

8. Assess the feature for readiness as soon as development of the feature is complete

9. Demonstrate readiness to the customer or acceptance tester.

10. Conduct acceptance testing noting any concerns.

11. Conduct triage on the concerns, deciding when they should be addressed.

12. Once the feature is accepted, add automated functional tests to the regression test suite to

ensure it continues to work in the future.

13. Repeat starting at step 6 until the minimal credible feature set for the release has been

completed and accepted.

14. Perform final acceptance testing, focusing on interactions between features.

Implementation Options

Most of the variability in how this practice is applied relates to the granularity of the functionality being

developed. Smaller features can be built more quickly and therefore enter acceptance testing earlier.

User Stories [USA, USSBUS] as utilized in eXtreme Programming are a good example of how small stories

can be made.

Acceptance Test Engineering – BETA DRAFT Page 81

Rationale

The quicker we can give and get feedback on the acceptability of the software that has been built, the

less it costs to act on that feedback and the more likely it is that we can fully address the concerns that

were raised.

Related Topics

· Acceptance Test Driven Development

· User Stories

· Functional Testing

· Automated Testing

· Big Bang Acceptance Testing

· Regression Testing

References

Books:

· [USA] User Stories Applied, Mike Cohn

Online Resources

· [USSBUS] Using Storeotypes to Split Bloated XP Stories, Gerard Meszaros, Agile United 2005

Acceptance Test Engineering – BETA DRAFT Page 82

Acceptance Test Driven Development

Acceptance Test-Driven Development is a way to write software, starting with the customer

requirements and the customer-specified acceptance criteria/tests for those requirements, and using

them as the basis for all development. Just like developers who practice Test-Driven Development do

not write a single line of system source code without a failing unit test, teams that practice ATDD do not

write any code or perform any code optimizations without a failing acceptance test. This practice

requires discipline on the part of the supplier team and the customer (or customer proxy). It also

requires that the customer work with the delivery team to create clear and concise acceptance criteria

and tests.

Known Aliases

· Storytest-Driven Development (STDD)

· Executable Acceptance Test-Driven Development (EATDD)

· Executable specifications

· Testable Designs

When to Use It

ATDD is appropriate whenever the customer has a good understanding of what they want but the

written requirements are unclear or incomplete. When the customer doesn’t really know what they

want, consider using Incremental Acceptance Testing or Usability Testing.

Test Lifecycle Applicability

Acceptance Test Driven Development is a development methodology. Its steps span the entire test

lifecycle.

Risks Mitigated

The risks addressed include:

· Missing implicit customer requirements leading to rework and delay

· Lack of customer feedback until the project is over leading to rework or poor quality

perception

· Additional, un-necessary features are created

Acceptance Test Engineering – BETA DRAFT Page 83

· Unclearly articulated requirements leading to rework and delay

Limitations

· With the exception of performance requirements, automated acceptance tests is difficult to

specify for para-functional requirements.

· This practice requires a very high degree of customer involvement which may not be practical

on all projects

· Specifying acceptance tests is time-consuming.

· Effective authoring, management and maintenance of automated acceptance tests requires

tool-support, which is lacking nowadays.

How to Do It

1. The customer writes a prioritized list of requirements for the system. Often use cases or user

stories are the best format for these requirements.

2. The supplier (or a representative from the supplier) works with the customer to define

acceptance criteria for the first several requirements, and (ideally) turns these acceptance

criteria into automated acceptance tests. Optionally, the customer watches the tests fail.

3. The supplier team makes the failing acceptance test pass by writing just enough code in the

simplest way possible.

4. The team demonstrates the new functionality to the customer. This can be done by:

− Running the previously failing acceptance test, and showing the customer a passing test,

and working software

− Showing the customer a report of passing and failing acceptance tests

− Allowing the customer to spot check a subset of the acceptance tests

5. Customer accepts the feature as is, or adds a new test (or tests) to the feature.

6. Customer and team representative review the requirements, re-prioritize the list, and add

any new features.

7. Go back to step 2

[TO DO]

Acceptance Test Engineering – BETA DRAFT Page 84

Examples

· <none>

Implementation Options

ATDD can be implemented in either a waterfall/document-driven or an agile way.

Teams that adopt ATDD may also practice Test-Driven Development. They start with a high level story

or feature and its associated acceptance tests. Then, they build the system using TDD. The two

approaches, ATDD and TDD act as two levels of verification and validation, and the use of TDD also acts

as a design aide.

Waterfall Implementation

In a document-driven (or waterfall) project, the acceptance tests are prepared either at the same time

as the requirements or shortly thereafter but still before development of the corresponding

functionality it started.

Agile Implementation

On agile projects, ATDD is usually done in a highly incremental style. See Incremental Acceptance

Testing for details. Acceptance tests are often specified during the iteration planning meeting.

Rationale

There are several principles behind acceptance test-driven development

· YAGNI - "You ain't gonna need it" Only build the minimum needed to make the customer's

acceptance tests pass. This helps avoid the waste of “overproduction” of unneeded

functionality.

· The Simplest thing that will work - Build the simplest implementation for a feature that will

meet requirements and comply with the customer's acceptance criteria.

· The customer knows what they want -- but they may not be able to articulate it. This

process forces communication to help clarify exactly what the customer wants.

· Iterative feedback will refine the system - by building iteratively, and receiving feedback at

regular, frequent intervals, the team can refine the system to meet the customer's

expectations. These expectations will become more explicitly defined over time through this

feedback process.

· Communication and Teamwork – The exercise of the customer and the team working

together to create clear, concise acceptance tests can cause the team and the customer to

Acceptance Test Engineering – BETA DRAFT Page 85

both consider areas that they may not normally consider. Also, these detailed acceptance

tests can force deeper thought about what is actually required to solve the business

problem.

· Ubiquitous Language Formation – [TBA]

· Testability – specifying acceptance tests when exploring and discussing requirements

indirectly improves testability of the future system as the supplier team would need to make

sure that each feature/story would need to expose necessary information to make the

acceptance tests pass.

[TO DO: Include summary of Melnik/Read/Maurer research on the cognitive aspects of authoring and

interpreting acceptance tests (in ATDD)]

[TO DO: Include a note on progress-tracking with executable acceptance tests]

[TO DO: Inlcude a note on how ATDD is different from formal specs]

Related Topics

· User Stories

· Test-Driven Development

· Emergent Design

· Incremental Acceptance Testing

· Usability Testing – In particular, Wizard of Oz testing of low-fi prototypesw

· Business Unit Tests

· Business Workflow Tests

References

Books:

· Maurer/Melnik, "Driving Software Development with Executable Acceptance Tests," Cutter

Consortium Report, vol. 7, no. 11, 2006.Martin/Melnik, “Tests & Requirements,

Requirements & Tests: A Moebius Loop”, IEEE Software, vol X., no1. 1, 2008.

· TDD and Acceptance TDD book by Lasse Koskela, Manning, 2007

Acceptance Test Engineering – BETA DRAFT Page 86

Online Resources:

· Article “How storytestdriven development is changing the way QA, customers, and

developers work.”, Better Software Magazine, July/August 2004 or

http://www.industriallogic.com/papers/storytest.pdf

Acceptance Test Engineering – BETA DRAFT Page 87

Regression Testing

Rare is the software that is never modified after its initial acceptance and deployment. Any time

software is modified, whether to fix bugs or add functionality, there is a risk that new bugs have been

introduced into the previously existing functionality. Regression testing is how we minimize that risk by

running a standard set of tests on each release candidate.

Known Aliases

· “Smoke testing” could be an alias associated with regression testing, but only if a smoke test is

used to verify that a new version is not of lower quality than the previous version. Using smoke

tests for means running the same set of important tests with every new release before deciding

if it is ready for deeper testing.

When to Use It

Regression testing is a risk mitigation technique, so it should be done whenever software is modified to

ensure that new problems weren’t introduced.

Test Lifecycle Applicability

Applies to the execution phase of the test lifecycle. The regression testing strategy should be defined

during the test planning phase of the project.

Risks Mitigated

The risks addressed include:

· Customer encountering new bugs introduced into existing functionality.

Process Applicability

Applies to all process models. Particularly important for projects that do incremental development

and/or frequent delivery of software.

Limitations

<What limitations does the technique have? When should you not use it?>

Acceptance Test Engineering – BETA DRAFT Page 88

How to Do It

1. Pick a set of high-coverage test cases to execute each time the software is modified. Some of

the factors to consider include:

◦ The tests should cover most of the frequently used functionality.

◦ The tests should be reasonably quick or cost-effective to execute.

2. If the tests are newly conceived, prepare test scripts for them. The tests may be manual or

automated.

3. Group the chosen tests into a test suite structure that makes it easy to run as a group.

4. Run the tests whenever the software changes.

OR

1. View the reports for bugs that have been fixed by development

2. Using the new build, run the steps indicated in each bug report and verify the bug is fixed

3. Follow any ideas you have for follow-up test ideas that could reveal new problems in those

areas.

Examples

· <list any examples here as hyperlinks to samples files>

Implementation Options

Smoke Test Suite

As a minimum, every software-intensive system should have a smoke test suite consisting of a few tests

that verify it was correctly built and installed. The name “smoke test” comes from the hardware world

where the first test of any new board was to plug it in and verify that it generated no smoke or flames!

Regression Test Pipeline – Multi-Stage Regression Testing

When the full regression test suite takes a lot of effort and/or elapsed time to execute, the regression

test suite can be subdivided into separate stages that are run in series. Successful completion of each

stage is the entry criteria for the next stage. The first stage is typically a smoke test.

This approach minimizes the effort wasted when significant problems exist in the product build being

tested.

Acceptance Test Engineering – BETA DRAFT Page 89

Continuous Integration

Most agile projects employ a practice called Continuous Integration (CI). CI consists of the following key

elements:

1. Automated checkout of latest software from the source code management system.

2. Automated build of the software.

3. Automated regression testing of the newly built software.

4. Automated notification of any build or test errors.

Continuous integration gives the development team rapid feedback on the quality of their software. It is

a highly recommended complement to Test-Driven Development.

Regression Test Selection

· Retest-all technique

· Minimization techniques

· Dataflow techniques

· Safe techniques

· Random techniques

Rationale

Regression Testing reduces the risk of releasing defective software by ensuring that the most commonly

used functionality is exercised regularly.

Related Topics

· Acceptance Test Driven Development

· Continuous Integration

· Test automation

References

Books:

· Lessons Learned in Software Testing by Cem Kaner, James Bach, and Bret Pettichord

Acceptance Test Engineering – BETA DRAFT Page 90

Online Resources:

· http://en.wikipedia.org/wiki/Regression_testing

· Regression Test Selection (RTS) techniques

· http://www.testingeducation.org/BBST/BBSTRegressionTesting.html

Acceptance Test Engineering – BETA DRAFT Page 91

Styles of Testing

This chapter focuses on the two diametrically opposed styles of test design and execution. They

represent two completely separate schools of thought with the practitioners of each often having

trouble understanding why we would want to do the other. This is because they have two different

world views and value systems.

· Script-Driven Testing separates test execution from test design in both time and doer. A test

analyst or designer defines a detailed test script based on the requirements. Later, a test runner

executes the test script more or less exactly the way the test designer intended. The test runner

may be a person with lesser skills or knowledge than the test designer or it may be a computer.

Anything learned while executing the tests may be ignored or, at best, incorporated into the

test suite well after it was initially designed. Scripted-driven testing is more appropriate when

there are very few highly skilled testers available when we need a high degree of repeatability,

ideally through automated test execution.

· Exploratory Testing is defined as “simulataneous test design and execution with an emphaisis

on learning” [Kaner]. It aims to leverage the skills and mind of the tester to maximize the

opportunities to find bugs by giving the tester much more freedom to deviate from the well-

worn path. The degree of freedom granted varies with the nature of the mission assigned to the

tester. It can be as specific as “run these test scripts varying …” (low freedom) to “just spend a

few hours trying to break the software” (high freedom.) Exploratory testers are much more

likely to user heuristics and checklists than detailed test scripts.

Of course, it isn’t really a binary decision between two discrete points; they are actually two points on a

continuum as shown in the following diagram:

Script-driven testing comes in two degrees of freedom, pure scripted and vague scripted. Fully

automated tests are pure scripted tests; they must be for a computer to follow them literally. Most

Acceptance Test Engineering – BETA DRAFT Page 92

manually executed scripted tests actually fall somewhere in between the two because it is quite difficult

to script something so clearly as to have every tester execute it exactly the same way. Exploratory

testing occupies the center and right sides of the scale depending on the way the mission is specified.

Scenarios describe the kinds of circumstances the tester should focus on, a “tug of war” scenario, for

example. Role-based exploratory testing has the tester assume a particular user role or persona and use

the functionality that person would typically use. Freestyle exploratory is completely unrestricted; the

tester can follow whatever hunches they come up with as far as they deem fruitful.

Another way of comparing the two styles of testing is to compare them with software development.

Script-driven testing is a waterfall process complete with separate phases for test design and execution.

Each phase is potentially executed by a different set of people, specialists in their field, who

communicate primarily through documents (the test plan and test scripts.) Exploratory testing is like

agile software development in more ways than one. From the outside it looks very chaotic and hard to

manage. The work is broken down by functionality being tested rather than by the kind of activity

(design vs. execution.) The work is done by the same person iteratively and is often planned

incrementally with missions for subsequent test sessions being based on the results of previous test

sessions.

Each approach has its own strengths and weaknesses and both have a place on most projects.

Acceptance Test Engineering – BETA DRAFT Page 93

Exploratory Testing

Exploratory testing is “simultaneous test design and execution with an emphasis on learning.” [Kaner] It

is a style of testing -- not a “technique” as is it commonly referred-- because it is a way to apply many

types of testing techniques with an emphasis on leveraging the tester’s experience and judgment.

The tester is continually revising the design and execution techniques of their tests as they explore.

Because the point is to react to new or emerging information, the tester is encouraged to change tactics

to follow hunches and discover important issues, unlike executing scripted test cases, which focus on

following a fixed set of steps.

Known Aliases

· Ad hoc testing

· Rapid Software Testing

· Some mistakenly call it “black-box” testing, but this term encompasses many more approaches

than exploratory testing.

When to Use It

Exploratory testing is a good way to find bugs quickly. It is also good for investigating bugs you might

find during the course of running other tests. It is best used as a complement to automated or manual

scripted testing (which are typically used when traceability or repeatability is desired or required).

Exploration is a mindset of discovery that uses several different skills, so there is no bad time to use the

approach on any kind of project.

It may be most beneficial when:

· Using and operating a product and searching for bugs while also searching for new testing ideas.

· Upon being reassured that some area of the application or component of the system isn't going

to have any performance issues, testers respond with “Let's check it out!” [Scott Barber,

PerfTestPlus]

· If you’re asked, “Please test this product that doesn’t yet exist” or ”Please investigate this

puzzling situation.” [James Bach, Satisfice]

· If you’re running tests from a bug taxonomy or “quick test” list and asking “does this risk

warrant further testing?” [Cem Kaner, kaner.com]

· Choosing different data and re-executing a script that has just been run

Acceptance Test Engineering – BETA DRAFT Page 94

· For “bounty” testing: where you have insufficient information about a bug, but need more data

that might lead to its capture – [Jon Bach, Quardev]

· Testing and re-testing around a defect

· Using feedback from the last test to inform the next.

Test Lifecycle Applicability

Applicable to all phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

· Not finding severe problems because the team spent all its time writing detailed test scripts.

Exploration can expose problems quickly.

· Finding severe problems too late because testing was done depth-first. Exploration can provide

a quick “gut feeling” of a feature’s stability.

· Not finding severe problems because the testing was focused on the wrong areas.

Exploration can help identify risks so you can prioritize coverage.

Limitations

· It does not traditionally provide good traceability to and from requirements.

· Poor exploration may result in a false sense of coverage and effectiveness if the tester is not

aware of their biases or reasoning illusions as they test; if they don’t have not having questions;

if they don’t have ideas for follow-up testing in the moment they explore, or don’t keep notes

during testing and can’t not describe to others what they did.

· It can be hard to track the progress of exploratory testing.

· Since exploratory testing does not place reliance on repeatable tests, testers may explore the

product in their own way at a time when product managers want consistency of coverage. While

exploration can be used for regression testing, there is no guarantee that a particular test case

will be executed in the same way by different testers.

· Results from exploratory testing may be difficult to turn into automated tests.

(Techniques like Session-based Test Management have been developed to try to mitigate these

concerns.)

Acceptance Test Engineering – BETA DRAFT Page 95

How to Do It

Planning Exploratory Testing

1) One way to plan exploration is to come up with a list of one-paragraph mission statements

called “charters” (a good rule-of-thumb is 30 charters written by the test team). Charters

suggest to the tester what could be tested in about two hours’ worth of time. See

Implementation Options for details.

2) Show the charters to Development and Program Management and integrate their comments to

get a sense of what priority they feel the charters should be run.

3) Try a pilot for one week where testers execute the charters, taking notes as they go. As they

explore, testers are free to follow hunches, read documents and mine other resources (legacy

systems, source code, discussion forums, etc.), talk to programmers, interaction designers and

other stakeholders, and pair up with others in order to accomplish the charters.

4) As a group, review the notes, bugs, and issues that are raised from executing those 30 charters.

5) Create follow-up charters from the sessions.

Doing Exploratory Testing

1) Start with a charter or come up with a list of things you want to explore.

The following are examples of how you might get started:

a. Take a test case and run it, changing the procedure as you adapt to new

information as you test

OR

b. Take a list of bugs and verify if they have been fixed, but place emphasis on
looking for new problems in those areas

OR

c. Take a bug that is hard to reproduce and work with another tester to find it

OR

d. Take an existing user story and change some of the variables as you test

2) Come up with some test ideas that accompany a hypothesis of how you expect the SUT to

behave.

Acceptance Test Engineering – BETA DRAFT Page 96

3) Execute the ideas, paying attention to the flow of your thinking, even if it means that you branch

and backtrack. You can use any kind of test oracle [link] to assess the observed behavior. As you

learn, feel free to adapt or modify your test ideas.

4) Repeat steps 1 - 3 until you run out of test conditions or time or have collected enough data to

make the readiness or acceptability decision.

Tracking Exploratory Testing

See Session-Based Test Management.

Examples

· Example of doing Scenario-based chartering of session-based exploratory testing:
o Exploratory Testing Plan

o Scenario Test Plan Sample

o Sample Exploratory Session

Implementation Options

The primary variables of exploratory testing are:

1) The degree of freedom granted to the testers as they design and execute tests. The greatest

freedom is provided in freeform exploratory testing while Session-Based exploratory testing

focuses the tester’s energy and innovation in time-boxed effort with a report about the tester’s

findings.

2) Tester’s ability to think, imagine, infer, analyze, and adapt from emerging information (like

results).

3) The degree of adaptation based on what was learned.

Ad Hoc Exploratory Testing

Exploratory testing can be done in an unmanaged way. This can find lots of bugs, but it may be hard to

report on test progress in a way that promotes a level of confidence in the tester. This issue can be

addressed in two dimensions: managing the scope of the testing through charters and managing the test

effort through the use of session-based test management.

Session-Based Exploratory Testing

Session-Based Test Management is a way to manage and measure exploratory testing effort, where

testers are given charters or mission statements about what to look for, what to look at, and what to

look with (e.g. tools). The testing is time-boxed for every charter and the tester files a report including

Acceptance Test Engineering – BETA DRAFT Page 97

their notes, bugs, and issues during that session. This session report is then debriefed by a test manager

so that new charters for exploration can be created.

Explicit Test Chartering

Exploratory testing gets its power by being more dynamic than scripted testing. Whereas scripted

testing separates test design from test execution by weeks or months, exploratory testing only

separates them by seconds or minutes. The tester comes up with a test idea, executes it, and devises

new test ideas based on what they learned during the test. Charters are a way to take several test ideas

and focus them into one mission. The degree of freedom granted the tester depends on the nature of

the charter:

· Script-based exploratory testing is the act of taking a test cases and using it as the basis of

exploration. The tester is free to divert from the steps if they are alerted to a problem or have a

better idea to find a more important bug – in effect, changing the question the test was meant

to answer.

· Scenario Testing is a kind of exploration where the tester is given a charter resembling a
workflow with variables to change as they test.

· Persona Testing [link] is a kind of exploration where the tester is given one or more user roles to

adopt when they execute their test ideas.

· Soap Opera Testing is a kind of exploration where the tester is given (or creates) a series of

dramatic, exaggerated user actions.

In each of these cases, the functionality to be tested is defined by the charter while the exact test cases

to be executed are determined by the tester as they explore and test.

Rationale

Kaner summarizes the cognitive nature of exploratory testing as “a style of software testing that

emphasizes the personal freedom and responsibility of the individual tester to continually optimize the

value of her work by treating test-related learning, test design and test execution as mutually supportive

activities that run in parallel throughout the project.” [CAST 2006 keynote]

Exploration is a popular way to reveal important problems about the software very quickly. It is often

inexpensive to explore, as bugs can be found after just a few seconds of letting a tester or a business

analyst explore the software on their own using their judgment and experience. It should be

complemented by other test approaches to help mitigate product and project risks.

Related Topics

· Soap Opera Testing

· Scenario Testing

· Playtesting (see Usability Testing)

Acceptance Test Engineering – BETA DRAFT Page 98

References

· http://en.wikipedia.org/wiki/Software_testing_controversies

· Kaner’s keynote at the 2006 Conference for the Association for Software Testing

· Session-Based Test Management (from Satisfice, Inc.)

· How to Manage and Measure Exploratory Testing

Acceptance Test Engineering – BETA DRAFT Page 99

Script-Driven Testing

Script-Driven Testing is one of the two major approaches to test design and execution; the other

approach is Exploratory Testing. Script-driven testing involves preparing the test scripts ahead of time

and then following the test scripts when it is time to execute the tests. The scripts may be executed by a

computer (see Test Automation) or by a person (manual testing.) When executed manually, the tests

may be scripted at a high-level, intended as a reminder for someone who knows how to use the

software in question, or they may be detailed enough to be executed by someone with very little prior

knowledge.

Known Aliases

· Scripted Testing

· Test Case Execution

· Manual Testing

· Automated Testing

When to Use It

We use scripted testing when we need a high degree of repeatability of tests or when we don’t have the

skills and experience to do exploratory testing well. Scripted tests may be initially used when accepting

new software and then reused as regression tests to detect any new problems injected into the code

during subsequent software development. Scripted tests are best used when the resources used to

execute the tests are much cheaper than the resources who define the tests. This is most often the case

when the tests are automated. Human testers are usually better utilized to do exploratory testing in

which they can put their minds to work as they test rather than just blindly following a test script.

Test Lifecycle Applicability

Applicable to the authoring, execution and assessment phases of the individual test lifecycle. The

balance of effort depends on whether the test scripts are automated (high effort to create, very little

effort to run) or executed manually by testers (some effort to create, potentially hgh effort to execute if

we need to run them many times.

Risks Mitigated

The risks addressed include:

· Missing tests due to not knowing what functionality has been tested.

Acceptance Test Engineering – BETA DRAFT Page 100

· Being unable to repeat a test that has found a defect.

· New, inexperienced testers might be unsure at how to get started with covering a product.

Limitations

· Scripted tests tend to discourage the tester from thinking; this can lead to missing bugs

because the tester is looking for what the test script says to expect.

· It is difficult and time consuming to write test scripts in enough detail for every human to

execute them exactly the same way so expect some variability nonetheless. (This actually

makes human executed tests scripts more effective at finding bugs than automated test

scripts but at a higher execution cost.)

· Running a stack of scripted tests may encourage some testers to disengage and take

shortcuts because of the rote nature of the work.

· Test cases don’t account for bugs found because the flow of each test in succession caused

the bug to emerge.

· A stack of test cases that have passed or failed may not be a complete picture of the quality

of the product.

· Test scripts are prone to being counted as a measure of coverage.

· Test scripts are often meant to be confirmatory, not exploratory and encourage the tester to

report pass / fail, not peripheral problems.

How to Do It

Use of scripted tests occurs in two distinct phases:

Authoring the test

1. If you haven’t already done so, conceive and enumerate the test conditions that you need to

test. Techniques for conceive test conditions include:

◦ User Stories

◦ Use Cases

◦ Scenarios

◦ Heuristics

2. Select one or more test conditions to verify in a test script

Acceptance Test Engineering – BETA DRAFT Page 101

3. Define the specific steps required to:

a. Put the system-under-test in the expected starting state

b. Exercise the functionality you are trying to verify

c. Examine the actual behavior of the system-under-test and verify that it matches our

expectations. You can use any of the kinds of test oracles to do this step.

d. Repeat A through C until all test conditions have been covered

e. Clean up after ourselves

4. Verify the test script works by executing it either literally or mentally. It the script is intended

to be followed by someone else, test it by having someone other than the author execute it.

5. [Optional] Add the new test script to a test suite, either existing or new.

Executing the test

1. Select the scripts to run either individually or through selection of one or more test suites.

2. Run the test assessing the results as you run or saving the actual results for later assessment.

3. [Optional] If you didn’t assess the results as you executed the tests, go back and compare

the actual results you saved with the expected results specified or inferred by the test script.

4. [Optional] Annotate the test with remarks related to the current test case/run and/or

suggestions about other test cases.

5. [Optional] Store the test results in the test result repository.

Examples

· Defining & Automating Acceptance Tests[GBS]

◦ Scripted Workflow Test

· Testing the Global Bank ITPS Notifications Settings for CSRs

Implementation Options

The Scripted Test approach can be executed manually or using automated tests. We can also vary the

level of detail specified in the tests and the level of discipline with which we try to follow the tests

scripts.

Acceptance Test Engineering – BETA DRAFT Page 102

Automated Execution

The most complete and detailed form of scripted tests is when we want to have a computer execute

them on our behalf. Scripting tests to this level of detail requires the same level of discipline as writing

code because that is exactly what it is: code. In situations where we want to be able to run the tests

frequently and at low cost, this level of investment is worthwhile. Many agile projects make the

conscious decision to do full automated regression of all units so that they do not have to worry about

introducing regression bugs into the software as they add new functionality to the code.

Manual Execution Exactly as Scripted

Scripted tests may be specified in enough detail for just about anyone to execute them. It takes a lot

more effort to document the test scripts to this level of detail and it doesn’t give you any better test

coverage. In fact, it likely results in lower test coverage because everyone executing the tests is likely to

execute them more or less the same way.

Manual Execution with Variation

The cost of documenting the test is reduced by specifying the tests in less detail. This can have the

unanticipated effect of improving test coverage by introducing unintended variability in how the tests

are executed as each person interprets the script somewhat differently. This variation can be made

intentional by having several testers execute the same scripts but with different specific instructions on

how to fill in missing details within the test scripts (“use keyboard shortcuts as much as possible” or

“enter invalid data in almost every field”).

Computer Assisted Testing (Manual Execution with Automation Support)

Testers executing scripted tests manually can use test automation tools to speed up repetitive or labor-

intensive steps of the test. We don’t consider this test automation but rather computer assisted manual

testing.

<PD Sidebar: The difference between automation and computer assistance>

Exploratory testers are not dead set against any sort of test automation; they just believe that having a

tester think about what else to test is useful while executing tests. Exploratory testers can use scripted

tests in their testing and often document their tests in a way for others to reproduce what they did.

Furthermore, tester who focus on exploration use computer-based tools to assist their exploration with

the mindset being: “Why sweep manually when you have a vacuum cleaner?” This is machine-assisted

cleaning. It isn’t automated cleaning; that would require a Roomba ™ robotic vacuum cleaner.

<PD End of Sidebar>

Rationale

Scripted tests can act as a safety net to ensure a minimum set of functionality works as intended. This

allows us to focus more effort on creative ways to find new bugs. This is especially true for automated

Acceptance Test Engineering – BETA DRAFT Page 103

test scripts. Scripts or cases can also be good for acquainting new users or testers to a product, or for

convey confidence that a certain path was followed through the product.

Related Topics

· Test Automation usually requires scripted testing unless used as power tools while doing

Exploratory Testing.

· Exploratory Testing is the main alternative to scripted testing.

· We can use any of the Test Oracles to assess the results of scripted testing.

References

Books:

· Copeland, Lee, “A Practitioner’s Guide to Software Test Design” Artech House Publishers

2004

· Craig, Rick, “Systematic Software Testing”, Artech House Publishers 2002

· Black, Rex, “Managing the Testing Process: Practical Tools and Techniques for Managing

Hardware and Software Testing”, 2
nd Ed. Wiley 2002

Online Resources:

· Kaner, Cem, “The Value of Checklists and the Danger of Scripts: What Legal Training Suggests

for Testers “ pages 82-83, http://www.kaner.com/pdfs/ValueOfChecklists.pdf”

Acceptance Test Engineering – BETA DRAFT Page 104

Planning Practices

This chapter focuses on practices related to planning the readiness assessment and acceptance testing

activities on a project. The key planning practices are:

· Customer Proxy Selection is important if the actual customer, the person who speaks for all the

stakeholders, is not available to participate in the project.

· Project Chartering is crucial for establishing the scope of the project. This leads to a better

understanding of the customer needs and what it will take to satisfy them.

· Risk Assessment is used to understand what could go wrong on the project. It helps us decide

which readiness assessment and acceptance testing activities should be done, and when, to

help mitigate the risks.

· The Test Strategy defines the kinds of testing we need to do and how we will go about doing it.

It is the first step towards a detailed test plan. The emphasis is on maximizing the ROI of the

testing budget.

· Test Planning is the activity that lays out the detailed plans for who, what, where, when, how

and why of test activity.

· Planning Test Automation describes what needs to be done to understand the effort and cost

specifically for automated tests.

· Test Estimation describes what needs to be done to understand the effort and cost specifically

for manual tests. .

· A Done-Done Checklist is used to remind all project participants of the criteria we have agreed

upon for doneness of functionality.

· Test Outsourcing is a way to address project risks related to lack of testing personnel, expertise

or facilities.

Acceptance Test Engineering – BETA DRAFT Page 105

Project Chartering

Every project has a mission – a problem (or set of problems) it is trying to solve. One way to frame the

objectives of the mission is to define the project charter. A project charter provides a succinct

description of why the project exists from a business perspective. It helps set the stage so all project

participants understand why they are there and what they are trying collectively to achieve..

Known Aliases

· Vision/Scope

· Product / Project kick-off

· Elevator Pitch (from Geoffrey Moore)

When to Use It

Project chartering should be done for any newly-launched projects and whenever the mission changes

significantly.

Test Lifecycle Applicability

· Predates the preparation of any individual tests.

Risks Mitigated

The risks addressed include:

· Designing the wrong set of features

· Having different parts of the organization working at cross-purposes because of different

assumptions about the project objectives.

Limitations

Since it happens at the beginning of the project to get buy-in from stakeholders, the project charter is

likely to become obsolete as the project progresses. This means it may be necessary to update the

charter and communicate the changes whenever they occur.

How to Do It

Project chartering involves identifying the following key information about the project:

Acceptance Test Engineering – BETA DRAFT Page 106

1. Customer – On who’s behalf is the project to be initiated?

2. Needs – What business problem do they want solved?

3. Product – What is it that is to be produced?

4. Value – What value will it provide and to whom?

5. Purpose – How will the product be used and who will use it?

This information is not a list of documents but rather a list of information that needs to be understood.

It can be gathered from key stakeholders individually or generated during a project chartering (or

project kickoff) meeting. Once understood, the information may be captured in documents as needed.

See Implementation Options for possible forms of documentation.

Examples

· GBS ITPS Project Charter

Rationale

Teams work much more effectively when they understand what they are building. An understanding of

the big picture leads to better decisions in a more timely manner and can prevent all sorts of things from

falling through the cracks. This will improve the likelihood of building an acceptable system on the first

try.

Implementation Options

There are a number of different ways to do project chartering ranging from collecting input from

stakeholders one-on-one to hold project chartering meetings or workshops. There are also many

different forms of output ranging from a simple poster in an agile team room to complex project charter

documents. The size of the project and the culture of organization are the primary considerations when

choosing what to produce. Agile projects tend to prefer interactive, whole-team activities to produce a

shared vision of what the project is about. Plan-driven projects often prefer to smaller meetings that

produce documents which are then circulated or shared. The following is just a brief sampling of

possible activities and artifacts.

Problem Statement

A relatively brief description of the business problem we seek to solve

· The current state of the problem as you know it

Acceptance Test Engineering – BETA DRAFT Page 107

· Research to find out what solutions are available

· Influencers on the solution: feedback from customers, standards, laws, community policies,

market forces, etc.

· Models or criteria to frame the effort

Elevator Pitch

In “Crossing the Chasm”, author Geoffrey Moore describes the elevator pitch as containing 7 elements:

“For” – The customer.

“Who Need To” – A statement of the problem.

“The” -- Product name.

“Is a…” -- Product category.

“That” -- Statement of benefits.

“Unlike” – What are the alternatives?

“Our product….” Short statement about why your product is different.

Once you determine these seven elements, you can put together the vision for the product.

 “For <insert description of customer> who need <insert description of need>, the <insert product

name> is a <insert product category name> that <insert statement of benefits>.

 Unlike <insert name or category of primary competition> our product <insert differentiating

capabilities>.

In/Out Scope List

One way to get a good understanding of what the system entails is to prepare several lists:

1. A list of major items of functionality that is definitely included (or a list of problems that the

system will solve)

2. A list of major items that are definitely not included.

3. A list of major items that may or may not be included and which require additional investigation

to resolve one way or another. (Optional)

Context Diagram

The Unified Process advocates the creation of a System Context Diagram that illustrates the system and

its users, stakeholders and co-operating systems. This can be further annotated with key items of

functionality either inside the system box or outside (indicating an out-of-scope item.) The System

Context Diagram is most commonly used when there are existing systems that the solution is expected

to impact.

Acceptance Test Engineering – BETA DRAFT Page 108

Actor/Goals List

Methods that employ use cases often prepare a list of actors (users of the system) and stakeholders

(non-users whose interests the system needs to protect) and describe their specific goals as a way to

describe scope from a high level.

Product Box

Some companies like to imagine they are building a shrink-wrapped product (even when they are

building in-house or custom software) and have the team design a “product box” that a potential user

could examine to understand the software system. A product box typically includes:

· A logo or graphic

· A list of the 3-6 key and differentiating features

· A more detailed list of functionality provided

· A list of dependencies (either software or hardware)

Scorecard

The chances of being successful are slim if you don’t understand how you will be evaluated. A project

scorecard is a good way to ensure that everyone knows what success will look like. The criteria should

be expressed in business terms recognizable by the project’s customer or sponsor and should be as high

as possible while still within the control of the project team.

Release Plan

The charter can include a sense of what are the major deliverables (e.g. functionality) and in what

timeframes they are expected (or committed.) This is normally a list of 5 to 20 point form items per

release, depending on project size. It may be included when the deliverables of the project area already

fairly well defined when the project is chartered.

Related Topics

· User Modelling may be done as part of the chartering exercise or as a followup activity.

· Requirements Practices are typically employed after the project is chartered.

· Test Planning

References

Books:

· Geoffrey Moore: “Crossing the Chasm”

Acceptance Test Engineering – BETA DRAFT Page 109

· Jim Highsmith “Agile Project Management: Creating Innovative Products” Addison-Wesley

Professional 978-0321219770

·

Online Resources:

· Unified Process

· http://en.wikipedia.org/wiki/Context_diagram

· http://en.wikipedia.org/wiki/Use_case_diagram

Acceptance Test Engineering – BETA DRAFT Page 110

Risk Assessment

Risk Assessment

A whole-team exercise to identify things that could go wrong on the project and classify by likelihood

and impact to help prioritize the risk mitigation activities including, but not restricted to, testing.

Known Aliases

· Risk Modeling

· Risk Assessment Workshop

When to Use It

Risk Assessment should be done initially fairly early in the project as part of defining the initial project

plan. The risks should be reassessed regularly, either when something significant changes on the project

or on a regularly scheduled basis. Major milestones are a good point to reassess the risks.

Test Lifecycle Applicability

Outputs of the risk assessment exercise can be used to conceive tests; the risk assessment may also be

used when authoring or reviewing tests.

Risks Mitigated

The meta-risk of having unknown risks that could derail the project because they are not consciously

managed.

Limitations

TBD

How to Do It

This may be the Agile Variation. If so, should there be a Large Project Variation?

Prepraration

Create wall chart with 3x3 matrix.

Acceptance Test Engineering – BETA DRAFT Page 111

 * Left side is annotated with Impact low/medium/high

 * Bottom edge is annotated with Likelihood: low/medium/high

 * Colour or pattern the Low/Medium, Low/Low and Medium/Low cells with green.

 * Colour or pattern the High/Medium, High/High and Medium/High cells with red.

Brainstorming

Everyone is given a pad of post-it notes.

 1. Instruct everyone to think about "bad things that could happen on the project"

 * have them write them down on the stickies in 5 words or less using the sharpies

- I fear that could happen which could cause

 * allow about 10 minutes for the silent brainstorming

 2. Ask everyone to put the stickies up on the chart in the appropriate quadrant

 * Impact: High=project could be cancelled;

* Medium=Cost or schedule overrun;

* low=Would have to adjust the plans but wouldn't impact cost/schedule significantly.

 3. Give everyone a few minutes to review the contributions of others; can write/post more stickies if they

think of anything.

Consolidation

Invite everyone to consolidate similar stickies into a single sticky

 * Announce "These two stickies (read them both) seem to be saying the same thing; does anyone

object to grouping them?"

 * Consider a new cover sticky for piles of consolidated stickies (Don't throw away consolidated stickies;

we want to acknowledge everyone's ideas; not discard them.)

 * Ask: "What potential event are we concerned about with this sticky? What might happen?" (

 * Explain: "We need to think in terms of events to to assess probability and impact".

 * For stickies that don't fit in any one consolidated pile ask: "Which of these other Risks might cover this

off? Is there any part of this that isn't covered by one of these? Is there another event we should be

worried about??" If not, put it into any one of the piles it could fit into.

Acceptance Test Engineering – BETA DRAFT Page 112

Risk Assessment

Goal: Group consensus of probability / impact of each consolidated Risk.

Process:

 * Move all piles of stickies off the grid.

 * Pick up one pile, read the cover sticky and ask "How likely is this to happen?"

 * When the discussion results in a likelihood, hold it in the corresponding row and

ask "What would be the impact? Could it result in the project being cancelled?

 * Place the stickies in the corresponding square

 * Repeat for all the stickies.

Note: Some risks have a low impact on this project but may have higher impact on other projects (e.g.

subsequent projects.) Focus on the risk/impact on this project for now; the Project Manager can

communicate this risk to potentially impacted parties after the meeting.

Mitigation Planning

We now have a list of events. Discuss what will be done with the risks. The red cell risks need to be

addressed right away. The green cell risks can be more or less ignored by this team. (Someone else may

have a higher impact therefore they may want to do something about it on another project.)

 * Optional: Discuss mitigation plans for the red cell risks.

Follow Through

The project manager should enter all the risks into the Risk Registry and track them. There may be a

need to revisit the risks as a team at various points in the project to reassess the likelihood & impact or to

add new risks. Any risks that impact other teams or future projects should be communicated to the

appropriate stakeholders.

Acceptance Test Engineering – BETA DRAFT Page 113

Examples

· TBD

Implementation Options

Large or Geographically Dispersed Projects

On large projects with many roles and role players, collaboration software and/or professional

facilitation may be required to ensure that everyone’s concerns are factored into the risk list.

Agile Projects

On agile projects composed of a single co-located team, the risk assessment session can be done in a 1-

1.5 hour meeting facilitated by the project manager, ScrumMaster or Agile Coach.

Rationale

In just an hour or two a large number of risks can be exposed and prioritized by the team. Doing it as a

team also helps ensure that everyone’s concerns are addressed which can help team morale. Knowing

that the risks will be reassessed on a regular basis can improve the team’s confidence in their

management. Group activities such as this can also help with team-building.

Related Topics

· Threat Modeling

References

Web resources:

· Gerard’s web site description of this practice

· A taxonomy of risks: http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr06.93.pdf

· A checklist of common risks on software projects

http://www.dir.state.tx.us/eod/qa/risk/swrisk.htm

Acceptance Test Engineering – BETA DRAFT Page 114

Books work checking out:

· Applied Software Project Management - by Andrew Stellman - 334 pages

· Risk Management in Software Development Projects - by John C McManus - 194 pages

· Quality Software Project Management - by Robert T Futrell - 1685 pages

Acceptance Test Engineering – BETA DRAFT Page 115

Test Strategy

Testing is all about reducing the risk of delivering substandard software. Testing will never prove that

software works in all situations but it can certainly point out when it is not good enough. There is a

diminishing return for each additional dollar spent on testing. A test strategy defines, at a high level, the

kinds and amounts of testing that will be done to maximize the return on testing investment while

minimizing the risk of delivering substandard software.

Known Aliases

· Test Prefactoring

When to Use It

Every project has some sort of test strategy which may or may not be explicitly communicated. Any

project that delivers non-trivial software should consciously decide how to spend its testing budget by

defining a test strategy. It should do it early enough that the system under test can be designed to

support the kinds of testing chosen by the test strategy.

Test Lifecycle Applicability

A test strategy is defined early in a project and refined as the project executes. It preceeds the individual

test lifecycle.

Risks Mitigated

The risks addressed include:

· A lot of effort is spent testing yet many bugs are not detected.

· The time allotted for testing has been consumed and the quality assessors are not ready to

report on the quality of the product.

Limitations

TBD

How to Do It

Defining a test strategy is a complex affair that is hard to reduce to a list of steps. Consider the following

as “a list of things to consider” rather than a recipe to follow.

Acceptance Test Engineering – BETA DRAFT Page 116

1. Identify the project risks (see Risk Assessment.)

2. Focus on the software quality risks (risks related to specific kinds of defects in the product.)

3. Identify the kinds of activities (probably testing, but it could be other kinds) that could reduce

the likelihood of these kinds of defects going undetected.

4. Determine whether the risk is one-time or an ongoing risk

5. For ongoing risks:

a. Decide how important it is to mitigate them

b. consider the use of automated regression testing as “bug repellant.”

6. For one-time risks:

a. Classify nature of the risk: Lack of clarity, lack of certainty, technical uncertainty,

schedule/effort uncertainty

b. For “lack of clarity” risks, consider activities that improve communication such as

Acceptance Test Driven Development

c. For lack of certainty” risks, consider activities that “buy information” such as Product

Prototyping and Usability Testing.

d. For “technical uncertainty”, consider technical prototyping

e. For schedule/effort uncertainty, consider ???

7. Look for ways to mitigate risks by doing things earlier

a. E.g. Incremental Acceptance Testing will find problems earlier which will give us more

time to address them.

8. Rank the proposed testing activities based on the degree to which they mitigate the risks; for

activities that mitigate the same risks pick the ones that provide the best ROI.

9. Consider the ROI curve for each kind of activity. Where does the incremental ROI start to drop

off more quickly? (The law of diminishing returns.)

10. Consider the kinds and numbers of resources you have available. What kinds of testing do they

know how to do? What kinds could they be expected to learn on this project? (Don’t forget the

developers; they can test, too!) What kind of tools would be appropriate for them to use?

(Developers: programming tools. Users: word processing tools. Etc.)

11. Consider the effectiveness of various practices for finding different kinds of bugs.

12. Consider testing at different levels of granularity of system under test: Unit tests are much

easier to write and automate. Tests through a user interface are the hardest to automate, the

slowest to execute and the most fragile. Principle: Test behavior at the smallest level of

granularity possible.

Acceptance Test Engineering – BETA DRAFT Page 117

13. Consider the 3 purposes of tests (Bug detection, change detection, bug prevention/

requirements documentation.) and how the techniques you are considering support each goal.

E.g. ATDD supports both Req’ts Doc’n and change detection but not Bug Detection. Exploratory

testing is very good at bug detection but lacks the systematic change detection provided by the

repeatability of automated test execution.

Examples

· GBS ITPS Test Plan

Implementation Options

The key options to be considered in the strategy are:

· What kinds of tests should be automated? See the Planning Test Automation thumbnail.

· What approach to automation should be used? See the Planning Test Automation thumbnail.

· What approach(es) to manual testing should be used? See the Exploratory Testing and Scripted

Testing thumbnails.

Rationale

All projects have a defacto test strategy in that they have chosen to do specific testing-related activities.

Often, the strategy is strongly influenced by the selection of a tool (e.g. a Recorded Test tool such as

QuickTest) or an organization decision (testing will be done by the QA department.) These kinds of

decisions may “box us in” by implicitly labeling some kinds of testing activities as “non-standard” and

therefore “non-compliant.”

As a rule, it is better to make a decision consciously based on the best available information (some of

which it may take some effort to find) than to be backed into a decision through abstention. Choosing

the kinds of testing to be done, and the degree to which each is taken, is a strategic decision because it

can have a large impact on the quality of the product and the cost-effectiveness of testing. Choosing it

early enough is crucial to ensuring the system is designed in a way that supports the test strategy.

Related Topics

· Functional Testing

· Parafunctional Testing

Acceptance Test Engineering – BETA DRAFT Page 118

· Design-for-Testability

· Test Automation

· Acceptance Test Driven Development

· Incremental Acceptance Testing

· Usability Testing

· Risk Assessment

References

Books:

· Testing Computer Software by Cem Kaner, Jack Falk, Hung Q. Nguyen, 2/e

· “xUnit Test Patterns” Chapters on “Test Strategy” and “Design for Testability”

Online Resources:

· TBD

Acceptance Test Engineering – BETA DRAFT Page 119

Test Planning

Plans are nothing; planning is everything.

 – Dwight D. Eisenhower

Test planning is a risk mitigation activity that causes us to consider what kinds of software quality issues

could occur on our project and what kinds of testing-related activities we might do to mitigate those

risks given specific time and resource availability constraints. Test planning often produces a test plan

document but the real value is the planning activity, not the document it produces.

Known Aliases

· TBD

When to Use It

All projects however big or small require some level of test planning to be done. The plan may be very

lightweight (communicated verbally or drawn on a piece of paper) or formal (a 30 or morepage

document) but the planning should be done nonetheless.

Test Lifecycle Applicability

The initial test planning activity should be done during the planning phase of the project lifecycle and

updated as more information becomes available; it should be a living document that reflects the most

current thinking about what acceptance testing needs to be and will be done.

The test planning preceeds the Test Lifecycle Model in that individual tests are conceived, authored,

scheduled and executed based on decisions made during test planning.

Risks Mitigated

· The risks addressed include: The time allotted for testing has been consumed and the quality

assessors are not ready to report on the quality of the product.

· The customer loses confidence in your ability to deliver quality on schedule.

· Parties required for testing are not available when it comes time to test.

· A lot of effort is expended by different people running more or less the same tests resulting in

poor test coverage.

· Poor communication results in duplication of effort;

Acceptance Test Engineering – BETA DRAFT Page 120

· Poor communication results in bugs caused by insufficient test coverage;

· Good ideas for testing activities are not followed up on.

Limitations

Not everything about a project can be known up front when test planning occurs, so test planning must

continue throughout the project.

Written documents are obsolete the moment they are committed to paper. Once a test plan has been

published updates to it may not be noticed.

Writing a document does not necessarily result in good communication. The act of writing to plan forces

the test manager to think about how testing will be done; the plan needs to be communicated to

everyone on the project to have a real impact.

Some of the most significant improvement in how testing is done come from the team itself; a test plan

written entirely in a corner office will not benefit from such potential improvements.

How to Do It

Test planning is an umbrella for a number of more detailed activities and decisions. Some of these

activities relate purely to testing while others may overlap with other areas of the project. Either way,

they need to occur and test planning may simply be the impetus to carry them out. These activities

include:

1. Understanding the project scope and risks

2. Deciding on a test strategy, including the role of test automation, to mitigate those risks

3. Defining the quality criteria for releases and how bugs found during testing will be dealt with

4. Defining the test environments and the code promotions process between them.

The specifics of how these decisions are made vary greatly from project to project. The degree to which

they are even required to be done may depend on whether the project is Greenfield (brand new

product) or enhancements to an existing product or system. In the latter case test planning may involve

revisiting the existing testing plans or procedures with an eye to making relatively minor updates. See

the Implementation Options section for more detailed guidance.

Examples

· GBS Test Plan

Acceptance Test Engineering – BETA DRAFT Page 121

Implementation Options

Test Planning is a broad subject and there are as many differences in how its done as there are project

managers. The degree to which it is done depends on many factors including:

· Whether the project is enhancing an existing system or building a brand new one.

◦ E.g. The project to deliver the fifth release of a product within 2 years is unlikely to

require extensive test planning as most of the decisions can be carried forward from

the first four releases. The primary focus of test planning should be to reflect on the

results of the first four releases and improve the testing practices to address any

lessons learned.

· The size of the project and expected duration

◦ E.g. A 3 month project executed by a collocated team needs minimal up-front test

planning while a multi-year project executed by distributed teams may require more

thorough up-front test planning.

· The level of risk associated with the finished project.

◦ E.g. A project building a product whose failure could result in death or injury would

typically have more up-front test planning than a project that could result in loss of

discretionary funds.

· The culture of the organization executing the project and the expectations of their customer.

◦ E.g. Some customers insist of delivery of copious amounts of document at interim

milestones including a detailed test plan.

·

 The two extremes of test planning can be seen by contrasting how it is done on plan-driven projects

with agile projects.

Test Planning on Small Agile Projects

Agile projects typically use an iterative approach that minimizes the amount of up-front planning and

shifts much of the planning of details into the iterations themselves.

Initial, Up-front Planning Activities:

1. Discuss, as a team, the overall strategy for testing

a. What kinds of testing might you want to do

b. Who could be involved in that testing

c. Which kinds of tests could and should be automated

Acceptance Test Engineering – BETA DRAFT Page 122

2. Agree, as a team, what kinds of testing are expected to be completed with each feature or

user story

a. Readiness assessment by the developer(s)

b. Incremental acceptance on a per-feature by the customer or proxy

3. Agree, as a team, how bugs will be dealt with:

a. Fixed immediately before the feature or user story is declared done

b. Rolled into a future feature or user story (either existing or newly created)

c. Logged in a bug tracking system and treated separately from new functionality (least

preferable approach.)

4. Agree, as a team, when para-functional testing will be done and by whom

a. Will they be ad hoc or scheduled on a regular basis?

b. How will they be represented in the iteration plan / backlog?

5. Summarize the agreements on a big visible chart such as the done-done checklist

Activities Done Each Iteration:

6. Include test development and test automation tasks or features during iteration planning

activities

7. Implement the features, tests and test automation capabilities

8. Reflect on the effectives of the test (and development) practices during iteration

retrospectives

9. Incorporate the learning into the plans for next iteration; updating the done-done checklist if

necessary

Test Planning on Large Plan-Driven Projects

Test planning on large plan-driven projects tends to be done by the test manager based on artifacts

produced by other planning activities.

1. Prerequisites:Prepare a Project Charter

2. Define your quality criteria including:

a. Code coverage metrics

b. Minimal pass rates

c. Minimal set of platform configurations to be tested

d. Para-functional objectives

3. Release plan and project milestones defined

Acceptance Test Engineering – BETA DRAFT Page 123

4. Do a Risk Assessment

Up-front Test Planning Activities:

1. Determine your Test Strategy

2. Identify the environments (the “development and testing landscape”) that will be available for

testing.

3. Define the general strategy for applying code fixes and promotion of same through the

environments (the “development and testing landscape”)

4. Identify the specific resources (including third-party) who will be available for testing and the

timeframes of their availability.

5. Define the process for resolving disagreements between the Supplier team members and the

Customer team members.

6. Decide which kinds of project milestones will have testing associated with them.

7. For each milestone (or possibly kind of milestone), decide:

a. Which of the kinds of testing will be done (in scope) and what kinds will not be done.

(These should have all been laid out in the Test Strategy.)

b. How many test cycles will be conducted and how long each cycle will be.

c. Decide which kinds of testing will be done in each test cycle.

1. Do all cycles include both readiness assessment and acceptance testing or are

some readiness only?

d. How much resources (and possibly who) will be allocated to the testing in each test

cycle.

1. Estimate the effort and/or cost of testing (optional)

2. Identify any external parties that will be needed during testing.

e. What environment(s) the testing will be conducted in for each test cycle.

f. What kinds of test result recording will be done

g. What kind of test result reporting will be done

h. How the test execution progress will be monitored and reported

i. What kind of concern tracking and resolution will be done.

j. What bug triage criteria will be used

1. What kind of bugs need to be fixed and how quickly

2. What kind of bugs do NOT need to be fixed

Acceptance Test Engineering – BETA DRAFT Page 124

k. How quickly will fixed bugs be re-tested

8. Communicate the plan to all stakeholders including

a. Supplier Team members

b. Customer Team members

c. Subcontracting parties

d. Business Sponsor, Advisory board, Steering Committee, etc.

Ongoing Test Planning Activities:

9. Monitor changes in the project context, risk assessment and test strategy; update the test plan

as needed.

10. Monitor test execution and update the test plan if any changes are required including:

a. additional kinds of testing

b. additional or fewer test cycles

c. changes in the kinds of test automation to be used

d. changes to the resources

e. changes to the projected release date

f. changes to the release contents (MCR)

g. changes to the release quality bar (MQR)

h. changes to budgets

i. amendments to the contracts

We can specify the testing to be done at different kinds of project milestones. Plan-driven (e.g.

waterfall) projects typically have a single set of test cycles planned for after all the software is complete.

Some projects will plan for earlier Alpha and Beta releases with their own test cycles. Incremental

delivery projects will have several releases with more and more functionality. Each of these releases will

have testing cycles associated with them. Agile or highly iterative and incremental projects may also do

Incremental Acceptance Testing either within the iterations or at the end of each iteration.

Acceptance Test Engineering – BETA DRAFT Page 125

Rationale

Testing is an important part of ensuring software quality. The quality

and effectiveness of the testing can have a significant effect on the

outcome of the project as perceived by the stakeholders. Testing

activities have a strong interdependency with development activities

therefore thinking about testing cannot be left until after the system is

developed. Related Topics

The following practices directly relate to test planning

· Incremental Acceptance is when testing is done frequently throughout the project

· Test Last Acceptance is when all testing is left to the end of the project.

· Risk Assessment is used to drive test planning

· Test Strategy needs to be described in the test plan

· Automated Functional Test Execution needs to be addressed by the test plan

· Planning Test Automation describes the planning process in more detail

In addition, the test plan may list specific kinds of testing. See the thumbnails section for a description of

each of these test practices.

References

Books:

·

Online Resources:

· http://www.tbs-sct.gc.ca/emf-cag/acceptance/outline/atpo-vper_e.asp

· http://www.klariti.com/templates/Acceptance-Test-Plan-Template.shtml

Acceptance Test Engineering – BETA DRAFT Page 126

Planning Test Automation

Test automation is an important part of any comprehensive test strategy. However, planning the effort

involved in test automation can be as challenging as planning the development effort for an entire

project. Planning this effort requires determining what should and should not be automated,

determining which tools to use for automation, and estimating the automation effort.

Known Aliases

· Test Planning - often includes the planning of test automation

· Test Strategy – defines the high level plan for test automation

When to Use It

Most projects will have at least some automation that should be planned. The level of automation will

vary, depending on the type of project, how long the product will be supported, the test team, the test

team’s history, and the skills of the members of the test team.

Test Lifecycle Applicability

Test automation planning is a strategic decision and should happen outside of the individual test

lifecycle. These plans should be discussed with the engineering team leads and the customer (proxy).

These discussions may lead to negotiations on what is and is not automated to properly reduce or

mitigate the project risks. (See Risk Assessment.)

Risks Mitigated

The risks addressed include:

· Over engineering test automation, but failing to actually test the system

· Under-planning the automation effort, and failing to adequately test the system.

· Partial completion of the test effort due to lack of realistic understanding of the effort involved

· Choosing to automate testing, but failing due to time constraints or lack of skills.

Limitations

Test automation planning is just like any other planning activity. Some level of planning should be done,

enough for the project context, and the plans should be revisited on occasion to ensure that they still

Acceptance Test Engineering – BETA DRAFT Page 127

apply to the changing situation. As Dwight D. Eisenhower said, “Plans are nothing; planning is

everything.” Starting a test automation effort with a preliminary plan, and as more information about

the system or scenario is learned, the plan can be changed to fit reality.

How to Do It

1. Determine the scope of all testing that needs to be done for the system under test. See [Test

Planning] for more information on this topic.

2. Determine which testing should be manual and which should be automated. Some of the

indications for test automation are:

a. When tests will be run numerous times and the cost of automating and maintaining the

tests is expected to be lower than the cost of manually running the tests, they should be

automated. (i.e. regression tests, acceptance tests on projects that employ incremental

acceptance)

b. If a type of testing cannot be done well manually, it should be automated. (i.e

performance testing, stress testing, etc).

c. If the same test(s) need to be run in numerous environments or configurations, the test

may need to be automated. (i.e. testing software on Windows XP, Windows Vista,

Windows Server 2003, Windows Server 2008, all as base OS and also each OS with each

service pack).

d. If the same tests will need to be run many times during the product’s lifetime.

e. If the test results need to be available very quickly and with low effort

3. For tests that should be automated, determine which test automation framework to use

a. Decide whether any testing frameworks currently used by your team or company will

provide the necessary functionality to automate the tests. If so, skip to step #4

b. Decide whether any existing testing frameworks not in use by your team will provide

the necessary functionality to automate the tests. If so, skip to step #4

c. If none of the available frameworks are adequate, investigate whether any of them can

be customized to fit your needs. If so, plan and estimate the customization like a normal

software development project then proceed to step #4.

d. If you ended up here, you will need to create a custom tool or framework to provide the

functionality to automate the tests for this project. Decide whether it makes sense to

build an external tool or to build a self-test capability into the system-under-test.

e. Estimate this effort as a normal software development project. Do your best not to

over-engineer and add extra functionality that would be nice to have to that you may

not need. Consider using an agile method to implement the custom test framework

Acceptance Test Engineering – BETA DRAFT Page 128

feature by feature on an as-needed basis. This can be a good way to try out agile in an

otherwise plan-driven organization.

4. Once a framework is chosen, verify that the system design supports the use of the framework.

a. Verify the necessary interfaces support the framework; if not, negotiate changes to the

system architecture (testability requirements) to support test automation.

b. Verify that the coding practices (e.g. widget naming and unique ids) are compatible with

the framework. If not negotiate changes to the coding practices to make the system

testable.

c. If the system cannot be made compatible with the framework, return to step 3 to

consider other test automation framework options. If there are none, then reconsider

the automation strategy.

5. Determine how long, on average, it takes to write a test case with the framework and the time

needed to maintain the test case over the life of the project (preferably based on experience

from the last project that used the framework). Multiply this time by a rough guess of the

number of test cases expected to be automated. The result is the estimate for automating the

tests. Add this estimate to the estimate for customizing or creating an automation framework

(from step #3), and the result is the estimate for the test automation effort.

Examples

· GBS Test Plan

◦ GBS Test Automation Plan

Implementation Options

There are varying levels of automation that can be done. Determining what level of automation is right

for each situation requires some experience and a bit of estimation for the costs involved for each level

of automation.

Complete Automation

With the right frameworks and tools, some types of testing can be completely automated, so that when

someone starts the test, everything from setting up the test environment, to execution, to analysis of

the results, to filing bugs is done for them. This is sometimes overkill but it is often necessary for tests

that will be very often such as those that are part of a daily build or continuous integration process.

Acceptance Test Engineering – BETA DRAFT Page 129

Partial Automation

Some tests can easily be partially automated, meaning that either the setting up of the environment or

the execution is automated, but someone still needs to manually do analysis of the results or vice versa.

For example, performance testing a web application requires that the environment be setup, the client

machines prepared, and that the web server has logging and performance monitoring enabled. Then, an

automated set of tests are run, the results and performance monitoring logs are manually gathered and

analyzed.

Computer aided testing

Computer aided testing is mostly manual testing with a little bit of help from software tools. One

example would be testing a scenario that has a lot of necessary setup to get the application into the

right state before testing can start. This setup can be done using an automated script that the tester can

run before manually running the test case(s). Another example would be a test case that verifies the

behavior of the software-under-test on a computer where all the resources are in use by other

processes. The tester would start the software-under-test; then run other tools to completely fill the

hard drive, consume all available memory, or over-utilize the processor; and finally manually run the test

cases.

Automated Test Generation

In some cases we can use software to actually generate the test cases to be run. Fuzz testing is one

example where the execution of the generated tests is also completely automated. Combinatorial Test

Optimization is another example where we generate a list of test conditions to verify based on an

enumerated set of independent variables. The execution of the generated tests could be manual or

automated. Model-driven test generation is yet another example of automated test generation.

Rationale

Planning the test automation effort is just as important as planning the development and manual testing

effort on a project. Any of these areas, if not planned well, can cause delays, extra cost, and decrease

the quality of the final deliverable. Good planning and estimates on the test automation effort can help

determine how much automation a project can afford.

Related Topics

· Automated Functional Test Execution

· Testing Para-functional Requirements

· Test Planning

Acceptance Test Engineering – BETA DRAFT Page 130

References

Books:

· Li, Kanglin, Mengqi Wu “Effective Software Test Automation”, 2004 SYBEX, Alameda CA

· Dustin, Elfriede, Jeff Rashka, John Paul “Automated Software Testing” 1999 Addison Wesley,

Upper Saddle River, NJ

· Buwalda, Hans, Dennis Janssen, Iris Parker “Integrated Test Design and Automation” 2002

Pearson Education, Harlow UK

Online Resources:

·

Acceptance Test Engineering – BETA DRAFT Page 131

Test Outsourcing

Sometimes the customer is not the one who will actually be doing the acceptance testing. They might

decide to rely on a third-party agent like a consultant or an outsourced testing lab to serve to do the

acceptance testing and report their recommendations.

Likewise, the supplier (the team who builds the software to be accepted), might decide to use a test

outsourcer to do readiness assessment of the software or service being delivered, just as if it was the

actual customer.

Known Aliases

· Outsourced testing

· Customer Proxy is a misnomer because the test outsourcer doesn’t make the acceptance

decision.

When to Use It

It may be advisable to use a third party organization to do readiness assessment and/or acceptance

testing in the following circumstances:

· If you’re not sure what you should be looking for, a proxy may bring special technical expertise

(like a Subject Matter Expert in the area of Sarbanes-Oxley compliance).

· If you’re not sure what test techniques might be best to use during your acceptance pass, a

proxy can lend their skill and expertise in general Quality Assurance principles, tactics, or test

design.

· If you are short on internal resources, a proxy can provide the resources to conduct the testing.

· If you’re worried about the relationship you have with the supplier may be too good and you

would have trouble providing honest and open feedback for fear of jeopardizing the

relationship, a test outsourcing lab can be used to provide the feedback without such

reservations.

· When your project culture is such that a third-party always checks the final release (e.g. a beta

program.)

Test Lifecycle Applicability

Encompasses the entire individual test lifecycle.

Acceptance Test Engineering – BETA DRAFT Page 132

Risks Mitigated

The risks addressed include:

· Bugs not found because of lack of testing expertise.

· Bugs not found because of lack of testing resources (either people or specialized hardware or

software.)

· Bugs not found because of not simulating the behaviors of real users.

Limitations

· When outsourcing for resourcing reasons, the outsourcer may not have the experience to truly

behave like the real users.

How to Do It

There is much to consider when selecting someone to assess software on your behalf. Here are five

areas to consider:

Staff:

· How does the proxy (or proxy company) handle holidays, sickness, or people who leave the

project?

· Are there any visa ramifications for the proxy?

· Can you interview the staff who is assigned to work on the team? Can you pick the team?

· Is the proxy assigned to you as a dedicated resource or do they rotate from project to project?

· How does the proxy agency interview and hire testers?

· Are there projects that will compete for resources if you do not engage them every day?

· How does the proxy train or educate their staff?

· Where does the agency find their testers?

· Can you see the resumes of testers?

Process:

· How would they handle your turmoil, like a re-org?

· Is it fixed bid or time-and-materials?

Acceptance Test Engineering – BETA DRAFT Page 133

· What expenses or tools or resources are extra if this is not a fixed bid?

· How do they log hours and can you approve or deny what they log?

· To what granularity is time and work reported?

· How are tasks assigned?

· How are task assignments considered “complete”?

· To what extent can you change the scope of work as the project evolves?

· What is the escalation path for issues you have with their work?

· Who creates tests?

· How are they created?

· What will they deliver at the end of the project?

· If it’s iterative acceptance, what does their staff do if you’re not ready with a good build that

day?

· How does the proxy escalate issues?

· How transparent are their results? Are they shared, and how often?

Tools and Resources:

· What email will they use – their domain or yours?

· What version of Word or Office do they have? (i.e. Doc vs docx is a risk.)

· What access would you have into their network or what access into yours do they need?

· How will you communicate? (video, VPN, email, wiki, IM, phone, VOIP)

· What tools do they use? Are there any dependencies on licenses?

· What kinds of machines, configs, IDEs, virtualization do they have?

Company-to-Company:

· Ask: “Why should we use your company vs. another?”

· Are they willing to visit your site?

· Have they done acceptance for this company before?

· Who’s on their intellect team – or what is their reputation?

· How do they manage exploratory testing (if applicable)?

· What projects or clients do they have that they can talk about?

· What do they need from you?

Acceptance Test Engineering – BETA DRAFT Page 134

· What types of testing do they do?

Legal:

· What are the payment terms?

· Any foreign labor laws to recognize?

· Who owns the intellectual property that is produced as a result of this contract?

· What are their standard, boilerplate terms and conditions?

· Is there an NDA that they have that is different than ours?

· What does “done” mean? What are the stopping heuristics?

Examples

· <none>

Implementation Options

The test outsourcer may be engaged by the supplier organization to do readiness assessment or by the

customer organization to do acceptance testing.

Outsourced Readiness Assessment

The supplier of the software decides to engage a third party to test the software to ensure that it is in

good enough shape to show to the customer. The motivation may be primarily to avoid embarrassment

or it might be to augment resources and/or skills. Either way, the results of the testing are used in

making the readiness decision by the readiness decision maker. While the results may be shared with

the acceptance decision maker or the acceptance testers, it is the development organization and not the

customer who gave the test outsourcer the testing mandate.

Outsourced Acceptance Testing

The customer who has commissioned the construction of a software-intensive system decides to

outsource the gathering of some or all of the data they require to make the acceptance decision. The

result may be shared with the supplier (development organization) in their entirety or only that

information required to substantiate any problems found.

Acceptance Test Engineering – BETA DRAFT Page 135

Lawyer or Auditor as Acceptance Tester

Whether it is to make sure the work items in a Statement of Work have been accomplished or if

regulations have been adhered to, a lawyer or auditor can step in on behalf of the customer to see if the

product or service warrants acceptance.

Why It May Work

If you don’t have the resources or skills in house, you go outside. Someone is bound to have them.

Related Topics

· Customer Proxy Selection is how we pick someone to represent the customer on the supplier

team.

References

Books:

· TBA

Online Resources:

· TBA

Acceptance Test Engineering – BETA DRAFT Page 136

Done-Done Checklist

Different parties in a project may have different definitions of what “done” means. Developers usually

mean “I’ve finished coding” while customers have higher expectations such as “It works and it has been

thoroughly tested.” A done-done checklist makes the customer’s expectations clear to everyone on the

project. When all the criteria on the Done-Done list are met, the software is truly ready for acceptance

testing.

Known Aliases

· Done List/Checklist

· Feature Completion List/Checklist

When to Use It

A done-done checklist can help a delivery team and a customer set expectations and have a clearly

defined way of communication the state of a feature or release. It is recommended on all projects.

Test Lifecycle Applicability

Applicable to the project before the testing lifecycle when the checklists are created, and during

Assessing phases of the test lifecycle. It helps clarify the definition of “readiness” when making the

readiness decision (see the Decision-Making Model.)

Risks Mitigated

The risks addressed include:

· Delivery of features that do not meet the customer’s expectations.

· Miscommunication of feature and project status or readiness

Limitations

TBD

How to Do It

Creating a Done-Done List

1. Get the customer and the delivery team together to brainstorm and discuss the done-done lists.

Acceptance Test Engineering – BETA DRAFT Page 137

2. Brainstorm the expected quality attributes of the system that would make it acceptable

3. Brainstorm the quality attributes that would make the system unacceptable.

4. Organize the resulting items into

a. a list that applies to the entire product

b. a list that applies to each feature individually

5. Determine which items must be there for the software to be acceptable, and remove or

explicitly mark optional items

6. Publish or post the completed lists so the team and the customer can review the lists as needed

Using a done-done list

1. During readiness assessment of an individual feature, ensure that it meets the criteria set forth

on the per feature done-done checklist.

2. When conducting readiness assessment for a release of the product, ensure that all the criteria

set forth are met before releasing the software to acceptance testing.

Examples

· tbd

Implementation Options

There may be several done-done lists for different types of deliverables, for example features may have

a done-done list, and releases may have a different and complimentary done-done list. The supplier

organization may also have other criteria such as development standards which are in addition to the

criteria supplied by the customer.

Feature-Level Done-Done Checklist

The list of criteria that must be met by each feature before it is considered ready for acceptance testing

by a customer. This checklist is particularly applicable when doing Incremental Acceptance Testing.

Acceptance Test Engineering – BETA DRAFT Page 138

Release-Level Done-Done Checklist

The list of criteria that must be met by a software release before it is considered ready for acceptance

testing by a customer. This checklist is applicable on all projects that do Customer Acceptance Testing

for an entire release4.

Development Standards

Development standards are the rules that anyone involved in software development must follow. These

are typically self-imposed by the development organization as a way to ensure consistency and quality

at a level invisible to the customer. They are often maintained as a separate list from the Done-Done

Checklist simply because the customer doesn’t care about them.

Related Topics

· Feature Level Done-Done Checklist Sample

· Development Standards Sample

· Release Level Done-Done Checklist Sample

References

Books:

· TBA

Online Resources:

· TBA

4 Probably applies to 99% of projects as even Agile projects that do incremental testing typically do some

form of “final” acceptance testing of the entire product after all the functionality is ready to release.

Acceptance Test Engineering – BETA DRAFT Page 139

Requirements Practices

This chapter focuses on practices related to the understanding and documentation of the need and

expectations of the stakeholders. We start off with the two major schools of thought:

· Requirements Gathering

· Product Design

When building a system for internal consumption it may be sufficient to talk to the users and other

stakeholders, find out they want, and simply build what they asked for. This will probably result in an

acceptable system; the users probably don’t really have a choice but to use the system so they probably

will.

But when the users truly have choice and we really want them to choose our product we may find it well

worth the additional effort to not only gather their requirements request but to tryuly understand their

needs and design a product that will meet or even exceed their needs. This could result in hugely loyal

customers who are willing to pay a premium for our product. We have to look no farther than certain

consumer brands such as Apple to see the benefits of this strategy.

Next we have three common requirements documentation techniques:

· User Modeling is used to capture information about our users.

· Use Case Modeling is used to capture their goals and what the system needs to do to achieve

them.

· User Stories are an alternative to Use Cases that focus more on providing a way to manage the

functionality in very small chunks each of which add incremental value in just a few days of

development effort.

Acceptance Test Engineering – BETA DRAFT Page 140

Gathering Requirements

Requirements can drive the functionality to be delivered. Requirements may be explicit, stated

expectations of a user or customer – the desires for functions that solve some kind of problem or set of

problems – but they may also be implicit, assumed and unstated.

Known Aliases

· Customer Intake

· User Profiling

· Joint Application Design

· Requirements Analysis

· Requirements Engineering

· Requirements Elicitation

When to Use It

Requirements can emerge any time throughout a project, but conventional wisdom is that the sooner

requirements are known, the cheaper the project will be and the more likely it will be accepted.

Test Lifecycle Applicability

This activity is most applicable before the conception phase of the test lifecycle.

Risks Mitigated

If requirements aren’t determined:

· The customer could be disappointed at the features delivered

· The supplier could build the wrong set of features

· The customer could refuse the product

· Expensive re-work could be needed

Acceptance Test Engineering – BETA DRAFT Page 141

Process Applicability

All process models seem to involve the discovery of requirements, but the choice of requirements

artifacts produced, the level of detailed contained within and the timing of when the requirements are

discovered, flushed out, and documented varies greatly by process implementation.

Limitations

Not all requirements can be gathered up front. Sometimes requirements emerge as the product is built.

For example, when a demo is made to the customer during readiness assessment (whether it be at the

end of a milestone or an iteration), they may be inspired by a feature and want to add to it or change it

in some way. They may even say “I saw a competing product and didn’t know I could ask for [or

wanted] a feature like that.”

How to Do It

Here are some ways for requirements to emerge:

15. Determine who your customer is

16. Determine who the end user is

17. Be able to explain the difference (if any) or relationship between the two

18. Ask them about:

a. Needs

b. Wants

c. Pain points

d. Problems they need to solve

e. History of the problem

f. What success looks like

g. Who else would be good to talk to

19. Capture their requirements in some form

Examples

· Creating Acceptance Tests for User Stories

· Use Cases

· User Stories

Acceptance Test Engineering – BETA DRAFT Page 142

Implementation Options

Requirements-gathering is a large topic with many implementation options. There are many methods of

discovering and documenting requirements. There is a school of thought that simply gathering

requirements is insufficient; the product needs to be designed to solve the users’ needs and the act of

product design requires significantly different skills than the act of software design.

Ways to Document Requirements:

Requirements may be documented in various ways and to various degrees of detail. The bare minimum

is to document enough information for planning purposes. Beyond that, the decision to document in

more detail or less is dictated by the process model being used. Agile projects tend to capture less detail

in written form while document-driven projects tend to capture requirements in great detail. Some of

the specific forms of requirements documentation include:

· Use Cases – Documents all the ways to achieve a specific user goal

· User Stories – An “IOU for a conversation” about a specific usage scenario

· Functional Specification – A structured document describing the various capabilities the system

will provide

· Functional Tests – In Acceptance Test Driven Development, the requirements are provided in

the form of sample test cases.

· Feature List – A list of capabilities provided by the system

· User Interface Story Board – Thumbnails of the main screens and how one navigates between

them.

This list is far from complete. The artifacts from this list may be used alone or in combination.

Strategies for Discovering Requirements

Requirements may be discovered using one or more strategy:

1. Ask the users what they want

2. Watch the users using existing systems to determine what they really do

3. Model the business processes (“as is” and “to be”) to determine what the users really should be

doing

4. Propose designs and ask the users for their feedback

5. Propose designs and have the users try to use them

Acceptance Test Engineering – BETA DRAFT Page 143

Activities to Flush Out Requirements:

Here are some alternate ways to find requirements or flush out expectations:

Asking Users What They Want

· Look at competing products and ask your stakeholders if those features are needed

· Ask open-ended questions

· Create a survey to the general audience for the product

· Involve people from past projects

Discovering Needs Through Observation:

· Look at retrospectives from past projects

· Examine the backlog from a previous project or iteration

Discovering Needs Through Business Modeling:

· Look at market trends and demands

· Build models of the business process and which systems will be used to automate or assist with

each step

Discovering Needs Through Design Feedback:

· Show the user or customer a prototype and let them comment

· Suggest what kinds of features may be designed to solve the problem and let them react

· Advertise the proposed features to an email alias

Discovering Needs Through Testing:

· Watch them use the product (playtest, usability test) and let them comment

· Involve them in development and readiness

· Involve them in a beta release

· Involve them in incremental releases in the form of an advisory board or Early Adopter Group

· Try a deployment pilot or “dry run”

Kinds of Requirements

The requirements can broadly be divided into two broad sets:

1. Functional Requirements describe the functionality to be provided by the system to its users

and stakeholder.

Acceptance Test Engineering – BETA DRAFT Page 144

2. Para-functional Requirements describe those requirements that cut across the specific

functionality being delivered. These include concerns such as security, scalability, reliability and

a host of others.

Rationale

The more we can learn about the potential users’ and stakeholders’ needs the more likely we are to

build an acceptable and useful system.

Related Topics

· Use Case Modeling

· User Stories

· Functional Tests

· Para-functional Tests

· Acceptance Test Driven Development

· System Model

References

Books:

· “Requirements Engineering: A good practice guide”, Sommerville & Sawyer, Wiley 1997

· Software Requirements: Practical techniques for gathering and managing requirements

throughout the product development lifecycle”, Wiegers, Microsoft, 1999

· “Just Enough Requirements Management”, Davis, Dorset House, 2005

· “Software Requirements: Objects, Functions, and States”, Davis, 1993

· “Requirements Engineering: Frameworks for understanding”, Wieringa, Wiley, 1996

· “User-Centered Requirements Analysis,” Martin, Prentice Hall, 1988

· Exploring Requirements: Quality Before Design. by Donald C. Gause & Gerald Weinberg Dorset

House, 1989.

Online Resources:

· TBD

Acceptance Test Engineering – BETA DRAFT Page 145

Acceptance Test Engineering – BETA DRAFT Page 146

Product Design

A software application (or intensive system) should be thought of as a product, whether it is built for an

internal “customer” or for a target market that will actually choose to buy it. Product Design is the

process by which the product is engineered to meet the needs of the target users.

Known Aliases

· UxD

· Usage Centered Design

· User Centered Design

· Joint Application Design (JAD)

· Rapid Product Design (RAD)

When to Use It

Product Design should be done on any non-trivial software-intensive system where usability of the

system will affect user productivity or market penetration.

Test Lifecycle Applicability

Precedes the conception phase of the test lifecycle.

Risks Mitigated

The risks addressed include:

· Discovering that the product as built does not really meet the customer’s needs despite

being exactly what the customer asked for.

Limitations

<What limitations does the technique have? When should you not use it?>

How to Do It

The exact set of steps varies depending on the design methodology chosen. However most methods

include some variation on the following steps:

Acceptance Test Engineering – BETA DRAFT Page 147

1. Understand the potential users of the product and the environments in which they would

use it.

a. Document the users as actors, user roles or personas.

2. Understand what the users would want to do with the product.

a. Capture the needs as a collection of user tasks or concrete use cases.

3. Propose an initial design that may meet the needs of the users.

4. Set up a usability lab to test the design with real users or the closest approximation to which

you have access.

5. Conduct the usability test and record the findings.

6. Prioritize the findings based on potential return on investment (impact vs. cost)

7. Implement the highest ROI items to recycle the design as appropriate.

8. Retest the new design.

9. Repeat until either out of time or the incremental ROI has reached the point of diminishing

returns.

Examples

· <list any examples here as hyperlinks to samples files>

Implementation Options

There are a number of different competing methodologies for product design.

They include:

User-Centered Design

Model the users as personas that describe rich detail about their backgrounds. Give the personas cute

names that remind team members about their key characteristics. E.g. Crusty Calvin is a retro-grouch

who is forced to use a new application against his will.

Personas are intended to evoke images of real people. Much of the detail is extraneous but may help

team members build a mental image of the users.

Acceptance Test Engineering – BETA DRAFT Page 148

Usage Centered Design

Model the users as user roles that focus on how the users interact with the system. Give the user roles

names that describe what they are trying to achieve and the mindset they may be in. E.g. A Harried

Order Entry Clerk will use the system to enter orders under extreme time pressure.

We focus on the users’ specific goals and mindset avoiding extraneous details. This helps team members

focus on what is important but may leave the users appearing somewhat abstract or sterile.

Joint Application Design (JAD)

Conduct a series of workshops with customers and technical team members. Strive to understand what

the customer is asking for and work together to define the software-intensive system that will meet

those needs.

Business Process Analysis

Analyze the existing processes of the business to determine what steps of the process are candidates for

automation. Define a software application that automates those steps keeping the surrounding business

process in mind to avoid suboptimal solutions.

Rationale

A customer often asks for the same system they already have, possibly with some technology upgrades.

Delivering this may satisfy the customer but it will rarely delight them. Thinking about a software-

intensive system as a product helps to change the mindset from building whatever the customer asks for

to discovering what they truly need even if they themselves didn’t realize it. The artifacts that come out

of the product design process can help the entire team understand what is being built thereby

preventing tunnel vision and suboptimal solutions.

Related Topics

· Ethnographic Research

· Usability Testing

· Use Case Modeling

· Requirements

Acceptance Test Engineering – BETA DRAFT Page 149

References

Books:

· “Software for Use” Constantine, Larry & Lucy Lockwood

· “User-Centered Design Stories: Real-World UCD Case Studies”, Carol Righi and Janice James

· “Usability Engineering” by Jakob Nielsen

· “Design of Everyday Things” by Dan Norman

· Buxton, W. Sketching User Experiences: Getting the Design Right and the Right Design

Morgan Kaufmann, 2007

Online Resources:

· http://www.foruse.com/articles/beyond.pdf

Acceptance Test Engineering – BETA DRAFT Page 150

User Stories

User stories are a way to manage highly-incremental development. They are used as the unit of project

planning instead of the activities in a work breakdown structure (WBS) used by more traditional project

management techniques. Therefore they are sometimes called the feature breakdown structure (FBS).

User stories consist of three parts: the story card, the conversation between the customer and the

development team, and the Confirmation – the set of acceptance tests that must pass before the story

is considered done.

Known Aliases

· Feature (Feature-Driven Development)

· Product Backlog Item (Scrum)

When to Use It

User stories can be used in place of use cases or heavy requirements specifications when doing highly-

incremental development. Because the story cards are merely a “promise for a later conversation”, the

customer (or their proxy) must be readily available for the conversations in which the detailed

requirements are communicated orally and which lead to the definition of the agreed-upon list of

acceptance tests.

Risks Mitigated

The risks addressed include:

· Stale requirements specifications

· Misinterpretation of requirements

· Implicit acceptance criteria

Process Applicability

User stories are rarely used outside agile projects because user stories do not include detailed

descriptions of the functionality to be developed (they are merely “a promise for a conversation”.) In

theory, user stories could be used in any style of development process however the practices

surrounding the stories would need to be extended to include much more detailed documentation.

User stories can be used in conjunction with use cases. The use cases provide the detailed descriptions

of the functionality while the user stories are used to plan the implementation of the use cases starting

with the simplest possible success scenario and adding alternate scenarios in subsequent user stories.

User stories can also be used to drive the preparation of the use cases to help avoid “analysis paralysis.”

Acceptance Test Engineering – BETA DRAFT Page 151

Limitations

tbd

How to Do It

User stories are usually much smaller (more granular) than the requirements typically written in more

traditional requirements documents or use cases. This is because each story should only take a few days

(at most) to implement and test. (See the INVEST criteria below.) The collection of user stories planned

for an interation is often called the “iteration backlog” (or “Sprint backlog” in the SCRUM methodology).

The list of all stories yet to be implemented may be called the “project backlog” or Product Backlog (in

Scrum.)

User stories must be independently testable. Good user stories are small and very concrete; they may

correspond to a single or several test scenarios but rarely many more than that. Too many test scenarios

is usually a symptom of the stories being to large in granularity.

The user stories are used as follows:

20. The customer comes to the supplier with some notion of what they want the system to do for

them. This may include sample usage scenarios or user stories.

21. The customer and supplier work together to create a more complete list of user stories that

describe how users interact with the system. Users can be actual end users of the system,

components of the system, administrators, operations, etc. There are many templates that can

be used for user stories, including:

a. A user <takes some action> and <sees some result>.

b. “As a <type of user>, I want <some goal> so that <some reason>.” [MCBlog]

The customer and supplier should decide on a template that works for them and work together

to create the product backlog.

22. The customer prioritizes the list of user stories and decides what constitutes the Minimal

Credible Release. The release is divided into a predefined sequence of development iterations.

23. The customer and supplier have a conversation about the most important user story on the

backlog, discussing the requirements in depth and creating acceptance tests for the story. This

conversation may cause the creation of other user stories that are added to the backlog.

24. The supplier implements the user story, ensuring that the acceptance tests pass and discuss

with the customer any issues or assumptions they encounter in the process.

25. The supplier demonstrates the user story to the customer.

Acceptance Test Engineering – BETA DRAFT Page 152

26. The customer does whatever acceptance testing they feel is necessary to decide whether the

software is acceptable. Any concerns that come up are discussed with the supplier. Critical

issues may need to be fixed before acceptance while less critical issues may be rolled into new

or existing stories in subsequent iterations.

27. The team goes back to step 3, and repeats the process until the customer determines that

enough features are done to release the software or until the backlog is empty.

User stories should satisfy six key criteria; they should be [WWB]:

· Independent

· Negotiable

· Valuable (to the business)

· Estimatable (small enough; well understood)

· Small (enough to fit into a single iteration)

· Testable

Examples

· tbd

Implementation Options

Often times, a team doing iterative development will discuss several stories with the customer during

iteration planning, and deliver several stories per iteration.

Card-Based Story Management

When teams are collocated in a team room or in adjacent offices, user stories may be managed using

index cards or post-it notes stuck to a wall or whiteboard in the team room. Some teams prefer to start

out with the stories in a spreadsheet to facilitate sorting and summing of estimates and then write up

the story cards as a prelude to the iteration planning meeting (IPM.)

Software-Based Story Management

When teams are geographically dispersed, the user stories may need to be stored in a respository that

can be accessed from all locations. This could be as simple as a spreadsheet or as complex as a

requirements management tool. Iteration planning meetings that use the software sometimes suffer

from lack of attention as they tend to be much less participatory than meetings held using cards.

Acceptance Test Engineering – BETA DRAFT Page 153

Rationale

User stories describe self-contained and independently testable chunks of customer-valued functionality

that are particularly amenable to being built in just a few days of software development.

Related Topics

· Use Cases are a way to describe the requirements in more detail

· Acceptance Test Driven Development is often used with user stories

· Functional Specifications are another way to describe the requirements in more detail

References

Books:

· [MC05] User Stories Applied by Mike Cohn

Online Resources:

· [MCB] Mike Cohn’s Blog - http://blog.mountaingoatsoftware.com/?p=24

[WWB] William (Bill) Wake’s blog description of the INVEST acronym:

http://www.xp123.com/xplor/xp0308/index.shtml

· [JA] “Managing the Bootstrap Story in an XP Project” describes ways to make the first story

smaller while still providing customer-recognized value. Jennitta Andrea,

http://www.agilealliance.com/show/886

· [GM] “Using Story-o-types to Right-Size User Stories”, Gerard Meszaros,

http://storyotypespaper.gerardmeszaros.com/

Acceptance Test Engineering – BETA DRAFT Page 154

Use Case Modeling

Use case modeling is a way to describe the functional requirements of a software-intensive system. It

focuses on the goals of what the system’s users would like to achieve while using the system and what

the system needs to do to help them achieve the goals.

Known Aliases

· Use Cases

When to Use It

Test Lifecycle Applicability

Use Case Modeling is typically done before the tests are conceived. Each scenario of a use case may turn

into one or more test scenarios or test cases.

Risks Mitigated

The risks addressed include:

· Implicit customer requirements

· Missed requirements due to lack of structure.

· Insufficient test coverage due to lack of understanding of the requirements

Process Applicability

Use case models are normally prepared during the requirements analysis phase of a document-driven

project. They are used as input into the design phase of the project.

Some agile projects find it useful to do lightweight use case modeling in conjunction with using user

stories for planning the work.

Limitations

tbd

Acceptance Test Engineering – BETA DRAFT Page 155

How to Do It

Use case modeling is an art that can takes years to learn. Therefore, it is typically done by a business

analyst who interviews the customer about their needs and then retires to the safety of their cubicle or

office to build the use case model. The rough sequence of activities is:

1) Identify the various actors (user roles) that will interact with the system.

2) Identify the user goals of each of the actors; what are they trying to achieve.

3) Optionally, organize the goals into different levels: strategic, user goal, sub-function5. Use

“why?” and “how?” to find missing use cases at higher or lower levels.

4) For each major goal, define a use case to help the actor achieve that goal.

5) Define the steps required to achieve the goal when nothing out-of-the-ordinary happens. This is

known as the “success scenario” or “happy path” of the use case. Each step should clearly state

whether it is done by the system or the user.

6) For each use case, identify the things that could possibly go wrong.

7) For each thing that could go wrong, decide whether the use case fails immediately or that extra

steps will be taken to try to achieve the user goal.

8) For each step that could be done in more than one way (e.g. by e-mail, phone, postal mail, etc.)

define how the decision is made and what happens in each case.

Alistair Cockburn also recommends [AC] identifying all the stakeholders (non-users) of the system and

cross-checking the use cases against their interests as follows:

1. Identify stakeholders

2. Identify any concerns or interests of each stakeholder.

3. Review each step of each use case looking for situations where the interests of the stakeholder

may be compromised. When a situation is found, add additional steps to the use case to address

their concern.

Examples

· tbd

5 A user does not want to log in to a system; it is merely a necessary precondition to be logged in before

they can achieve their real goal. Therefore, Log In To System is a sub-function level use case and not a

user goal use case.

Acceptance Test Engineering – BETA DRAFT Page 156

Implementation Options

Analysis Phase

On phase-driven (waterfall, Tayloristic, plan-driven) projects, the use cases may be written during the

requirements analysis phase. The use cases may need to be signed off by the customer.

Incremental Analysis

Projects that deliver functionality incrementally may choose to model the use cases incrementally as

well. The initial use case model may consist only of the names of the strategic (high-level) use cases. As

various parts of the functionality are defined in more detail, the use cases are drilled down to user goal

user cases. As the various exceptions and variations are identified and planned for development,

additional steps and branches are added to the use case descriptions. Alistair Cockburn identifies 4

useful increments per use case:

1) Actor’s name and goal

2) A brief, or the man success scenario

3) The extension/exception conditions

4) The extension/exceptions steps

Rationale

Use case modeling is a more rigorous process than writing a functional specification in free form text or

simple lists of requirements. The process of identifying the use cases and writing the descriptions has a

set of well defined heuristics which can typically avoid missing important variations in the requirements.

The irony is that while use cases are intentionally written in natural language, most customers are not

very comfortable reading them.

Related Topics

· User Stories

· Writing Functional Specification

· Specifying Functional Requirements

· Abuse Cases

Acceptance Test Engineering – BETA DRAFT Page 157

References

Books:

· [AC] “Effective Use Cases” by Alistair Cockburn is the definitive description of how to build good

use case models. Alistair deals with many issues that are ducked by other authors of books on

use cases. His metaphors for scope (Business, Department, System, Subsystem), levels (Cloud,

Kite, Sea-Level, Fish, Clams) and scenarios vs. goals (the striped trouser model) are essential for

understanding how to build a well-crafted use case model.

Web Resources

· A much shorter treatment of the topic is available at

http://alistair.cockburn.us/index.php/Structuring_use_cases_with_goals

· Alistair’s template and advice for filling it in incrementally:

http://alistair.cockburn.us/index.php/Basic_use_case_template

Acceptance Test Engineering – BETA DRAFT Page 158

Functional Test Design Practices

This chapter focuses on practices related to the design of test cases for functional requirements.

The basic practice of defining tests from requirements is described in the Functional Testing thumbnail.

This covers off the main scenario or happy path of each chunk of functionality. That’s the easy part as

any amateur has a decent chance of getting the happy path to work properly. What separates the true

software professional is the ability to understand and implement the myriad of edge cases that software

has to handle in the real world. We can reason about, and there test, the functionality provided by the

system at a number of levels of abstraction:

· Workflow testing is used to derive tests from business processes that cause the users to use this

system-under-test.

· Business Transaction Testing focuses on testing a single use case or business transaction. That

is, the interactions between an actor, whether human or another system, and our system for

the purpose of achieving a specific goal.It can be done at two levels: focusing on the intent and

semantics of business transaction itself, or focusing on the interface used to execute the

transaction. To distinguish the two we call the latter “Interface testing”. Contrast saying “Bob

clicks on the ‘Order’ button”, vs. “Bob orders five tickets to…”

· Business Rule Testing is a way to verify the business rules in isolation of the application

functionality that normally invokes them. It is primarily a technique related to test automation.

Their purpose is to ensure that we have good test coverage of all the scenarios of the algorithm.

The rest of the chapter describes a number of other techniques that help us identify the less obvious but

more interesting test conditions that are more likely to catch bugs.. These include:

· Scenario-based testing describes a number of heuristics for identify interesting test

conditions that may reveal bugs hiding off the well traveled “happy path”.

· Soap Opera testing is a technique for coming up with test cases that push the system-under-

test to extremes by covering off many scenarios in a single test case.

The final practice relates to how testers can work together to be more effective. Paired Testing (or

Collaboarative Testing) is when two or more people work together to design tests. This is the testing

equivalent to eXtreme Programming’s Paired Programming practice. While it may seem less efficient to

have two people doing one job, wouldn’t you rather have two pilots in the cockpit on your next

commercial flight?

Acceptance Test Engineering – BETA DRAFT Page 159

Functional Testing

Functional testing is what we do to verify that the functional requirements of our system have been

met. Functional tests can be derived from any form of functional requirements specification include use

cases, user stories, features, business process descriptions, functional specification, system requirement

specifications, etc. In general, they include both success (or “happy path”) scenarios and alternate

scenarios. In practice, a number of specialized practices have been invented for coming up with the

more complex scenarios; see the list of related topics for a list of thumbnails.

Known Aliases

· Functional Acceptance Testing

· Conformance Testing

· Black-Box Testing

When to Use It

All projects will need to do functional testing. Functional testing can be used throughout a project or just

at the end during a designated testing phase, depending on the type of project.

Risks Mitigated

The risks addressed include:

· Required functionality does not exist in the finished product.

· Functionality does exist, but

o causes an application crash,

o causes data contamination,

o causes an operating system crash,

o results in incorrect results.

Limitations

Functional testing is usually meant to test the functionality of the system, but not any para-functional

aspects of the system..

Acceptance Test Engineering – BETA DRAFT Page 160

How to Do It

7. Choose an implemented feature to test.

8. Consult an oracle on the expected behavior of the feature. (See the chapter on Test Oracles)

9. Write a test or set of tests that exercise the functionality and capture the systems actual

behavior.

10. Save the test in a version-controlled test repository.

11. Execute the test(s).

12. Determine if the feature behaved as expected by comparing the actual results with a suitable

test oracle.

13. If the feature did not behave as expected, open a new bug in the bug tracking system.

14. If the test proves to be wrong, fix the test and save the new version of the test in the version-

controlled test repository.

15. Repeat.

Examples

· Testing the Global Bank ITPS Notifications Settings for CSRs

Implementation Options

Functional testing includes several options for how we execute the tests and involves various techniques

for identifying test conditions and test cases.

Identifying Test Conditions and Test Cases

Functional tests can be conceived many ways. The form in which the requirements are represented

certainly has an influence on how we go about deriving the test conditions. With use cases, we want to

ensure that each of the variations and extensions or exceptions is exercised at least once. With features

and user stories, we expect at least one test for each user story and potentially a lot more if the story

describes several variations of functionality.

Test Cases from Use Cases

A use case describes all the possible ways for the system to accomplish a user’s goal. There is typically

one main success scenario that describes the normal way to achieve the goals and a number of alternate

scenarios that describe what should be done differently in various circumstances. When defining tests

Acceptance Test Engineering – BETA DRAFT Page 161

for the use case we would expect to have at least one test for the main scenario and one test from each

possible alternate scenario.

It may be useful represent the use case as a flow chart and identify each possible path to either a

successful outcome or a goal failure. If there are a very large number of combinations due to variations

on many of the steps, it may be useful to use combinatorial test optimization to reduce the number of

paths to test.

Note that it may be difficult to test a single use case in isolation for several reasons. First of all, most use

cases depend on the system being in a certain state and that state is normally reached through other

use cases. In practice, it may be easier to test a set of related use cases together.

Test Cases from Business Rules

A business rule describes the behavior of certain algorithms in the business domain. These algorithms

may affect more than one use case. The algorithm may define:

· How a specific calculation is to be done.

· The rules for what constitutes a valid customer name.

· The rules for who needs to approve a particular order.

These rules are loaded with test conditions. Each clause of a rule should be tested. For example, if

customer names should not contain special characters, we should have a test for each invalid character.

This can result in a lot of tests; we can use practices like data-driven test automation and business unit

tests to reduce the cost of running all these tests.

Test Cases from User Stories or Features

User stories tend to be much smaller than use cases. For example, a user story might describe just one

variation with a use case or one clause of a business algorithm. User stories should, by definition, be

independently testable. [INVEST] (Features are less universally defined but often map to one or more

user stories.) Every user story should have at least one functional test and some stories will have many

tests. Look for variable factors in a user story to find the additional test conditions. For example, with a

story that describes what should happen for invalid characters in customer names, we should have a

test for each invalid character to show that the name is rejected.

Test Cases from Interface Definitions

Many applications present complex interfaces to the outside world. These interfaces can be human-

oriented user interfaces or computer-oriented communication interfaces. These interfaces often have

complex behavior that goes beyond the business requirements of the system. These behaviors need to

be verified through testing. User interfaces require UI testing and protocol interfaces require protocol

testing. These kinds of testing can often be done without having any business logic behind the interface.

Acceptance Test Engineering – BETA DRAFT Page 162

Functional Test Execution

Functional tests can be executed several ways. We can write simple manual test scripts that a tester can

follow, we can charter exploratory test sessions to verify the functionality, or we can prepared

automated test scripts that can be run automatically. Each approach has its advantages. While manual

tests can often work, test automation is recommended as it can (with the right tools) significantly

decrease the cost of running all tests (see Regression Testing), which is essential for Incremental

Acceptance Testing and can free up testers to do Exploratory Testing. Functional tests can be automated

in many ways; refer to the Automated Functional Test Execution thumbnail for more information.

Related Topics

· Incremental Acceptance Testing

· Regression Testing

· Scripted Testing

· Exploratory Testing

· Business Unit Test

· Data-Driven Test Automation

References

Books:

· How to Break Software: A Practical Guide to Testing by James A. Whittaker

· Fit for Developing Software: Framework for Integrated Tests by Rick Mugridge and Ward

Cunningham

· Testing Computer Software by Cem Kaner, Jack Falk, Hung Nguyen

· Lessons Learned in Software Testing by James Bach, Bret Pettichord, Cem Kaner

· Cohn, Mike, “User Stories Applied”, Addison-Wesley

Online:

· Paradigms of Black-Box Software Testing, Kaner

· Satisfice Heuristic Test Strategy Model, James Bach, page 4

Acceptance Test Engineering – BETA DRAFT Page 163

Acceptance Test Engineering – BETA DRAFT Page 164

Scenario-based Testing

Scenario-based testing is testing based on or derived from a hypothetical story or flow of events based

on an operational profile (how the system will be used). It is written from the point of view of a

customer or end user. Scenarios may be from simple stories to richly structured analyses, but must

always be grounded in real world experience. The scenarios can be expanded into the complete list of

test cases during a distinct test conception and/or authoring phase or just-in-time as part of exploratory

testing. Unlike functional tests based on use cases, scenarios typically incorporate behavior from many

use cases into the same test based on actual or possible usage behaviors. Scenarios are typically

expressed in natural, ubiquitous language.

Known Aliases

· End-to-end testing

· Workflow testing

· Flow testing

· Usage scenarios

· Über use case modeling

· Scenario testing

· Feature-based testing

· Integration testing

When to Use It

Scenario-based testing should be used on all projects that have complex workflows or multiple

simultaneous users. They help us think “outside the box” of single user test (functional conformance or

“happy path”) cases. Scenarios are also good for identifying and mitigating integration risks. Early

identification of scenarios can help ensure that important integration requirements are identified. They

also facilitate thinking about user experience, which in turn impacts the design of the system.

Test Lifecycle Applicability

Applicable to the Conception and Authoring phases of the Test Lifecycle Model.

Risks Mitigated

The risks addressed include:

· Supplier team’s attention is distracted from the needs and concerns of the end users.

· System crashes or malfunctions because testing was not representative of the complexities of

user actions and behaviors that tend to happen

· System fails to meet para-functional expectations

Acceptance Test Engineering – BETA DRAFT Page 165

· User cannot accomplish real task because of gaps in functionality missed by tests focused on

specific functions.

[Grigori stopped here]

Limitations

Because scenario-based testing is meant to cover many features, it requires the features involved to be

completed (working code) before the tests based on the scenarios can be executed.

Similarly, a bug in a certain feature can block a tester from executing scenarios. Therefore, execution of

scenario-based tests is best left until the system stabilizes.

Scenario testing is not meant to give high test coverage. The power of scenarios is in their credibility and

ability to simulate complex use.

How to Do It

Scenarios can be based on or derived from a hypothetical story or flow of events based on an

operational profile (how the system will be used). It is written from the point of view of a customer or

end user. Scenarios may vary from simple stories to richly structured analyses, but must always be

grounded in real world experience.

The general flow of using scenarios to conceive test conditions is:

1. Brainstorm different usage scenarios that real users might inflict on the system. Some specific

scenario stereotypes to consider include:

◦ Personas. Imagine stereotypical users and design scenarios from their viewpoint.

◦ Long period activities. Transactions that take a long time to play out, or involve events

that occur predictably, but infrequently, such as system maintenance.

◦ Tug of war: Multiple users modify the same object, either the same values or different

values.

◦ Interruptions; aborts; backtracking. Unfinished activities (normal occurrences in work

environments that are full of distractions). Session timeouts for web applications.

Pressing the Back button, etc.

◦ Object lifecycle. Create some entity then change it, then delete it.

◦ Function/Feature interactions. Make the features of the product work together.

◦ Mirror the competition. Do things that duplicate the behaviors or effects of competing

products.

◦ Learning curve. Do things more likely to be done by people just learning the product.

◦ Oops. Make realistic mistakes. Screw up in ways that distracted, busy people do.

Acceptance Test Engineering – BETA DRAFT Page 166

◦ Industrial Data. Use high complexity project data.

◦ Workflow. Activities that involve multiple users over time.

2. For each scenario thus identified, enumerate specific cases of the scenario.
o E.g. For Tug of War between spouses accessing the same account on an automated bank

machine, consider the cases where the two logins a) don’t overlap, overlap a bit, one

login is fully nested within the other login

3. Define the list of test steps needed to verify the test condition. These steps may initially be

expressed in terms of exactly how the user would interact with the system (a very literal

description) or at a more abstract level that describes the user intent rather than the exact

action. (See Scripted Testing.)

4. Exaggerate a little. Be a bit more extreme, make sequences of events more complicated, add

a few more users or artifacts. See Soap Opera Testing

Exploratory testing expert James Bach recommends the following actions for scenarios:

· “Review documentation provided by stakeholders and the development team. Such

documentation may describe how the system is used by various kinds of users, including
step-by-step instructions for updating data in the system.”

· “Brainstorm scenario test ideas, involving the customer/proxy or a user or a domain expert.

These ideas may include standalone elements to be incorporated into scenarios, as well as

fully worked scenario scripts, with variations.”

· “Pick a couple of mainstream, casual use scenario ideas and conduct exploratory test

sessions, using domain experts as testers. While some testers coordinate with each other to

flush out the scenarios, others assist in taking notes or investigating problems.”

· “Once scenarios are roughed out, discuss, prune, and extend them. Look for missing

elements, and compare them with user documentation exhibits or discuss with the

customer.”

· “Compare the scenarios to the features of the product to assure that there are scenarios

that, in principle, cover all the functions of the product.”

Author’s note:

Additionally, these recommendations may help:

· Learn how users do their work.

· These initial scenarios can be pretty rough. Presuppose initial state of the system if needed.

Focus on high-level but specific goals of each scenario and encourage the customer to

provide just enough contexts for the scenario. Ask questions such as “Why did this story

happen?” and “Who is this scenario for?” Don’t get drowned in the low-level details. Use
ubiquitous language.

Acceptance Test Engineering – BETA DRAFT Page 167

· Try not to focus on the GUI elements and widgets, but rather actions that the end user may

want to perform. So, instead of saying “Bob clicks on the ‘Order’ button”, say “Bob orders

five tickets to…”

· Consider recording these sessions and later refactor resulting scripts into scenario tests.

· Scenarios can be incomplete and highlight partial use, but can be revised as the system

requirements evolve.

Cem Kaner, another noted testing expert and educator, defines the following characteristics of a good

scenario:

· a real story (i.e. vivid description of real user experience)

· motivating

· credible

· complex usage

· easy to evaluate

Examples

· Scenario Test Plan Sample

Implementation Options

The basic concept of using scenarios to come up with test cases is more or less the same regardless of

the approach to testing but how the technique is applied is different.

Scenario-Based Scripted Testing

In scenario-based scripted testing, the scenarios are used as a technique to identify the test cases to be

written up as test scripts. The brainstorming is often done by a group of people which includes both

technical and non-technical (e.g. business) people. The list of specific test cases is then whittled down to

a useful representative set for actual test script development. The scripts may be developed

immediately or at a later time. The execution of the test scripts is scheduled using any of the test

execution management techniques.

Scenario-Based Exploratory Testing

In scenario-based exploratory testing, the scenarios are used both as a technique for conceiving test

conditions to try and as a way of communicating the scope of a particular scheduled test activity. Unlike

scenario-based scripted testing, the detailed test scripts are typically not formalized but exist primarily

in the head of the tester. The timeframe between when the test is conceived from the scenario and

Acceptance Test Engineering – BETA DRAFT Page 168

when it is executed could be mere seconds. New test conditions may be conceived within seconds of

observing the results of the just executed test condition.

When used as the scoping mechanism for planning and management of test execution, the test

scenarios are used as a stand-in for all the possible test conditions or test cases that we expect the

tester to come up with during one or more test session.

Part of performing a scenario is using variations of your testing to fulfill the charter.

Rationale

Scenarios are a good way to both refer to and conceive sets of test conditions. and scenario-tests:

· Highlight and explores system goals the user may adopt and pursue

· Stimulate further thinking and reflection on interactions and events

· Focus team’s attention on the usage

· Help explain why a system is needed by demonstrating what it should be used for

· Surface hidden requirements / fine tune requirements

· Provide concrete contexts

· Can be easily revised or elaborated

· Make it easier to think through a complex problem in the system

· Help in accessing impact in case the test case fails

· Aid in learning about the product and its complexities

· Facilitate End-to-End system testing from customer point of view

· Can be used in assessing para-functional trade-offs (such as usability) help supplier simulate

customer’s actual workflow

· Are broadly accessible to various stakeholders

· Facilitate formation of the ubiquitous language

· Promote customer participation and enhance communication

Related Topics

· Scenarios can be used when designing Scripted Tests.

· Scenario are often used during Exploratory Testing.

· Scenarios are often used as a way to charter Session-Based Testing. See Session-Based Test
Management.

· Soap Opera Testing is an extreme form of scenario-based testing.

· Scenario-based testing is a form of Functional Testing.

· Ubiquitous language is a good way to describe scenario-based tests.

· Keyword-driven Test Automation is often used to automated scenario-based tests.

Acceptance Test Engineering – BETA DRAFT Page 169

References

Books:

· Kaner, C. “Cem Kaner on Scenario Testing”, SQTE, Sep/Oct 2003: 16-22, 2003.

· Jarke, M., Bui, X.T., and Carroll, J.M. “Scenario Management: An Interdisciplinary Approach.”

Requirements Eng. J., 3: 155-173, 1998.

· Alexander, I., and Maiden, N. Scenarios, Stories, Use Cases Through the Systems

Development Life-Cycle. New York, NY: Wiley, 2004.

Online Resources:

·

Acceptance Test Engineering – BETA DRAFT Page 170

Soap Opera Testing

 “Soap Operas” get their name from fictional daytime television shows that have their roots in the

1950’s and 60’s when sponsors were often soap companies. An opera is an epic story, either a long

series of events or a short series of very dramatic events happening to fictional characters.

To apply this to testing means to invent a long, grand series of flowing actions performed by a user (or a

persona you created) in an attempt to unite many diverse test variables. The term “soap opera testing”

was coined in the late 90’s [Buwalda] to convey the idea that a different class of bugs might reveal

themselves when the product or system is thrown into a variety of states as details of an operational

story unfold.

Known Aliases

· Sometimes it is confused with Scenario Testing, but scenarios have more structure and more

instructions to the tester on how to execute them.

· It also may be considered to be a form of system integration testing

· Workflow Testing

· End-to-End testing

When to Use It

Soap Operas are useful to test different parts of the system or service that have recently come together

in a concept known as system integration or it can be used before the parts come together to point out

gaps where the software *needs* to come together.

It can be used when testers find themselves stuck or need a break from the routine of running test

cases. It may be useful to collaborate with other testers or project staff to brainstorm dramatic flows of

events

Test Lifecycle Applicability

Applicable to all phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

· Bugs missed because the system was not tested in an integrated way

Acceptance Test Engineering – BETA DRAFT Page 171

· The customer did not have a range of exotic but practical ways of what might happen, until they

run their acceptance pass when they run tests that closely resemble soap operas.

Limitations

Soap opera testing requires a rich imagination – perhaps so rich that the developers on the project do

not find any of the tests credible (saying the popular lament “no user would do that.”

How to Do It

Scenarios can be used as a basis for soap operas because there are a lot of similar test factors that come

into play. Perhaps the simplest way to come up with soap operas is to brainstorm with a group, which

different members of the team telling a piece of the opera, building on the last action by the previous

person on the team.

Here’s a process you might try to identify variables:

Failure Modes:

Dropped call, blocked call, restart, power off,

Environment / Location:

Where are they using it?

Operations:

Who is using the product? What is their temperament? What else are they doing at the time? What is

their mission? What were they doing 5 minutes go? How are they using it?

Data:

What kinds of information does the product process? Large data, DBCS data, integer or floating point?

Periods, underscores, dollar signs in the data

Platform:

What does the product depend on? Browser, Operating System, code libraries, third-party applications.

What about memory and disk space considerations? Bandwidth?

Time (and Timing):

Special dates like December 31, February 29, April 15. Days of the week. Times of the day? Parts of the

hour. Daylight savings, time zones, etc.

Examples

Acceptance Test Engineering – BETA DRAFT Page 172

This is an example that might be used to test functionality for the Global Bank ITPS feature:

“From his corner office on Madison Avenue, the CEO of Contoso ignores the coffee he just

knocked over on his desk because he has a more urgent problem -- an alert through Instant

Messenger from Globobank that his identity may have been compromised. He is alarmed, too,

because earlier that day he got a frantic call from his girlfriend about her credit limit being

reached when she had done no transaction in months. Right after that call, he had logged into

ITPS to review the transaction details on his account. There was nothing. But now, four hours

later, there is an alert. Upon logging in again, he sees that the transactions are originating from

the same city that the fraudulent charges were for her account. He knows who it might be – his

ex-wife – who is in that same city. She is an accountant at a rival to Contoso – a rival that he

used to work for. So he sets a trap. Using ITPS, he sets his notifications based on location to see

if he can prove his theory. He leaves his office to meet his girlfriend and takes his PDA with him

to check the status and be informed of alerts. But he loses the cell signal from his PDA as the

driver drivers though a dead zone. Luckily he’s set up for voicemail, too and he’s got his cell

phone with him and the signal is strong. He gets a call. It is the ITPS system warning him of a

new transaction in Barbados, where he has a beach house. In that beach house is the one and

only credit card that has access to that account. ..”

Additional example from testing expert Michael Bolton:

http://jayacarl.blogspot.com/2008/01/soap-opera-testing-example.html

Implementation Options

<none>

Rationale

What’s the point of drawing out a user operation in this dramatic way?

1) It kicks us into a mindset that makes us aware of important variables:

· people use software from more than one location;

· users are often logged in at the same time on different devices;

· they are often mobile, which causes problems;

· there is more than one way to access data;

· data changes at different times of the day;

· the data might be blocked from getting to its recipient in some way

Acceptance Test Engineering – BETA DRAFT Page 173

2) It also acquaints us with questions whose answers depend on context:

· From where is the user logging in?

· How did they log in?

· When did they log in?

· Why did they log in?

· Have they logged in earlier today?

· Are they logged in as themselves or as someone else?

· What if the signal drops?

· Does the notification tell enough detail about the transaction?

· Does it work on multiple platforms?

· Does the notification alert against the desired pattern?

· Can the user change the patterns to which they are notified, and then back again if they

change their mind?

Readiness testing using this technique may help expose some of the previously unforeseen ways that

users or customers may actually configure, operate, and experience the software you’re producing.

Identifying variables in a soap opera (even though it’s meant although meant to be dramatic) makes the

variables seem likely and credible because they are put into a specific series of probable contexts.

Related Topics

· Scenario Testing

· Workflow Testing

· End-to-End Testing

· Exploratory Testing

References

Books:

·

Acceptance Test Engineering – BETA DRAFT Page 174

Online Resources:

1. http://www.logigear.com/resources/articles_lg/soap_opera_testing.asp

2. Hans Buwalda, “Soap Opera Testing” an article for STQE magazine, February 2004:

http://www.logigear.com/campaigns/soap_opera_testing.pdf

Acceptance Test Engineering – BETA DRAFT Page 175

Workflow Testing

Workflow tests are designed to verify how the system supports or implements a business process by

executing a series of user actions toward a given task or objective. They often include tasks carried out

by multiple users exercising different part of the system in a business workflow from a beginning state

to an ending state. Workflow test often involve the passage of time as the onus to do the next step of

the process is passed from user to user or system to system.

Known Aliases

· End-to-End Testing

· Business Process Testing

· Integration Testing

When to Use It

Workflow testing should be done whenever the system-under-test implements one or more steps in a

business process. Workflow testing often involves integration testing of those systems that implement

individual steps of the business process.

Test Lifecycle Applicability

Applicable to all phases of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

· Individual user actions work as intended but commonly used sequences of user actions don’t

work properly.

Limitations

· Workflow testing is not a very good way to get high test coverage of specific use cases or

algorithms because there is a lot of overhead to set up a specific test condition. For high test

coverage of use cases or algorithms use use-case tests , user story tests, or business unit tests.

Acceptance Test Engineering – BETA DRAFT Page 176

· Workflow tests typically require several use cases of the system to be implemented before they

can be executed. Specifically those use cases that act as the steps of the workflow.

· Workflow tests often require functionality from several systems to be integrated.

Having said this, workflow tests are a good way to drive integration of functionality when using

Acceptance Test Driven Development. For this reason, individual user stories often include extend the

functionality of several use cases.

How to Do It

Workflow testing involves analyzing the business process to understand the possible paths through the

business process. That defines the tests we need to run; then we need to orchestrate the actors

involved in the path through the workflow.

Identifying the Tests

1. Analyze the business process looking for decision points where the process can enter multiple

branches (A.K.A. process segments).

2. Identify the criteria that result in a particular branch being executed.

3. Identify the actors or user roles involved in executing the steps in each branch

4. Identify all the possible combinations of segments by mentally traversing the process.

5. If the number of possible combinations is too large to test practically, consider applying

combinatorial test optimization to reduce the number of tests.

6. If the workflow can be inspected by non-participants, include inspection steps at each point in

the workflow.

Executing the Tests

7. Set up the system-under-test and any other systems involved in the workflow.

8. Configure users with the appropriate role definitions and permissions based on the path being

tested.

9. Have the first actor in the workflow do their task.

10. Wait the requisite amount of time to pass.

11. Have a non-participant actor inspect the work to verify it is in the correct state. (Optional)

12. Have the next actor in the workflow verify that the work is now visible to them in the

appropriate state.

13. Have the actor do the task which would advance the workflow we are testing.

Acceptance Test Engineering – BETA DRAFT Page 177

14. Repeat steps 3 to 7 until the workflow has either reached the desired end state (passed test

case) or it has derailed (failed test case.)

Examples

· Testing the Global Bank ITPS Notifications Settings for CSRs

· Manual Scripted Workflow Test example

Implementation Options

Workflow testing can be done in either a script-driven or exploratory style. Script-driven workflow

testing may be automated if each relevant step of the workflow has an interface that supports test

automation.

Manually Scripted Workflow Testing

When the workflow is tested manually, we need to create the appropriate user logins for all the roles in

our test. This may require a separate workstation for each user if we have integrated security/login. The

test may be executed by a single tester playing all the roles or there may be more than one tester

involved in the testing.

Automated Scripted Workflow Testing

For workflow tests to be automated, interfaces involved in the workflow need to be amenable to test

automation. The test script logs in to each system with the appropriate user role and carries out the

inspections (assertions) and actions. When using keyword-driven testing with multiple systems in a

workflow, it is appropriate to use the name of the system as the object, the action as the verb and any

data to be entered or verified as arguments.

Exploratory Workflow Testing

Create a charter or a user objective. The objective should be designed to start at one point in the

workflow and end at another. The objective can come from watching users during usability testing,

accounts from beta testing, reports from customer support, or early adopter programs where customers

gave feedback about how they use software.

Create the configuration or platform on which the test depends.

Execute the objective discovering the steps involved as you use the application. Record the steps you

took along with any observations, bugs, etc. in your notes.

Acceptance Test Engineering – BETA DRAFT Page 178

Rationale

Many software-intensive systems are used in the context of a business process or workflow. For testing

of these systems to be truly representative of end user behavior, the testing must involve these

workflows.

Related Topics

· Workflow Testing is a kind of Scenario Testing

· Workflow Testing can be scripted or automated using Keyword-driven Test Automation

References

Books

· Mugridge, Rick “Fit for Developing Software” Addison-Wesley

· Buwalda, Hans et al “Integrated Test Design and Automation” Addison-Wesley

Online Resources:

· N/A

Acceptance Test Engineering – BETA DRAFT Page 179

Use Case Testing

One way of specifying a system’s requirements is in the form of use cases. A use case describes

everything that might happen as a user (A.K.A. actor in UML) interacts with the system over a relatively

short period of time (episode), to achieve a particular goal. Much of the functional acceptance testing of

a system may be done exercising one use case at a time.

Unlike workflow tests, use case tests do not involve multiple users (or actors) or the passage of time.

Unlike interface tests, use case tests focus on the verifying that the user’s intent is satisfied rather than

focusing on verifying the details of the behavior of the user interface or protocol.

Known Aliases

· Business Transaction Testing

· Functional Testing

When to Use It

Use case testing should be done for all systems that were specified via use cases.

Test Lifecycle Applicability

Applicable to all phases of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

· Some scenarios of the use case were not implemented properly and a user is unable to

achieve their goal when they should be able to.

· Requirements were not tested in the context of different multiple uses, perspectives.

· Tests are not readable by users.

Limitations

· Because use case tests verify the behavior of the system for a single use case, they do not

verify end-to-end business workflows. Workflow testing may be more appropriate.

Acceptance Test Engineering – BETA DRAFT Page 180

· When the use case involves complex calculations or business rules, testing all important

combinations of values can involve excessive effort. Business rule testing may be more

appropriate.

How to Do It

Use case testing involves analyzing the use case to understand the possible paths through the use case.

That defines the tests we need to run; then we need to identify the circumstances that would cause

each path to be exercised.

Identifying and Designing the Tests

1. Analyze the use case looking for decision points where execution of the use case involves

choosing to go down one of several paths (A.K.A. branches or alternate paths or scenarios).

These are behavioral equivalence classes.

2. For each decision point and potential path, identify the criteria that result in that path being

executed and at least one value to use. Determine any preconditions that need to be satisfied

before the criteria can be satisfied.

3. Where more than one alternate path may occur in the same usage, either because of “looping”

through the same decision point several times or due to multiple decision points, identify all the

possible combinations of segments by mentally traversing the process.

◦ If the number of possible combinations is too large to test practically, consider applying

combinatorial test optimization or classification trees to reduce the number of

combinations to test.

4. For each path through the use case, determine the expected result by using an appropriate test

oracle.

5. Decide how to verify that the expect result has occurred. This could include any combination of:

◦ Examining the system-under-test’s response(s)

◦ exercising another use case to inspect the post-test state of the system-under-test

◦ using a back door to inspect the post-test state of the system-under-test

Executing the Tests

6. Set up the environment in which the the system-under-test can be tested.

7. Set up the system-under-test itself to satisfy the preconditions of the use case test.

8. Determine what significant tests must be run.

9. Start executing the use case one step at a time (either manually or automatically).

10. When the use case has completed, verify that the expected result has occurred.

Acceptance Test Engineering – BETA DRAFT Page 181

11. Optional: if when testing you find the use case test not adequate, think of how to modify it or

supplement it with another test.

Examples

· Functional Acceptance Tests Example

Implementation Options

Use case testing can be done in either a script-driven or exploratory style. Script-driven use case testing

may be automated using recorded test, programmatic test or keyword-driven test tools. A use case may

be used as the charter for an exploratory test session.

Rationale

Many software-intensive systems are used in the context of a business process or workflow. For testing

of these systems to be truly representative of end user behavior, the testing must involve these

workflows.

Related Topics

· Workflow Testing is a way to test multiple use cases at the same time.

· Scenario Testing

· Use Cases

References

Books

· Fournier, Greg. Essential Testing: A Use Case Driven Approach, 2007.

· Denney, Richard. Succeeding with Use Cases: Working Smart to Deliver Quality, Addison

Wesley, 2005

Acceptance Test Engineering – BETA DRAFT Page 182

Online Resources:

· Heumann, Jim “Generating Test Cases From Use Cases”,

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/Genera

tingTestCasesFromUseCasesJune01.pdf

· McBreen, Pete “Testcases from Use Cases”,

http://www.mcbreen.ab.ca/papers/TestsFromUseCases.html

· Robert Binder, Extended Use Case Test Design Pattern

http://www.rbsc.com/docs/TestPatternXUC.pdf

http://www.stickyminds.com/getfile.asp?ot=XML&id=3601&fn=XDD3601filelistfilename1%2

Epdf

Acceptance Test Engineering – BETA DRAFT Page 183

Interface Testing

Modern software systems often present sophisticated interfaces to their users. These interfaces may

contain a lot of complexity over and above the business functionality they are used to access. The

interfaces may be user interfaces that present complex information to human users or they may be

protocol implementations to support communication between computers.

Either way, this interface complexity is a fertile field for bugs and needs to be tested thoroughly.

Interface tests focus on verifying the behavior of this interface rather than the underlying business

functionality.

Known Aliases

· Conformance Testing

· User Interface Testing

· Functional Testing

When to Use It

Interface testing should be done for all systems that have complex interfaces to external actors.

Complex user interfaces and complex protocol specifications are the most common examples.

Test Lifecycle Applicability

Applicable to all phases of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

· The system does not implement a protocol correctly leading to failures when interacting with

another system.

· The user interface is inconsistent making it hard to use.

· The user interface interprets user actions incorrectly resulting in the wrong functionality being

invoked.

· The user interface disallows functionality that should be enabled because its state becomes

inconsistent with the underlying application.

Acceptance Test Engineering – BETA DRAFT Page 184

Limitations

· The testing of interfaces involves working at a greater level of detail than many “normal” users

are used to working at. This makes it hard to learn for some business testers.

· The level of detail required for interface testing makes in inappropriate for testing of business

workflows due to the amount of test code duplication that would result.

· More difficult to automate

· Once automated, these interface tests are hard to maintain

How to Do It

Interface testing involves analyzing the interface or its specification to understand the possible states

and transitions it should support. There are many ways to do this and the details are beyond the scope

of this book. See Implementation Options for a short discussion of some of the approaches.

Examples

· Testing the Global Bank ITPS Notifications Settings for CSRs (Scripted User Interface Testing)

Implementation Options

Interface testing of user interfaces can be done in either a script-driven or exploratory style. Interface

testing of protocol interfaces tends to be done using test script which may be hand-coded or generated

based on models.

User Interface Testing

Testing of user interfaces can be a rather involved undertaking. It can be approached in a very ad hoc

way or very systematically. Exploratory testing can be a very effective way to quickly find bugs in user

interfaces.

More structured approaches to testing user interfaces can involve treating the UI as a set of related

finites state models; we identify the test conditions by using these state models to identify the

transitions at which we want to verify the interface’s behavior.

Some systems have alternatives modes of invoking the same functionality. For example, menus and

commands, keyboard shortcuts, mouse actions and even multiple touch-screen gestures. Thorough user

interface testing would involve trying each action using each possible modality. In practice, this may be

too much effort and we may decide to employ test reduction techniques like combinatorial test

optimization to reduce the number of tests to be executed. Exploratory testing is also a good way to get

broad coverage followed by deeper dives into areas where problems have been noted or suspected.

Acceptance Test Engineering – BETA DRAFT Page 185

Protocol Conformance Testing

Most machine-to-machine interfaces are based on a protocol definition. These are frequently expressed

as communicating finite state machines. Each system maintains its own finite state machine and

changes states whenever an event occurs. Events may come from the local system (the one the

interface is part of) or the remote system. State changes triggered by the local system may cause a

message to be sent to the remote system. When a message is received from the remote system, the

message is interpreted in the context of the current state and the appropriate state change may occur.

This may result in the local system being notified and/or a message being sent back to the remote

system.

The tests for protocol conformance may be hand-written based on analyzing the protocol specification

looking for all possible state transitions. Or they may be generated by a test generator that does

essentially the same thing. Either way, the outcome is a set of test scripts that verify the interface of the

system-under-test by taking the place of the local system that is communicating with it.

1. Define a model of the protocol finite state machine (FSM) if it doesn’t already exist in a

specification.

2. For each state in the protocol FSM, determine all the events that can be received including:

a. Events from the local system

b. Messages from the remote system

c. Self-generated events such as timers.

3. For each event, determine what action is to be taken. The test oracle is likely the protocol

specification.

4. Design a set of tests that allow all the states and transitions of the FSM to be verified. There are

at least two strategies:

a. Start all tests from the same initial starting point and use different sequences of

local/remote system events to drive the system-under-test through a set of transitions

and states. This style of testing may not be able to cover all possible states/transition if

some states are difficult to reach.

b. Put the system-under-test into a specific state to allow transitions from that state to be

tested individually. This is similar to unit testing of the FSM. It should be supplemented

by the first style of tests.

5. Execute the tests against the system-under-test checking that it behaves as expected.

Rationale

The complexity of the interface may require very specific tests that are somewhat unrelated to the core

functionality the interface is used to access. Business experts who understand the business functionality

Acceptance Test Engineering – BETA DRAFT Page 186

may be total oblivious of the details of the interface technology and therefore unable to do effective

testing of it.

Related Topics

· Use Case testing is a way to test the functionality behind the interface while bypassing or just

ignoring the details of the interface.

· Test oracles

· Model Based Testing

References

Books

· McCaffrey, J. .NET Test Automation Recipes: a Problem-Solution Approach, APress: 2006.

· Li, Kanglin, Wu, Mengqi. Effective GUI Test Automation, Sybex: 2005.

Online Resources:

· L. R. Kepple. The black art of GUI testing. Dr. Dobb’s Journal of Software Tools, 19(2):40, Feb.

1994.

· What Test Oracle Should I Use for Effective GUI Testing?

· http://en.wikipedia.org/wiki/Model-based_testing

Acceptance Test Engineering – BETA DRAFT Page 187

Business Rule Test

A Business Rule Test verifies the behavior of a business algorithm or business rule outside the normal

context in which the algorithm or rule is utilized. While the interface used to access the logic is typically

a technical interface (an API or Web Service), the logic is pure business and the tests can be prepared by

business people, not technical experts.

There is a category of functional tests that focus on a single use case. Another category is workflow or

scenario test that incorporates the behavior of multiple users (essentially incorporating multiple use

cases). Unlike these two categories, Business Rule Tests exercise a single algorithm or collection of

related business rules without requiring the associated use case(s) or user interfaces to be used.

Known Aliases

· Business Component Test

· Business Unit Test

· Calculation Test

· Algorithm Test

When to Use It

We (p)refactor tests into procedural tests (workflow and use case tests) and Business Rule Tests when

this will result in a clearer description of the requirements and when it would allow tests to be executed

more quickly. Specific situations include:

· There are too many combinations of inputs to verify easily through the user interface;

· You have a series of very similar in nature workflow tests or scenario tests, with slight

variations; refactoring them into a single workflow test and a collection Business Rule Tests will

test all these variations in a much more compact manner.

· You have a bunch of scenario tests and you would like to expand them to improve the coverage

of combinations of input values but they are already taking a long time to run;

· You already have a set of automated Data-Driven Tests but the tests are taking too long to run

because there is significant setup overhead for getting the system under test into a state from

which the logic can be exercised.

· Maintenance of the tests is getting too expensive because the same sequences of steps are

repeated in many tests and only the input data being used and the corresponding expected

outputs are different.

Acceptance Test Engineering – BETA DRAFT Page 188

· yet the algorithm itself is easy to describe as a mathematical function with well-defined inputs

and outputs.

Test Lifecycle Applicability

Applies to the Conception, Authoring, Execution, and Assessment phases of the test lifecycle model.

Risks Mitigated

The risks addressed include:

· Business rule bugs slipping through due to insufficient test coverage of combinations of inputs

of a business algorithm.

· Other bugs slipping through due to too much time spent testing all combinations of inputs to a

business algorithm.

· Bugs slipping through due to the copy-paste errors due to cloning the same test many times.

· Test maintenance scenario: Bugs slipping through because of multiple presence of the a series

of steps in multiple scenarios and only some of them (not all) being .

Limitations

· Executing business rule tests manually is tedious and error prone.

· Automated business rule testing requires a system architecture that has been designed for

testability. We prefer to interface directly to the software component that implements the

business rule and exercise it by giving it our input data and getting back the responses. The

Business Rule tests are much harder to automate and take longer to run if we need to use a

database or user interface to interface with the component.

How to Do It

1. Identify the algorithm/ business rule in question.

2. Identify the inputs and expected outputs.

3. Identify interesting input values using Equivalence Class Partitioning based on the expected

outputs and using Boundary Value Analysis of the input values.

4. Determine the expected output for each combination of interesting inputs using the most

appropriate test oracle. (Use of a Hand-Crafted Test Oracle is the most common.)

5. Capture the inputs and expected outputs in some form; rows of a table is common.

6. Define a way to execute the algorithm directly passing the inputs to the system-under-test and

getting back the outputs.

Acceptance Test Engineering – BETA DRAFT Page 189

7. Execute the tests using each combination of inputs comparing the actual results with the

expected result to determine the test outcome.

Examples

· Global Bank ITPS Suspicious Activity Algorithm Fit Tests

Implementation Options

Business Rule Tests are most commonly automated using tools such as Fit but could also be executed

manually if there is a way to enter the inputs and get the output through a user interface. The latter is

rare.

Business Rule Tests can result from refactoring a set of functional (use case or workflow) tests or they

can be defined proactively as part of the test automation strategy. In both cases they require design-for-

testability.

Automated Business Rule Test

The Business Rule Test can be automated using technologies such as Fit’s “column fixture”. These

fixtures are used to read a simple table of data where the first n columns each represent one of the

inputs of the algorithm and the last column represents that expected result of running the algorithm.

Therefore, each row is an independent test.

NOTE: on the issue of columns to the right…

Manual Business Rule Test

When the system under test provides an appropriate user interface that exposes the algorithm, Business

Rule Tests can be run manually. The tester would navigate to the appropriate screen to enter the input

values. Ideally, the system responses can be seen on the same screen. If not, the tester navigates to

another screen to seen the output that they compare to the oracle to determine pass/fail status of the

test.

Prefactoring to Business Rule Tests

A key part of defining the test automation strategy is determining what kinds of test automation to use

and for which tests. We can improve test effectives considerably by considering different approaches to

test different kinds of requirements. Classification of requirements as being procedural (workflow, use

case steps) vs rule-based (algorithmic, calculations or lists of criteria) can be the first step to reducing

Acceptance Test Engineering – BETA DRAFT Page 190

the number of variations that must be tested within a procedural-style functional test. (Classification

Trees and Mind Maps are useful tools for this.)

Having separated out the requirements into different kinds, this naturally leads t different strategies for

verifying that the requirements have been implemented successfully.

Refactoring to Business Rule Tests from a Series of Workflow or Use Case

Tests

We may discover that the main variation between a set of procedural functional tests is the data being

used as input to the system-under-test and the corresponding expected output. Or we may have already

parameterized the functional test to take a table of inputs and expected outputs so that we can reuse

the test script. Either way, the steps for refactoring are:

1. Identify the variability between the tests.

2. Summarize each collection of input/output data variability that does uses exactly the same test

procedure (the “test script”) as a table of inputs and expected outputs.

3. Identify the part of the system-under-test that implements the rule or calculation.

4. If necessary, refactor the system-under-test so that this part of the system can be instantiated

and executed without bringing up the whole system. This is an Extract Testable Component

refactoring [XTP].

5. Build an interpreter that reads the table of inputs/outputs one set at a time and invokes the

business rules component and reports the results. This interpreter may be built from scratch or

built as a set of plug-ins to a test automation framework such as Fit[Fit],[FitBook]

Rationale

Business Rule Tests let us verify a large set of test conditions with a minimum of test authoring and test

execution effort and rapid feedback from the test execution. This is beneficial in terms of test

management, maintenance and ability to see multiple scenarios on a single page in a more concise way

Related Topics

· Hand-crafted Test Oracle

· Previous Result Test Oracle

· Comparable System Test Oracle

Acceptance Test Engineering – BETA DRAFT Page 191

References

Books:

· [FitBook] Fit for Developing Software, Mugridge, Rick and Ward Cunningham

· [XTP] Meszaros, Gerard “xUnit Test Patterns – Refactoring Test Code” Addison-Wesley

Professional.

Online Resources:

· [Fit] http://fit.c2.com

· http://xunitpatterns.com/Extract%20Testable%20Component.html

Acceptance Test Engineering – BETA DRAFT Page 192

Ubiquitous Language

Effective communication between business users of software and the technical builders and testers of

software requires a common language. Since business people are not likely to learn technical jargon, the

technical people must learn to speak “business”. This ubiquitous language should form the basis of all

communication including the acceptance tests that describe what done looks like.

Known Aliases

· Domain Specific Language

When to Use It

Use ubiquitous language in all communications and any artifact that may need to be understood by a

business person. Acceptance tests should all be described using ubiquitous language. Object-oriented

programming structures the software around the ubiquitous language in the form of a domain model in

a practice known as Domain-Driven Design (DDD).

Test Lifecycle Applicability

Applicable to all phases of the test lifecycle but particularly to the authoring phase.

Risks Mitigated

The risks addressed include:

· The tests all pass but don’t reflect what the business actually thought they were agreeing to.

Limitations

TBD

How to Do It

Standardizing the terminology used for all communications is easier said than done. A common

technique is to prepare domain-specific glossaries of terms relevant to the project. This needs to be

reinforced by establishing team norms that anyone can call someone else, regardless of position, on

their use of terminology that is not in the ubiquitous language glossary.

Acceptance Test Engineering – BETA DRAFT Page 193

Examples

· <list any examples here as hyperlinks to samples files>

Implementation Options

Ways to document the ubiquitous language include:

Domain or Project Glossary

A simple glossary may be enough. Add additional words as we realize we need them.

Domain Model

We could build a complete domain model with terms as entities as well as the relationships between

them.

Rationale

Anything that helps communication between people with disparate backgrounds will improve the

likelihood of success.

Related Topics

· The Action Verbs technique uses words from the Ubiquitous Language

· When we Record & Refactor we should refactor towards the Ubiquitous Language

References

Books:

· “Domain Driven Design” by Eric Evans

· “Just Enough Software Test Automation” by Daniel J. Mosley, Bruce A Posey

Online Resources:

· Tbd

Acceptance Test Engineering – BETA DRAFT Page 194

Acceptance Test Engineering – BETA DRAFT Page 195

Automating Functional Tests

This chapter focuses on practices related to the automated execution of functional tests. The base

practice describes the circumstances in which we should considered automated execution of functional

tests. These include running the same test many times, running it with many combinations of data

inputs, reducing the time it takes to run the test.

· Automated Execution of Functional Test describes common characteristics of the various

approaches to automating execution of functional tests

· Business Component Testing is a way to test business rules in isolation of the application

functionality that normally invokes them. It is primarily a technique related to test automation.

The next three practices describe different approaches to how the test scripts are structured while the

other two describe additional techniques that can be mixed in to the three basic scripting approaches.

· Recorded Test Automation describes an approach to test automation that uses a test recorder

to capture a test script that can be replayed later.

· Programmatic Test Automation describes an approach to test automation in which we hand-

script automated tests using a programming language.

· Keyword-Driven Test Automation describes an approach to test automation in which we hand-

script automated tests using a purpose-built test scripting language based on natural language

keywords picked from the ubiquitous language.

The next two thumbnails describe two additional techniques that build on the three core approaches.

They can be used with any of the core automation approaches:

· Record & Refactor describes a way to make recorded tests more robust or to implement the

keywords and libraries used by keyword-driven and programmatic test automation respectively.

· Data-Driven Testing describes how we can reuse the same test script with different (input and

expected output) data values by replacing hard-coded values within the test script with

parameters linked to a data table.

The Three Core Approaches to Preparing Automated Test Scripts

The Recorded Test approach (sometimes called Capture – Replay or Record & Playback) involves

recording the actions of a human user and the responses of the system-under-test as they interact with

each other. This approach is typically used when the user interface is the only interface available for

interacting with the system-under-test and in these circumstances results in highly detailed, hard to

understand/maintain and often very fragile test scripts.

Acceptance Test Engineering – BETA DRAFT Page 196

At the other extreme of the spectrum lies Programmatic Test Automation in which a technically savvy

person prepares the test script using a programming language editor. This allows good software

engineering practices to be applied to the testware which can reduce the fragility of the tests

considerably and make the test easier to understand (for a suitably tech-savvy reader.) This approach

brings the full expressive power of a programming language but requires the commensurately higher

level of technical expertise.

An alternative way to specify the test scripts is through the use of a domain-specific vocabulary of

keywords (often called action words or action verbs) each with a predefined set of arguments. These

Keyword-Driven Tests are prepared using a simple text or table editor (e.g. a word processor or a

spreadsheet respectively) by domain experts. The keyword vocabulary interpreter is implemented by a

technically-savvy person. These tests have the additional benefit of being completely independent of

the interface technology and, in some cases, of the actual application being tested. (That is, the same

tests can be run against two different applications that implement the same business functionality.)

Two Additional Techniques that Build on the Three Core Approaches

A possible shortcut for implementing either Hand-Scripted Tests or the Keyword-Driven Test interpreter

is to record tests and then refactor them into two layers. The overall flow of the test is stored as

domain-level hand-scripted tests or keyword-driven tests while the steps of the tests contain the

detailed interfacing logic that was recorded. This Record & Refactor approach to preparing test

automated scripts can also be used to improve the robustness of Recorded Tests by replacing hard-

coded values with variables and by making the tests more tolerant of non-deterministic behavior of the

system-under-test. One such example is generalizing a test script to allow the handling of events or data

records being presented in orders different from what was originally recorded.

The test coverage of business rules can be improved at very little additional test preparation cost by

parameterising any of these test styles with a data sheet containing various combinations of input data

values and the corresponding expected outputs. This Data-Driven Testing approach can be incorporated

into Hand-Scripted Tests, Keyword Driven Tests or Recorded Tests by replacing hard-coded values within

the test scripts with placeholder that refer to specific columns within the data grid used to specify the

test conditions.

An alternative to running the data-driven tests through slow, cumbersome functional tests is to run

them directly against a business component that implements the rules. This is called Business

Component Testing (or Business Unit Testing.)

Acceptance Test Engineering – BETA DRAFT Page 197

Automated Functional Test Execution

Test automation is a way to exercise the system-under-test without human involvement. A computer

program runs the steps of a test script, interacting with the system-under-test to exercise the

functionality in question.

When used in the right circumstances it good way to run a lot of tests with much less effort than manual

testing. In some circumstances, automated test programs are the only way some tests can be executed.

In other circumstances they are an alternative to manual execution of test scripts. Test automation has a

place as part of an effective test strategy. For example, frequently run Automated Regression Tests can

be used as a way to prevent bugs from (re)introduced into the system.

Known Aliases

· Automated Testing (ambiguous, not recommended)

· Test Automation (ambiguous, not recommended)

· Functional Test Automation (ambiguous,not recommended)

·

When to Use It

Use automated test execution when:

· The code is being changed regularly and you want an efficient way to verify that existing

functionality is not broken by the changes.(NB: THe functionality being tested needs to be

stable, otherwise the overhead of maintaining automated tests will kill the testing.)

· You want immediate feedback about any newly introduced defects/regressions.

· You want to free up testers from the boring drudgery of manual, script-based regression
testing to allow them to spend more time doing other types of testing.

· You want the development team to have a very clear understanding of “what done looks

like” before they start development. (See Acceptance Test Driven Development.)

· The expected cost of repeated manual regression testing exceeds the cost of automation

and maintenance.

· Testing functionality of the system-under-test that require a computer actor e.g. API testing,

web or network service testing.

· you want to extend the reach of your testing (data driven tests)

· Testing characteristics of the system-under-test that require a computer to execute (e.g.

performance testing, stress testing, scalability testing, etc..)

· Running the same tests against many different configurations of the system-under-test (e.g.

OS and browser types and versions.)

· Running the same test script against the same system-under-test with many input data
values.

Acceptance Test Engineering – BETA DRAFT Page 198

Limitations

· Generally, automated regression testing of functionality will not find very many new bugs. It

isn’t meant to. Don’t measure the success of your test automation initiative based on the

number of bugs they find. Do measure the success (indirectly) based on how much time your

testers get to spend doing real, productive testing and how many bugs they find that way.

The power of automated regression tests is in the cost effectiveness of uncovering software

regressions.

· Requires staff with scripting/coding + testing skills

· Requires management of the scripting/coding effort

· Tests & test tools are code; code has bugs: therefore testing of test scripts may need to be

done

· Test automation suffers from bit rot if unmaintained, like any other code

· TA suffers from bit rot faster if staff not highly skilled coders in their own right

· Takes time away from productive test activities (TA doesn't find new bugs.)

· Costly (skilled staff, development, maintenance) long-term capital investment. Analogy is

human vs robotic work on an assembly line.

Test Lifecycle Applicability

While Test Automation is applicable in some way to the entire test lifecycle, it is most specifically

applicable to the execution phases.

Risks Mitigated

The risks addressed include:

· Changes to a piece of code inadvertently introduces a new bug

· A bug that was previously fixed is inadvertently reintroduced

· Newly introduced bugs are not found until long after they were introduced greatly increasing

the cost of fixing them (assuming that tests are run more frequently which is facilitated by

automating the tests.

· Existing bugs are not found due to testers focusing on manual regression tests rather than

other types of testing.

Process Applicability

Applies to all process models. Particularly important for agile or highly incremental projects because of

the number of times the regression tests need to be run.

How to Do It

1. Identify the tests that should be automated (as part of your Test Strategy)

2. Pick an appropriate automation technology for the test(s) in question.

3. Ensure that testability is built into the application to make test automation cost effective.

4. (Optional) Data gathering/prep (e.g. when using sanitized live or production data)

Acceptance Test Engineering – BETA DRAFT Page 199

5. Automate the tests including the 4 key behaviors:

a. Setting up the preconditions of the test (includes test data).

b. Exercising the system under test.

c. Assessing the actual result against expected results.

d. Reporting (code coverage, perf, …)
e. Cleaning up the system under test (if necessary).

6. Verify that the tests pass with a working system.

7. Verify that the tests fail when you introduce a defect into the system under test.

8. Save the test(s) in a Test Asset Management system.

9. Pick a frequency for executing the tests based on how frequently the code changes and how

long it takes to run the tests.

10. Schedule the tests for execution.

11. [Optional] Repeat execution on various OSs and configs.

12. Help/Documentation [Keith Stobie. 6 steps. Paper “How to Automate Testing – the Big Picture

LINK]
13.

Examples

· Automated Business Unit Tests – Verifying the ITPS Suspicious Activity Algorithm

· Testing the Global Bank ITPS Notifications Settings for CSRs

Implementation Options

There are a large number of ways tests may be automated and the details are beyond the scope of this

book. The following is a sampling of the most important considerations.

Design For Testability

……

Granularity of the System Under Test

Each test targets a particular piece of software, the system under test (SUT). For unit tests, the SUT is

just an individual unit of code, while for acceptance tests, the SUT is the entire suite of applications used

by the users. In general, the finer the granularity of the SUT, the less the test will be impacted by

changes to other parts of the system. Automated tests should verify the behavior of the SUT using the

finest granularity SUT possible. That is, the smallest part of the overall system. We should strive to have

much, much fewer tests for the entire system (or system of systems) than for components of the system

than for individual units of the system. This Test Automation Pyramid should be wide at the base (unit

tests) and have a small peak of functional or workflow tests.

Acceptance Test Engineering – BETA DRAFT Page 200

Test Authoring Mechanism

Tests can be automated by recording the interactions between a user and the system under test, or

tests can be hand-crafted using either a general purpose programming language or using a domain-

specific testing language. In general, Recorded Tests are much quicker to prepare but are very difficult to

maintain. Hand Scripted Tests are much more time consuming to prepare but can be crafted to avoid

needing much maintenance. Tests written in a domain-specific testing language will be easier to write,

understand and modify but may be limited in what capabilities they can test.

+Record & Refactor

How to Interact with the System Under Test

The automated tests may interact with the system under test via a user interface, a messaging interface,

network services, or via a direct software API. They may also interact via a database or file system. In

general, the more direct and synchronous the interaction, the easier it is to automate the tests and the

lower you can expect the maintenance costs to be.

Give recognition of various pieces and categorize them under direct/sync

APIs – very direct and sync

UIs – very indirect and async

Environment Management Strategy

The less the test needs to assume about the state of the system under test and its surroundings, the

more robust the test is likely to be. Avoid making assumptions about the starting state of the system

under test; if it needs to be in a particular state, the test should explicitly put it into that state. If the

system under test needs inputs from another system that is hard to control, consider stubbing out

(implementing a test-only version where the outputs are controlled by the tester) the interface to the

other system so that the test can control what inputs the system under test receives and when.

Rationale

Automated Tests act as a safety net for people making changes to the system under test. They can

provide much more immediate feedback on the impact of changes to the code base than manual tests.

They are not, however, a replacement for intelligent, highly-motivated testers.

THIS IS NOT ONLY ABOUT REGRESSION – Automated fuzz testing can find new bugs.

RUN TEST MORE FREQUENTLY HAS BENEFITS

Related Topics

· Test Strategy

Acceptance Test Engineering – BETA DRAFT Page 201

· Test Asset Management

· Planning Test Automation

· Acceptance Test Driven Development

· Design for Testability

· Regression Testing

· Keyword-based Testing

· Parameterized testing

· Test Planning

· Recorded Test Automation

· Record & Refactor Test Automation

· Data-Driven Test Automation

· Keyword-Driven Test Automation

· Hand Scripted Test Automation

References

Books:

· “xUnit Test Patterns” by Gerard Meszaros

· “Lessons Learned in Software Testing” ch. 5, Kaner, et al.

· Tom Arnold et al, Professional Software Testing with VSTT: Tools for Software Developers

and Test Engineering (Programmer to Programmer), Wrox, 2007.

· Brian Marick, Everyday Scripting with Ruby: for Teams, Testers, and You, 2007

· James McCaffrey, .NET Test Automation Recipies, APress, 2006

· Mugridge/Cunningham, FIT book

· Gojko Adzic "Test Driven .NET Development with FitNesse".

Online Resources:

· Test Automation Pyramid, Gerard’s StarEast/West classes?

· Mike Cohn’s?

Acceptance Test Engineering – BETA DRAFT Page 202

Recorded Test Automation

Recorded Tests are what come immediately to mind for most testers when someone mentions “test

automation”. This approach to test automation (or more precisely, to automated test generation)

involves use of a test recording tool while running tests against the system under test and later replaying

the recorded tests against the same or different system under test. It is an automated approach to using

the Previous Result Test Oracle.

Known Aliases

· Record & Playback

· Capture, Replay

When to Use It

Recorded test automation is highly regarded for the simplicity and speed in automation. However, they

have a number of downfalls which are listed in the Limitations section.

We can use Recorded Tests when we already have a working system and we do not plan to maintain the

tests across any appreciable change. We can use Record & Refactor, another type of test automation,

when you want to quickly build up a library of reusable test components from which we can assemble a

variety of high-level automated tests scripts.

If you have a system when you can always record constantly, it’s great for bug replay.

In web apps incl. transaction processing, for regression testing.

Much better to do for smaller pieces than the entire SUT.

Stable components, interfaces etc. (caveat: most people misjudge how stable their system is, especially

when testing via UI). Do you make stability a requirement of the system? It may hurt the business value

if this is demanded and implemented.

Test Lifecycle Applicability

Applicable to the authoring phase of the test lifecycle. Influences the maintenance phase by making the

resulting tests easier to understand.

Risks Mitigated

The risks addressed include:

Acceptance Test Engineering – BETA DRAFT Page 203

· The output of the system under test has changed unexpectedly from what it used to produce

in the past.

· Tests are run not often enough to catch newly-introduced bugs.

Limitations

The main selling point of recorded tests is that they are usually quick to automate. They do, however,

have a number of issues:

1. They require the system under test to be working more or less correctly before tests can be

recorded. So they are not appropriate for Acceptance Test Driven Development.

2. The recordings they make tend to be very low level and highly detailed. This makes them

hard to understand and even harder to maintain.

3. The recordings tend to be very fragile when the system under test is modified. This is for two

reasons:

a. They interact with the system under test through the user interface which is not

designed for ease of programmatic interaction.

b. There is a lot of duplicated code in the recordings which makes for a lot of places to fix

that code when it is either recorded incorrectly or when the system under test is

modified making the code obsolete.

c. Therefore, the cost of maintenance of recorded test is significantly higher than the

cost of initial recording.

4. The tests tend to be very slow to execute because they interact with the system under test

through the user interface.

5. The recordings only represent single-user interactions with the system. Multi-user

interactions and thread synchronization need to be addressed in manually crafted tests.

6. Some user interface technologies are not amenable to test recording. For example, a system

that generates unique HTML object identifiers every run makes it very difficult or impossible

to accurately recognize the objects on the screens in a robust way.

7. Most recording tools would not support custom GUI widgets and complex composite

designs.

Recorded tests suffer from sensitivity

RECOMMENDATION

Acceptance Test Engineering – BETA DRAFT Page 204

The key of how much of what you are looking at gets recorded. The less gets recorded the less fragile

your recorded test becomes.

Advice: Record the least!!!!!!!!

How to Do It

The use of the Recorded Test practice occurs in three steps. The first step is to record a test. The second

step involves ensuring that the recoded test is valid. The final step is executing the tests on a schedule

and reviewing the results.

Recording a Test

8. Conceive a test script by listing the test conditions to be verified

9. Define the steps of the test using the domain specific ubiquitous language.

10. Configure the Recorded Test tool to start recording a test session while you interact with the

system under test.

11. Execute your test script manually while the Record Test tool records your actions.

12. When you are done with your test, save the recorded test with an appropriate name.

Testing the Test

1. Launch the test playback tool with the recorded test.

2. Observe the test while it interacts with the system under test as it executes.

3. For each step that fails, correct the issue and retry execution. Common fixes:

a. Delete extraneous recorded steps

b. Modify the “object recognition” parameters to allow it to recognize the objects on the

screen.

4. When the test runs successfully several times in a row, manually verify that the system

under test is left in the correct state

5. Try injecting errors into the system under test and verify that the test fails as a result. If not,

add “checkpoints” to the automated test script to assert that the system under test

responses match the expected responses recorded on earlier runs.

6. Once the recorded test is working, add it to a test suite and verify that the entire test suite

runs correctly and that there are no unexpected interactions between tests.

Acceptance Test Engineering – BETA DRAFT Page 205

Executing the Test

1. Launch the test playback tool with the suite of recorded test.

2. After the test suite has been completed, examine the test results for any failures.

3. If any occurred, rerun the test by itself while you want to determine whether the problem is

with the test (false positive) or with the system under test (true positive.)

4. If the problem is with the test, repeat the relevant steps in Testing the Test to fix the failing

test. Possible root causes may be:

a. Failure to set up all the preconditions of the test correctly; for example, the contents of

the system under test’s database.

b. Failure to control all the inputs of the system under test; for example, the time, date or

another system’s database or behavior.

<Raw>A Note on Choosing a Recorder

Select a tool that records not at the pixel-level, but at the level of interaction with some GUI widgets.

This way the recorded script would not depend on screen layout and display resolution. It would also be

easier to refactor. Of course, this generally requires naming all GUI components and you may potentially

need a different tool for each GUI library used. Any non-trivial UI changes or operating on custom

widgets would still break the tests. Synchronizing threads is a problem.

Recommendation: consider specifying tests at the level of user intentions not user interactions. (link to

Subcutaneous tests)

</Raw>

Process Applicability

Much better suited for waterfall, than iterative projects.

Examples

· <list any examples here as hyperlinks to samples files>

· VSTT “Collectors” example

· Need a sample with a VSTT Web Test Recorder and Verifier

Acceptance Test Engineering – BETA DRAFT Page 206

Implementation Options

The potential for success using Recorded Tests is greatly influenced by whether or not the design of the

system has taken testability requirement into account.

Test Recording After the Fact

When Test Recording is undertaken as a last minute decisions after the system has already been built,

the Recorded Test approach may prove to be inadequate or very expensive.

Design for Testability

When the system has been designed with testability as a requirement, it may be possible to record tests

that are quite robust. In all likelihood, though, these tests would not be recorded through the user

interface using general purpose tools. See Built-in Record & Playback.

Built-in Record & Playback

Many of the problems associated with Recorded Tests stem from the fact that most such tools interact

with the system under test through the user interface. A much more robust approach is to build the

record and playback capabilities right into the system under test. This allows the tests to be recorded

using a domain-specific ubiquitous language rather than in “UI widget speak”. It also eliminates much of

the accidental complexity associated with asynchronous interaction between the system under test and

the test tool.

Rationale

Recorded Test may work for you if you need a quick and cost-effective way to record tests that don’t

need to be resilient to change. Otherwise, consider Record & Refactor, Built-in Test Recording, Hand-

Scripted Test Automation, Keyword-Driven Test Automation or Business Unit Tests as alternatives.

Related Topics

· Ubiquitous Language

· Keyword-Driven Test Automation

· Record & Refactor

· Hand-Scripted Test Automation

· Test Automation

· Previous Result Test Oracle

Acceptance Test Engineering – BETA DRAFT Page 207

References

Books:

· “xUnit Test Patterns – Refactoring Test Code” by Gerard Meszaros

· “Just Enough Software Test Automation” by Daniel J. Mosley, Bruce A Posey

· TBA

Online Resources:

· http://builtinRecordAndPlayback.xunitpatterns.com

· xunitpatterns.com

· Web Test Authoring and Debugging Techniques: http://msdn.microsoft.com/en-

us/library/ms364082(VS.80).aspx

·

· TBA

Acceptance Test Engineering – BETA DRAFT Page 208

Programmatic Test Automation

Automated test scripts are hand-coded in a scripting or programming language by people with enough

technical skills to do some programming and debugging. The test scripts set up the state of the system

under test, exercise the functionality in question, verify that the system supplies the correct responses

and ends up in the correct final state, and optionally, clean up the system. The tests may be used as

regression tests, for acceptance-test-driven development (ATDD), or for other types of testing like data-

driven testing or fuzz testing.

Known Aliases

· Automated Test Script

· Scripted Test Automation

· Hand-Scripted Test Automation

· Hand-Coded Test Automation

· Code-Driven Test Automation

· Test code

· Test program

When to Use It

Use programmatic test automation when you need to test in a fairly technical environment and have

testing resources who are technical enough to write and debug test code.

Test Lifecycle Applicability

Applicable to the authoring, execution and assessment phases of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

· Bugs in the software go undetected.

Limitations

· Requires technically savvy test personnel to prepare each test unlike keyword-driven test

automation which only requires tech savvy to build the keyword interpreter.

Acceptance Test Engineering – BETA DRAFT Page 209

· Works best when the system-under-test has been designed to support testability. Otherwise, the

technical complexity of interfacing to the SUT through the user interface can make the tests very

flakey and fragile.

· It takes skill and discipline to write good test code. If we fail to apply good engineering practices to

the test code we can end up with hard-to understand and impossible to maintain test code.

· Building a good quality test automation framework can be a significant undertaking if you choose

not to use an existing one (whether commercial or open source.)

How to Do It

Automating the Test

5. Enumerate the set of test conditions to be verified.

6. Group test conditions into test cases (one or more test conditions per test.)

7. Prepare one test script for each test case by writing code. Each test script includes one or

more steps to:

a. Set up the preconditions of the test

b. Exercise the system-under-test

c. Assert that the system-under-test behaves correctly

d. Clean up after the test

8. Optionally, add the test to a test suite.

Testing the test

9. Verify that the test passes when run against a correctly functioning system-under-test.

10. Verify that the test fails when run against a version of the system-under-test that has known

bugs.

Running the Test(s)

11. Run the test either individually or as part of a larger test suite.

12. Inspect the results or aggregate the results as part of a test status report.

We can and should apply good software engineering practices to hand-crafted tests; when we do, the

tests tend to be:

· Easier to write

· Quick to run

Acceptance Test Engineering – BETA DRAFT Page 210

· Relatively impervious to changes in the system-under-test

· Easy to maintain when necessary

If we don’t apply good engineering practices, we can make just as big a mess as with any other test

automation technique.

Examples

· Testing the Global Bank ITPS Notifications Settings for CSRs

Implementation Options

Hand-scripted tests can be implemented a number of different ways. They can be prepared as

standalone test programs or as plug-ins for a test automation framework. The latter can be one

designed specifically for scripted tests or it can be the runtime system of a recorded test framework.

The test scripts may have all the data they need hard-coded within them or they can receive the data to

be used at run time.

Standalone Test Program

We write a main program with all test logic in it and run it on demand. The program interacts with the

system under test through whatever interfaces are available (API, UI, Web Services, etc.) and reports the

results either in the console or by writing the test results into a file. Optionally, either the test program

or another program could collect the results in a central location to facilitate reporting of the test

results.

Test Automation Framework

We write the test based on a test automation framework that runs the test automatically as part of a

test suite and provides reporting on the result of the entire test suite. A testing framework, such as

xUnit or the framework available in Visual Studio 2008 or Visual Studio Team System 2008, greatly

simplifies the process by providing a test runner and a simple way to author tests in common

programming languages.

Recorded Test Execution Framework

We write the test using the language and components provided by a Recorded Test Automation tool and

run it using the tool taking advantage of any test result storage and reporting it provides. Unlike the

Recorded Test approach, the tests are not recorded; they are hand-coded. But they leverage the run-

time infrastructure available to recorded tests.

Acceptance Test Engineering – BETA DRAFT Page 211

Parameterized Test

We can reuse the same test with many input-output value tuples by calling the test logic as a subroutine

from another test or test driver passing the input and expected output values into the test. This is called

a Data-driven Test.

Rationale

Programmatic test automation lets us weild the full power of a programming language to test our

software. Programmatic tests that run in the same runtime system as the code being tested can access

software interfaces that other styles of tests may have difficulty with. Once we have a basic test

automation framework installed, the incremental cost of writing tests is very linear; there is not much of

an up-front investment required.

Related Topics

· Record and Refactor is a way to implement a library of test utility methods that can be called

from hand-scripted programmatic tests.

· Recorded Test Automation is the best known alternative to programmatic test automation

· Keyword-driven Test Automation is a very effective alternative to programmatic test

automation in well-defined situations.

References

Books:

· Mosley, D. & Posey, B. Just Enough Software Test Automation New Jersey: Prentice Hall PTR,

2002.

· “xUnit Test Patterns – Refactoring Test Code” by Gerard Meszaros

Online Resources:

· http://xunitpatterns.com

· Various TDD resources

Acceptance Test Engineering – BETA DRAFT Page 212

Keyword-Driven Test Automation

A technique for separating the specification of tests from the underlying mechanism to execute the tests

by structuring test steps as action keywords followed by action-specific arguments. Each keyword-plus-

arguments forms a separate row in the test and is processed by an interpreter that knows how to

implement the step by interfacing to the system-under-test. The test vocabulary may optionally include

keywords for repetiion of steps or even full programming control structures. Keyword-driven test

automation requires agreement on a Ubiquitous Language or domain specific language for test

authoring and creating an interpreter for the language. Unlike Hand-Scripted Test Automation,

Keyword-Driven Testing is usually more intent based (higher level of abstraction) and requires less

technical expertise. Unlike Data-Driven Testing, Keyword-Based Testing allows the steps of the test

script to be controlled from the test file.

Known Aliases

· Action Words

· Keyword-Driven Testing

· Vocabulary-based testing

· Subroutine…

When to Use It

Use Keyword-driven testing when:

· You want to hand-script automated tests using the ubiquitous language especially when the test

authors don’t have technical skills to write tests in a technical environment. With keyword-

driven testing, business people can prepare automated tests without realizing that they are

actually programming!

· You want to reduce the cost of writing and maintaining tests by elevating the level of

abstraction from user-interface details to business intent.

· You want to use tests to communicate business intent clearly to support Acceptance Test

Driven Development.

· You want to isolate your tests from the underlying system interface and the technology used to

drive the system. In other words, you want to insure your test assets against technical

obsolescence caused by a tool or vender change out.

Acceptance Test Engineering – BETA DRAFT Page 213

· You want to automate workflow testing especially when the workflow involves more several

systems and more than one interface technology.

Test Lifecycle Applicability

Applicable to the authoring, execution and assessment phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

· Tests are not automated because the testers don’t have automation skills

· The wrong tests are automated because the people with the automation skills don’t have a

good enough understanding of what needs to be tested.

Limitations

· Keyword-driven testing is less general than test scripting using a computer language.

· Some kinds of tests are difficult to automate because they require too large a keyword vocabulary.

· Keyword driven testing requires that someone creates and maintains a language interpreter.

How to Do It

Keyword-based testing lies part way between Data-Driven Testing (which runs the same test script over

and over with different values for input parameters and expected outputs) and Hand-Scripted Test

Automation (which uses a full programming language as the means for specifiying the test scripts.)

The preparation of tests is done separately from the construction of the keyword interpreter. Either

could be done first but tests cannot be executed until both are available.

Test Language Definition

1. Understand the functionality to be tested

2. Define a standard set of verbs based on the ubiquitous language to be used as keywords

3. For each keyword, define the arguments that need to be supplied

a. For actions, what are the input arguments?

b. For assertions, what are the expected values? What input values need to be supplied

to retrieve the expected values?

Acceptance Test Engineering – BETA DRAFT Page 214

4. Optionally, specify the actor or object that would be seen to execute keyword. Otherwise,

we can assume all keywords apply to an implicit “system” object.

Test Preparation

1. Identify the test condition(s) being verified

2. Define the test script using the ubiquitous language and the action verbs

3. Define a sequence of steps to verify them including steps to

a. Put the system-under-test into starting state

b. Exercise the functionality of interest of the system-under-test

c. Verify that the expected results have occurred (assertions)

4. Prepare the executable version of the test by translating each step into a keyword plus its

corresponding arguments

a. Action keyword plus input fields

b. Assertion Keyword plus input fields plus expected values

Building the Keyword Interpreter

The following is done for each object or actor plus keyword:

1. Determine what the keyword means to the system under test

2. Choose a way to interact with the system under test. This could be via the user interface or

via a software API or even by loading data into a database.

3. Construct the code that implements the chosen way of interaction.

4. Integrate the code into the test parser

Examples

· Creating Acceptance Tests for User Stories

◦ Subcutaneous Fit Workflow Test

Implementation Options

The keyword language (vocabulary) an be implemented a number of different ways.

Acceptance Test Engineering – BETA DRAFT Page 215

· The keyword-based test script could be executed manually, automated by interfacing with the

the system under test via the user interface, or automated via a machine-oriented interface

such as a programming API or remoting protocol such as SOAP.

· Keyword Language Complexity – This can vary from simple linear scripts consisting of domain-

level keywords, declarative programming constructs such as “repeat this n times” to full control

structures such as IF-THEN-ELSE.

Manual Execution of Keyword-Based Test Script

User Interface-Based Keyword Automation

If the only interface available is via the user interface, each keyword may be implemented as a sequence

of user interface actions. This sequence would typically look like:

1. Navigate from a well-known location to the screen where the action represented by the

keyword is conducted.

2. Enter the argument supplied for the keyword into the appropriate fields, transforming the

data as needed.

3. Fill in any additional non-optional fields with default values.

4. Execute the transaction or submit the web page.

5. Verify the system under test performed the transaction; if not, fail the test step.

6. Navigate back to the well-known location.

API-Based Keyword Automation

The preferred interface between the keyword interpreter and the system under test is via a software

interface. This could either be implemented as method calls on individual classes within the application

or via a well defined interface such as a façade object [DP] or component (such as a DLL).

Purely Linear Keyword-based Test Scripts

The most common implementation of keyword-based testing defines a vocabulary consisting of simple

linear execution of steps each of which translate to an action or transaction implemented by the system-

under-test. The focus is on simplicity and readability through the use of keywords (also called action

verbs) that describe user intent rather than user interface elements.

Linear Scripts with Repetition

Keyword-based test scripts can be made more powerful by allowing modifiers on keywords that specify

the number of times the step should be repeated. This can make the test scripts more compact but

harder to implement and possibly harder to understand. In general, though, the added power is often

worth the added complexity.

Acceptance Test Engineering – BETA DRAFT Page 216

Test Scripts with Control Structures

These scripts can be made more powerful by introducing keywords that allow branching (IF-THEN-ELSE

or CASE) or looping (WHILE-DO, DO-UNTIL). This makes it possible to write tests that can accommodate

various outcomes but makes the tests much harder to understand. The need for such flexibility in test

scripts is often a symptom of a deeper issue: lack of control over everything in the environment that

affects the output of the system-under-test. The added complexity of such flexible tests [XTP] is one

effect but the more serious concern is that we may not be able to tell which of the various possibilities is

actually being tested; some test conditions might never be executed. In general, the added complexity

outstrips the added benefit.

Rationale

Keyword-driven testing allows the tests to be prepared by non-technical people using simple text-

processing tools such as word processors or spreadsheet applications. There is a clear separation of

concerns between test specification and test language interpretation.

Related Topics

· Ubiquitous Language

· Data-Driven Test Automation

· Hand-Scripted Test Automation

· Recorded Test Automation

· Business Unit Test

· Workflow Testing

References

Books:

· Mazur et al (Software test automation?)

· Mosley, D. & Posey, B. Just Enough Software Test Automation New Jersey: Prentice Hall PTR,

2002.

Online Resources:

· http://en.wikipedia.org/wiki/Keyword-driven_testing

· http://shakti.it.bond.edu.au/~sand/TAW06/Action%20Words.pdf

Acceptance Test Engineering – BETA DRAFT Page 217

· Keyword-Driven Testing article at http://www.stickyminds.com/s.asp?F=S8186_COL_2

Acceptance Test Engineering – BETA DRAFT Page 218

Record & Refactor

Recorded test tools are great for quickly creating executable tests scripts but they are notorious for

creating unreadable, brittle, and un-maintainable recordings. A common way to leverage the strengths

of recorded tests without taking on the weaknesses involves refactoring the Recorded Tests. Refactoring

is a way of re-organizing the test code to remove duplication and make the script simpler and easier to

maintain without affecting what it does. By refactoring and re-organizing the recorded tests into high-

level test scripts that invoke the low level utility methods extracted from the recordings, the tests

become much more flexible and less fragile.

Known Aliases

· Record, Refactor, Playback

When to Use It

Use Record & Refactor when:

· You want to quickly build up a library of reusable test components from which you can

assemble a variety of high-level automated tests scripts as Hand-Scripted Tests (Code-Driven

Tests) or Keyword-Driven Tests.

· You want to make Recorded Tests more robust by making the tests less sensitive to non-

deterministic behavior exhibited by the system-under-test.

Test Lifecycle Applicability

Applicable to the authoring phase of the test lifecycle. Influences the maintenance phase by making the

resulting tests easier to understand.

Risks Mitigated

The risks addressed include:

· The output of the system under test has changed unexpectedly from what it used to produce in

the past.

· The product is changed in a future release but the automated tests cannot be modified easily

therefore regression testing cannot be completed in time.

· NB: This practice mitigates some of the limitations of the previous technique (Recorded Test)

Acceptance Test Engineering – BETA DRAFT Page 219

Limitations

· Requires programming skill

· Requires an understanding of refactoring (a fairly advanced topic among software developers.)

· Requires developing an understanding of the often convoluted test code captured by the

recording tool to be able to recognize what is important and what is not. This may take time to

develop.

· The refactored tests may still be highly dependent on the vendor/tool specific scripting

language or libraries (depending on the Recorded Test tool being used.)

· - platform dependencies (target lock-in)

· - assumes you have access to all platforms you care about (see Configuration Testing TN)

How to Do It

The use of the Record & Refactor practice occurs in three steps. The first step is to record a test and

ensure that it works. The second step is to extract sequences of statements into reusable test utility

methods. The third step involves composing new tests using the reusable test utility methods.

Record

1. Follow the steps under “Recording a Test” in described in Recorded Test Automation to create

at least one and optionally several recorded tests.

Creating Reusable Methods

1. Mentally decompose the recorded test script(s) into the high level actions.

2. Insert comments into the recorded test script indicating the high level actions

3. Take the detailed code between the comments and extract it into a utility test method. Give it a

name based on the comment.

4. When more or less the same code is found in several places, turn any value that varies into

arguments that are passed to the utility method at run time.

5. Move the utility test method onto an appropriate Test Utility Class or module.

Using Reusable Methods

1. Conceive a test script by listing the test conditions to be verified

Acceptance Test Engineering – BETA DRAFT Page 220

2. Define the steps of the test using the domain specific ubiquitous language or terminology (see

Keyword-driven testing).

3. For each step, find the corresponding reusable test utility method and call it passing any

necessary parameters.

If no method is available, consider creating on using the Record

4. Follow the steps under “Recording a Test” in described in Recorded Test Automation to create

at least one and optionally several recorded tests.

1. Creating Reusable Methods process outlined earlier.

Examples

· Refactored Recorded Test (OS)

Implementation Options

The actual refactoring can be done manually or using a refactoring IDE. Many modern IDEs support at

least a few common refactorings and there are refactoring plug-ins available for other IDEs.

Common Refactoring Steps

There are a standard set of refactorings that we use when practicing Record & Refactor test authoring.

Extract Method

The most common refactoring is to extract one or more lines of test code into a separate method giving

it a meaning name based on the ubiquitous language. This reduces the complexity of the test script by

letting it focus on communicating the test intent rather than the mechanics of how that intent is

realized. There are several variations of this based on what kind of logic is exgtracted:

· Move up in Abstraction (Interactions at the physical level/pixels are replaced with interactions

at the level of GUI components/widgets)

· Replace With User Intentions (user interactions via UI are replaced with subcutaneous tests that

are driven by user intentions – what they are trying to accomplish as opposed to what widget

they are trying to click on)

Acceptance Test Engineering – BETA DRAFT Page 221

Rename Method

Once we have used a test utility method a few times we may find that the name does not help us

accurately communicate the intent of the test. When this occurs, we should rename the method to

better communicate the intent.

Introduce Parameter

Test utility methods can be made more reusable by replacing hard-coded values with arguments that

are passed in as run-time parameters. When implemented by a refactoring tool, one simply selects the

value within the body of the method and invokes the Introduce Parameter refactoring. We provide a

name (and optionally a type) for the argument and the tool finds all callers of the method and adds the

previously hard-coded value as an argument. When implemented manually, we may wrap the new

parameterized method with a method wrapper that defaults the argument to the previously hard-coded

value.

Pull Up Method

When the test utility method is first extracted, by default it is put onto the current class or object. In test

execution environments that support abstract classes, one way to make the utility methods available to

other tests is to pull the methods up to an abstract superclass from which the concrete tests inherit.

Move Method

When the test execution environment doesn’t support abstract classes and subclassing, and when we

have created a large, diverse set of reusable test utility methods, it is useful to organize the test utility

methods based on the domain concept to which they related. We use the Move Method refactoring to

move the method to the new host class along with any member variables/attributes and private

methods on which it depends.

Introduce Wrapper Method

Most refactoring IDEs support Rename Method and many support Introduce Parameter. If yours doesn’t

and you have a lot of references to the current name, you can provide backwards compatibility with the

tests you cannot afford to modify by introducing a wrapper method. The wrapper implements the old

signature and translates it into the new signature by calling the newly renamed or redesigned method.

This allows you to take your time upgrading the old tests to call the new method signature; when the old

tests are converted, simply delete the wrapper method.

Remove noise

Remove steps that the recorder creates that are irrelevant to the objective of your test case.

Make Expectations Optional

Some responses of the system-under-test don’t always occur. If this is valid we can make our tests more

robust by marking these blocks of assertion logic optional depending on whether the event is received.

Acceptance Test Engineering – BETA DRAFT Page 222

Allow Different Order of Events

When the test is verifying the events with which a system responds, the test may fail if the events are

received in a different (but still valid) order. We can make the tests more robust by indicating that

possible alternatives within the test. This is often done by marking blocks of code as being independent

but necessary events.

[ADD REFACTORINGS THAT SPECIFICALLY APPLY TO THE RECORDED TESTS]

Rationale

Record & Refactor strikes a good balance between the benefits of fast test authoring (by recording tests)

and test understandability and maintainability (by hiding the recorded code behind a domain-specific

ubiquitous language.)

Related Topics

· Ubiquitous Language

· Action Verbs

· Recorded Test

· Test Automation

· Previous Result Test Oracle

· Hand-Crafted Test Oracle

References

Books:

· “Refactoring – Improving the Design of Existing Code” by Martin Fowler

· Refactoring Workbook by Bill Wake

· “xUnit Test Patterns – Refactoring Test Code” by Gerard Meszaros

· TBA

Online Resources:

· Refactoring.com

· xunitpatterns.com

Acceptance Test Engineering – BETA DRAFT Page 223

· Reference Adam Geras’s article/blog entry on Record & Refactor

·

· TBA

Acceptance Test Engineering – BETA DRAFT Page 224

Data-Driven Test Automation

Data-Driven Testing is a technique for reusing the same test logic with many sets of data values. The test

is structured to read the input and corresponding expected output data values from a file or table and it

runs the same test logic with each set of data. Unlike Keyword-Driven Testing, the steps of the test script

are not specified in the data file.

Known Aliases

· Parameterized Test

When to Use It

Use data-driven test automation when you want to run the same test logic with many combinations of

input values. This is particularly appropriate for verifying business rules such as:

· Complex calculations

· Input validation (e.g. invalid customer names)

NB: There is >1 way of using Data-driven testing.

Presumption: test script steps are the same, data sets are different.

Test Lifecycle Applicability

Applicable to the authoring, execution and assessment phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

· The system under test fails when certain combinations of input data are provided.

Limitations

· Data-driven test automation doesn’t necessarily provide very good structural coverage because it

runs the same logic over and over.

what are the conditions under which DDT does provide good coverage?

Acceptance Test Engineering – BETA DRAFT Page 225

· Data-driven test automation implemented using Recorded Test tools can be very slow to execute

and are usually very fragile.

How to Do It

The preparation of tests is done separately from the construction of the keyword interpreter. Either

could be done first but tests cannot be executed until both are available.

Test Language Definition

1. Enumerate the set of test conditions to be verified as tuples consisting of input values and

the corresponding expected results

2. Automate a test using one of the tuples. See Implementation Options for options on how to

do this.

3. Generalize the test to read the input values from the table of tuples.

4. Generalize the test to assert against the corresponding expected output value from the table

of tuples.

5. Test the test

a. by running with table of correct values and verify the test passes.

b. by running with table of incorrect expected output values and verify the test fails.

c. by running with table of invalid input values and verify the test fails gracefully.

Misuse of the Technique

· building a scripting language in their data tests

· hard-coded conditional data controls – disaster!

Examples

· Verifying the ITPS Suspicious Activity Algorithm

◦ Fit Test

Implementation Options

Data-driven tests can be implemented a number of different ways.

Acceptance Test Engineering – BETA DRAFT Page 226

Tabular Test Framework

Some test frameworks provide direct support for testing with tabular data. For example, the Fit

framework provides the RowFixture as a way to inject each row of data into the system under test and

compare the output value with what was provide.

Data-driven Scripted Test

A hand-scripted test can be turned into a data-driven test by refactoring it into a parameterized test

called repeated by a test driver that reads the values to be used from a table.

Data-driven Recorded Test

Many recorded test automation tools provide the capability to attach a data sheet to the test script and

map input and output fields to the columns of the data sheet. When the test is run, the test automation

framework automatically runs the test once for each row in the data sheet.

Rationale

Data-driven testing allows the system logic to be tested with many sets of input values thereby provide

good input value test condition coverage but not necessarily good code branch coverage.

Related Topics

· Hand-scripted automated tests can be refactored to Data-driven testing

· Record and Refactor is a way to implement data-driven testing

· Data-driven tests may be used to implement a Business Unit Test

· Workflow Testing is an alternative to Data-Driven Testing

References

Books:

1. Mosley, D. & Posey, B. Just Enough Software Test Automation New Jersey: Prentice Hall PTR,

2002.

2. Mugridge, Rick “Fit for Developing Software”

Online Resources:

· Fit framework at http://fit.c2.com

Acceptance Test Engineering – BETA DRAFT Page 227

Acceptance Test Engineering – BETA DRAFT Page 228

Operational Acceptance Testing

Acceptance Test Engineering – BETA DRAFT Page 229

Installation Testing

Once a software system is created, you need a way to get the components of the system deployed.

Installation testing ensures that the deployment and removal of the components works.

Known Aliases

· Deployment Testing

· Rollback Testing

When to Use It

Installation testing should be done before the end of the readiness assessment. Some development

teams opt to start creating and testing installation scenarios as soon as development starts. Other

teams choose to delay creating and testing the deployment until the very end of the project at the last

possible moment.

Test Lifecycle Applicability

Installation testing is a type of testing, and spans the entire test lifecycle model.

Risks Mitigated

The risks addressed include:

· The software system is functional but cannot be deployed to the customer environment.

· The installation has bugs that are discovered by the end user or customer.

· Deployment failures to a live system cause a service outage.

· Roll back of a failed deployment fails, causing a service outage.

Limitations

Depending on the situation and environment that the software may be deployed in, it may not be

possible to test the installation on all possible platforms on which the software can be installed. In these

situations, the platforms to be tested should be stack-ranked in importance based on the estimated

number of deployments and the risk of problems on each platform.

Acceptance Test Engineering – BETA DRAFT Page 230

How to Do It

An installer can be as simple as the written instructions to copy files from one location to another.

Installers can also be very complicated, automated processes that take user input and make major

changes to a system.

Installation Testing

1. Determine what needs to be installed. This includes obvious items such as executables,

dynamic link libraries, and configuration files. It also includes changes to the target system

for component registration, service registration, registry changes, etc.

2. Review the target system configurations that are supported: hardware, operating system,

system libraries, external dependencies, etc. and determine which are supported. Use

Combinatorial Test Optimization [LINK] or other practices from the Test Reduction Practices

chapter to minimize the number of test cases, if possible.

3. Author tests that

a. Test the installation

i. Determine whether or not the target system has the software installed

ii. Run the installation program or script, following any specific deployment

instructions

iii. Examine the target system for all changes necessary (files copied to the correct

location, registry changes, service registrations, etc)

iv. Run the software on the target system and ensure basic functionality.

v. Report success or failure of the installation

b. Optionally, do repair testing:

i. Break the system installation (i.e. remove an important file)

ii. Ensure that the system no longer functions

iii. Run the installation repair program or script, following any specific deployment

instructions

iv. Determine if the system is back in the correct state and is functional

v. Report success or failure of the repair

c. Test the uninstall

i. Run the uninstallation program or script, following any specific rollback

instructions

Acceptance Test Engineering – BETA DRAFT Page 231

ii. Examine the target system to ensure that all changes made by the installation

were undone. If the system allows users to create files, it is usually preferred

that these files are not deleted by the uninstall

iii. Report success or failure of the uninstallation

4. Create additional test cases considering the following scenarios that may cause an

installation failure, and ensure that in each case the roll back to a stable system is successful:

a. Critical files are read/write locked

b. Critical files are in use by the system

c. A necessary database is locked, missing, or unresponsive

d. Required resources are not available, including:

i. External systems

ii. Disk space

5. Execute the tests created in step #2. Consider automating these tests if there is likely to be a

need to repeat many times over or the cost of doing so is high.

6. Analyze the results and report bugs as necessary

Examples

·

Implementation Options

· Testing the installer mechanism on different configurations to ensure compatibility

· Testing the installer with applications that may compete for resources, like Windows Update

· Testing the installer on a bare or new operating system platform

· Reinstalling -- installing after an uninstall

· Rollback – uninstalling the current version and going back to an older version

Rationale

Without testing installation and uninstallation, and testing that the system works as expected after a

succesfull installation, you cannot ensure that the system will work as expected in the customer’s

environment.

Acceptance Test Engineering – BETA DRAFT Page 232

Related Topics

· Backwards Compatibility testing

References

Books:

·

Online Resources:

·

Acceptance Test Engineering – BETA DRAFT Page 233

Para-functional Testing Practices

This chapter focuses on practices related to verifying the para-functional requirements of the system-

under-test. The first thumbnail provides an overview of this very large topic:

· Testing Para-functional Requirements describes the basic practice and how testing para-

functional requirements differs from testing functional requirements.

This group of practices all relate to verifying the behavior of the system with respect to security. These

all build on the risk assessment practice described in the Planning Practices chapter.

· Security Test Planning describes what we need to do as we plan the activities around assessing

the security attributes of the system.

· Security Testing describes the process for assessing the security of the system through testing.

· Threat Modeling describes the process for understanding vulnerabilities to attacks in the system

as built based on the design and coding of the system.

· Security Reviews describes the process for reviewing the design to identify design and coding

practices that may enable attackers to compromise the system in some way.

· Fuzz Testing describes techniques for assessing whether the system can be compromised by

injecting harmful data through one of its legitimate interfaces.

The next thumbnail provides a brief overview of how we assess system performance:

· Performance Testing describes how we can assess how well the system meets its requirements

for response time, availability, reliability and scalability.

The next two practices deal with assessing how easily the system-under-test can be used by users with

various levels of (dis)ability.

· Usability Testing assesses how easy it is for the targeted users to carry out the tasks the system-

under-test is intended to help them achieve.

· Accessibility Testing assesses how easy it is for users with disabilities to carry out the tasks the

system-under-test is intended to help them achieve.

The last three practices deal with assessing how well the system-under-test complies with local

regulations, languages, customs and idioms whether is is intended to be operated in one area or many.

· Regulatory / SOX Compliance Testing describes practices for assessing compliance with

regulations.

· Globalization Testing describes how to assess whether the system-under-test is capable of

supporting users from multiple locations with different languages and character sets.

Acceptance Test Engineering – BETA DRAFT Page 234

· Localization Testing describes how to assess whether the system-under-test has been adapted

to operate in a specific locale by using location-specific language, idioms and data.

Acceptance Test Engineering – BETA DRAFT Page 235

Para-functional Testing

Some of the requirements of software-intensive systems go beyond the specific functionality they

provide; these parafunctional requirements describe how the system should behave as it is providing

the functionality. We use parafunctional testing tools and practices to assess to what degree the system

satisfies the stakeholders’ expectations.

Known Aliases

· “Ilities” testing

· Non-functional testing

When to Use It

Test Lifecycle Applicability

Applies to all phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

· More kinds of bugs are found during readiness assessment.

· Implicit requirements are discovered during acceptance testing rather than during readiness

testing.

· Product is testing more completely, comprehensively through a broader range of questions

being asked.

How to Do It

As you ready the product for acceptance, you may want to go beyond functional criteria to think about

development criteria. In his Heuristic Test Strategy Model, James Bach suggests these types of testing to

consider, which not only help verify functionality, but may unearth problems with respect to structure,

data, platform, and operations:

· Supportability – How economical will it be to provide support to users of the product?

· Testability – How effectively can the product be tested?

Acceptance Test Engineering – BETA DRAFT Page 236

· Maintainability – How economical is it to build, fix, or enhance the product?

· Portability – How economical will it be to port or reuse the technology elsewhere?

· Localizability – How economical will it be to publish the product in another language?

· Capability – Can it perform the required functions?

· Reliability – Will it work well and resist failure in all situations?

· Usability – How easy is it for a real user to use the product?

· Security – How well is the product protected against unauthorized use or intrusion?

· Scalability – How well does the deployment of the product scale up or scale down to

accommodate more users or cycles?

· Performance – How speedy and responsive is it?

· Installability – How easily can it be installed on to a target platform?

· Compatibility – How well does it work with external components and configurations?

And there are others :

· Reusability – How easily can source code like functions or subroutines be used again to optimize

the full complement of code?

· Extensibility – How well can the product ‘s features be enhanced with other features and add-

ons?

· Configurability – How easy it is to prepare to be used on a variety of different platforms or for

different users and operations?

· Availability – Is it ready to be called upon to work whenever necessary?

· Data Integrity – Is the data stored or processed in a way that it can be reliably retrieved without

changing its original value?

· Safety – Will it cause physical or emotional harm to a reasonable user?

· Recoverability – When it fails, does it restore its previous state without undue hardship to the

user of platform?

· Accessibility – Is it able to be used by people with diverse limitations? Does it conform to

standards like those stated by the Americans with Disabilities Act?

Acceptance Test Engineering – BETA DRAFT Page 237

Implementation Options

Para-functional testing can be done at any phase during a project. An earlier start of para-functional

testing may help drive out implicit acceptance criteria earlier in a project lifecycle. In agile teams, some

types of testing, such as data integrity, recovery, performance (just to name a few) are planned and

executed incrementally as features are completed to answer the question: Does this feature (or part of

the system) meet the criteria for performance?

Rationale

Development teams often get too focused on functional unit testing which tends to confirm a specific

set of functional customer or user requirements or test one story focused on a user behavior. But what

if the customer has implicit requirements, or requirements that go beyond a specific function, or

expectations that emerged well after they were interviewed? The acceptance testing phase would be a

bad time to find this out.

Related Topics

· Functional Testing

· Test Planning

· Test Effort Estimation

References

Books:

·

Online Resources:

· Satisfice Heuristic Test Strategy Model

· “The Role of Testers in XP”, Cem Kaner, 2003

Acceptance Test Engineering – BETA DRAFT Page 238

Fuzz Testing

Fuzz testing is a way to test the robustness of a system under test by

forcing the system to consume corrupted data, usually in an automated

manner. Commonly used when testing APIs.Known Aliases

· Fuzzing

When to Use It

Fuzz testing is a method that should be used with any APIs or modules that take input directly from a

user or other un-trusted sources and have a high risk of impacting the application. For example, the

code executed to open or import a file should be fuzz tested with files that are in the correct format

with invalid data and files that are not in the correct format for import. Fuzz testing is often used to

validate the robustness of code that analyzes data structures, including:

− File format parsers (e.g. those that manipulate structured documents like DOC, XML, PDF or

graphic images like PNG, TIFF, JPEG; you can fuzz the headers and the body data)

− Network protocol parsers (e.g. TCP/IP, TLS, RPC; you can fuzz the data itself or the order of

network operations, for example, when request is preceded by response)

− APIs (e.g. configuration API of the Enterprise Library)

− Registry parsers

− GUI input parsers

Test Lifecycle Applicability

Fuzz testing is applicable to all phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

· The system under test fails when input data is corrupted;The system’s underlying validation

mechanisms are flawed;

· Security issues arise from bad data that was mistakenly accepted

· Issues from assuming data inputs are correctly formed

· Assuming code is robust and hardened for failure when it is not

Acceptance Test Engineering – BETA DRAFT Page 239

Limitations

Fuzz testing usually requires test automation, human review of the failed test results, and may require

custom test automation tools.

Also, encrypted formats and compression formats don’t lend themselves well to smart fuzzing. The

fuzzer will need to have a capability to decrypt/decompress the data, fuzz it and re-encrypt/re-compress

it.

How to Do It

1. Determine the core functionality to be tested and all valid data formats used (e.g. the method

that opens an XML data file and imports the stored information into a program).

2. Determine what elements can be randomized. For example, with an XML file, the following can

be randomized:

a. the entire contents of the file,

b. the contents of each node,

c. the names of the nodes,

d. the names and values of all attributes.

3. Create a set of automated tests that randomize each of the elements independently and feed

them into the program.

4. Run tests many times with different input values, and record failures in such a way that it does

not stop the test run.

5. Analyze the failures to determine if the failure was appropriate. If not, report the failure. If so,

determine if it is possible to remove the false positive without impacting the tests. Modify the

tests as appropriate.

6. During analysis, watch for spikes in the system’s memory usage or CPU utilization (these could

be symptoms of the system using malformed input to make calculations for memory allocation

or running a serious algorithm on that input data, that is not properly bounded. Repeat steps 4

and 5 on each version of the software under test until the software is stable.

Examples

· Fuzz Testing [GBS]

Acceptance Test Engineering – BETA DRAFT Page 240

Implementation Options

Fuzz testing can be implemented on any portion of a system that takes external input. File inputs,

network communication, and direct user input are all areas that can be fuzz tested. However, in most

cases direct user input can be tested via other mechanisms.

Generic Fuzzing

Generic fuzzing is a crude approach that involves random corruption of valid data without any regard to

the data format itself, including (based on recommendations from [Michael Howard The Security

Development Lifecycle (Microsoft Press, 2006)]):

- randomizing the entire dataset,

- filling portions of the dataset with random data,

- changing the size of the dataset,

- searching for null-terminated strings (in ASCII and Unicode) and setting the trailing null to

non-null

- setting numeric data types to negative values

- exchanging adjacent bytes

- setting numeric data types to zero

- toggling, setting, or clearing high bits (0x80, 0x8000, and so on)

- doing an exclusive OR (XOR) operation on all bits in a byte, one bit at a time.

Pattern-based Fuzzing

In this approach, particular data patterns are sought and then some data modification takes places once

those patterns are located. For example, byte values alternating between a value in the ASCII range and

zero might indicate Unicode data.

Intelligent Fuzzing

Intelligent fuzzing approach requires understanding of the underlying data format and uses semi-valid

data (data that seems to be valid and passes the parser’s initial line of defense). For example, for image

formats, you may want to fuzz the compression ratio. When dealing with PDF files, you may want to fuzz

the data by setting bogus values in the header or corrupting the cross-reference table.

Note: most network and file data formats include some form of data validation using checksums. To

perform smart fuzzing, you need to ensure that those checksums are replaced with recalculated values

after the content/body corruption.

Large Volume Fuzzing

Even though a single fuzz test may result in discovering a system’s vulnerability, it is best to do a large

number of fuzz tests. Microsoft Security Development Lifecycle methodology recommends minimum of

Acceptance Test Engineering – BETA DRAFT Page 241

100,000 data fuzzed files to be consumed by the system under test [ref. Howard’s book]. Indeed, the

quality gates for Microsoft Vista included identifying and fuzzing all file and network formats consumed

by the operating system with minimum 100,00 malformed files per parser

[https://www.owasp.org/images/c/c9/OWASPAppSec2007Milan_SecurityEngineeringInVista.ppt].

Creating that number of files for testing is a huge job and automated tools are needed. When selecting a

tool, take into consideration the following:

− whether a collection of randomly fuzzed data streams/files with proper extensions can be

generated;

− whether only portions of the existing data files can be fuzzed;

− whether a template can be used for fuzzing;

− whether the tool supports virtualization of the data stream to avoid the need for physical file

creation in the first place;

− if network data parsers are involved, whether the tool support network packet fuzzing;

− if registry parsers are used, whether the tool support virtualization of the registry.

− if encrypted formats are used, whether the tool has a capability of decrypting and re-encrypting

the data or whether it allows the pre- and post- scripts to be executed on each test case.

− if compression formats are used, whether the tool has a capability for decompressing and re-

compressing the data.

Rationale

In many software applications, the validation of external input is an area that historically contains many

bugs. In the networked environment in which computers exist, with hackers, viruses, malicious users,

and other threats, a system must be robust enough to continuously thwart attacks. By isolating the

inputs that can be varied, and running many test iterations with random input data, the robustness of

the validation code can be tested and verified. Automating this process allows the input validation

system to be assaulted without the need for human interaction.

Fuzz testing is often able to find errors missed by static analysis tools. “Experience has shown that an

affordable level of fuzz testing is likely to find "interesting" bugs that might otherwise be exploited as

security vulnerabilities.” [http://msdn.microsoft.com/en-us/library/ms995349.aspx#sdl2_topic5_2]

Related Topics

· Penetration Testing

Acceptance Test Engineering – BETA DRAFT Page 242

References

Books:

· ”Testing Code Security”, Maura van der Linden, Auerbach Publications, 2007Michael Howard,

SDL book, Microsoft Press 2006.

· “Open Source Fuzzing Tools”, Noam Rathaus, Gadi Evron, Syngress Publishing, Inc., 2007

· Michael Sutton, Fuzzing: brute force vulnerability discovery, 2007

· Violating Assumptions with Fuzzing by PETER OEHLERT, IEEE SECURITY & PRIVACY: March/April 2005: 58-62.

Online Resources:

· The Trustworthy Computing Security Development Lifecycle [http://msdn.microsoft.com/en-

us/library/ms995349.aspx] – also consider referencing the book

· http://www.cs.wisc.edu/~bart/fuzz/fuzz-nt.html

· FTP://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

· FTP://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf

·

Acceptance Test Engineering – BETA DRAFT Page 243

Compatibility Testing

Compatibility testing can be one of two types of testing:

· Running the tests from the previous version of the software on the current version to ensure

that functionality has stayed the same. This type, backwards compatibility testing, is used to

ensure a consistent experience for users, to ensure that previously working functionality was

not broken, and to stop bug regressions.

· Running the same software using different versions of underlying dependencies, and ensuring

that the behavior is the same. Platform (or environment) compatibility testing ensures that

software will exhibit the same behavior in different environments. For example, Microsoft

Word 2007 was most likely tested on Windows XP, Windows XP Service Pack 1, Windows XP

Service Pack 2, and Windows Vista. The same tests were run in these different configurations to

ensure that the environment did not impact the software’s behavior.

Known Aliases

· Backwards Compatibility Testing

· Environmental Compatibility Testing

· Legacy Testing

· Boneyard Testing

· Interoperability Testing

When to Use It

Backwards compatibility testing should be planned and executed on any new release of an existing

software system. For example, in a word processor, the functionality to open and save documents

should be consistent between versions, and if a new file format is introduced, the old format should still

work well enough to allow conversion to the new format.

Environmental compatibility testing should be planned and executed any time that software relies upon

external system functionality that may differ on supported platforms. As an example, if a piece of

software was written to work with the Microsoft .NET 2.0 framework, testing should be done to verify

that it will also work on the .NET 3.0 framework.

Acceptance Test Engineering – BETA DRAFT Page 244

Test Lifecycle Applicability

Applicable to the Conceiving and Authoring phase of the test lifecycle. Affects the Execution and

Assessment phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

o Customers or users who are using older software or hardware that interacts with the

latest version may find it not able to work.

o Customers who expect the same functionality from the previous version of software to

exist in the new version.

Limitations

It’s not easy to acquire all of the platforms that might be necessary to test. Therefore, hiring a third-

party testing laboratory may be a solution. Third-party outsource labs make it a practice to have older

versions of software and hardware to test.

How to Do It

Backwards Compatibility Testing

1. Determine which tests can and should be reused from the previous version of the software by

deciding which functionality has been altered between versions, and only selecting tests that

cover areas that have not been altered.

2. Execute the tests against the new version of the software.

3. Report failures as appropriate.

Environmental Compatibility Testing

1) See if you can determine the kinds of systems that customers still operate.

2) Determine what platforms you need to test.

 Think about the following:

Software

Browsers

Middleware (Customer Relationship Management applications, financial software,

databases, connectivity software)

Drivers

Operating Systems

Acceptance Test Engineering – BETA DRAFT Page 245

Service Packs

Updates

DLLs

Toolkits

Hardware

Intel chipset

Mac

Alpha

RISC machines

Power PCs

Printers

Mobile devices

Examples

· (see Case Study)

Rationale

Sometimes pushing into new technologies alienates existing users because of the economic hardship to

keep up with everything needed to keep current. Therefore, it may be a good decision to add value for

the existing customer base by supporting their existing configurations. Furthermore, some customers

will not accept a system if it does not work with their existing framework, so backwards compatibility

testing would be an important tactic to use during readiness.

It may come down to simple expectations from the customer that the supplier would not put undue or

unreasonable hardship on them to ensure that their existing continues to meet requirements.

For example, if a new version of a printer comes on to the market, many people will have an expectation

that their existing documents would still be able to work on that new printer. That’s why the supplier

might decide that it would be valuable to have a variety of legacy drivers and sample documents from

older applications – or at least test those documents with the new printer and match them against what

the old printer did to see if any discrepancies between n the two documents are severe enough to

warrant a change in the new firmware.

Acceptance Test Engineering – BETA DRAFT Page 246

Related Topics

· Test Outsourcing

References

Books:

·

Online Resources:

Acceptance Test Engineering – BETA DRAFT Page 247

Usability Testing

Usability testing is a way to find out whether the product meets the needs of real users. It involves

watching users operate the product while trying to accomplish a specific task in a (nearly) realistic

setting. There is minimal interaction with the users, other than providing them with the tasks they must

accomplish.

Known Aliases

· Play Testing

· Wizard of Oz Testing

· Ethnography Testing

When to Use It

Usability testing should be considered whenever there is a non-trivial user interface that users will need

to learn to use. It is particularly important when large numbers of users may choose to use a

competitors’ product or when the business case for a system is based on productivity improvement.

Jakob Nielsen writes on his web site:

<PD The following is taken verbatim from a usability expert’s web site >
“More typically, your site sucks and it's incredibly easy to discover your main usability problems.

Test with 5 users and you'll likely get enough insight to double your site's business value. This

step is easy; we can teach design teams to run simple usability studies by walking them through

a complete test of their designs in just 3 days.”

<PD End Quote>
The earlier in the project we can do the usability testing, the larger an impact it will typically have on the

overall quality. The Test Strategy and/or Plan should lay out when usability testing will be done including

what functionality will be tested and what kind of artifacts will be used (paper, prototypes, real

software.)

Test Lifecycle Applicability

Applicable to the Planning, Authoring and Execution phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

· Users are frustrated by the product because they cannot figure out how to use it.

Acceptance Test Engineering – BETA DRAFT Page 248

· Customers choose a competitive product because it is easier to learn

Limitations

tbd

How to Do It

Usability testing involves three major phases. First, we prepare for the usability test sessions. Next, we

run the sessions. Finally, we analyze the test results and decide what changes we need to make to the

product.

Preparation:

1. Identify a set of tasks to be used for verifying the functionality is usable.

2. Create an outline of each task to be verified – each task a paragraph or two.

3. Schedule the usability testing session participants and a place to conduct the testing.

4. Recruit observers and brief them on their role (no interaction with the users.)

Execution:

1. Brief all the people involved in running the test session on their role (e.g. no interaction with

the users except…)

2. Describe the testing process to the user(s). Emphasize that it is the design of the software

that is being tested, not them!

3. Provide the user(s) with the description of the task and access to the system. Ask them to

talk out loud as they use the software so that the observers can know what they are trying to

do.

4. Watch the user(s) as they perform the tasks and take notes of what they tried to do and any

problems they encountered.

5. If they ask a question, note it – let them struggle a bit, don’t rush in with answers on how to

do it.

6. Make notes of their comments and questions

7. At the end of the session thank the participants and tell them how the data gathered during

the test session will be used.

Follow Up:

8. Collate the observations & comments from all the test sessions into common concerns. For

each concern, calculate what percentage of the users had the problem.

Acceptance Test Engineering – BETA DRAFT Page 249

9. Do triage on the concerns deciding which are:

a. Legitimate usability bugs

b. Missing but necessary functionality

c. Out-of-scope functionality

d. Problems with the design of the testing such as incomplete task descriptions; these

should be addressed before the next scheduled test session.

10. Decide how to address the usability bugs and missing but necessary functionality.

a. All/most users had the issue AND it is core functionality -> definitely should be fixed

b. Only one user had the issue -> try to determine why they had the issue; may not

require fixing.

11. Integrate that learning into the product design.

12. [Optional] Inform the participants of the test sessions how you have changed the design

based on their feedback.

Examples

· Ensuring Usability of ITPS Notification Configuration

o Task descriptions – xxx

o Usability test plan

o Usability test schedule

o

Implementation Options

Paired Test Subjects

In many of the variations it is appropriate to use pairs of users instead of just one. This helps make the

subjects’ thought processes more visible because they need to discuss any issues. It may not be

appropriate for play testing of those games where fast reactions are important.

Usability Acceptance Testing

Usability testing may be conducted on the finished product as part of either the readiness decision or

the acceptance decision. In either case, the testing is conducted on the finished product.

Acceptance Test Engineering – BETA DRAFT Page 250

Usability Testing of Prototypes

Usability testing may be used to get early feedback on the design of the product by testing key parts of

the design using executable prototypes. The prototypes may be purpose-built for the usability testing or

they may be early versions of the actual product. In the latter case, the availability of sufficient

functionality to conduct the usability tests can be treated as a project milestone much like

demonstration of specific functionality at a trade show.

Wizard of Oz Testing

Usability testing can be conducted very early in the design process by using paper prototypes instead of

executable systems. The “computer” is played by a team member who places the screen mockups in

front of the users in response to their actions. The users may write in fields to simulate typing, may

point to buttons or links to simulate clicking, or they may verbalize what it is they are trying to do as in

“I’m typing my name, Cindy Smith, into the ‘User Name’ field.”

Play Testing

When usability testing is done on games it is called “play testing”. The mechanics of the testing process

is more or less the same but the task tend to be focused on the gaming objectives (e.g. Get as much gold

as possible.)

Rationale

Watching the target user actually use the software is a useful way to ensure that the design is usable

and workflow is correct in their context. It is also a very powerful way to help the design team

understand the user better and to see how arbitrary decisions about product design and

implementation can have significant effects on the success of the final product. It can also be used to

settle disagreements about how the product should function: “Let’s test both proposals with users and

see if there is a clear preference.”

Related Topics

13. Product Design

14. Test Strategy

15. Test Planning

16. Ethnographic Research may be done ahead before usability testing but it is option.

Acceptance Test Engineering – BETA DRAFT Page 251

References

Books:

· Paper Prototyping by Carolyn Snyder

· Design of Everyday Things by Dan Norman

· About Face by Alan Cooper

· Software for Use by Larry Constantine and Lucy Lockwood

Online References:

· Gerard Meszaros “Adding Usability Testing to an Agile Project” presented at Agile 2006

http://agileusabilitypaper.gerardmeszaros.com/

· http://www.microsoft.com/playtest/FAQ.aspx

· http://en.wikipedia.org/wiki/Playtest

· “Test with 5 users” at http://www.useit.com/alertbox/20000319.html

· “Declining ROI of Testing” at http://www.useit.com/alertbox/roi.html

· “Agile Usability” http://usability.typepad.com/confusability/2006/04/agile_usability.html

· Dan Norman “Why Doing User Observation First is Wrong”

http://www.jnd.org/dn.mss/why_doing_user_obser.html

Acceptance Test Engineering – BETA DRAFT Page 252

Test Management Practices

This chapter focuses on practices related to the management of the test activities and the assets they

produce.

The first two practices deal with how we manage our testing activities:

· Cycle-Based Test Management treats each test cycle as a mini project complete with a

command and control project plan. We plan the work and work the plan.

· Session-Based Test Management treats testing as a vogage of discovery that cannot be entirely

preplanned. We define the plan in terms of test sessions and a list (or backlog) of session

charters. As we execute the test sessions we update the session charters backlog by adding or

removing ideas for what needs to be tested. It is agile management applied to testing.

The next two practices deal with how we monitor the progress and effectiveness of our testing:

· Test Status Reporting describes how we keep track and report on how done we are with testing.

· Assessing Test Effectiveness describes how we measure the effectiveness of our testing and the

resulting confidence, or lack thereof, in our assessment of the quality of the product.

The last two test management practices deal with managing our test assets:

· Test Asset Management describes how we need to keep all our valuable test assets under

version control so that we can manage our test configurations with the same level of control as

our product code assets.

· Test Evolution, Refactoring and Maintenance describes how we can keep our test assets from

degrading over time as the product they verify evolves.

Acceptance Test Engineering – BETA DRAFT Page 253

Test Asset Management

Test assets are valuable and need to be managed with the same care and discipline as other assets. They

need to be stored centrally so everyone has access to the same test assets. They need to be backed up

to protect against disk failures. They require version history so important information is not lost and

configuration management so that we can determine which version of which asset goes with which.

Known Aliases

· Source Code Management

· Configuration Management

When to Use It

Use a Test Asset Management for all electronic test artifacts including:

· Test Plans

· Test Scripts

· Automated tests

· Automated test fixtures, frameworks and other code assets

Additionally, when test results need to be available for subsequent inspection or auditing, the test

results for each run of each test should be stored and cross-referenced with the corresponding version

of the system under test.

Test Lifecycle Applicability

Test Asset Management is applicable to the entire test lifecycle.

Risks Mitigated

The risks addressed include:

· A modification made to a test is found to be in error.

· The source code for test tools is lost

· The root cause of a test failure is suspected to be use of the wrong version of a test

· The test results cannot be found when they need to be shown to auditors.

Acceptance Test Engineering – BETA DRAFT Page 254

Limitations

<What limitations does the technique have? When should you not use it?>

How to Do It

1. Choose a technology that supports the necessary version history and configuration management

mechanisms.

2. Ensure that regular backups are in place.

3. Train everyone on the team on how to use the repository. Make sure everyone understands that

its use is not discretionary (not optional.)

4. Whenever you create a new test asset, save it in the test asset repository

5. Whenever you need to use a test asset, retrieve the appropriate version from the test asset

repository.

6. Whenever you modify a test asset, save the updated asset as a new version of the existing asset

in the test asset repository.

7. At key milestones, create a named lineup of test assets that matches the corresponding lineup

of the system under test.

Examples

· <list any examples here as hyperlinks to samples files>

Implementation Options

There are a number of different version-controlled repository technologies available to choose from.

Source Code Repository

The most capable tools tend to be the ones designed to manage source code. These are typically called a

Source Code Management (SCM) system or Configuration Management system. All kinds of test assets

can be stored in these systems including test code, manual test scripts, test plan documents, sample

data files, etc. SCM systems are available as free, open source systems as well as commercial products.

They may be web-based, or have desktop clients; many also have clients integrated into popular

Integrated Development Environments (IDE.) They are particularly well-suited to retrieving large

numbers of files in a single operation.

Acceptance Test Engineering – BETA DRAFT Page 255

The main drawback of SCM systems is they tend to be somewhat more complex than simple document

management systems. They may also be optimized for use from within an IDE and may therefore be

more cumbersome to use by non-technical people who aren’t familiar with the IDE.

Document Repository

A simple document repository can also be used to manage test assets. These repositories are typically

accessed via web browser based clients.

The main advantage is the simplicity. The main disadvantages are:

· Typically doesn’t support configuration management

· Typically more cumbersome to store or retrieve large numbers of files. This could lead to

“optimization” of the process by used previously retrieved files which may be out of date.

Test Management System

Some test automation tools include or have integrations supplied for specialized test management

systems. These systems provide ways to manage all test assets. Because they are a separate repository

from the SCM containing the source code, it may be harder to match test lineups with code lineups.

Rationale

A Test Asset Management system acts as a safety new for people working on the test assets. How can

having a safety net not help?

Related Topics

· Test Automation

· Test Planning

References

Books:

· Software Configuration Management Patterns”, by Steve Berczuk with Brad Appleton

·

Acceptance Test Engineering – BETA DRAFT Page 256

Online Resources:

·

Acceptance Test Engineering – BETA DRAFT Page 257

Test Evolution

Tests should not be viewed as static artifacts; they need to evolve with the product. Test evolution

involves adjusting tests as the requirements change and adjusting the test strategy as more is known

about how best to test the product. It includes maintenance of tests as the product changes and

refactoring of existing tests to improve their expressiveness and efficiency.

Ongoing test evolution complements the upfront test strategy definition that is part of test planning.

Known Aliases

· Test Refactoring

· Test Maintenance

· Test Cleanup

· Evolutionary Test Design

· Evolutionary Test Strategy

When to Use It

Any long-lived product will be well served by recognizing early in its lifecycle that the corresponding

tests need to be evolved.

Test Lifecycle Applicability

Applicable to the Maintenance phase of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

· We end up with too many tests to run on a regular basis.

· Many of the tests are irrelevant because they no longer work as written.

· Tests may be made obsolete by a change in the test tools we choose to use.

· Tests may be made obsolete by changes to the product requirements

Acceptance Test Engineering – BETA DRAFT Page 258

Limitations

Test evolution is not a substitute for having a sound test strategy.

Because tests evolution may change the behavior of the tests in ways that are hard to detect, test

evolution may introduce risk.

How to Do It

Test evolution may be driven by changes to the system-under-test or it may be done proactively. The

changes may include one or more of the following:

1. Change existing tests to handle changes in the requirements of the system-under-test.

2. Reduce distracting noise in test scripts by removing unnecessary data thereby avoiding the need

for future test maintenance when the logic in the SUT changes.

3. Remove superfluous diversity in how the tests are written by using the ubiquitous language.

4. Identify the common patterns in the test logic within many test scripts. Document these

patterns and make them explicit. Summarize the test logic and the variables they are run with.

5. Reduce the number of test scripts required by factoring out duplicated test logic by

a. Refactoring into a few test scripts parameterized as data-driven tests to verify the data

combinations, or

b. refactoring into a few test scripts complemented by Business Unit Tests that verify the

data combinations.

6. Reduce test execution cost through selective testing of combinations

See the Implementation Options section for a more detailed description of each of these forms of test

evolution.

Examples

· Test Evolution Example

◦ Original, duplicated, inconsistent test scripts

◦ Standardized vocabulary through ubiquitous language

◦ Refactored tests with keyword-driven test scripts augmented by data-driven business

unit tests

Acceptance Test Engineering – BETA DRAFT Page 259

Implementation Options

There are a number of ways tests can evolve.

· We can change tests to handle evolving requirements.

· We can standardize the terminology of the tests to use the ubiquitous language.

· We can remove distracting noice (irrelevant data) from test scripts.

· We can identify the abstract test scenarios that a number of detailed test scripts implement by

identifying what is different between them.

· We can remove tests that no longer apply.

Evolving Tests as Requirements Evolve

On projects that develop functionality incrementally, the logic in the system-under-test is constantly

evolving. A test that passed last week may suddenly start failing this week when some new logic is

added to the system to handle a new requirement. When the failing test is verifying the specific

functionality that was modified, it should have been updated as part of the work to add the

functionlaity. When the failing test is for seemingly unrelated functionality, it helps point out

interactions between functionality that need to be understood and vetted.

In either case, if it turns out that the test failure is being caused by input values that are not essential to

the test but which needed to be provided “just because”, we shouldn’t just update the value to some

that passes today (because it is likely to be broken again by a future change.) It is better to remove the

need to provide the values in every test by providing an abstraction layer between the test script and

the system-under-test. Keyword-based testing is one way to do this.

Standardizing Terminology

When tests are prepared by a number of different test authors we may end up with many tests saying

similar things in different ways. The problem is particularly acute when technical terminology hides the

business intent of the tests. A crucial first step is to identify the cases when different words are being

used to represent the same concept or action. We can then choose the most appropriate of the

alternatives and standardize on it. These terms should become part of the ubiquitous language used

throughout the project.

Removing Distracting Noise from Test Scripts

Test script authors, especially authors of automated test scripts, often feel a need to provide values for

every input of the system-under-test. The reader of the test may have difficulty determining which of

these inputs are important for a particular test and which just need to be provided but are otherwise

irrelevant. To paraphrase Einstein: “If it is not important for it to be in the test script, it is important for it

not to be in the test script.”

Acceptance Test Engineering – BETA DRAFT Page 260

We can remove the noise from the tests either by using conventions to identify the “don’t care” values

used in the test scripts or by writing the test scripts at a higher level of abstraction. Keyword-driven test

automation is one technique that is used to keep automated test scripts readable by the aver age

human.

Identifying Orthogonal Variability in Test Scripts

We often find ourselves writing a large number of test scripts to verify a basic scenario with several

variables. These scripts may have been written incrementally over time or they may have been

generated from a basic scenario or use case by plugging in different values or options. In either case, we

can end up with a large number of very similar test scripts to execute and maintain. This can increase

the cost of test maintenance significantly. Even worse, it can obscure a potential lack of test coverage

because not all combinations of variable values are covered.

As a first step, we can identify the abstract test scenario and the dimensions of the variability contained

within the detailed test cases. This can be included as part of the documentation of each test script:

which abstract test scenario it implements and which values of which variables it uses. We can also

prepare a summary decision table that indicates for each combination of values which abstract test

scenario and which concrete test case is used. This can help us identify gaps in the coverage which we

can fill either by writing more concrete test cases or by doing run-time substitution of values in the

existing test cases.

We can get the same value at lower cost of maintenance (at least) and execution (possibly) by deferring

the “explosion” of abstract scenario + variables into test scripts until execution time. This requires

coming up with a way to document the core test script in such a way that the variable inputs and the

corresponding outputs can be merged dynamically as the tester executes them. Alistair Cockburn’s

approach to writing use cases is one possible technique for this. This could be combined with an

approach similar to decision tables for summarizing the expected output for each combination of inputs.

Once we have identified orthogonal variability in test scripts the next obvious step is to actually reduce

the number of test scripts by refactoring the tests. There are several ways to go about this:

· Removing Duplicated Test Logic Through Data-Driven Test Scripts

· Removing Duplicated Test Logic Through Business Unit Tests

Removing Duplicated Test Logic Through Data-Driven Scripts

This approach involves removing the duplication in test scripts through parameterization using a data

sheet attached to the test script. We run the tests many times, once for each row of data. The data

specifies the values to use for each of the inputs and the corresponding expected output(s). The key

thing is that we run the whole test script many times. The main drawback to this approach is that the

time it takes to run the test script n times the time for one run. When the number of combinations is

Acceptance Test Engineering – BETA DRAFT Page 261

large or the time it takes to run the test script once is significant (more than a few seconds), the total

execution time can be quite lengthy.

Removing Duplicated Test Logic Through Business Rule Tests

We can often remove the duplicated running of the test logic by refactoring the many test scripts into

two distinct kinds of tests.

1. Use case or workflow tests scripts that exercise the procedural logic, and

2. Business rule tests that exercise just the specific logic that deals with the combinations of

inputs.

Once a test has been converted to a keyword-driven style, it is possible to replace the test interpreter

with a completely different interpreter without having to change the test script. This preserves the value

of the test scripts across changes in tool and/or SUT technology.

Reducing Test Execution Cost Through Selective Testing of Combinations

If the number of variables is more than two or three and all the variables interact with each other we

may find ourselves executing a very large number of tests. We can reduce the total number of tests we

need to run with a small increase in risk through the use of combinatorial test optimization.

Rationale

Tests can be an asset in that they help us verify the code is working properly. But they can also turn into

a major liability if the cost to maintain them becomes too high. We are unlikely to find exactly the right

approach to designing tests up front so we should plan on evolving the tests as the project progresses.

Related Topics

· Tests should evolve to use the Ubiquitous language

· Use cases can be used as a way to discover or document the abstract test scenarios

· Data-driven test automation can be used to improve test coverage without creating additional

tests scripts

· Combinatorial test optimization can be applied if there are more than two or three attributes

that need to be varied.

· Business rule tests can be used to test business rules with many combinations of input values

Acceptance Test Engineering – BETA DRAFT Page 262

References

Books:

· Meszaros, Gerard “xUnit Test Patterns – Refactoring Test Code” Addison Wesley Professional,

2007

· Mugridge, Rick “Fit for Developing Software”

Online Resources:

http://xunitpatterns.com/index.html

Acceptance Test Engineering – BETA DRAFT Page 263

Cycle-Based Test Management

Summary

Cycle-based testing is the traditional method for managing testing effort. We subdivide the test phase of

the project into two or more test cycles separated by periods of time set aside for bug fixing.

Known Aliases

· Tayloristic testing?

· Test Phase

· Test Cycle

When to Use It

We can use cycle-based test management any time we don’t need to have finer grained control over

and visibility into the execution of test. It is best suited to projects that do Test Last Acceptance, rather

than Incremental Acceptance.

Test Lifecycle Applicability

Applicable to the execution phase of the test lifecycle.

Risks Mitigated

The risks addressed include:

· Insufficient functional test coverage is achieved because too much effort focused in one area.

Limitations

May not provide much transparency of test progress within each test cycle.

Often, the estimates used to plan the number and length of test cycles are not adequate, resulting in

less than full test coverage or the project ship date slips, increasing costs. Also, if the development time

(on a talyorisitic project slips, rather than slipping the ship date, the time devoted to test cycles is cut,

leaving less than adequate time for testing.

Acceptance Test Engineering – BETA DRAFT Page 264

How to Do It

Planning Test Execution

1. Decide how many bug fixing cycles will be required based on past experience with this kind of

product, development team, etc.

2. Decide how long each bug fixing cycle needs to be and whether it overlaps the preceding testing

cycle.

3. Divide the project time set aside for testing into n+1 test cycles separated by the n bug fixing

cycles.

4. Decide what kinds of testing will be done in each test cycle.

5. Determine the sequencing of the test activities with the test cycle.

6. Assign the appropriate resources to execute the activities within the test cycle.

Executing the Plan

7. Start the test cycle

8. Gather data from the test resources on how their test activities are progressing

9. End the test cycle either when the time runs out or when all of the test activities are completed.

Examples

· ITPS Test Plan

Implementation Options

A test cycle may be planned to great detail or it may be run in a more agile style using Session-Based

Test Management inside each cycle. The activities done within a test cycle can cover the entire range of

test execution techniques including both automated and manual testing conducted in a hard-scripted or

exploratory style.

Rationale

You cannot measure progress if you don’t have a plan to measure against.

Acceptance Test Engineering – BETA DRAFT Page 265

Related Topics

· Session-based Test Management can be used to provide more accurate estimates of test effort

and more visibility of progress.

References

Books:

· tbd

Online Resources:

· tbd

Acceptance Test Engineering – BETA DRAFT Page 266

Session-Based Test Management

Session-based testing is a method for managing testing effort by compartmentalizing testing activity into

time-boxes called sessions. It is most commonly used to manage exploratory testing but could be used

for managing any kind of test execution.

A session is governed by a charter, or a mission statement consisting of a paragraph or two to guide the

tester on what to do in the session. It suggests what to be on the lookout for, what tools to use, and

what areas of the product to cover.

Known Aliases

When to Use It

Use session-based test management any time you want to time-box youre testing.

Test Lifecycle Applicability

Applicable to the planning and execution phase of the test lifecycle.

Risks Mitigated

The risks addressed include:

· Effort from exploration goes unmanaged so even though a tester finds a good bug, there’s no

way for them to remember what they did to find it.

· No way to remember a year from now what a tester did when they were exploring today

· Test estimation is harder because there is no manageable container for test effort

Acceptance Test Engineering – BETA DRAFT Page 267

Limitations

It’s hard to know how to estimate how long a test might take. Time-boxing test effort is one way to

address this.

How to Do It

Planning Session-Based Testing

1. Break down the product or system you are testing into features. The features can take the form

of collections of test scripts or vague test ideas such as scenarios or personas. The mission that

guides the testing within a session is called a charter.

2. Look at each charter and decide how long you want each test session to be. The sessions can be

strictly time-boxed or just an arbitrary chunk with can be overrun if necessary.

3. Estimate the number of sessions it might take to assign to each chunk of testing work.

4. Assign a session mandate to each session. (Mandate = Charter, Scenario, Persona, test script,

etc.)

5. Assign resources to execute the test sessions or have people sign up for them.

6. Collect results from the test sessions as they are executed. Add any newly identified test

mandates to the testing backlog.

7. Keep track of:

a. How many test sessions have been executed

b. How many additional test sessions have been identified (based on newly defined

mandates)

c. The team’s current test session velocity and the anticipated completion date it implies.

Doing Session-Based Testing

During the test session the tester keeps track of whatever information is required to prepare the test

session report when the session is completed. This may include:

· Areas of the product covered (functionality, test cases, etc.)

· What they did, to the appropriate level of detailed required to reproduce issues

· Tools used

· Data used

· Bugs found

· Other issues or concerns about the product or project.

· Time spent, suitably categorized.

Acceptance Test Engineering – BETA DRAFT Page 268

Reporting on Session-Based Testing

The tester decides when they have done enough testing to fulfill the charter and writes a report about

what they did during the session which includes:

Notes – the tester’s written account of the kinds of things they did to accomplish the charter to the best

of their ability. These could includes test ideas, mouse clicks, keystrokes, config information, the

verison, tools, etc.

Bugs – could include a title, reproduction steps and actual result from everything the tester

encoumntered in their session that they would classify as a bug

Issues – a list of concerns about the product or the project that need escalation from a stakeholder or

direct manager.

Areas – the features of the product that were tested or covered during the session.

Metrics:

d. Setup time: the percentage of time during the session where the tester focused on

preparing for the session, writing the session report, installing or configuraing machines,

obtaining supplies

e. Test Design and Execution: the percentage of time the tester spent covering the product

f. Bug Investigation and Reporting: the percentage of time the tester spent investigating

and writing about specific bugs

Datafiles used – any supporting files the tester used or created to fulfill the charter.

After the session, the tester hands in their session report to the test manager or test lead. A short

debriefing is scheduled to talk about what happened during the session. After that, a new session may

be run or the previous session can be extended.

Examples

· Scenario-Based Session Plan

· Sample session

Acceptance Test Engineering – BETA DRAFT Page 269

Implementation Options

Every session has a test charter – a guiding mission for the tester. The way the tester interprets how to

execute that charter can vary significantly depending on the degree of freedom granted to them by the

charter. Charters can come in the following forms:

No Freedom – Hard-Scripted Mandates

When the tests are to be executed by people relatively new to the project it may be appropriate to

provide them with scripts to follow very closely. A hard-scripted test is a test written by someone else

with such precision that it is meant to be repeatable with no margin for error.

Limited Freedom – Soft-Scripted Mandates

Soft scripted tests leave some room for interpretation by the tester. These scripts may be more intent-

oriented rather than action oriented and leave it to the tester to determine the way they achieve the

intent. They act as reminders of what needs to be tested rather than detailed test scripts.

Moderate Freedom - Scenario Mandates

Test sessions may be mandated with test scenarios rather than detailed test scripts. The tester would

conceive a number of test conditions from the scenario(s) as they conduct the test session.

High Freedom - Charter or Persona Mandates

The test sessions may be mandated with charters or personas. Charters name a specific piece of

functionality to be tested but not the specific scenarios. Personas name a kind of person whose behavior

the tester should try to emulate but not specifically which pieces of functionality to test.

Complete Freedom –Exploratory Testing

It may be appropriate to plan some test sessions with complete freedom for the tester to try whatever

they want to do.

Rationale

Work estimates are typically made more accurate when the work is broken down into smaller units for

estimation purposes. Tracking work is made easier by having it broken into smaller chunks which are in

progress for shorter periods of time.

Related Topics

· Session-based Test Management can be used instead of or inside of Cycle-based Test

Management.

Acceptance Test Engineering – BETA DRAFT Page 270

References

Books:

· tbd

Online Resources:

· http://www.quardev.com/articles/sessionbased_test_management

· http://www.quardev.com/articles/sbt_lite

Acceptance Test Engineering – BETA DRAFT Page 271

Bug Management Practices

This chapter focuses on practices related to the management of the bugs we find during readiness

assessment and acceptance testing. The key bug management practices are:

· A Bug Management System is used to keep track of all the bugs and their current status. It can

be as simple as one sticky note per bug posted on a whiteboard or a highly sophisticated

software package with complex workflow management.

· Bug Backlog Analysis is used to get an understanding of where we stand relative to our quality

(MQR) and content (MCR) objectives for each upcoming release.

· Bug Triage is how the stakeholders decide what to do about each bug in the backlog.

Acceptance Test Engineering – BETA DRAFT Page 272

Bug Management System

A bug management system is a mechanism for taking action on reported problems in a single, accessible

location by all team members. Bugs are recorded and the current status is updated each time the status

of the bug changes.

Known Aliases

· Defect Tracking System

· Issue Management System

· Bug Database

When to Use It

All projects should have a bug management system. Not all projects require bug management software.

(See Implementation Options for details.)

Test Lifecycle Applicability

Applicable to the Actioning phase of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

· Bugs could be fixed but never retested.

· Bugs could be found, but not recorded and therefore left unfixed.

· Customer could demand status of critical bug and the supplier wouldn’t know its current status.

· Auditor could demand full trace and details on a bug and the supplier wouldn’t have it.

· Customer is uninformed and makes unrealistic plans about release/deployment/sales.

Limitations

A bug management system provides no value if some bugs are left out.

Acceptance Test Engineering – BETA DRAFT Page 273

How to Do It

1. Bug is entered in the central bug repository

2. Bug is discussed and given a priority (see Bug Triage)

3. If it is considered important enough (in terms of its impact and/or likelihood), the bug is

assigned to someone for analysis. If not, it may be deferred or flagged as Won’t Fix.

4. If the cause is known, the database is updated and the bug is assigned to someone for

remediation. If not, it stays active pending investigation.

5. If the bug can be fixed, it is assigned to someone for readiness assessment. If it is deemed too

expensive to fix or remains elusive, it might have to be deferred or flagged as Won’t Fix or No

Repro.

6. If the bug fix is produced, retested and deemed ready for acceptance testing, the customer is

notified (assuming it is an iterative acceptance project).

7. When the fix is accepted by the customer and/or verified by the tester or proxy, the bug is

marked Resolved and Closed.

Examples

· Bug Chart Sample

· Bug Triage Sample

Implementation Options

A bug management system can be implemented in a very lightweight way or with complex software

packages depending on the needs of the project.

Agile Projects: Big Visible Chart with One Sticky-note per Bug

On agile projects composed of a single co-located team, it may be sufficient to track bugs on a planning

board in the team work area. Each bug is written on a sticky-note and stuck on the wall in priority

sequence. As a bug is actioned, it is moved between columns representing the different roles

(development, readiness testing, acceptance testing, etc.) The person working on the bug can put their

initials on the Post-it so that everyone can easily determine who to talk to for latest status.

Acceptance Test Engineering – BETA DRAFT Page 274

Large Projects: Bug Tracking Database with Workflow Capabilities

On large projects with many roles and role players, the number of roles involved in fixing any one bug

may be large. The people may be located at many remote locations and the bug may be determined to

live in one of many components owned by different teams. Keeping track of whose court each bug is in

and where it should go next can be complex, but bugs can be kept in a bug tracking database that

support complex workflow rules that route each bug to the appropriate party. The minimum set of fields

to be populated for each bug might be something like:

1. Area
a. Feature name or product function

2. Dates

a. Opened – the date on which the concern was filed

b. Resolved – the date on which a triage decision was made

c. Closed – the date on which the concern was mitigated, minimized or eliminated

3. How Found (the method by which the bug or concern was revealed)

a. Design Review

b. Readiness Phase

c. Demo

d. Beta
e. Unit Test

f. Exploratory Session

g. Usability

h. Automation

i. BVT (Build Verification Test)

j. Acceptance

k. Other

l. Etc.

4. Severity (the impact to the user)
a. 0 – Blocking issue

b. 1 – Causes crash, hang, or data loss

c. 2 – Function is impaired in a major way

d. 3 – Function is impaired in a minor way

e. 4 – Content bug, typo, trivial annoyance

5. Who opened the bug

a. Tester

b. Programmer

c. Customer

d. User
e. Project Manager

6. Its current state

a. Active (Open) – the concern is awaiting a resolution

b. Resolved – action has been taken on the bug

i. Fixed – the problem has been solved

Acceptance Test Engineering – BETA DRAFT Page 275

ii. More Detail Needed – the triage team needs more context before they can

make a decision

iii. No Repro – the problem could not be reproduced

iv. Postponed (Deferred) – the triage team knows what action to take, but decides

to wait until taking it
v. By Design – the feature is supposed to work the way the bug report described

vi. Won’t Fix – the stakeholders decided it was not valuable or cost effective to fix

the bug

c. Closed – the concern has been adequately addressed

 [TO CONSIDER]

Rationale

 Having bugs managed in a central location ensures their status can be determined quickly.

Analyzing the stats and rates of bugs coming in and resolved gives insight to the supplier’s project

management on the efficiency of the team and the development process and it allows making informed

decisions on the project course correction.

Effectively deployed Bug management systems with audit trail logging help support regulatory

compliance (in particular initiatives that put demands on information gathering, process definition, data

integrity, and policy enforceability, including, for example, as 21 CFR Part 11 and Sarbanes-Oxley).

Related Topics

· Bug Triage

· Bug Charting & Reporting and Analytics

References

Books:

- TBA

Online Resources:

- TBA

Acceptance Test Engineering – BETA DRAFT Page 276

Acceptance Test Engineering – BETA DRAFT Page 277

Bug Backlog Analysis

Testing finds problems that are often represented as “bug reports.” The number and types of bugs is

one of the ways that readiness and acceptability is assessed by the stakeholders of the project (anyone

with a stake in the project’s success). If bugs are stories about the health of the project, charts may be a

useful way to quickly know the implications of those stories.

Aliases

· Bug Charting, but we don’t have to use charts

· Bug Reporting (can be misinterpreted to mean “filing a report of bug”)

When to Use It

Test Lifecycle Applicability

Applicable to the Actioning phase of the individual test lifecycle.

Risks Mitigated

· Bugs could be found but not reported so the chart might not change.

· Customer could demand status of critical bug and we wouldn’t know its current status.

· Hard to know when to ship or when quality bar has been met.

Limitations

Metrics can mislead! Numbers never speak for themselves, they need an interpreter. And even then

there are several interpretations of what the numbers could mean. See the References section below

for some resources about this.

How to Do It

16. Identify the reports (queries) that stakeholders require to make prioritization decisions about

the bugs in the bug backlog.

17. Identify the fields by which the reports filter, sort or group the bugs in the backlog

18. Ensure that the bug management system includes and requires at least these fields

19. Create canned reports so that people can generate them easily

20. Create useful visualizations (charts) of the reports

Acceptance Test Engineering – BETA DRAFT Page 278

Examples

· Bug Chart Sample

· Bug Triage Sample

Implementation Options

Bug analysis reports can be text based or visual. Either way, the information we are looking for depends

on our circumstances but here’s a list of common reports or charts:

· How many bugs were opened today that need to be triaged (vs yesterday)?

· How many bugs were found from usability testing?

· How long has a particular type of bug been open?

· How are we doing at fixing our severity 1 bugs? (Bug aging)

· Who tends to be finding the most severity 1 bugs?

· What techniques are catching the least severe bugs?

· What types of bugs are tending to be deferred vs. won’t fix?

· Are we gaining or losing on the bugs (bug arrivals vs fixes.)

Rationale

You cannot manage what you cannot understand. Bug backlog analysis gives us the big picture we need

to manage our bug backlog effectively.

Related Topics

· Bug Management System

· Test Reporting

References

Books:

· TBD

Acceptance Test Engineering – BETA DRAFT Page 279

Online Resources:

· http://developer.mozilla.org/en/docs/Bug_writing_guidelines

· http://java.sun.com/developer/technicalArticles/bugreport_howto/

· http://en.wikipedia.org/wiki/Wikipedia:Bug_reports

· http://www.kaner.com/pdfs/metrics_measurement_dysfunction.pdf

Acceptance Test Engineering – BETA DRAFT Page 280

Bug Triage

Bug Triage is the process by which stakeholders gain better understanding of and make decisions about

what to do the with the concerns raised by readiness assessment and acceptance testing activities.

Triage is a time to ask: what is the impact, who does it affect, what will happen, when might it happen,

and what should we do about it?

Known Aliases

· Bug Jury

· Bug Prioritization

· War Team

· Change Control Board

When to Use It

Test Lifecycle Applicability

Triage falls into the Actioning phase of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

· Important bugs are identified and never fixed

· Unimportant bugs are fixed, unnecessarily, wasting limited resources that could have been used

to fix more important issues.

· Important bugs deemed unimportant by testers are never fixed

Limitations

The decisions made are only as good as the participation in the process; if the right stakeholders are not

present then the wrong decisions will likely be made.

How to Do It

The customer (or their proxy) and the supplier should perform triage together, along with other

stakeholders of the product.

For each bug found since the last triage, the following should be done:

1. Summarize the understanding of the concern.

Acceptance Test Engineering – BETA DRAFT Page 281

a. If the concern is not clearly understood then assign it to someone to better

characterize it so that its severity can be understood.

2. Decide whether it is a bug, change request, project issue or not a concern at all.

a. This process applies primarily to bugs but may also be used for smaller change requests.

3. Determine the severity (impact) of the bug

a. Who does it affect? What’s the extent of this bug, in other words what percentage of

the customers would experience the pain if this bug is left unfixed?

b. What will happen when the bug is encountered?

c. When might it happen?

d. How often might it happen?

e. Is the software good enough as it is, in the current context? (Or, put another way, is it

good enough for who, what, and when)

f. Is a workaround available?

4. Determine the risk involved with fixing the bug

a. What value is there if the bug is NOT fixed? (Note: never underestimate the potential of

a bug fix to destabilize your system!)

b. What is the testing impact of fixing this bug? Do we have enough time to perform

regression testing to verify the fix?

5. Determine the cost of fixing the bug. This is usually a rough estimate.

6. Determine the priority of fixing the bug. This is usually based on severity of impact and

cost/risk of fixing it but it could also take into account other factors such as customer

politics.

7. Decide whether and when the bug will be fixed. If the bug can be fixed, has a large enough

impact, and the fix is estimated to be low cost enough, then fix it. The customer should be

the final decision maker here.

Severity vs. Priority

In many cases, it is a good idea to differentiate bugs based on their severity (an attribute set by the

tester or person who filed the concern. It is a statement about impact to the user. But bugs that have a

higher severity don’t necessarily need to be remediated before others with lower severity. It could be

that the bug is a rare occurrence (every 30 years), and fixing it might be more costly than letting it stay

in the product.

While severity is about impact, priority is about economics. It is an attribute set by the triage team, not

the bug opener. It is a way to say “these bugs must be fixed before these other bugs.” It could be that

bug with a high severity (sever impact to the user) is a low priority because it happens so infrequently

and is expensive to fix, or may be resolved with other functionality later. It also could be that a low

Acceptance Test Engineering – BETA DRAFT Page 282

severity bug (low impact to user) has a high priority, like a typo in the company name on the welcome

screen or a trademark infringement on a dialog that could lead to a lawsuit.

Examples

· GBS Test Plan

◦ Bug Triage Guidelines

· Bug Triage Sample

· Bug Chart Sample

·

Implementation Options

The length of time between triage sessions will vary depending on the environment, the process

followed, the phase the project is in, and the bug discovery rate. Early in a project, the team may decide

that triage is only necessary every few weeks. As the project progresses, weekly triage may be

necessary. In the final stages of the project, the team may decide to do daily triage.

Other options:

 Fix/Won’t fix bug by bug

 VS

 Prioritize bugs. Work in priority order.

 Bucketing – gotta fix/like to fix/won’t fix

 Gotta fix/won’t fix

 Proximity to milestone changes criteria

 Target release – this release/ next release/ some future release

 This release&this milestone/this release&other milestone/next release

Agile – this iteration/next iteration/roll into feature or future story/won’t fix

 Waterfall

Acceptance Test Engineering – BETA DRAFT Page 283

Rationale

The term “triage” comes from the French word meaning “to divide into three”.

Watch any medical drama about emergency rooms and you’ll see that decisions are made as patients

enter the doors. Emergency room triage is about determining three things:

· People who will live no matter what; they can wait

· People who will die no matter what; there’s no point trying to save them

· People who will live or die based on the doctors’ skills; this is where the team’s energies

need to be focused

Likewise, as bugs come through the door on your project, there will be three things to determine:

· Bugs that obviously should be fixed immediately

· Bugs that aren’t worth the time or expense to fix anytime soon, or bug reports that turn out

to be tester error and are actually by design

· Bugs we might fix, but we need more information to classify into categories 1 or 2

·

Invariably, we are operating under time and resource constraints. We may not have time to fix all bugs,

or we may be diverting resources from activities that would be generating additional business value. It is

important to focus the limited time and resources on the activities that will provide the most

improvement in quality.

Related Topics

· Bug Reporting

· Bug Management System is where we track the status of all the bugs

References

Books:

· Sabourin, Lessons Learnt from Labor Triage

Online Resources:

· tbd

Acceptance Test Engineering – BETA DRAFT Page 284

Acceptance Test Engineering – BETA DRAFT Page 285

Test Oracles

This chapter focuses on practices related to the source of truth. In testing, every test should have some

kind of expected outcome. When that outcome is anything more complex than a yes or no, we need a

source of truth, a test oracle, to tell us what it should be.

The major sources of truth are:

· A Human Test Oracle is a person who a subject matter expert how can look at an output from

the system-under-test and decide whether or not it is correct.

· A WComparable System Test Oracle is used when we have another system, either current or

legacy, that can provide us with correct results to use as our expected results.

· A Previous Result Test Oracl e is when we save the results produced by the system-under-test

for use as expected results in a later test run.

· A IHand-Crafter Test Oracle is when a person can describe exactly what the system-under-test

should produce

Acceptance Test Engineering – BETA DRAFT Page 286

Human Test Oracle

The pass/fail status of a test is determined by a human subject matter expert inspecting the actual

results from the system under test and deciding whether they are acceptable.

Known Aliases

· Subject Matter Expert (SME)

· Domain Expert

When to Use It

Use a Human Test Oracle when:

· It is harder to specify exactly what the system under test should produce using a Hand-

crafted Test Oracle but it is relatively easy for a human to decide whether or not what it

produced is acceptable.

· The output of the system under test can vary from run to run for legitimate reasons that a

human would understand and an automated test would have trouble predicting.

· There is no other system that implements the same logic that is being tested that could act

as a Comparable System Test Oracle.

· The cost of authoring and/or executing the automated analysis of an automated test exceed

the cost of involving a Human Test Oracle.

Test Lifecycle Applicability

Human Test Oracles are applicable to the Executing and Assessing phases of the test lifecycle in that the

human executes the test and assesses the actual result. They are indirectly applicable to the Planning

and Authoring stages of the test lifecycle in that we must decide not to use a Hand-crafted Test Oracle in

the planning stage; during the authoring stage either we don’t specify the result or we specify it in a

human-readable form such as a checklist of things to look for when assessing the actual results.

Risks Mitigated

The risks addressed include:

· The expected results aren’t well defined because they are too expensive to hand-craft.

Acceptance Test Engineering – BETA DRAFT Page 287

· A human user will find bugs that the tests did not catch because the tests were not sensitive

enough to catch them.

· Bugs being missed because of too many false positive test failures caused by an overly

sensitive automate pass/fail determination algorithm.

· Usability bugs missed.

Limitations

· A Human Oracle may not be as efficient executing and analyzing results of the acceptance tests

as an automated test.

· A Human Oracle may not keep up with analyzing displayed information before the system

changes it.

· Not all effects of a test case are available and displayed for a human oracle to observe and

evaluate.

· The acceptance test is long-running and may exceed the concentration capabilities of the

human oracle.

· Expert bias: a human oracle becomes quickly trained on what to expect, and then is more likely

to overlook minor deviations which in fact may be bugs.

· Inattention blindness: a human oracle doesn’t see the bug because she is distracted by other

elements of the system

How to Do It

Using a Human Test Oracle typically occurs in three phases: The decision to use a Human Test Oracle is

made while defining the test strategy, what the Human Test Oracle should be looking for is determined

while authoring the test case, and the Human Test Oracle does the assessment during or after running

the test case.

Defining the test strategy:

1. Identify the kinds of test cases needed to verify the various behaviors of the system under

test.

2. For each kind of test, decide what kind of test oracle to use for assessing the test results.

Authoring the test cases:

1. Identify the test cases needed to verify the behavior of the functionality in question.

Acceptance Test Engineering – BETA DRAFT Page 288

2. For each test case, define the prior state of the system under test.

3. Define the inputs to be provided to the system under test.

4. Define the characteristics to look for during the assessment of the actual results.

Running the Test case using Previous Result Test Oracle:

1. Run the test case against the system under test.

2. Assess whether the actual result provided by the system under test meets the chosen

criteria.

Examples

· Testing Binary Objects

◦ Using a Human-Verified Previous Result Oracle

Implementation Options

A Human Test Oracle can be used to assess the actual results as the tests are being executed or they can

assess results at some point after the test execution if the test runner captures the actual results for

each test case.

Real-time Human Test Oracle

Some forms of test execution require the human tester to make decisions on the fly. In these cases it is

more appropriate for the human to assess the actual results as the tests are being executed. A good

example is during exploratory testing where the human tester is designing the tests as they execute

them and may, in fact, add additional test cases to try based on the results they have just seen.

After-the-Fact Human Test Oracle

When tests are largely amenable to automated execution but a human is required to assess all or part of

the results, it may be appropriate to save the results and show them to the human Test Oracle at a later

time. This allows the automated tests to run more quickly or at a time when the Human Test Oracle isn’t

present and it avoids having the Human Test Oracle waste time waiting for each actual output to be

retrieved. It’s a win-win situation: both automated and human testers can operate more efficiently.

Acceptance Test Engineering – BETA DRAFT Page 289

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. Machines are good

at highly repetitive tasks while humans are much better at certain kinds of assessment tasks such as

recognizing shapes in graphical images.

Related Topics

· Hand-crafted Test Oracle

· Previous Result Test Oracle

· Comparable System Test Oracle

· Exploratory Testing

References

Books:

· TBD

Online Resources:

· TBD

Acceptance Test Engineering – BETA DRAFT Page 290

Hand-Crafted Test Oracle

The pass/fail status of a test is determined by comparing the actual results from the system under test

with an expected result that was previously hand-crafted by a Human Test Oracle.

Known Aliases

· Expectation

· Expected Object

When to Use It

Use a Hand-Crafted Test Oracle when:

· The results of the executing the system under test is deterministic and can be predicted and

hand-crafting the expected results is relatively straight-forward

· There is no other system that implements the same logic that is being tested that could act

as a Comparable System Test Oracle.

· The use of a Human Test Oracle would be too resource intensive or make the tests hard to

run fast enough or often enough.

· The team is using an acceptance-test-driven approach to development and there is no

comparable system that can be used to define the expected results.

Test Lifecycle Applicability

Comparable System Test Oracles are applicable to the Authoring, Executing and Assessing phases of the

test lifecycle.

Risks Mitigated

The risks addressed include:

· The expected results aren’t well defined because they are too expensive to hand-craft.

· Tests are not run often enough to catch bugs because a Human Test Oracle is involved in

their execution.

· The output of the new system is different from a system whose results the users would

expect to be consistent.

Acceptance Test Engineering – BETA DRAFT Page 291

Limitations

· Humans are fallible; they may hand-craft oracles with incorrect or missing information.

How to Do It

Using a Hand-Crafted Test Oracle typically occurs in three phases: The decision to use a Hand-Crafted

System Test Oracle is made while defining the test strategy, the Hand-Crafted Test Oracle is constructed

while authoring the test case and it is used while executing the test cases against the system under test

and assessing the results.

Defining the test strategy:

1. Identify the kinds of test cases needed to verify the various behaviors of the system under

tests.

2. For each kind of test, decide what kind of test oracle to use for assessing the test results.

Authoring the test cases:

3. Identify the test cases needed to verify the behavior of the functionality in question.

4. For each test case, define the prior state of the system under test.

5. Define the inputs to be provided to the system under test.

6. Define the expected output of the system in sufficient detail that it can be compared with

the actual result automatically.

Running/Assessing the test case using Comparable System Test Oracle:

7. Run the test case against the system under test.

8. Compare the actual result from the system under test with the hand-crafted expected result

to decide whether the test passed or failed.

Examples

· Testing Binary Objects

◦ Using a Hand-Crafted Test Oracle

Implementation Options

A hand-crafted test oracle may be used when executing scripted tests manually or as part of an

automated test. When testing manually, the actual comparison can be done manually or using

comparison tools. When running automated tests, the results are usually compared automatically.

Acceptance Test Engineering – BETA DRAFT Page 292

When comparing the actual results produced with Hand-Crafted Test Oracle the pass/fail determination

algorithm may look for an exact match or it may selectively compare or selectively ignore parts of the

oracle.

Exact Comparison

If we can predict exactly what the actual results should look like, then the comparison of the actual

results with Hand-Crafted Test Oracle can be done in a very simple, naïve way. For example, the Hand-

Crafted Test Oracle could be an XML file which is then compared at the byte level with the actual XML

file generated by the system under test. Or the tester could use a blink test to compare the previous and

current outputs by rapidly swithing back and forth between them on-screen. They could also print the

output from the system-under-test and hold it up to the light against the previous output.

Selective Ignorance

If some of the fields in the actual output cannot be predicted or are not relevant to a particular test, we

can choose to ignore those fields when comparing the actual results with the Hand-Crafted Test Oracle.

In our XML example we might parse both the actual and oracle XML files and skip certain nodes in the

DOM tree when determining pass or fail. The contents of skipped fields would not influence the pass/fail

decision.

Selective Comparison

If only a few fields in the actual output can be predicted or are relevant, we can choose to compare only

the specific fields. In our XML example we might extract those fields from both the actual and oracle

XML files using x-path expressions and compare the values extracted for equality to make the pass/fail

decision.

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. Creating a Hand-

Crafted Test Oracle is a good way to define what “done looks like” and it helps the development team

understand what they need to do before they build it.

Related Topics

· Human Test Oracle

· Previous Result Test Oracle

· Comparable System Test Oracle

· Script-Driven Testing

· Test Automation

Acceptance Test Engineering – BETA DRAFT Page 293

References

Books:

· Meszaros, Gerard, “xUnit Test Patterns” “Expected Object” page 463

Online Resources:

· http://xunitpatterns.com/State%20Verification.html#Expected Object

Acceptance Test Engineering – BETA DRAFT Page 294

Previous Result Test Oracle

The pass/fail status of a test is determined by comparing the actual results from the system under test

with the result saved when the same test case was run against the same system at some point in the

past.

Known Aliases

· Golden Master

When to Use It

Use a Previous Result Test Oracle when:

9. The system produces consistent results from day to day.

10. The use of a Human Test Oracle would be too resource intensive or make the tests hard to

run fast enough or often enough.

11. The expected result would be harder to specify using a Hand-crafted Test Oracle produced

by a person.

12. There is no other system to use as a Comparable System Test Oracle

13. All Comparable System Test Oracles produce significantly different results than what we

desire from the system under test.

14. You are using a tool that is based on the Recorded Test paradigm.

Test Lifecycle Applicability

Previous Result Test Oracles are applicable to the Authoring, Executing and Assessing phases of the test

lifecycle.

Risks Mitigated

The risks addressed include:

· The output of the system under test has changed unexpectedly from what it used to

produce in the past.

· The expected results aren’t well defined because they are too expensive to hand-craft.

· Tests are run not often enough to catch newly-introduced bugs because a Human Test

Oracle is involved in their execution.

Acceptance Test Engineering – BETA DRAFT Page 295

Limitations

· The result captured previously may not match what the system really should produce now

when:

◦ The system-under-test generates unique identifiers for every transaction or entity

object

◦ The system-under-test contains logic that depends on the time or date of a transaction

and we cannot control the time/date used during a test.

◦ The system-under-test has been changed from when the previous result was captured.

How to Do It

Using a Previous Result Test Oracle typically occurs in four phases: The decision to use a Previous Result

Test Oracle is made while defining the test strategy, how the Previous Result Test Oracle is made while

authoring the test case, the previous results are captured while running the test case the first (and

possibly every) time and the results are used as the Test Oracle on subsequent runs of the test case.

Defining the test strategy:

15. Identify the kinds of test cases needed to verify the various behaviors of the system under

tests.

16. For each kind of test, decide what kind of test oracle to use for assessing the test results.

Authoring the test cases:

1. Identify the test cases needed to verify the behavior of the functionality in question.

2. For each test case, define the prior state of the system under test.

3. Define the inputs to be provided to the system under test.

Capturing the “previous result” for subsequent use as expected result:

1. Run the test case against the system under test.

2. Capture the result of executing the test case.

3. Save the actual result for use as the expected result in subsequent runs of the test case.

Running/Assessing the Test Case using Previous Result Test Oracle:

1. Run the test case against the system under test.

2. Compare the actual result from the system under test with the expected result saved from

the previous execution of the test to decide whether the test passed or failed.

Acceptance Test Engineering – BETA DRAFT Page 296

Examples

· Testing Binary Objects

◦ Using a Human-Verified Previous Result Oracle

Implementation Options

The previous result can be used while executing tests manually or with automated tests. The previous

result may have been verified to various degrees by a Human Test Oracle.

Manual Test Execution Using Previous Result Oracles

The tester executing a test manually may refer to a previous result oracle to assess the behavior of the

system-under-test. The previous result oracle may or may not have been previously verified by a

subject matter expert (a human test oracle) of the tester may validate the previous result as they use it

to assess the system-under-test.

Automated Test Execution Using Previous Result Oracles

The previous result oracle may be used by an automated test as the expected result while assessing the

output of the system-under-test. With automated tests, whether the previous result oracle has been

previously verified is more important.

Unverified Previous Result Test Oracle

Recorded Test tools monitor and record whatever the user does (and how the system responds) as the

user executes a test case. We can use the recorded system responses as part of the expected result on

the assumption that everything should remain the same from one test run to the next. This typically

requires rerunning the test right after recording it to ensure that everything really does remain the

same. If the test fails on the immediate rerun, a human typically need to adjust either the Recorded Test

or the recording or playback parameters of the test tool to reduce the sensitivity. See [GMFT] for a list of

possible causes of Fragile Tests.

A really clever tool could learn what stays constant and what changes by running the same test several

times but very few Recorded Test tools implement this learning capability.

Human-Verified Previous Result Test Oracle

We may need to use a Human Test Oracle when the expected result is hard to define manually but

relatively easy for a human to decide whether or not it is acceptable. Using a Human Test Oracle can be

a significant barrier to running tests frequently because the human must be available each time the test

is run. When the result is completely deterministic we can remove the human from the test execution

loop by recording the results that the human has inspected and saving them for future use as a

Previously Recorded Test Oracle.

When a subsequent execution of the test fails, we ask a human to inspect the result and either:

Acceptance Test Engineering – BETA DRAFT Page 297

· agree that the test has failed

· accept the actual result as a temporary pass result

· accept the actual result as a replacement of the previously recorded test oracle

· accept the actual result as an additional accepted result for the previously recorded test oracle

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. It is reasonable to

use previous results as the test oracle when a system is stable and produces the same results each time

it is executed with a given set of inputs.

Related Topics

· Human Test Oracle

· Hand-crafted Test Oracle

· Comparable System Test Oracle

· Recorded Test Automation

References

Books:

· Meszaros, Gerard, “xUnit Test Patterns” “Recorded Test” page 278

· Meszaros, Gerard, “xUnit Test Patterns” “Fragile Test” page 239

Online Resources:

· http://xunitpatterns.com/Recorded Test.html

Acceptance Test Engineering – BETA DRAFT Page 298

Comparable System Test Oracle

The pass/fail status of a test is determined by comparing the actual results from the system under test

with the result produced by a system with comparable functionality.

When the intent is to replace the comparable system with the system under test, this practice is often

called Legacy System Test Oracle.

Known Aliases

· Legacy System Test Oracle

When to Use It

Use a Comparable System Test Oracle when:

· There is at least one other system that implements the same logic that is being tested in the

test case in question. Note that different test cases for the same system under test could use

different systems as their Comparable System Test Oracle.

· The use of a Human Test Oracle would be too resource intensive or make the tests hard to run

fast enough or often enough.

· The expected result would be harder to specify using a Hand-crafted Test Oracle produced by a

person.

Test Lifecycle Applicability

Comparable System Test Oracles are applicable to the Authoring, Executing and Assessing phases of the

individual test lifecycle.

Risks Mitigated

The risks addressed include:

· The expected results aren’t well defined because they are too expensive to hand-craft.

· Tests are not run often enough to catch bugs because a Human Test Oracle is involved in their

execution.

· The output of the new system is different from a system whose results the users would expect

to be consistent.

Acceptance Test Engineering – BETA DRAFT Page 299

Limitations

· The comparable system may have undesirable behaviors that we do not want to reproduce in

our system.

How to Do It

Using a Comparable System Test Oracle typically occurs in three phases: The decision to use a

Comparable System Test Oracle is made while defining the test strategy, how the Comparable System

Test Oracle is used during the test case is defined while designing or authoring the test, the test cases

are executed against the comparable system to determine what “done looks like”, and the test results

are determined when running the test case against the system under test.

Defining the test strategy:

1. Identify the kinds of test cases needed to verify the various behaviors of the system under tests.

2. For each kind of test, decide what kind of test oracle to use for assessing the test results.

Authoring the test cases:

1. Identify the test cases needed to verify the behavior of the functionality in question.

2. For each test case, define the prior state of the system under test.

3. Define the inputs to be provided to the system under test.

Capturing the “comparable system result” for subsequent use as the expected result:

1. Run the Testcase against the comparable system by:

a. by putting it into the equivalent state

b. exercising it with the equivalent inputs

2. Capture the result of executing the test case.

3. Save the actual result for use as the expected result in runs of the test case against the system

under test. (Optional)

Running the test case using Comparable System Test Oracle:

1. Run the test case against the system under test.

2. Compare the actual result from the system under test with the expected result from the

comparable system test to decide whether the test passed or failed.

Acceptance Test Engineering – BETA DRAFT Page 300

Examples

· TBD

Implementation Options

A Comparable System Test Oracle can be used to generate results ahead of time or it can be run in

parallel with the system under test.

Parallel Execution of Comparable System Test Oracle

When test cases are being executed manually, the tester may exercise the comparable system in parallel

with the system under test thereby getting the expected results in real time. This is especially

appropriate when the functionality being tested is time/date sensitive. It is harder to implement in a

fully automated test execution because it requires the comparable system to be amenable to fully

automated testing, a situation that is rare enough with the system under test let alone the comparable

system.

A Priori Execution of Comparable System Test Oracle

The more common usage of a Comparable System Test Oracle involves a one-time execution of each of

the test cases against the comparable system. The results of the test cases are captured and either

encoded within the test scripts or stored as a “golden” master result with which the actual results are

compared. This approach is especially relevant when the comparable system is not amenable to test

automation, is slow to execute, or will not be available with the actual test execution is to occur. If the

results must be massaged before being used during test execution, a priori execution is indicated.

Legacy System Test Oracle

When the comparable system is being replaced by the system under test and the results are expected to

be equivalent, we can use the legacy system as the Comparable System Test Oracle. If we plan to use

the results after the legacy system is shut down we must capture the results a priori.

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. A comparable may

be the defacto way the customer defines the expectations of the system.

Related Topics

· Human Test Oracle

· Hand-crafted Test Oracle

Acceptance Test Engineering – BETA DRAFT Page 301

· Previous Result Test Oracle

References

Books:

·

Online Resources:

·

Acceptance Test Engineering – BETA DRAFT Page 302

Test Condition Identification Practices

This chapter focuses on practices related to identifying the test conditions we need to test. They apply

to both functional (business) and operational (technical) requirements.

· Classification Trees are used to enumerate all the different variables and sub-variables that

could be varied when testing a system. It is a way of describing the dimensionality of the

system.

· State-Transition Modeling is used to describe how a system is expected to behave (from a

specific perspective) so that we can identify test scenarios to verify conformance to the

model. This is a core component of Model-Based Testing

· Using Heuristics in Testing describes various of other ways to come up with test conditions.

Heuristics are techniques that are not infalliable but when they work they can provide very

useful results.

Chapter X, Test Reduction Practices describes what to do when these techniques identify to many test

conditions to verify in a practical amount of time or effort.

The rest of the chapter describes a number of other techniques that help us identify the less obvious but

more interesting test conditions that are more likely to catch bugs.. These include:

· Scenario-based testing describes a number of heuristics for identify interesting test

conditions that may reveal bugs hiding off the well traveled “happy path”.

· Soap Opera testing is a technique for coming up with test cases that push the system-under-

test to extremes by covering off many scenarios in a single test case.

The final practice relates to how testers can work together to be more effective. Paired Testing (or

Collaboarative Testing) is when two or more people work together to design tests. This is the testing

equivalent to eXtreme Programming’s Paired Programming practice. While it may seem less efficient to

have two people doing one job, wouldn’t you rather have two pilots in the cockpit on your next

commercial flight?

Acceptance Test Engineering – BETA DRAFT Page 303

Test Efficiency Maximization Practices

This chapter focuses on practices related to optimizing the design of test cases for functional

requirements. If the practices identified in the previous chapter produced too many combinations of

test conditions to verify in a reasonable amount of time and effort, you can use these practices to

reduce the number while minimizing the amount of additional risk you take on:

· Equivalence Class Partitioning describes we can reduce the number of input values we use for

testing by grouping them into equivalence classes based on the expected behavior of the

system-under-test.

· Boundary Value Selection describes how we pick the specific values we use based on their

proximity to the boundaries of equivalence classes.

· Combinatorial Test Optimization is a technique for reducing the number of combinations of test

conditions to be verified. We select test conditions in a way that ensures that all possible pairs

(or triples) are verified.

Acceptance Test Engineering – BETA DRAFT Page 304

Combinatorial Test Optimization

Combinatorial testing means putting attributes of test criteria together to see if there are harmful

interactions. But what do you do when the number of possible combinations is impossibly huge?

Combinatorial test optimization is a heuristic technique to reduce combinations of test variables and

test factors in such a way that you achieve similar test coverage without having to test every possible

combination while minimizing the increase in risk.

Known Aliases

· Multi-variable testing

· Orthogonal arrays

· Orthogonal Latin squares

· Pair-wise testing

· All-Pairs testing

When to Use It

If you are faced with a large set of test variables, like a spreadsheet matrix of configurations,

combinatorial test optimization can help you combine, reduce, and then prioritize the number of

combinations.

Test Lifecycle Applicability

Applicable to the Conceiving and Authoring phase of the test lifecycle. Affects the Execution and

Assessment phases of the test lifecycle by reducing the number of tests that need to be run.

Risks Mitigated

The risks addressed include:

· Bugs caused by interactions between specific combinations of features slipping through

undetected because:

o There was no plan to test all combinations of features

o There were so many tests to run that you run out of time before testing all

combinations

Acceptance Test Engineering – BETA DRAFT Page 305

Limitations

Combinatorial test optimization involves testing fewer combinations. Therefore, not all combinations

will be tested. If it is too risky *not* to test all combinations, do not use combinatorial test optimization.

How to Do It

28. Create a matrix of the attributes or features that can vary. Typically you would define a column

for each attribute and populate the cells in the column with the distinct values with which we

wish to test.

29. Use a tool like allpairs.exe, PICT, OATS to distill the combinations into pairing or triples to get a

reasonable set of combinations that can be run in less time but with almost as good test

coverage and risk reduction as running all of the combinations.

30. Run the test script with all the combinations enumerated by the tool. When the combinations

represent inputs passed the system-under-test you can use a Data-Driven Testing automation

approach to run the combinations quickly.

Examples

· All-pairs GBS Sample

Implementation Options

The primary implementation variation is the choice of how many attributes are varied between tests. In

general, the more attributes varied, the more tests will be needed in exchange for ensuring that n-way

interactions are tested. The most common variations are:

· Pair-wise testing: ensures that each variable is paired with each other variable value at least

once. This will result in the fewest possible number of tests needed but some 3-way

combinations variable values may not be tested.

· Triple-wise testing: ensures that each variable is combined with two other variables. This results

in better test coverage but at a cost of running more tests.

Rationale

While it doesn’t provide full coverage of every possible combination of variable values, combinatorial

test optimization ensures that the most variable values are tested with each of the other values at least

once.

Acceptance Test Engineering – BETA DRAFT Page 306

Related Topics

· Data-Driven Testing is how the optimized combinatorial tests are executed.

References

Books:

·

Online Resources:

· Jon Bach’s blog entry about all-pairs, Quardev.com, 2008

· Black-Box Software Testing course: Multi-variable Testing, Cem Kaner, 2005

· http://en.wikipedia.org/wiki/All-pairs_testing

· Tejas Consulting: Open Testware Review: “ALLPAIRS Test Case Generation Tool”, Danny Faught

· “Efficient Testing With All-Pairs”, Bernie Berger, STAR East 2003

· Microsoft PICT tool for generating all-pairs

· Free all-pairs tool from Satisfice.com

· Jenny – an all-pairs tool for generating regression tests , Bob Jenkins

Acceptance Test Engineering – BETA DRAFT Page 307

Part Three: Samples

Acceptance Test Engineering – BETA DRAFT Page 308

GBS ITPS Project Charter

Background

Global Bank has been offering self-service Internet credit card, banking, and investment services around

the world. Recently, the bank has noticed that identity theft handling has been a rising source of

customer complaints, both due to the complexity of handling claims, the number of falsely suspected

thefts, and the number of actual thefts that have gone undetected. These concerns have led the bank to

invest in developing an Identity Theft Protection Service (ITPS). The service allows customers to sign up

for notification of suspect transactions by email, IM, text, and/or voice. To ensure security, notifications

provide general information and a URL for secure login to review transaction details. Notifications can

be set based on amount, credit used, location, or unexpected spending pattern.

 Vision

For current Global Bank premium account holders who need to monitor their accounts for suspicious

activity like identity theft, fraud, and infiltration the Identity Theft Protection Service (ITPS) will allow

customers to sign up for notification of suspect transactions by email, IM, text, and/or voice that provide

general information and a URL for secure login to review transaction details unlike that for non-premium

account holders (less than $50,000 in assets) or premium account holders at other competing banks.

Scope

Inclusions

ITPS will extend the existing customer self-service capability on the GBS Online Banking website with

these capabilities:

· Automatic real-time notification of suspicious transactions via a choice of communication (IM,

text message, voice, email)

· Ability to configure means of communication preference

· Ability to configure rules for what kinds of transactions should trigger notification of the

customer based on account, transaction type, amount, and location

· Ability to review financial transactions in near real-time

· Ability to request a fraud investigation of a particular transaction

ITPS will extend the existing GBS desktop client used by customer service reps in the call center with:

· View or modify the notification rules on behalf of a customer

Acceptance Test Engineering – BETA DRAFT Page 309

· Review financial transactions on behalf of a customer

ITPS will also provide a new client for the fraud investigators.

ITPS will include built-in automated self-test capabilities to allow a maintenance release to be regression

tested (ITPS functionality only) in under 1 week of elapsed time with a maximum of 2 test engineers.

Exclusions

The following functionality is not included within the scope of the ITPS project:

· Enhanced b2b services with transaction clearing houses (e.g. First Data Corp)

· Automated regression self-test capability for release 1 and 2 functionality is not expected but

anything that can be provided for low cost would be a bonus.

 Key Stakeholders

The end user of the ITPS functionality is the typical personal banking consumer or small business owner

or manager. Their interests shall be represented by the product owner team headed by Joe Blow, VP of

Banking Products, Consumer & Small Business.

The key stakeholders are:

· Joe Blow, VP of Banking Products, Consumer & Small Business will have the final say on the end-

user and CSR/Investigator functionality to be provided.

· John Doe, VP of Systems & Operations will have the final say on requirements related to

installation, operation and maintenance of the application.

Scorecard

Success of the ITPS project will be determined using the following scorecard:

Acceptance Test Engineering – BETA DRAFT Page 310

Release Plan

ITPS shall be deployed as release 3 of the Global Bank Online Banking System. Delivery shall be staged

geographically as per standard GBS incremental deployment model as follows:

· April: Alpha release to in-house users

· May: Beta release to a set of volunteer Beta testers

· June: Enabled for users in the Greater Metro Area

· July: Enabled for user anywhere in North America

· August: Enabled world-wide

Minimum Credible Release (MCR): All major scope items shall be available in all preliminary and final

releases except:

· Investigator client is optional in Alpha release.

Minimum Quality Requirement (MQR):

· Final/Beta release: Zero known category 1 or 2 defects.

· Alpha: No major defects that would prevent users from assessing usefulness of notification

functionality.

Acceptance Test Engineering – BETA DRAFT Page 311

Project Team Structure

As per previous releases of the Online Banking System, ITPS will be co-developed by two development

teams and one test team:

1. The Call Centre Team shall extend the CSR desktop client and will implement the notification

services

2. The Web Development Team shall extend the Customer Self-Service Application.

3. The Quality Assurance team will work close with both teams to clarify how the requirements

will be verified.

Appendix: Org Chart

Acceptance Test Engineering – BETA DRAFT Page 312

Global Bank ITPS Use Case Model

ITPS: Identity Theft Protection Service

Global Bank ITPS System Context Diagram

Manage Notification Preferences

Notify of Suspicious Transaction

Manage Notifications

Account
Owner

Fraud
Investigator

Request Fraud Investigation

Manage User Account

Manage Fraud Investigation

CSR

Actors and Goals

Actor Goal

Account Owner · Manage their account monitoring notification preferences.

· Receive notification of any suspicious activity on their

account as defined in their notification preferences.

· Manage the notifications they receive as a result.

· Request a fraud investigation based on a notification.

· View the status of the fraud investigation.

Fraud Investigator · Manage a fraud investigation requested for an Account

Owner.

· Manage (Disable, Cancel) an account.

Customer Service

Representative

· Act on behalf of the Account Owner managing preferences,

notifications and fraud investigations.

· Manage (Set up, Disable, Cancel) accounts

 Stakeholders and Interests

Stakeholder Concern

Corporate Security Know who tried to access a system unauthorized

Auditor Know who changed what, when.

Acceptance Test Engineering – BETA DRAFT Page 313

Acceptance Test Engineering – BETA DRAFT Page 314

Use Case Descriptions

Use Case: Manage Notification Preferences

CHARACTERISTIC INFORMATION

Goal in Context: An account owner or a CSR may manage the notification preferences associated with

the account.

Scope: Global Bank Identity Theft Protection Service

Level: User Goal (sea level)

Preconditions: User is already logged in and has sufficient privilege.

Success End Condition: The notification preference has been modified as requested.

Failed End Condition: The notification preference has not been modified.

Primary Actor: Account Owner (or a CSR acting on their behalf)

Trigger: User requests a change.

--

MAIN SUCCESS SCENARIO

1. User requests a change to their notification profile

2. System verifies user is allowed to modify this profile

3. System logs the requesting user, account affected and a summary of the changes made

4. System updates the profile as requested

5. The use case ends in success

EXTENSIONS

2a. User not logged in or not authorized :

2a1. System logs unauthorized request, user information and time/date in the security log

2a2. System notifies user that request could not be completed

2a3. The use case fails

3a. Database cannot be updated :

3a1. System notifies user that request could not be completed

3a2. System notifies the monitoring system of the error

3a3. The use case fails

Acceptance Test Engineering – BETA DRAFT Page 315

VARIATIONS

1a. The user requested notification via SMS

 :

1b. The user requested notification via e-mail

1b1. System sends test e-mail to the user

1b2. User confirms receipt of the test e-mail

1b3. System activates notification via e-mail

1b4. Continue with main scenario

1c. The user requested notification via Instant Messaging

 :

1d. The user requested notification via voicemail

 :

1e. The user adjusted the transaction size threshold

1e1.Based on Charge Type

1e2.Based on Location

1e3.Based on Account

 :

1f. The user requested “unusual spending pattern” triggering

 :

1h. The user requested suspending notifications for a specified duration

 :

Acceptance Test Engineering – BETA DRAFT Page 316

Use Case: Notify of Suspicious Activity

CHARACTERISTIC INFORMATION

Goal in Context: A transaction occurs on an account with ITPS notification preferences.

Scope: Global Bank Identity Theft Protection Service

Level: User Goal (sea level)

Preconditions: Transaction monitoring is active on the user’s account.

Success End Condition: The user has been notified as requested in their profile.

Failed End Condition: The user has not been notified as requested in their profile but a notification

attempt may have been recorded.

Primary Actor: ITPS System

Trigger: A transaction is processed on an account.

--

MAIN SUCCESS SCENARIO

1. Systems receives a transaction.

2. System compares transaction with notification preferences of affected account.

3. System determine that transaction is suspicious.
4. System logs suspicious activity

5. System creates notification record and links it to the account in “not notified” status.

6. System notifies user via means defined in their notification preferences.

7. System updates the notification record with “notified” status.

8. The use case ends in success

EXTENSIONS

5a. Notification is currently suspended

5a1. System logs that notification is disabled.

5a2. Use case ends in failure

6a. Notification fails :

6a1. System logs failed notification attempt.

6a2. The use case fails with a “not notified” notification record associated with the user’s account.

5a. Database cannot be updated :

3a1. System raises a serious alarm condition with the system monitoring system

3a2. The use case fails

Acceptance Test Engineering – BETA DRAFT Page 317

VARIATIONS

6a. The user requested notification via SMS

 :

6b. The user requested notification via e-mail

4b1. System sends notification e-mail to the user

4b2.

4b4. Continue with main scenario

6c. The user requested notification via Instant Messaging

 :

6d. The user requested notification via voicemail

 :

Acceptance Test Engineering – BETA DRAFT Page 318

ITPS User Stories

Original list of stories generated from customer described scenarios:

As a signed in bank account owner, I want to sign up for ITPS notifications so I can be notified of

possible fraudulent transactions.

As a signed in bank account owner, I can set preferences for receiving ITPS notification via email

As a signed in bank account owner, I can set preferences for receiving ITPS notification via IM

As a signed in bank account owner, I can set preferences for receiving ITPS notification via SMS -

As a signed in bank account owner, I can set preferences for receiving ITPS notification via voicemail

As a signed in bank account owner, I can set preferences for sending notifications based on amount

spent

As a signed in bank account owner, I can set preferences for sending notifications based on credit

or account used

As a signed in bank account owner, I can set preferences for sending notifications based on location

As a signed in bank account owner, I can set preferences for sending notifications based on

unexpected spending patterns

As a signed in bank account owner, I can set preferences for sending notifications based on a

combination of reasons

As a signed in bank account owner, I can set preferences for sending notifications to several

notification targets

As a signed in bank account owner, I can set severity levels on each reason

As a signed in bank account owner, I can suspend notifications for X days

As a signed in bank account owner, I can modify my notification preferences

As a signed in bank account owner, on the site home page, I can see a link to a list of recent

notifications

As a signed in bank account owner, I can view a list of recent notifications

As a signed in bank account owner, I can dismiss a notification as an allowed transaction

Acceptance Test Engineering – BETA DRAFT Page 319

As a signed in bank account owner, I can file a fraud claim from the list of recent notifications

As a signed in bank account owner, I want to file a fraud claim with the bank based on my bank

statement

As a signed in bank account owner, I can block use of my credit/debit card

As a signed in bank account owner, I can report a lost or stolen credit/debit card

A bank account owner can call customer service line and choose to hear notifications - separate

vendor acceptance test (text to voice)

As a customer service representative, I can sign up a user for ITPS notifications so I can be notified
of possible fraudulent transactions.

As a customer service representative, I can set preferences for a user for receiving ITPS notification

via email

As a customer service representative, I can set preferences for a user for receiving ITPS notification

via IM

As a customer service representative, I can set preferences for a user for receiving ITPS notification

via SMS -

As a customer service representative, I can set preferences for a user for receiving ITPS notification

via voicemail

As a customer service representative, I can set preferences for a user for sending notifications

based on amount spent

As a customer service representative, I can set preferences for a user for sending notifications
based on credit or account used

Acceptance Test Engineering – BETA DRAFT Page 320

As a customer service representative, I can set preferences for a user for sending notifications

based on location

As a customer service representative, I can set preferences for a user for sending notifications

based on unexpected spending patterns

As a customer service representative, I can set preferences for a user for sending notifications

based on a combination of reasons

As a customer service representative, I can set preferences for a user for sending notifications to

several notification targets

As a customer service representative, on behalf of a user , I can set severity levels on each reason

As a customer service representative, on behalf of a user , I can suspend notifications for X days

As a customer service representative, on behalf of a user , I can modify their notification

preferences

As a customer service representative, on behalf of a user , I can view a list of recent notifications

As a customer service representative, on behalf of a user , I can dismiss a notification as an allowed

transaction

As a customer service representative, on behalf of a user , I can file a fraud claim from the list of

recent notifications

Acceptance Test Engineering – BETA DRAFT Page 321

As a customer service representative, on behalf of a user , I can file a fraud claim with the bank

based on my bank statement

As a customer service representative, on behalf of a user, I can block use of their credit/debit card

As a customer service representative, on behalf of a user , I can report a lost or stolen credit/debit

card

As a customer service representative, on behalf of a user , I can re-activate a disabled card

As a bank fraud investigator, I want to be able trace activity on a possible fraudulent claims through

resolution

As a bank fraud investigator, I want to approve a claim as valid

As a bank fraud investigator, I want to deny a claim as invalid

As a bank fraud investigator, I want to add notes to a claim

As a bank fraud investigator, I want to notify the legal department to file suit against a fraudster

As a bank fraud investigator, I want to close a user's account for false accusations

Acceptance Test Engineering – BETA DRAFT Page 322

The ITPS system will automatically block a card and notify the user for high severity notifications.

The ITPS system will automatically block a card and notify the user for transactions on three

continents in 24 hours.

The ITPS system will automatically block a card and notify the user when transactions totaling more

than $25000 happen in 24 hours.

ITPS will verify users are human before allowing registration on the web site.

ITPS will verify Turing Test is easily passed by humans.

ITPS will verify Turing Test is not easily cracked by computers.

Acceptance Test Engineering – BETA DRAFT Page 323

Testing Functional Requirements

This example includes samples of dialogs and artifacts related to the following practices:

· Testing functional requirements manually via the UI

· Acceptance Test Driven Development

· Testing functional requirements without the UI

· Regression Testing

Creating Acceptance Tests for User Stories

Creating Manual Acceptance Test Scripts

This section will show:

· Testing functional requirements manually via the UI

· Acceptance Test Driven Development

Let's take a simple example from our Global Bank application. The feature we will look at is

"As a signed in bank account owner, I can set preferences for receiving ITPS notification via

email".

We’ll apply a technique from interaction design called “Task Analysis” to determine what is really

needed.

Given this user story, the delivery team and the customer had a discussion about what the customer

wanted the user experience to be. From that they wrote a few simple manual test scripts (which can be

automated by the delivery team).

The team helps the customer sketch a UI workflow, and screen layouts to ensure that the web pages will

conform to what the customer expects. This includes fitting in with the existing Global Bank web site

themes and templates. Usability testing is done on the user interface, as can be found in the Usability

Testing sample.

Then, based on this flow, they wrote the simple success case:

<PD: Start sample artifact>

Test Case: SetItpsPreferencesEmailSuccess

1. Open page GlobalBank.com

2. Click the Login link

Acceptance Test Engineering – BETA DRAFT Page 324

3. Login with the test account information ("test_account_001", "!Q@W#E$R%T")

4. On the user home page, click the "Identity Theft Prevention Service" link

5. Click the "Set Preferences" link

6. Click the "Email notification" link

7. Type in the email address "test_account_001@globalbank.com"

8. Click "Save Preferences" link

9. Verify the "Preferences Saved" page is displayed

<PD: End sample artifact>

Then there is a simple validation failure case:

<PD: Start sample artifact>

Test Case: SetItpsPreferencesEmail_AddressValidationFailure

1. Open page GlobalBank.com

2. Click the Login link

3. Login with the test account information ("test_account_001", "!Q@W#E$R%T")

4. On the user home page, click the "Identity Theft Prevention Service" link

5. Click the "Set Preferences" link

6. Click the "Email notification" link

7. Type in the invalid email address "test_account_001"

8. Click "Save Preferences" link

9. Verify that the "Email Notification" preferences page is displayed with a message "The email

address is invalid; it must contain both account and domain separated by an @ sign."

 <PD: End sample artifact>

After writing

A few more failure tests around log-in failure, and edge cases for the email address validation are added.

After writing these tests, a discussion ensued about test maintainability.

Joe: “Do we really want to include details of the UI such as “Click on the login link” and specific data

such as “test_account_001” in the test script?”

Fred: “What’s the alternative?”

Acceptance Test Engineering – BETA DRAFT Page 325

Joe: We could just say “Log in with valid end user name” and have the tester interpret this to mean

“click on the link” and look up a valid user name based on the data in the test system.

Fred: That makes a lot of sense; it would make the scripts much shorter and they wouldn’t have to be

rewritten every time we change the UI. I like it!

So the team revised the test scripts to look like this:

<PD: Start sample artifact>

Test Case: SetItpsPreferencesEmailSuccess

1. Log into GlobalBank.com with valid user id and password

2. Navigate to the "Identity Theft Prevention Service" page

3. Edit the "Email notification" preference entering a valid test e-mail address

4. Save the edit and verify the profile was updated

Test Case: SetItpsPreferencesEmail_AddressValidationFailure

1. Log into GlobalBank.com with valid user id and password

2. Navigate to the "Identity Theft Prevention Service" page

3. Edit the "Email notification" preference entering a valid test e-mail address

4. Save the edit and verify that an error message is displayed that describes what is wrong and

how to fix it.(E.g. "The email address is invalid; it must contain both account and domain

separated by an @ sign.")

5. Verify the profile was not updated

 <PD: End sample artifact>

After finishing the rewriting of the tests, Fred remarks: “I can see how this makes the tests easier to

understand and less fragile. But how do we ensure that the tester is testing what the test writer

intended? How do we get repeatability?”

Joe replies: “Repeatability is nice in concept but it doesn’t necessarily find bugs. In practice, having some

variation in how the tests are run is a good thing because it means we end up with better test coverage.

But if we want to ensure certain test conditions are covered we can attach a list of examples to the test

script. For example, we could list the various kinds of invalid addresses that should be tried: Missing

domain (fred), invaliddomain name (fred@invalid), missing account (microsoft.com), malformed address

(fred@office@microsoft.com, fred@office/microsoft.com, etc.)”

 Fred: So, we can have the best of both worlds: good coverage, less test maintenance, and enough

repeatability to satify anyone interested in seeing what we’ve tested.

Acceptance Test Engineering – BETA DRAFT Page 326

Then the team asks the customer what should happen when a user who is not logged in tries to access

these pages. The customer wants the user to be directed to the login page, causing this test case to be

written:

<PD: Start sample artifact>

Test Case: UauthorizedUserCannotAccessEmailPreferencesPage

1. Without being logged in, try going directly to the Email Preferences page using a dirct URL or

bookmark. (E.g. Open page globalbank.com/account/ITPS/EMailPreferences.htm)

2. Verify that the login page is displayed instead of the requested page.

 <PD: End sample artifact>

One of the system level requirements is that pages load within 500 ms, so the team creates copies of the

above tests and adds timing for each step of the process, SetItpsPreferencesEmailSuccess_LoadTime

and SetItpsPreferencesEmail_AddressValidationFailure_LoadTime. Then, the team writes a few system

stress scenarios to verify that the pages can handle multiple users with a system load of 100 transactions

per second. There are also a set of disaster recovery tests to write, including recovery when the back

end data store is not accessible, when the login service is unavailable, and when the account has been

locked down due to a fraud alert.

Elaborating on User Stories Using Business Workflow Tests

This section will show

· Testing functional requirements without the UI

· Automating tests using a ubiquitous language

· Regression Testing

The above tests have all been at the level of the user interface. Let’s consider another approach where

the tests are written in a domain language specific to the project. This approach is viewed favorably by

some, as it can lead to tests that are less fragile that the UI dependant tests above.

The same team, given another story from the backlog, and using an approach that targets only the

business logic will have a very different set of acceptance tests. Let’s look at the team’s discussion of

the story:

“As a signed in bank account owner, I can suspend notifications for X days.”

Acceptance Test Engineering – BETA DRAFT Page 327

In the discussion that the Global Bank delivery team had with the customer, a number of issues were

raised, and a lot of questions were answered. Here is a summary of some of the discussion:

Delivery Team Customer

What industry and regulation standards do we need to

apply to this scenario?
All interactions that users have with the system need

to be logged.

Where do you want to see the logged events? The logging of these events should be done in the

same log system as the rest of the Global Bank online

web site. The operations people can give you the

details.

Exactly what information needs to be logged? The user name, the action taken, whether the action

succeeded or failed, and the time that the action was

taken.

This caused another story to be written and added to the backlog:

“The system logs all account holder interactions to the existing log store.”

Since this story falls into the realm of a cross cutting concern, and needs to be considered in all stories

with an account holder as the actor, the team will keep it in mind as they work.

Team Customer

How does this feature interact with the user’s ability to

opt into the IPTS service?

Only users who have opted in can suspend notifications

Does this effect one account or multiple accounts? What do you mean?

If the user has more than one account, say two checking

accounts and a savings account, does this apply to only

the primary account?

No. The user can suspend notifications for each account

separately.

How long should we let users suspend notifications? An

hour? A day ? a month?

At least one day, up to a month, in one day increments?

By one day, do you mean a business day, midnight to

midnight, or something else?

24 hours, midnight to midnight

So a new suspension won’t take effect until midnight? I guess that doesn’t make sense. It should take effect

immediately and expire at the same time the specified

number of days later.

Should time changes for daylight savings effect the

length of time notifications are suspended for?

Let’s talk about that separately. I will create a separate

user story describing the impact of DST.

How can the user confirm that the suspension has taken Good question. We should probably send a message on

Acceptance Test Engineering – BETA DRAFT Page 328

effect? the suspended notification channel confirming that

notification is suspend.

Do we want to include that in this user story? No, let’s add another story for that.

The conversation continued for a while, in the end the supplier understood the terms that the customer

used, and the customer had explicitly stated what the requirement meant. The following user stories

had been added to the backlog:

“System logs all account holder interactions to the existing log store”

“Duration of suspension spanning start/end of Daylight Savings Time”

“System notifies user of suspension of notification”

Because these are user stories they don’t describe the requirement in detail; they are merely a reminder

to have a more detailed conversation at a later time.

<insert timeline here with datePoint=TA (Test Authoring)>

The supplier and customer continue with the job at hand by preparing a rough outline of the test:

1. Setup notification

2. Suspend notification

3. Process transaction to show notification is disabled

4. Time elapses beyond suspension period

5. Process transaction to show notification is active again (notification expected)

Note that this is a workflow test because:

· The passage of time is an important part of the logic being tested.

· There are two “users” involved (bobma, GBS transaction processing).

· There are several different use cases involved (Suspend Notification, Process Transaction)

This tells us that this test is not a test of a single use case. Workflow tests are more complex than single

use case scenario tests because of the need to interact with the system from several users’ viewpoints.

Therefore, we want to try to keep the description of the test at a higher level to avoid confusing the

reader with too much detail.

The end result of this conversation was the following rough acceptance test:

<PD Start Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 329

1. Setup notification

· User bobma sets notification threshold for all transactions to $10000

· Time now is 10:00AM,06/16/2008

· User bobma successfully logs in

2. Suspend notification

· User bobma suspends notification on account number 10035692877 for 5 days

· Verify system log contains ”user bobma suspended notifications from account 10035692877 on

06/16/2008 at 10:00 AM for 5 days.

· Check system log contains”system sent user bobma email confirming suspended notifications

from account 10035692877 on 06/16/2008 at 10:00 AM for 5 days.

· Verify bobma receives message “Your notifications on account XXXXXXX2877 are suspended

until 10:00 AM 06/21/2008”

3. Process transaction to show notification is disabled

· Time now is 12:00PM,06/18/2008

· Debit transaction of $20,000 is performed on account 10035692877

· Verify bobma receives no notification

4. Time elapses beyond suspension period

· Time now is 10:00AM, 06/21/2008

· Verify bobma receives message “Your notifications for account XXXXXXX2877 have resumed”

· Verify system log contains “system sent user bobma email confirming re-enabled notifications

for account 10035692877 on 06/21/2008 at 10:00 AM.

· Verify bobma receives message “Your notifications on account XXXXXXX2877 are suspended

until 10:00 AM 06/21/2008”

5. Process transaction to show notification is active again (notification expected)

· Debit transaction of $25,000 is performed on account 10035692877

· Verify system log contains ”system sent user bobma email notification at 10:00AM on

06/21/2008”

<PD End Sample Artifact>

While writing the test script the following discussions that occurred:

Grigori: Should we log user bobma in explicitly or should we indicate which user (bobma) invoked the

use case instead.

Gerard: No, let’s focus on the business transactions, not the mechanics of logging in.

They wrote this set of steps:

<PD Start Sample Artifact>

· Time now is 9:00AM, 03/18/2008

Acceptance Test Engineering – BETA DRAFT Page 330

· Authorized user bobma sets notification threshold for all transactions to $10,000.00 on all

accounts

· Verify system log contains "03/18/2008 at 9:00 AM user bobma set notification threshold for all

accounts, all transactions to $10,000.00"

<PD End Sample Artifact>

Grigori asks: How do we want to specify whether the notification is sent via e-mail, SMS, voice-mail,

etc.?

Gerard: Do we need to include that in this test? Don’t we have other tests that prove that the

notification configuration works properly?

Grigori: Yes, you are right. We don’t need to make these tests any more complicated.

Then they wrote this:

<PD Start Sample Artifact>

 Process transaction (notification expected)

· Time now is 9:30AM, 03/18/2008

· Global bank processes credit to 10035692877 in the amount of $15,000.00

· Ensure notification of credit $15,000.00 to 10035692877 at 9:30AM, 03/18/2008 is sent to user

bobma

<PD End Sample Artifact>

Gerard: Do we really want to verify the logging of changes to the profile in this test?

Grigori – Why not?

Gerard: Don’t we have other tests that verify that logging is done whenever a user changes their profile?

Grigori: Yes, we should be doing that in the corresponding use case test so we don’t need to verify that

particular requirement in this workflow test.

Gerard: Good point; we can omit it.

They continued writing the test and noticed that they hadn’t shown that the “all transactions” and “all

accounts” did anything.

Grigori: Should we show two different transaction types? E.g. Credit and Debit.

Gerard: Sure, that would illustrate that “all transactions” works.

Grigori: Should we use the same account?

Gerard: Let’s use a different account. That way we can kill two birds with one stone.

Grigori added the second transaction on a non-suspended account processed a day later .

Gerard: Is it important that the 2nd transaction is a day later?

Acceptance Test Engineering – BETA DRAFT Page 331

Grigori: No, I just picked a different date.

Gerard: If we did it at the same time then the reader will not be distracted trying to understand whether

the difference is significant.

Grigori: Good point. I suspect that I would find myself doing that next time I read this test!

Gerard: In fact, it would be good to highlight the specific values that are important. Let’s bold them to

draw the reader’s attention to them.

Note: This illustrates an important point: if a difference between two things is irrelevant, make them

the same; if it doesn’t affect the logic under test at all, then consider hiding it and using a default value

under the covers.

Gerard: The test says “verify bobma receives message …” but we don’t have control over the e-mail

system.

Griogori: Maybe we should verify that the system has sent the message instead?

Gerard: Sure, that sounds reasonable. And while we are at it, some steps in the test expect multiple

notifications so maybe we should just list all of them rather than have separate steps to verify each one.

Gerard: I just remembered something: We haven’t included the location in the notification thresholds.

Grigori: What do we need?

Gerard: We could simply say “all locations” in the threshold specification and add a location like USA or

Europe to each transaction processed.

Grigori: That will make the text of the message rather long and we are unlikely to get the working

perfect now. Do we need to include the exact text of the message? What if we change the text later; all

these tests will have to be changed. Sounds like a test maintenance nightmare!

Gerard: We could just list the key fields in a table and verify the text generation in a use case or business

rule test.

Grigori: We seem to be pushing a lot of the details of the requirements out of the workflow tests. How

does the reader get an accurate big picture of how everything fits together? E.g. System logging, the

contents of the messages, different forms of notification?

Gerard: That’s a good point. We probably want to have one or two workflow tests that illustrate how

everything fits together. The “kitchen sink” test. But I don’t think we are writing that test since we are

focused on suspending notifications.

The finished test script looked something like this:

<PD Start Sample Artifact>

· 0.Set Locale

· |Locale is|en-US|

·

Acceptance Test Engineering – BETA DRAFT Page 332

· 1.Set notification

· |Time now is |9:00AM, 03/18/2008|

· |Authorized customer|bobma|sets notification threshold for|'''all'''|transactions

from|'''all'''|locations to|$10,000.00|on '''all''' accounts|

·

· 2. Process several transactions (notifications expected for each one)

· |Time now is |9:30AM, 03/18/2008|

· |Global bank processes|credit|to|10035692877|in the amount of|$15,000.00|from|USA|

· |Time now is |9:35AM, 03/18/2008|

· |Global bank processes|debit|to|10035692890|in the amount of|$12,000.00|from|Thailand|

·

· |Notifications sent to customer|bobma|

· |type|account|timestamp|amount|location|

· |credit|10035692877|9:30AM, 03/18/2008|$15,000.00|USA|

· |debit|10035692890|9:35AM, 03/18/2008|$12,000.00|Thailand|

·

· 3. Suspend notification

· |Time now is |10:00AM,06/16/2008|

· |Authorized customer|bobma|suspends notifications for|all|transactions from|all|locations on

account|'''10035692877''' for |5 days|

·

· 4. Process transaction on the account with suspended notifications

· |Time now is |10:01AM,06/16/2008|

· |Global bank processes|credit|to|'''10035692877'''|in the amount

of|$20,000.00|from|Greece|

·

· 5. Process transaction on the account with active notifications

· |Time now is |10:02AM, 06/16/2008|

· |Global bank processes|debit|to|''10035692890''|in the amount of|$13,000.00|from|Canada|

·

· |Notifications sent to customer|bobma|

· |type|account|timestamp|amount|location|

· |debit|10035692890|10:02AM, 06/16/2008|$13,000.00|Canada|

·

· 6. Process transaction on the account with by-now-expired notification suspension (after 5

days)

· |Time now is |10:01AM,'''06/21/2008'''|

· |Global bank processes| credit| to| 10035692877|in the amount of| $19,000.00| from|USA|

·

Acceptance Test Engineering – BETA DRAFT Page 333

· |Notifications sent to customer|bobma|

· |type|account|timestamp|amount|location|

· |credit|10035692877|10:01AM, 06/21/2008|$19,000.00|USA|

<PD End Sample Artifact>

The team now had a workflow test which clearly defined the product requirements that could be

executed by a human tester. Running this test would be quite involved as it would require logging into

the system as a user several times (to setup and then suspend notification) and preparation and

injection of the financials transaction using a tool built specially for this purpose.” Is there a better way

to do this?” they asked themselves.

Automating Business Workflow Tests Bypassing the User Interface

After some investigation they decided it should be possible to create an automated test that interacts

with the system to run the test as defined. Because some of the people involved were developers they

knew how to bypass the user interface to make interacting with the system easier, an approach

sometimes called subcutaneous testing. One of the developers was already familiar with the Fit testing

framework and thought that implementing the test as a DoFixture would be quite straightforward.

 They transformed the natural language script prepared earlier into an automated test using FIT test and

implemented the Fit DoFixture to interpret the tables by making call functions in the API of the ITPS

system. (For more information on FIT, visit http://fit.c2.com/) The resulting passing automated test

looks like this:

<PD Start Sample Artifact>

GlobalBankSample.AuthorizedCustomerSuspendsNotifications

Note: The tables contain commands that the Fit DoFixture knows how to interpret. Most table rows

are transformed into a method call on the DoFixture with the even-numbered position items being

parameters pass to the method. E.g. In Step 1. The method called is

AuthorizedCustomerSetsNotificationThresholdForTransactionFromLocationsToOnAllAccounts

Acceptance Test Engineering – BETA DRAFT Page 334

(“bobma”, “all”,”all”, “$10,000.00”); Steps that passed are colored green.

Acceptance Test Engineering – BETA DRAFT Page 335

Note: The tables that start with “Notifications sent to customer|bobma” compare the actual data

returned by the system with the data provided as part of the test. When the data matches the step

passes and is colored green. Missing, surplus or mismatching data is considered a step failure.

<PD End Sample Artifact>

The next sample illustrates the outcome of the test if the notification wasn’t suspended properly. The

line starting with “credit surplus” indicates that an unexpected notification was sent to user bobma. In

the interests of space only step 5 is shown.

<PD Start Sample Artifact>

<PD End Sample Artifact>

Note: The c# code for the Fit “fixtures” that interpret these tables is available on codeplex.

Elaborating on Algorithmic Requirements Using Business Rule Tests

Later in the project customer decides to implement the daylight savings time story: . After discussing the

impliciations the delivery team adds several more tests to account for time changes for daylight savings

time. Initially they take the easy way out by simply copying the workflow test, renaming it, and

changing the dates and times involved to encompass 2:00 AM on the second Sunday in March and

another test including the first Sunday in November. All the tests pass but the team comes up with

some special cases that also need testing: the “missing hour” during the change to DST. Rather than

Acceptance Test Engineering – BETA DRAFT Page 336

create even more workflow tests, they decide to add some business rule tests that test the suspension

expiry time algorithm directly.

<PD Start Sample Artifact>

Tests for User Story: Duration of suspension spanning start/end of Daylight Savings Time

As a customer, I want suspensions that cross the boundary between standard and daylight time to act

“naturally” so I don’t have to add or subtract hours to know when they end.

Note: These tests are constructed as Business Rule Tests to avoid the overhead of running a full

workflow test for each case. There would be separate tests or setup to verify the location to “DST

Applicable” look is implemented correctly.

Locations with Daylight Savings Time use the local time so suspensions across standard-daylight time

boundary are one hour longer (from DST) and up to an hour shorter (to DST). The special case is because

we go from 12:59 am Std to 2:00 am DST in one minute. All suspensions that start between 1:00 am and

2:00 am Std should end at 2:00 DST.

NotificationSuspensionExpiry

Location
Start Timestamp Duration Expiry Time() Comment

Seattle, WA, USA 1:00 am 9/2/2008 5 days 1:00 am 14/2/2008 Std to Std time

Seattle, WA, USA 12:59 am 9/3/2008 5 days 12:59 am 14/3/2008 Std to Dst time

Seattle, WA, USA 1:00 am 9/3/2008 5 days 2:00 am 14/3/2008 Special case Std to Dst time

into “missing hour”

Seattle, WA, USA 1:59 am 9/3/2008 5 days 2:00 am 14/3/2008 Special case Std to Dst time

into “missing hour”

Seattle, WA, USA 2:00 am 9/3/2008 5 days 2:00 am 14/3/2008 Std to Dst time

Seattle, WA, USA 10:00 am 9/3/2008 5 days 10:00 am 14/3/2008 DST to DST

Seattle, WA, USA 10:00 am 1/11/2008 5 days 10:00 am 6/11/2008 DST to Std time

<PD End Sample Artifact>

When the developer showed the working functionality to the customer prior to the customer doing

incremental acceptance testing, the customer asked the question: “What about my brother-in-law who

lives in Arizona? They don’t do daylight savings there. Would this still work correctly for him?” This

question caused the team to add the following additional tests:

<PD Start Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 337

Locations that don’t use DST see no special behavior. Suspensions are exactly the specified number of

days long.

NotificationSuspensionExpiry

Location
Start Timestamp Duration Expiry Time() Comment

Pheonix, AZ, USA 1:30 am 9/3/2008 5 days 2:00 am 14/3/2008 Std to Std time

Pheonix, AZ, USA 10:00 am 7/3/2008 5 days 10:00 am 12/3/2008 Std to No Dst time

Pheonix, AZ, USA 10:00 am 9/3/2008 5 days 10:00 am 14/3/2008 No DST to No DST

Pheonix, AZ, USA 10:00 am 1/11/2008 5 days 10:00 am 6/11/2008 No DST to Std time

<PD End Sample Artifact>

The tests during the change to/from DST failed so the team had to adjust the logic in the application to

cope with DST before the functionality was accepted by the customer.

Acceptance Test Engineering – BETA DRAFT Page 338

Global Bank ITPS Project Risk Assessment

P
ro

b
ab

ili
ty

 /
 L

ik
e

lih
o

o
d

H
Competitor plans a better

implementation

Marketing makes unealistic

promises;

Lots of data-driven bugs found

during beta

Test lab isn't available on time;

Performance is poor

M

Product is hard to test;

Connection technology between

teams is unreliable;

Regulatory body finds deficiencies;
Culture clash between teams cause

lack of communication

An attach breaches security;

Users can't figure out how to do

notification;

Privacy violation occurs after
deployment;

L
Indian outsourcer goes

bankrupt

Test logic makes it into production;

Expert on legacy components
leaves

Implicit requirements discovered

during AT;

Deployment fails;

Rollback to previous version fails;

Customer sues for damages b/c
of lack of notifications;

Lack of requirement consensus;

Inadequate technology selected

 L M H

 Consequence / Impact

Risk Mitigators:

Exploratory testing

Do usability early with prototypes

Do perf testing early

Involve customer in AT (ATDD)

Better functional testing during readiness

Incremental AT

Data analysis

Paired testing

Compliance testing and review during readiness

Get real data from customers

AT reviewed by customer

Persona-based testing ("Clumsy Clive")

Threat modeling

Hire independent external security test lab

Penetration testing

Hire a tiger team

Automate reimaging of test machines

Define and get consensus on the sandbox strategy in the test plan

Acceptance Test Engineering – BETA DRAFT Page 339

Build testability into the system

Automate component testing

Early integration testing

Extract "to-be-modified" legacy mogic

Scenario / end-to-end testing

Stub out dependencies

Threat personas

Risk-driven testing

Integration testing

Shared code ownership

Automated regression tests

Early sharing of AT to improve communication

Early incremental acceptance testing

Soap opera testing

Plenty questions

Draft your disclosure documents early

Installation / Uninstallation testing

Content / documentation testing

Benchmarking / competitive testing

Acceptance Test Engineering – BETA DRAFT Page 340

Global Bank ITPS Threat Model

Note: This artifact is used to record the results of the threat modeling exercise as well as the

assumptions on which it is based. It then becomes part of the requirements that drive the detailed

design of the application.

Application Name and Description

The Identity Theft Protection Service (ITPS) allows Global Bank customers to sign up for notification of

suspect transactions by email, IM, text, and/or voice. To ensure security, notifications provide general

information and a URL for secure login to review transaction details. Notifications can be set based on

amount, credit used, location, or unexpected spending pattern.

Owners, Authors, and Stakeholders

Owners Authors Stakeholders

 John Smith John Smith

Fredrica Jones

<CSO>

<Head of Audit

dept>
<Product

Owner/Sponsor>

Revision History

Name Change Date

 John Smith Created Jul 1st 2008

Fredrica Jones Filled in some gaps Jul 5th 2008

Fredrica Jones Updated after review with dev

team.

Jul 17th, 2008

Acceptance Test Engineering – BETA DRAFT Page 341

1. Security Objectives

Below are the goals and constraints that affect the confidentiality, integrity, and availability of the data

and application.

· Prevent attacker from obtaining a Global Bank user’s profile information/ notification preferences

· Prevent attacker from changing a Global Bank user’s notification preferences

· Prevent any unauthorized access to users account on public website

· Prevent attacker from observing, misdirecting or hijacking the notifications sent to Global Bank

customers

· Prevent attackers from sending (spoofed) notifications to Global Bank customers

Acceptance Test Engineering – BETA DRAFT Page 342

2. Application Overview

Customer self-service uses a service oriented, composite application. The application tier of the

application connects to multiple transactional back-ends to provide a single customer portal. ITPS is

intended to extend the customer self-service with following key features:

Key Features & Scenarios

• Preference settings for communications profile

• User logs on to the customer portal

• User enters preferences for notification

• Saves the preferences

• Enhancements to public website with real-time transaction review pages using Atlas

• User logs on the public website

• User reviews his/her transactions

• Notification services to consumer for data update availability (IM, text message, voice, email)

• User gets notifications, based on the preferences set by the user, when an transaction

occurs on user account

• Enhanced client for customer service reps in the call center

• Customer service reps logs on to the client

• Customer service reps can enter customer account number and answer to 3 random

security questions to open a customer account

• Customer service rep can view detailed transaction details for an account

• Customer service rep can search for a certain transaction based on date/time, vendor

name, or amount.

• Customer service rep can mark a suspicious transaction as requiring further

investigation.

• Customer service rep can record the conversation with the customer

Technologies

• Operating system: Microsoft Windows Server 2003 Enterprise Edition

• Web Server: IIS 6.0

• Database: SQL Server 2005

Acceptance Test Engineering – BETA DRAFT Page 343

• Technologies:

• Presentation: ASP.NET, WCF

• Middle Tier & Data Access Layer: C#.Net

External Dependencies

(The External Dependency lists dependencies on other components or products that can impact

security. These are assumptions that are made about their usage or behavior. Inconsistencies

can lead to security weaknesses.)

The system has following external dependencies -

External Dependencies

ID Description

1 System uses external b2b services

2 System depends on external providers for delivering

notifications to end customers

Implementation Assumptions

(The Implementation Assumptions table describes those assumptions about the internal workings

of the component that are made during the specification phase, but before implementation has

started. The implementer should be aware that these should not be violated. Typically, they will

be further reviewed once implementation is in place.)

Below is the list of implementation assumptions that were discussed and decided.

Implementation Assumptions

ID Description

1. Use certificates for securing communication with

external B2B Services

2. User credentials/ profile information will be stored in

database in encrypted form.

3. Application configuration will be stored in SSO database

which stores the information in encrypted format.

4.

Acceptance Test Engineering – BETA DRAFT Page 344

External Security Notes

(The External Security Notes table includes those threats or other information that a user of the

component should be aware of to prevent possible vulnerabilities. These may include features

that, if used incorrectly, could cause security problems in consumers of this component.)

External Security Notes

ID Description

1. User should use strong passwords.

2.

Acceptance Test Engineering – BETA DRAFT Page 345

3. Application Decomposition

Data Flow Diagram

Entry Points

(The Entry Points table describes the interfaces through which external entities can interact with

the component, either through direct interaction or indirectly supplying it with data.)

Entry Point

ID Name Description

Acceptance Test Engineering – BETA DRAFT Page 346

Entry Point

ID Name Description

1 Customer Portal User can log on to the portal to set notification

preferences

2 Public website User can view the transaction details

3 Customer service

rep system

Customer service rep can access user account to

view transaction

Protected Resources

(The Protected Resources table describes the data or functionality that the component needs to

protect. It lists the minimum Access Category that should be allowed to access the resource.)

Protected Resources
ID Name Trust Level
1 User credentials User

2 User profile/ notification preferences User or CSR on
their behalf?

3 Application configuration Developer?

Acceptance Test Engineering – BETA DRAFT Page 347

4. Threats

List of threats and attacks that could affect the application

Threats

Threat

ID 1

Name Eavesdropping Attacks

Description · Notification sent to users can be monitored

· Communication with B2B services can be monitored
by attacker

STRIDE Classification · Tempering

· Information Disclosure

Mitigated? No

Known Mitigation Use certificates for securing communication with B2B

Protected Resources Notification

User Data

Threat

ID 2

Name SQL injection Attacks

Description Attacker could enter SQL script though UI

STRIDE Classification Tampering

Mitigated? Yes

Known Mitigation Input validation
Using parameterized queries

Protected Resources User / System Data

5. Vulnerabilities

List of vulnerabilities in the application -

Vulnerabilities

Vulnerability

ID 2

Name Notifications in clear text

Description Notification sent to user as IM or Email are sent in clear

text.

STRIDE Classification · Tempering

· Information Disclosure

Corresponding Threat Eavesdropping Attacks

Acceptance Test Engineering – BETA DRAFT Page 348

Acceptance Test Engineering – BETA DRAFT Page 349

Fuzz Testing Sample

The Global Bank ITPS team working on the public facing web site for Global Bank knew exactly what

needed to be done to test the functionality of the new web pages needed for setting user preferences

for ITPS. The functionality of the pages was fairly simple to create and test. However, when it came

time to security test the pages, the team (with experience from past projects) knew that there may be

issues with how data was passed between pages. The developers had decided to use query string

parameters as the simplest way to pass information between pages as the user completed a wizard to

choose options for an account. These clear text additions to the end of the web page’s request URL are

simple to create, simple to parse, and simple to verify. They are also simple for hackers to manipulate.

To harden the web application against attack via the query string, the team decided to apply fuzz testing

to the problem. The test team created a simple test script that would hit a given URL and could be setup

to:

· Replace the entire query string with random data

· Replace a specific key in the query string with random data

· Replace a specific value in the query string with random data

Based on the results from thousands of test runs with random data, the script could then be updated to

concentrate on likely problem areas with specifically formed requests and pseudo-random data.

The web pages for ITPS were fairly simple. Setting preferences includes a page for general preferences

like enabling the service, and the preferred delivery mechanism(s) for any notifications. There is also a

short wizard that allows the user to create a rule for one of their accounts. A rule can consist of an

account number, a transaction type, a transaction amount, and a geographic location allowing a user to

setup a set of rule like to following:

Notify me via email of any transactions

· on account 12345

· on account 12346 over $500

· on account 12347 for travel

· on account 12348 originating in Europe

· on account 12349 over $1000 originating in Orlando, Florida

· on all accounts originating in South America

Acceptance Test Engineering – BETA DRAFT Page 350

The wizard is identical to the one used in the Usability Testing sample, except that it is implemented in

web pages rather than a Windows application. From page 1 to page 2, the account number is passed in

the query string. From page 2 to page 3, the account number, transaction type, and transaction amount

are passed in the query string. From page 3 to a summary page that creates the rule on the account, the

account number, transaction type, and transaction amount, and location are passed.

The following table shows the same rules discussed above and the final query string passed from page

three of the wizard to the summary page:

Rule URL

transactions on account 12345 Summary.aspx?account=12345

transactions on account 12346 over

$500

Summary.aspx?account=12346&amount=500

transactions on account 12347 for travel Summary.aspx?account=12347&type=travel

transactions on account 12348

originating in Europe

Summary.aspx?account=12348&location=Europe

transactions on account 12349 over

$1000 originating in Orlando, Florida

Summary.aspx?account=12349&amount=1000&location=Orlando,Florida

transactions on all accounts originating in

South America

Summary.aspx?location=South America

The test lead on the team decided that there would be some completely random fuzzing of the entire

query string, completely random fuzzing of each possible key and value, completely random fuzzing of

all key names, and targeted fuzzing og bank account numbers, amounts, and locations. The tests would

capture the returned error code or html page and save the results as well as the values passed in, for

later review by a team member. Any results that included an exception message would be flagged for

review. An example of a single test script follows:

Number of test runs = 1,000,000

Test Case ID: 12345

Description: Fuzz testing the query string on ITPSPrefMain.aspx

URL: ITPSPrefMain.aspx?[RANDOM]

Result Should Contain: “There was an unexpected error”

Acceptance Test Engineering – BETA DRAFT Page 351

Test Case ID: 12345

Description: Fuzz testing the account number on ITPSPrefMain.aspx

URL: ITPSPrefMain.aspx?account=[RANDOM]

Result Should Contain: “There was an unexpected error”

URL: ITPSPrefMain.aspx?account=[RANDOMNUMBER]

Result Should Contain: “There was an unexpected error. You do not own the

account that was accessed.”

URL: ITPSPrefMain.aspx?account=[RANDOMSYMBOLS]

Result Should Contain: “There was an unexpected error”

When the test scripts are run by the test harness, the string “[RANDOM]” is replaced by a completely

random string of ASCII or UNICODE characters (the format is decided randomly) of a random length.

“[RANDOMNUMBERS]” is replaced by a string of numbers of random length

“[RANDOMSYMBOLS]” is replaced by a random string of symbols and punctuation.

Acceptance Test Engineering – BETA DRAFT Page 352

"Soap Opera" test: ITPS Notification

The customer and the ITPS team had a bit of a brainstorming session about things that could possibly go

wrong and framing them in terms of soap opera tests. One of the many ideas that came out of the

session follows:

<PD Start Sample Artifact>

 “From his corner office on Madison Avenue, the CEO of Contoso ignores the coffee he just knocked over

on his desk because he has a more urgent problem -- an alert through Instant Messenger from Global

Bank that his identity may have been compromised. He is alarmed, too, because earlier that day he got

a frantic call from his girlfriend about her credit limit being reached when she had done no transaction in

months. Right after that call, he had logged into ITPS to review the transaction details on his account.

There was nothing. But now, four hours later, there is an alert. Upon logging in again, he sees that the

transactions are originating from the same city that the fraudulent charges were for her account. He

knows who it might be – his ex-wife – who is in that same city. She is an accountant at a rival to Contoso

– a rival that he used to work for. So he sets a trap. Using ITPS, he sets his notifications based on

location to see if he can prove his theory. He leaves his office to meet his girlfriend and takes his PDA

with him to check the status and be informed of alerts. However, no alerts come in for several hours.

Unbeknownst to him, Global Bank is performing a software upgrade to the server that performs

notifications. When the server finally comes back online, and gets through the backlog of notifications

that built up during the downtime, it is too late. He receives a batch of 15 notifications; each transaction

was for at least $3000, using credit cards for purchases at banks and travel agencies. His ex-wife cleared

him out by buying travelers checks on the credit cards. Once the notifications arrive, he logs onto the

Global Bank site to initiate a fraud investigation. Then, he calls his lawyer to see if Global Bank can be

held liable for not sending the notifications in a timely manner, as advertised.“

<PD End Sample Artifact>

When one of the ITPS team members came up with this dramatic story, the team was shocked. If

something like this were to happen once the system went live, it would completely destroy the

credibility of the service, hurt Global Bank’s reputation, and cost a lot of money in lawsuits, fraud

investigations, and insurance. There could even be charges filed against the company. However, this

scenario was brought up early enough in the project to allow a few changes to ensure that the problems

never arise on the final system. The team instantly changed the deployment architecture to replace the

single server tasked with actually sending notifications with a cluster of three servers: two active

servers and a failover backup. Also, the team revisited the deployment and maintenance instructions

for the operations team to include instructions that when upgrading the servers, installing patches, or

doing anything else that would bring a server offline to perform the action on one server at a time,

keeping the cluster alive the entire time. Finally, the marketing and legal departments were consulted

to create a service level agreement that did not guarantee delivery of notifications, but instead stated

that a good faith effort would be made to deliver the notifications within twenty-four hours.

Acceptance Test Engineering – BETA DRAFT Page 353

The discussion above was of enough value to the ITPS team that even if nothing came out of this soap

opera, it was worth the time invested to go through the exercise. Of course, they could further develop

the soap opera in to an actual test case (or a set of test cases). If we simplify the story a bit, taking out

extraneous actions, we are left with

· <PD Start Sample Artifact>The ITPS system generated an alert for Bob about a possible identity

compromise

· Cindy’s Global Bank credit card has a transaction declined because the credit limit was exceeded

· Bob logs into ITPS

· Bob reviews transactions

· Bob logs out of ITPS

· Time is now 4 hours later

· Bob logs into ITPS

· Bob reviews transactions and sees a problem – transactions originating in Las Vegas

· Bob sets up a notification for any transactions in Barbados to cause an alert

· Time is now a few hours later

· Global Bank’s operations team took the notifications server offline

· Over the course of a few hours, someone performed 15 transactions, averaging $3000 each

· The system created 15 notifications, which landed in the queue for the notifications server

· The server was brought back online

· Bob is finally notified by ITPS, hours later

<PD End Sample Artifact>

Several of these actions have no effect on the system, and there is also some setup required for the

sequence to work. If we add the setup tasks, and remove the actions that to no affect the system, we

are left with:

<PD Start Sample Artifact>

· Account 10035692878 – set balance at$1000, set credit limit at $1000

· ITPS System triggers id compromise for user Bobma at 8:00AM

· The ITPS system generated an alert for Bob about a possible identity compromise

· Cindy’s Global Bank credit card has a transaction declined because the credit limit was exceeded

at 9:00AM

· Time is now 1:00PM

Acceptance Test Engineering – BETA DRAFT Page 354

· Bob logs into ITPS

· Bob sets up a notification for any transactions in Barbados to cause an alert

· Time is now a few hours later

· Global Bank’s operations team took the notifications server offline

· Over the course of a few hours, someone performed 15 transactions, averaging $3000 each

· The system created 15 notifications, which landed in the queue for the notifications server

· The server was brought back online

· Bob is finally notified by ITPS, hours later

<PD End Sample Artifact>

This sequence could easily be turned into a manual test script. Or, with a few minor changes, this script

can be turned into an automated test case that ensures that notifications are sent within a set

timeframe (30 minutes) of being triggered.

With a little bit of creativity, the original soap opera story could be changed into other scenarios. For

example,

Bob may be able to confirm his ex-wife was the thief before she emptied his account.

Bob could contact the bank, involving other actors, like the bank’s fraud investigator.

Bob could be notified both via email, SMS, and voicemail.

Bob’s girlfriend could be the thief.

With a little creativity, some drama, and a few user types or personas, the team can create a number of

interesting scenarios that may expose problems in architecture, deployment, or security. Or they may

discover critical missing features to be added to the system.

Acceptance Test Engineering – BETA DRAFT Page 355

ITPS Test Planning Example

The Global Bank is a large hierarchical organization with a strong tradition of independent testing. Early

in the lifecycle of the ITPS project, the Global Bank Project Management Office assigned a test manager

to develop the test plan for the ITPS project. The test plan lays out the strategies and tactics that will be

used to ensure a quality product is built and deployed. The Call Center Services development team has a

somewhat high-ceremony culture inherited from the more traditional side of Global Bank. The Self-

Service Apps web development team has a low ceremony agile culture as a result of its history as a small

online-only banking startup that Global Bank acquired a few years ago. As a result, the test manager is

trying to bridge these two cultures by preparing a formal test plan but doing it in an agile way. As a

starting point, the test manager met with the project manager and reviewed the ITPS Project Charter

that had been produced in the envisioning workshops prior to project approval. They agreed that the

quality issues that had dogged previous releases of the online banking product would not be addressed

by simply continuing in the traditional approach to independent testing. Therefore they set out to

change the way testing was approached on the ITPS project into a more collaborative approach where

the test organization works closely with development to help them build quality into the product rather

than testing it in after the fact.

The test manager and development manager then met with the two development teams separately as

they were located in different cities. They discussed the test strategy that had been employed on the

first two releases of the Global Bank’s Online Banking application and the results of a project

retrospective that had been conducted. The developers opined that many of the issues listed were

related to the fact that there had not been time to build a suite of automated regression tests and

therefore new bugs had been introduced into existing functionality on a regular basis. The test manager

was careful to point out that this was not to be interpreted as a sign of sloppy work by individuals but

rather as a sign that the overall software development lifecycle, including testing, needed to be

adjusted. He asked for, and received, both teams’ commitment to improving the process in general and

more specifically, including automated regression testing in all development estimates for the new ITPS

functionality. The teams agreed that where existing code was modified to support ITPS, where practical,

the modifications would be preceded by the retrofitting of at least a minimal harness of automated

regression tests.

In follow-up discussions and workshops, the teams evaluated and selected a standard toolset to be used

for the test automation. Based on these discussions the test manager updated the GBS Test Strategy

document to reflect the current understanding.

<PD Start Sample Artifact>

GBS Test Strategy

Acceptance Test Engineering – BETA DRAFT Page 356

Prepared by: Steve Kastner, ITPS Test Manager

===

Introduction

The Test Strategy is intended as a record of the long-term, strategic decisions regarding how we ensure software quality. The

set the context for the individual project test plans.

Goals

· Allow cost effective identification of newly introduced regression bugs as soon as possible after the bugs are

introduced.

· Enable “On demand” execution of predefined collections of tests by any member of the project team and take less

than 1 hour to get a test report, for 80% of all requests.

· Cover all customer accessible functionality on the GBS self-service website.

· Cover 80% of the functionality (including all ITPS functionality) of the Global Bank Customer Service Application

(GBCSA) used by CSRs.

Strategy Summary

Use automated regression testing whenever this helps to reduce the workload and elapsed time in a cost-effective manner. Use

exploratory testing to find new bugs quickly. Use a layered or test pyramid approach to test automation to reduce the fragility

and test maintenance overhead. See GBS Test Automation Strategy for details.

Use Acceptance Test Driven Development to ensure the development teams understand the requirements and use Incremental

Acceptance Testing to find and fix any misunderstood requirements while there is still time to fix them. The goal is to reduce

the formal test phase of the project to a regression testing exercise that does not find any/many bugs and simple acts as a

rubber stamp. Tests will include business workflow scenarios, business transaction (single use case) tests and business rule

tests. Agree on terms and collectively build ubiquitous language – this will promote common understanding of business

scenarios as well as help reduce ambiguity and confusion.

Use a collaborative approach between development and testing personnel to enable rapid, automated regression testing of

most business rule, use cases and workflows to bypass the user interface and to be expressed in business language. To ensure

good collaboration between the testing department and the development teams, a tester will be embedded in each

development team to help the developers test the software as it is developed. This will also facilitate the development of

automated tests and improve the design-for-testability of the software.

Para-functional qualities are to be rigorously tested on a regular basis as soon as stable builds are available.

Business Workflow Tests

Business workflow tests verify the behavior of sequences of actions by various users including workflows that involve any or all

of:

· Customers using the self-service web site

· CSRs using the GBCSA desktop application

· Fraud Investigators using the Fraud Investigation desktop application.

· Automated processes including the processing of financial transactions received from other institutions.

The terminology of the tests should be in business terms and based on the ubiquitous language.

Acceptance Test Engineering – BETA DRAFT Page 357

Business Transaction (Use Case) Tests

Test every use case individually. The goal is to ensure that each variation and exception has been implemented correctly, not to

ensure that all data combinations have been tried. We shall use test reduction techniques such as equivalence class partitioning

to determine the minimum set of test scenarios we need to implement. Test scripts may be manual, partially computer-

assisted, or fully automated.

Business Rules Tests

Business rules tests verify correct implementation of the business rules or algorithms. They bypass the procedural business logic

thereby allowing the rules or algorithms to be tested much more quickly and succinctly. Because the tests are based directly on

requirements, they should be defined using business terminology and realistic business data. We use test reduction techniques

such as boundary value analysis, and combinatorial test optimization to reduce the number of combinations of input data we

need to verify. This data is then injected directly into the business rule component being verified and the returned value is

compared to the expected value. Tests will be automated .

Interface Tests

Interface tests verify the behavior of the interfaces to the system. Global Bank’s ITPS system has two primary kinds of

interfaces: User interfaces, and Web Services. While most tests may choose to bypass the interfaces to simplify test automation

and test execution overhead, tests that verify that the interface itself was implemented correctly must necessarily go through

the interface.

Note that user interface tests can verify that the user interface functions but it cannot verify that the user interface is usable;

the latter requires manual testing of the user interface by humans. Refer to the Usability Test Plan for more information.

Operational Tests

Management of the Global Bank ITPS system is critical to high availability. Therefore, software installation, upgrade and

rollback, and data migration are done using automated scripts. These scripts must be tested regularly.

Load Tests

Load testing is used to verify that the system can handle the expected loads and respond within the performance criteria. It is

also used to verify that the system can run uninterrupted for the necessary timeframes as described in the para-functional

requirements.

Security Testing

Security is paramount at Global Bank. All software releases shall undergo thorough penetration testing, fuzz testing and user

permission testing as well as security reviews.

<PD End Sample Artifact>

The test manager then prepared a concise Test Plan for the ITPS project that outlined the key attributes

of the testing.

<PD Start Sample Artifact>

ITPS Test Plan

Prepared by:

Acceptance Test Engineering – BETA DRAFT Page 358

Steve Kastner, ITPS Test Manager

===

Introduction

The Test Plan is intended as a baseline to identify what is deemed in and out of scope for testing, and what are risks and

assumptions.

Resourcing

Tester Start Date End Date

John Frum (embedded with Web team) July 2008 Dec 2008 100%

Stefan Delmarco (embedded with Call Center team) Aug 2008 Dec 2008 100%

Michael Ludwig Aug 2008 Dec 2008 50%

Security Tester Oct 2008 Nov 2008 50%

Andrew Datars (Performance Tester seconded part

time from Call Center dev team)

Oct 2008 Nov 2008 50%

Michael Ludwig (future Accessibility Tester) Oct 2008 Dec 2008 50%

In Scope

Testing includes all new functionality, identified high risk regression suite functionality, UAT, Load Testing and

Localization readiness. Manual regression tests deemed low priority will be run if time permits after all high-priority

exploratory testing is completed..

Out of Scope

Testing of actual localization is part of release 4.

Test Schedule

Iterations 9 and 10 are targeted for the formal testing of the Alpha release; iterations 12 and 13 for the Beta release.

Readiness Assessment

All software proposed for formal acceptance testing shall have passed readiness assessment co-operatively

executed by developers and testers including:

· Functional testing

· Operational testing

· Para-functional testing

Refer to the Release Readiness Criteria for more details.

The readiness decision will be made by Tony Madigan the Director of IT, in consultation with Miguel Severino

director of Corporate Security, based on readiness assessment activities conducted by the development team under

Dragos Dumitriu, Project Manager and the test team under Steve Kastner, ITPS Test Manager

.

Acceptance Test Engineering – BETA DRAFT Page 359

Functional Testing

The following new functionality is requires testing in this release.

Feature Description Depth of Testing

 Automatic real-time notification of

suspicious transactions via a choice of

communication

Verify all means of communication (IM, text message, voice,

email) to the point where notification leaves GBS (e.g. GBS

SMTP server for e-mail)

Ability to configure means of

communication preference

Verify that user can set up communication channel and change

between channels at will.

Ability to configure rules for what kinds

of transactions should trigger

notification of the customer

Verify each criteria involved in rules (location, amount,

transaction type, account) individually and in combination

using Fit-based business rules with spot coverage via end-to-

end workflow tests.

Ability to review financial transactions

in near real-time

Verify the correct transactions are reported and functioning of

all filtering criteria (TBD)

Ability to request a fraud investigation

of a particular transaction

Workflow testing of entire Fraud Investigation workflow; use

case, interface and usability testing of all UI screens involved in

the workflow.

Localization Verify localization capability via pseudo localization (actual

localization is responsibility of regional rollout teams.)

Regression Testing

Existing GBS functionality will be regression tested as part of the readiness assessment. Existing (though

limited) automated regression suites will be run every iteration supplemented by manual regression

tests for high-risk areas. New automated regression tests will be delivered for newly introduced

functionality

Para-functional Testing

Load/performance testing will be done every 2 weeks starting with iteration 5. Load testing details will be found in the Load

Test Plan document [link to Load Test Plan]

Usability testing will be done for all new customer-facing functionality. See the Usability Test Plan for details.

Security testing will be conducted before Alph and Beta releases. See the Security Test Plan for details

Operational Acceptance Testing

Operation acceptance testing will be done by the operations teams at least 2 weeks before each go-live milestone.

Acceptance Test Engineering – BETA DRAFT Page 360

Business Acceptance Testing

Incremental acceptance testing will be done each iteration by the customer proxy and business analyst assisted by the test

team. Formal acceptance testing will be conducted by the customer proxy, business analyst and selected representative end

users before go-live. The schedule allows for 2 cycles of final acceptance testing before each of Alpha and Beta releases.

The acceptance decision will be made by consensus between Karin Lamb, VP of Banking Products, Consumer & Small Business

Miguel Severino, Director of Corporate Security and Timothy Lehman, VP of Systems & Operations based on data provided by

the development and test teams and the results of user acceptance activities conducted by customer proxy team headed by

Betsy Stadwick and end users (to be identified).

Infrastructure Considerations

Both dev teams need full test facilities (backend, frontend) to do readiness assessment. Require fake Interbank Transaction

Feed for testing of notification workflows.

Assumptions

Translation has been tested before being delivered to project team

Risks

The following risks have been identified and the appropriate action identified to mitigate their impact on the project. The

impact (or severity) of the risk is based on how the project would be affected if the risk was triggered.

Risk Impact Mitigation Plan

1 Integration of Web & Back end

functionality

High Early end-to-end testing of basic configuration & notification.

2 No accessibility testing expertise Medium Sending one tester for accessibility testing training.

3 Changes impact existing

transaction processing

High Regression test transaction processing feed to downstream

legacy systems.

4 Test automation becomes

unmaintainable due to

complexity

Medium Test automation strategy and Design for Testabilty Guidelines

developed in collaboration with dev teams.

Test Management

ITPS will use the standard Global Bank test management tools. Testing progress will be monitored

using a test matrix. Bugs found during formal readiness assessment and acceptance testing activities

will be tracked in the Global Bank bug tracking system.<PD End Sample Artifact>

The test manager organized some discussion sessions with the development and test teams to come to

consensus on what “done looks like”. In the past developers had been known to write the code, verify

that the basic functionality wasn’t completely broken, and then throw it over the wall” to the testers to

do more thorough testing. This led to a lot of bug reports and bug fixes which caused a need for many

test cycles before the quality was considered acceptable.

The development manager was determined to break this cycle and invited the developers and testers to

a joint meeting to come to consensus on how to deliver quality software each and every time.

Acceptance Test Engineering – BETA DRAFT Page 361

They defined the following checklist of what must be achieved before the software would be considered

ready for formal acceptance testing.

<PD Start Sample Artifact>

Release Readiness Checklist

A release of the product is considered ready for acceptance when:

· All features defined as part of the Minimum Credible Release are included in the official release

candidate build.

· All included features have been incrementally accepted by the customer.

· A security review has been conducted

· The test team is confident that none of the included features has a significant risk of causing

problems in the production environment

· The product can be deployed and rolled back if necessary

· There are clear, concise deployment and rollback instructions for the operations team

· There are clear trouble-shooting scripts and knowledge base articles for use by the help desk

representatives.

<PD End Sample Artifact>

They went on to discuss what was expected on a per feature or user story basis. They disguinguished

this definition of “done” from the traditional developer’s definition (code compiles and sort of works) by

calling it “done-done” which is short for “not just done but really done.”

<PD Start Sample Artifact>

Feature Done-Done Checklist

A feature is considered done-done when:

· The development team is satisfied that the feature is ready for acceptance testing by the

customer:

◦ The quality of the code is sufficient and meets all Global Bank development standards.

◦ It meets the acceptance criteria previously agreed to with our customer

Acceptance Test Engineering – BETA DRAFT Page 362

◦ The functionality is fully integrated into a customer-accessible build of the product

· The developer has demonstrated the feature to the customer

· The customer has completed incremental acceptance testing and has accepted the feature as

done

◦ Any showstopper deficiencies have been addressed by the developer

◦ Any shortcomings to be addressed later are captured as a future user story in the

requirements backlog (preferred) or in the bug tracking system (less desirable.)

<PD End Sample Artifact>

The rationale behind the last point was that either a bug was important enough to fix right away or it

was a future capability. Keeping long lists of known bugs to be fixed doesn’t help anyone feel good

about the product so we should be brutally honest. Fix it now or live with it.

To plan the regression testing the test manager prepared an empty test matrix and arranged a

brainstorming session with the testers and each team to come up with the set of functionality to be

regression tested when new functionality was added to a particular area.

<PD Start Sample Artifact>

Regression Testing Matrix

Acceptance Test Engineering – BETA DRAFT Page 363

Functionality CSR
 D

es
kt

op
Se

lf-
Se

rv
ice

 A
pplic

atio
n

Le
ga

cy
 B

ac
ke

nd

Onlin
e B

an
kin

g B
ack

en
d

In
te

rb
an

k G
at

eway

In
te

rb
an

k T
ra

nsa
ct

io
n P

ro
ce

ss
in

g

IT
PS F

ra
ud In

ve
st

ig
at

io
n D

es
kt

op

IT
PS R

ule
s I

nte
rp

re
tte

r

Manage Notifications

Send Notification

Review Transactions

Request Fraud Investigation

Investigate Fraud

Needed

In Progress (put ini tia ls in)

Done

Blocked (indicated by whom/what)

Not needed

Further Investigation

<PD End Sample Artifact>

This chart was then put on the team wiki and posted in the team room at both sites.

Acceptance Test Engineering – BETA DRAFT Page 364

Test Automation Strategy for Global Bank

ITPS Project

The Global Bank ITPS team wants to build a high-quality application. The existing applications need to be

extended to support the ITPS functionality and this has the potential introduce new bugs into the

existing functionality. Furthermore, additional functionality is expected to be added in subsequent

releases. Therefore, the team decides that automated regression testing will be an essential part of the

test strategy for this and subsequent projects. What follow in this example are the artifacts the team

produced as they determined how they would implement automated testing. Refer to other example

chapters for samples of the automated tests that resulted from this strategy.

<PD Start Sample Artifact>

Test Automation Strategy for Global Bank

Last updated: May 2008 per ITPS Project

Automated test execution is a key part of the ITPS project’s strategy for ensuring high-quality software.

To support rapid turn-around of new functionality requests and bug fixes, the GBS team needs to be

able to run regression tests of all existing functionality quickly. Specifically, the goals of this strategy are:

1. Allow cost effective identification of newly introduced bugs as soon as possible after the

bugs are introduced.

2. Enable “On demand” execution of predefined collections of tests by any member of the

project team and take less than 1 hour to get a test report, for 80% of all requests.

3. Cover all customer accessible functionality on the GBS self-service website.

4. Cover 80% of the functionality (including all ITPS functionality) of the Global Bank Customer

Service Application (GBCSA) used by CSRs.

Key Risks to be Addressed

From an application complexity perspective, the key risks include:

1. Incorrect implementation of the notification threshold algorithms resulting in customers not

being notified of critical transactions or being flooded with notifications they don’t want to

receive. The former could result in lawsuits claiming financial loss.

2. Less than 7x24 availability could result in notifications being delayed or lost.

Acceptance Test Engineering – BETA DRAFT Page 365

3. Poor response time during periods of heavy usage (or denial of service attacks) could keep

CSRs and investigators from investigating potential fraud in a timely fashion.

4. Bug fixes introduce new bugs that go undetected

Item 1 will be addressed using an extensive suite of automated business rule tests. Item 2-3 will be

addressed using automated load tests. Item 4 will be addressed through automation of key business

workflow tests, business transaction (use case) tests, business rules tests, and user interface regression

tests.

Challenges

Because of the history of the company, the Global Bank applications are implemented in a range of

technologies. The ITPS project touches components built in many of these technologies and the test

automation strategy needs to enable automated test of workflows that span these technologies. The

technologies include:

· C#, Windows Presentation Framework and .Net Framework 3.0

· C#, Windows Forms and .Net Framework 2.0

· VB.Net, ASP.Net and .Net Framework 1.0

· Etc.

Parts of the Global Bank internet banking application predate widespread use of automated testing and

were not designed for testability. The timelines of the ITPS project and the company’s level of risk

tolerance prevent the ITPS team refactoring this software to improve the testability. Therefore,

interaction with these parts of the application will need to be done using automation tools that interact

with the system-under-test via the user-interface (a less than ideal approach.)

Test Automation Strategy

To provide the maximum level of test coverage with the quickest test execution times and minimum

preparation cost, the ITPS project will employ the test automation pyramid approach. This consists of a

large number of unit tests (prepared by developers) complemented by a smaller number of business

rule tests (prepared by testers or business experts) and an even smaller number of business transaction

and business workflow tests (also prepared by testers or business experts.) A separate set of load tests

will be used to verify system performance.

<diagram: Test Automation Pyramid (with appropriate credits)>

The scope of this test automation strategy includes:

1. Business functionality tests

Acceptance Test Engineering – BETA DRAFT Page 366

a. Business workflow tests

b. Use case tests that verify the behavior of individual use cases (single-user tests).

c. Interface tests that verify the user interface (does the UI behave correctly in all

situations?)

d. Verification of business algorithms and rules.

2. Operational functionality tests

a. Installation, upgrade, rollback, etc.

3. Verification of para-functional requirements related to performance.

Business Workflow Tests

Business workflow tests verify the behavior of sequences of actions by various users including workflows

that involve any or all of:

· Customers using the self-service web site

· CSRs using the GBCSA desktop application

· Automated processes including the processing of financial transactions received from other

institutions.

The terminology of the tests should be in business terms and based on the ubiquitous language.

Business Transaction (Use Case) Tests

Business transaction tests verify various scenarios of a single or a small set of related use cases. The goal

is to ensure that each variation and exception has been implemented correctly, not to ensure that all

data combinations have been tried. We use test reduction techniques such as equivalence class

partitioning to determine the minimum set of test scenarios we need to implement.

Business Rules Tests

Business rules tests verify correct implementation of the business rules or algorithms. They bypass the

procedural business logic thereby allowing the rules or algorithms to be tested much more quickly and

succinctly. Because the tests are based directly on requirements, they should be defined using business

terminology and realistic business data. We use test reduction techniques such as boundary value

analysis, and combinatorial test optimization to reduce the number of combinations of input data we

need to verify. This data is then injected directly into the business rule component being verified and the

returned value is compared to the expected value.

Interface Tests

Interface tests verify the behavior of the interfaces to the system. Global Bank’s ITPS system has two

primary kinds of interfaces: User interfaces, and Web Services. While most tests may choose to bypass

Acceptance Test Engineering – BETA DRAFT Page 367

the interfaces to simplify test automation and test execution overhead, tests that verify that the

interface itself was implemented correctly must necessarily go through the interface.

Note that user interface tests can verify that the user interface functions but it cannot verify that the

user interface is usable; the latter requires manual testing of the user interface by humans. Refer to the

overall test plan for more information.

Operational Tests

Management of the Global Bank ITPS system is critical to high availability. Therefore, software

installation, upgrade and rollback, and data migration are done using automated scripts. These scripts

must be tested regularly.

Load Tests

Load testing is used to verify that the system can handle the expected loads and respond within the

performance criteria. It is also used to verify that the system can run uninterrupted for the necessary

timeframes as described in the para-functional requirements.

Software Development Life Cycle Integration

Automated testing shall occur on a regular basis throughout the project (continuous acceptance testing)

in addition to during formal readiness assessment and acceptance testing at key delivery milestones.

Developers are expected to all automated unit tests as they develop. They are expected to launch the

running of the automated business regression tests before checking in their code changes. The

continuous integration server shall run all unit tests and all business regression tests after each code

change is committed. Automated load tests shall be run every iteration (e.g. every 2 weeks) as part of

the end of iteration activities and the results shall be included in the end-of-iteration demo.

Automation Tools Selection

Cost-effective test automation requires that we use the appropriate tool for each kind of test. Part of

the role of the test automation strategy is to define the standard toolset to be used. All the tools must

interoperate with the test execution engine and the test results repository.

Business Workflow Tests

Business workflow tests will be implemented as keyword-driven tests automated using Fit[Fit,FitBook].

Each business transaction keyword is implemented as a business method on a common DoFixture. This

allows tests to be written in a very conversational or “fluent” style with a minimum of syntax. The

terminology of the tests should be in business terms and based on the ubiquitous language.

Business Transaction (Use Case) Tests

The preferred technology for implementing business transaction tests is the Fit DoFixture as per

business workflow tests. Where a test API is not available, the keywords can be implemented using the

same technology as an interface test (e.g. UIA for WPF user interfaces.)

Acceptance Test Engineering – BETA DRAFT Page 368

Business Rules Tests

The preferred technology is a Fit ColumnFixture. If the business rules cannot be accessed directly via Fit,

the backup technology is the use of a data-driven test through the user interface. This avoids test code

duplication[XTP] by reusing the same test script with many sets of input data.

Interface Tests

The preferred technology for interface tests is interface dependent:

· Web-based user interfaces will be tested using <insert tool name here.>

· WPF-based user interfaces are tested using the Microsoft UI Automation framework.

· Web-services-based machine-to-machine interfaces are tested using <insert tool name here.>

Installer Tests

The automation of this testing is still under investigation. The fallback plan is to run these tests manually

every iteration starting with iteration 4 when the first version of the installer is scheduled to be

available.

Load Tests

The tool Global Bank uses for load testing, <insert tool name here> can handle all the interface

technologies used by the ITPS project.

Design for Testability

Automated testing is much more cost-effective when testability is built into the application. The key

design-for-testability practices for the Global Bank’s ITPS project are

1. Explicit control of time & date.

2. No business logic coupled to the user interface

3. All business rules and algorithms implemented in standalone classes

4. All interfaces to other systems can be stubbed out

Explicit control of time & date by tests

The application needs to support explicit setting of the system time to allow long-running workflows to

be executed quickly. The system clock & calendar is accessed via a Singleton (a well-known global

object.) In the development and test environments, the single can be overridden with a (provided) test-

specific subclass[XTP] that the test script can interact with to control the time.

Acceptance Test Engineering – BETA DRAFT Page 369

No business logic coupled to the user interface

To allow tests to interact with the application easily, all newly-built functionality will implement the

Humble Dialog testability pattern[XTP, HD] to ensure that there is no business logic embedded in

components that depend on the user interface. This allows these scripts to run the application logic in a

“headless” mode, a technique called “subcutaneous testing”. The test keywords that interact with the

parts of the application that predate this guideline will have to interact with the application via the user

interface (e.g. using the UIA or another framework.

All business rules and algorithms implemented in standalone classes

All business rules and algorithms shall be implemented in standalone classes that can be instantiated

without the rest of the application. There should be no direct dependency on a database; the context

data should be passed to the class after it is instantiated or with each service request. This is to allow a

Fit ColumnFixture to be used to load the context data into the object and another ColumnFixture to run

the business rules. Ideally, the Fit tests and fixtures are implemented before the business rules object to

ensure testability requirements are built-in from day one and do not have to be retrofitted later.

All interfaces to other systems can be stubbed out

To allow testing of ITPS functionality independently of other Global Bank applications, all interfaces to

other applications and databases must be implemented via interface objects that can be substituted at

run-time with Test Stubs[XTP] or Mock Objects [XTP]. Each interface needs to be accompanied by one or

more test utility methods for configuring and installing the stub or mock.

Key inter-system interfaces for testability include the following:

1. Transaction Processing interface – It must be possible for tests to inject transactions as

though they had been received from Global Bank’s transaction processing back office

application. This is particularly important for business workflow tests. (Business rule tests

would bypass this interface by connecting directly to the component that implements the

notification thresholds.

2. Notification Transmission interface(s) – Tests require the ability to intercept and examine

notifications being sent to the user by any of the supported communication types (phone,

SMS, e-mail, etc.)

<PD End Sample Artifact>

Because parts of the applicant needs to ensure that the Global Bank customer service representatives

can access and modify the ITPS notifications settings for customers who call in with questions or issues.

The customer service representatives already have a custom desktop application, the Global Bank

Customer Service Application (GBCSA) which was created and deployed by the Global Bank IT

department. Thankfully, GBCSA is an extensible, composite application that is simple to add

Acceptance Test Engineering – BETA DRAFT Page 370

functionality to. Also, thankfully, the Global Bank test team has a rich suite of UI-based acceptance tests

that the ITPS team can add to. The test suites (and a simple library of test automation helper classes)

were written using Microsoft UI Automation, part of the Microsoft .NET 3.5 Framework. [LINK]

Choosing a Framework for Testing Applications via the User Interface

The Global Bank testing team had researched the Microsoft UI Automation functionality carefully before

deciding to use it as a base for all UI testing on the Microsoft Windows platform. There were a number

of reasons for this, including:

· Language Support – UI Automation client applications can be done in Microsoft Visual C# or

Microsoft Visual Basic .NET, and the test team is familiar with both languages

· Operating System Support – UI Automation is supported on all Windows operating systems that

support WPF, including Windows Vista, Microsoft Windows XP, and Windows Server 2003

· Platform Support – UI Automation works with applications written using Windows Forms and

Windows Presentation Foundation (WPF), so tests could be created for many legacy

applications that Global Bank has developed.

· Consistency – Different programming languages and platforms have different names for the

properties of UI display elements. UI Automation simplifies this into one interface for all

platforms.

· Extensibility – When Global Bank creates custom controls, they can be made accessible to UI

Automation with a small amount of extra development effort by creating a UI Automation

provider.

· Less Fragility – Many UI automation frameworks encourage creating tests that are very fragile.

Fragility can be due to the framework relying on arbitrary and easily changed control identifiers

or controls being in a specific location in the overall control tree. The UI Automation framework

relies on another property of controls, the Accessible Name. The actual control IDs can be

randomly generated and the control moved around in the control tree, but by using the

Accessible Name, it is easier to find, identify, and create UI tests.

However, there are a few challenges that caused the test team to consider other options:

· UI-Based – Automation of tests is done through the user interface. This leads to very detailed

tests scripts where each statement interacts with a specific control on the user interface of the

application. This makes tests scripts hard to read, understand, and maintain.

· No Recorder – UI Automation does not include the ability to record the steps a user takes in the

UI and later run the recording. All tests must be hand written in a high level programming

language. This requires more technical testers than other tools that include record/playback

functionality. Fortunately, the test team does have some team members with programming

Acceptance Test Engineering – BETA DRAFT Page 371

experience so this is not a show-stopper. And the next release of UIA does include a recorder so

this is only a short-term limitation.

· Maintenance – Since all tests are hand written or recorded, not generated from models, the

test code will need to be maintained either by modifying the test code or by rerecording it. Each

approach has its advantages and disadvantages. Performance – Tests implemented using the UI

Automation framework drive the application through the user interface and this has

performance and robustness implications. In experimenting with UI Automation, the test team

determined that there were areas where the tests would need to wait for the UI to appear or

refresh. These explicit waits will impact the speed of the tests somewhat but they will still run

much faster than a human running a manual test script and should not.

· Automation is not a silver bullet – There are scenarios that automated testing and automated UI

testing may not cover, including race conditions. Race conditions are most easily forced using

automated unit tests and it is assumed that the developers will be writing these tests.

As a result of these factors, the team will need to use good software engineering practices, such as

encapsulation and abstraction, to ensure the tests are maintainable. Therefore, the team decides on a

set of guidelines for how to use UIA:

<PD Start Sample Artifact >

Global Bank Test Automation Guidelines

1. Tests should be automated in the most appropriate technology based on the intended

audience. That is, tests of business workflows and business rules should be automated in

business-friendly technology, not code, so that business people can author them or at least

review them.

2. Tests that can be automated subcutaneously (via an API rather than the user interface)

should use the API. That is, UIA should only be used for tests that cannot be automated

another way.

3. Tests that are verifying business logic through the UI (see guideline 1) should not interact

directly through the user interface. Instead, they should call utility functions that implement

individual user actions as a series of interactions with the user interface controls. Libraries of

utility functions to simplify test development will need to be created on a project by project

basis, and the common functionality should be pulled into shared testing libraries.

4. Test recording can be used to quickly learn how to interact with a specific part of the user

interface. The recorded test must then be refactored into a high level test script that

describes the intent and utility methods that encapsulate how individual steps are

implemented using the user interface.

<PD End Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 372

{Explain the following code and UIA features}

{How are custome Widgets supported by UIA}

The full code base for a mock-up of the ITPS customer service application and the automated UI tests

are available at www.codeplex.com/TestingGuidance.

Acceptance Test Engineering – BETA DRAFT Page 373

Testing Binary Data Outputs (BLOBs)

<insert timeline with timepoints=Project Planning, Test Authoring, Test Execution>

One of the bigger challenges for test automation is verifying logic that deals with binary data streams

such as images or audio. This is made difficult because it can be hard to describe what the test needs to

verify within the binary data in a form that is meaningful to the test automater or test specifier. This

example illustrates the application of a number of test practices that, when combined, can make

automated testing of this kind of functionality possible. The testing practices illustrated in this example
include:

· Story tests

· Design for testability

· Test automation strategy

· Result Assessment Using Human Oracle

· Result Assessment using Previous Output Oracle

· Result Assessment using Hand-Crafted Oracle

Global Bank ITPS Background

The Identity Theft Protection Service of the Global Bank includes several security features to

authenticate users. Users must first create sign up for an account or register an existing account on the

Global Bank web site. Many security measures can be overcome through brute force attacks by

computers. Therefore, the chief of security at Global Bank wants to ensure that only human users can

sign up for or register bank accounts. Based on some research, he has decided that he wants to use a

sequence of graphics that the human user will find easy to decipher and machines would have great

difficulty. Each consists of a single stylized letter onto which is superimposed a picture of either a cat or

a dog or neither plus some additional pictorial noise elements. Figure x shows an example of the Turing

Test verify that it is a human who is downloading a file:

The vice president of customer service insists that the graphics not be too difficult to interpret as that

may discourage new customers from signing up. The requirements related to this functionality are

summarized in the following list of user stories from the ITPS story backlog:

User Story Title Description

ITPS will verify users are human before allowing

registration on the web site.

User is shown a set of graphics and asked to

enter number of cats, dogs and the letter from

each box.

ITPS will verify Turing Test is easily passed by

humans.

Graphics are pregenerated and shown to test

subjects before being approved for use with

Acceptance Test Engineering – BETA DRAFT Page 374

real users.

ITPS will verify Turing Test is not easily cracked by

computers.

Graphics are shown to graphics analyser and

rejected if it can answer correctly.

ITPS Turing Test Software Design

<insert timeline with timepoints=Software Design>

Based on the requirements, the web development team has proposed the following solution.

A graphic generator component will generate new graphics and the associated metadata for use during

the account signup process. Each graphic object consists of one graphic and the associated meta data

that describes which pet the graphic contains and which letter is superimposed on it. Initially, the

account signup process would get five of these graphic objects from the generator and show them to

the new user along with field in which to type the number of cats, number of dogs, and the sequence

of letters and numbers they see in the graphics. The user’s responses are then compared with the meta

data associated with the graphics.

To address the concerns of ease of use, each graphic must first be inspected by a human to verify that

it can be deciphered relatively easily. To ensure security, each graphic will also be subjected to analysis
by one or more image analyzers to see if it is too easy to crack. To address response time concerns, the

graphics will be pregenerated and stored in a database and then analyzed during periods of low CPU

occupancy. Graphics that are “too easy” will not be presented to the human tester(s). Graphics the

human considered “too hard” or ones they were not able to identify correctly will not be used with

account owners.

Design for Testability

The web development team prefers to do highly incremental test-driven development. This involves

writing unit tests for all functionality before writing the code to implement it. It is also highly desirable

to have automated functional tests that can be used to regression test all functionality. The graphic

images represent a unique challenge for test automation for the very same reasons that they improve
the security of the system: recognizing graphical shapes is computationally expensive if even possible.

Therefore, the team needs to come up with a way to test this functionality without having to analyze

images as part every regression test. Fortunately, the team is thinking about the testability

requirements of the system early enough to influence the design. They decide to decompose the

functionality into a series of transformations arranged end to end as a pipeline either terminating in or

starting from the image database. Figure X shows the entire pipeline for each of the four scenarios.

Figure X:

Image Generation : [R]->(M1)->[T1]->(M2)->[T2]->(M3) ->[T3]->(M4) ->[G]->(B1)->[U]->DB

Too Easy : DB->[Q1]->(B1)->[P]->(M5)->[U1]->DB
Too Hard : DB-> [Q2]->(B1)->[I1]->(M6)->[D]->[U2]->DB

Usage: DB-> [Q3]-> (B1-5) ->[I2]->(M7)

Acceptance Test Engineering – BETA DRAFT Page 375

The circles represent the various representations of the graphical images as models (M), binary objects

(B). The squares represent different kinds of transformations [T] between, parsing [P] binary objects

into models [P], generating binary objects randomly [R] or from models [G], storing or updating models

or binary objects in a database [U] or queries retrieving models or binary objects [R] from the database.

Graphical Image Generation

The graphical images are pregenerated and placed in the database ready to be verified by the automate

analyzer and the human administrator. The individual steps are:

[R] generates (M1) consisting of a random letter, a random skew factor, a randomly selected pet

picture (from a known set) and a random rotation factor for the picture.

[T1] generates a new model (M2) which includes the letter graphic

[T2] generates a new model (M3) which includes the skewed letter graphic
[T3] generates a new model (M4) which includes the rotated pet graphic

[G] generates (B1) the graphical bitmap with the skewed letter superimposed on the rotated pet

graphic

Rejecting Too Easy Images

[Q1] queries the database for the oldest graphic (B1) that hasn’t been tested for “too easy”-ness.

[P] is the “too easy” parser. It generates (M5) indicating whether it found the letter and identified the

pet (too easy) or not (OK).

[U1] updates the “too easy” field in the database with the result of [P]

Rejecting Too Hard Images

[Q2] queries the database for the oldest graphic (B1) that hasn’t been tested for “too hard”-ness.
[I1] is where it shows the graphic to the human and receives the input (M6) indicating which pet and

which letter they saw, or “can’t tell”.

[U2] updates the “too hard” field in the database with the result of [I]

Selecting Images for Turing Test

[Q3] queries the database for five graphics (B1-5) that are neither “too easy” nor “too hard”. (We need

to make this deterministic; maybe the 5 least recently used ones?)

 [I2] is the input from the user (M7) consisting of how many of each kind of pet and which letters they

saw.

Other Testability Requirements

Testing the individual scenarios requires access to the components which the decomposition provides.

Doing full workflow testing will impose additional testability requirements on the ITPS system. For
example, since the generation of new images and their analysis for “too easy”-ness are scheduled jobs

(time triggered), either we need to have a way to control the ITPS system clock to cause them to be run

without waiting or we need a separate interface to allow them to be requested on-demand. Likewise,

the need to test how the system responds to user inputs when verifying images are not “too hard” and

when the Turing Test is conducted on end users, the automated tests needs to be able to pretend that

it is the user interface and the user using it. This demands that the UI logic is cleanly separated from

the underlying business logic and that the latter is accessible via an API.

Acceptance Test Engineering – BETA DRAFT Page 376

Test Automation Strategy for the ITPS Turing Test

<insert timeline with timepoints=Software Design >

The web development team prefers to do highly incremental test-driven development. This requires

automated regression tests for all functionality. The graphic images represent a unique challenge for

test automation for the very same reasons that they improve the security of the system: recognizing
graphical shapes is computationally expensive if even possible. Therefore, the team needs to come up

with a way to test this functionality without having to analyze images as part every regression test. The

team observes that each of the four scenarios is composed of sequences of the following four patterns

in various orders:

· Model-Model : (M:x)->[T]->(M:y)

· BLOB-Model : (B)->[P]->(M)

· Model-Blob : (M)->[G]->(B)

· Database Query : [R]->(B:1-n)

If they can come up with a way to automate tests for each of these patterns they will be able to test

the entire sequence in stages. That would reduce the number of tests that need to verify the end to

end logic because each individual transformation is already well tested.

<figure x> Test Automation Pyramid for Turing Test

· Workflow tests

· Generate OK Graphic – Shown to end user

· Generate Too Hard Graphic – Not available to end user

· Generate Too Easy Graphic – Not shown to administrator

· Image Generator Scenario Tests

· …

· Too Easy Scenario Tests

· No Images to parse

· Image Too Easy

· Image OK

· Too Hard Scenario Tests

· …

<figure y> Detailed Test Automation Pyramid for Turing Test Scenario “Too Easy”

· End to End Tests

a. No Images to parse
b. Image Too Easy

c. Image OK

· Component tests:

d. DB Query [Q] tests:

i. Non found

ii. Oldest found

e. Image Parser [P] tests:

i. Recognized Image – Correct Results
ii. Recognized Image – Incorrect Results

iii. Didn’t Recognize

iv. Parser took too long – killed process

Acceptance Test Engineering – BETA DRAFT Page 377

v. Parser threw exception

f. DB Updater [U] tests

i. Update as “Too Easy”

ii. Update as “OK”

iii. Invalid Inputs
iv. DB failure

Automated Functional Testing of Turing Test Components

<insert timeline with timepoints= Test Authoring, Test Execution>

The following are strategies for verifying the behavior of the components that, when strung together,

implement the steps of the Turing Test workflows.

Verifying the Model to Model Pattern

In the Model to Model pattern we start with a digital model with known attributes. The transformation

uses this digital model as one of its inputs and generates a new digital model with know attributes. One
example of this might be transforming one XML document into a different XML document using XSLT.

Each test of this model injects a known set of inputs (the input model along with other parameters that

may regulate the transformation) and should result in a new model with well known characteristics

that can be queried and compared to expected values. The comparison process is often called an

assertion. For the Turing Test, we use this transformation to generate models of the images we will

later render. Because the transformations are deterministic we can calculate what the resulting model

should be for each test and then compare the actual result with the Hand-Crafted Oracle using one or

more assertions. If we choose to represent our models as XML documents, we could use an XML

Document comparison utility to do the comparison. We simply provide the utility with a relevance

mask that tells it which elements of the two files should be compared and it can provide us with a list
of elements that don’t match. If the list is empty, the test has passed this step. Alternatively, we could

use x-path expressions to extract specific fields of interest in the generated XML document and use

assertions to compare them with expected values. The expected values may be values that were in the

original XML document, they may be Derived Values [XTP] based on values in the original document or

they may be related to the other parameters passed to the transformer. This approach is likely to result

in larger and more complex tests and would only be used when constructing the expected XML

document was too expensive or obscured the intent of the test.

Verifying the BLOB to Model Pattern

Verifying the BLOB to Model transformation can be verified in a similar way because the output is also

a digital model. The main decision here is whether to use static BLOBs as the input to the image
analyzer being tested or to use models generated from attributes that we then expect to show up in

the output model. That is,

· (B)->[P]->(M)<-[!] or

· (M)->[G]->(B)->[P]->(M) <-[!]

Where the italicized items are part of the test harness and the bold parts are what is being tested. The

former style may result in the Mystery Guest test smell [XTP] because the expected attributes of the

BLOB must be hard coded in the assertions. The second style starts and ends with the same model but
requires the the BLOB be generated each time the test is running which could result in Slow Tests [XTP].

Acceptance Test Engineering – BETA DRAFT Page 378

A reasonable compromise might be to start with an object that contain both the seed data from which

the BLOB can be generated, and a previously generated BLOB. This keeps the seed data and the BLOB in

synch and if in doubt, one can regenerate the BLOB from the seed data.

Verifying the Database Query Pattern

The Database Query can be easily verified because the query returns a collection of BLOBs with their

corresponding meta data and what needs to be verified is that the query returned the correct set of

BLOBs; the BLOBs themselves do not need to be examined, just their identity.

Verifying the Model to BLOB Pattern

As long as the generation of the BLOB (graphic consisting of a picture and a letter superimposed on
each other) is a deterministic process, the generated BLOB should be identical each time it is

generated. Therefore, once we have generated the BLOB once and verified that it is correct, all

subsequent runs of the same Testcase (with the same input model) should be able to verify correct

execution simply by comparing the output with the previously generated output. This previously

generated output is known as a digital oracle. The human who originally certified that this digital oracle

is correct is know as a human oracle.

Automated Functional Testing of ITPS Turing Test Workflow

<insert timeline with timepoints= Test Authoring, Test Execution>

Verifying End to End Functionality

Each of the 4 scenarios needs to be verified independently because they happen at different time. For

each scenario we ignore the intermediate steps and find the appropriate test pattern based on the

original inputs and the final outputs. For example, the first scenario starts with generating a random

set of inputs and ends with putting a single BLOB plus metadata into the database. Testing with
random inputs is almost never a good idea so we should start the test with a known set of inputs either

by stubbing the random number generator, initializing it with a known seed, or injecting the input into

the process just after the where the generator is called. The end result should be a known model

stored in the database. The meta data can be compared with the original pseudo-random numbers and

the BLOB can be compared using a human oracle the first time and a digital oracle on subsequent test

runs.

To further verify that the four scenarios interact correctly, we need to get control of the system clock

so that we can simulate the passage of time to trigger the background analysis of newly generated

graphics. We also need to simulate an administrative user asking to be shown a series of “hard

enough” (“not too easy”?) graphics so they can make the “not too hard” assessment.

Test:

Step / Intent How

1. Initialize application Load assembly

2. Initialize database Load in known set of pet images, approved BLOBs,

generation/analysis job schedules

3. Trigger image generation Set time/date to scheduled generation time; wait long

enough

Acceptance Test Engineering – BETA DRAFT Page 379

4. Verify generated images Look in database for new BLOBs

5. Trigger “too easy” analysis job Set time/date to scheduled analysis job time; wait long

enough

6. Verify work in “too hard” inbox Assert on BLOB metadata in database

7. Request “Too Hard” graphic Spoof Human Oracle UI and request next work item

8. Verify oldest “Not too easy” graphic

offered

Spoofed UI asserts on identity of BLOB offered

9. Respond with “Too Hard” Spoofed UI injects users “response”

10. Verify graphic marked “Too Hard” in DB Assert on BLOB metadata in database

11. Initiate Turing Test on End User Spoof User logging in and registering account; request

image set

12. User enters cat/dog count and letters

observed

Spoofed UI injects users “response” (wrong #)

13. Verify user rejected for wrong answer Spoofed UI assert correct exception thrown by system

Design for Testability

Figure Z: Testability Architecture

Test

ITPS
Business

Logic
Image

Generator

Image
Analyser

Account
Registration UI

Too
Hard UI

Database

Job
Scheduler

System
Clock

Data Access Layer

Test
I/F

Set Time

Scheduler

Schedule Job

Assert Image

Too Hard

Acceptance Test Engineering – BETA DRAFT Page 380

Functional Acceptance Testing

This example illustrates the different kinds of functional tests that could be used to verify the business

functionality of an application. The practices illustrated include:

· Business Workflow testing

· Business Transaction testing (e.g. use case testing)

· Business Rule testing

· Interface test design using the Classification trees and State modeling

· Interface test execution using Session-Based Test Management

· Ubiquitous Language

The Global Bank ITPS project has implemented a test automation strategy to complement manual

exploratory testing. The focus of the strategy is to provide highly repeatable regression testing to

prevent defects from creeping into the software as it is built and maintained. This allows manual testing

to focus on truly value-adding activities and prevents the waste associated with debugging problems

introduced weeks ago; the automated tests should detect them as soon as they are introduced.

Many of the tests that follow were prepared by the team as the requirements were being fleshed out.

This allowed the use of the tests as examples, a practice commonly called Acceptance Test Driven

Development (ATDD.) This example focuses on the end result; the example Creating Acceptance Test

from User Stories illustrates the process used to derive these tests.

These tests read like instructions to a manual tester. Early in the project, the tests could have been

executed manually. The ITPS team then automated the tests so that they could be run quickly. They

chose to use the Fit framework [FIT, FitBook] and specifically a style of table called a DoFixture.

The team complemented the automated tests with session-based exploratory testing of the user

interface. This example includes sample artifacts and the conversations that led to them.

Acceptance Test Engineering – BETA DRAFT Page 381

Business Workflow Tests for ITPS

This sample test illustrates how we verify the overall workflow of how ITPS notifications can be

suspended for a period of time. The example Creating Acceptance Tests from User Stories (LINK)

describes how this Fit test emerged from discussions about the functionality in question.

<PD Start Sample Artifact>

GlobalBankSample.AuthorizedCustomerSuspendsNotifications

Acceptance Test Engineering – BETA DRAFT Page 382

<PD End Sample Artifact>

The next sample illustrates the outcome of the test if the notification wasn’t suspended properly. The

line starting with Credit surplus indicates that an unexpected notification was sent to user bobma. In the

interests of space only step 5 is shown.

<PD Start Sample Artifact>

<PD End Sample Artifact>

Business Transaction Tests for ITPS

Next we have the tests that verify each individual use case (a way to describe a business transaction)

works properly. These tests are necessarily more detailed than the workflow test and are expressed at

the level of user intent, not the details of the user interface used to carry out that intent. (We’ll get to

those tests a bit later in this chapter.)

Acceptance Test Engineering – BETA DRAFT Page 383

We start with the common setup that all tests require.

<PD Start Sample Artifact>

ModifyNotificationsForAuthorizedAccountTest

<PD End Sample Artifact>Next, here is the success scenario test. Note that each interaction with the

system is captured as a single line and that each thing the system is expected to do is captured (e.g.

logging of changes in the system log.) The test is intentionally abstracted away from the details of the

user interface to prevent fragility when the UI evolves. This is because we are verifying the business

logic, not the details of how the UI works. (That is left to the interface tests.)

<PD Start Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 384

Acceptance Test Engineering – BETA DRAFT Page 385

<PD End Sample Artifact>

The next sample illustrates verifying one of the failure scenarios, one where the user tries to modify an

account that doesn’t belong to them.

<PD Start Sample Artifact>

AttemptToModifyNotificationsForUnauthorizedAccountTest

Acceptance Test Engineering – BETA DRAFT Page 386

<PD End Sample Artifact>

User Interface Tests for ITPS

The use case tests have verified that the system implements the correct logic behind the scenes. These

tests could be executed via the user interface or via a test automation API. Either way, their focus is on

verifying the user and stakeholder intent is carried out correctly regardless of what kind of user interface

is used to access the functionality. But how do we verify that the user interface is implemented

correctly?

The answer is user interface tests. User interface tests treat the user interface layer of the software as

the system-under-test. They verify that the UI is in the correct state and presents the right options to

the user at all times. On the ITPS project the team has done usability testing of the user interface (see

Usability Testing Example) using both paper prototypes and early versions of the working software. That

testing has been used to identify any design flaws on the user interface. Now we need some testing that

will find any implementation flaws.

The ITPS test team starts out by analyzing the user interface of the system. They note that when the

user logs into the system they get to choose what part of the configuration application they want to

work with. For example, they can choose to manage the customer information, manage the customer’s

list of accounts, transfer funds between accounts, or manage the customer’s ITPS notifications. They

focus on the latter because it is the newly added functionality in this release.

When the user selects the Manage Notifications tab, they see the following screen:

Acceptance Test Engineering – BETA DRAFT Page 387

<PD Start Sample Artifact>

<PD End Sample Artifact>

While this is a very simple screen, there is actually quite a bit to test here. The team decides to try using

a classification tree (a kind of mind map) to describe the elements on the screen. First, they identify the

major structural elements:

1. Pane selection tabs

2. Service Warnings (checkbox)

3. Send via selector

4. Current Rules

Next, they zoom in on each item to understand them in more detail:

<PD Start Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 388

User Interface Mind Map

<PD End Sample Artifact>

As they develop the classification tree, Stef remarks “Wow, there’s a lot to test here!” They continue

fleshing out the tree.

After identifying the various elements of the UI and their expected behaviors, the team builds some

mental models about the behavior.

<PD Start Dialog>

Stef: “It seems that the states of the buttons can change any time the number of rows selected

changes.”

John: “Yes, but the behavior depends on which button we are talking about.”

Stef: “Let’s summarize the expected behavior as a table:”

<PD End Dialog>

<PD Start Sample Artifact>

Button Enablement State Table

Button No rules selected 1 rule selected several rules selected All rules selected

Acceptance Test Engineering – BETA DRAFT Page 389

Edit Rule Enabled

Add New Rule Enabled Enabled

Delete Rule Enabled Enabled Enabled

Select All Rules

Enabled

Enabled Enabled

<PD End Sample Artifact>

<PD Start Dialog>

John: “Interesting, they are all different.”

Stef: “Yes, they sure are. And even more interesting is the fact that we have several ways to change the

number of rows that are selected.”

John: “What do you mean?”

Stef: “We could select all but one rule by either <control>-clicking on 4 out of 5 rules, or we could press

the “Select All Rules” button and then <control>-click one rule to deselect it.

John: “But either way, the buttons should be in the right state. That is, only Delete Rule and Select All

Rules should be enabled.”

Stef: “Exactly! Now you are seeing the power that state modeling brings to test design.”

John: “And we can apply exactly the same process to the state of the items on the context menu. We

could even add them to this table.”

Stef: “Yes, now let’s finish building the state model for the number of selected rules.”

<PD End Dialog>

<PD Start Sample Artifact>

Selection State Transition Model

Insert state model here with the following states and transitions:

· State: None selected

◦ Click -> One selected

◦ Ctrl-Click-> One selected

◦ Select All-> All Selected

· State: One selected

◦ Click -> One selected

◦ Ctrl-Click-> Two selected

◦ Select All-> All Selected

Acceptance Test Engineering – BETA DRAFT Page 390

· State: Two Selected (Two less than All)

◦ Click -> One selected

◦ Ctrl-Click on already selected-> One selected

◦ Ctrl-Click on not already selected-> 2< # selected < all

◦ Select All-> All Selected

· State: 2< # selected < all

◦ Click -> One selected

◦ Ctrl-Click on already selected-> One less selected (may be Two Selected)

◦ Ctrl-Click on not already selected-> One more selected (may be All but one selected)

◦ Select All-> All Selected

· State: All but one selected

◦ Click -> One selected

◦ Ctrl-Click-> Two selected

◦ Select All-> All Selected

· State: All selected

◦ Click -> One selected

◦ Ctrl-Click-> All but one selected

<PD End Sample Artifact>

<PD Start Dialog>

John: “What about deletes?”

Stef: “What about them?”

John: “Well, if we delete the only unselected rule, then don’t we end up in ‘All selected’?”

Stef: “That’s an excellent point. Selecting and deselecting aren’t the only ways we might affect the

selection state of our rules. But in this case, how would we delete just one row when we have all but

one selected?”

John: “Couldn’t we press the delete button?”

Stef: “Nice try, but the delete button acts on the current selection so it would delete all the selected

rows. That would get us back to none-selected.”

John: “That wasn’t the case I was trying to test, but its definitely an interesting test case. How ‘bout we

right-click on the unselected row and choose delete rule from the context menu?”

Stef: “That would work. Any other ways?”

Acceptance Test Engineering – BETA DRAFT Page 391

John: “There’s the Delete icon on the row itself! If we click on that in the last unselected row then we

would end up with one less row and all the rows would be selected.”

Stef: “So true.”

John: “Wow, I would never have thought of that test case without having built the state model.”

Stef: “Nor by simply reading the use case description.”

<PD End Dialog>

Using the state model for selection Stef and John then designed a set of test scripts that would visit all

the selection states via each of the possible transitions so they could examine the enabled state of each

of the buttons and context menu items as defined in the button/item status table. Later, they continued

analyzing the user interface using their mind map, built additional state models to help them

characterize the expected behaviors and used those to define user interface tests. Based on this they

define a charter for a moderate freedom test session:

Charter 014
Test the CSR rich client user interface for managing ITPS notifications.

Freedom Moderate freedom – Carry out activities using previously defined state models and table as

inputs and expected outputs. Focus on testing the UI behavior, not

the underlying business functionality.

Setup
Create 2 sets of customers each with 1, several, 5, and 16 accounts. (2 customers of each)

Activities q Set up notification

q Verify enablement state of Add, Edit, Delete and Select All buttons and context menu items.

q Edit existing rules and ensure consistency with new rule creation

Oracle Notes
Use Button Enablement State Table for expected outputs

Variations
Object Lifecycle – Try different paths for getting to same selection state of Rules Grid (see

Selection State Transition Model)

Variations – Try same tests on customers with all rules on one account vs. rules

spread across many accounts.

 - Try doing all functions using keyboard only (no pointing device.)

<PD End Sample Artifact>

When the software was available for testing, John volunteered to execute the test charter in a 90

minute test session. As he executed various tests he captured the following test session report:

<PD Start Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 392

014 Test Session Report - 17 Aug 2008

Charter Test the CSR rich client user interface for managing ITPS notifications.

Activities q Verified the behavior of the header elements above the rules grid.

q Set up 6 rules across 3 accounts.

q Traversed all the selection paths in the Selection State Transition Model paying particular attention

to the more unusual paths. Repeated the tests on a single account to verify the account chosen didn’t

affect the behavior. Repeated the test using the Delete/Edit icons embedded in each row. Tried to

repeat the tests using keyboard only (see bug.)

q Edited existing rules and watched for unusual behaviors different from when adding new rules.

Bugs

Found

Select All Rules button not disabled - when the last unselected rule is selected manually, Select

All Rules button is not disabled (bug). Note: when all rules are selected and one

is unselected manually, Select All is enabled correctly.

Deleting a Rule doesn’t update button statuses - When deleting a rule leaves all remaining

buttons selected, Select All is not disabled and only the Delete button is

disabled; Edit Rule is not even though there is now no rule selected.

Cannot Select Multiple Rules using keyboard only – There is no way to move the cursor onto a

specific rule and select it and another rule. <ctrl>-<shift>-<DnArrow> selects

only the next rule; doesn’t leave currently selected rule selected. (This works on

the Accounts grid on the Manage Customer tab.) There is also no way to select

discontiguous rules with keyboard only. (Jody from Interaction Design says this

is design intent and consistent with other GBS applications.)

Issues /

Notes

Suggest another test session specifically on the selection rules because the enablement of buttons

seems to be spotty. 60 minutes should be enough.

Time

Spent

Setup 15 minutes

Testing 40 minutes

Bug logging 20 minutes

Total 75 minutes

<PD End Sample Artifact>

Based on the results of this test session the test manager added a 60 minute test charter to the test

session backlog specifically to look the enablement of the buttons on the Rules Grid.

Business Rule Tests for ITPS

While designing the test for the use case Manage Notification Threshold, the ITPS team noticed that

they couldn’t really verify that the threshold was being used properly without resorting to a workflow

test. Given the many details of the rules around what should and should not cause a notification to be

Acceptance Test Engineering – BETA DRAFT Page 393

sent the team decided that using workflow tests for each set of input values was impractical. Rather

than leaving the functionality untested, they looked for alternative ways to verify the notification logic

was implemented correctly.

One of the developers pointed out that the entire complex decision was implemented in a small set of

classes and accessed by the notification process via a single method call. “Why don’t we build a way to

feed the input values directly to this method?” he asked. Everyone agreed that this would be a superior

approach to multiple workflow tests, if it could be done. The developer did some research and decided

that the Fit framework would be more than capable of handling the kinds of tests he had in mind.

This sample illustrates how the ITPS team used Business Rule Tests to test a large number of variations

very quickly by interacting directly with the business rules component. This avoided the complexity of

writing nearly identical test scripts for each set of input values. It also avoided the test execution

overhead of a data-driven functional test script because much less software is tested for each set of

values. These tests allow the team to verify details of the ITPS Suspicious Activity Detection algorithm

without having to go through the user interface to set up users, accounts and preferences. It also avoids

having to go through the transaction integration interface to load the transactions to be tested. These

tests were made possible by applying the Design-for-Testability practice to the ITPS system architecture

thereby making it possible to expose the algorithm to the Fit fixtures that interpret these tables.

The tests below are written in a style which aims to document the expected behavior at the business

rule level in prose as well as providing detailed examples of the rules. Each of the examples is executable

and self-verifying. The expected results (in the “IsSuspicious?” column) are an example of a Hand-

Crafted Test Oracle.

<PD: Start Sample Artifact timepoint=TBD >

Suspicious Activity Fit Tests

The following are the Fit tests for verifying the user stories related to configuration of thresholds by

location, charge type and account. They are organized around the user stories that introduced the

functionality and thereby necessitated an additional set of tests.

Suspicious Activity is Based on Threshold per Account, Location and Charge Type

A customer has several accounts linked to their user profile, each with a unique text label.

CustomerAccounts

Customer Account Number Account Label Add()

TestUser01 100372 Checking OK

TestUser01 200991 Savings OK

Acceptance Test Engineering – BETA DRAFT Page 394

TestUser01 9900412 Joint OK

Note:

This “Column Fixture” is used to put data into the ITPS system database.

The Add()” column causes this row to be added to the database. “OK” indicates the record was added

successfully.

Fit ColumnFixtures process each row left to right so the Add() column must be to the right of any

columns it uses as input.

The system automatically configures default preferences for all accounts for each customer.

UserPreferences

Customer Account Location Charge Type Threshold

TestUser01 All All All 0

TestUser01 All NorthAm Travel 1000

TestUser01 All NorthAm Restaurant 500

TestUser01 All NorthAm Household 2000

Note:

This “RowFixture” compares what is in the system’s database with what we specify in the table.

The “All” values in the Account, Location and Charge Type columns indicates the threshold applies to

all Accounts, Locations and Charge Types for this customer.

Transactions are compared against the threshold in effect for the specific account based on the location

of the transaction and the type of charge. The following transactions are all valid:

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 999.99 NorthAm Travel OK Default All NA Travel

100372 499.99 NorthAm Restaurant OK Default All NA Restaurant

100372 1999.99 NorthAm Household OK Default All NA Household

100372 100.00 NorthAm Travel OK Default All NA Travel

100372 100.00 NorthAm Restaurant OK Default All NA Restaurant

Acceptance Test Engineering – BETA DRAFT Page 395

100372 100.00 NorthAm Household OK Default All NA Household

100372 0.01 NorthAm Travel OK Default All NA Travel

100372 0.01 NorthAm Restaurant OK Default All NA Restaurant

100372 0.01 NorthAm Household OK Default All NA Household

Notes on this table:

· This “Column Fixture” is used to exercise the ITPS logic that analyses the transactions for

suspicious activity.

· The “Comment” column describes the rule that should take effect. This column is for the reader

only and is not used by ITPS.

· The TX# column is omitted because it doesn’t affect the determination of suspicious activity.

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 500.00 NorthAm Travel Suspicious Default All NA Travel

100372 100.00 NorthAm Restaurant Suspicious Default All NA Restaurant

100372 100.00 NorthAm Household Suspicious Default All NA Household

100372 0.01 AustraliaNZ Travel Suspicious Default All-All-All

100372 0.01 SouthAm Travel Suspicious Default All-All-All

100372 0.01 Europe Travel Suspicious Default All-All-All

100372 0.01 Africa Travel Suspicious Default All-All-All

100372 0.01 Asia Travel Suspicious Default All-All-All

100372 0.01 AustraliaNZ Restaurant Suspicious Default All-All-All

100372 0.01 SouthAm Restaurant Suspicious Default All-All-All

100372 0.01 Europe Restaurant Suspicious Default All-All-All

100372 0.01 Africa Restaurant Suspicious Default All-All-All

100372 0.01 Asia Restaurant Suspicious Default All-All-All

100372 0.01 AustraliaNZ Household Suspicious Default All-All-All

100372 0.01 SouthAm Household Suspicious Default All-All-All

100372 0.01 Europe Household Suspicious Default All-All-All

100372 0.01 Africa Household Suspicious Default All-All-All

Acceptance Test Engineering – BETA DRAFT Page 396

100372 0.01 Asia Household Suspicious Default All-All-All

Notes on this table:

· There is nothing special about this being a separate table; the transactions could easily have
been included in the previous table.

User Can Override Default Thresholds in User Profile by Account

A user can override the default threshold for a single account, a single location, or a single charge type.

SetUserPreferences

Customer Account Location Charge Type Threshold Add()

TestUser01 All Europe All 1000 OK

TestUser01 All NorthAm Restaurant 1500 OK

TestUser01 Joint NorthAm Restaurant 0 OK

Based on these overrides, the following transactions are all valid because they are 0.01 below the

threshold:

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 1499.99 NorthAm Restaurant OK Overridden All NA Restaurant

200991 1499.99 NorthAm Restaurant OK Overridden All NA Restaurant

100372 999.99 Europe Travel OK Overridden All Europe All

200991 999.99 Europe Travel OK Overridden All Europe All

9900412 999.99 Europe Travel OK Overridden All Europe All

100372 999.99 Europe Restaurant OK Overridden All Europe All

200991 999.99 Europe Restaurant OK Overridden All Europe All

9900412 999.99 Europe Restaurant OK Overridden All Europe All

100372 999.99 Europe Household OK Overridden All Europe All

200991 999.99 Europe Household OK Overridden All Europe All

9900412 999.99 Europe Household OK Overridden All Europe All

The following are all suspicious because they equal the threshold:

Acceptance Test Engineering – BETA DRAFT Page 397

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 1500.00 NorthAm Restaurant Suspicious Overridden All NA Restaurant

200991 1500.00 NorthAm Restaurant Suspicious Overridden All NA Restaurant

9900412 0.01 NorthAm Restaurant Suspicious Overridden Joint NA Restaurant

100372 1000 Europe Travel Suspicious Overridden All Europe All

200991 1000 Europe Travel Suspicious Overridden All Europe All

9900412 1000 Europe Travel Suspicious Overridden All Europe All

100372 1000 Europe Restaurant Suspicious Overridden All Europe All

200991 1000 Europe Restaurant Suspicious Overridden All Europe All

9900412 1000 Europe Restaurant Suspicious Overridden All Europe All

100372 1000 Europe Household Suspicious Overridden All Europe All

200991 1000 Europe Household Suspicious Overridden All Europe All

9900412 1000 Europe Household Suspicious Overridden All Europe All

Users’ Preferences are Independent

Preferences set by one customer are distinct from other customers with the same account labels:

UserAccounts

Customer Account Number Account Label Add()

TestUser02 100888 Checking OK

TestUser02 200001 Savings OK

TestUser02 9900818 CreditCard OK

This customer’s preferences haven’t been affected by the changes made by TestUser01:

UserPreferences

Customer Account Location Charge Type Threshold

TestUser02 All All All 0

TestUser02 All NorthAm Travel 1000

Acceptance Test Engineering – BETA DRAFT Page 398

TestUser02 All NorthAm Restaurant 500

TestUser02 All NorthAm Household 2000

<PD: End Sample Artifact>

Fit Fixture Code

A “fixture” in Fit refers to the code that is used to interpret a particular table. The code required to

implement the various fit fixtures is available at codeplex. The following subset is included here to

illustrate how easy it is to hook up the Business Rule Tests when the application is designed for

testability.

<PD: Start Sample Artifact>
Namespace itps.gbs.fitfixtures

Class UserAccounts : ColumnFixture {

 public String Customer;

 public String AccountNumber;

 public String AccountLabel;

 public String Add() {

 IGlobalBankAdmin sut = new GlobalBankAdmin();

 Sut.AddAccountForCustomer

 }

}

<PD: End Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 399

Testing the Global Bank ITPS

Notifications Settings for CSRs

The Global Bank ITPS team needs to ensure that the Global Bank customer service representatives can

access and modify the ITPS notifications settings for customers who call in with questions or issues. The

customer service representatives already have a custom desktop application, the Global Bank Customer

Service Application (GBCSA) which was created and deployed by the Global Bank IT department.

Thankfully, GBCSA is an extensible, composite application that is simple to add functionality to. Also,

thankfully, the Global Bank test team has a rich suite of UI-based acceptance tests that the ITPS team

can add to. The test suites (and a simple library of test automation helper classes) were written using

Microsoft UI Automation, part of the Microsoft .NET 3.5 Framework. [LINK]

Choosing a Framework for UI Testing

The Global Bank testing team had researched the Microsoft UI Automation functionality carefully before

deciding to use it as a base for all UI testing on the Microsoft Windows platform. There were a number

of reasons for this, including:

· Language Support – UI Automation client applications can be done in Microsoft Visual C# or

Microsoft Visual Basic .NET, and the test team is familiar with both languages

· Operating System Support – UI Automation is supported on all Windows operating systems that

support WPF, including Windows Vista, Microsoft Windows XP, and Windows Server 2003

· Platform Support – UI Automation works with applications written using Windows Forms and

Windows Presentation Foundation (WPF), so tests could be created for many legacy

applications that Global Bank has developed.

· Consistency – Different programming languages and platforms have different names for the

properties of UI display elements. UI Automation simplifies this into one interface for all

platforms.

· Extensibility – When Global Bank creates custom controls, they can be made accessible to UI

Automation with a small amount of extra development effort by creating a UI Automation

provider.

· Less Fragility – Many UI automation frameworks often encourage creating tests that are very

fragile. Fragility can be due to the framework relying on arbitrary and easily changed control

identifiers or controls being in a specific location in the overall control tree. The UI Automation

framework relies on another property of controls, the Accessible Name. The actual control IDs

Acceptance Test Engineering – BETA DRAFT Page 400

can be randomly generated and the control moved around in the control tree, but by using the

Accessible Name, it is easier to find, identify, and create UI tests.

However, there are a few challenges that caused the test team to consider other options:

· No Recorder – UI Automation does not include the ability to record the steps a user takes in the

UI and later run the recording. All tests must be hand written in a high level programming

language. This requires more technical testers than other tools that include record/playback

functionality. Fortunately, the test team does have some team members with programming

experience so this is not a show-stopper. And the next release of UIA, arriving just in time for

the ITPS project, does include recording of tests.

· Maintenance – Since all tests are hand written, the test code will need to be maintained.

Libraries to simplify test development will need to be created on a project by project basis, and

the common functionality should be pulled into shared testing libraries.

· Performance – Tests implemented using the UI Automation framework drive the application

through the user interface and this has performance and robustness implications. In

experimenting with UI Automation, the test team determined that there were areas where the

tests would need to wait for the UI to appear or refresh. These explicit waits will impact the

speed of the tests somewhat but they will still run much faster than a human running a manual

test script and should not.

· Automation is not a silver bullet – There are scenarios that automated testing and automated UI

testing may not cover, including race conditions. Race conditions are most easily forced using

automated unit tests and it is assumed that the developers will be writing these tests.

{Explain the following code and UIA features}

{How are custome Widgets supported by UIA}

The Global Bank ITPS team started with the following user stories:

<PD Start Sample Artifact>

· As a customer service representative, I can sign up a user for ITPS notifications so they can be

notified of possible fraudulent transactions.

· As a customer service representative, I can set preferences for a user for receiving ITPS

notification via email

· As a customer service representative, I can set preferences for a user for sending notifications

based on amount spent

Acceptance Test Engineering – BETA DRAFT Page 401

· As a customer service representative, I can set preferences for a user for sending notifications

based on credit or account used

· As a customer service representative, I can set preferences for a user for sending notifications

based on location

<PD End Sample Artifact>

After some discussions with the customer proxy to discuss the behavior of the CSR application plug-in,

creating some basic acceptance criteria for each story, and some paper prototyping (see Usability

Testing Example) by the usability team, the team came up with a basic UI design.

<PD Start Sample Artifact>

<PD End Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 402

To test this UI, as part of readiness testing, the team came up with a number of test cases from the

acceptance test criteria that the customer had described to the team. These test cases were automated

during readiness testing to

· Ensure that the functionality was developed and worked properly

· Act as a regression test suite to ensure that known working functionality was not effected by

other changes to the system

· Act as a presentation to the customer to show that the software was meeting the agreed upon

acceptance criteria.

The first example is a test to ensure that the plugin was loaded properly and the UI was displayed in the

appropriate place. This test method is simple, straight forward, and uses method names that match the

actions that the customer had discussed with the team.

<PD Start Sample Artifact>

C#

/// <summary>

/// Repro Steps

/// 1. Launch the application /// 2. Login with username and password.

/// 3. Click a customer in the grid collection and Click on the

/// 'Select Customer' button.

/// 4. Select Manage Notification tab in the screen.

/// </summary>

[TestMethod]

public void NavigateToManageNotificationsArea()

{

 // Launch Application. This is in the TestInitialize() method.

 LogInToApplication();

 SelectCustomer();

 // Click on the tab Item.

 manageNotificationTab = GetManageNotificationTab();

 ControlPatterns.GetSelectionItemPattern(manageNotificationTab).Select();

 manageNotificationTab.Click();

}

<PD End Sample Artifact>

This test is at a high level, and ensures that the Manage Notifications tab exists and is clickable. It is

simple enough to be read and understood at a high level, and hides the complexity of the automation in

helper methods. To explain what is going on behind the scenes, let’s look at one of the helper methods,

LogInToApplication. This method introduces several concepts of the UI Automation framework. First,

any automation accessible control is an AutomationElement. Second, all AutomationElements can be

found by their AccessibleName in the control tree. Third, AutomationElements can implement different

ControlPatterns, or actions that the control may enable. The button control for the LogInButton enables

Acceptance Test Engineering – BETA DRAFT Page 403

an ControlPattern called Invoke. This method gets a window called the LogInWindow, sets the values of

the UsernameTextBox and PasswordTextBox, and then Invokes the LogInButton.

<PD Start Sample Artifact>

C#

private void LogInToApplication()

{

 // Get the window

 AutomationElement logInWindow =

TreeSearcher.FindElementById(AutomationElement.RootElement,

ControlIdentifier.Read("LogInWindow"), true);

 // Enter Username

 AutomationElement userNameTextBox = TreeSearcher.FindElementById(logInWindow,

ControlIdentifier.Read("UsernameTextBox"));

ControlPatterns.GetValuePattern(userNameTextBox).SetValue(TestData.Read("Username"));

 // Enter Password

 AutomationElement passwordTextBox = TreeSearcher.FindElementById(logInWindow,

ControlIdentifier.Read("PasswordTextBox"));

ControlPatterns.GetValuePattern(passwordTextBox).SetValue(TestData.Read("Password"));

 // Click LogIn button

 AutomationElement logInButton = TreeSearcher.FindElementById(logInWindow,

ControlIdentifier.Read("LogInButton"));

 ControlPatterns.GetInvokePattern(logInButton).Invoke();

}

<PD End Sample Artifact>

Other tests the team writes will follow a pattern.

· Launch the application

· Navigate to the area to be tested

· Act upon the UI. This involves finding UI elements in the control tree, and using a control

pattern that the control enables.

· Verify the results.

The other test cases, all named with simple user actions, include:

· TestWhetherApplicationCanBeLaunched

· TestWhetherLogInProcedureIsCompletedSuccessfully

Acceptance Test Engineering – BETA DRAFT Page 404

· TestWhetherCustomerServiceScreenIsPopulatedWithData

· TestWhetherACustomerCanBeSelectedFromTheSearchResults

· SelectACustomerFromTheGridAndClickNextButton

· DoesTheMainAccountControlContainsFourTabsAndTheTabNameMatchesWithTheList

· CanNavigateToManageNotificationsArea

· CanEnableNotificationsAndChooseEmail

· CanLoginSelectCustomerAndAddNotificationRule

· TryNonNumericCharactersOnNotificationRuleWizard

And in the process of developing these test cases, the test team created helper methods specific to the

application. These methods were extracted from the first several test cases written to remove

duplicated code, and include:

· LogInToApplication

· OpenNotificationRuleWizardAndAssignValues

· ClickOnNextButton

· SelectCustomer

The full code base for a mock-up of the ITPS customer service application and the automated UI tests

are available at www.codeplex.com/TestingGuidance.

Acceptance Test Engineering – BETA DRAFT Page 405

Recording and Refactoring Tests

The ITPS team has a few ways that they could automate user interface level tests. There are several

approaches, including Recorded Test Automation [LINK], Programmatic Test Automation [LINK]. Both

are viable alternatives, and the ITPS team used Programmatic Test Automation in the sample UIA GUI-

Based Automated Test. However, the programmatic tests take a long time to write, when compared to

a simple recorded test. The team was able to use a Community Technology Preview (CTP) of Visual

Studio 2010 Team Suite and use the new test recording and playback features to do some testing of the

customer service agent application for ITPS.

With the running CSR application, the team recorded a very long test in which the user logged in to the

application, searched for a customer, selected the customer, enabled ITPS, and created an ITPS

notification rule for the customer. It took the team a short time to figure out how to record, pause, and

resume recording a test. They even figured out how to delete extraneous steps from the recording

before having Visual Studio 2010 generate code for the script.

Figure 1

The team created a new Coded UI Test

Acceptance Test Engineering – BETA DRAFT Page 406

And choose to record the test:

Figure 2

They chose to use the built in test recorder

Acceptance Test Engineering – BETA DRAFT Page 407

Figure 3

Using the recording tool to automate testing of the ITPS customer service application

Then they generated the test code from the recording. The generated test code is a very long helper

method in a RecordedTests class. The 340 line method starts with:

C#

public static void EnableItps ()
{
 // Type 'csrTestUser01' in 'textBoxUserName' text box

 UITestControl loginWindow = new UITestControl();
 #region Search Criteria
 loginWindow.FrameworkName = "MSAA";

 loginWindow.PrimarySearchProperties.Add("Name", "Login");
 loginWindow.PrimarySearchProperties.Add("ClassName",
"WindowsForms10.Window.8.app", PropertyConditionOperator.Contains);

 loginWindow.SearchScope = SearchScope.VisibleOnly;
 loginWindow.Find();
 #endregion

 UITestControl loginUserNameWindow = new UITestControl(loginWindow);
 #region Search Criteria
 loginUserNameWindow.FrameworkName = "MSAA";

Acceptance Test Engineering – BETA DRAFT Page 408

 loginUserNameWindow.PrimarySearchProperties.Add("ControlName",
"textBoxUserName");

 loginUserNameWindow.SearchScope = SearchScope.VisibleOnly;
 loginUserNameWindow.Find();
 #endregion

 WinEdit textBoxUserNameEdit = new WinEdit(loginUserNameWindow);
 #region Search Criteria
 textBoxUserNameEdit.PrimarySearchProperties.Add("Name", "LoginUserName");

 textBoxUserNameEdit.SearchScope = SearchScope.VisibleOnly;
 textBoxUserNameEdit.Find();
 #endregion

 textBoxUserNameEdit.Value = "csrTestUser01";

 // Type '{Tab}' in 'textBoxUserName' text box

 textBoxUserNameEdit.SendKeys("{Tab}");

...

...

All of this code allows the playback framework to find the appropriate controls in the login window to

set the user name and password, then select the Login button. By using a refactoring called Extract

Method, the team was able to create another helper method, Login. Then, they changed the method so

that the user name and password are parameters, using a refactoring called Introduce Parameter.

Finally, they used the Move Method refactoring to move the Login method from the RecordedMethods

class to a new utility class called ItpsUserInterfaceActions. This new utility class is one of several that

will be created as more tests are recorded and refactored. In fact, if the ItpsUserInterfaceActions class

becomes too large to manage, it will be split into several smaller utility classes that focus on specific user

interface areas.

C#

public static void Login(string userName, string password) {

 // Type 'csrTestUser01' in 'textBoxUserName' text box
 UITestControl loginWindow = new UITestControl();
 #region Search Criteria

 loginWindow.FrameworkName = "MSAA";
 loginWindow.PrimarySearchProperties.Add("Name", "Login");
 loginWindow.PrimarySearchProperties.Add("ClassName",

"WindowsForms10.Window.8.app", PropertyConditionOperator.Contains);
 loginWindow.SearchScope = SearchScope.VisibleOnly;
 loginWindow.Find();

 #endregion
 UITestControl loginUserNameWindow = new UITestControl(loginWindow);
 #region Search Criteria

 loginUserNameWindow.FrameworkName = "MSAA";

Acceptance Test Engineering – BETA DRAFT Page 409

 loginUserNameWindow.PrimarySearchProperties.Add("ControlName",
"textBoxUserName");

 loginUserNameWindow.SearchScope = SearchScope.VisibleOnly;
 loginUserNameWindow.Find();
 #endregion

 WinEdit textBoxUserNameEdit = new WinEdit(loginUserNameWindow);
 #region Search Criteria
 textBoxUserNameEdit.PrimarySearchProperties.Add("Name",

"LoginUserName");
 textBoxUserNameEdit.SearchScope = SearchScope.VisibleOnly;
 textBoxUserNameEdit.Find();

 #endregion
 textBoxUserNameEdit.Value = userName;

 // Type '{Tab}' in 'textBoxUserName' text box
 textBoxUserNameEdit.SendKeys("{Tab}");

 // Type '********' in 'textBoxPassword' text box
 UITestControl loginPasswordWindow = new UITestControl(loginWindow);
 #region Search Criteria

 loginPasswordWindow.FrameworkName = "MSAA";
 loginPasswordWindow.PrimarySearchProperties.Add("ControlName",
"textBoxPassword");

 loginPasswordWindow.SearchScope = SearchScope.VisibleOnly;
 loginPasswordWindow.Find();
 #endregion

 WinEdit textBoxPasswordEdit = new WinEdit(loginPasswordWindow);
 #region Search Criteria
 textBoxPasswordEdit.PrimarySearchProperties.Add("Name",

"LoginPassword");
 textBoxPasswordEdit.SearchScope = SearchScope.VisibleOnly;
 textBoxPasswordEdit.Find();

 #endregion
 textBoxPasswordEdit.Value = password;//
.SendKeys("pa$$wo{Back}0rd{Tab}");

 // Type '{Space}' in 'Login' button
 UITestControl loginWindow1 = new UITestControl(loginWindow);

 #region Search Criteria
 loginWindow1.FrameworkName = "MSAA";
 loginWindow1.PrimarySearchProperties.Add("ControlName",

"buttonLogin");
 loginWindow1.SearchScope = SearchScope.VisibleOnly;
 loginWindow1.Find();

 #endregion
 WinButton loginButton = new WinButton(loginWindow1);
 #region Search Criteria

 loginButton.PrimarySearchProperties.Add("Name", "LoginButton");
 loginButton.SearchScope = SearchScope.VisibleOnly;

Acceptance Test Engineering – BETA DRAFT Page 410

 loginButton.Find();
 #endregion

 loginButton.SendKeys("{Space}");
}

Now, by leveraging the Login method (and many other methods refactored out of the recording), the

team could use the recorded steps to quickly build other test cases. A test that uses the refactored

methods to login, find a user, enable ITPS for the user, and create a notifications rule is fairly simple:

C#

 [TestMethod]

 public void CodedUITestMethod1()
 {

ItpsUserInterfaceActions.Login("csrTestUser01", "pa$$w0rd");

ItpsUserInterfaceActions.SearchForCustomer("Cook");

UIStateChecker.EnsureThatSelectedCustomerIs("Cook;Kevin;123
Elm;Some City;WA;12457")

ItpsUserInterfaceActions.RetrieveSelectedCustomerInformation();

ItpsUserInterfaceActions.SelectManageNotifications();

ItpsUserInterfaceActions.EnableNotificationsViaEmail();

UIStateChecker.EnsureThatItpsIsEnabled();
UIStateChecker.EnsureThatNotificationsWillBeSentVia("email");

ItpsUserInterfaceActions.CreateNewRuleForThousandDollarTransactio
nsInTheUnitedStates();

UIStateChecker.EnsureThatOneNotificationRuleExists();

 }

 Using the same Login method that was refactored out of the recording (above), the team created this

class to test just the authentication functionality via the UI:

C#

 [CodedUITest]
 public class AuthenticateUserTests
 {

 private const string _applicationFolder = @"C:\ITPS-
CSRApp";

Acceptance Test Engineering – BETA DRAFT Page 411

 private const string _applicationExe =
@"GlobalBankITPSMockUp.exe";

 private Process _applicationProcess;

 [TestInitialize]

 public void TestCaseSetup()
 {
 _applicationProcess = new Process();

 _applicationProcess.StartInfo.FileName =
Path.Combine(_applicationFolder, _applicationExe);
 _applicationProcess.StartInfo.WorkingDirectory =

_applicationFolder;
 _applicationProcess.Start();
 }

 [TestCleanup]

 public void TestCaseCleanup()
 {
 if ((_applicationProcess != null) &&

(_applicationProcess.HasExited == false))
 {
 _applicationProcess.Kill();

 }
 _applicationProcess.Dispose();
 }

 [TestMethod]
 public void CanLoginWithValidCredentials()

 {
 RecordedMethods.Login("csrTestUser01", "pa$$w0rd");

UIStateChecker.EnsureUserIsNotPromptedWithLoginWindow();
UIStateChecker.EnsureUserIsShownSearchForCustomerWindow();

 }

 [TestMethod]
 public void CannotLoginWithInvalidCredentials()

 {
 RecordedMethods.Login("baduserName", "wrongpassword");

 UIStateChecker.EnsureUserIsPromptedWithLoginWindow();
 }

 }

Acceptance Test Engineering – BETA DRAFT Page 412

With this code, the team could continue and create a number of test cases that attempt to circumvent

the authentication mechanism by passing random data, or by passing SQL code, or anything else they

can think of.

Because the team was able to start from a recording and refactor the recording into a set of test helper

methods, they were able to easily and quickly build a maintainable set of automated UI test cases.

Acceptance Test Engineering – BETA DRAFT Page 413

Combinatorial Test Optimization

Before using the all-pairs tool, here is
what the grid looked like:

Device Notification method Version

cell1 IM v1

cell2 SMS v2

cell3 VM v3

PDA1 email v4

PDA2 alpha

PDA3 beta

pager candidate

total combinations = 196

Using the tool, here are the raw pairing details
from the table above:

PAIRING
DETAILS

var1 var2 value1 value2 appearances cases

Device Version cell1 v1 1 1

Device Version cell1 v2 1 2

Device Version cell1 v3 1 3

Device Version cell1 v4 1 4

Device Version cell1 alpha 1 29

Device Version cell1 beta 1 30

Device Version cell1 candidate 1 31

Device Version cell2 v1 1 5

Device Version cell2 v2 1 6

Device Version cell2 v3 1 7

Device Version cell2 v4 1 8

Device Version cell2 alpha 1 32

Acceptance Test Engineering – BETA DRAFT Page 414

Device Version cell2 beta 1 33

Device Version cell2 candidate 1 34

Device Version cell3 v1 1 9

Device Version cell3 v2 1 10

Device Version cell3 v3 1 11

Device Version cell3 v4 1 12

Device Version cell3 alpha 1 35

Device Version cell3 beta 1 36

Device Version cell3 candidate 1 37

Device Version PDA1 v1 1 13

Device Version PDA1 v2 1 14

Device Version PDA1 v3 1 15

Device Version PDA1 v4 1 16

Device Version PDA1 alpha 1 38

Device Version PDA1 beta 1 39

Device Version PDA1 candidate 1 40

Device Version PDA2 v1 1 20

Device Version PDA2 v2 1 41

Device Version PDA2 v3 1 42

Device Version PDA2 v4 1 43

Device Version PDA2 alpha 1 17

Device Version PDA2 beta 1 18

Device Version PDA2 candidate 1 19

Device Version PDA3 v1 1 24

Device Version PDA3 v2 1 44

Device Version PDA3 v3 1 45

Device Version PDA3 v4 1 46

Device Version PDA3 alpha 1 21

Device Version PDA3 beta 1 22

Device Version PDA3 candidate 1 23

Device Version pager v1 1 28

Device Version pager v2 1 47

Device Version pager v3 1 48

Device Version pager v4 1 49

Device Version pager alpha 1 25

Device Version pager beta 1 26

Device Version pager candidate 1 27

Device
Notification
method cell1 IM 1 1

Device
Notification
method cell1 SMS 2 2, 31

Device
Notification
method cell1 VM 2 3, 30

Device
Notification
method cell1 email 2 4, 29

Device
Notification
method cell2 IM 2 6, 32

Acceptance Test Engineering – BETA DRAFT Page 415

Device
Notification
method cell2 SMS 2 5, 33

Device
Notification
method cell2 VM 2 8, 34

Device
Notification
method cell2 email 1 7

Device
Notification
method cell3 IM 2

11,
36

Device
Notification
method cell3 SMS 2

12,
35

Device
Notification
method cell3 VM 1 9

Device
Notification
method cell3 email 2

10,
37

Device
Notification
method PDA1 IM 2

16,
40

Device
Notification
method PDA1 SMS 1 15

Device
Notification
method PDA1 VM 2

14,
38

Device
Notification
method PDA1 email 2

13,
39

Device
Notification
method PDA2 IM 2

17,
41

Device
Notification
method PDA2 SMS 2

18,
42

Device
Notification
method PDA2 VM 2

19,
43

Device
Notification
method PDA2 email 1 20

Device
Notification
method PDA3 IM 2

22,
45

Device
Notification
method PDA3 SMS 2

21,
44

Device
Notification
method PDA3 VM 1 24

Device
Notification
method PDA3 email 2

23,
46

Device
Notification
method pager IM 2

27,
49

Device
Notification
method pager SMS 1 28

Device
Notification
method pager VM 2

25,
47

Device
Notification
method pager email 2

26,
48

Version
Notification
method v1 IM 1 1

Version
Notification
method v1 SMS 2 5, 28

Acceptance Test Engineering – BETA DRAFT Page 416

Version
Notification
method v1 VM 2 9, 24

Version
Notification
method v1 email 2

13,
20

Version
Notification
method v2 IM 2 6, 41

Version
Notification
method v2 SMS 2 2, 44

Version
Notification
method v2 VM 2

14,
47

Version
Notification
method v2 email 1 10

Version
Notification
method v3 IM 2

11,
45

Version
Notification
method v3 SMS 2

15,
42

Version
Notification
method v3 VM 1 3

Version
Notification
method v3 email 2 7, 48

Version
Notification
method v4 IM 2

16,
49

Version
Notification
method v4 SMS 1 12

Version
Notification
method v4 VM 2 8, 43

Version
Notification
method v4 email 2 4, 46

Version
Notification
method alpha IM 2

17,
32

Version
Notification
method alpha SMS 2

21,
35

Version
Notification
method alpha VM 2

25,
38

Version
Notification
method alpha email 1 29

Version
Notification
method beta IM 2

22,
36

Version
Notification
method beta SMS 2

18,
33

Version
Notification
method beta VM 1 30

Version
Notification
method beta email 2

26,
39

Version
Notification
method candidate IM 2

27,
40

Version
Notification
method candidate SMS 1 31

Version
Notification
method candidate VM 2

19,
34

Acceptance Test Engineering – BETA DRAFT Page 417

Version
Notification
method candidate email 2

23,
37

total combinations (removing duplicates) = 105

Here is the final matrix of cases
that have to be run:

TEST
CASES

case Device
Notification
method Version pairings

1 cell1 IM v1 3

2 cell1 SMS v2 3

3 cell1 VM v3 3

4 cell1 email v4 3

5 cell2 SMS v1 3

6 cell2 IM v2 3

7 cell2 email v3 3

8 cell2 VM v4 3

9 cell3 VM v1 3

10 cell3 email v2 3

11 cell3 IM v3 3

12 cell3 SMS v4 3

13 PDA1 email v1 3

14 PDA1 VM v2 3

15 PDA1 SMS v3 3

16 PDA1 IM v4 3

17 PDA2 IM alpha 3

18 PDA2 SMS beta 3

19 PDA2 VM candidate 3

20 PDA2 email v1 2

21 PDA3 SMS alpha 3

22 PDA3 IM beta 3

23 PDA3 email candidate 3

24 PDA3 VM v1 2

25 pager VM alpha 3

26 pager email beta 3

27 pager IM candidate 3

28 pager SMS v1 2

Acceptance Test Engineering – BETA DRAFT Page 418

29 cell1 email alpha 2

30 cell1 VM beta 2

31 cell1 SMS candidate 2

32 cell2 ~IM alpha 1

33 cell2 ~SMS beta 1

34 cell2 ~VM candidate 1

35 cell3 ~SMS alpha 1

36 cell3 ~IM beta 1

37 cell3 ~email candidate 1

38 PDA1 ~VM alpha 1

39 PDA1 ~email beta 1

40 PDA1 ~IM candidate 1

41 PDA2 ~IM v2 1

42 PDA2 ~SMS v3 1

43 PDA2 ~VM v4 1

44 PDA3 ~SMS v2 1

45 PDA3 ~IM v3 1

46 PDA3 ~email v4 1

47 pager ~VM v2 1

48 pager ~email v3 1

49 pager ~IM v4 1

total paired combinations = 49

Acceptance Test Engineering – BETA DRAFT Page 419

Acceptance Test Engineering – BETA DRAFT Page 420

Ensuring Usability of ITPS Notification

Configuration

This example illustrates the use of Usability Testing as a way to verify that the behavior of the software

is acceptable to target users.

Practices Illustrated

· User Stories

· Use Cases

· Product Design including Paper Prototyping

· Usability Testing – specifically Wizard of Oz testing of Paper Prototypes

· Personas

The usability testing is focused on determining the ease of use of the user interface for the Manage

Notification Preferences use case, specifically the “e” variation of step 1:

<PD: Start Sample Artifact timepoint=TBD >

Use Case: Manage Notification Preferences

· Goal in Context: An account owner or a CSR may manage the notification preferences

associated with the account.

· Scope: Global Bank Identity Theft Protection Service

· Level: User Goal (sea level)

· Preconditions: User is already logged in and has sufficient privilege.

· Success End Condition: The notification preference has been modified as requested.

· Failed End Condition: The notification preference has not been modified.

· Primary Actor: Account Owner (or a CSR acting on their behalf)

· Trigger: User requests a change.

MAIN SUCCESS SCENARIO

· User requests a change to their notification profile

· System verifies user is allowed to modify this profile

· System logs the requesting user, account affected and a summary of the changes made

· System updates the profile as requested

· The use case ends in success

EXTENSIONS

2a. User not logged in or not authorized :

Acceptance Test Engineering – BETA DRAFT Page 421

2a1. System logs unauthorized request, user information and time/date in the security log

2a2. System notifies user that request could not be completed

2a3. The use case fails

3a. Database cannot be updated :

3a1. System notifies user that request could not be completed

3a2. System notifies the monitoring system of the error

3a3. The use case fails

VARIATIONS

1a. The user requested notification via SMS

 :

 :

1e. The user adjusted the transaction size threshold

1e1.Based on Charge Type

1e2.Based on Location

ee3.Based on Account

<PD: End Sample Artifact>

Initial User Stories for Notification Threshold

The functionality to be tested is being developed incrementally through the following user stories:

<PD: Start Sample Artifact timepoint=TBD-1month>

User Story Name Notes

As a signed in bank account owner, I can set

preferences for sending notifications based on

amount spent

As a signed in bank account owner, I can set

preferences for sending notifications based on

credit or account used

As a signed in bank account owner, I can set

preferences for sending notifications based on

location

As a signed in bank account owner, I can set

preferences for sending notifications based on

a combination of reasons

<PD: End Sample Artifact>

Acceptance Test Engineering – BETA DRAFT Page 422

In discussions with the on-site customer about the location story, it was split out into the following user

stories:

Expanded User Stories for Notification by Location

<PD: Start Sample Artifact timepoint=TBD>

User Story Name Notes

As a user, I can set the notification threshold

for an account by continent.

As a user, I can set a different notification

threshold for an account by country with a

continent.

Threshold for a specific country overrides the

threshold for the continent that contains the

country. Other countries are not affected.

As a user, I can set the notification threshold

for an account by state or province within a

country.

Threshold for a specific state or province

overrides the threshold for the entire country.

As a user, I can set the notification threshold

for an account by the city within a state or

province.

As a user, I can set a single notification

threshold for more than one city within a state

or province.

As a user, I can set a single notification

threshold for more than one country within a

continent.

User may select more than one country;

threshold applies to all countries selected.

As a user, I can set a single notification

threshold for several or all accounts.

As a user, I can set a single notification

threshold for several or all charge types.

<PD: End Sample Artifact>

The plan for conduction usability testing is just one part of the overall test plan. The following is the

usability portion of the main ITPS Test Plan document.

<PD Start Artifact Sample timepoint=TBD >

Acceptance Test Engineering – BETA DRAFT Page 423

ITPS Usability Test Plan

For the purposes of usability testing, the functionality of ITPS has been divided into three topics:

1. Managing Accounts

2. Managing Notification Threshold

3. Managing Means of Notification

Usability testing of each topic will be done in two phases. The first phase will involve Wizard of Oz

testing as soon as the paper prototype for the Notification Threshold Configuration screen(s) is finished.

The second phase will consist of testing of the actual screens once they’ve been built. The same tasks

will be used for both rounds of testing unless the design changes enough to cause the tasks to be

revisited. Accessibility testing will only be done on the alpha software, not the paper prototypes.

Usability Test Schedule

Approximate dates (based on the current iteration/release plan) for doing the usability testing are as

follows:

Topic: Wizard of Oz Testing Alpha Software Testing

Managing Accounts

Iteration 3 Iteration 7

Managing Notification

Threshold

Iteration 2 Iteration 7

Managing Means of

Notification

Iteration 3 Iteration 8

Wizard of Oz Testing of Paper Prototype

We will run 4 test sessions on each iteration of the design. Each one hour test session will consist of a

five minute introduction, three 15 minute tasks and a five minute wrap up. The session and each task

will be introduced by the business lead. Each one hour test session will be conducted on a fresh copy of

the paper prototype with 1 developer playing the role of computer, and 2 developers and 2 business

team members playing the role of observer. One developer will act as the “Help” system when a user

points to the “?” symbol in the top right corner of each window. They will provide a terse verbal

description of whatever the user points to next.

Acceptance Test Engineering – BETA DRAFT Page 424

The test sessions will be run with pairs of users so that we can literally hear what they are thinking. For

two of the test sessions we will recruit users who fit the Newly Hired CSR persona. For the other two

session we will recruit New Home Banking User persona test subjects. At the end of each session, the

test subject will be given the chance to make a single suggestion “If there is one thing you could have

changed, what would it be?”

Usability Testing of Actual Software

The detailed plan has yet to be devised but the intent is to repeat more or less the same testing on a

fully functional (W.R.T. the test tasks) version of the software.

Usability Test Effort Estimates

Based on the requirements, and the experience of the usability testers, the following estimates were

generated. Expect actual time to be the estimates +/- 20%

Estimated Effort for Wizard of Oz Testing per Topic

Preparation: 2 people by 2 days = 4 person days

Testing: 5 people by ½ day = 2.5 days

Follow up: 5 people by ½ day = 2.5 days

Total effort is about 9 days. Preparation excludes the design of the UI but includes the fabrication of the

test materials based on the design.

Estimated Effort for Alpha Software Testing per Topic

Preparation: 1 people by ½ days = ½ person days

Testing: 5 people by ½ day = 2.5 days

Follow up: 5 people by ½ day = 2.5 days

Total effort is about 5.5 days. Preparation includes setting up data required for the testing.

<PD End Artifact Sample >

The user interface design and the testing are both based on the following user personas.

<PD Start Artifact Sample timepoint=TBD+1month >

User Persona Descriptions

Ethnographic research has revealed that the target users can be characterized by one of the following

user personas:

Acceptance Test Engineering – BETA DRAFT Page 425

Persona Newly Hired CSR

The typical Newly Hired CSR is highly computer literate. They spend a lot of time on the internet and use

a wide variety of web-based applications including online banking, social network, e-shops, … . They

pride themselves on their computer skills and particularly like keyboard shortcuts; anything to avoid

taking their hand off the keyboard to operate the mouse.

Their motivation for using GBS and ITPS is maximizing the savings on service fees and safety of their

money as well as getting instant gratification for all their banking needs.

Persona “New Home Banking User”

 The typical New Home Banking User is barely computer literate. They do not spend a lot of time on the

internet and only use those online applications that they are forced to. They use a basic point & click

strategy for navigating applications but are sometimes hesitant out of fear of “breaking it”. Things which

are accessed via “hidden” mechanisms, such as right-clicking on something, are pretty much inaccessible

to them.

Their motivation for using GBS is a need to transfer funds to relatives in other countries in which GBS

operates. They use the online banking functionality primarily because GBS is discontinuing paper

statements. Setting up electronic statements requires them to review and agree to the notification

preferences.

<PD End Artifact Sample >

The user interface design and the testing are both based on the following user personas.

<PD Start Artifact Sample timepoint=TBD+1month >

Usability Task Descriptions

The test subjects are asked to complete the following tasks using the user interface prototype we

provide them.

Task 1 – Change Restaurant Threshold for North America to $500

You will be travelling on business over the next month and will be entertaining clients at various

restaurants. You would like to avoid triggering the suspicious activity filter so you want to raise the

threshold for restaurants on your business credit card to $500 per charge anywhere in North America.

Acceptance Test Engineering – BETA DRAFT Page 426

Task 2 – Change Threshold for Europe and Australia to $100

Your daughter will be travelling this summer and you’ve given her a “family card” on your personal

credit card account. She will only be going to Europe and Australia and you want to limit her to $100 per

charge regardless of the charge type.

Task 3 – Make all charges suspicious for Seattle Area cities

Your estranged spouse still has your credit card. You haven’t had a chance to get a replacement card

with a different number so you want to be alerted whenever a charge is made anywhere in the Greater

Seattle Area including Bellevue, Redmond, Kirkland or Tacoma.

<PD End Artifact Sample>

The team has built a paper prototype of the screens the user will use to modify their notification

threshold. This will be used in the Wizard of Oz testing.

Acceptance Test Engineering – BETA DRAFT Page 427

Paper Prototype for Notification Threshold

<PD Start Artifact Sample timepoint=TBD>

<PD End Artifact Sample>

Acceptance Test Engineering – BETA DRAFT Page 428

During each session, the observers record any usability concerns encountered by the users.

<PD Start Artifact Sample timepoint=TBD+1month >

Usabilty Test Session Observation Sheet

User: Fred Jones

Persona: YYY

Session: June 28th

Task: 1

Step Comments

User looks for way to add

another rule.

 User struggled to figure out that they could

use the blank row at the bottom of the grid

to add another rule.

User looks for way to fill in

country; tries typing in the name;

computer beeps

 Didn’t notice or comprehend the Location

Picker icon until the Help system pointed it

out to them.

If you could change one thing …

“I’d really like to have the system lead me through adding a new threshold step by step rather than

having to figure out how to enter stuff in a blank row in the grid.”

<PD End Artifact Sample>

The records of the individual observers are collated into a summary report of all usability concerns

encountered by the users.

Acceptance Test Engineering – BETA DRAFT Page 429

<PD Start Artifact Sample timepoint=TBD+1month >

Usability Test Session Summary

Four test sessions were conducted between June 27th and July6th two each with persona Newly Hired

CST and persona New Home Banking Users.

Common Results:

1. All the pairs took a minute or so before they discovered the “Browse for Location” icon beside

the location name cell.

2. Three out of four test session subject-pairs encountered problems with selecting more than one

city in task 3. Two pairs had to ask “Help” whether there was a way to do multi-selection. Two
pairs mused that there must be a way to select “Greater Seattle” without having to know or

enumerate what cities were included in Greater Seattle.

3. Two of the pairs had trouble unselecting a state when they only wanted to select the whole

country. They didn’t figure out how to use <ctrl>-<click> to do it. They ended up selecting a

different country and then the country they wanted.

Persona Newly Hired CSR Results:

1. There were no issues noted that were specific to the persona-<yyy> test subjects.

Persona New Home Banking Users Results:

1. Half of the persona- New Home Banking Users subject pairs had trouble with …

If I Could Change One Thing

1. Include a preview of what will be put back into the location cell in the Active Thresholds grid as

the user is selecting Continents, Countries, States and Cities. (2 requests)

2. Provide a way to type-ahead when selecting state names; typing M 5 times to get Minnesota is

counter intuitive.

3. I’d really like to have the system lead me through adding a new threshold step by step rather

than having to figure out how to enter stuff in a blank row in the grid

<PD End Artifact Sample>

Based on the feedback from the Wizard of Oz testing, the team builds the actual Manage Notification

Configuration screens.

<PD Start Artifact Sample timepoint=TBD+2months >

Acceptance Test Engineering – BETA DRAFT Page 430

Screen Captures for Notification Threshold

<insert screenshots of actual screens and dialogs here>

<PD End Artifact Sample>

Testing the actual screen behaviours results in the following test summary report:

<PD: Start Artifact Sample timepoint=TBD+2months>Usability Test Session Summary 2</PD>

Acceptance Test Engineering – BETA DRAFT Page 431

Exploratory Session Plan for Global Bank ITPS feature

<insert timeline here with datePoint=TP (Test Planning)>

<Session-based exploratory testing is a method for managing testing effort from exploration

(commonly known as ad-hoc testing).

Below are charters -- mission statements meant to guide the tester in explorations meant to last

anywhere from 1 to 2 hours. Each charter is to be executed by members of the test team, after

which, an accompanying session report is created using the template at the end of this

document.>

Session Plan

Assumptions:

1. 4 sessions per tester per day

2. 5 features areas

3. Average 4 sessions per feature

4. 20% contingency sessions for unfinished or newly discovered charters

5. One round of sessions in each of the first two Readiness Assessment cycles

Session Execution Plan

· 24 sessions will be executed over 1 week by two testers.

· Session will be executed after all the automated tests are completed and in parallel with ….

During the 2
nd

 week of the RA cycle.

Charter ideas:

1) Since notifications can be set based on location of unexpected spending patterns, the dev team

is worried that the latest import to the location table has redundant names that despite having

unique IDs, may show up as the wrong location (e.g. a suspicious transaction in Springfield, MA

shows as Springfield, MO). Using the latest location.dat file, set location preferences for some

of these identical city names and see if the problem is as bad as they think it might be.

2) There are 5 supported Instant Messaging applications for use with ITPS. Unit testing shows that

the IMAPI is passing at 100%, but there was a beta report from the Business Analysis team that

2 of their 5 IM applications did not work. Please reproduce the conditions they reported and

follow-up in this investigation.

3) Data Update Availability is one of the least risky features, but no one in development is planning

unit tests for this until the next release. Customer Service needs to be able to show that it has

been tested before they make claims that it will be an enhancement and incentive to use ITPS.

Acceptance Test Engineering – BETA DRAFT Page 432

The DUA service will kick off an IMAPI message if you fake the increment of a build in the

registry. See if this “Upgrade Available” message gets received on all platforms and be on the

lookout for ways it may get stalled.

4) Transaction details can be viewed through a secure URL. Look for ways to use tools to penetrate

or circumvent the workflow to see those details as an unauthorized user. Try the 3 supported

browsers and see if the login sessions can be cached or preserved in offline states that may

allow them to be compromised.

5) Spending pattern threshholds is a priority 0 feature, that is so critical that management is saying

any and all bugs will be fixed. Identify boundaries for the threshold selectors and test for

accuracy. We’re looking for any “false positive” events that result in messages getting sent and

needlessly worrying account holders.

Acceptance Test Engineering – BETA DRAFT Page 433

Session Template: ITPS-1

<insert timeline here with datePoint=RA,AT>

CHARTER

<A few sentences about the mission of this session>

FEATURE AREAS

START

<start date and time>

TESTER

<name(s)>

Jon Bach

TASK BREAKDOWN

DURATION

<values are "short", "normal", or "long" (either can have multipliers) i.e. "long * 2">

SESSION SETUP

<percent of session duration spent on setup. Syntax: integer between 0-100>

TEST DESIGN AND EXECUTION

<percent of session duration spent looking for problems -- breadth. Syntax: integer between 0-100>

BUG INVESTIGATION AND REPORTING

<percent of session duration spent investigating problems once they were found -- depth. Syntax:

integer between 0-100>

CHARTER VS. OPPORTUNITY

<syntax is a ratio of session duration they spent on mission (charter) vs investigating something else that

was not part of the charter i.e. 85/15>

Acceptance Test Engineering – BETA DRAFT Page 434

DATA FILES

<syntax is 8.3 file format i.e. "foo.bat"> (If there are no datafiles, use #N/A)

TEST NOTES

<free-form text field... anything goes>

BUGS

<syntax is to list every bug with a #BUG tag. The text written between these tags can be free-form. (If

there are no bugs, use #N/A)

ISSUES

<same as BUG section above.> (If there are no ISSUES, use #N/A)

Acceptance Test Engineering – BETA DRAFT Page 435

Acceptance Test Engineering – BETA DRAFT Page 436

Sample Exploratory Session Report

<This session report is an artifact from 90 minutes worth of exploration of the Notifications feature of

the Global Bank ITPS.>

CHARTER

<a charter is a guiding mission for the tester for a time-boxed unit of exploration called a "session." It

suggest to the tester what to look for (behaviors), what to look with (tools to use, if any), and what to

look at (feature or features).>

EXAMPLE:

Since notifications can be set based on location of unexpected spending patterns, the dev team is

worried that the latest import to the location table has redundant names that despite having unique IDs,

may show up as the wrong location (e.g. a suspicious transaction in Springfield, MA shows as Springfield,

MO). Using the latest location.dat file, set location preferences for some of these identical city names

and see if the problem is as bad as they think it might be.

AREAS

--

<This is a list of the features that were covered during this session. To warrant making it on the list, the

feature must have been comprised of half of tester's focus during the session.>

EXAMPLE:

Feature | Preferences

Feature | Notifications

START

Acceptance Test Engineering – BETA DRAFT Page 437

<date and time>

7/11/08 12:30pm

TESTER

<tester name(s)>

Jon Bach

TASK BREAKDOWN

DURATION

<This is the time spent on this session. Short is 45 - 75 minutes, Normal is 75 - 105 minutes, Long is 105 -

TEST DESIGN AND EXECUTION

<This is a rough percentage provided by the tester when the session is completed, indicating how much

of the session was spent uninterrupted by bug investigation or setup activities.>

EXAMPLE: 30

BUG INVESTIGATION AND REPORTING

<This is a rough percentage provided by the tester when the session is completed, indicating how much

of the session was spent interrupted by bug investigation -- effort spent unearthing details about

problems and reporting them.>

EXAMPLE: 60

SESSION SETUP

<This is a rough percentage provided by the tester when the session is completed, indicating how much

of the session was spent preparing for testing and writing the report.>

Acceptance Test Engineering – BETA DRAFT Page 438

EXAMPLE: 10

CHARTER VS. OPPORTUNITY

<This is a ratio provided by the tester when the session is completed, indicating how much of the

session was spent covering the charter vs time in the session tracking down issues or bugs unrealted to

the charter (called "opportunities").>

EXAMPLE: 100/0

DATA FILES

<This is a list of files used during testing in this session>

EXAMPLE:

locations_7-8-08.dat

location_names.sql

dupe_cities.txt

TEST NOTES

<This section is for the notes that the tester takes during the session. It can include any detail that tells

the story of testing to their stakeholders.>

EXAMPLE:

* used the latest SQL query (location_names.sql) to run canned queries from the latest drop of the

database (locations_7-8-08.dat)

* to aid in testing, I exported the tables to a CSV file, sorted by name, and flagged all of the duplicate city

names (I called this file dupe_cities.txt)

Acceptance Test Engineering – BETA DRAFT Page 439

* Found twice the duplicates than I thought there would be (over 700)

* Installed the latest version of SimDat, the simulator that pushes notifications to simulated mobile

devices and flagged the following 30 cities in the ITPS preferences window because they had the most

duplicates in the cities table

:

Franklin Manchester Cleveland

Salem Oak Grove Riverside

Washington Marion Aurora

Springfield Ashland Columbia

Clinton Oxford Lexington

Georgetown Centerville Columbus

Greenville Clayton Greenwood

Madison Jackson Milford

Fairview Richmond Lancaster

Midway Portland Paris

* Built some queries

* Set location preferences for the following 5 cities:

Washington (WV), Franklin (KY), Salem (MI), Springfield (SC), and Clinton (WA)

* Confirmed the Dev's team's worry. (see BUG 1 below) Using a sim test with "Washington, West

Virginia", it returned "Washington, Wisconsin".

 Checked with wikipedia as my source on this:

http://en.wikipedia.org/wiki/List_of_the_most_common_U.S._place_names#Washington_.2832.29

Acceptance Test Engineering – BETA DRAFT Page 440

and found what may be an off-by-one error? The two are next to each other according to their list and

in our DAT file.

Also confirmed this with Springfield. The three other cities in my list of workded fine.

Tried the next 5 in the list: Georgetown, Greenville, Madison, Fairview, Midway.

Found the same problem with Georgetown and Greenville in that set.

Tried the next 5: Manchester, Oak Grove, Marion, Ashland, Oxford -- Manchester and Oak Grove

returned the wrong state names. Again,

 for the third time, that's 2 out of 5 entries. What pattern does that suggest?

Tried the next 5: Centerville, Clayton, Jackson, Richmond, Portland. -- only Centerville returned the

wrong set, breaking the 2 out of 5 paradigm.

Tried the next 5: Cleveland, Riverside, Aurora, Columbia, Lexington -- Cleveland, Riverside, and Lexington

failed -- that's 3 out of 5 this time.

Realized that all of the failed cities have one thing in common: they are over 8 characters. Maybe this is

leading to a truncation or overflow issue?

BUGS

BUG #1066

Title: Possible off-by-one error in the sorting algorithm for city names over 8 characters

Repro:

1 -- In the Preferences window, select Washington from the city name dropdown and WV from the state

name dropdown.

Acceptance Test Engineering – BETA DRAFT Page 441

2 -- Save and exit

3 -- In the DatSim, Create New Transaction

4 -- click the "Suspsicious" checkbox

5 -- Under the "Target" dropdown, select "Jon's iPhone"

6 -- click Execute

Results:

Wrong city name is indicated. Text message reads: "Alert! Please log on to verify that transaction

#240567 is valid -- WASHINGTON, WISCONSIN -- 7/8/08 00:1:05 pm"

The next city in the DAT list is Washington, WI. See my other data file for other follow-up tests that

confirm a suspicion that only city names over 8 characters cause this problem.

ISSUES

<This section is for raising concerns either about the quality of the product or project problems that

need to be escalated to stakerholders.>

EXAMPLE:

ISSUE 1

There are 711 identical city or place names in the database. We will need a longer session to complete

this testing if we want to do it exhaustively, or create an automated XML test to do all of the

verifications.

ISSUE 2

Some states have more than one identical city name. For example, the state of Wisconsin has 8

different "Washington"s. How are we going to handle this in ITPS?

