

COMMUNITY PREVIEW LICENSE

This document is a preliminary release that may be changed substantially prior to final

commercial release. This document is provided for informational purposes only and Microsoft

makes no warranties, either express or implied, in this document. Information in this document,

including URL and other Internet Web site references, is subject to change without notice. The

entire risk of the use or the results from the use of this document remains with the user. Unless

otherwise noted, the companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted in examples herein are fictitious. No association with

any real company, organization, product, domain name, e-mail address, logo, person, place, or

event is intended or should be inferred. Complying with all applicable copyright laws is the

responsibility of the user. Without limiting the rights under copyright, no part of this document

may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form

or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any

purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual

property rights covering subject matter in this document. Except as expressly provided in any

written license agreement from Microsoft, the furnishing of this document does not give you

any license to these patents, trademarks, copyrights, or other intellectual property.

 2008 Microsoft Corporation. All rights reserved.

Microsoft are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

How to read the CTP

This CTP is an incomplete draft of a book that is currently being written. We have included the

entire Draft Table of Contents. However, there are a number of empty sections in the actual

text. If you see an empty section, assume we will fill in the section before we complete the

book.

To offer feedback, please go to the Discussions page in the Acceptance Testing Guidance

CodePlex site at http://www.codeplex.com/TestingGuidance/Thread/List.aspx and reply to the

thread: “Feedback on Community Preview August 4, 2008.“ We will read every piece of

feedback, whether or not we act on it.

http://www.codeplex.com/TestingGuidance/Thread/List.aspx

Table of Contents

COMMUNITY PREVIEW LICENSE ... 1

How to read the CTP.. 2

Table of Contents .. 3

Preface ... 9

Why we wrote this guide... 9

Who should read this Guide .. 9

How to read this Guide .. 10

Part I: What is Acceptance Testing? .. 13

CHAPTER: What is Acceptance Testing?.. 14

Defining AT .. 14

Why is AT important? .. 14

CHAPTER: How to Think About Acceptance .. 14

Mental Models for Thinking About Acceptance Testing ... 14

Gating Model ... 18

Decision-Making Model ... 24

Decisions & Releases ... 28

Sidebar: Sample Decision Making Model .. 30

System (Under Test) Model ... 36

Project Context Model .. 40

Process Model ... 40

Risk Model ... 48

Doneness Model .. 52

Test Purpose Model (Marick) .. 59

CHAPTER: Planning for Acceptance ... 60

Testing Model .. 60

Test Strategy .. 60

Test Objectives .. 60

Test Planning ... 60

Test estimation techniques ... 60

Test Oracles ... 60

Test Execution ... 60

Test Reporting and Metrics ... 60

Test Maintenance .. 60

Individual Test Lifecycle Model ... 60

Customer Proxies... 64

CHAPTER: Accepting Software – Core Practices .. 65

Requirements practices ... 65

Test Authoring practices.. 65

Assessment practices .. 65

Test Management practices .. 65

Bug management practices ... 65

CHAPTER: Accepting Software -- Additional Practices .. 66

Part II: Acceptance Testing Practices ... 67

Test Processes ... 68

Exploratory Testing .. 69

Script-Driven Testing ... 73

Test Last Acceptance Testing .. 78

Incremental Acceptance Testing ... 81

Acceptance Test Driven Development .. 84

Regression Testing ... 88

Test Automation .. 91

Recorded Test Automation ... 95

Record & Refactor Test Automation ... 100

Data-Driven Test Automation ... 104

Keyword-Driven Test Automation ... 107

Hand Scripted Test Automation .. 111

Planning Practices.. 114

Project Chartering ... 114

Customer Proxy Selection ... 117

Test Outsourcing ... 117

Risk Assessment .. 122

Threat Modeling .. 126

Test Planning ... 126

Done-Done Checklist ... 137

Test Strategy & Test Pre-factoring .. 140

Requirements Discovery.. 143

Test Lifecycle Applicability... 143

User Modeling ... 148

User Stories ... 148

Use Case Modeling .. 152

Product Design .. 155

Testing Functional Requirements .. 158

Ubiquitous Language ... 161

Business Unit Testing ... 163

Scenario-based Test Conception ... 166

Workflow Testing .. 171

Soap Opera Testing ... 173

Combinatorial Test Optimization .. 177

Installer/Installation Testing .. 179

Backwards Compatibility Testing .. 179

Testing Para-functional Requirements .. 179

Security Testing ... 179

Performance Testing ... 179

Stress Testing ... 179

Usability Testing .. 179

Accessibility Testing ... 179

Regulatory / SOX Compliance Testing ... 179

Localization Testing ... 179

Globalization Testing ... 179

Test Management ... 179

Test Asset Management .. 179

Test Evolution, Refactoring and Maintenance .. 179

Running the Tests .. 179

Test Status Reporting .. 179

Test Metrics ... 179

Bug Management System ... 180

Bug Charting .. 183

Bug Triage .. 186

Test Oracles ... 189

Human Test Oracle (SME).. 189

Hand-Crafted Test Oracle .. 193

Previous Result Test Oracle ... 197

Comparable System Test Oracle ... 201

Part III: Samples ... 204

ITPS Project Charter [GBS] ... 205

Vision/Scope Template in Word [GBS] .. 205

ITPS Exploring Requirements to Define Functional Acceptance Tests [GBS] 209

Global Bank ITPS Use Case Model ... 209

User Stories [GBS] .. 215

User Roles (OS) .. 218

Persona (GBS) .. 218

Defining Acceptance Tests for User Stories .. 218

Driving ITPS Security Testing Via Risks .. 218

Soap-Opera Test [GBS] .. 219

ITPS Threat Model [GBS] ... 220

ITPS Risk Assessment [GBS] ... 226

Global Bank ITPS Project Risk Assessment .. 226

ITPS Security Testing [GBS] .. 228

ITPS Test Planning [GBS] .. 228

ITPS Test Plan [GBS] ... 229

Done Done Checklist - Release [GBS] .. 242

ITPS Done-Done Checklist & Team Norms .. 243

Test Plan [OS] .. 245

Test Plan 2 [OS] ... 245

Testing Graphical Inputs and Outputs [GBS] ... 246

Test Strategy & Test Pre-factoring [GBS] .. 246

Using Human SMEs as Test Oracles [GBS] ... 246

Using Hand-Crafted Test Oracles [GBS] ... 246

Using Previous Result Test Oracles [GBS] .. 246

Testing Functional Requirements .. 253

Workflow Testing Sample [GBS] .. 253

Scenario-based Test [GBS] ... 254

Scenario Testing Protocol and Setup ... 254

Defining & Automating Business Unit Tests [GBS] .. 257

Defining & Automating Acceptance Tests[GBS] .. 263

Sample – Creating Acceptance Tests for User Stories ... 263

Automated Subcutaneous Workflow Test [GBS] .. 266

Manual GUI-Based Workflow Test [GBS] .. 267

UIA GUI-Based Automated Test [GBS] .. 267

Record-Refactor Test ... 267

Built-in Record & Playback .. 267

Testing Para-functional Requirements .. 268

ITPS Scalability Testing .. 268

Configuration Testing .. 268

Configuration & Hot Deployment Testing (GBS) ... 275

Globalization Testing (GBS) ... 275

Localization Testing (GBS) ... 275

ITPS Usability Testing [GBS] ... 276

User Stories ... 276

Usability Personas ... 276

User Task ... 276

Usability Test Plan ... 276

Wizard of Oz Test Session Report.. 276

Wizard of Oz Test Session Summary ... 276

Usability Lab tests .. 276

Running the Tests .. 287

Sample Session-Based Testing plan [GBS] ... 287

Scenario Test [OS] ... 287

Exploratory Session Plan for Global Bank ITPS feature ... 287

Sample Exploratory Session for GBS ... 291

Test Evolution .. 296

Miscellanious Inconsistent Test Scripts [GBS] ... 296

Role play discovering Ubiquitous Language [GBS] .. 296

Refactored Keyword-Driven Workflow tests [GBS] ... 296

Refactored Data-Driven Business Unit tests [GBS].. 296

Test Reporting ... 296

Executed VSTT Tests [GBS] .. 296

Executed FIT Tests [GBS] ... 296

Executed Perf Tests [GBS] ... 296

ITPS Bug Management .. 296

ITPS Bug Management Plan [GBS] ... 296

ITPS Bugs Not Closed Query with Triage Fields in TFS [GBS] .. 296

Bug Triage Role Play script [GBS] .. 296

Bug Triage History Sample [GBS] ... 297

Bug Reporting [GBS] .. 297

Other Case Studies .. 300

Appendices .. 301

Risk to Mitigating Practice Cross-Reference ... 301

Technique Applicability by Test Lifecycle Phase ... 301

Technique Applicability by Testing/Project Lifecycle Phase ... 301

FAQ to Narrative(Model)/Technique/Sample cross-reference ... 301

AT Synonyms ... 301

Preface

Why we wrote this guide

Who should read this Guide

This guide is intended for anyone who is involved at any point in the process of making the

decision about to what degree a software-intensive product meets the acceptance criteria of

whoever commissioned its construction. Specifically, if:

You are involved in making the decision of whether or not to accept the software as built.

We call this the acceptance decision.

You are involved in collecting data that the person making the acceptance decision requires

to make that decision. We call this acceptance testing.

You are involved in deciding whether or not the product is ready to be seen by the parties

involved in 1 or 2. We call this the readiness decision.

You are involved in collecting data that the person making the readiness decision requires

to make that decision. We call this readiness assessment.

You are involved in defining the expectations against which the readiness assessment or

acceptance testing activities will be conducted. This is a combination of requirements

gathering and test design.

You are involved in managing any of these activities.

This book describes the practices used by people in these roles. If any of the above describes

your role you should find something of interest in this book.

The Gating Model (readiness vs acceptance) is described in more detail in Part I along with the

actual Decision-Making Model and the roles people play within that model. Each decision is

made based on data collected from a number of other roles within the project. This guide

includes advice on how to conduct these data gathering activities which makes it of interest to

anyone involved in these activities. Some of these activities are depending on the business

model, the traditional job titles that may be included (and who therefore may be interested in

reading this guide) include:

Customer

Customer Proxy

Business User

End User

Business Analyst

Product Owner

Product Manager

Project Manager

Development Manager

Systems Architect

Test Manager

Tester

Test Specialist

Development Lead

Developer

Security Architect

Security Assessor

Project Auditor

How to read this Guide

Book Structure

The book is structured into three parts. The chapters in Part I are meant to give an overview of

acceptance testing and explain several models that are useful in conceptual thinking about

acceptance testing. Also covered are items necessary for planning acceptance testing. Part I is

intended to be read end to end.

Part II is a collection of what we refer to as “thumbnails”. A thumbnail is a short overview on a

practice that explains what it is, when you may want to use it, the risks that it mitigates, and an

overview of how to do the practice. Thumbnails also include a list of references to papers,

books, and other resources that provide more complete descriptions of the practice in question.

The main purpose of a thumbnail is to describe a topic well enough to provide an overview,

serve as a mental reminder for someone who has used the practice on how to do it, and give

someone unfamiliar with the practice enough information about the practice and its

applicability to determine if they want to learn more about it. Some of these topics and

practices have entire books written about them that cover the concepts in greater detail and

depth than this guide could possibly do. Part II is intended to be used as a reference; most

readers will not read it end to end.

Part III is a collection of sample artifacts generated by applying different practices in a fictional

“real-world” situation for Global Bank. These artifacts are embedded in a series of “case

studies” of what the Global Bank team may have produced while building the application. The

case studies provide some context to the individual artifacts. They also provide cross-references

back to the practices described in Part II. The artifacts are intended to be used as way to learn

more about how to do a practice; they can also be used as templates for your own artifacts.

Choosing how to get started

How you approach this guide will depend on what role you have and what you want to learn

about acceptance testing. Depending on what you want to do, you will want to apply different

strategies.

Get an overview of acceptance practices and processes

If you want to:

Learn about acceptance testing in general

Find acceptance testing practices

Create a project plan

Justify a project plan

Justify an approach used for acceptance testing

Validate that you are on track with your acceptance testing strategy or approach

Get your project un-stuck

Determine where there may be gaps in your acceptance testing approach or strategy

Start by reading all of Part I. After reading Part I, you may want to skim particular practices of

interest in Part II and the corresponding samples in Part III.

Choose which acceptance practices to use on my project

Start by reading Part I to get an overview of possible practices and then refer to the thumbnails

for specific practices you are considering in Part II. Each thumbnail includes a section “When to

Use It” which is advice on when the practice should be used and “Limitations” which hint at

when it should not be applied.

Learn how to do a specific acceptance practice

If you want to:

Learn a specific acceptance testing practice or strategy

Teach a specific acceptance testing practice or strategy to someone else

Get a refresher on a specific acceptance testing practice

Find more information and related resources to consult about a given practice

Then you should find the thumbnail for the specific practice you want to learn about in Part II

and read it and any related samples in Part III. If you need more detailed information about the

practice, refer to the “References” section in the thumbnail.

Get a template for a specific artifact

If you want to:

Find a template for a specific artifact, or

Learn how to fill in a specific artifact

Find the example you want in Part III, remove the sample information, and populate it

appropriately. If you need a refresher on the practice that generated the example, the example

lists all the appropriate thumbnails to refer to in Part II.

Plan the execution of the practices on my project

Start by reading Part I to get an overview of how the practices fit together and support each

other. In particular, the sections on the Decision-Making Model, Doneness Model and individual

Test Lifecycle Model may be of particular interest. Then review the specific thumbnails in Part II

paying particular attention to the Test Lifecycle Applicability subsection of the When to Use It

section. In Part III, each sample artifact is accompanied by a notation that indicates at what

point in the hypothetical project the artifact was produced. Note that some artifacts appear at

several points in the project timeline because they evolve over time.

Find tools for doing acceptance testing

While some of the case studies do illustrate the use of specific tools, the primary focus of this

guide is on describing practices.

Caveat: By the time you read this book, the tools we used may have been supplanted by newer

tools.

Our choice of tools should in no way be interpreted as an endorsement of the tool nor an

indication that the tool used is the best one for the job. You may, however, find it useful to use

your favorite search engine to lookup the tool we use and possibly find more current

alternatives.

Part I: What is Acceptance Testing?

CHAPTER: What is Acceptance Testing?

Defining AT

Why is AT important?

CHAPTER: How to Think About Acceptance

A narrative introduction to the mental models of acceptance testing and decision-making.

Mental Models for Thinking About Acceptance Testing

The concept of acceptance testing means different things to different people. While writing this

book, we struggled with coming up with a suitable definition. To help us reason about it, we

came up with several mental models of various aspects of AT. Then we tested the models

against numerous examples from project we had worked on in the past. We also tested them

with advisors. This was an iterative process. Our models failed the test and we needed to recycle

them. Some holes we filled by extending an existing model; some required new models to be

added. The key breakthrough was when we discovered the Decision-Making Model. It is he key

to understanding what acceptance testing is about. The Decision-Making Model ties together

most of the concepts around accepting a system. It builds on the Gating Model which describes

the key gates as we move from requirements, development and into testing and finally

production, and describes how the decision to accept the system is made and by whom. The

decisions are not made in a vacuum; there are a number of inputs. These include the project

context, the nature of the system being built and the process being used to build it. The latter is

important because it affects how we define “done”.

The relationships between the key models are illustrated in figure x:

 The Gating Model defines the overall stages of software development and the “gates”

we must pass through on the journey.

 The Decision Making Model describes how we decide whether or not we can go through

a gate to the next stage and who makes the decision. It also defines the supporting roles

that may help the decision maker gather the information need to make the decision.

 The System Model describes the attributes of the software-intensive system that may

factor into the decision. This includes both functional and parafunctional attributes.

 The Project Context Model describes the business and project factors that influence the

decision including timeframes & deadlines, resource availability, budget and anything

contributing to project risks.

 The Risk Model introduces the concepts of Events, Likelihood/Probability, and

Consequence/Impact. It helps us and the readers understand what could go wrong and

thereby prioritize the acceptance criteria and the kinds of information we choose to

gather to help make the acceptance decision. It also describes several different risk

mitigation strategies including:

o Doing something earlier to buy reaction time.

o Doing additional activities to reduce likelihood of something occurring.

 The Process Model describes the range of choices we have for how to sequence the

activities of software specification, development and acceptance. If feeds into the

Doneness Model .

 The Doneness Model elaborates on how we decide whether or not we are “done

enough” – to accept? To release? To deploy?

In (a) subsequent chapter(s) we introduce other models that build on this core model:

 The Test Lifecycle Model describes how we go about gathering the information we use

to make the readiness and acceptance decisions.

 The Concern Resolution Model describes how we deal with any concerns that are raised

during RA and AT.

Or maybe we should introduce all the models here?

Gating Model

<insert Gating Model here>

Decision-Making Model

Acceptance testing implies someone is making a decision to accept a system. It is worth

understanding the various decisions that need to be made and how they are made.

<insert Decision Making Model here>

System Model

<insert System Model here>

Project Context Model

<insert Project Context Model here>

Project constraints such as:

 Budget

Gating%20Model.doc
Decision-Making%20Model.doc
System%20(Under%20Test)%20Model.doc

 Hard deadlines (trade shows, contract deadlines, regulatory deadlines)

 Resource constraints (people, space, etc.)

Risk Model

What could possibly go wrong?

<insert Risk Model here>

Process Model

<insert Process Model here>

Agile vs Plan-Driven vs. Adhoc

Doneness Model

<insert Doneness Model here>

Possible “Dog Food” Material

To help us reason about it, we came up with several mental models of various aspects of AT.

Then we tested the models against numerous examples from projects we had worked on in the

past. As often as not, our models failed the test and we need to recycle them. Some holes we

filled by extending an existing model; some required additional models to be added.

Risk%20Model.doc
Process%20Model.doc
Done-ness%20model.docx

Gating Model

While the focus of this book is Acceptance testing, AT is just one step of a larger process from

that takes software from concept to providing. The phrase “from concept” refers to the initial

idea someone has about a way to provide value through software. The value itself may be by

earning money, making someone’s life better or reducing the cost of doing something. The “to

value” part refers to when the software actually starts providing that value to someone.

Software goes through a number of stages between concept and value. Acceptance testing is

something that typically happens before the final decision is made to put the software to use;

that is, to deploy or to ship the software so that it can start providing said value. Acceptance

testing is rarely the first or only form of testing conducted on a software. Part of our goal in

writing this book is to better understand how acceptance testing relates to other forms of

testing and to the process of moving from concept to value.

Acceptance testing is done by customer(s), or their proxy(s), to make the decision about

whether or not to accept the software as being “ready for use.” “Accept” usually has several

implications: The most important is decision is whether or not to put the software into use (i.e.

to “ship” or “deploy” the software.) A related implication may be around payment of the

supplier if payment becomes due when the software is accepted.

Acceptance testing is often further qualified through names such as User Acceptance Testing,

Customer Acceptance Testing or Business Acceptance Testing (see [Acceptance Test Synonyms

table/doc]). These names all emphasize the fact that the person(s) doing the acceptance are the

ones who commissioned the software and/or will be using the software. Other parties that

might do acceptance testing include parties whose job is to test on behalf of the customer when

the customer doesn’t have the resources or skills to test the software themselves.

If acceptance testing is done by the customer or their proxy, what does the supplier do to

ensure that the software they deliver to the customer for acceptance testing is truly ready for

delivery? This step goes by numerous names but we shall refer to it as “readiness assessment”.

(Aliases: “system testing”) The primary purpose of the readiness assessment activity is to

prevent embarrassment of the supplier caused by the delivery of shoddy product to the

customer or legal action against the supplier. It can also serve to reduce the effort of the

customer’s acceptance testing and the cost of rework caused by having to fix defects and

deficiencies reported by the customer.

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Acceptance%20Test%20Synonyms.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Acceptance%20Test%20Synonyms.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Acceptance%20Test%20Synonyms.docx

The Key Gates

The main phases that software goes through (from the perspective of testing) are:

 Development

 Readiness Assessment

 Acceptance Testing

 Deployment

 In Use

These are illustrated in the figure “Gating Model Overview”.

The two swim lanes indicate which parts of the process are the responsibility of the customer

and which are done by the supplier.

Between each of theses phases is a decision point, often called a “gate” (or “quality gate”). The

gate metaphor comes from the idea of having areas separated by fences with gates between

them. Each gate has one or more “gate keepers” whose job it is to vet anything that tries to

come through the gate. The exact nature of the gate keepers depends on a lot of factors. Key

stakeholders may install a gate keeper at one or more of the gates in the concept to value

process. For example, the corporate security department may be interested in vetting the

software before it is deployed. Another factor is whether the gates are “between” phases or are

“entry” and “exit” points of each phase. (See the sidebar about Exit Visas for a good example of

exit gates in real life.)

The following diagram illustrates the possible entry and exit gates for each phase:

Development Phase

The development phase is where a piece of software functionally is being built. Development

can be either custom/bespoke software construction or customization/configuration of existing

software such as ERP systems or configurable components.

Entry criteria for the development phase may include:

 Are the requirements understood clearly?

 Do we know how to test the functionality?

Exit criteria for the development phase may include:

 Has all planned functionality been included?

 Have all development standards been followed?

 Has it passed code review

 Is “as built” documentation available?

 …

Readiness Assessment Phase

Readiness assessment is the self-assessment done by the supplier of the software intensive

system before declaring the system “ready for acceptance testing”. As a result, the gate

between Readiness and Acceptance Testing phases is largely staffed by gatekeepers belonging

to the supplier! “Our baby is not yet ready to be exposed to the brutality of the real world.”

For the supplier to feel confident that their baby will pass muster with the customer requires

that they do a lot more testing than the customer might do as part of acceptance testing. (This is

akin to the good guys vs the bad guys; the bad guys only need to blow up one airplane or rob

one bank while the good guys need to protect every airplane or every bank!) As a result, the

testing done as part of Readiness assessment is likely to be much more exhaustive and rigorous,

and employ a much wider array of testing techniques than that done during the actual

acceptance testing.

Acceptance Testing Phase

The acceptance testing phase is when the customer (or their proxy) is actually executingi tests

that will help them make the decision to accept or not accept the software. The main entry

criteria for the acceptance phase is that the supplier has deemed the software ready for

acceptance testing. Secondary criteria may include whether or not the customer is sufficiently

prepared to conduct the acceptance testing.

Exit criteria are primarily focussed on whether or not the “accept software” decision has been

made. The software is considered in acceptance testing until either

1. The customer has accepted it, or

2. the customer has found it so wanting as to reject it outright. At this point the ball is back

in the supplier’s court until they have done further development and readiness

assessment based on their revised understanding of the customer’s expectations.

In Use Phase

This is when the software is actually providing value. It may get into use by being shrink-

wrapped and sold on store shelves or via download) or it may be deployed onto a server from

which users run the functionality (in-house applications, Software-as-a-Service.) Note that there

may be a time delay between when the “Accept” decision is made based on the results of

Acceptance Testing and when the software is actually “in use”. This is because “put into use” is

itself a process, not an instantaneous event.

The entry criteria for the “put into use” process definitely includes customer acceptance but

may also include criteria provided by other stakeholders.

We’ve seen people observing and driving the execution of the acceptance tests on a system

without actual hands-on manipulation.

Decision-Making Model

The Gating Model describes the three distinct phases software may go through as it is assessed

for acceptability by whoever makes the acceptance decision. The exit from the Construction

phase is gated by a decision as to whether the software is sufficiently “done” to be released into

the acceptance testing phase. Exit from the acceptance testing phase is gated by the decision as

to whether the software has met the enough of the acceptance criteria to warrant being

accepted. Onced through this gate, the software enters the manufacturing (for shrink-wrapped

products) or deployment (for server-based products) process which ultimately make the

software available for individual users to decide whether or not to use.

This section elaborates on how the two decisions are made and who makes them in a variety of

business models. The decision are not made in a vacuum; they require information which must

be made available through activities. The following diagram illustrates this process for a single

decision:

The diamond on the left represents the decision which is made based on the test results. The

test results are based on the testing / assessment activity which assesses the system-under-test

against the expectations. The expectations of the system-under-test were defined based on the

needs / requirements of the users. While many of the practices in Part II describe how to do the

assess activity, others describe ways to define the expectations based on the needs. That is one

of the reasons this guide has a number of requirements-related practices; it’s not about testing,

it’s about acceptance.

The Six Abstract Roles

Because the job titles of the decision makers vary greatly from business model to business

model and from business domain to business, we use abstract role names to describe the roles

within the decision making model. We also provide a list of common aliases. Be aware, however,

that many of the names are highly overloaded and that your “customer” (to pick just one

example) may be an entirely different role than the one mentioned as an alias here. To see how

the abstract role names map to job titles within organizations in specific business models, refer

to the rather extensive sidebar <insert Role Stereotype sidebar title here>.

Readiness Decision-Maker (RDM) – Makes Readiness Decision (RD)

Whoever plays this role makes the final readiness decision based on input from other. When

played by a single person the job title might be something like, Chief Engineer, Project Manager,

Development Manager, VP of Engineering, etc.. It could also be played by a committee although

this is uncommon.

Development Team (DT) – Builds the software

Includes UX designers, graphic artists, requirements analysts, software developers,

documentation specialists etc. Anyone who is involved in any way in the actual construction,

customization or integration of the software.

Readiness Assessors (RA) – Assesses the readiness of the software for acceptance

testing

Includes job titles such as developer, tester, etc.. Anyone who is asked to provide information

that feeds into the readiness decision.

Acceptance Decision-maker– Makes Acceptance Decision (AD)

The person or committee that makes the decision whether to accept the software. Typically

called “Customer”, “Product Manager”, “Product Owner”, Business Lead, etc..

Acceptance Testers (AT) – Provide data on acceptability of product

Users – Make individual Usage Decision (UD)

Each user decides whether to use the product as shipped/deployed. Their feedback might be

used to adjust the requirements for the next release but rarely for the current release.

The Three Decisions

Readiness Decision (RD)

The readiness decision is made by the lead engineer of the software. The decision is an exit gate

about whether to let the product be seen beyond the boundaries of the supplier organization.

The decision is based on Readiness Assessment (that is based on the features cut and features

quality) done by the readiness assessors. The decision can be made by a single person (the Chief

Engineer) or by a committee (e.g. of Engineers) but it is a single decision. The software is either

ready or not. If not ready, there may be a list of concerns [CM] that need to be addressed before

it will be considered ready.

There may have been a number of earlier decision making checkpoints as part of the

development process (e.g. Requirements Complete, Design Complete, Code Complete). These

are beyond the scope of this book as they are neither directly part of the acceptance decision

nor are they easily tested.

Acceptance Decision (AD)

The acceptance decision is made by the person (or persons) playing the Product Owner role. The

decision boils down to “Should we accept the software and put it into use delivering value to

our organization?” There may be additional contractual consequences of the making the

acceptance decision such as a commitment to pay the supplier, the start of a predefined

warranty period, and so on. But these are not the primary considerations when making the

decision. The decision is whether the software is “done” enough to be deployed or shipped. See

the section Doneness Model for a more complete definition of “done” and the System Model for

a more complete definition of the system attributes we may consider when making the

acceptance decision.

The definition of done is influenced by several factors including:

 The Minimum Credible Release (MCR) of functionality (based on whatever critera the

PO decides are important, e.g. market surveys or competitive analysis or economic

analysis)

 The Minimum Quality Requirement (MQR) for the product

 Hard deadlines such as trade show dates, regulatory deadlines or contractual

obligations

The AD is made based on data acquired from a number of sources and activities. Acceptance

Test generates data … This includes:

- Pass/fail results of all kinds of tests that you chose to run as part of your acceptance testing

- Feature complete

Done-ness%20model.docx
System%20(Under%20Test)%20Model.doc

- ... [link to the RM 50 notions of completeness

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Doc

uments/Draft%20Content/Raw%20Materials/What%20DONE%20means.docx

Readiness Assessment data, if available from the supplier, may also factor into the AD.

The AD is all about maximizing value and minimizing risk. Time has a direct value in that time

spent collecting more data through testing has a direct cost (the cost of resources consumed in

gathering the data) and an indirect cost (the deferral of benefit that can only be realized once

the system is accepted.) Risk has cost that could be calculated as the sum of the cost of all

possible (negative events) multiplied by the probability of their occurrence1. When cost of risk

exceeds the cost of delay, we do more testing. When the cost of more testing exceeds the risk

cost that would be reduced (by reducing probability of one or more events occurring, or by

reducing the expected cost given the event does occur) we should decide to accept the product

without further testing.2

Usage Decision (UD)

Each potential user of the system has to make a personal decision whether or not to use the

software. This decision is different from the acceptance decision in that it is made many times

by different people and/or organizations. In fact, there may be several tiers of these decisions as

companies decide whether to adopt a product (or a new version thereof) and departments or

individuals decide whether to comply with the organizational decision. The important

consideration from the perspective of this book is that these decisions happen after the

acceptance decision and do not directly influence the AD. They may influence indirectly in one

of two ways:

1. Prospectively, by communicating the individual acceptance criteria to the product

owner in response to market research or surveys, or as unsolicited inputs via feature

requests or bug reports.

2. Retroactively, by providing feedback on the release product indicating a lack of

satisfaction in either functionality or quality. This may influence the acceptance decision

criteria in the future but it rarely causes the acceptance decision already made to be

1 This kind of calculation is not frequently done but our perceptions of risk are inherently based

on an intuitive interpretation of the circumstances along these lines.

2 Risk that could contribute to injury or death are often treated as special but even these can

usually be reduced to monetary consequence based on factors such as impact on the person or

their dependents, cost of damages in lawsuits, cost of damage to company reputation, etc.

revisited. The notable exception would be the discovery of “severity 1” bugs in critical

functionality that might result in a recall of the release software.

Roles vs. Organizations

The roles described in this decision-making model may be played by people in several different

organizations. The primary value of disussing organization here is in making it easier to map

terminology from various organization models to better understand who plays which decision-

making role. If the organizational model doesn’t help in this endeavour than it can be ignored.

When the software is being built by a different organization than the one who commissioned its

construction, the organization that commissioned the software is often called the Customer and

the one that is building the software is the Supplier. This holds true whether the organizations in

question are separate, unrelated companies, or simply departments within a single company.

For example, the IT department is typically a supplier of systems to the core business (e.g.

Transportation, Manufacturing, etc.) and support (e.g. HR, Finance) departments.

When acceptance testing is outsourced to a third party test organization, it is often called the

(Third Party) Test Lab (a kind of supplier of services) to distinguish it from the Supplier of

software.

An organization that buys and deploys shrink-wrapped software can also be called a Customer

and the organization they buy it from may be called the Vendor or Supplier. The fact that the

Vendor contracts the work out to an outsourcer (another Vendor of which they are the

Customer) illustrates the problem with using the term Customer to describe the Product Owner

as advocated in eXtreme Programming.

<figure x: Multiple Customers and Suppliers)

A (Customer) buys shrink-wrap from B (Supplier). B (Customer) outsources Development

to C (Supplier). C (Customer) outsources readiness assessment to D (Supplier).

Does your head hurt yet?

Decisions & Releases

The following sections discuss how the decision making model applies in various circumstances.

Release Candidates

By their very name it should be evident that a Release Candidate is a version of the software

that is being considered for release to users. Therefore, it goes through the RD/AD process

decision by decision until it either

a) passes all the gates and is deemed ready for use, or

b) is deemed insufficient at which point it is sent back into the development phase.

<need figure X to replace crude character-art line drawing:>

Dev->RA->AT->Released.

 A | |

 | | |

 +--+---+

The lines indicate how a release candidate can be rejected in either the RA or AT phase and sent

back to Development for remediation.

Conditional Acceptance/Readiness

Often, the Acceptance Decision Maker will accept a product with conditions. This is just a short-

hand way of saying

“The product is not acceptable, yet, but it is close to meeting our criteria for MCR and MQR.

If you address the following concerns (and we find nothing new in the subsequent round of

acceptance testing) we intend to accept the product in the next pass through the decision

making process.”

Therefore, we are back in the Construction/Development phase of the gating model but with a

much better idea of exactly what we must do to make through both the Readiness Decision and

the Acceptance Decision on the next round.

Multi-release Products

For the most part, long-lived multi-release systems can be though of as simply a sequence of

individual products each being assessed for readiness and acceptance individually. Each release

goes through the entire decision making process. This can be represented as the following “fish-

bone” diagram:

<figure x. needed>

R0->R1->R2->R3

With sequence of decision (RD, AD, etc.) feeding into each from below-left.

The set of criteria for each of the decisions leading to each of the releases is selected from the

set of criteria in effect at the time of the project (which may vary from those that were in effect

for earlier releases.) Example: SOX came into effect in 200x all subsequent releases required

SOX compliance as a readiness and/or acceptance criteria.

Alpha and Beta Releases

Alpha and Beta releases are ways to use end users as testers to gather more data about the

product as it might be used “in the real world.” Each of these Alpha/Beta releases can be

considered a separate release with its own RD and AD. (“I accept this Alpha release as having

sufficient functionality and quality to warrant releasing to users to collect feedback …”

<figure y. needed>

A0->B0->R0->->A1->B1->R1->R2->R3

With sequence of decision (RD, AD, etc.) feeding into each from below-left.

Note that both the MCR and MQR for an Alpha release is typically lower than that needed for a

Beta which is lower than needed for a general release. For example, the MCR may be the core

set of functionality but not the bells and whistles. The MQR may be “no Sev 1 bugs” and “works

for up to 10 users (vs. the 1000 required in production).”

[Rohit will give an example]

Software Maintenance

Any time we need to maintain software (make small changes to it and deploy those changes),

we are in effect creating a minor dot release which needs to go through the entire decision-

making cycle yet again. We often look for ways to the cost of gathering the data to support the

AD. Some ways we do this increase the risk of possibly missing newly-created (A.K.A. regression)

bugs by reducing the amount of testing we do (e.g. risk-based test planning) while others simply

reduce the effort to get similar test coverage (e.g. automated regression testing.)

Another unique aspect of software maintenance relates to the warranty period on a software

release. Any changes that need to be made to the software have to be in the source code

management (SCM) system. When building multiple releases, there may be ongoing

development for the next release that should not, under any circumstances, be inserted into the

production system along with the warranty bug fixes. This requires us to manage separate code

streams or branches during the warranty period and to ensure that all warranty fixes are also

applied to the new development code stream as well.

Sidebar: Sample Decision Making Model

Sometimes a model that is sufficiently abstract to accurately describe all possible situations is

too abstract for many people to understand it. This is because the more abstract a model is, the

farther the modeling terminology diverges from the terminology used in actual practice.

Unfortunately, this is unavoidable when the terminology in practice varies greatly from one

instance of the modelled domain to another (as is the case here.)

The standard way to address this issue is to show, through examples, how the model can be

used in some well-know situations. This is also an effective way to test the model. This rather

extensive sidebar includes examples from a set of diverse business models. Each example shows

who plays each role and what the person’s job description may be in this specific business

model. It also includes any relevant organizational boundaries.

Shrink-Wrapped Software

A company building software to sell to users.

All roles are distinct. No distinction between Customer and Supplier are same company though

they could be different departments (Sales&Marketting vs Engineering) Product Manager makes

decisions about what to build based on market research of end users’ desired features. Makes

Acceptance Decision based on data from AT. VP of the Engineering organization makes

Readiness Decision (RD) based on data from Readiness Assessment role played either by the

developers themselves (shown) or an independent test organization (not shown). Product

Manager decides whether product can be shipped (RTM) based on input from acceptance

testers (which may include Usability Testers, Installation Testers, Integration Testers, etc.) and

readiness testers (performance, scalability, feature testers, etc.)

Personal Software

Someone building software for their own use. They play all the roles simultaneously within a

single organization (me!)

There is no real distinction between the readiness, acceptance and usage decisions (unless the

person is schizophrenic!)

Vendor

Engineering

Developers

Development

User

Purchaser

QA

Team

Acceptance

Testers
Readiness

Assessors

VP EngineeringVP Engineering
Readiness

Decision

Maker

Product Mgr.
Acceptance

Decision

Maker

Purchasing Org

Me
Readiness

Decision

Maker

Readiness

Assessors

Development

Team

Acceptance

Decision

Maker

Acceptance

Testers

Users

Me

Technical Open Source

Developers are participating in a project to build something they themselves will be users of.

Therefore, they are Dev, RA/AT and Users, but not the Product Owner. Lead Committer makes

the release decision (RD) based on data from developers in AT role. Not much distinction

between Dev/RA/AT roles. No real distinction between RD/AD decisions; may be treated as a

single decision. Organization is a non-issue as everyone may be from different organizations.

Contributors from some organizations may be focussed on the usage/AT side though even these

people may develop documentation (a “development” role.)

Outsourced Development

Vendor (consisting of Project (or Account) Manager, Developers, Testers) is a legally separate

organization from Customer (AT, ADM Users.)

This is as much about organizational boundaries as role descriptions as there is a formal legal

contract between the Customer and the Vendor. The decisions may be more clearly spelled out

in the contract.

Agile In House (IT Shop)

A collocated cross-functional team with representation from “development” and “business” on

the same team. They work in a highly incremental fashion with the business people specifying

the features and doing acceptance testing of them as soon as they are finished.

Company B

Readiness

Decision

Maker

Acceptance

Decision

Maker

Lead Committer

Developer / Committer

Readiness

Assessors

Development
User

Acceptance

Testers

Developer / Committer

Readiness

Assessors

Development
User

Acceptance

Testers

Developer / Committer

Readiness

Assessors

Development
User

Acceptance

Testers

Company CCompany A

Developer
Developer / Committer

Readiness

Assessors

Development
User

Acceptance

Testers

Development

Vendor

Developers

Development

User

End User

Tester

Acceptance

TestersReadiness

Assessors

Project ManagerProject Manager

Readiness

Decision

Maker

Product Mgr.
Acceptance

Decision

Maker

Customer

Either Business Lead or Business Users may do the incremental acceptance testing and make the

Acceptance Decision for a particular feature. This is especially the case when different the

members of the customer team are drawn from different areas of the business specifically for

their understanding of the needs of that part of the business. Customer does AT and makes

Acceptance Decision (AD) both incrementally and a final AT/AD just before release. Often,

Product Owner is augmented by other business people in the AT role. Everyone is in the same

company but customer team may be from business unit while technical people are from IT

organization or contracted resources.

Subcontracted Technical Component

A software development team commissions another team or company (Supplier) to build a

technical component for them to use.

The dev team will be the user of the component and also the acceptance testers of the

component (“send it back; it doesn’t work!”) The Acceptance Decision Maker may be either the

dev team (as a committee) or their Project Manager (a single person deciding based on AT done

by developers.) There is a contractual agreement between the Customer organization and the

subcomponent vendor organization.

Software Start-up

Bill and Paul have a brilliant idea for a software product they think they can build and sell to

consumers.

Component Vendor

Component

Developers

Development

User

Application

Developer

Component

Tester
Acceptance

TestersReadiness

Assessors

Project ManagerProject Manager

Readiness

Decision

Maker

Project Manager
Acceptance

Decision

Maker

Customer

XYZ Corp

I.T. “Development Team”I.T. “Development Team”

Development

User

Business User

Developer

Tester

Acceptance

TestersReadiness

Assessors

Readiness

Decision

Maker

Business Lead

Acceptance

Decision

Maker

Business “Customer Team”

ScrumMaster

or Coach

Together they play all the roles either as interchangeable resources or, for decisions, a

committee. The distinction between RA and AT is very arbitrary or non-existent. There is likely

no distinction between the RD and AD. The end user, who purchases the product is the only

distinct role and they make the usage decision (which probably involves a purchase decision.)

Outsourced Testing

Project Manager (in the Customer organization) bases the AD on data provide by RA or AT (done

in 3rd Party Test Lab, a form of Supplier) regardless of whether the development is done in house

(in the Customer organization) or outsourced to a Supplier (as shown here.)

Readiness Assessment is done and the RD (release to the Test Lab) is made by whichever

organization (Customer or Supplier) is building the software.

Application Service Provider (ASP), SaaS

ASP Operator builds or customizes software that it runs for its own customers.

Bill & Paul

Readiness

Decision

Maker

Readiness

Assessors

Development

Team

Acceptance

Decision

Maker

Acceptance

Testers

Startup

User

Purchaser

Purchasing Org

Software Vendor

Test Lab

Developers

Development

User

Employees

Tester

Acceptance

Testers

Readiness

Assessors

Project ManagerProject Manager

Readiness

Decision

Maker

Project Manager
Acceptance

Decision

Maker

Customer

Tester

Readiness

Assessors

RD is made by VP of Engineering based on data provided by developers (and possibly testers.)

AT is done by both QA team and some Operations staff. Product Manager and Operations

Manager jointly make the Acceptance Decision before deploying new version of software on

product server. Users have no say once they’ve decided to subscribe to the service.

The Math

RD=f(A)

A=RA(P,MCR,MQR)

MQR=f(K)

MCR=f(K)

K=Project Context=f(budget, purpose, market research, competitive analysis)

 =f(who,what,when,where,how,…)

AD=f(G)

G=AT(P,MCR,MQR)

Operations

Vendor

Engineering

Developers

Development

User

Purchaser

QA

Team

Readiness

Assessors

VP EngineeringVP Engineering
Readiness

Decision

Maker

Product Mgr.

Purchasing Org

Operations

Team

Acceptance

Testers

Operations Mgr.

Acceptance

Decision

Maker

System (Under Test) Model

No discussion of acceptance testing would be complete without discussion about the system

being tested as this, plus the project context, to determine what tests need to be executed. In

broadest terms, the system can be described in two dimensions:

1. The functionality it is to provide.

2. The para-functional (also known as cross-functional, non-functional or extra-functional)

requirements that must be met while providing the functionality.

System context

[Software as a part of a larger socio-technical system, incl. Business process, legacy systems,

regulatory environment, ...]

See the Project Context model?? Or put it here?

Functional Requirement

The functionality to be provided by a system varies greatly from project to project. Indeed, this

is typically why we have yet-another-software-development project. There are a number of

techniques for decomposing, organizing and … the functional requirements. Some of these

techniques include:

 Use Cases

Functionality 1

Functionality 2

Functionality 3

P
e

rfo
rm

a
n

c
e

S
c
a

la
b

ility

U
s
a

b
ility

S
e

c
u

rity

…

Parafunctional

Requirements

Functional

Requirements

 User Stories

 Feature Lists

 Scenarios

 Protocol Specifications

 Functional specs

 State models

 Etc.

These requirements are then used, in conjunction with the Risk Model to generate the

appropriate test cases. There are a number of techniques related to generating the test cases

including:

 Heuristics,

 Mnemonics (Right BICEP, CORRECT, etc.),

 Model-based test generation,

 Etc.

Para-functional Requirements

Unlike functional requirements, para-functional requirements tend to be more consistent across

software products. Therefore, there is a relatively finite list of kinds of para-functional

requirements that we can use. What typically varies between projects is how important is each

of the para-functional requirements on this project. Some para-functional requirements have

specific “variables” that we need to specify. For example, system capacity is specified in terms of

throughput measured in Transactions per Second (TPS.)

A fairly complete list of para-functional requirement types is:

 Security -- can it be compromised

 Reliability/Availability -- is it there when I need it

 Robustness -- does it take abuse and still function (fault tolerance)

 Usability -- is it easy to understand and operate

 Installability -- is it easy to install

 Portability -- can it be moved easily to other operating systems or environments

 Performance -- does it meet speed or throughput benchmarks

 Load -- can it handle peak levels we expect

 Stress -- at what point does it fail

 Scalability -- does to expand in terms of numbers of users or connections (pipes) or

installations

 Localization -- is it capable of being operated by people in other languages and locales

 Compliance -- is it compliant with SOX / HIPAA / FDA / CMM / FAA

 Maintainability -- is it easily fixed or upgraded after implemntation

 Liability -- does it open us up to lawsuits

 Interoperability -- does it integrate with other stuff

 Legacy -- does it work with older versions

 Compatibility -- does it handle a variety of platforms

 Extensibility -- does to adapt to new technologies (like Vista, Open GL)

Most of the “-ilities” cut across the use cases of the system. That is, they apply to many if not all

of the discrete chunks of functionality we describe in the functional requirements. Note that

some forms of para-functional requirements can be described at least partially in functional

terms; Security is a good example. We can say that User Role X should be prevented from

changing the value of field F on screen S.

The key to testing conformance with para-functional requirements is the classification of these

requirements into categories that indicate to what degree the project stakeholders care about

the requirement. For example, on a personal web application we may not care about scalability

because there will only be one user while on a large e-commerce application, it’s all about

scalability. It is worth reviewing this list of para-functional requirements and consciously

deciding how important each one is to the success of your product or project.

Attribute Goal Importance Rationale

Web site Performance

under load

< 500 ms response time High Major source of

revenue

Web server capacity under

load

At least 300 TPS,

Graceful degradation

under load

Medium Large number of users

Reliability/Availability 7x24x52 Critical Users require instant

satisfaction when

worried about their

money

Usability Easily discoverable High Most users will use

infrequently

Project Context Model

Process Model

The software process has a significant impact on how acceptance testing is done. This section

describes the process continuum with two distinct process stereotypeson the opposite ends.

Waterfall/Tayloristic Processes

The waterfall or Tayloristic approach involves organizing the project into a series of distinct

phases. Each phase contains a specific kind of work (e.g. requirements analysis) and has specific

entry and exit criteria. The phases do not overlap. The entry and exit criteria synchronize the

activities delivering the functionality to cause them to occur at pretty much the same time. The

following diagram illustrates this:

Within a phase the work is broken out. For example, within the requirements phase, the work

may be divide between analysts by requirement topic while during the construction phase, work

may be divided amongst the developers by module. The handoffs between phases are usually in

the form of documents, except that the handoff from construction to testing also involves the

code base. Readiness assessment is done by the supplier organization after all the construction

is completed; acceptance testing is done by the customer after the software has been deemed

to be ready.

Phased Development / Multiple Release Projects

It is commonly accepted that the longer a project goes before delivering software the higher the

probability of failure. One way to combat this is to use a phased delivery model of multiple

releases or code drops:

Construction

H
ig

h
-L

e
v
e

l

P
la

n
n

in
g

R
e
q
u

ir
e
m

e
n
ts

A
n
a
ly

s
is

A
rc

h
ie

c
tu

re

&
 D

e
s
ig

n

T
e
s
ti
n
g

D
e
p
lo

y
m

e
n
t

time

F
u
n
c
ti
o
n
a
lit

y

From: “Concept to Product Backlog” by Gerard Meszaros

In this approach, the planning, requirements analysis and design phases are done once early in

the project while the construction, test and deployment phases are repeated several times. The

work within each phase is decomposed the same way as for single-release projects. If the

functionality built in the second release overlaps that delivered in the first release, the testing

and deployment must encompass the entire functionality as depicted in the next figure:

Agile Processes

Most agile methods use an iterative and incremental approach to development. After an initial

planning period, the project duration is broken into development iterations that deliver

increments of working software.

H
ig

h
-L

e
v
e

l

P
la

n
n

in
g

R
e
q
u

ir
e
m

e
n
ts

A
n
a
ly

s
is

A
rc

h
ie

c
tu

re

&
 D

e
s
ig

n Construction

T
e
s
t

D
p
ly

Construction

T
e
s
t

D
p
ly

time
F

u
n
c
ti
o
n
a
lit

y

Construction

T
e
s
t

D
p
ly

t

Construction

T
e
s
t

D
p
ly

t

H
ig

h
-L

e
v
e
l

P
la

n
n
in

g

R
e
q
u
ir
e
m

e
n
ts

A
n
a
ly

s
is

A
rc

h
ie

c
tu

re

&
 D

e
s
ig

n Construction
T

e
s
t

D
p
ly

Construction
T

e
s
t

D
p
ly

time

F
u
n
c
ti
o
n
a
lit

y

Construction

T
e
s
t

D
p
ly

t

T
e
s
t

D
p
ly

t

In this diagram, we have two iterations each of which starts with an iteration planning session

and ends with some acceptance testing. Within the iteration the work is broken down into

features or user stories each of which goes through the entire software development lifecycle

more or less independently. Note how the predeployment testing spans the functionality built in

both iterations. The “onsite customer” or proxy, who is readily accessible to the development

team, is responsible for describing the details of the requirements to the developers. It is also

their responsibility to define the acceptance tests for each feature or user story. They provide

these tests to the developers as a more detailed version of the requirements description in a

process known as “Acceptance Test Driven Development.”

This allows the developers to execute the acceptance tests as part of the development cycle.

When all the tests for that feature or user story pass, they turn over the functionality to the

customer (proxy) for immediate “incremental acceptance testing.” Therefore, readiness

assessment at the feature level starts as soon as the developer believes all or most of the

functionality has been built. There may also be a round of acceptance testing done at the end of

the iteration as depicted by the medium sized testing bars in the previous figure. The breakout

between readiness assessment and acceptance testing is illustrated in the following figure:

H
ig

h
-L

e
v
e

l

P
la

n
n

in
g

|<---Iteration--->|

F
u
n
c
ti
o
n
a
lit

y
time

----Iteration--->|

Note how each developer works on a series of features one at a time. As soon as the

functionality is complete, they turn it over to the customer for acceptance testing. What

happened to RA in this implementation? It is the responsibility of the developers (possibly aided

by supplier-side test professionals) to do the readiness assessment (RA) for each feature before

declaring the feature “Done”. This requires that the acceptance tests were supplied by the

customer before development is finished at the latest and ideally before development even

starts. This practice is known as Acceptance Test Driven Development (ATDD) or StoryTest-

Driven Development (STDD).

Acceptance Test Driven Development has two key benefits. First, any concern found by the

customer during AT can be discussed with the developer while they still remember the details of

how they implemented the functionality. Second, the defects or deficiencies can be addressed

immediately before the developer moves on to the next feature rather than being stockpiled for

a “bug-fixing phase”. This is one of the key reasons why co-located agile project teams often

don’t use a formal bug-tracking database; one sticky note per bug on the bugs board promotes

high visibility with very low management overhead.

Multi-release Agile Projects

Most agile methods advocate “deliver early, deliver often.” In theory, the result of any

development iteration could be determined, after the fact, to be sufficient to be put into

production. This would lead directly to the deployment activities. In practice, most agile projects

plan on more than one release to production and the iterations are then planned to deliver the

necessary functionality. This is depicted in the following figure:

Note how there is a testing cycle for the second release which includes regression testing of the

functionality delivered in the first release.

Kanban-based Agile Process

Some agile methodologies dispense with iterations in favour of a allowing a fixed number of

features in progress at any time. This is designed to emphasize the concept of a continuous flow

of working code for the customer to accept. From an acceptance testing perspective, these

H
ig

h
-L

e
v
e

l

P
la

n
n

in
g

|<--- Release 1 -->|

|<--- Release 2 -->|

F
u

n
c
ti
o
n
a

lit
y

time

Kanban-based methods3 still do incremental acceptance testing at the feature level and

formal/final acceptance testing before each release but there is no logical point at which to

trigger the interim acceptance testing that would have been done at iteration’s end in iteration-

based agile methods.

What’s important to note here is that there are never more than three features in progress at

any one time. Or put another way, there are only three development “slots” and a slot only

becomes available for another feature when it has finished its incremental acceptance testing.

This is similar to how Kanban are used to control the inventory in factory production lines.

Process as a Set of Continuum

While Agile and Waterfall are two named styles of projects, they really are just named

stereotypes consisting of certain combinations of characteristics. We could imagine the decision

on each of these characteristics as being the setting of a “process slider”. For example, the

“Number of Releases” slider might have stops at 1, 2, 3, etc. releases. The “Iteration” slider

could have values of 1, 2, 3, etc. indicating whether there are intermediate checkpoints or

values of -1, -2, -3 indicating the number of development slots available in a Kanban-based

system. Another dimension might be “Integration Frequency’ with settings of “Big Bang”,

“Major Milestone”, Quarterly, Monthly, Biweekly, Weekly, Daily.

Table <x> summarizes the positions of these sliders for what we consider to be a stereotypical

project of each kind. We don’t claim these to be definitive or complete but challenge you to

come up with your own sliders and settings for your context.

3 Kanban from Japanese means a signboard. It’s a concept related to lean and just-in-time

manufacturing. [Reference goes here]

H
ig

h
-L

e
v
e
l

P
la

n
n
in

g

F
u
n
c
ti
o
n
a
lit

y

time

Sliders: Pure Waterfall Checkpointed

Waterfall

Agile (Iteration) Agile (Kanban)

Number of

Releases

1 1 2 or more 2 or more

Number of

Iterations

1 2-6 4 or more 1

Max Features in

Progress

No max No Max 1 iteration’s

worth

Less than # of

team members

Integration

Frequency

Big Bang Quarterly Daily or Hourly Daily or Hourly

Reqt-to-test

duration

Months or

Years

Months Days Days

Test Timing Separate Phase Separate Phase Mostly

Incremental

Mostly

Incremental

Release Criteria Scope-based Scope-based Time-boxed Time-boxed

Average Req’t

Effort

Person Months Person Months Person Days Person Days

Average Task

Effort

Person Days or

Weeks

Person Days or

Weeks

Person Hours Person Hours

Work style Tayloristic Tayloristic Collaborative Collaborative

Skills Highly

specialized

Highly specialized Generalists Generalists

Determining

Progress

Earned Value

calculated

based on WBS

Earned Value

calculated based

on WBS

True Value

delivered in

working code

True Value

delivered in

working code

Working

Remaining

Estimate

duration of

remaining tasks

Estimate

duration of

remaining tasks

Estimated time

for remaining

features

Estimated time

for remaining

features

By Checkpointed Waterfall we mean a project with several interim milestones each defined in

terms of a chunk of functionality that will be complete but not delivered.

Risk Model

Risk is a nebulous concept that means different things to different people. In general though,

when something is perceived to be risky, people are more likely to be worried. It is useful to

come up with a more concrete model of risk that helps us to make decisions on our projects.

What Could Possibly Go Wrong? Risk Assessment

One way to define risk is asking what keeps us awake at night? More specifically, what might

happen and what would be the consequences if it did happen?

We can make the discussion of risk more meaningful by translating nebulous concerns into

concrete events that could happen and talking about the likelihood that it might happen and the

consequence we would feel should it happen.

Suppose we ordered some critical hardware for our test lab without which we cannot conduct

certain types of acceptance testing without which we are not prepared to make the Acceptance

decision. What could possibly go wrong?

1. The hardware could be destroyed in transit.

2. The wrong hardware is shipped either through an ordering error or a fulfillment error.

3. The hardware could turn out to be defective.

For each of these events we can estimate the likelihood that it will occur and assess the impact

on our project if it did occur. We do these two calculations separately to help us understand the

risk better.

P
ro

b
a

b
ili

ty

Lo
w

M

ed
iu

m

 H
ig

h

Low Medium High

Consequence

The two areas on either side of the diagonal and the diagonal itself represent three degrees of

risk. The green risk regime represents low risk, the red risk regime represents high risk, and the

yellow risk regime represents moderate risk. In general, risks that fall in the same risk regime are

equally important to mitigate.

Should We Do Something About It? Risk Management

Now that we understand the risks for our project, what can we do about them? We have three

possible courses of action:

1. We can choose to accept the probability and consequence that a particular event might

happen.

2. We can undertake activities to reduce the likelihood of it happening.

3. We can undertake activities to reduce the consequence should it happen.

The course we choose depends on a number of factors including:

 What factors we have control over:

 If there are no courses of action that could reduce the likelihood of something

happening we may be forced to focus on trying to reduce the consequence. E.g.

The only way to avoid an extreme weather event might be to move to a

different area which may simply exchange one set of extreme weather events

for a different set.

 If there is no way to reduce the consequence of an event, we need to focus on

reducing the likelihood. E.g. It is usually better (and economically more feasible)

to try to reduce the likelihood of a heart attack by exercising and eating well

than to try to improve the probability of surviving it by hiring a heart specialist

to be at our side 7x24.

 The relative cost of the options available to use. If it is much cheaper to reduce the

likelihood than the consequence we should first focus on driving the likelihood down

and vice versa. Note that the cost is typically non-linear and gets more expensive the

closer to zero we try to drive the likelihood or consequence.

 The cost of risk reduction relative to the cost we would incur should the risk occur. For

example, if a parking ticket costs twice as much as paying for the parking and there is

only a 20% chance of getting caught, we may choose to take the chance by not paying

for parking.

How Can Testing Help? Risk Mitigation Strategies

Given that we have decided to mitigate a risk, how we go about it depends on the nature of the

risk. Risks that relate to the possibility of delivering a defective product are amenable to risk

mitigation through some form of testing. Risks that relate to discovering something too late can

be mitigated by activities that move discovery earlier.

Doing Something Earlier

Many risks on projects are related to time. Will something happen in time? If it happens too

late, will we have time to react without affecting the project timeline?

A good example of this is the late discovery of missed or misunderstood requirements. When

this discovery occurs during the Acceptance Testing phase of project shortly before the product

is expected to be turned over to users, the impact (of the discovery) may be a significant delay in

achieving the business benefits expected from the system. In this case, we can reduce the

impact of the discovery by doing the acceptance testing activities earlier in the project.

The Incremental Acceptance Testing practice used on many agile projects is one way to move

discovery of misunderstood requirements earlier in the project so there is plenty of time to

address them. Document-driven projects can also reap the benefits of Incremental Acceptance

Testing by moving to an incremental delivery model where the system is built in functional

modules that can be acceptance tested as they become available.

Doing Something Different

An extreme form of “too late” discovery is when we don’t discover it at all and a problem is

found by a user. If the problem is severe enough to have serious repercussions, the

consequences can be disastrous. The high-profile losses or theft of customers’ private

information is just one example of something discovered “too late.” These kinds of risk may

require additional activities to reduce the likelihood of their occurrence. The solution often lies

in doing additional kinds of testing to improve the likelihood that a certain class of defect should

it exist, is found in time. Many of the test authoring practices are focused on ways to define

additional tests that improve the test coverage (from a risk coverage rather than a code

coverage perspective.)

Summary

A risk management model and a way to track risks and risk mitigation is important on all types

of projects. This allows for tracking efforts to reduce the chances of a risk occurring and/or to

mitigate the consequences of the risk when it occurs. For more information on how to use a

model like this, see Risk Assessment [TN].

Thumbnails/Risk%20Assessment%20Thumbnail.doc

Doneness Model

A Model for determining when we are done.

The definition of done depends on several factors. First, what is it that we are trying to decide
whether it is done? The second is what is it done enough for. Some examples:

1. Is a User Story ready for acceptance testing by a business tester?
2. Is a software-intensive system (e.g. software product) ready for an alpha test with a

friendly user community?
3. Is a software-intensive system ready for the design close milestone?

The definition of done is different for each of these examples.

For a user story, being ready for acceptance testing may be determined by answering the
question “Is it passing all the acceptance tests defined by the product owner?”

Release Criteria – Doneness of Entire Systems

When determining doneness of a software system for release to users, doneness is a very binary
decision. Either we are done, or we are not. We cannot be “half done” any more than we can be
“half at home”! There are two main criteria for determining if a system is done:

1. Are enough high value, customer-defined features included to make the release

worthwhile?
2. Is the quality of the feature implementations high enough to be usable?

 The first criteria, also known as Minimum Credible Release (MCR), or Minimum Marketable
Product (MMP), is typically decided while planning the release although it may be revisited as
the project is being executed and more is learned about the system context (business
requirements, etc.) and the technical capabilities of the supplier (delivery team.)
Given acceptance test results for each feature, it is fairly simple to determine what percentage
of features is done. This is the number of features during Readiness that the supplier has
determined pass their critical acceptance tests divided by the total number of features for the
release.

The second criteria, also known as Minimum Quality Requirement (MQR), is what we are
constantly testing against while we build and test the software. To be able to say whether a
feature has met the MQR we need to have the acceptance tests defined for that feature; this is
our per-feature definition of “What done looks like.”

These two criteria are displayed in the following diagram:

The graph on the left shows the completeness of each feature at point X in time; the one on the
right two weeks later. Each column represents a feature with the width of each column being
the estimated effort to build the feature. The line labeled RAT is when the feature is deemed
ready for acceptance testing by virtue of having conducted the readiness assessment. It is the
per-feature equivalent of the readiness decision (RD) we make at the system level. The space
between the RAT line and the line labeled MQR is when acceptance testing is done.

The line labeled MCR is the demarcation between the features that must be present (left of the
line) and those that are optional (right of the line; omitted in these diagrams) for this release.
Numbering from the left starting from 1, features 5 through 7 were completed (deemed ready)
in this time period. Features 8-10 were previously in progress before this time period and were
not completed. Features 11 and 12 were started but not finished.

The product is deemed acceptable when all features pass all their acceptance tests. This is the
top right corner of the graph where the lines labeled MQC and MCR intersect. When the
rectangle below/left of this point is entirely colored in, the product is accepted. To simplify the
discussion we have deliberately ignored the para-functionality requirements but we could just
treat each set of para-functional tests as another “feature bar” from the perspective of
measuring “doneness”.

We need to talk about incremental vs. big bang parafunctionality testing somewhere. Ironically,
waterfall treats this as a phase (a row just below the RAT line) while Agile would treat is as a
feature that has parts implemented in different iterations. This could be an interesting graphic
to draw. Grigori, I know what I want and I need to pair with you to draw it for me.

Would it be worthwhile to factor out the discussion of doneness of individual features (currently
%AT passing for agile and % Phases Completed or % Earned Value for Waterfall) into a separate
discussion titled something like “Feature Readiness – Doneness of Individual Features”??? While
it is unlikely that Waterfall projects would use %AT, agile projects could use % Earned Value.)

Defining “What Done Looks Like”

For each chunk of functionality we have decided to deliver (let’s call it a “feature” for now) we

need to define the Minimum Quality Requirement in the form of a set of Acceptance Tests that

must pass before the customer will accept the feature. The set of acceptance tests for a release

is merely the aggregate of the acceptance tests for all the features (“functional tests”) plus the

acceptance tests for each of the para-functional requirements (the “para-functional tests”) that

we deem mandatory.

Determining “Readiness”

“Readiness” is what we call it when the supplier believes the product is “done enough” to ask

the product owner to consider accepting the product. This implies that the supplier has a

reasonably accurate understanding of how the customer will conduct the acceptance testing. (In

some cases, the supplier’s “readiness tests” may be much more stringent than the acceptance

tests the customer will run.) This understanding is known as the “acceptance criteria” and is

usually captured in the form of acceptance tests. Ideally, the acceptance tests are provided to

the supplier by the customer before the software is built to avoid playing “battleship” ™ or

“Blind man’s bluff” and the consequent rework when the supplier guesses wrong.

Communicating “Percent Doneness”

Yes, we said you are either “Done” or “Not Done (Yet)” . But in practice it is important to be able
to clearly communicate “how close to done” we are. Or more specifically, “what remains to do
before we can say we are “done””. This is the amount of work left for each feature that has not
yet passed all its acceptance tests summed over all the features that are part of the MCR. When
looking at our graphic, we are asking “What percentage of the rectangle below/left of
MQR/MCR is colored in?”

 How clearly we can communicate this depends on the project management methodology we
are using. The following diagram shows snapshots of completeness for 3 different project styles:

The first row of graphs represents a classic waterfall or phase, document-driven style of project
management. The bottom represent a classic eXtreme Programming project. The middle row

represents a project using an incremental style of development with longer feature cycles than
the XP project. Notice the difference in how the colored parts of the graph advance towards the
top right corner.

Communicating Percent Done on Agile Projects

An Agile project can very simply divide the number of features that are accepted by the
customer by the total number of features schedule for the release. This gives us the percent
done. We can make it more accurate by weighting it by the estimated cost (width of the feature
column.) If we want percent remaining(or conversely the number that remain to be accepted
(burndown = total – down).

In the following diagram we have snapshots of how “done” each feature is at various points in
time. Each mini graph represents a point in time. The height of the colored-in portion of each
feature bar represents what degree that feature is done. A simple way to calculate this is
dividing the number of acceptance tests passing by the total number of acceptance tests for that
feature.

Note how agile projects focus on reducing the length of time that a particular feature is in
development. (The goal is to complete each feature in the same iteration it was started in, or at
worst case, the very next iteration.) This allows the customer to do incremental acceptance
testing as each feature is delivered. Any bugs found can be scheduled for fixing at the
appropriate time (which may be right away or in subsequent iterations.) Plotting the number of
features left to be “done” against time we get a “burn down chart” like this:

Time

Fe

at

ur

es

lef

t

Rather than having 100% of the features 50% done at the halfway point of the project, Agile
projects strive to have 50% of the features 100% done. This gives the customer options should
specification and development of the functionality take longer than expected (not uncommon).
They can decide whether to adjust (reduce) the product scope to deliver on time or to adjust
(delay) the delivery date to include all functionality. It also means that the work of readiness
assessment and acceptance testing are spread out more or less evenly across the project. (It
would be useful to show a chart of this to contrast with the waterfall version of the same chart.)

A somewhat less agile project might look like this:

Most features are taking several iterations to complete and acceptance testing only starts (on
this example project) after all features are deemed ready. Deficiencies found during acceptance
testing (e.g. missed requirements) need to be fixed much more quickly because they are found
very late in the project.

Communicating Percent Done on Tayloristic Projects

Tayloristic projects have more of a challenge since the phases/milestones synchronize
development in such a way as to ensure that all functionality is available for testing at roughly
the same time. This prevents our using “% functionality accepted” as a meaningful predictive
measure of progress. Instead, Tayloristic projects usually ask someone to declare what
percentage each feature is done. For example, the developer may say they are 80% done coding
and debugging (though this number is often stuck at 80 for many weeks in a row!) Given the
subjective nature of estimation techniques, waterfall projects often choose to use techniques
such as “Earned Value” to come up with a “degree of doneness” metric. Unfortunately, these
techniques are prone to error, fudging and are both difficult and time-consuming to produce
and maintain.

In this Taylorist version of the diagram we can see how phased/waterfall development
encourages us to work in parallel on many features because each feature is synchronized by
gating mechanisms such as the Requirements Frozen, Design Complete and Coding Complete
milestones. This means that all the features are available for acceptance testing at roughly the
same time and must be finished acceptance testing in a very short period of time. This has
implications for the staffing levels required for the readiness assessment and acceptance testing
roles. (It would be useful to show a chart of this to contrast with the agile version of the same
chart.) When development is late, the period for RA/AT is further shortened and the RA/AT
resources further stressed. It also has implications on the impact of finding bugs during the
testing (the fixes are on the critical path to delivery.)

Plotting the number of features left to be “done” against time we get a “burn down chart” like
this:

Time

Fe

at

ur

es

lef

t

Sidebar: Degrees of Doneness – another dimension

6 level of done (D1-D6) in our process of content creation
 D1=author
 D2=reviewer
 D3=content/product owner
 D4= external reviewers (advisors + community)
 D5=content tester/editor
 D6=product owner (final content signoff)

Plus additional X:
 D7=copyeditor
 D8=page proofs
 D9=sent to publisher signoff

Test Purpose Model (Marick)

CHAPTER: Planning for Acceptance

A narrative introduction to the models and practices surrounding the planning of acceptance

testing and decision-making.

Testing Model

Test Strategy

Test Objectives

Linking strategy to objectives

Test Planning

Test Execution Plan

Test estimation techniques

Test Oracles

Test Execution

Test Reporting and Metrics

Test Maintenance

Individual Test Lifecycle Model

Each acceptance test goes through a number of stages during its lifetime. These are:

Conception – An acceptance test is conceived to address a particular risk.

Authoring – The test is written either in detailed step form or some kind of outline of what

needs to be done.

Scheduled – The execution of the test is planned or scheduled for a specific timeframe and

resources (people, test environment(s), etc.)

Executed – The test is executed against the system under test.

Assessed – The results of the test are assessed against the expectations. (This may occur

as part of execution or separately.)

Reported – The assessed test results are aggregated and reported.

Actioned – The test results may result in either further testing being identified and/or bug

reports being created and triaged.

Maintained – Each test is an asset that must be maintained so that it can provide value in

the future.

Test Conception

At this point, the test is just a figment of someone’s imagination. It starts its transition from an

implicit requirement to one that is much more explicit. It might appear in a list of tests

associated with a feature, requirement or user story. Typically, it will just be a test name with no

associated detail.

The techniques for conceiving tests include:

 Group Brainstorming,

 Risk-based test identification,

 Model-based test generation

 Etc.

Test Authoring

This is where the test goes from being a named item on a list to becoming more fully formed. It

may also involve making decisions around how to organize or pre-factor tests and the strategic

decisions around how tests of a particular kind will be executed (manually or automated.)

The techniques for authoring tests include:

 Paired/collaborative testing,

 Scenario-based testing,

 Soap-opera testing,

 Etc.

Test Scheduling

Once a test has been identified and authored, we need to arrange for it to be executed. There

are a number of techniques for planning the execution of tests including:

 Session-based testing

 Test Cycles

 Automated immediate execution as part of CI

 Spot checking by a customer

 Ad hoc or self-organized testing based on Big Visible Charts

Test Execution and Assessment

Once authored and scheduled, we need to actually run the tests against the SUT. Depending on

the kind of test in question they may be executed manually by a person, by automated testing

tool, or by a person using some automated tools to provide support. Depending on the tools

involved, the pass/fail status of the tests may be determined as they are executed or there may

be a separate assessment step.

<insert Test Execution Diagram here>

Test Runner interacts with SUT to generate the Actual Result

Evaluation Mechanism compares against Expected Result (a.k.a. Test Oracle) to

generate the Test Result

<end diagram>

Evaluation Mechanisms

1. Human compares actual results against implicit (mental models) or explicit artifacts.

The comparison can be anywhere between highly deterministic or highly subjective.

2. Computer compares with stored expected results (explicit):

 Previously generated and certified correct

 Hand-crafted (true/deterministic or heuristic)

 Comparable system (current or legacy)

Either way, the comparison can look for anything between a very high-level (abstract) match or

bit-by-bit match.

Test Reporting

Once a number of tests has been executed and assessed we can report on the test results. A

good test report helps all the project stakeholders understand where the project stands relative

to the release gate. See the Gating Model for more details on what information might affect this

decision.

The common reports include:

- Bug burndown

- Bug aging

- Bug trends

- Bug correlations (e.g. with features, components, subsystems, teams)

Test Actioning

The purpose of executing tests is to learn about our product by reflecting on the report and

make intelligent decisions. The Gating Model describes the “release decision” but before we can

make that decision we may need to fix some of the defects we have found. The Bug Triaging

process is used to make the “Is it good enough” decision by determining which bugs need to be

fixed before we can release. (See the “Doneness Model” for more details.)

The primary techniques applicable at this stage are:

- Bug triaging

- Cause-effect analysis

Test Maintenance

Some kinds of tests hold their value longer than others; some kinds of tests deteriorate very

quickly because they are so tightly coupled to the SUT that even small changes to the SUT make

them obsolete. Tests that are expected to be used more than once may warrant making an

upfront investment to ensure that they are repeatable and robust.

Useful techniques include:

- Building maintainability in (abstraction from the details of the interface you are working

with)

- Designing for testability

o e.g. Subcutaneous testing - layered application where you can execute beneath

the UI

- Refactoring the tests for testability

Customer Proxies

CHAPTER: Accepting Software – Core Practices

A narrative introduction to the core practices for acceptance testing and decision making (and

why we consider them core.)

One para on each practice from part II, Chapter 1:

Requirements practices

Test Authoring practices

Assessment practices

Test Management practices

Bug management practices

Concern Resolution Model

Need to provide some text to go with this diagram:

CHAPTER: Accepting Software -- Additional Practices

A narrative introduction to the additional test practices for acceptance testing and decision

making and when each should be considered.

One para on each practice from part II, Chapter 2

Part II: Acceptance Testing Practices

Test Processes

Exploratory Testing

Summary

Exploratory testing is “simultaneous test design and execution with an emphasis on learning.”

[KANER] It is not a technique, but an approach to testing that may include many different kinds

of testing techniques such as stress, workflow, performance, boundary testing, etc.

It has often been referred to as a “style” of testing because it places emphasis on the tester’s

unique experience and judgment. It is even considered to be both craft and art because the

tester is in control of the design and execution of their testing from minute-to-minute as they

explore. As they react to emerging information from their tests (which some experts simply call

“learning”), they are allowed to change their test tactics and strategy to discover important

issues, unlike the traditional notion of executing test cases, which focus on following (and not

diverging from) a written test procedure.

Cem Kaner, the testing expert summarizes the cognitive nature of exploratory testing:

“Exploratory software testing is a style of software testing that emphasizes the personal

freedom and responsibility of the individual tester to continually optimize the value of her work

by treating test-related learning, test design and test execution as mutually supportive activities

that run in parallel throughout the project.” *Conference for the Association of Software Testing,

2006]

Known Aliases

 Ad hoc testing

 Some call it “unscripted” testing, but exploration can be based on a test script.

 Some call it “unplanned” testing, but missions for exploration can be planned in

advance.

 Some call it “random” testing, but exploration can follow thoughtful patterns.

 Some call it “black-box” testing, but this term encompasses many more approaches

than exploratory testing.

When to Use It

There is no bad time to use an exploratory approach to testing. Exploration is a mindset of

discovery that uses several different skills. Here are some quotes from some known exploratory

testing practitioners and experts about when it may be most beneficial:

 “Using and operating a product and searching for bugs while also searching for new

testing ideas.” -- Michael Bolton, Developsense

 “Upon being reassured that some area of the application or component of the system

isn't going to have any performance issues, I respond with ‘Cool, let's check it out!’” –

Scott Barber, PerfTestPlus

 “If you’re asked, ‘Please test this product that doesn’t yet exist.” – James Bach, Satisfice

 “Tests from a bug taxonomy or “quick test” list, asking ‘does this risk warrant further

testing?’” – Cem Kaner, kaner.com

 “Once a script has executed, choosing different data and re-executing.” -- James

Lyndsay, Workroom Productions

 “For ‘bounty’ testing: where you have insufficient information about a bug, but need

more data that might lead to its capture,” – Jon Bach, Quardev

 “Retesting and testing around a defect.” – Mike Kelly, Liberty Mutual

 “Using feedback from the last test to inform the next.” – Elisabeth Hendrickson, Quality

Tree Software

 “If you’re asked: ‘Please investigate this puzzling situation’.” – James Bach, Satisfice

 “Working with a new build of an existing product, checking for bug fixes by using old

test paradigms with new variations; not under the control of a script.” – Michael Bolton,

Developsense

 “For developing a set of scenarios,” – Cem Kaner, kaner.com

 “While developing tests or analyzing results, execute performance tests in the

background to explore a ‘what-if’ question,” – Scott Barber, PerfTestPlus

 “During ‘play testing’ customers using charters as they evaluate video games,” – Jon

Bach, Quardev

Test Lifecycle Applicability

Applicable to all phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

 If there is not enough time to write detailed test scripts or use cases

 If you are worried that you do not have the right set of test cases or automation scripts

to cover the product

 If you need a quick “gut feeling” of a feature’s stability

 If you need an idea of what it make take to cover a feature

 If you need to assess product risks in a given build

How to Do It

The nature of exploration is to adapt to what emerges during testing. The tester starts with a

conjecture of some kind – a claim, an idea, a supposition – and harnesses their curiosity to

either refute or corroborate that conjecture.

An example of this might be to do the following:

 Take steps from a test case and follow them, but change course if you see something

interesting in your testing

OR

 Take a list of bugs and form on-the-fly tests to see if they have been fixed. Think about

any new problems that might be hiding and waiting to be found now that the fix is in

place

OR

 Take a bug that is hard to reproduce and pair up with another tester to find it

OR

 Take a user story and change some of the variables as you test

Examples

 Exploratory Testing Plan

 Sample Exploratory Session

 Scenario Test Plan Sample

Implementation Options

 Session-Based Test Management is a way to manage and measure exploratory testing

effort, where testers are given charters or mission statements about what to look for,

what to look at, and what to look with (e.g. tools). The testing is time-boxed for every

charter and the tester files a report about their notes, bugs, and issues during that

session. This session report is then debriefed by a test manager so that new charters

for exploration can be created.

 Soap Opera Testing is a kind of exploration where the tester is given (or creates) a series

of dramatic user actions.

 Scenario Testing is a kind of exploration where the tester is given a workflow with

variables to change as they test.

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Exploratory%20Session%20Plan%20for%20Global%20Bank%20ITPS%20feature.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Sample%20Exploratory%20Session%20for%20GBS.txt
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Scenario%20Test%20Plan%20sample.doc
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Sample%20Exploratory%20Session%20for%20GBS.txt
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Soap%20Opera%20Testing%20(RM).docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Scenario%20Testing%20Thumbnail.doc

 Usability Testing is a kind of exploration, but the object is for testers to watch an actual

user operate the product. The user is given a short mission to fulfill and explores the

product within the constraints of accomplishing the mission.

Rationale

Exploration is a popular way to reveal important problems about the software very quickly. It is

often inexpensive to explore, as bugs can be found after just a few seconds of letting a tester or

a business analyst explore the software on their own using their judgment and experience. If

used within the structure of Session-Based Test Management, it can mitigate several project and

product risks of relying on exploratory testing as the sole approach to testing.

Related Topics

 Soap Opera Testing

 Scenario Testing

 Playtesting (see Usability Testing)

References

 Kaner’s CAST Keynote: http://www.kaner.com/pdfs/ETat23.pdf

 Satisfice document for Session-Based Test Management:

http://www.satisfice.com/sbtm/index.shtml

 Wikipedia article: http://en.wikipedia.org/wiki/Software_testing_controversies

 Quardev Whitepaper:

http://www.quardev.com/content/whitepapers/how_measure_exploratory_testing.pdf

 Some noted experts and thinkers in Exploratory Testing:

 James Bach – http://www.satisfice.com

 Jon Bach – http://www.quardev.com

 Michael Bolton – http://www.developsense.com

 Elisabeth Hendrickson – http://www.qualitytree.com

 Cem Kaner – http://www.kaner.com

 Jonathan Kohl – http://www.kohl.ca

 James Lyndsay – http://www.workroom-productions.com

 Robert Sabourin – http://www.amibug.com

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Usability%20Testing%20Thumbnail.doc
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Soap%20Opera%20Testing%20(RM).docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Scenario%20Testing%20Thumbnail.doc
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Usability%20Testing%20Thumbnail.doc
http://www.satisfice.com/sbtm/index.shtml
http://en.wikipedia.org/wiki/Software_testing_controversies
http://www.workroom-productions.com/
http://www.amibug.com/

Script-Driven Testing

Summary

Test scripts can be prepared ahead of time and then followed when it is time to execute the

tests. The scripts may be high-level, intended as a reminder for someone who knows how to use

the software in question, or they may be detailed enough to be executed by someone with very

little prior knowledge.

Known Aliases

 Scripted Testing

 Test Case Execution

When to Use It

We use scripted testing when we need a high degree of repeatability of tests or when we don’t

have the skills and experience to do exploratory testing well. Scripted regression tests, for

example, are meant for testers to follow steps of fixed bug reports to see if any new problems

were injected into the code. Likewise for automated tests used while doing exploratory testing.

They are meant to achieve particular tasks or steps without the tester having to think much

about the execution of the test.

Test Lifecycle Applicability

Applicable primarily to the execution phases of the test lifecycle (because it deals with how the

tests are run.) It does impact the authoring phase of the test lifecycle because the test scripts

must be prepared.

Risks Mitigated

The risks addressed include:

 Missing tests due to not knowing what functionality has been tested.

 The need for repeatability .

 New, inexperienced testers might be unsure at how to get started with covering a

product.

Limitations

 Scripted tests tend to discourage the tester to think.

 It is hard to write test scripts in enough detail for every human to execute them

exactly the same way so expect some variability nonetheless.

 It is time-consuming to write every idea so that it can be followed by someone else.

 Running a stack of scripted tests may encourage some testers to disengage and take

shortcuts because of the rote nature of the work.

 Test cases don’t account for bugs found because the flow of each test in succession

caused the bug to emerge.

 A stack of test cases that have passed or failed may not be a complete picture of the

quality of the product.

 Test scripts are prone to being counted as a measure of coverage.

 Test scripts are often meant to be confirmatory, not exploratory and encourage the

tester to report pass / fail, not peripheral problems.

How to Do It

Use of scripted tests occurs in two distinct phases:

Authoring the test

1. If you haven’t already done so, conceive and enumerate the test conditions that you

need to test. Techniques for conceive test conditions include:

◦ User Stories

◦ Use Cases

◦ Scenarios

◦ Heuristics

2. Select one or more test conditions to verify in a test script

3. Define the specific steps required to:

a. Put the system-under-test in the expected starting state

b. Exercise the functionality you are trying to verify

c. Examine the actual behavior of the system-under-test and verify that it

matches our expectations. You can use any of the kinds of test oracles to do

this step.

d. Repeat A through C until all test conditions have been covered

e. Clean up after ourselves

4. Verify the test script works by executing it either literally or mentally

5. [Optional] Add the new test script to a test suite, either existing or new.

Executing the test

1. Select the scripts to run either individually or through selection of one or more test

suites.

2. Run the test assessing the results as you run or saving the actual results for later

assessment.

3. *Optional+ If you didn’t assess the results as you executed the tests, go back and

compare the actual results you saved with the expected results specified or inferred

by the test script.

4. [Optional] Annotate the test with remarks related to the current test case/run

and/or suggestions about other test cases.

5. [Optional] Store the test results in the test result repository.

Examples

 Use Case

Implementation Options

The Scripted Test approach can be executed manually or using automated tests. We can also

vary the level of detail specified in the tests and the level of discipline with which we try to

follow the tests scripts.

Automated Execution

The most complete and detailed form of scripted tests is when we want to have a computer

execute them on our behalf. Scripting tests to this level of detail requires the same level of

discipline as writing code because that is exactly what it is: test code. In situations where we

want to be able to run the tests frequently and at low cost, this level of investment is

worthwhile. Many agile projects make the conscious decision to do full automated regression of

all units so that they do not have to worry about introducing regression bugs into the software

as they add new functionality to the code.

Manual Execution Exactly as Scripted

Scripted tests may be specified in enough detail for just about anyone to execute them. It takes

a lot more effort to document the test scripts to this level of detail and it doesn’t give you any

better test coverage. In fact, it likely results in lower test coverage because everyone executing

the tests is likely to execute them more or less the same way.

Manual Execution with Variation

The cost of documenting the test is reduced by specifying the tests in less detail. This can have

the unanticipated effect of improving test coverage by introducing unintended variability in how

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Use%20Cases%20(GBS).docx

the tests are executed as each person interprets the script somewhat differently. This variation

can be made intentional by having several testers the same scripts but with different specific

instructions on how to fill in missing details within the test scripts (“use keyboard shortcuts as

much as possible” or “enter invalid data in almost every field”).

Computer Assisted Testing (Manual Execution with Automation Support)

Testers executing scripted tests manually can use test automation tools to speed up repetitive

or labor-intensive steps of the test. We don’t consider this test automation but rather computer

assisted manual testing.

<PD Sidebar: The difference between automation and computer assistance>

Exploratory testers are not dead set against any sort of test automation; they just believe that

having a tester think about what else to test is useful while executing tests. Exploratory testers

can use scripted tests in their testing and often document their tests in a way for others to

reproduce what they did. Furthermore, tester who focus on exploration use computer-based

tools to assist their exploration with the mindset being: “Why sweep manually when you have a

vacuum cleaner?” This is machine-assisted cleaning. It isn’t automated cleaning; that would

require a Roomba ™ robotic vacuum cleaner.

<PD End of Sidebar>

Rationale

Scripted tests can act as a safety net to ensure a minimum set of functionality works as

intended. This allows us to focus more effort on creative ways to find new bugs. Scripts or cases

can also be good for acquainting new users or testers to a product, or for convey confidence

that a certain path was followed through the product.

Related Topics

 Test Automation usually requires scripted testing.

 Exploratory Testing is the main alternative to scripted testing.

 We can use any of the Test Oracles to assess the results of scripted testing

References

Books:

 Copeland, Lee, “A Practitioner’s Guide to Software Test Design” Artech House

Publishers 2004

 Craig, Rick, “Systematic Software Testing”, Artech House Publishers 2002

 Black, Rex, “Managing the Testing Process: Practical Tools and Techniques for

Managing Hardware and Software Testing”, 2nd Ed. Wiley 2002

Test%20Automation%20Thumbnail.doc
Exploratory%20Testing%20Thumbnail.docx

Online Resources:

 TBD

Test Last Acceptance Testing

Summary

The acceptance decision is made at a single point in time, near the end of the project, based on

the results of one or more cycles of acceptance testing. Test-last acceptance means that

acceptance testing is done at the same time as the decision -- after all development and

readiness assessment activities have been completed.

Known Aliases

 Big Bang Acceptance

 Waterfall Acceptance

 Final Acceptance

When to Use It

Use a Big Bang Acceptance test phase when the development of the software is done out-of-

sight and when the supplier is not prepared to provide incremental builds for incremental

acceptance testing or the customer is not capable/interested to provide timely feedback on

those builds.

Process / Lifecycle Applicability

Transcends the phases of the individual test lifecycle. Waterfall projects tend to have a large

acceptance test phase at the end of the project. Agile projects often combine incremental

acceptance testing throughout the project with a much shorter final acceptance test cycle at the

end of the project.

Risks Mitigated

The risks addressed include:

 The end users would find the software unusable even though the supplier may think it

is ready.

Limitations

Significant shortcomings may be found too late to do anything about them in the current

product release.

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Incremental%20Acceptance%20Testing%20Thumbnail.doc
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Incremental%20Acceptance%20Testing%20Thumbnail.doc
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Incremental%20Acceptance%20Testing%20Thumbnail.doc

How to Do It

1. Identify the kinds of acceptance testing to be done.

2. Decide when software development must be completed by.

3. Define one or more test cycles to execute after development is complete.

Examples

 If a call center development team does user acceptance testing after all software

development is completed.

 If a web development team has an onsite customer who does incremental acceptance

testing followed by a short cycle of final acceptance testing.

Implementation Options

All the testing could be done at the end or we can combine Big Bang acceptance testing with

incremental acceptance testing.

Big Bang Acceptance

On many waterfall projects there is a single separate testing phase after all development is

completed. This may consist of separate readiness assessment (done by the supplier) and

acceptance testing (done by the customer or their proxy) sub phases. Typically, it is the first

time that testers or customers have had a chance to use the product. Almost certainly it is the

first time the customer has had a chance to say whether any of the functionality is acceptable

(meets their requirements.) A separate testing phase typically consists of several test cycles

interspersed with bug-fixing activity.

Incremental Feature Acceptance

Agile projects typically have a customer who accepts individual features as they are completed.

The final acceptance phase is used primarily as a regression testing mechanism to ensure that

the previously accepted features still work as they did before although it may also add some

whole product acceptance criteria. The final acceptance phase usually consists of only one or

two test cycles with a minimal bug-fixing window because the expectation is that not many bugs

will be found / need to be fixed.

Incremental feature acceptance can be considered a form of conditional acceptance. The

customer is essentially saying “If this feature of the product continues to work this way (and I

don’t change my mind in the meantime) I will accept the product during the final acceptance

phase.”

Rationale

We cannot do acceptance testing until the code is available and the code isn’t available until the

end of a waterfall project. Therefore, we cannot make the final product-level acceptance

decision until all the code has been completed.

Related Topics

 Cycle-based Test Management is how testing is typically managed on waterfall projects

with big bang acceptance testing.

 Incremental Acceptance Testing is the main alternative to big bang acceptance testing.

 One can still do Acceptance Test Driven Development when doing big bang acceptance

test management; the tests are designed or prepared earlier and executed during the

acceptance testing phase.

References

Books:

 tbd

Online Resources:

 tbd

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Cycle-Based%20Test%20Management.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Incremental%20Acceptance%20Testing%20Thumbnail.doc
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Acceptance%20Test%20Driven%20Development%20Thumbnail.docx

Incremental Acceptance Testing

Summary

Rather than leaving all the acceptance testing to the end of the project, we organize the

development of functionality so that individual features can be acceptance tested as soon as

they are deemed ready by the supplier team.

Known Aliases

 Incremental Development

 Agile Development

When to Use It

Incremental Acceptance Testing is highly advised on any project where there is risk associated

with the requirements being unclear or uncertain. Unclear (i.e. poorly described or ambigious)

requirements can be made clearer through the use of concrete examples or acceptance tests.

Uncertain (i.e. unknown or unstable) requirements often require the customer to learn more

about what the system could do for them. One of the most effective ways to help the customer

to learn is to deliver working functionality to them that they can then try using. This often helps

the customer understand better what it is they really need as opposed to what they thought

they needed or what they asked for. The sooner this learning happens, the more time the

supplier has to change the product into what the customer has learned they really need and this

can avoid last-minute panics and/or delayed deliveries.

Test Lifecycle Applicability

This practice may affect all phases of the test lifecycle. It must be addressed during the planning

phase of the project lifecycle.

Risks Mitigated

The risks addressed include:

 The customer discovers that the product they requested does not address their real

business need.

 The customer learns during formal, big-bang acceptance testing that critical capabilities

are missing.

Process Applicability

This practice is used in most Agile projects. It is used to a lesser extent on multi-release

Tayloristic/Document-Driven/Phase-Driven/Waterfall projects. See process models.

../Models/Test%20Lifecycle%20Model.doc
../Models/Process%20Model.doc

How to Do It

Planning Incremental Acceptance Testing

1. Break the functionality of the product into features that can be tested individually.

2. Minimize dependencies between features as much as possible.

3. Prioritize the features based on business value; focus on the high-value features.

4. Prioritize the features based on requirements or technical risk.

5. Schedule the highest risk features for earliest development, followed by the highest

business value features.

Executing Incremental Acceptance Testing

6. Select the highest priority feature.

7. Prepare acceptance tests for the feature.

8. Assess the feature for readiness as soon as development of the feature is complete

9. Demonstrate readiness to the customer or acceptance tester.

10. Conduct acceptance testing noting any concerns.

11. Conduct triage on the concerns, deciding when they should be addressed.

12. Once the feature is accepted, add automated functional tests to the regression test

suite to ensure it continues to work in the future.

13. Repeat starting at step 6 until the minimal credible feature set for the release has been

completed and accepted.

14. Perform final acceptance testing, focusing on interactions between features.

Implementation Options

Most of the variability in how this practice is applied relates to the granularity of the

functionality being developed. Smaller features can be built more quickly and therefore enter

acceptance testing earlier. User Stories [USA, USSBUS] as utilized in eXtreme Programming are a

good example of how small stories can be made.

Rationale

The quicker we can give and get feedback on the acceptability of the software that has been

built, the less it costs to act on that feedback and the more likely it is that we can fully address

the concerns that were raised.

Related Topics

 Acceptance Test Driven Development

 User Stories

Acceptance%20Test%20Driven%20Development%20Thumbnail.docx
User%20Stories%20Thumbnail.docx

 Functional Testing

 Automated Testing

 Big Bang Acceptance Testing

 Regression Testing

References

Books:

 [USA] User Stories Applied, Mike Cohn

Online Resources

 [USSBUS] Using Storeotypes to Split Bloated XP Stories, Gerard Meszaros, Agile United

2005

Functional%20Testing%20Thumbnail.docx

Acceptance Test Driven Development

Summary

Acceptance Test-Driven Development is a way to write software, starting with the customer

requirements and the customer-specified acceptance criteria/tests for those requirements, and

using them as the basis for all development. Just like developers who practice Test-Driven

Development do not write a single line of system source code without a failing unit test, teams

that practice ATDD do not write any code or perform any code optimizations without a failing

acceptance test. This practice requires discipline on the part of the supplier team and the

customer (or customer proxy). It also requires that the customer work with the delivery team to

create clear and concise acceptance criteria and tests.

Known Aliases

 Storytest-Driven Development (STDD)

 Executable Acceptance Test-Driven Development (EATDD)

 Executable specifications

 Testable Designs

When to Use It

ATDD is appropriate whenever the customer has a good understanding of what they want but

the written requirements are unclear or incomplete. When the customer doesn’t really know

what they want, consider using Incremental Acceptance Testing or Usability Testing.

Test Lifecycle Applicability

Acceptance Test Driven Development is a development methodology. Its steps span the entire

test lifecycle.

Risks Mitigated

The risks addressed include:

 Missing implicit customer requirements leading to rework and delay

 Lack of customer feedback until the project is over leading to rework or poor quality

perception

 Additional, un-necessary features are created

 Unclearly articulated requirements leading to rework and delay

Process Applicability

While it is typically used in agile or iterative process models, there is nothing about ATDD that

precludes its use in more traditional document-driven development methodologies; it simply

moves the authoring of tests earlier in the project lifecycle.

How to Do It

1. The customer writes a prioritized list of requirements for the system. Often use

cases or user stories are the best format for these requirements.

2. The supplier (or a representative from the supplier) works with the customer to

define acceptance criteria for the first several requirements, and (ideally) turns these

acceptance criteria into automated acceptance tests. Optionally, the customer

watches the tests fail.

3. The supplier team makes the failing acceptance test pass by writing just enough

code in the simplest way possible.

4. The team demonstrates the new functionality to the customer. This can be done by:

− Running the previously failing acceptance test, and showing the customer a

passing test, and working software

− Showing the customer a report of passing and failing acceptance tests

− Allowing the customer to spot check a subset of the acceptance tests

5. Customer accepts the feature as is, or adds a new test (or tests) to the feature.

6. Customer and team representative review the requirements, re-prioritize the list,

and add any new features.

7. Go back to step 2

[TO DO]

Implementation Options

ATDD can be implemented in either a waterfall/document-driven or an agile way.

Teams that adopt ATDD may also practice Test-Driven Development. They start with a high level

story or feature and its associated acceptance tests. Then, they build the system using TDD. The

two approaches, ATDD and TDD act as two levels of verification and validation, and the use of

TDD also acts as a design aide.

Waterfall Implementation

In a document-driven (or waterfall) project, the acceptance tests are prepared either at the

same time as the requirements or shortly thereafter but still before development of the

corresponding functionality it started.

Agile Implementation

On agile projects, ATDD is usually done in a highly incremental style. See Incremental

Acceptance Testing for details. Acceptance tests are often specified during the iteration

planning meeting.

Limitations

 With the exception of performance requirements, automated acceptance tests is

difficult to specify for para-functional requirements.

 This practice requires a very high degree of customer involvement which may not be

practical on all projects

 Specifying acceptance tests is time-consuming.

 Effective authoring, management and maintenance of automated acceptance tests

requires tool-support, which is lacking nowadays.

Rationale

There are several principles behind acceptance test-driven development

 YAGNI - "You ain't gonna need it" Only build the minimum needed to make the

customer's acceptance tests pass. This helps avoid the waste of “overproduction” of

unneeded functionality.

 The Simplest thing that will work - Build the simplest implementation for a feature

that will meet requirements and comply with the customer's acceptance criteria.

 The customer knows what they want -- but they may not be able to articulate it.

This process forces communication to help clarify exactly what the customer wants.

 Iterative feedback will refine the system - by building iteratively, and receiving

feedback at regular, frequent intervals, the team can refine the system to meet the

customer's expectations. These expectations will become more explicitly defined

over time through this feedback process.

 Communication and Teamwork – The exercise of the customer and the team

working together to create clear, concise acceptance tests can cause the team and

the customer to both consider areas that they may not normally consider. Also,

these detailed acceptance tests can force deeper thought about what is actually

required to solve the business problem.

 Ubiquitous Language Formation – [TBA]

 Testability – specifying acceptance tests when exploring and discussing

requirements indirectly improves testability of the future system as the supplier

team would need to make sure that each feature/story would need to expose

necessary information to make the acceptance tests pass.

[TO DO: Include summary of Melnik/Read/Maurer research on the cognitive aspects of

authoring and interpreting acceptance tests (in ATDD)]

[TO DO: Include a note on progress-tracking with executable acceptance tests]

[TO DO: Inlcude a note on how ATDD is different from formal specs]

Related Topics

 User Stories

 Test-Driven Development

 Emergent Design

 Incremental Acceptance Testing

 Usability Testing – In particular, Wizard of Oz testing of low-fi prototypesw

 Business Unit Tests

 Business Workflow Tests

References

 Article “How storytestdriven development is changing the way QA, customers, and

developers work.”, Better Software Magazine, July/August 2004 or

http://www.industriallogic.com/papers/storytest.pdf

 Maurer/Melnik, "Driving Software Development with Executable Acceptance Tests,"

Cutter Consortium Report, vol. 7, no. 11, 2006.Martin/Melnik, “Tests &

Requirements, Requirements & Tests: A Moebius Loop”, IEEE Software, vol X., no1.

1, 2008.

 TDD and Acceptance TDD book by Lasse Koskela, Manning, 2007

User%20Stories%20Thumbnail.docx
Incremental%20Acceptance%20Testing%20Thumbnail.doc
http://www.industriallogic.com/papers/storytest.pdf

Regression Testing

Summary

Rare is the software that is never modified after its initial acceptance and deployment. Any time

software is modified, whether to fix bugs or add functionality, there is a risk that new bugs have

been introduced into the previously existing functionality. Regression testing is how we

minimize that risk by running a standard set of tests on each release candidate.

Known Aliases

 “Smoke testing” could be an alias associated with regression testing, but only if a smoke

test is used to verify that a new version is not of lower quality than the previous

version. Using smoke tests for means running the same set of important tests with

every new release before deciding if it is ready for deeper testing.

When to Use It

Regression testing is a risk mitigation technique, so it should be done whenever software is

modified to ensure that new problems weren’t introduced.

Test Lifecycle Applicability

Applies to the execution phase of the test lifecycle. The regression testing strategy should be

defined during the test planning phase of the project.

Risks Mitigated

The risks addressed include:

 Customer encountering new bugs introduced into existing functionality.

How to Do It

1. Pick a set of high-coverage test cases to execute each time the software is modified.

Some of the factors to consider include:

◦ The tests should cover most of the frequently used functionality.

◦ The tests should be reasonably quick or cost-effective to execute.

2. If the tests are newly conceived, prepare test scripts for them. The tests may be

manual or automated.

3. Group the chosen tests into a test suite structure that makes it easy to run as a

group.

4. Run the tests whenever the software changes.

../Models/Test%20Lifecycle%20Model.doc

OR

1. View the reports for bugs that have been fixed by development

2. Using the new build, run the steps indicated in each bug report and verify the bug is

fixed

3. Follow any ideas you have for follow-up test ideas that could reveal new problems in

those areas.

Implementation Options

Smoke Test Suite

As a minimum, every software-intensive system should have a smoke test suite consisting of a

few tests that verify it was correctly built and installed. The name “smoke test” comes from the

hardware world where the first test of any new board was to plug it in and verify that it

generated no smoke or flames!

Regression Test Pipeline – Multi-Stage Regression Testing

When the full regression test suite takes a lot of effort and/or elapsed time to execute, the

regression test suite can be subdivided into separate stages that are run in series. Successful

completion of each stage is the entry criteria for the next stage. The first stage is typically a

smoke test.

This approach minimizes the effort wasted when significant problems exist in the product build

being tested.

Continuous Integration

Most agile projects employ a practice called Continuous Integration (CI). CI consists of the

following key elements:

1. Automated checkout of latest software from the source code management system.

2. Automated build of the software.

3. Automated regression testing of the newly built software.

4. Automated notification of any build or test errors.

Continuous integration gives the development team rapid feedback on the quality of their

software. It is a highly recommended complement to Test-Driven Development.

Regression Test Selection

 Retest-all technique

 Minimization techniques

 Dataflow techniques

 Safe techniques

 Random techniques

Rationale

Regression Testing reduces the risk of releasing defective software by ensuring that the most

commonly used functionality is exercised regularly.

Related Topics

 Acceptance Test Driven Development

 Continuous Integration

 Test automation

References

Books:

 Lessons Learned in Software Testing by Cem Kaner, James Bach, and Bret Pettichord

Online Resources:

 http://en.wikipedia.org/wiki/Regression_testing

 Regression Test Selection (RTS) techniques

 http://www.testingeducation.org/BBST/BBSTRegressionTesting.html

Acceptance%20Test%20Driven%20Development%20Thumbnail.docx
http://www.amazon.com/Lessons-Learned-Software-Testing-Kaner/dp/0471081124/ref=sr_1_9?ie=UTF8&s=books&qid=1216751633&sr=1-9
http://en.wikipedia.org/wiki/Regression_testing

Test Automation

Summary

Test automation is a good way to run a lot of tests with much less effort than manual testing.

Test automation is not a way to find bugs but rather a way to prevent bugs from (re)occurring.

Test automation has a place as part of an effective test strategy.

Known Aliases

 Automated Testing

 Record & Playback Testing

 Regression Testing

When to Use It

Use automated testing when:

 The code is being changed regularly and you want to ensure existing functionality is
not broken by the changes.

 You want immediate feedback that you have introduced a defect/regression.

 You want to free up testers from the boring drudgery of manual, script-based
regression testing.

 You want the development team to have a very clear understanding of “what done
looks like” before they start development. (See Acceptance Test Driven
Development.)

 When the expected cost of repeated manual regression testing exceeds the cost of
automation.

Limitations

Automated testing will not find very many new bugs. It isn’t meant to. Don’t measure the

success of your test automation initiative based on the number of bugs they find. Do measure

the success (indirectly) based on how much time your testers get to spend doing real,

productive testing and how many bugs they find that way. The power of automated regression

tests is in the cost effectiveness of uncovering software regressions.

Test Lifecycle Applicability

While Test Automation is applicable in some way to the entire test lifecycle, it is most

specifically applicable to the execution and assessment phases.

Risks Mitigated

The risks addressed include:

 Changes to a piece of code inadvertently introduces a new bug

 A bug that was previously fixed is inadvertently reintroduced

 Newly introduced bugs are not found until long after they were introduced greatly
increasing the cost of fixing them.

 Existing bugs are not found due to testers focusing on manual regression tests rather
than other types of testing.

Process Applicability

Applies to all process models. Particularly important for agile or highly incremental projects

because of the number of times the regression tests need to be run.

How to Do It

1. Identify the tests that should be automated (as part of your Test Strategy)
2. Pick an appropriate automation technology for the test(s) in question.
3. Ensure that testability is built into the application to make test automation cost

effective.
4. Automate the tests including the 4 key behaviors:

a. Setting up the preconditions of the test.
b. Exercising the system under test.
c. Assessing the actual result against expected results.
d. Cleaning up the system under test (if necessary).

5. Verify that the tests pass with a working system.
6. Verify that the tests fail when you introduce a defect into the system under test.
7. Save the test(s) in a Test Asset Management system.
8. Pick a frequency for executing the tests based on how frequently the code changes and

how long it takes to run the tests.
9. Schedule the tests for execution.
10. [Optional] Repeat execution on various OSs and configs.

Examples

 Automated Business Unit Tests – Verifying the ITPS Suspicious Activity Algorithm

 Automated UI Tests – Global Bank ITPS Mock-Up

Implementation Options

There are a large number of ways tests may be automated and the details are beyond the scope

of this book. The following is a sampling of the most important considerations.

Granularity of the System Under Test

Each test targets a particular piece of software, the system under test (SUT). For unit tests, the

SUT is just an individual unit of code, while for acceptance tests, the SUT is the entire suite of

applications used by the users. In general, the finer the granularity of the SUT, the less the test

will be impacted by changes to other parts of the system. Automated tests should verify the

behavior of the SUT using the finest granularity SUT possible. That is, the smallest part of the

overall system. We should strive to have much, much fewer tests for the entire system (or

system of systems) than for components of the system than for individual units of the system.

This Test Automation Pyramid should be wide at the base (unit tests) and have a small peak of

functional or workflow tests.

../Samples/Automated%20Business%20Unit%20Tests%20-%20Verifying%20the%20ITPS%20Suspicious%20Activity%20Algorithm.doc
../Samples/AutomatedUITests-GlobalBankITPSMockUp-V1.0.zip

Test Authoring Mechanism

Tests can be automated by recording the interactions between a user and the system under

test, or tests can be hand-crafted using either a general purpose programming language or using

a domain-specific testing language. In general, Recorded Tests are much quicker to prepare but

are very difficult to maintain. Scripted Tests are much more time consuming to prepare but can

be crafted to avoid needing much maintenance. Tests written in a domain-specific testing

language will be easier to write, understand and modify but may be limited in what capabilities

they can test.

How to Interact with the System Under Test

The automated tests may interact with the system under test via a user interface, a messaging

interface, or via a direct software API. They may also interact via a database or file system. In

general, the more direct and synchronous the interaction, the easier it is to automate the tests

and the lower you can expect the maintenance costs to be.

Fixture Management Strategy

The less the test needs to assume about the state of the system under test and its surroundings,

the more robust the test is likely to be. Avoid making assumptions about the starting state of

the system under test; if it needs to be in a particular state, the test should explicitly put it into

that state. If the system under test needs inputs from another system that is hard to control,

consider stubbing out (implementing a test-only version where the outputs are controlled by

the tester) the interface to the other system so that the test can control what inputs the system

under test receives and when.

Rationale

Automated Tests act as a safety net for people making changes to the system under test. They

can provide much more immediate feedback on the impact of changes to the code base than

manual tests. They are not, however, a replacement for intelligent, highly-motivated testers.

Related Topics

 Test Strategy

 Test Asset Management

 Acceptance Test Driven Development

 Design for Testability

 Regression Testing

 Keyword-based Testing

 Parameterized testing

 Test Planning

 Recorded Test Automation

 Record & Refactor Test Automation

 Data-Driven Test Automation

 Keyword-Driven Test Automation

Test%20Strategy%20Thumbnail.doc
Test%20Asset%20Management%20Thumbnail.doc
Acceptance%20Test%20Driven%20Development%20Thumbnail.docx
Test%20Planning%20Thumbnail.doc
file:///C:\Users\gmelnik\Desktop\Thumbnails\Recorded%20Test%20Thumbnail.docx
file:///C:\Users\gmelnik\Desktop\Thumbnails\Record-Refactor%20Thumbnail.docx
file:///C:\Users\gmelnik\Desktop\Thumbnails\Data-Driven%20Testing%20Thumbnail.doc
file:///C:\Users\gmelnik\Desktop\Thumbnails\Keyword-Driven%20Testing%20Thumbnail.doc

 Hand Scripted Test Automation

References

Books:

 “xUnit Test Patterns” by Gerard Meszaros

 Tom Arnold et al, Professional Software Testing with VSTT: Tools for Software
Developers and Test Engineering (Programmer to Programmer), Wrox, 2007.

 Brian Marick, Everyday Scripting with Ruby: for Teams, Testers, and You, 2007

 James McCaffrey, .NET Test Automation Recipies, APress, 2006

 Mugridge/Cunningham, FIT book

 Gojko Adzic "Test Driven .NET Development with FitNesse".

Online Resources:

 Test Automation Pyramid, Gerard’s StarEast/West classes?

 Mike Cohn’s?

file:///C:\Users\gmelnik\Desktop\Thumbnails\Hand-Scripted%20Test%20Automation%20Thumbnail.doc
http://xunitpatterns.com/State%20Verification.html#Expected Object

Recorded Test Automation

Summary

Recorded Tests are what come immediately to mind for most testers when someone mentions

“test automation”. This approach to test automation (or more precisely, to automated test

generation) involves use of a test recording tool while running tests against the system under

test and later replaying the recorded tests against the same or different system under test. It is

an automated approach to using the Previous Result Test Oracle.

Known Aliases

 Record & Playback

 Capture, Replay

When to Use It

Recorded test automation is highly regarded for the simplicity and speed in automation.

However, they have a number of downfalls which are listed in Limitations.

We can use Recorded Tests when we already have a working system and we do not plan to

maintain the tests for any length of time. We can use Record & Refactor, another type of test

automation, when you want to quickly build up a library of reusable test components from

which we can assemble a variety of high-level automated tests scripts.

Test Lifecycle Applicability

Applicable to the authoring phase of the test lifecycle. Influences the maintenance phase by

making the resulting tests easier to understand.

Risks Mitigated

The risks addressed include:

 The output of the system under test has changed unexpectedly from what it used to

produce in the past.

 Tests are run not often enough to catch newly-introduced bugs.

Limitations

The main selling point of recorded tests is that they are usually quick to automate. They do,

however, have a number of issues:

1. They require the system under test to be working more or less correctly before tests

can be recorded. So they are not appropriate for Acceptance Test Driven

Development.

../Models/Test%20Lifecycle%20Model.doc

2. The recordings they make tend to be very low level and highly detailed. This makes

them hard to understand and even harder to maintain.

3. The recordings tend to be very fragile when the system under test is modified. This is

for two reasons:

a. They interact with the system under test through the user interface which is not

designed for ease of programmatic interaction.

b. There is a lot of duplicated code in the recordings which makes for a lot of

places to fix that code when it is either recorded incorrectly or when the system

under test is modified making the code obsolete.

 Therefore, the cost of maintenance of recorded test is significantly higher than the

cost of initial recording.

4. The tests tend to be very slow to execute because they interact with the system

under test through the user interface.

5. The recordings only represent single-user interactions with the system. Multi-user

interactions and thread synchronization need to be addressed in manually crafted

tests.

6. Some user interface technologies are not amenable to test recording. For example, a

system that generates unique HTML object identifiers every run makes it very

difficult or impossible to accurately recognize the objects on the screens in a robust

way.

7. Most recording tools would not support custom GUI widgets and complex composite

designs.

How to Do It

The use of the Recorded Test practice occurs in three steps. The first step is to record a test. The

second step involves ensuring that the recoded test is valid. The final step is executing the tests

on a schedule and reviewing the results.

Recording a Test

8. Conceive a test script by listing the test conditions to be verified

9. Define the steps of the test using the domain specific ubiquitous language.

10. Configure the Recorded Test tool to start recording a test session while you interact

with the system under test.

11. Execute your test script manually while the Record Test tool records your actions.

12. When you are done with your test, save the recorded test with an appropriate

name.

Testing the Test

1. Launch the test playback tool with the recorded test.

2. Observe the test while it interacts with the system under test as it executes.

3. For each step that fails, correct the issue and retry execution. Common fixes:

a. Delete extraneous recorded steps

b. Modify the “object recognition” parameters to allow it to recognize the objects

on the screen.

4. When the test runs successfully several times in a row, manually verify that the

system under test is left in the correct state

5. Try injecting errors into the system under test and verify that the test fails as a

result. If not, add “checkpoints” to the automated test script to assert that the

system under test responses match the expected responses recorded on earlier

runs.

6. Once the recorded test is working, add it to a test suite and verify that the entire test

suite runs correctly and that there are no unexpected interactions between tests.

Executing the Test

1. Launch the test playback tool with the suite of recorded test.

2. After the test suite has been completed, examine the test results for any failures.

3. If any occurred, rerun the test by itself while you want to determine whether the

problem is with the test (false positive) or with the system under test (true positive.)

4. If the problem is with the test, repeat the relevant steps in Testing the Test to fix the

failing test. Possible root causes may be:

a. Failure to set up all the preconditions of the test correctly; for example, the

contents of the system under test’s database.

b. Failure to control all the inputs of the system under test; for example, the time,

date or another system’s database or behavior.

<Raw>A Note on Choosing a Recorder

Select a tool that records not at the pixel-level, but at the level of interaction with some GUI

widgets. This way the recorded script would not depend on screen layout and display resolution.

It would also be easier to refactor. Of course, this generally requires naming all GUI components

and you may potentially need a different tool for each GUI library used. Any non-trivial UI

changes or operating on custom widgets would still break the tests. Synchronizing threads is a

problem.

Recommendation: consider specifying tests at the level of user intentions not user interactions.

(link to Subcutaneous tests)

</Raw>

Examples

 <list any examples here as hyperlinks to samples files>

 VSTT “Collectors” example

 Need a sample with a VSTT Web Test Recorder and Verifier

Implementation Options

The potential for success using Recorded Tests is greatly influenced by whether or not the

design of the system has taken testability requirement into account.

Test Recording After the Fact

When Test Recording is undertaken as a last minute decisions after the system has already been

built, the Recorded Test approach may prove to be inadequate or very expensive.

Design for Testability

When the system has been designed with testability as a requirement, it may be possible to

record tests that are quite robust. In all likelihood, though, these tests would not be recorded

through the user interface using general purpose tools. See Built-in Record & Playback.

Built-in Record & Playback

Many of the problems associated with Recorded Tests stem from the fact that most such tools

interact with the system under test through the user interface. A much more robust approach is

to build the record and playback capabilities right into the system under test. This allows the

tests to be recorded using a domain-specific ubiquitous language rather than in “UI widget

speak”. It also eliminates much of the accidental complexity associated with asynchronous

interaction between the system under test and the test tool.

Rationale

Recorded Test may work for you if you need a quick and cost-effective way to record tests that

don’t need to be resilient to change. Otherwise, consider Record & Refactor, Built-in Test

Recording, Hand-Scripted Test Automation, Keyword-Driven Test Automation or Business Unit

Tests as alternatives.

Related Topics

 Ubiquitous Language

Ubiquitous%20Language%20Thumbnail.docx

 Keyword-Driven Test Automation

 Record & Refactor

 Hand-Scripted Test Automation

 Test Automation

 Previous Result Test Oracle

References

Books:

 “xUnit Test Patterns – Refactoring Test Code” by Gerard Meszaros

 “Just Enough Software Test Automation” by Daniel J. Mosley, Bruce A Posey

 TBA

Online Resources:

 http://builtinRecordAndPlayback.xunitpatterns.com

 xunitpatterns.com

 Web Test Authoring and Debugging Techniques: http://msdn.microsoft.com/en-

us/library/ms364082(VS.80).aspx

 TBA

Keyword-Driven%20Testing%20Thumbnail.doc
Keyword-Driven%20Testing%20Thumbnail.doc
Keyword-Driven%20Testing%20Thumbnail.doc
Hand-Scripted%20Test%20Automation%20Thumbnail.doc
Hand-Scripted%20Test%20Automation%20Thumbnail.doc
Hand-Scripted%20Test%20Automation%20Thumbnail.doc
Previous%20Result%20Oracle%20Thumbnail.doc

Record & Refactor Test Automation

Summary

Recorded Test tools are great for quickly creating executable tests scripts but they are notorious

for creating unreadable and un-maintainable recordings. A common way to leverage the

strengths of recorded tests without taking on the weaknesses involves refactoring. Refactoring

is a way of re-organizing script to remove duplication and make the script simpler and easier to

maintain without effecting what it does. By refactoring and re-organizing the recorded tests into

high-level test scripts that invoke the low level utility methods extracted from the recordings,

the tests become much more flexible and less fragile.

Known Aliases

 Record, Refactor, Playback

When to Use It

Refactor recorded tests whenever you plan to maintain the tests for any length of time. Use

Record & Refactor when you want to quickly build up a library of reusable test components from

which you can assemble a variety of high-level automated tests scripts.

Test Lifecycle Applicability

Applicable to the authoring phase of the test lifecycle. Influences the maintenance phase by

making the resulting tests easier to understand.

Risks Mitigated

The risks addressed include:

 The output of the system under test has changed unexpectedly from what it used to

produce in the past.

 The product is changed in a future release but the automated tests cannot be modified

easily therefore regression testing cannot be completed in time.

Process Applicability

Applies to all process models.

How to Do It

The use of the Record & Refactor practice occurs in three steps. The first step is to record a test

and ensure that it works. The second step is to extract sequences of statements into reusable

test utility methods. The third step involves composing new tests using the reusable test utility

methods.

../Models/Test%20Lifecycle%20Model.doc

Record

1. Follow the steps under “Recording a Test” in described in Recorded Test Automation to

create at least one and optionally several recorded tests.

Creating Reusable Methods

1. Mentally decompose the recorded test script(s) into the high level actions.

2. Insert comments into the recorded test script indicating the high level actions

3. Take the detailed code between the comments and extract it into a utility test method.

Give it a name based on the comment.

4. When more or less the same code is found in several places, turn any value that varies

into arguments that are passed to the utility method at run time.

5. Move the utility test method onto an appropriate Test Utility Class or module.

Using Reusable Methods

1. Conceive a test script by listing the test conditions to be verified

2. Define the steps of the test using the domain specific ubiquitous language or

terminology.

3. For each step, find the corresponding reusable test utility method and call it passing any

necessary parameters.

If no method is available, consider creating on using the Record

4. Follow the steps under “Recording a Test” in described in Recorded Test Automation to

create at least one and optionally several recorded tests.

1. Creating Reusable Methods process outlined earlier.

Examples

 <list any examples here as hyperlinks to samples files>

Implementation Options

The actual refactoring can be done manually or using a refactoring IDE. Many modern IDEs

support at least a few common refactorings and there are refactoring plug-ins available for

other IDEs.

Common Refactoring Steps

There are a standard set of refactorings that we use when practicing Record & Refactor test

authoring.

Extract Method

The most common refactoring is to extract one or more lines of test code into a separate

method giving it a meaning name based on the ubiquitous language. This reduces the

complexity of the test script by letting it focus on communicating the test intent rather than the

mechanics of how that intent is realized.

Rename Method

Once we have used a test utility method a few times we may find that the name does not help

us accurately communicate the intent of the test. When this occurs, we should rename the

method to better communicate the intent.

Introduce Parameter

Test utility methods can be made more reusable by replacing hard-coded values with arguments

that are passed in as run-time parameters. When implemented by a refactoring tool, one simply

selects the value within the body of the method and invokes the Introduce Parameter

refactoring. We provide a name (and optionally a type) for the argument and the tool finds all

callers of the method and adds the previously hard-coded value as an argument. When

implemented manually, we may wrap the new parameterized method with a method wrapper

that defaults the argument to the previously hard-coded value.

Pull Up Method

When the test utility method is first extracted, by default it is put onto the current class or

object. In test execution environments that support abstract classes, one way to make the utility

methods available to other tests is to pull the methods up to an abstract superclass from which

the concrete tests inherit.

Move Method

When the test execution environment doesn’t support abstract classes and subclassing, and

when we have created a large, diverse set of reusable test utility methods, it is useful to

organize the test utility methods based on the domain concept to which they related. We use

the Move Method refactoring to move the method to the new host class along with any

member variables/attributes and private methods on which it depends.

Introduce Wrapper Method

Most refactoring IDEs support Rename Method and many support Introduce Parameter. If yours

doesn’t and you have a lot of references to the current name, you can provide backwards

compatibility with the tests you cannot afford to modify by introducing a wrapper method. The

wrapper implements the old signature and translates it into the new signature by calling the

newly renamed or redesigned method. This allows you to take your time upgrading the old tests

to call the new method signature; when the old tests are converted, simply delete the wrapper

method.

[ADD REFACTORINGS THAT SPECIFICALLY APPLY TO THE RECORDED TESTS]

Rationale

Record & Refactor strikes a good balance between the benefits of fast test authoring (by

recording tests) and test understandability and maintainability (by hiding the recorded code

behind a domain-specific ubiquitous language.)

Related Topics

 Ubiquitous Language

 Action Verbs

 Recorded Test

 Test Automation

 Previous Result Test Oracle

 Hand-Crafted Test Oracle

References

Books:

 “Refactoring – Improving the Design of Existing Code” by Martin Fowler

 “xUnit Test Patterns – Refactoring Test Code” by Gerard Meszaros

 TBA

Online Resources:

 Refactoring.com

 xunitpatterns.com

 Reference Adam Geras’s article/blog entry on Record & Refactor

 TBA

Ubiquitous%20Language%20Thumbnail.docx
Recorded%20Test%20Thumbnail.docx
../Deleted/Test%20Automation%20Thumbnail.doc
Previous%20Result%20Oracle%20Thumbnail.doc
Hand-Crafted%20Oracle%20Thumbnail.doc

Data-Driven Test Automation

Summary

A technique for reusing the same test logic on many sets of data values. The test is structured to

read the input and corresponding expected output data values from a file or table and runs the

same test logic with each set of data.

Known Aliases

 Parameterized Test

When to Use It

Use data-driven test automation when you want to run the same test logic with many input

values.

Test Lifecycle Applicability

Applicable to the authoring, execution and assessment phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

 The system under test fails when certain combinations of input data are provided.

Limitations

 Data-driven test automation doesn’t necessarily provide very good test coverage because it

runs the same logic over and over.

 Data-driven test automation implemented using Recorded Test tools can be very slow to

execute and are usually very fragile.

How to Do It

The preparation of tests is done separately from the construction of the keyword interpreter.

Either could be done first but tests cannot be executed until both are available.

Test Language Definition

1. Enumerate the set of test conditions to be verified as tuples consisting of input

values and the corresponding expected results

2. Automate a test using one of the tuples. See Implementation Options for options on

how to do this.

3. Generalize the test to read the input values from the table of tuples.

4. Generalize the test to assert against the corresponding expected output value from

the table of tuples.

../Models/Test%20Lifecycle%20Model.doc

5. Test the test

a. by running with table of correct values and verify the test passes.

b. by running with table of incorrect expected output values and verify the test

fails.

c. by running with table of invalid input values and verify the test fails

gracefully.

Examples

 Verifying the ITPS Suspicious Activity Algorithm

◦ Fit Test

Implementation Options

Data-driven tests can be implemented a number of different ways.

Tabular Test Framework

Some test frameworks provide direct support for testing with tabular data. For example, the Fit

framework provides the RowFixture as a way to inject each row of data into the system under

test and compare the output value with what was provide.

Data-driven Scripted Test

A hand-scripted test can be turned into a data-driven test by refactoring it into a parameterized

test called repeated by a test driver that reads the values to be used from a table.

Data-driven Recorded Test

Many recorded test automation tools provide the capability to attach a data sheet to the test

script and map input and output fields to the columns of the data sheet. When the test is run,

the test automation framework automatically runs the test once for each row in the data sheet.

Rationale

Data-driven testing allows the system logic to be tested with many sets of input values thereby

provide good input value test condition coverage but not necessarily good code branch

coverage.

Related Topics

 Hand-scripted automated tests can be refactored to Data-driven testing

 Record and Refactor is a way to implement data-driven testing

 Data-driven tests may be used to implement a Business Unit Test

 Workflow Testing is an alternative to Data-Driven Testing

../Samples/Automated%20Business%20Unit%20Tests%20-%20Verifying%20the%20ITPS%20Suspicious%20Activity%20Algorithm.doc#SuspiciousActivityFitTests
Record-Refactor%20Thumbnail.docx
Business%20Unit%20Test%20Thumbnail.doc

References

Books:

1. Mosley, D. & Posey, B. Just Enough Software Test Automation New Jersey: Prentice Hall
PTR, 2002.

2. Mugridge, Rick “Fit for Developing Software”

Online Resources:

 Fit framework at http://fit.c2.com

Keyword-Driven Test Automation

Summary

A technique for separating the specification of tests from the underlying mechanism to execute

the tests by structuring test steps as action keywords followed by action-specific arguments.

Each keyword plus arguments forms a separate row in the test and is processed by an

interpreter that knows how to interface to the system-under-test. Keyword-driven test

automation requires agreement on a ubiquitous language or domain specific language for test

authoring and creating an interpreter for the language.

Known Aliases

 Action Words

 Keyword-Driven Testing

When to Use It

Use Keyword-driven testing when you want to hand-script automated tests using the ubiquitous

language and the test authors don’t have technical skills to write tests in a technical

environment. It is particularly appropriate for workflow testing.

Test Lifecycle Applicability

Applicable to the authoring, execution and assessment phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

 Tests are not automated because the testers don’t have automation skills

 The wrong tests are automated because the people with the automation skills don’t

have a good enough understanding of what needs to be tested.

Limitations

 Keyword-driven testing is less general than test scripting using a computer language.

 Some kinds of tests are difficult to automate because they require too large a keyword

vocabulary.

 Keyword driven testing requires that someone creates and maintains a language interpreter.

How to Do It

The preparation of tests is done separately from the construction of the keyword interpreter.

Either could be done first but tests cannot be executed until both are available.

../Models/Test%20Lifecycle%20Model.doc

Test Language Definition

1. Understand the functionality to be tested

2. Define a standard set of verbs based on the ubiquitous language to be used as

keywords

3. For each keyword, define the arguments that need to be supplied

a. For actions, what are the input arguments?

b. For assertions, what are the expected values? What input values need to be

supplied to retrieve the expected values?

4. Optionally, specify the actor or object that would be seen to execute keyword.

Otherwise, we can assume all keywords apply to an implicit “system” object.

Test Preparation

5. Identify the test condition(s) being verified

6. Define the test script using the ubiquitous language and the action verbs

7. Define a sequence of steps to verify them including steps to

a. Put the system-under-test into starting state

b. Exercise the functionality of interest of the system-under-test

c. Verify that the expected results have occurred (assertions)

8. Prepare the executable version of the test by translating each step into a keyword

plus its corresponding arguments

a. Action keyword plus input fields

b. Assertion Keyword plus input fields plus expected values

Building the Keyword Interpreter

The following is done for each object or actor plus keyword:

9. Determine what the keyword means to the system under test

10. Choose a way to interact with the system under test. This could be via the user

interface or via a software API or even by loading data into a database.

11. Construct the code that implements the chosen way of interaction.

12. Integrate the code into the test parser

Examples

 Creating Acceptance Tests for User Stories

Ubiquitous%20Language%20Thumbnail.docx
Ubiquitous%20Language%20Thumbnail.docx
../Samples/Sample%20�%20Creating%20Acceptance%20Tests%20for%20User%20Stories.docx

◦ Subcutaneous Fit Workflow Test

Implementation Options

The test automation framework can be implemented a number of different ways. One of the

key decisions is how to interface with the system under test for each keyword.

API-Based Keyword Interface

The preferred interface between the keyword interpreter and the system under test is via a

software interface. This could either be implemented as method calls on individual classes

within the application or via a well defined interface such as a façade object [DP] or component

(such as a DLL).

UI-Based Keyword Interface

If the only interface available is via the user interface, each keyword may be implemented as a

sequence of user interface actions. This sequence would typically look like:

1. Navigate from a well-known location to the screen where the action represented by

the keyword is conducted.

2. Enter the argument supplied for the keyword into the appropriate fields,

transforming the data as needed.

3. Fill in any additional non-optional fields with default values.

4. Execute the transaction or submit the web page.

5. Verify the system under test performed the transaction; if not, fail the test step.

6. Navigate back to the well-known location.

Rationale

Keyword-driven testing allows the tests to be prepared by non-technical people using simple

text-processing tools such as word processors or spreadsheet applications. There is a clear

separation of concerns between test specification and test language interpretation.

Related Topics

 Ubiquitous Language

 Data-Driven Test Automation

 Hand-Scripted Test Automation

 Recorded Test Automation

 Business Unit Test

 Workflow Testing

../Samples/Sample%20�%20Creating%20Acceptance%20Tests%20for%20User%20Stories.docx
Ubiquitous%20Language%20Thumbnail.docx
Data-Driven%20Testing%20Thumbnail.doc
Hand-Scripted%20Test%20Automation%20Thumbnail.doc
Recorded%20Test%20Thumbnail.docx
Business%20Unit%20Test%20Thumbnail.doc

References

Books:

3. Mosley, D. & Posey, B. Just Enough Software Test Automation New Jersey: Prentice Hall
PTR, 2002.

Online Resources:

 http://en.wikipedia.org/wiki/Keyword-driven_testing

 http://shakti.it.bond.edu.au/~sand/TAW06/Action%20Words.pdf

 Keyword-Driven Testing article at http://www.stickyminds.com/s.asp?F=S8186_COL_2

http://en.wikipedia.org/wiki/Keyword-driven_testing

Hand Scripted Test Automation

Summary

Automated test scripts are hand-coded in a scripting or programming language by people with

enough technical skills to do some programming and debugging. The tests set up the state of

the system under test, exercise the functionality in question, assert that the system supplies the

correct responses and ends up in the correct final state, and optionally, clean up the system. The

tests may be used as regression tests, for test-driven development (TDD), or for other types of

testing like fuzz testing.

Known Aliases

 Automated Test Script

 Test code

When to Use It

Use hand-scripted test automation when you need to test in fairly technical environments and

have testing resources who are technical enough to write and debug test code.

Test Lifecycle Applicability

Applicable to the authoring, execution and assessment phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

 Bugs in the software go undetected.

Limitations

 Requires technically saavy test personnel.

 Tests may be hard or impossible to understand for a non-technical person.

 It takes skill and discipline to write good test code. If we fail to apply good engineering

practices to the test code we can end up with hard-to understand and impossible to

maintain test code.

How to Do It

1. Enumerate the set of test conditions to be verified.

2. Group test conditions into test cases (one or more test conditions per test.)

3. Prepare one test script for each test case by writing code. Each test script includes

one or more steps to:

a. Set up the preconditions of the test

Regression%20Testing%20Thumbnail.doc
Fuzz%20Testing%20Thumbnail.docx
../Models/Test%20Lifecycle%20Model.doc

b. Exercise the system-under-test

c. Assert that the system-under-test behaves correctly

d. Clean up after the test

4. Test the test

a. by running the test against a correctly functioning system under test and

verify the test passes.

b. by running the test against a version of the system under test that has know

bugs and verify the test fails.

Examples

 need an example

Implementation Options

Hand-scripted tests can be implemented a number of different ways.

Standalone Test Program

We write a main program with all test logic in it and run it on demand.

Test Automation Framework

We write the test based on a test automation framework such as xUnit that runs the test

automatically as part of a test suite and provides reporting on the result of the entire test suite.

A testing framework, such as the one available in Visual Studio 2008 or Visual Studio Team

System 2008, greatly simplifies the process by providing a test runner and a simple way to

author tests in common programming languages.

Recorded Test Execution Framework

We write the test using the language and components provided by a Recorded Test Automation

tools and run it using the tool taking advantage of any test result storage and reporting it

provides.

Parameterized Test

We can reuse the same test with many input-output value tuples by calling the test logic as a

subroutine from another test or test driver passing the input and expected output values into

the test. This is called a Data-driven Test.

Rationale

We can and should apply good software engineering practices to hand-crafted tests; when we

do, the tests tend to be:

 Quick to write

Data-Driven%20Testing%20Thumbnail.doc

 Quick to run

 Relatively impervious to changes in the system-under-test

 Easy to maintain when necessary

If we don’t apply good engineering practices, we can make just as big a mess as with any other

test automation technique.

Related Topics

 Record and Refactor is a way to implement hand-scripted automated testing

 Recorded Test Automation is the best known alternative to Hand-scripted test

automation

 Keyword-driven Test Automation is a very effective alternative to Hand-scripted test

automation in well-defined situations.

References

Books:

1. Mosley, D. & Posey, B. Just Enough Software Test Automation New Jersey: Prentice Hall
PTR, 2002.

2. “xUnit Test Patterns – Refactoring Test Code” by Gerard Meszaros

Online Resources:

 http://xunitpatterns.com

 Various TDD resources

Record-Refactor%20Thumbnail.docx
Recorded%20Test%20Thumbnail.docx
Keyword-Driven%20Testing%20Thumbnail.doc
http://xunitpatterns.com/

Planning Practices

Project Chartering

Summary

Every project has a mission – a problem or set of problems is it trying to solve. One way to

frame the objectives of the mission is to have a Vision / Scope meeting. This is a meeting of key

stakeholders on the project to discuss the following 5 elements:

1) Customer

2) Needs

3) Product

4) Value

5) Purpose

Known Aliases

 Chartering Sessions

 Product / Project kick-off

 Elevator Pitch (Geoffrey Moore)

When to Use It

 At the start of a project or any time the mission changes.

Test Lifecycle Applicability

 Conception

Risks Mitigated

The risks addressed include:

 Designing the wrong set of features

 Customer could demand status of critical bug and we wouldn’t know its current status.

How to Do It

In “Crossing the Chasm”, author Geoffrey Moore describes the elevator pitch as

containing 7 elements:

 “For” – The customer.

 “Who Need To” – A statement of the problem.

 “The” -- Product name.

http://en.wikipedia.org/wiki/Crossing_the_Chasm

 “Is a…” -- Product category.

 “That” -- Statement of benefits.

 “Unlike” – What are the alternatives?

 “Our product….” Short statement about why your product is different.

For the Global Bank ITPS feature, the elevator pitch might read like this:

“For current Global Bank premium account holders who need to monitor their accounts

for suspicious activity like identity theft, fraud, and infiltration, the Identity Theft

Protection Service (ITPS) will allow customers to sign up for notification of suspect

transactions by email, IM, text, and/or voice that provide general information and a URL

for secure login to review transaction details unlike that for non-premium account

holders (less than $50,000 in assets) or premium account holders at other competing

banks.”

Scope

The scope portion of the presentation is what the solution covers or does NOT cover. It may

include:

 The current state of the problem as you know it

 Research to find out what solutions are available

 Influencers on the solution: feedback from customers, standards, laws, community

policies, market forces, etc.

 Models to frame the effort

Scorecard

This is the measurement of success: internal goals and external goals centered based on

customer value and community.

Release Plan

This is a high level model depicting functions or features and what acceptance criteria might be

for each.

Implementation Options

Rationale

Since the team has a compass, artifacts from the Vision/Scope will ground everyone ion their

mission.

Related Topics

 Test Planning

 Vision/Scope Sample

References

Geoffrey Moore: “Crossing the Chasm”

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Test%20Planning%20Thumbnail.doc
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Vision-Scope%20in%20Word.docx

Customer Proxy Selection

Test Outsourcing

Summary

Sometimes the customer is not the one who will actually be doing the acceptance testing. They

might decide to rely on a third-party agent like a consultant or an outsourced testing lab to

serve to do the acceptance testing and report their recommendations.

Likewise, the supplier (the team who builds the software to be accepted), might decide to use a

test outsourcer to do readiness assessment of the software or service being delivered, just as if

it was the actual customer.

Known Aliases

 Proxy testing

 Outsourced testing

 Customer Proxy

When to Use It

It may be advisable to use a third party organization to do readiness assessment and/or

acceptance testing in the following circumstances:

 If you’re not sure what you should be looking for, a proxy may bring special technical

expertise (like a Subject Matter Expert in the area of Sarbanes-Oxley compliance).

 If you’re not sure what test techniques might be best to use during your acceptance

pass, a proxy can lend their skill and expertise in general Quality Assurance principles,

tactics, or test design.

 If you are short on internal resources, a proxy can provide the resources to conduct the

testing.

 If you’re worried about the relationship you have with the supplier may be too good

and you would have trouble providing honest and open feedback for fear of

jeopardizing the relationship, a test outsourcing lab can be used to provide the

feedback without such reservations.

 When your project culture is such that a third-party always checks the final release (e.g.

a beta program.)

Test Lifecycle Applicability

Encompasses the entire individual test lifecycle.

Risks Mitigated

The risks addressed include:

 Bugs not found because of lack of testing expertise.

 Bugs not found because of lack of testing resources (either people or specialized

hardware or software.)

 Bugs not found because of not simulating the behaviors of real users.

Limitations

 When outsourcing for resourcing reasons, the outsourcer may not have the experience

to truly behave like the real users.

How to Do It

There is much to consider when selecting someone to assess software on your behalf. Here are

five areas to consider:

Staff:

 How does the proxy (or proxy company) handle holidays, sickness, or people who leave

the project?

 Are there any visa ramifications for the proxy?

 Can you interview the staff who is assigned to work on the team? Can you pick the

team?

 Is the proxy assigned to you as a dedicated resource or do they rotate from project to

project?

 How does the proxy agency interview and hire testers?

 Are there projects that will compete for resources if you do not engage them every

day?

 How does the proxy train or educate their staff?

 Where does the agency find their testers?

 Can you see the resumes of testers?

Process:

 How would they handle your turmoil, like a re-org?

 Is it fixed bid or time-and-materials?

 What expenses or tools or resources are extra if this is not a fixed bid?

 How do they log hours and can you approve or deny what they log?

 To what granularity is time and work reported?

 How are tasks assigned?

 How are task assignments considered “complete”?

 To what extent can you change the scope of work as the project evolves?

 What is the escalation path for issues you have with their work?

 Who creates tests?

 How are they created?

 What will they deliver at the end of the project?

 If it’s iterative acceptance, what does their staff do if you’re not ready with a good build

that day?

 How does the proxy escalate issues?

 How transparent are their results? Are they shared, and how often?

Tools and Resources:

 What email will they use – their domain or yours?

 What version of Word or Office do they have? (i.e. Doc vs docx is a risk.)

 What access would you have into their network or what access into yours do they

need?

 How will you communicate? (video, VPN, email, wiki, IM, phone, VOIP)

 What tools do they use? Are there any dependencies on licenses?

 What kinds of machines, configs, IDEs, virtualization do they have?

Company-to-Company:

 Ask: “Why should we use your company vs. another?”

 Are they willing to visit your site?

 Have they done acceptance for this company before?

 Who’s on their intellect team – or what is their reputation?

 How do they manage exploratory testing (if applicable)?

 What projects or clients do they have that they can talk about?

 What do they need from you?

 What types of testing do they do?

Legal:

 What are the payment terms?

 Any foreign labor laws to recognize?

 Who owns the intellectual property that is produced as a result of this contract?

 What are their standard, boilerplate terms and conditions?

 Is there an NDA that they have that is different than ours?

 What does “done” mean? What are the stopping heuristics?

Examples

 <none>

Implementation Options

The test outsourcer may be engaged by the supplier organization to do readiness assessment or

by the customer organization to do acceptance testing.

Outsourced Readiness Assessment

The supplier of the software decides to engage a third party to test the software to ensure that

it is in good enough shape to show to the customer. The motivation may be primarily to avoid

embarrassment or it might be to augment resources and/or skills. Either way, the results of the

testing are used in making the readiness decision by the readiness decision maker. While the

results may be shared with the acceptance decision maker or the acceptance testers, it is the

development organization and not the customer who gave the test outsourcer the testing

mandate.

Outsourced Acceptance Testing

The customer who has commissioned the construction of a software-intensive system decides

to outsource the gathering of some or all of the data they require to make the acceptance

decision. The result may be shared with the supplier (development organization) in their

entirety or only that information required to substantiate any problems found.

Rationale

If you don’t have the resources or skills in house, you go outside. Someone is bound to have

them.

Related Topics

 Customer Proxy Selection is how we pick someone to represent the customer on the

supplier team.

References

Books:

 TBA

Online Resources:

 TBA

Risk Assessment

Summary

A whole-team exercise to identify things that could go wrong on the project and classify by

likelihood and impact to help prioritize the risk mitigation activities including, but not restricted

to, testing.

Known Aliases

 Risk Modeling

 Risk Assessment Workshop

When to Use It

Risk Assessment should be done initially fairly early in the project as part of defining the initial

project plan. The risks should be reassessed regularly, either when something significant

changes on the project or on a regularly scheduled basis. Major milestones are a good point to

reassess the risks.

Test Lifecycle Applicability

Outputs of the risk assessment exercise can be used to conceive tests; the risk assessment may

also be used when authoring or reviewing tests.

Risks Mitigated

The meta-risk of having unknown risks that could derail the project because they are not

consciously managed.

How to Do It

This may be the Agile Variation. If so, should there be a Large Project Variation?

Prepraration

Create wall chart with 3x3 matrix.

 Left side is annotated with Impact low/medium/high

 Bottom edge is annotated with Likelihood: low/medium/high

 Colour or pattern the Low/Medium, Low/Low and Medium/Low cells with green.

 Colour or pattern the High/Medium, High/High and Medium/High cells with red.

Brainstorming

Everyone is given a pad of post-it notes.

 1. Instruct everyone to think about "bad things that could happen on the project"

 * have them write them down on the stickies in 5 words or less using the sharpies

- I fear that could happen which could cause

 * allow about 10 minutes for the silent brainstorming

 2. Ask everyone to put the stickies up on the chart in the appropriate quadrant

 Impact:

 High=project could be cancelled;

 Medium=Cost or schedule overrun;

 Low=Would have to adjust the plans but wouldn't impact cost/schedule

significantly.

 3. Give everyone a few minutes to review the contributions of others; can write/post more

stickies if they think of anything.

Consolidation

Invite everyone to consolidate similar stickies into a single sticky

 * Announce "These two stickies (read them both) seem to be saying the same thing; does

anyone object to grouping them?"

 * Consider a new cover sticky for piles of consolidated stickies (Don't throw away consolidated

stickies; we want to acknowledge everyone's ideas; not discard them.)

 * Ask: "What potential event are we concerned about with this sticky? What might happen?" (

 * Explain: "We need to think in terms of events to to assess probability and impact".

 * For stickies that don't fit in any one consolidated pile ask: "Which of these other Risks might

cover this off? Is there any part of this that isn't covered by one of these? Is there another event

we should be worried about??" If not, put it into any one of the piles it could fit into.

Risk Assessment

Goal: Group consensus of probability / impact of each consolidated Risk.

Process:

 * Move all piles of stickies off the grid.

 * Pick up one pile, read the cover sticky and ask "How likely is this to happen?"

 * When the discussion results in a likelihood, hold it in the corresponding row and

ask "What would be the impact? Could it result in the project being cancelled?

 * Place the stickies in the corresponding square

 * Repeat for all the stickies.

Note: Some risks have a low impact on this project but may have higher impact on other projects

(e.g. subsequent projects.) Focus on the risk/impact on this project for now; the Project Manager

can communicate this risk to potentially impacted parties after the meeting.

Mitigation Planning

We now have a list of events. Discuss what will be done with the risks. The red cell risks need to

be addressed right away. The green cell risks can be more or less ignored by this team.

(Someone else may have a higher impact therefore they may want to do something about it on

another project.)

 * Optional: Discuss mitigation plans for the red cell risks.

Follow Through

The project manager should enter all the risks into the Risk Registry and track them. There may

be a need to revisit the risks as a team at various points in the project to reassess the likelihood &

impact or to add new risks. Any risks that impact other teams or future projects should be

communicated to the appropriate stakeholders.

Implementation Options

Large or Geographically Dispersed Projects

On large projects with many roles and role players, collaboration software and/or professional

facilitation may be required to ensure that everyone’s concerns are factored into the risk list.

Agile Projects

On agile projects composed of a single co-located team, the risk assessment session can be done

in a 1-1.5 hour meeting facilitated by the project manager, ScrumMaster or Agile Coach.

Rationale

In just an hour or two a large number of risks can be exposed and prioritized by the team. Doing

it as a team also helps ensure that everyone’s concerns are addressed which can help team

morale. Knowing that the risks will be reassessed on a regular basis can improve the team’s

confidence in their management. Group activities such as this can also help with team-building.

Related Topics

 Threat Modeling

References

Web resources:

 Gerard’s web site description of this practice

 A taxonomy of risks:

http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr06.93.pdf

 A checklist of common risks on software projects

http://www.dir.state.tx.us/eod/qa/risk/swrisk.htm

Books work checking out:

 Applied Software Project Management - by Andrew Stellman - 334 pages

 Risk Management in Software Development Projects - by John C McManus - 194 pages

 Quality Software Project Management - by Robert T Futrell - 1685 pages

http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr06.93.pdf
http://www.dir.state.tx.us/eod/qa/risk/swrisk.htm
http://books.google.com/books?id=IYdJocLVa8wC&dq=risk+list+software+project&pg=PP1&ots=zW55bqYm3n&source=citation&sig=bj1Ex65oAI2vcljZ_4OX9pB3oi4&hl=en&prev=http://www.google.com/search%3Fhl%3Den%26client%3Dfirefox-a%26rls%3Dorg.mozilla:en-GB:official%26pwst%3D1%26q%3Drisk%2Blist%2Bsoftware%2Bproject%26start%3D0%26sa%3DN&sa=X&oi=print&ct=result&cd=1&cad=bottom-3results
http://books.google.com/books?id=eyDiY7je_TQC&dq=risk+list+software+project&pg=PP1&ots=UEFNUeQgG0&source=citation&sig=4NyHFs2WDC-Xrj1SjtQoyk_AMJA&hl=en&prev=http://www.google.com/search%3Fhl%3Den%26client%3Dfirefox-a%26rls%3Dorg.mozilla:en-GB:official%26pwst%3D1%26q%3Drisk%2Blist%2Bsoftware%2Bproject%26start%3D0%26sa%3DN&sa=X&oi=print&ct=result&cd=2&cad=bottom-3results
http://books.google.com/books?id=YYFEqNz7oKcC&dq=risk+list+software+project&pg=PP1&ots=Qq2b0ImBJ6&source=citation&sig=bphOOfhoRc6d2GA6FRBFtIjkdqI&hl=en&prev=http://www.google.com/search%3Fhl%3Den%26client%3Dfirefox-a%26rls%3Dorg.mozilla:en-GB:official%26pwst%3D1%26q%3Drisk%2Blist%2Bsoftware%2Bproject%26start%3D0%26sa%3DN&sa=X&oi=print&ct=result&cd=3&cad=bottom-3results

Threat Modeling

Test Planning

Plans are nothing; planning is everything.

 – Dwight D. Eisenhower

Summary

Test planning is used to communicate to all stakeholders the kinds of testing that will be done,

who will do it, where it will be done and in what time frames. It describes the rationale behind

these decisions based on the project factors such as budget and milestone constraints, available

resources and people skill sets, terms of engagement, and the identified risks that need to be

addressed.

When to Use It

All projects however big or small require some level of test planning to be done. The plan may

be very lightweight (communicated verbally or drawn on a piece of paper) or formal (30 page

document) but it should exist nonetheless. It builds on the Test Strategy (which supplies the

“which kinds of tests” and “how to execute them” and ties them to the test objectives) by

providing additional details around who will do each activity whether it’s part of readiness

assessment or acceptance testing, in what test environments and in what time frames.

Test Lifecycle Applicability

The initial Test Plan should be prepared during the planning phase of the project lifecycle and

updated as more information becomes available; it should be a living document that reflects the

most current thinking about what acceptance testing needs to be and will be done.

The test plan transcends the Test Lifecycle Model in that individual tests are conceived,

authored, scheduled and executed based on the Test Plan.

Risks Mitigated

 The risks addressed include: The time allotted for testing has been consumed and the

quality assessors are not ready to report on the quality of the product.

 The customer loses confidence in your ability to deliver quality on schedule.

 Parties required for testing are not available when it comes time to test.

 A lot of effort is expended by different people running more or less the same tests

resulting in poor test coverage.

 Poor communication results in duplication of effort;

../Models/Test%20Lifecycle%20Model.doc

 Poor communication results in bugs caused by insufficient test coverage;

 Good ideas for testing activities are not followed up on.

How to Do It

The Test Plan builds upon the Test Strategy by filling details that the Test Strategy does not

provide. The test strategy determines the kinds of testing that will provide the best return on

investment and that will best mitigate the critical project risks.

INITIAL PLANNING ACTIVITIES:

1. If you haven’t already done so,

a. Prepare a Project Charter

b. Define your quality criteria including:

1. Code coverage metrics

2. Minimal pass rates

3. Minimal set of platform configurations to be tested

4. Para-functional objectives

c. Define your release plan and project milestones

d. Do a Risk Assessment

e. Determine your Test Strategy

2. Identify the environments (the “development and testing landscape”) that will be

available for testing.

3. Define the general strategy for applying code fixes and promotion of same through the

environments (the “development and testing landscape”)

4. Identify the specific resources (including third-party) who will be available for testing

and the timeframes of their availability.

5. Define the process for resolving disagreements between the Supplier team members

and the Customer team members.

6. Decide which kinds of project milestones will have testing associated with them. (See

Implementation Options.)

7. For each milestone (or possibly kind of milestone), decide:

a. Which of the kinds of testing will be done (in scope) and what kinds will not be

done. (These should have all been laid out in the Test Strategy.)

b. How many test cycles will be conducted and how long each cycle will be.

c. Decide which kinds of testing will be done in each test cycle.

d. How much resources (and possibly who) will be allocated to the testing in each

test cycle.

1. Identify any external parties that will be needed during testing.

e. What environment(s) the testing will be conducted in for each test cycle.

f. What kinds of test result recording will be done

g. What kind of test result reporting will be done

h. How will the test execution progress be reported

i. What kind of concern tracking and resolution will be done.

j. Estimate the effort and/or cost of testing (optional)

k. Determine triage criteria

1. What kind of bugs need to be fixed and how quickly

2. What kind of bugs do NOT need to be fixed

l. How quickly will fixed bugs be re-tested

8. Communicate the plan to all stakeholders including

a. Supplier Team members

b. Customer Team members

c. Subcontracting parties

d. Business Sponsor, Advisory board, Steering Committee, etc.

ONGOING ACTIVITIES:

9. Monitor changes in the project context, risk assessment and test strategy; update the

test plan as needed.

10. Monitor test execution and update the test plan if any changes are required including:

a. additional kinds of testing

b. additional or fewer test cycles

c. changes in the kinds of test automation to be used

d. changes to the resources

e. changes to the projected release date

f. changes to the release contents (MCR)

g. changes to the release quality bar (MQR)

h. changes to budgets

i. amendments to the contracts

Implementation Options

Test Planning can specify the testing to be done at different kinds of project milestones.

Waterfall projects typically have a single set of test cycles planned for after all the software is

complete. Some projects will plan for earlier Alpha and Beta releases with their own test cycles.

Incremental delivery projects will have several releases with more and more functionality. Each

of these releases will have testing cycles associated with them. Agile or highly iterative and

incremental projects may also do Incremental Acceptance Testing either within the iterations or

at the end of each iteration.

Release Testing

…

Milestone Testing

e.g. Alpha, Beta releases

… Testing to a lower MQR and/or MCR.

Iteration Testing

E.g. Somewhat agile

…

Incremental Testing

E.g. fully agile

…

Rationale

Related Topics

The following practices directly relate to test planning

 Risk Assessment

 Test Strategy

 Test Automation

In addition, the test plan may list specific kinds of testing. See the thumbnails section for a

description of each of these test practices.

References

Books:

Online Resources:

 http://www.tbs-sct.gc.ca/emf-cag/acceptance/outline/atpo-vper_e.asp

 http://www.klariti.com/templates/Acceptance-Test-Plan-Template.shtml

http://www.tbs-sct.gc.ca/emf-cag/acceptance/outline/atpo-vper_e.asp
http://www.klariti.com/templates/Acceptance-Test-Plan-Template.shtml

Test Estimation - Testing

Summary

How do you know how much time to plan for readiness or acceptance testing? This is one of the

hardest questions in software development to answer because it depends on so many different

project factors.

We must have estimates of how long it will take to execute tests in order for us to define

delivery dates and other milestones. We also need to know the rough effort involved in a

particular kind of testing to be able to make the strategic decisions about which kinds of testing

will give us the best ROI.

Known Aliases

 <none known>

When to Use It

Whenever project stakeholders need to know how long the testing effort might take or what it’s

cost or impact will be on the project.

Test Lifecycle Applicability

Applicable to the Test Planning phase of the project lifecycle.

Risks Mitigated

The risks addressed include:

 Project costs could be underreported

 Readiness assessment would not be done in time for the scheduled start of acceptance

testing.

 Customer could be confused as to when to schedule their acceptance testing

How to Do It

1) Determine your test strategy based on the project factors, product characteristics, risk

assessment, etc.

2) For each of the kinds of testing that you have decided to do, decide how much time &

resources to allocate to it to get a reasonably good probability of finding enough of the

bugs based on your quality objectives.

3) Decide what order the test execution should occur in. Are there some tests shouldn’t be

done until other tests have been successfully executed? For example, scenario testing

might be better executed after automated regression testing.

4) Decide how many cycles of testing & rework (bug fixing) you expect will be required to

get to the required quality levels.

5) For any test activities that can happen before the test cycles start, decide how much

time/resources to spend on them. This would include things like:

a. Preparation of the test bed

b. Automation of any test scripts need to support manual testing (fixture setup,

teardown,

c. Preparation of any test oracles

d. Construction of any automated tests that will be run during the test cycles.

6) Consider why you are doing this estimation:

a. To plan the limited resources you have.

b. To build confidence from stakeholders in your leadership.

c. To flush out risk of meeting a targeted date.

d. To know how to task your staff and resources.

e. Because it’s always been done (culture).

7) Second, what are you trying to estimate? That is, define the scope of the work you are

trying to estimate. For example, you may be trying to measure:

a. The time it takes to run a test.

b. The time it takes to run a suite of tests.

c. The time it takes to automate a test.

d. The time it takes to automate all tests that can be automated.

e. The time it takes for that automation to run and be effective.

f. The time it takes to finish “smoke testing” and move into readiness.

g. The time it takes to finish readiness assessment and move into acceptance

testing.

h. The time it takes to execute an acceptance pass.

i. The time it takes to retest after a round of fixes.

Test expert Michael Bolton (Developsense.com) recommends these factors to consider in

estimating:

1) Product history (if you have it)

2) Developer numbers

3) Developer skill

4) Developer availability

5) Tester numbers

6) Tester skill

7) Tester availability

8) Availability of information about the project

9) The current project schedule

10) The current budget

11) The type of product to be tested

12) Whether anyone else has tested it

13) Whether it is a new product

14) Whether there will be platform variation

15) What kinds of platforms are targeted (how much work is going to be done by the

platform vs. the application)

16) Testability of the product

There’s also:

1) Skill and experience of testing staff

2) Number of testing staff

3) Complexity of features

4) Stability of product

5) Test approach used (e.g. Exploratory, Scripted, Automation)

6) Test techniques used (e.g. Scalability, Reliability, Stress, Performance, Load, etc)

7) Whether there are external dependencies (e.g. test outsourcing)

8) Access to resources (test machines, test tools, licenses etc.)

9) Development technologies being used

10) Testing culture or process culture

Implementation Options

There are several philosophies of test estimation. In strictly time-boxed testing we define the

number of test cycles and the duration of each test cycle and strive to get the maximum testing

value from it by picking the highest value activities.

In Test Coverage-boxed testing we define the minimum level of test coverage required (either

code coverage, functionality coverage, and/or technique coverage) and figure out how long we

expect it to take. That is how much time we give ourselves.

Agile Time-Boxed – Define the time frames & resources as above, then, while executing, decide

whether it is enough or if it needs another cycle.

EXAMPLE:

Estimating exploratory testing effort

Exploration can be done in sessions (time-boxed testing effort) using a method called Session-

Based Test Management to help you estimate how long the testing effort might take.

Each session is approximately 90 minutes of testing effort toward a charter or mission

statement for the tester to follow. During the session, the clock is running just like in a therapy

session, but testers use their judgment about how much time they really need to accomplish the

mission. They can decide to go longer or finish earlier – it all depends on whether they feel they

have fulfilled the charter.

At the end of the session, the tester reports how much of the session they spent doing three

activities: S, T, and B:

(S): Session Setup – planning and preparing for the mission to be executed;

(T): Test Design and Execution – running tests that occur to them as they explore; fulfilling the

mission, covering feature areas;

(B): Bug Investigation and Reporting – Stopping when you find a problem and taking time to

uncover it, as well as the time it takes to report the problem to stakeholders (usually in the form

of a bug report);

At the end of the session, the tester gives their gut feeling of how much session time they spent

in each of these three areas and writes it in the session reports as percentages that must add up

to 100.

For example, S=50%, T=20%, B=30% tells management that half of this session was spent on

activities that might have included writing the session report, installing builds, obtaining

materials, loading drivers, preparing configurations, etc.

Since this is exploratory testing, there is allowance for the tester to take meaningful distractions

if they find a bug that is not in furtherance of the charter. The time the tester spends

investigating an area they found a problem in, but is not within the charter is called

“opportunity time.”

An estimation paradigm for doing testing in this way, looks like this:

1) Take the amount of perfect sessions (100% on-charter testing, with no opportunities

taken in a session) that it took to do one cycle -- (let’s say 40)

2) Calculate how many sessions that a team of 4 testers can do per day -- (let’s say 3 per

day, per tester = 12)

3) How productive are the sessions? -- (let’s say 66% is on-charter “T” time (Test Design

and Execution)

4) Our estimate becomes 5 days to run the next cycle, calculated from: 40 / (12 * .66)

This estimate is based on the data from the first cycle. If any conditions based on this estimate

change, simply update the estimate.

For the first week, figure about two sessions per day per tester because of the learning curve to

do exploration in this way. It takes practice.

Related Topics

 Function Testing

 Para-functional testing

References

 http://www.quardev.com/articles/exploratory_testing

 http://www.satisfice.com/sbtm/index.shtml

 http://shrinik.blogspot.com/2008/05/mission-test-estimation-model.html

 http://blogs.msdn.com/deepak_mgsi/default.aspx

 http://blogs.msdn.com/alanpa/archive/2008/05/29/test-estimation.aspx

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Functional%20Testing%20Thumbnail.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Para-functional%20Testing%20Thumbnail.doc
http://www.quardev.com/articles/exploratory_testing
http://www.satisfice.com/sbtm/index.shtml
http://shrinik.blogspot.com/2008/05/mission-test-estimation-model.html
http://blogs.msdn.com/deepak_mgsi/default.aspx

Test Estimation - Automation

Done-Done Checklist

Summary

Different parties in a project may have different definitions of what “done” means. Developers

usually mean “I’ve finished coding” while customers have higher expectations such as “It works

and it has been thoroughly tested.” A done-done checklist makes the customer’s expectations

clear to everyone on the project. When all the criteria on the Done-Done list are met, the

software is truly ready for acceptance testing.

Known Aliases

 Done List/Checklist

 Feature Completion List/Checklist

When to Use It

A done-done checklist can help a delivery team and a customer set expectations and have a

clearly defined way of communication the state of a feature or release. It is recommended on

all projects.

Test Lifecycle Applicability

Applicable to the project before the testing lifecycle when the checklists are created, and during

Assessing phases of the test lifecycle. It helps clarify the definition of “readiness” when making

the readiness decision (see the Decision-Making Model.)

Risks Mitigated

The risks addressed include:

 Delivery of features that do not meet the customer’s expectations.

 Miscommunication of feature and project status or readiness

How to Do It

Creating a Done-Done List

1. Get the customer and the delivery team together to brainstorm and discuss the done-

done lists.

2. Brainstorm the expected quality attributes of the system that would make it acceptable

3. Brainstorm the quality attributes that would make the system unacceptable.

4. Organize the resulting items into

a. a list that applies to the entire product

../Models/Decision-Making%20Model.doc

b. a list that applies to each feature individually

5. Determine which items must be there for the software to be acceptable, and remove or

explicitly mark optional items

6. Publish or post the completed lists so the team and the customer can review the lists as

needed

Using a done-done list

1. During readiness assessment of an individual feature, ensure that it meets the criteria

set forth on the per feature done-done checklist.

2. When conducting readiness assessment for a release of the product, ensure that all the

criteria set forth are met before releasing the software to acceptance testing.

Implementation Options

There may be several done-done lists for different types of deliverables, for example features

may have a done-done list, and releases may have a different and complimentary done-done

list. The supplier organization may also have other criteria such as development standards which

are in addition to the criteria supplied by the customer.

Feature-Level Done-Done Checklist

The list of criteria that must be met by each feature before it is considered ready for acceptance

testing by a customer. This checklist is particularly applicable when doing Incremental

Acceptance Testing.

Release-Level Done-Done Checklist

The list of criteria that must be met by a software release before it is considered ready for

acceptance testing by a customer. This checklist is applicable on all projects that do Customer

Acceptance Testing for an entire release4.

Development Standards

Development standards are the rules that anyone involved in software development must

follow. These are typically self-imposed by the development organization as a way to ensure

consistency and quality at a level invisible to the customer. They are often maintained as a

separate list from the Done-Done Checklist simply because the customer doesn’t care about

them.

4 Probably applies to 99% of projects as even Agile projects that do incremental testing typically

do some form of “final” acceptance testing of the entire product after all the functionality is

ready to release.

Related Topics

 Feature Level Done-Done Checklist Sample

 Development Standards Sample

 Release Level Done-Done Checklist Sample

References

Books:

 TBA

Online Resources:

 TBA

../Samples/Global%20Bank%20Customer%20Done%20List.docx
../Samples/Global%20Bank%20Customer%20Done%20List.docx
../Samples/Global%20Bank%20Customer%20Done%20List.docx

Test Strategy & Test Pre-factoring

Summary

Testing is all about reducing the risk of delivering substandard software. Testing will never prove

that software works in all situations but it can certainly point out when it is not good enough.

There is a diminishing return for each additional dollar spent on testing. A test strategy defines,

at a high level, the kinds and amounts of testing that will be done to maximize the return on

testing investment while minimizing the risk of delivering substandard software.

Known Aliases

 Test Prefactoring

When to Use It

Every project has some sort of test strategy which may or may not be explicitly communicated.

Any project that delivers non-trivial software should consciously decide how to spend its testing

budget by defining a test strategy. It should do it early enough that the system under test can be

designed to support the kinds of testing chosen by the test strategy.

Test Lifecycle Applicability

A test strategy is defined early in a project and refined as the project executes. It transcends the

test lifecycle.

Risks Mitigated

The risks addressed include:

 A lot of effort is spent testing yet many bugs are not detected.

 The time allotted for testing has been consumed and the quality assessors are not ready

to report on the quality of the product.

How to Do It

Defining a test strategy is a complex affair that is hard to reduce to a list of steps. Consider the

following as “a list of things to consider” rather than a recipe to follow.

1. Identify the project risks (see Risk Assessment.)

2. Focus on the software quality risks (risks related to specific kinds of defects in the

product.)

3. Identify the kinds of activities (probably testing, but it could be other kinds) that could

reduce the likelihood of these kinds of defects going undetected.

4. Determine whether the risk is one-time or an ongoing risk

5. For ongoing risks:

a. Decide how important it is to mitigate them

b. consider the use of automated regression testing as “bug repellant.”

6. For one-time risks:

a. Classify nature of the risk: Lack of clarity, lack of certainty, technical uncertainty,

schedule/effort uncertainty

b. For “lack of clarity” risks, consider activities that improve communication such

as Acceptance Test Driven Development

c. For lack of certainty” risks, consider activities that “buy information” such as

Product Prototyping and Usability Testing.

d. For “technical uncertainty”, consider technical prototyping

e. For schedule/effort uncertainty, consider ???

7. Look for ways to mitigate risks by doing things earlier

a. E.g. Incremental Acceptance Testing

8. Rank the proposed testing activities based on the degree to which they mitigate the

risks; for activities that mitigate the same risks pick the ones that provide the best ROI.

9. Consider the ROI curve for each kind of activity. Where does the incremental ROI start

to drop off more quickly? (The law of diminishing returns.)

10. Consider the kinds and numbers of resources you have available. What kinds of testing

do they know how to do? What kinds could they be expected to learn on this project?

(Don’t forget the developers; they can test, too!) What kind of tools would be

appropriate for them to use? (Developers: programming tools. Users: word processing

tools. Etc.)

11. Consider the effectiveness of various practices for finding different kinds of bugs.

12. Consider testing at different levels of granularity of system under test: Unit tests are

much easier to write and automate. Tests through a user interface are the hardest to

automate, the slowest to execute and the most fragile. Principle: Test behavior at the

smallest level of granularity possible.

13. Consider the 3 purposes of tests (Bug detection, bug repellent, bug prevention/

requirements documentation.) and how the techniques you are considering support

each goal. E.g. ATDD supports both Req’ts Doc’n and Bug Rep. but not Bug Det.)

Implementation Options

TBD

Rationale

All projects have a defacto test strategy in that they have chosen to do specific testing related

activities. Often, the strategy is strongly influenced by the selection of a tool (e.g. a Recorded

Test tool such as QuickTest) or an organization decision (testing will be done by the QA

department.) These kinds of decisions may “box us in” by implicitly labeling some kinds of

testing activities as “non-standard” and therefore “non-compliant.”

As a rule, it is better to make a decision consciously based on the best available information

(some of which it may take some effort to find) than to be backed into a decision through

abstention. Choosing the kinds of testing to be done, and the degree to which each is taken, is a

strategic decision because it can have a large impact on the quality of the product and the cost-

effectiveness of testing. Choosing it early enough is crucial to ensuring the system is designed

for testability.

Related Topics

 Functional Testing

 Parafunctional Testing

 Design-for-Testability

 Test Automation

 Acceptance Test Driven Development

 Incremental Acceptance Testing

 Usability Testing

 Risk Assessment

References

Books:

 Testing Computer Software by Cem Kaner, Jack Falk, Hung Q. Nguyen, 2/e

 “xUnit Test Patterns” Chapters on “Test Strategy” and “Design for Testability”

Online Resources:

Requirements Discovery

Summary

Requirements drive the functionality to be delivered. Requirements may be explicit, stated

expectations of a user or customer – the desires for functions that solve some kind of problem

or set of problems – but they may also be implicit, assumed and unstated.

Known Aliases

 Customer Intake

 User Profiling

 Joint Application Design

 Requirements Analysis

 Requirements Engineering

 Requirements Elicitation

When to Use It

Requirements can emerge any time throughout a project, but conventional wisdom is that the

sooner requirements are known, the cheaper the project will be and the more likely it will be

accepted.

Test Lifecycle Applicability

This activity is most applicable before the conception phase of the test lifecycle.

Risks Mitigated

If requirements aren’t determined:

 The customer could be disappointed at the features delivered

 The supplier could build the wrong set of features

 The customer could refuse the product

 Expensive re-work could be needed

Process Applicability

All process models seem to involve the discovery of requirements, but the choice of

requirements artifacts produced, the level of detailed contained within and the timing of when

the requirements are discovered, flushed out, and documented varies greatly by process

implementation.

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Models/Test%20Lifecycle%20Model.doc

How to Do It

Here are some ways for requirements to emerge:

1. Determine who your customer is

2. Determine who the end user is

3. Be able to explain the difference (if any) or relationship between the two

4. Ask them about:

a. Needs

b. Wants

c. Pain points

d. Problems they need to solve

e. History of the problem

f. What success looks like

g. Who else would be good to talk to

5. Capture their requirements in some form

Implementation Options

Requirements-gathering is a large topic with many implementation options. There are many

methods of discovering and documenting requirements. There is a school of thought that simply

gathering requirements is insufficient; the product needs to be designed to solve the users’

needs and the act of product design requires significantly different skills than the act of

software design.

Ways to Document Requirements:

Requirements may be documented in various ways and to various degrees of detail. The bare

minimum is to document enough information for planning purposes. Beyond that, the decision

to document in more detail or less is dictated by the process model being used. Agile projects

tend to capture less detail in written form while document-driven projects tend to capture

requirements in great detail. Some of the specific forms of requirements documentation

include:

 Use Cases – Documents all the ways to achieve a specific user goal

 User Stories – An “IOU for a conversation” about a specific usage scenario

 Functional Specification – A structured document describing the various capabilities the

system will provide

 Functional Tests – In Acceptance Test Driven Development, the requirements are

provided in the form of sample test cases.

 Feature List – A list of capabilities provided by the system

 User Interface Story Board – Thumbnails of the main screens and how one navigates

between them.

This list is far from complete. The artifacts from this list may be used alone or in combination.

Strategies for Discovering Requirements

Requirements may be discovered using one or more strategy:

1. Ask the users what they want

2. Watch the users using existing systems to determine what they really do

3. Model the business processes (“as is” and “to be”) to determine what the users really

should be doing

4. Propose designs and ask the users for their feedback

5. Propose designs and have the users try to use them

Activities to Flush Out Requirements:

Here are some alternate ways to find requirements or flush out expectations:

Asking Users What They Want

 Look at competing products and ask your stakeholders if those features are needed

 Ask open-ended questions

 Create a survey to the general audience for the product

 Involve people from past projects

Discovering Needs Through Observation:

 Look at retrospectives from past projects

 Examine the backlog from a previous project or iteration

Discovering Needs Through Business Modeling:

 Look at market trends and demands

 Build models of the business process and which systems will be used to automate or

assist with each step

Discovering Needs Through Design Feedback:

 Show the user or customer a prototype and let them comment

 Suggest what kinds of features may be designed to solve the problem and let them react

 Advertise the proposed features to an email alias

Discovering Needs Through Testing:

 Watch them use the product (playtest, usability test) and let them comment

 Involve them in development and readiness

 Involve them in a beta release

 Involve them in incremental releases in the form of an advisory board or Early Adopter

Group

 Try a deployment pilot or “dry run”

Kinds of Requirements

The requirements can broadly be divided into two broad sets:

1. Functional Requirements describe the functionality to be provided by the system to its

users and stakeholder.

2. Para-functional Requirements describe those requirements that cut across the specific

functionality being delivered. These include concerns such as security, scalability,

reliability and a host of others.

Rationale

The more we can learn about the potential users’ and stakeholders’ needs the more likely we

are to build an acceptable and useful system.

Related Topics

 Use Case Modeling

 User Stories

 Functional Tests

 Para-functional Tests

 Acceptance Test Driven Development

 Product Design

 System Model:

o Functional Requirements

o Para-functional Requirements

References

 “Requirements Engineering: A good practice guide”, Sommerville & Sawyer, Wiley 1997

Use%20Case%20Modelling%20Thumbnail.docx
User%20Stories%20Thumbnail.docx
Functional%20Testing%20Thumbnail.docx
Acceptance%20Test%20Driven%20Development%20Thumbnail.docx
../Models/System%20(Under%20Test)%20Model.doc

 Software Requirements: Practical techniques for gathering and managing requirements

throughout the product development lifecycle”, Wiegers, Microsoft, 1999

 “Just Enough Requirements Management”, Davis, Dorset House, 2005

 “Software Requirements: Objects, Functions, and States”, Davis, 1993

 “Requirements Engineering: Frameworks for understanding”, Wieringa, Wiley, 1996

 “User-Centered Requirements Analysis,” Martin, Prentice Hall, 1988

 Exploring Requirements: Quality Before Design. by Donald C. Gause & Gerald Weinberg

Dorset House, 1989.

User Modeling

TBW

User Stories

Summary

User stories are a way to manage highly-incremental development. They are used as the unit of

project planning instead of the activities in a work breakdown structure (WBS) used by more

traditional project management techniques. Therefore they are sometimes called the feature

breakdown structure (FBS). User stories consist of three parts: the story card, the conversation

between the customer and the development team, and the Confirmation – the set of

acceptance tests that must pass before the story is considered done.

Known Aliases

 Feature (Feature-Driven Development)

 Product Backlog Item (Scrum)

When to Use It

User stories can be used in place of use cases or heavy requirements specifications when doing

highly-incremental development. Because the story cards are merely a “promise for a later

conversation”, the customer (or their proxy) must be readily available for the conversations in

which the detailed requirements are communicated orally and which lead to the definition of

the agreed-upon list of acceptance tests.

Risks Mitigated

The risks addressed include:

 Stale requirements specifications

 Misinterpretation of requirements

 Implicit acceptance criteria

Process Applicability

User stories are rarely used outside agile projects because user stories do not include detailed

descriptions of the functionality to be developed (they are merely “a promise for a

conversation”.) In theory, user stories could be used in any style of development process

however the practices surrounding the stories would need to be extended to include much

more detailed documentation.

User stories can be used in conjunction with use cases. The use cases provide the detailed

descriptions of the functionality while the user stories are used to plan the implementation of

the use cases starting with the simplest possible success scenario and adding alternate scenarios

in subsequent user stories. User stories can also be used to drive the preparation of the use

cases to help avoid “analysis paralysis.”

How to Do It

User stories are usually much smaller (more granular) than the requirements typically written in

more traditional requirements documents or use cases. This is because each story should only

take a few days (at most) to implement and test. (See the INVEST criteria below.) The collection

of user stories planned for an interation is often called the “iteration backlog” (or “Sprint

backlog” in the SCRUM methodology). The list of all stories yet to be implemented may be called

the “project backlog” or Product Backlog (in Scrum.)

User stories must be independently testable. Good user stories are small and very concrete;

they may correspond to a single or several test scenarios but rarely many more than that. Too

many test scenarios is usually a symptom of the stories being to large in granularity.

The user stories are used as follows:

1. The customer comes to the supplier with some notion of what they want the system to

do for them. This may include sample usage scenarios or user stories.

2. The customer and supplier work together to create a more complete list of user stories

that describe how users interact with the system. Users can be actual end users of the

system, components of the system, administrators, operations, etc. There are many

templates that can be used for user stories, including:

a. A user <takes some action> and <sees some result>.

b. “As a <type of user>, I want <some goal> so that <some reason>.” [MCBlog]

The customer and supplier should decide on a template that works for them and work

together to create the product backlog.

3. The customer prioritizes the list of user stories and decides what constitutes the

Minimal Credible Release. The release is divided into a predefined sequence of

development iterations.

4. The customer and supplier have a conversation about the most important user story on

the backlog, discussing the requirements in depth and creating acceptance tests for the

story. This conversation may cause the creation of other user stories that are added to

the backlog.

5. The supplier implements the user story, ensuring that the acceptance tests pass and

discuss with the customer any issues or assumptions they encounter in the process.

6. The supplier demonstrates the user story to the customer.

7. The customer does whatever acceptance testing they feel is necessary to decide

whether the software is acceptable. Any concerns that come up are discussed with the

supplier. Critical issues may need to be fixed before acceptance while less critical issues

may be rolled into new or existing stories in subsequent iterations.

8. The team goes back to step 3, and repeats the process until the customer determines

that enough features are done to release the software or until the backlog is empty.

User stories should satisfy six key criteria; they should be [WWB]:

 Independent

 Negotiable

 Valuable (to the business)

 Estimatable (small enough; well understood)

 Small (enough to fit into a single iteration)

 Testable

Implementation Options

Often times, a team doing iterative development will discuss several stories with the customer

during iteration planning, and deliver several stories per iteration.

Card-Based Story Management

When teams are collocated in a team room or in adjacent offices, user stories may be managed

using index cards or post-it notes stuck to a wall or whiteboard in the team room. Some teams

prefer to start out with the stories in a spreadsheet to facilitate sorting and summing of

estimates and then write up the story cards as a prelude to the iteration planning meeting

(IPM.)

Software-Based Story Management

When teams are geographically dispersed, the user stories may need to be stored in a

respository that can be accessed from all locations. This could be as simple as a spreadsheet or

as complex as a requirements management tool. Iteration planning meetings that use the

software sometimes suffer from lack of attention as they tend to be much less participatory

than meetings held using cards.

Rationale

User stories describe self-contained and independently testable chunks of customer-valued

functionality that are particularly amenable to being built in just a few days of software

development.

Related Topics

 Use Cases are a way to describe the requirements in more detail

 Acceptance Test Driven Development is often used with user stories

 Functional Specifications are another way to describe the requirements in more detail

References

Books:

 [MC05] User Stories Applied by Mike Cohn

Web References:

 *MCB+ Mike Cohn’s Blog - http://blog.mountaingoatsoftware.com/?p=24

*WWB+ William (Bill) Wake’s blog description of the INVEST acronym:

http://www.xp123.com/xplor/xp0308/index.shtml

 *JA+ “Managing the Bootstrap Story in an XP Project” describes ways to make the first

story smaller while still providing customer-recognized value. Jennitta Andrea,

http://www.agilealliance.com/show/886

 *GM+ “Using Story-o-types to Right-Size User Stories”, Gerard Meszaros,

http://storyotypespaper.gerardmeszaros.com/

Acceptance%20Test%20Driven%20Development%20Thumbnail.docx
http://blog.mountaingoatsoftware.com/?p=24
http://www.xp123.com/xplor/xp0308/index.shtml
http://www.agilealliance.com/show/886
http://storyotypespaper.gerardmeszaros.com/

Use Case Modeling

Summary

Use case modeling is a way to describe the functional requirements of a software-intensive

system. It focuses on the goals of what the system’s users would like to achieve while using the

system and what the system needs to do to help them achieve the goals.

Known Aliases

 Use Cases

When to Use It

Test Lifecycle Applicability

Use Case Modeling is typically done before the tests are conceived. Each scenario of a use case

may turn into one or more test scenarios or test cases.

Risks Mitigated

The risks addressed include:

 Implicit customer requirements

 Missed requirements due to lack of structure.

 Insufficient test coverage due to lack of understanding of the requirements

Process Applicability

Use case models are normally prepared during the requirements analysis phase of a document-

driven project. They are used as input into the design phase of the project.

Some agile projects find it useful to do lightweight use case modeling in conjunction with using

user stories for planning the work.

How to Do It

Use case modeling is an art that can takes years to learn. Therefore, it is typically done by a

business analyst who interviews the customer about their needs and then retires to the safety

of their cubicle or office to build the use case model. The rough sequence of activities is:

1) Identify the various actors (user roles) that will interact with the system.

2) Identify the user goals of each of the actors; what are they trying to achieve.

3) Optionally, organize the goals into different levels: strategic, user goal, sub-function5.

Use “why?” and “how?” to find missing use cases at higher or lower levels.

4) For each major goal, define a use case to help the actor achieve that goal.

5) Define the steps required to achieve the goal when nothing out-of-the-ordinary

happens. This is known as the “success scenario” or “happy path” of the use case. Each

step should clearly state whether it is done by the system or the user.

6) For each use case, identify the things that could possibly go wrong.

7) For each thing that could go wrong, decide whether the use case fails immediately or

that extra steps will be taken to try to achieve the user goal.

8) For each step that could be done in more than one way (e.g. by e-mail, phone, postal

mail, etc.) define how the decision is made and what happens in each case.

Alistair Cockburn also recommends [AC] identifying all the stakeholders (non-users) of the

system and cross-checking the use cases against their interests as follows:

1. Identify stakeholders

2. Identify any concerns or interests of each stakeholder.

3. Review each step of each use case looking for situations where the interests of the

stakeholder may be compromised. When a situation is found, add additional steps to

the use case to address their concern.

Implementation Options

Analysis Phase

On phase-driven (waterfall, Tayloristic, plan-driven) projects, the use cases may be written

during the requirements analysis phase. The use cases may need to be signed off by the

customer.

Incremental Analysis

Projects that deliver functionality incrementally may choose to model the use cases

incrementally as well. The initial use case model may consist only of the names of the strategic

(high-level) use cases. As various parts of the functionality are defined in more detail, the use

cases are drilled down to user goal user cases. As the various exceptions and variations are

identified and planned for development, additional steps and branches are added to the use

case descriptions. Alistair Cockburn identifies 4 useful increments per use case:

5 A user does not want to log in to a system; it is merely a necessary precondition to be logged in

before they can achieve their real goal. Therefore, Log In To System is a sub-function level use

case and not a user goal use case.

1) Actor’s name and goal

2) A brief, or the man success scenario

3) The extension/exception conditions

4) The extension/exceptions steps

Rationale

Use case modeling is a more rigorous process than writing a functional specification in free form

text or simple lists of requirements. The process of identifying the use cases and writing the

descriptions has a set of well defined heuristics which can typically avoid missing important

variations in the requirements. The irony is that while use cases are intentionally written in

natural language, most customers are not very comfortable reading them.

Related Topics

 User Stories

 Writing Functional Specification

 Specifying Functional Requirements

 Abuse Cases

References

Books:

 *AC+ “Effective Use Cases” by Alistair Cockburn is the definitive description of how to

build good use case models. Alistair deals with many issues that are ducked by other

authors of books on use cases. His metaphors for scope (Business, Department, System,

Subsystem), levels (Cloud, Kite, Sea-Level, Fish, Clams) and scenarios vs. goals (the

striped trouser model) are essential for understanding how to build a well-crafted use

case model.

Web Resources

 A much shorter treatment of the topic is available at

http://alistair.cockburn.us/index.php/Structuring_use_cases_with_goals

 Alistair’s template and advice for filling it in incrementally:

http://alistair.cockburn.us/index.php/Basic_use_case_template

http://alistair.cockburn.us/index.php/Structuring_use_cases_with_goals

Product Design

Summary

A software application (or intensive system) should be thought of as a product, whether it is

built for an internal “customer” or for a target market that will actually choose to buy it. Product

Design is the process by which the product is engineered to meet the needs of the target users.

Known Aliases

 UxD

 Usage Centered Design

 User Centered Design

 Joint Application Design (JAD)

 Rapid Product Design (RAD)

When to Use It

Product Design should be done on any non-trivial software-intensive system where usability of

the system will affect user productivity or market penetration.

Test Lifecycle Applicability

Precedes the conception phase of the test lifecycle.

Risks Mitigated

The risks addressed include:

 Discovering that the product as built does not really meet the customer’s needs

despite being exactly what the customer asked for.

How to Do It

The exact set of steps varies depending on the design methodology chosen. However most

methods include some variation on the following steps:

1. Understand the potential users of the product and the environments in which they

would use it.

a. Document the users as actors, user roles or personas.

2. Understand what the users would want to do with the product.

a. Capture the needs as a collection of user tasks or concrete use cases.

3. Propose an initial design that may meet the needs of the users.

../Models/Test%20Lifecycle%20Model.doc

4. Set up a usability lab to test the design with real users or the closest approximation

to which you have access.

5. Conduct the usability test and record the findings.

6. Prioritize the findings based on potential return on investment (impact vs. cost)

7. Implement the highest ROI items to recycle the design as appropriate.

8. Retest the new design.

9. Repeat until either out of time or the incremental ROI has reached the point of

diminishing returns.

Implementation Options

There are a number of different competing methodologies for product design.

They include:

User-Centered Design

Model the users as personas that describe rich detail about their backgrounds. Give the

personas cute names that remind team members about their key characteristics. E.g. Crusty

Calvin is a retro-grouch who is forced to use a new application against his will.

Personas are intended to evoke images of real people. Much of the detail is extraneous but may

help team members build a mental image of the users.

Usage Centered Design

Model the users as user roles that focus on how the users interact with the system. Give the

user roles names that describe what they are trying to achieve and the mindset they may be in.

E.g. A Harried Order Entry Clerk will use the system to enter orders under extreme time

pressure.

We focus on the users’ specific goals and mindset avoiding extraneous details. This helps team

members focus on what is important but may leave the users appearing somewhat abstract or

sterile.

Joint Application Design (JAD)

Conduct a series of workshops with customers and technical team members. Strive to

understand what the customer is asking for and work together to define the software-intensive

system that will meet those needs.

Business Process Analysis

Analyze the existing processes of the business to determine what steps of the process are

candidates for automation. Define a software application that automates those steps keeping

the surrounding business process in mind to avoid suboptimal solutions.

Rationale

A customer often asks for the same system they already have, possibly with some technology

upgrades. Delivering this may satisfy the customer but it will rarely delight them. Thinking about

a software-intensive system as a product helps to change the mindset from building whatever

the customer asks for to discovering what they truly need even if they themselves didn’t realize

it. The artifacts that come out of the product design process can help the entire team

understand what is being built thereby preventing tunnel vision and suboptimal solutions.

Related Topics

 Ethnographic Research

 Usability Testing

 Use Case Modeling

 Requirements

References

Books:

 “Software for Use” Constantine, Larry & Lucy Lockwood

 “User-Centered Design Stories: Real-World UCD Case Studies”, Carol Righi and

Janice James

 “Usability Engineering” by Jakob Nielsen

 “Design of Everyday Things” by Dan Norman

 Buxton, W. Sketching User Experiences: Getting the Design Right and the Right

Design Morgan Kaufmann, 2007

Online Resources:

 http://www.foruse.com/articles/beyond.pdf

Usability%20Testing%20Thumbnail.doc
Use%20Case%20Modelling%20Thumbnail.docx
Requirements%20Thumbnail.doc

Testing Functional Requirements

Summary

When stakeholders think of acceptance testing, they often think of “functional” acceptance

testing. Functional tests typically only focus on functional requirements, including:

 The System Interface – functions that exchange data with something other than the

user (networks, printer, disks, etc)

 Error Handling –functions that detect or recover from errors, including all error

messages

 Multimedia – sounds, bitmap, videos or any graphical display embedded in the product.

Known Aliases

 Functional Acceptance Testing

 Conformance Testing

When to Use It

Functional testing can be used throughout a project or just at the end during a designated

testing phase, depending on the type of project.

Test Lifecycle Applicability

Functional testing can encompass the entire test lifecycle.

Risks Mitigated

The risks addressed include:

 Required functionality does not exist in the finished product

 Functionality does exist, but

o can cause an application crash

o can cause data contamination

o can cause an operating system crash

o may allow sharing of private data

How to Do It

1. Choose an implemented feature to test

2. Consult an oracle on the expected behavior of the feature. (See Test Oracles)

3. Write a test or set of tests that capture the expected behavior.

4. Execute the test(s)

5. Determine if the feature behaved as expected

6. If the feature did not behave as expected, open a new bug in the bug tracking system.

7. Repeat.

Implementation Options

Functional tests can be simple manual test scripts that a tester can follow, or they can be scripts

that can be run automatically. While manual tests can often work, test automation is

recommended as it can (with the right tools) significantly decrease the cost of running all tests,

which is valuable for [Incremental Acceptance Testing], [Regression Testing], and can free up

test team members to allow for more time to be spent in [Exploratory Testing].

Functional tests can be automated in any of the following ways:

 Scripts in an interpreted language

 Scripts created by recording software

 Custom built test applications

 Test assemblies in a testing framework

 Table format for tools like FIT or Fitnesse

However method in which a test is written, it should be stored in a version-controlled manner in

some sort of test management system. Visual Studio Team System makes test case

management fairly simple for manual, recorded tests (for web sites), and for use in the VSTS

testing framework.

Related Topics

 Test Oracles

 Incremental Acceptance Testing

 Regression Testing

 Exploratory Testing

References

Books:

 How to Break Software: A Practical Guide to Testing by James A. Whittaker

 Fit for Developing Software: Framework for Integrated Tests by Rick Mugridge and Ward

Cunningham

 Testing Computer Software by Cem Kaner, Jack Falk, Hung Nguyen

 Lessons Learned in Software Testing by James Bach, Bret Pettichord, Cem Kaner

 [ANY MORE REFERENCES?]

Ubiquitous Language

Summary

Effective communication between business users of software and the technical builders and

testers of software requires a common language. Since business people are not likely to learn

technical jargon, the technical people must learn to speak “business”. This ubiquitous language

should form the basis of all communication including the acceptance tests that describe what

done looks like.

Known Aliases

 Domain Specific Language

When to Use It

Use ubiquitous language in all communications and any artifact that may need to be understood

by a business person. Acceptance tests should all be described using ubiquitous language.

Object-oriented programming structures the software around the ubiquitous language in the

form of a domain model in a practice known as Domain-Driven Design (DDD).

Test Lifecycle Applicability

Applicable to all phases of the test lifecycle but particularly to the authoring phase.

Risks Mitigated

The risks addressed include:

 The tests all pass but don’t reflect what the business actually thought they were

agreeing to.

How to Do It

Standardizing the terminology used for all communications is easier said than done. A common

technique is to prepare domain-specific glossaries of terms relevant to the project. This needs to

be reinforced by establishing team norms that anyone can call someone else, regardless of

position, on their use of terminology that is not in the ubiquitous language glossary.

Examples

 <list any examples here as hyperlinks to samples files>

Implementation Options

Ways to document the ubiquitous language include:

Domain or Project Glossary

A simple glossary may be enough. Add additional words as we realize we need them.

../Models/Test%20Lifecycle%20Model.doc

Domain Model

We could build a complete domain model with terms as entities as well as the relationships

between them.

Rationale

Anything that helps communication between people with disparate backgrounds will improve

the likelihood of success.

Related Topics

 The Action Verbs technique uses words from the Ubiquitous Language

 When we Record & Refactor we should refactor towards the Ubiquitous Language

References

Books:

 “Domain Driven Design” by Eric Evans

 “Just Enough Software Test Automation” by Daniel J. Mosley, Bruce A Posey

Record-Refactor%20Thumbnail.docx

Business Unit Testing

Summary

A Business Unit Test verifies the behavior of a business algorithm or business rule outside the

normal context in which the algorithm or rule is utilized. While the interface used to access the

logic is typically a technical interface (an API or Web Service), the logic is pure business and the

tests can be prepared by business people, not technical experts.

There is a category of functional tests that focus on a single use case. Another category is

scenario test that incorporate the behavior of multiple users (essentially incorporating multiple

use cases). Unlike these two categories, Business Unit Tests exercise a single algorithm or

collection of related business rules without requiring the associated use case(s) or user

interfaces to be used.

Known Aliases

 Business Component Test

 Business Rules Test

 Calculation Test

When to Use It

Use a Business Unit Test when:

 There are too many combinations of inputs to verify easily through the user interface;

 You have a series of very similar in nature workflow tests or scenario tests, with slight

variations; refactoring them into a single workflow test and the Business Unit Test will

set all these variations (this is beneficial in terms of test management, maintenance and

ability to see multiple scenarios on a single page in a more concise way); [This is what

we meant in terms of prefactoring]

 You have a bunch of scenario tests and you would like to expand them but they are

already taking a long time to run;

 There is significant setup overhead for getting the system under test into a state from

which the logic can be exercised yet the algorithm itself is easy to describe as a

mathematical function with well-defined inputs and outputs.

Test Lifecycle Applicability

Applies to the Conception, Authoring, Execution and Assessment phases of the test lifecycle

model.

Risks Mitigated

The risks addressed include:

 Bugs slipping through due to insufficient test coverage of combinations of inputs of an

algorithm.

 Bugs slipping through due to too much time spent testing all combinations of inputs to

an algorithm.

 Bugs slipping through due to the copy-paste errors due to multiple edits.

 Test maintenance scenario: Bugs slipping through because of multiple presence of the a

series of steps in multiple scenarios and only some of them (not all) being .

How to Do It

 Identify the algorithm/ business rule in question.

 Identify the inputs and expected outputs.

 Determine the expected output for each combination of interesting inputs using the

most appropriate test oracle. (Use of a Hand-Crafted Test Oracle is the most common.)

 Capture the inputs and expected outputs in some form; rows of a table is common.

 Define a way to execute the algorithm directly passing the inputs and getting back the

outputs.

 Execute the tests using each combination of inputs.

 Compare the actual results with the expected result for each combination of inputs.

Implementation Options

Business Unit Tests are most commonly automated using tools such as Fit but could also be

executed manually if there is a way to enter the inputs and get the output through a user

interface.

Variation of How To Do It when Refactoring a series of workflow tests:

1.

Automated Business Unit Test

The Business Unit Test can be automated using technologies such as Fit’s “column fixture”.

These fixtures are used to read a simple table of data where the first n columns each represent

one of the inputs of the algorithm and the last column represents that expected result of

running the algorithm. Therefore, each row is an independent test.

NOTE: on the issue of columns to the right…

Manual Business Unit Test

When the system under test provides an appropriate user interface that exposes the algorithm,

Business Unit Tests can be run manually.

Rationale

Business Unit Tests let us verify a large set of test conditions with a minimum of test authoring

and test execution effort and rapid feedback from the test execution.

Related Topics

 Hand-crafted Test Oracle

 Previous Result Test Oracle

 Comparable System Test Oracle

References

Examples:

 Global Bank ITPS Suspicious Activity Algorithm Fit Tests

Books:

 Fit for Developing Software, Mugridge, Rick and Ward Cunningham

Online Resources:

Hand-Crafted%20Oracle%20Thumbnail.doc
Previous%20Result%20Oracle%20Thumbnail.doc
Comparable%20System%20Oracle%20Thumbnail.doc
../Samples/Automated%20Business%20Unit%20Tests%20-%20Verifying%20the%20ITPS%20Suspicious%20Activity%20Algorithm.doc

Scenario-based Test Conception

Summary

Scenario-based test conception is a technique for representing or generating a list of tests that

need to be executed. In that sense, they can be thought of as abstract test cases that represent

a whole class of test cases. The scenarios can be expanded into the complete list of test cases

during a distinct test conception and/or authoring phase or just-in-time as part of exploratory

testing. Unlike functional tests based on use cases, scenarios typically incorporate behavior from

many use cases into the same test based on actual or possible usage behaviors. Scenarios are

typically expressed in natural, ubiquitous language.

Known Aliases

 End-to-end testing

 Workflow testing

 Flow testing

 Usage scenarios

 Scenario testing

When to Use It

Scenario-based Test Conception should be used on all projects that have complex workflows or

multiple simultaneous users. They help us think “outside the box” of single user test (functional

conformance or “happy path”) cases. Scenarios are also good for identifying and mitigating

integration risks. Early identification of scenarios can help ensure that important integration

requirements are identified. They also facilitate thinking about user experience, which in turn

impacts the design of the system.

Test Lifecycle Applicability

Applicable to the Conception and authoring phases of the Test Lifecycle Model.

Risks Mitigated

The risks addressed include:

 Supplier team’s attention is distracted from the needs and concerns of the end users.

 System crashes or malfunctions because testing was not representative of the
complexities of user actions and behaviors that tend to happen

 User cannot accomplish real task because of gaps in functionality missed by tests
focused on specific functions.

Limitations

Because scenario-based testing is meant to cover many features, it requires them to be

complete (working code) before the tests based on the scenarios can be executed.

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Acceptance%20Test%20Driven%20Development%20Thumbnail.docx
../Models/Test%20Lifecycle%20Model.doc

Similarly, a bug in a certain feature can block a tester from executing scenarios. Therefore,

execution of scenario-based tests is best left until the system stabilizes.

Scenario testing is not meant to give high test coverage. The power of scenarios is in their

credibility and ability to simulate complex use.

How to Do It

Scenarios can be based on or derived from a hypothetical story or flow of events based on an

operational profile (how the system will be used). It is written from the point of view of a

customer or end user. Scenarios may vary from simple stories to richly structured analyses, but

must always be grounded in real world experience.

The general flow of using scenarios to conceive test conditions is:

 Brainstorm different usage scenarios that real users might inflict on the system. Some
specific scenario stereotypes to consider include:

◦ Personas. Imagine stereotypical users and design scenarios from their
viewpoint.

◦ Long period activities. Transactions that take a long time to play out, or involve
events that occur predictably, but infrequently, such as system maintenance.

◦ Tug of war: Multiple users modify the same object, either the same values or
different values.

◦ Interruptions; aborts; backtracking. Unfinished activities (normal occurrences in
work environments that are full of distractions). Session timeouts for web
applications. Pressing the Back button, etc.

◦ Object lifecycle. Create some entity then change it, then delete it.

◦ Function/Feature interactions. Make the features of the product work together.

◦ Mirror the competition. Do things that duplicate the behaviors or effects of
competing products.

◦ Learning curve. Do things more likely to be done by people just learning the
product.

◦ Oops. Make realistic mistakes. Screw up in ways that distracted, busy people do.

◦ Industrial Data. Use high complexity project data.

◦ Workflow. Activities that involve multiple users over time.
 For each scenario thus identified, enumerate specific cases of the scenario.

o E.g. For Tug of War between spouses accessing the same account on an
automated bank machine, consider the cases where the two logins a) don’t
overlap, overlap a bit, one login is fully nested within the other login

 Define the list of test steps needed to verify the test condition. These steps may initially
be expressed in terms of exactly how the user would interact with the system (a very
literal description) or at a more abstract level that describes the user intent rather than
the exact action. (See Scripted Testing.)

 Exaggerate a little. Be a bit more extreme, make sequences of events more
complicated, add a few more users or artifacts. See Soap Opera Testing

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Soap%20Opera%20Testing%20(RM).docx

Exploratory testing expert James Bach recommends the following actions for scenarios:

 “Review documentation provided by stakeholders and the development team. Such
documentation may describe how the system is used by various kinds of users,
including step-by-step instructions for updating data in the system.”

 “Brainstorm scenario test ideas, involving the customer/proxy or a user or a domain
expert. These ideas may include standalone elements to be incorporated into scenarios,
as well as fully worked scenario scripts, with variations.”

 “Pick a couple of mainstream, casual use scenario ideas and conduct exploratory test
sessions, using domain experts as testers. While some testers coordinate with each
other to flush out the scenarios, others assist in taking notes or investigating problems.”

 “Once scenarios are roughed out, discuss, prune, and extend them. Look for missing
elements, and compare them with user documentation exhibits or discuss with the
customer.”

 “Compare the scenarios to the features of the product to assure that there are
scenarios that, in principle, cover all the functions of the product.”

Author’s note:

Additionally, these recommendations may help:

 Learn how users do their work.

 These initial scenarios can be pretty rough. Presuppose initial state of the system if
needed. Focus on high-level but specific goals of each scenario and encourage the
customer to provide just enough contexts for the scenario. Ask questions such as “Why
did this story happen?” and “Who is this scenario for?” Don’t get drowned in the low-
level details. Use ubiquitous language.

 Try not to focus on the GUI elements and widgets, but rather actions that the end user
may want to perform. So, instead of saying “Bob clicks on the ‘Order’ button”, say “Bob
orders five tickets to…”

 Consider recording these sessions and later refactor resulting scripts into scenario tests.

 Scenarios can be incomplete and highlight partial use, but can be revised as the system
requirements evolve.

Cem Kaner, another noted testing expert and educator, defines the following characteristics of a

good scenario:

 a real story (i.e. vivid description of real user experience)

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Ubiquitous%20Language%20Thumbnail.docx

 motivating

 credible

 complex usage

 easy to evaluate

Examples

 Scenario Test Plan Sample

Implementation Options

The basic concept of using scenarios to come up with test cases is more or less the same

regardless of the approach to testing but how the technique is applied is different.

Scenario-Based Scripted Testing

In scenario-based scripted testing, the scenarios are used as a technique to identify the test

cases to be written up as test scripts. The brainstorming is often done by a group of people

which includes both technical and non-technical (e.g. business) people. The list of specific test

cases is then whittled down to a useful representative set for actual test script development.

The scripts may be developed immediately or at a later time. The execution of the test scripts is

scheduled using any of the test execution management techniques.

Scenario-Based Exploratory Testing

In scenario-based exploratory testing, the scenarios are used both as a technique for conceiving

test conditions to try and as a way of communicating the scope of a particular scheduled test

activity. Unlike scenario-based scripted testing, the detailed test scripts are typically not

formalized but exist primarily in the head of the tester. The timeframe between when the test is

conceived from the scenario and when it is executed could be mere seconds. New test

conditions may be conceived within seconds of observing the results of the just executed test

condition.

When used as the scoping mechanism for planning and management of test execution, the test

scenarios are used as a stand-in for all the possible test conditions or test cases that we expect

the tester to come up with during one or more test session.

Part of performing a scenario is using variations of your testing to fulfill the charter.

Rationale

Scenarios are a good way to both refer to and conceive sets of test conditions. and scenario-

tests:

 Highlight and explores system goals the user may adopt and pursue

 Stimulate further thinking and reflection on interactions and events

 Focus team’s attention on the usage

 Help explain why a system is needed by demonstrating what it should be used for

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Scenario%20Test%20Plan%20sample.doc

 Surface hidden requirements / fine tune requirements

 Provide concrete contexts

 Can be easily revised or elaborated

 Make it easier to think through a complex problem in the system

 Help in accessing impact in case the test case fails

 Aid in learning about the product and its complexities

 Facilitate End-to-End system testing from customer point of view

 Can be used in assessing para-functional trade-offs (such as usability) help supplier
simulate customer’s actual workflow

 Are broadly accessible to various stakeholders

 Facilitate formation of the ubiquitous language

 Promote customer participation and enhance communication

Related Topics

 Scenarios can be used when designing Scripted Tests.

 Scenario are often used during Exploratory Testing.

 Scenarios are often used as a way to charter Session-Based Testing

 Soap Opera Testing is an extreme form of scenario-based testing.

 Scenario-based testing is a form of Functional Testing.

 Ubiquitous language is a good way to describe scenario-based tests.

 Keyword-driven Test Automation is often used to automated scenario-based tests.

References

 Kaner, C. “Cem Kaner on Scenario Testing”, SQTE, Sep/Oct 2003: 16-22, 2003.

 Jarke, M., Bui, X.T., and Carroll, J.M. “Scenario Management: An Interdisciplinary
Approach.” Requirements Eng. J., 3: 155-173, 1998.

 Alexander, I., and Maiden, N. Scenarios, Stories, Use Cases Through the Systems
Development Life-Cycle. New York, NY: Wiley, 2004.

Exploratory%20Testing%20Thumbnail.docx
Soap%20Opera%20Testing%20(RM).docx
Functional%20Testing%20Thumbnail.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Ubiquitous%20Language%20Thumbnail.docx
Keyword-Driven%20Testing%20Thumbnail.doc

Workflow Testing

Summary

Workflow tests are designed to test a feature or set of features by executing a series of user

actions toward a given task or objective. They often include tasks carried out by multiple users

exercising different part of the system in a constant, uninterrupted flow from a beginning state

to an ending state.

Known Aliases

 End-to-End Testing

When to Use It

Workflow tests are designed to simulate realistic user behavior, covering either a specific

breadth or a specific depth of the system and therefore finding bugs that are mostly likely to be

found quickly by users.

Test Lifecycle Applicability

Applicable to all phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

 Focusing only on unit tests did not catch problems found only when the system is

assembled

 Individual user actions work as intended by commonly used sequences of user actions

don’t work properly.

Limitations

You may need several different pieces of functionality working before workflow tests can be

executed.

How to Do It

1. Create a charter or a user objective. This can come from watching users during usability

testing, accounts from beta testing, reports from customer support, or early adopter

programs where customers gave feedback about how they use software.

2. Create the configuration or platform on which the test depends.

3. Execute the objective, noting the steps involved in completing it. The objective should

be designed to start at one point and end at another.

Examples

 Workflow Testing Sample

Implementation Options

Workflow testing can be done in either a script-driven or exporatory style. Script-driven

workflow testing may be automated if each relevant step of the workflow has an interface that

supports test automation.

Rationale

Many software-intensive systems are used in the context of a business process or workflow. For

testing of these systems to be truly representative of end user behavior, the testing must

involve these workflows.

Related Topics

 Scenario Testing

References

Online Resources:

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/GBS%20workflow%20example.txt
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Scenario%20Testing.docx

Soap Opera Testing

Summary

“Soap Operas” get their name from fictional daytime television shows that have their roots in

the 1950’s and 60’s when sponsors were often soap companies. An opera is an epic story,

either a long series of events or a short series of very dramatic events happening to fictional

characters.

To apply this to testing means to invent a long, grand series of flowing actions performed by a

user (or a persona you created) in an attempt to unite many diverse test variables. The term

“soap opera testing” was coined in the late 90’s *Buwalda+ to convey the idea that a different

class of bugs might reveal themselves when the product or system is thrown into a variety of

states as details of an operational story unfold.

Known Aliases

 Sometimes it is confused with Scenario Testing, but scenarios have more structure and

more instructions to the tester on how to execute them.

 It also may be considered to be a form of system integration testing

 Workflow Testing

 End-to-End testing

When to Use It

Soap Operas are useful to test different parts of the system or service that have recently come

together in a concept known as system integration or it can be used before the parts come

together to point out gaps where the software *needs* to come together.

It can be used when testers find themselves stuck or need a break from the routine of running

test cases. It may be useful to collaborate with other testers or project staff to brainstorm

dramatic flows of events

Test Lifecycle Applicability

Applicable to all phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

 Bugs missed because the system was not tested in an integrated way

 The customer did not have a range of exotic but practical ways of what might happen,

until they run their acceptance pass when they run tests that closely resemble soap

operas.

Limitations

Soap opera testing requires a rich imagination – perhaps so rich that the developers on the

project do not find any of the tests credible (saying the popular lament “no user would do that.”

How to Do It

Scenarios can be used as a basis for soap operas because there are a lot of similar test factors

that come into play. Perhaps the simplest way to come up with soap operas is to brainstorm

with a group, which different members of the team telling a piece of the opera, building on the

last action by the previous person on the team.

Here’s a process you might try to identify variables:

Failure Modes:

Dropped call, blocked call, restart, power off,

Environment / Location:

Where are they using it?

Operations:

Who is using the product? What is their temperament? What else are they doing at the time?

What is their mission? What were they doing 5 minutes go? How are they using it?

Data:

What kinds of information does the product process? Large data, DBCS data, integer or floating

point? Periods, underscores, dollar signs in the data

Platform:

What does the product depend on? Browser, Operating System, code libraries, third-party

applications. What about memory and disk space considerations? Bandwidth?

Time (and Timing):

Special dates like December 31, February 29, April 15. Days of the week. Times of the day?

Parts of the hour. Daylight savings, time zones, etc.

Example

This is an example that might be used to test functionality for the Global Bank ITPS feature:

“From his corner office on Madison Avenue, the CEO of Contoso ignores the coffee he

just knocked over on his desk because he has a more urgent problem -- an alert through

Instant Messenger from Globobank that his identity may have been compromised. He is

alarmed, too, because earlier that day he got a frantic call from his girlfriend about her

credit limit being reached when she had done no transaction in months. Right after that

call, he had logged into ITPS to review the transaction details on his account. There was

nothing. But now, four hours later, there is an alert. Upon logging in again, he sees that

the transactions are originating from the same city that the fraudulent charges were for

her account. He knows who it might be – his ex-wife – who is in that same city. She is an

accountant at a rival to Contoso – a rival that he used to work for. So he sets a trap.

Using ITPS, he sets his notifications based on location to see if he can prove his theory.

He leaves his office to meet his girlfriend and takes his PDA with him to check the status

and be informed of alerts. But he loses the cell signal from his PDA as the driver drivers

though a dead zone. Luckily he’s set up for voicemail, too and he’s got his cell phone

with him and the signal is strong. He gets a call. It is the ITPS system warning him of a

new transaction in Barbados, where he has a beach house. In that beach house is the

one and only credit card that has access to that account. ..”

Additional example from testing expert Michael Bolton:

http://jayacarl.blogspot.com/2008/01/soap-opera-testing-example.html

Implementation Options

<none>

Rationale

What’s the point of drawing out a user operation in this dramatic way?

1) It kicks us into a mindset that makes us aware of important variables:

 people use software from more than one location;

 users are often logged in at the same time on different devices;

 they are often mobile, which causes problems;

 there is more than one way to access data;

 data changes at different times of the day;

 the data might be blocked from getting to its recipient in some way

2) It also acquaints us with questions whose answers depend on context:

 From where is the user logging in?

 How did they log in?

 When did they log in?

 Why did they log in?

 Have they logged in earlier today?

 Are they logged in as themselves or as someone else?

 What if the signal drops?

 Does the notification tell enough detail about the transaction?

 Does it work on multiple platforms?

 Does the notification alert against the desired pattern?

 Can the user change the patterns to which they are notified, and then back again if

they change their mind?

Readiness testing using this technique may help expose some of the previously unforeseen ways

that users or customers may actually configure, operate, and experience the software you’re

producing. Identifying variables in a soap opera (even though it’s meant although meant to be

dramatic) makes the variables seem likely and credible because they are put into a specific

series of probable contexts.

Related Topics

 Scenario Testing

 Workflow Testing

 End-to-End Testing

 Exploratory Testing

References

Online Resources:

1. http://www.logigear.com/resources/articles_lg/soap_opera_testing.asp

2. Hans Buwalda, “Soap Opera Testing” an article for STQE magazine, February 2004:

http://www.logigear.com/campaigns/soap_opera_testing.pdf

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Scenario%20Testing.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Workflow%20Testing.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Exploratory%20Testing%20Thumbnail.docx
http://www.logigear.com/resources/articles_lg/soap_opera_testing.asp
http://www.logigear.com/campaigns/soap_opera_testing.pdf

Combinatorial Test Optimization

Summary

Combinatorial testing means putting attributes of test criteria together to see if there are

harmful interactions. But what do you do when after creating combinations, the matrix is

impossibly huge? Combinatorial test optimization is a heuristic technique to reduce

combinations of test variables and test factors in such a way that you achieve similar results of

testing them all.

Known Aliases

 Multi-variable testing

 Orthogonal arrays

 Orthogonal Latin squares

 Pairwise testing

 All-Pairs testing

When to Use It

If you are faced with a large set of test variables, like a spreadsheet matrix of configurations,

combinatorial test optimization can help you combine, reduce, and then prioritize the number

of combinations.

Test Lifecycle Applicability

Applicable to the Conceiving and Authoring phase of the test lifecycle. Affects the Execution and

Assessment phases of the test lifecycle by reducing the number of tests that need to be run.

Risks Mitigated

The risks addressed include:

 Bugs caused by interactions between specific combinations of features slipping through

undetected because:

o There was no plan to test all combinations of features

o There were so many tests to run that you run out of time before testing all

combinations

How to Do It

1. Create a matrix of the attributes or features that can vary

../Models/Test%20Lifecycle%20Model.doc

2. Use a tool like allpairs.exe, PICT, OATS to distill the combinations into pairing or triples

to get a reasonable set of combinations that can be run in less time but with almost as

good test coverage and risk reduction as running all of the combinations.

Implementation Options

The primary implementation variation is the choice of how many attributes are varied between

tests. In general, the more attributes varied, the more tests will be needed in exchange for

ensuring that n-way interactions are tested. The most common variations are:

 Pairwise testing: ensures that each variable is paired with each other variable value at

least once. This will result in the fewest possible number of tests needed but some 3-

way combinations variable values may not be tested.

 Triplewise testing: ensures that each variable is combined with two other variables. This

results in better test coverage but at a cost of running more tests.

Rationale

While it doesn’t provide full coverage of every possible combination of variable values,

combinatorial test optimization ensures that the most variable values are tested with each of

the other values at least once.

Related Topics

 All-pairs GBS Sample

References

 http://www.satisfice.com/tools.shtml

 http://www.quardev.com/blog/allpairs

 http://www.testingeducation.org/k04/documents/multiVariable.ppt

 http://en.wikipedia.org/wiki/All-pairs_testing

 http://www.tejasconsulting.com/open-testware/feature/allpairs.html

 http://www.stickyminds.com/getfile.asp?ot=XML&id=6488&fn=XDD6488filelistfilename

1%2Epdf

 http://burtleburtle.net/bob/math/jenny.html

http://www.satisfice.com/testmethod.shtml
http://download.microsoft.com/download/f/5/5/f55484df-8494-48fa-8dbd-8c6f76cc014b/pict33.msi
http://www.isixsigma.com/library/content/c030106a.asp
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/All-pairs%20GBS%20sample.xls
http://www.satisfice.com/tools.shtml
http://en.wikipedia.org/wiki/All-pairs_testing
http://www.tejasconsulting.com/open-testware/feature/allpairs.html
http://www.stickyminds.com/getfile.asp?ot=XML&id=6488&fn=XDD6488filelistfilename1%2Epdf
http://www.stickyminds.com/getfile.asp?ot=XML&id=6488&fn=XDD6488filelistfilename1%2Epdf
http://burtleburtle.net/bob/math/jenny.html

Installer/Installation Testing

Backwards Compatibility Testing

Testing Para-functional Requirements

Security Testing

Penetration Testing

Fuzz Testing

Performance Testing

Stress Testing

Usability Testing

Accessibility Testing

Regulatory / SOX Compliance Testing

Localization Testing

Globalization Testing

Test Management

Test Asset Management

Test Evolution, Refactoring and Maintenance

Running the Tests

Cycle-Based Test Management

Session-Based Test Management

Test Status Reporting

Test Metrics

Bug Management System

Summary

A bug management system is a mechanism for taking action on reported problems in a single,

accessible location by all team members. Bugs are recorded and the current status is updated

each time the status of the bug changes.

Known Aliases

 Defect Tracking System

 Issue Management System

 Bug Database

When to Use It

All projects should have a bug management system. Not all projects require bug management

software. (See Implementation Options for details.)

Test Lifecycle Applicability

Applicable to the Actioning phase of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

 Bugs could be fixed but never retested.

 Bugs could be found, but not recorded and therefore left unfixed.

 Customer could demand status of critical bug and the supplier wouldn’t know its

current status.

 Auditor could demand full trace and details on a bug and the supplier wouldn’t have it.

 Customer is uninformed and makes unrealistic plans about release/deployment/sales.

Limitations

A bug management system provides no value if some bugs are left out.

How to Do It

1. Bug is entered in the central bug repository

2. Bug is discussed and given a priority (see Bug Triage)

3. If it is considered important enough (in terms of its impact and/or likelihood), the bug is

assigned to someone for analysis. If not, it may be deferred or flagged as Won’t Fix.

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Triage%20Thumbnail.docx

4. If the cause is known, the database is updated and the bug is assigned to someone for

remediation. If not, it stays active pending investigation.

5. If the bug can be fixed, it is assigned to someone for readiness assessment. If it is

deemed too expensive to fix or remains elusive, it might have to be deferred or flagged

as Won’t Fix or No Repro.

6. If the bug fix is produced, retested and deemed ready for acceptance testing, the

customer is notified (assuming it is an iterative acceptance project).

7. When the fix is accepted by the customer and/or verified by the tester or proxy, the bug

is marked Resolved and Closed.

Examples

 Bug Chart Sample

 Bug Triage Sample

Implementation Options

A bug management system can be implemented in a very lightweight way or with complex

software packages depending on the needs of the project.

Large Projects: Bug Tracking Database with Workflow Capabilities

On large projects with many roles and role players, the number of roles involved in fixing any

one bug may be large. The people may be located at many remote locations and the bug may be

determined to live in one of many components owned by different teams. Keeping track of

whose court each bug is in and where it should go next can be complex, but bugs can be kept in

a bug tracking database that support complex workflow rules that route each bug to the

appropriate party.

Agile Projects: Big Visible Chart with One Sticky-note per Bug

On agile projects composed of a single co-located team, it may be sufficient to track bugs on a

planning board in the team work area. Each bug is written on a sticky-note and stuck on the wall

in priority sequence. As a bug is actioned, it is moved between columns representing the

different roles (development, readiness testing, acceptance testing, etc.) The person working on

the bug can put their initials on the Post-it so that everyone can easily determine who to talk to

for latest status.

[TO CONSIDER]

Rationale

 Having bugs managed in a central location ensures their status can be determined quickly.

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Bug%20Chart%20Samples.xlsx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Bug%20Triage%20Sample.xlsx

Analyzing the stats and rates of bugs coming in and resolved gives insight to the supplier’s

project management on the efficiency of the team and the development process and it allows

making informed decisions on the project course correction.

Effectively deployed Bug management systems with audit trail logging help support regulatory

compliance (in particular initiatives that put demands on information gathering, process

definition, data integrity, and policy enforceability, including, for example, as 21 CFR Part 11 and

Sarbanes-Oxley).

Related Topics

 Bug Triage

 Bug Charting & Reporting and Analytics

References

- TBA

Online Resources:

 - TBA

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Triage%20Thumbnail.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Bug%20Chart%20Thumbnail.docx

Bug Charting

Summary

Testing finds problems that are often represented as “bug reports.” The number and types of

bugs is one of the ways that readiness is assessed by the stakeholders of the project (anyone

with a stake in the project’s success). If bugs are stories about the health of the project, charts

may be a useful way to quickly know the implications of those stories.

When to Use It

Test Lifecycle Applicability

Applicable to the Actioning phase of the test lifecycle.

 Risks MitigatedBugs could be found but not reported so the chart might not change.

 Customer could demand status of critical bug and we wouldn’t know its current status.

 Hard to know when to ship or when quality bar has been met.

How to Do It

1. The more attributes a bug report has, the more stories can be told about the state of
the product. Here are some common bug report attributes that can be used to help
spot trends if they are charted:

a. Area
i. Feature name or product function

b. Dates
i. Opened – the date on which the concern was filed

ii. Resolved – the date on which a triage decision was made
iii. Closed – the date on which the concern was mitigated, minimized or

eliminated
c. How Found (the method by which the bug or concern was revealed)

i. Design Review
ii. Readiness Phase

iii. Demo
iv. Beta
v. Unit Test

vi. Exploratory Session
vii. Usability

viii. Automation
ix. BVT (Build Verification Test)
x. Acceptance

xi. Other
xii. Etc.

d. Severity (the impact to the user)
i. 0 – Blocking issue

ii. 1 – Causes crash, hang, or data loss
iii. 2 – Function is impaired in a major way
iv. 3 – Function is impaired in a minor way

v. 4 – Content bug, typo, trivial annoyance
e. Who opened the bug

i. Tester
ii. Programmer

iii. Customer
iv. User
v. Project Manager

f. Its current state
i. Active (Open) – the concern is awaiting a resolution

ii. Resolved – action has been taken on the bug
1. Fixed – the problem has been solved
2. More Detail Needed – the triage team needs more context

before they can make a decision
3. No Repro – the problem could not be reproduced
4. Postponed (Deferred) – the triage team knows what action to

take, but decides to wait until taking it
5. By Design – the feature is supposed to work the way the bug

report described
6. Won’t Fix – the stakeholders decided it was not valuable or cost

effective to fix the bug
iii. Closed – the concern has been adequately addressed

Rationale

Telling stories about the quality of the product is the heart of this topic. Given the above

criteria, you can chart things like:

How many bugs were opened today that need to be triaged (vs yesterday)?

How many bugs were found from usability testing?

How long has a particular type of bug been open?

Who tends to be finding the most severity 1 bugs?

What techniques are catching the least severe bugs?

What types of bugs are tending to be deferred vs won’t fix?

Implementation Options

Severity vs. Priority

In many cases, it is a good idea to differentiate bugs based on their severity (an attribute set by

the tester or person who filed the concern. It is a statement about impact to the user. But bugs

that have a higher severity don’t necessarily need to be remediated before others with lower

severity. It could be that the bug is a rare occurrence (every 30 years), and fixing it might be

more costly than letting it stay in the product.

While severity is about impact, priority is about economics. It is an attribute set by the triage

team, not the bug opener. It is a way to say “these bugs must be fixed before these other bugs.”

It could be that bug with a high severity (sever impact to the user) is a low priority because it

happens so infrequently and is expensive to fix, or may be resolved with other functionality

later. It also could be that a low severity bug (low impact to user) has a high priority, like a typo

in the company name on the welcome screen or a trademark infringement on a dialog that

could lead to a lawsuit.

Large Projects: Bug Tracking Database with Workflow Capabilities

On large projects with many roles and role players, the number of roles involved in fixing any

one bug may be large. The people may be located at many remote locations and the bug may be

determined to live in one of many components owned by different teams. Keeping track of

whose court each bug is in and where it should go next can be complex. Bugs can be kept in a

bug-tracking database that support complex workflow rules that route each bug to the

appropriate party.

Agile Projects: Big Visible Chart with One Sticky per Bug

On agile projects composed of a single co-located team, it may be sufficient to track bugs on a

planning board in the team work area. Each bug is written on a sticky note or index card and

stuck on the wall in priority sequence. As a bug is actioned, it is moved between columns

representing the different roles (development, readiness testing, acceptance testing, etc.) The

person working on the bug can put their initials on the Post-it so that everyone can easily

determine who to talk to for latest status.

 Related Topics

 Bug Triage Sample

 Bug Chart Sample

References

 http://developer.mozilla.org/en/docs/Bug_writing_guidelines

 http://java.sun.com/developer/technicalArticles/bugreport_howto/

 http://en.wikipedia.org/wiki/Wikipedia:Bug_reports

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Bug%20Triage%20Sample.xlsx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Bug%20Chart%20Samples.xlsx
http://developer.mozilla.org/en/docs/Bug_writing_guidelines
http://java.sun.com/developer/technicalArticles/bugreport_howto/

Bug Triage

Summary

Bug Triage is often known as the “context factory”. It is triage that allows stakeholders

to sit around a table and discuss whether or not bugs should be fixed. That’s the point --

whether it’s called a Change Control Board, Bug Jury, War Team or Triage Council.

Triage is a time to ask: what is the impact, who does it affect, what will happen, and

when might it happen?

Known Aliases

 Bug Jury
 Bug Prioritization
 War Team

 Change Control Board

When to Use It

Test Lifecycle Applicability

Triage falls into the Actioning phase of the Test lifecycle.

Risks Mitigated

The risks addressed include:

 Important bugs are identified and never fixed

 Unimportant bugs are fixed, unnecessarily.

 Important bugs deemed unimportant by testers are never fixed

How to Do It

The customer and the supplier should perform triage together, along with other stakeholders of

the product.

For each bug found since the last triage, the following should be done:

1. Determine if the bug should be fixed. This will depend on several factors:

a. What is the impact of the bug?

b. Who does it affect? What’s the extent of this bug, in other words what

percentage of the customers would experience the pain if this bug is left

unfixed?

c. What will happen when the bug is encountered?

d. When might it happen?

e. How often might it happen?

f. Is the software good enough as it is, in the current context? (Or, put another

way, is it good enough for who, what, and when)

g. Is a workaround available?

h. What are the risks of fixing the bug?

i. What value is there if the bug is NOT fixed? (Note: never underestimate the

potential of a bug fix to destabilize your system!)

j. What is the testing impact of fixing this bug? Do we have enough time to

perform regression testing to verify the fix?

2. Determine if the bug can be fixed

3. Determine the cost for fixing the bug. This is usually a rough estimate.

4. Decide whether and when the bug will be fixed. If the bug can be fixed, has a large

enough impact, and the fix is estimated to be low cost enough, then fix it. The

customer should be the final decision maker here.

Implementation Options

The length of time between triage sessions will vary depending on the environment, the process

followed, the phase the project is in, and the bug discovery rate. Early in a project, the team

may decide that triage is only necessary every few weeks. As the project progresses, weekly

triage may be necessary. In the final stages of the project, the team may decide to do daily

triage.

Rationale

The term “triage” comes from the French word meaning “to divide into three”.

Watch any medical drama about emergency rooms and you’ll see that decisions are made as

patients enter the doors. Emergency room triage is about determining three things:

 People who will live no matter what; they can wait

 People who will die no matter what; there’s no point trying to save them

 People who will live or die based on the doctors’ skills; this is where the team’s

energies need to be focused

Likewise, as bugs come through the door on your project, there will be three things to

determine:

 Bugs that obviously should be fixed immediately

 Bugs that aren’t worth the time or expense to fix anytime soon, or bug reports that

turn out to be tester error and are actually by design

 Bugs we might fix, but we need more information to classify into categories 1 or 2

Invariably, we are operating under time and resource constraints. We may not have time to fix

all bugs, or we may be diverting resources from activities that would be generating additional

business value. It is important to focus the limited time and resources on the activities that will

provide the most improvement in quality.

Related Topics

 Bug Reporting

 Bug Triage Sample

 Bug Chart Sample

References

 Sabourin, Lessons Learnt from Labor Triage

 TBA

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Thumbnails/Bug%20Chart%20Thumbnail.docx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Bug%20Triage%20Sample.xlsx
https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Shared%20Documents/Draft%20Content/Samples/Bug%20Chart%20Sample.xlsx

Test Oracles

Human Test Oracle (SME)

Summary

The pass/fail status of a test is determined by a human subject matter expert inspecting the

actual results from the system under test and deciding whether they are acceptable.

Known Aliases

 Subject Matter Expert (SME)

 Domain Expert

When to Use It

Use a Human Test Oracle when:

 It is harder to specify exactly what the system under test should produce using a

Hand-crafted Test Oracle but it is relatively easy for a human to decide whether or

not what it produced is acceptable.

 The output of the system under test can vary from run to run for legitimate reasons

that a human would understand and an automated test would have trouble

predicting.

 There is no other system that implements the same logic that is being tested that

could act as a Comparable System Test Oracle.

 The cost of authoring and/or executing the automated analysis of an automated test

exceed the cost of involving a Human Test Oracle.

Test Lifecycle Applicability

Human Test Oracles are applicable to the Executing and Assessing phases of the test lifecycle in

that the human executes the test and assesses the actual result. They are indirectly applicable to

the Planning and Authoring stages of the test lifecycle in that we must decide not to use a Hand-

crafted Test Oracle in the planning stage; during the authoring stage either we don’t specify the

result or we specify it in a human-readable form such as a checklist of things to look for when

assessing the actual results.

Risks Mitigated

The risks addressed include:

 The expected results aren’t well defined because they are too expensive to hand-

craft.

 A human user will find bugs that the tests did not catch because the tests were not

sensitive enough to catch them.

 Bugs being missed because of too many false positive test failures caused by an

overly sensitive automate pass/fail determination algorithm.

 Usability bugs missed.

Limitations

 A Human Oracle may not be as efficient executing and analyzing results of the

acceptance tests as an automated test.

 A Human Oracle may not keep up with analyzing displayed information before the

system changes it.

 Not all effects of a test case are available and displayed for a human oracle to observe

and evaluate.

 The acceptance test is long-running and may exceed the concentration capabilities of

the human oracle.

 Expert bias: a human oracle becomes quickly trained on what to expect, and then is

more likely to overlook minor deviations which in fact may be bugs.

 Inattention blindness: a human oracle doesn’t see the bug because she is distracted by

other elements of the system

How to Do It

Using a Human Test Oracle typically occurs in three phases: The decision to use a Human Test

Oracle is made while defining the test strategy, what the Human Test Oracle should be looking

for is determined while authoring the test case, and the Human Test Oracle does the

assessment during or after running the test case.

Defining the test strategy:

1. Identify the kinds of test cases needed to verify the various behaviors of the system

under test.

2. For each kind of test, decide what kind of test oracle to use for assessing the test

results.

Authoring the test cases:

1. Identify the test cases needed to verify the behavior of the functionality in question.

2. For each test case, define the prior state of the system under test.

3. Define the inputs to be provided to the system under test.

4. Define the characteristics to look for during the assessment of the actual results.

Running the Test case using Previous Result Test Oracle:

1. Run the test case against the system under test.

2. Assess whether the actual result provided by the system under test meets the

chosen criteria.

Examples

 Testing Binary Objects

◦ Using a Human-Verified Previous Result Oracle

Implementation Options

A Human Test Oracle can be used to assess the actual results as the tests are being executed or

they can assess results at some point after the test execution if the test runner captures the

actual results for each test case.

Real-time Human Test Oracle

Some forms of test execution require the human tester to make decisions on the fly. In these

cases it is more appropriate for the human to assess the actual results as the tests are being

executed. A good example is during exploratory testing where the human tester is designing the

tests as they execute them and may, in fact, add additional test cases to try based on the results

they have just seen.

After-the-Fact Human Test Oracle

When tests are largely amenable to automated execution but a human is required to assess all

or part of the results, it may be appropriate to save the results and show them to the human

Test Oracle at a later time. This allows the automated tests to run more quickly or at a time

when the Human Test Oracle isn’t present and it avoids having the Human Test Oracle waste

time waiting for each actual output to be retrieved. It’s a win-win situation: both automated and

human testers can operate more efficiently.

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. Machines

are good at highly repetitive tasks while humans are much better at certain kinds of assessment

tasks such as recognizing shapes in graphical images.

Related Topics

 Hand-crafted Test Oracle

../Samples/BLOB%20Testing%20Example%20(GBS).doc
../Samples/BLOB%20Testing%20Example%20(GBS).doc
Hand-Crafted%20Test%20Oracle.docx

 Previous Result Test Oracle

 Comparable System Test Oracle

 Exploratory Testing

References

Books:

 TBD

Online Resources:

 TBD

Previous%20Result%20Test%20Oracle.docx
Comparable%20System%20Test%20Oracle.docx
Exploratory%20Testing%20Thumbnail.docx

Hand-Crafted Test Oracle

Summary

The pass/fail status of a test is determined by comparing the actual results from the system

under test with an expected result that was previously hand-crafted by a Human Test Oracle.

Known Aliases

 Expectation

 Expected Object

When to Use It

Use a Hand-Crafted Test Oracle when:

 The results of the executing the system under test is deterministic and can be

predicted and hand-crafting the expected results is relatively straight-forward

 There is no other system that implements the same logic that is being tested that

could act as a Comparable System Test Oracle.

 The use of a Human Test Oracle would be too resource intensive or make the tests

hard to run fast enough or often enough.

 The team is using an acceptance-test-driven approach to development and there is

no comparable system that can be used to define the expected results.

Test Lifecycle Applicability

Comparable System Test Oracles are applicable to the Authoring, Executing and Assessing

phases of the test lifecycle.

Risks Mitigated

The risks addressed include:

 The expected results aren’t well defined because they are too expensive to hand-

craft.

 Tests are not run often enough to catch bugs because a Human Test Oracle is

involved in their execution.

 The output of the new system is different from a system whose results the users

would expect to be consistent.

Limitations

 Humans are fallible; they may hand-craft oracles with incorrect or missing

information.

How to Do It

Using a Hand-Crafted Test Oracle typically occurs in three phases: The decision to use a Hand-

Crafted System Test Oracle is made while defining the test strategy, the Hand-Crafted Test

Oracle is constructed while authoring the test case and it is used while executing the test cases

against the system under test and assessing the results.

Defining the test strategy:

1. Identify the kinds of test cases needed to verify the various behaviors of the system

under tests.

2. For each kind of test, decide what kind of test oracle to use for assessing the test

results.

Authoring the test cases:

3. Identify the test cases needed to verify the behavior of the functionality in question.

4. For each test case, define the prior state of the system under test.

5. Define the inputs to be provided to the system under test.

6. Define the expected output of the system in sufficient detail that it can be compared

with the actual result automatically.

Running/Assessing the test case using Comparable System Test Oracle:

7. Run the test case against the system under test.

8. Compare the actual result from the system under test with the hand-crafted

expected result to decide whether the test passed or failed.

Examples

 Testing Binary Objects

◦ Using a Hand-Crafted Test Oracle

Implementation Options

A hand-crafted test oracle may be used when executing scripted tests manually or as part of an

automated test. When testing manually, the actual comparison can be done manually or using

comparison tools. When running automated tests, the results are usually compared

automatically.

When comparing the actual results produced with Hand-Crafted Test Oracle the pass/fail

determination algorithm may look for an exact match or it may selectively compare or

selectively ignore parts of the oracle.

../Samples/BLOB%20Testing%20Example%20(GBS).doc
../Samples/BLOB%20Testing%20Example%20(GBS).doc

Exact Comparison

If we can predict exactly what the actual results should look like, then the comparison of the

actual results with Hand-Crafted Test Oracle can be done in a very simple, naïve way. For

example, the Hand-Crafted Test Oracle could be an XML file which is then compared at the byte

level with the actual XML file generated by the system under test. Or the tester could use a blink

test to compare the previous and current outputs by rapidly swithing back and forth between

them on-screen. They could also print the output from the system-under-test and hold it up to

the light against the previous output.

Selective Ignorance

If some of the fields in the actual output cannot be predicted or are not relevant to a particular

test, we can choose to ignore those fields when comparing the actual results with the Hand-

Crafted Test Oracle. In our XML example we might parse both the actual and oracle XML files

and skip certain nodes in the DOM tree when determining pass or fail. The contents of skipped

fields would not influence the pass/fail decision.

Selective Comparison

If only a few fields in the actual output can be predicted or are relevant, we can choose to

compare only the specific fields. In our XML example we might extract those fields from both

the actual and oracle XML files using x-path expressions and compare the values extracted for

equality to make the pass/fail decision.

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. Creating a

Hand-Crafted Test Oracle is a good way to define what “done looks like” and it helps the

development team understand what they need to do before they build it.

Related Topics

 Human Test Oracle

 Previous Result Test Oracle

 Comparable System Test Oracle

 Script-Driven Testing

 Test Automation

References

Books:

 Meszaros, Gerard, “xUnit Test Patterns” “Expected Object” page 463

Human%20Test%20Oracle.docx
Previous%20Result%20Test%20Oracle.docx
Comparable%20System%20Test%20Oracle.docx
Scripted%20Test%20Thumbnail.docx
Test%20Automation%20Thumbnail.docx

Online Resources:

 http://xunitpatterns.com/State%20Verification.html#Expected Object

http://xunitpatterns.com/State%20Verification.html#Expected Object

Previous Result Test Oracle

Summary

The pass/fail status of a test is determined by comparing the actual results from the system

under test with the result saved when the same test case was run against the same system at

some point in the past.

Known Aliases

 Golden Master

When to Use It

Use a Previous Result Test Oracle when:

9. The system produces consistent results from day to day.

10. The use of a Human Test Oracle would be too resource intensive or make the tests

hard to run fast enough or often enough.

11. The expected result would be harder to specify using a Hand-crafted Test Oracle

produced by a person.

12. There is no other system to use as a Comparable System Test Oracle

13. All Comparable System Test Oracles produce significantly different results than what

we desire from the system under test.

14. You are using a tool that is based on the Recorded Test paradigm.

Test Lifecycle Applicability

Previous Result Test Oracles are applicable to the Authoring, Executing and Assessing phases of

the test lifecycle.

Risks Mitigated

The risks addressed include:

 The output of the system under test has changed unexpectedly from what it used to

produce in the past.

 The expected results aren’t well defined because they are too expensive to hand-

craft.

 Tests are run not often enough to catch newly-introduced bugs because a Human

Test Oracle is involved in their execution.

Limitations

 The result captured previously may not match what the system really should produce

now when:

◦ The system-under-test generates unique identifiers for every transaction or

entity object

◦ The system-under-test contains logic that depends on the time or date of a

transaction and we cannot control the time/date used during a test.

◦ The system-under-test has been changed from when the previous result was

captured.

How to Do It

Using a Previous Result Test Oracle typically occurs in four phases: The decision to use a

Previous Result Test Oracle is made while defining the test strategy, how the Previous Result

Test Oracle is made while authoring the test case, the previous results are captured while

running the test case the first (and possibly every) time and the results are used as the Test

Oracle on subsequent runs of the test case.

Defining the test strategy:

1. Identify the kinds of test cases needed to verify the various behaviors of the system

under tests.

2. For each kind of test, decide what kind of test oracle to use for assessing the test

results.

Authoring the test cases:

1. Identify the test cases needed to verify the behavior of the functionality in question.

2. For each test case, define the prior state of the system under test.

3. Define the inputs to be provided to the system under test.

Capturing the “previous result” for subsequent use as expected result:

1. Run the test case against the system under test.

2. Capture the result of executing the test case.

3. Save the actual result for use as the expected result in subsequent runs of the test

case.

Running/Assessing the Test Case using Previous Result Test Oracle:

1. Run the test case against the system under test.

2. Compare the actual result from the system under test with the expected result

saved from the previous execution of the test to decide whether the test passed or

failed.

Examples

 Testing Binary Objects

../Samples/BLOB%20Testing%20Example%20(GBS).doc

◦ Using a Human-Verified Previous Result Oracle

Implementation Options

The previous result can be used while executing tests manually or with automated tests. The

previous result may have been verified to various degrees by a Human Test Oracle.

Manual Test Execution Using Previous Result Oracles

The tester executing a test manually may refer to a previous result oracle to assess the behavior

of the system-under-test. The previous result oracle may or may not have been previously

verified by a subject matter expert (a human test oracle) of the tester may validate the previous

result as they use it to assess the system-under-test.

Automated Test Execution Using Previous Result Oracles

The previous result oracle may be used by an automated test as the expected result while

assessing the output of the system-under-test. With automated tests, whether the previous

result oracle has been previously verified is more important.

Unverified Previous Result Test Oracle

Recorded Test tools monitor and record whatever the user does (and how the system responds)

as the user executes a test case. We can use the recorded system responses as part of the

expected result on the assumption that everything should remain the same from one test run to

the next. This typically requires rerunning the test right after recording it to ensure that

everything really does remain the same. If the test fails on the immediate rerun, a human

typically need to adjust either the Recorded Test or the recording or playback parameters of the

test tool to reduce the sensitivity. See [GMFT] for a list of possible causes of Fragile Tests.

A really clever tool could learn what stays constant and what changes by running the same test

several times but very few Recorded Test tools implement this learning capability.

Human-Verified Previous Result Test Oracle

We may need to use a Human Test Oracle when the expected result is hard to define manually

but relatively easy for a human to decide whether or not it is acceptable. Using a Human Test

Oracle can be a significant barrier to running tests frequently because the human must be

available each time the test is run. When the result is completely deterministic we can remove

the human from the test execution loop by recording the results that the human has inspected

and saving them for future use as a Previously Recorded Test Oracle.

When a subsequent execution of the test fails, we ask a human to inspect the result and either:

 agree that the test has failed

 accept the actual result as a temporary pass result

 accept the actual result as a replacement of the previously recorded test oracle

../Samples/BLOB%20Testing%20Example%20(GBS).doc

 accept the actual result as an additional accepted result for the previously recorded test

oracle

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. It is

reasonable to use previous results as the test oracle when a system is stable and produces the

same results each time it is executed with a given set of inputs.

Related Topics

 Human Test Oracle

 Hand-crafted Test Oracle

 Comparable System Test Oracle

 Recorded Test Automation

References

Books:

 Meszaros, Gerard, “xUnit Test Patterns” “Recorded Test” page 278

 Meszaros, Gerard, “xUnit Test Patterns” “Fragile Test” page 239

Online Resources:

 http://xunitpatterns.com/Recorded Test.html

Human%20Test%20Oracle.docx
Hand-Crafted%20Test%20Oracle.docx
Comparable%20System%20Test%20Oracle.docx
Recorded%20Test%20Thumbnail.docx
http://xunitpatterns.com/Recorded%20Test.html

Comparable System Test Oracle

Summary

The pass/fail status of a test is determined by comparing the actual results from the system

under test with the result produced by a system with comparable functionality.

When the intent is to replace the comparable system with the system under test, this practice is

often called Legacy System Test Oracle.

Known Aliases

 Legacy System Test Oracle

When to Use It

Use a Comparable System Test Oracle when:

 There is at least one other system that implements the same logic that is being tested in

the test case in question. Note that different test cases for the same system under test

could use different systems as their Comparable System Test Oracle.

 The use of a Human Test Oracle would be too resource intensive or make the tests hard

to run fast enough or often enough.

 The expected result would be harder to specify using a Hand-crafted Test Oracle

produced by a person.

Test Lifecycle Applicability

Comparable System Test Oracles are applicable to the Authoring, Executing and Assessing

phases of the individual test lifecycle.

Risks Mitigated

The risks addressed include:

 The expected results aren’t well defined because they are too expensive to hand-craft.

 Tests are not run often enough to catch bugs because a Human Test Oracle is involved

in their execution.

 The output of the new system is different from a system whose results the users would

expect to be consistent.

Limitations

 The comparable system may have undesirable behaviors that we do not want to

reproduce in our system.

How to Do It

Using a Comparable System Test Oracle typically occurs in three phases: The decision to use a

Comparable System Test Oracle is made while defining the test strategy, how the Comparable

System Test Oracle is used during the test case is defined while designing or authoring the test,

the test cases are executed against the comparable system to determine what “done looks like”,

and the test results are determined when running the test case against the system under test.

Defining the test strategy:

1. Identify the kinds of test cases needed to verify the various behaviors of the system

under tests.

2. For each kind of test, decide what kind of test oracle to use for assessing the test

results.

Authoring the test cases:

1. Identify the test cases needed to verify the behavior of the functionality in question.

2. For each test case, define the prior state of the system under test.

3. Define the inputs to be provided to the system under test.

Capturing the “comparable system result” for subsequent use as the expected result:

1. Run the Testcase against the comparable system by:

a. by putting it into the equivalent state

b. exercising it with the equivalent inputs

2. Capture the result of executing the test case.

3. Save the actual result for use as the expected result in runs of the test case against the

system under test. (Optional)

Running the test case using Comparable System Test Oracle:

1. Run the test case against the system under test.

2. Compare the actual result from the system under test with the expected result from the

comparable system test to decide whether the test passed or failed.

Examples

 TBD

Implementation Options

A Comparable System Test Oracle can be used to generate results ahead of time or it can be run

in parallel with the system under test.

Parallel Execution of Comparable System Test Oracle

When test cases are being executed manually, the tester may exercise the comparable system in

parallel with the system under test thereby getting the expected results in real time. This is

especially appropriate when the functionality being tested is time/date sensitive. It is harder to

implement in a fully automated test execution because it requires the comparable system to be

amenable to fully automated testing, a situation that is rare enough with the system under test

let alone the comparable system.

A Priori Execution of Comparable System Test Oracle

The more common usage of a Comparable System Test Oracle involves a one-time execution of

each of the test cases against the comparable system. The results of the test cases are captured

and either encoded within the test scripts or stored as a “golden” master result with which the

actual results are compared. This approach is especially relevant when the comparable system is

not amenable to test automation, is slow to execute, or will not be available with the actual test

execution is to occur. If the results must be massaged before being used during test execution, a

priori execution is indicated.

Legacy System Test Oracle

When the comparable system is being replaced by the system under test and the results are

expected to be equivalent, we can use the legacy system as the Comparable System Test Oracle.

If we plan to use the results after the legacy system is shut down we must capture the results a

priori.

Rationale

All tests require some kind of Test Oracle to determine the pass/fail status of a test. A

comparable may be the defacto way the customer defines the expectations of the system.

Related Topics

 Human Test Oracle

 Hand-crafted Test Oracle

 Previous Result Test Oracle

References

Books:

Human%20Test%20Oracle%20Thumbnail.doc
Hand-Crafted%20Oracle%20Thumbnail.doc
Previous%20Result%20Oracle%20Thumbnail.doc

Online Resources:

Part III: Samples

ITPS Project Charter [GBS]

Vision/Scope Template in Word [GBS]

1) Vision

a. “For <target audience>, who need to <problem to solve>, the <product or or

service> provides <solution(s)> unlike <the current state, market void, or

competition>.”

Sample:

For current Global Bank premium account holders who need to monitor their accounts

for suspicious activity like identity theft, fraud, and infiltration the Identity Theft

Protection Service (ITPS) will allow customers to sign up for notification of suspect

transactions by email, IM, text, and/or voice that provide general information and a URL

for secure login to review transaction details unlike that for non-premium account

holders (less than $50,000 in assets) or premium account holders at other competing

banks.

2) Scope

a. Statement of the feature, product or service that elaborates on the Vision

Statement.

Sample:

Global Bank has been offering self-service Internet credit card, banking, and investment

services around the world. Recently, the bank has noticed that identity theft handling

has been a rising source of customer complaints, both due to the complexity of handling

claims, the number of falsely suspected thefts, and the number of actual thefts that have

gone undetected.

These concerns have led the bank to invest in developing an Identity Theft Protection

Service (ITPS). The service allows customers to sign up for notification of suspect

transactions by email, IM, text, and/or voice. To ensure security, notifications provide

general information and a URL for secure login to review transaction details.

Notifications can be set based on amount, credit used, location, or unexpected spending

pattern.

ITPS is intended to extend the customer self-service with these elements:

• Preference settings for communications profile

• Enhancements to public website with real-time transaction review pages

• Notification services to consumer for data update availability (IM, text message,

voice, email)

• Enhanced client for customer service reps in the call center

• Enhanced b2b services with transaction clearing houses (e.g. First Data Corp)

3) Current problem state

a. Why the service or product is needed

b. Research / Gap Analysis / Competition

4) Stakeholders or influencers on the project

a. Customers (and / or Proxies)

b. Decision-makers

c. Influencers

d. Users

5) Approach to design, building, testing, and delivery

a. Models

b. Techniques

c. Methods

6) Scorecard

a. Category

b. Category Goal

c. Measurement attribute

d. Measurement goal

e. Owner

Sample:

7) Release Plan

a. Dates

b. Tasks

c. Events

8) Team members

9) Budget

10) Risk Evaluation

a. The likelihood and impact project problems, displayed in a color chart, each

with a list of corresponding mitigators.

Global Bank ITPS system risk assessment.

Risk%20sample%20for%20ITPS%20in%20Word.docx

ITPS Exploring Requirements to Define Functional Acceptance

Tests [GBS]

Global Bank ITPS Use Case Model

ITPS: Identity Theft Protection Service

Global Bank ITPS System Context Diagram

Manage Notification Preferences

Notify of Suspicious Transaction

Manage Notifications

Account

Owner

Fraud

Investigator

Request Fraud Investigation

Manage User Account

Manage Fraud Investigation

CSR

Actors and Goals

Actor Goal

Account Owner Manage their account monitoring notification preferences.

 Receive notification of any suspicious activity on their

account as defined in their notification preferences.

 Manage the notifications they receive as a result.

 Request a fraud investigation based on a notification.

 View the status of the fraud investigation.

Fraud Investigator Manage a fraud investigation requested for an Account

Owner.

 Manage (Disable, Cancel) an account.

Customer Service

Representative

 Act on behalf of the Account Owner managing preferences,

notifications and fraud investigations.

 Manage (Set up, Disable, Cancel) accounts

 Stakeholders and Interests

Stakeholder Concern

Corporate Security Know who tried to access a system unauthorized

Auditor Know who changed what, when.

Use Case Descriptions

Use Case: Manage Notification Preferences

CHARACTERISTIC INFORMATION

Goal in Context: An account owner or a CSR may manage the notification preferences associated

with the account.

Scope: Global Bank Identity Theft Protection Service

Level: User Goal (sea level)

Preconditions: User is already logged in and has sufficient privilege.

Success End Condition: The notification preference has been modified as requested.

Failed End Condition: The notification preference has not been modified.

Primary Actor: Account Owner (or a CSR acting on their behalf)

Trigger: User requests a change.

--

MAIN SUCCESS SCENARIO

1. User requests a change to their notification profile

2. System verifies user is allowed to modify this profile

3. System logs the requesting user, account affected and a summary of the changes made

4. System updates the profile as requested

5. The use case ends in success

EXTENSIONS

2a. User not logged in or not authorized :

2a1. System logs unauthorized request, user information and time/date in the security log

2a2. System notifies user that request could not be completed

2a3. The use case fails

3a. Database cannot be updated :

3a1. System notifies user that request could not be completed

3a2. System notifies the monitoring system of the error

3a3. The use case fails

VARIATIONS

1a. The user requested notification via SMS

 :

1b. The user requested notification via e-mail

1b1. System sends test e-mail to the user

1b2. User confirms receipt of the test e-mail

1b3. System activates notification via e-mail

1b4. Continue with main scenario

1c. The user requested notification via Instant Messaging

 :

1d. The user requested notification via voicemail

 :

1e. The user adjusted the transaction size threshold

1e1.Based on Charge Type

1e2.Based on Location

1e3.Based on Account

 :

1f. The user requested “unusual spending pattern” triggering

 :

1h. The user requested suspending notifications for a specified duration

 :

Use Case: Notify of Suspicious Activity

CHARACTERISTIC INFORMATION

Goal in Context: A transaction occurs on an account with ITPS notification preferences.

Scope: Global Bank Identity Theft Protection Service

Level: User Goal (sea level)

Preconditions: Transaction monitoring is active on the user’s account.

Success End Condition: The user has been notified as requested in their profile.

Failed End Condition: The user has not been notified as requested in their profile but a

notification attempt may have been recorded.

Primary Actor: ITPS System

Trigger: A transaction is processed on an account.

--

MAIN SUCCESS SCENARIO

1. Systems receives a transaction.

2. System compares transaction with notification preferences of affected account.

3. System determine that transaction is suspicious.

4. System logs suspicious activity

5. System creates notification record and links it to the account in “not notified” status.

6. System notifies user via means defined in their notification preferences.

7. System updates the notification record with “notified” status.

8. The use case ends in success

EXTENSIONS

5a. Notification is currently suspended

5a1. System logs that notification is disabled.

5a2. Use case ends in failure

6a. Notification fails :

6a1. System logs failed notification attempt.

6a2. The use case fails with a “not notified” notification record associated with the user’s

account.

5a. Database cannot be updated :

3a1. System raises a serious alarm condition with the system monitoring system

3a2. The use case fails

VARIATIONS

6a. The user requested notification via SMS

 :

6b. The user requested notification via e-mail

4b1. System sends notification e-mail to the user

4b2.

4b4. Continue with main scenario

6c. The user requested notification via Instant Messaging

 :

6d. The user requested notification via voicemail

 :

User Stories [GBS]

The initial stories that were created for the ITPS system are:

As a signed in bank account owner, I want to sign up for ITPS notifications so I can be
notified of possible fraudulent transactions.

As a signed in bank account owner, I can set preferences for receiving ITPS notification
via email

As a signed in bank account owner, I can set preferences for receiving ITPS notification
via IM

As a signed in bank account owner, I can set preferences for receiving ITPS notification
via SMS -

As a signed in bank account owner, I can set preferences for receiving ITPS notification
via voicemail

As a signed in bank account owner, I can set preferences for sending notifications
based on amount spent

As a signed in bank account owner, I can set preferences for sending notifications
based on credit or account used

As a signed in bank account owner, I can set preferences for sending notifications
based on location

As a signed in bank account owner, I can set preferences for sending notifications
based on unexpected spending patterns

As a signed in bank account owner, I can set preferences for sending notifications
based on a combination of reasons

As a signed in bank account owner, I can set preferences for sending notifications to
several notification targets

As a signed in bank account owner, I can set severity levels on each reason

As a signed in bank account owner, I can suspend notifications for X days

As a signed in bank account owner, I can modify my notification preferences

As a signed in bank account owner, on the site home page, I can see a link to a list of
recent notifications

As a signed in bank account owner, I can view a list of recent notifications

As a signed in bank account owner, I can dismiss a notification as an allowed
transaction

As a signed in bank account owner, I can file a fraud claim from the list of recent
notifications

As a signed in bank account owner, I want to file a fraud claim with the bank based on
my bank statement

As a signed in bank account owner, I can block use of my credit/debit card

As a signed in bank account owner, I can report a lost or stolen credit/debit card

A bank account owner can call customer service line and choose to hear notifications -
separate vendor acceptance test (text to voice)

As a customer service representative, I can sign up a user for ITPS notifications so I can
be notified of possible fraudulent transactions.

As a customer service representative, I can set preferences for a user for receiving ITPS
notification via email

As a customer service representative, I can set preferences for a user for receiving ITPS
notification via IM

As a customer service representative, I can set preferences for a user for receiving ITPS
notification via SMS -

As a customer service representative, I can set preferences for a user for receiving ITPS
notification via voicemail

As a customer service representative, I can set preferences for a user for sending
notifications based on amount spent

As a customer service representative, I can set preferences for a user for sending
notifications based on credit or account used

As a customer service representative, I can set preferences for a user for sending
notifications based on location

As a customer service representative, I can set preferences for a user for sending
notifications based on unexpected spending patterns

As a customer service representative, I can set preferences for a user for sending
notifications based on a combination of reasons

As a customer service representative, I can set preferences for a user for sending
notifications to several notification targets

As a customer service representative, on behalf of a user , I can set severity levels on
each reason

As a customer service representative, on behalf of a user , I can suspend notifications
for X days

As a customer service representative, on behalf of a user , I can modify their
notification preferences

As a customer service representative, on behalf of a user , I can view a list of recent
notifications

As a customer service representative, on behalf of a user , I can dismiss a notification as
an allowed transaction

As a customer service representative, on behalf of a user , I can file a fraud claim from
the list of recent notifications

As a customer service representative, on behalf of a user , I can file a fraud claim with
the bank based on my bank statement

As a customer service representative, on behalf of a user, I can block use of their
credit/debit card

As a customer service representative, on behalf of a user , I can report a lost or stolen
credit/debit card

As a customer service representative, on behalf of a user , I can re-activate a disabled
card

As a bank fraud investigator, I want to be able trace activity on a possible fraudulent
claims through resolution

As a bank fraud investigator, I want to approve a claim as valid

As a bank fraud investigator, I want to deny a claim as invalid

As a bank fraud investigator, I want to add notes to a claim

As a bank fraud investigator, I want to notify the legal department to file suit against a
fraudster

As a bank fraud investigator, I want to close a user's account for false accusations

The ITPS system will automatically block a card and notify the user for high severity
notifications.

The ITPS system will automatically block a card and notify the user for transactions on
three continents in 24 hours.

The ITPS system will automatically block a card and notify the user when transactions
totaling more than $25000 happen in 24 hours.

ITPS will verify users are human before allowing registration on the web site.

ITPS will verify Turing Test is easily passed by humans.

ITPS will verify Turing Test is not easily cracked by computers.

User Roles (OS)

Persona (GBS)

Defining Acceptance Tests for User Stories

Manual Test Script Role Play [GBS]

Automated Workflow Fit Test

Driving ITPS Security Testing Via Risks

Soap-Opera Test [GBS]

“From his corner office on Madison Avenue, the CEO of Contoso ignores the coffee he just

knocked over on his desk because he has a more urgent problem -- an alert through Instant

Messenger from Globobank that his identity may have been compromised. He is alarmed, too,

because earlier that day he got a frantic call from his girlfriend about her credit limit being

reached when she had done no transaction in months. Right after that call, he had logged into

ITPS to review the transaction details on his account. There was nothing. But now, four hours

later, there is an alert. Upon logging in again, he sees that the transactions are originating from

the same city that the fraudulent charges were for her account. He knows who it might be – his

ex-wife – who is in that same city. She is an accountant at a rival to Contoso – a rival that he

used to work for. So he sets a trap. Using ITPS, he sets his notifications based on location to see

if he can prove his theory. He leaves his office to meet his girlfriend and takes his PDA with him

to check the status and be informed of alerts. But he loses the cell signal from his PDA as the

driver drivers though a dead zone. Luckily he’s set up for voicemail, too and he’s got his cell

phone with him and the signal is strong. He gets a call. It is the ITPS system warning him of a

new transaction in Barbados, where he has a beach house. In that beach house is the one and

only credit card that has access to that account. ..”

ITPS Threat Model [GBS]

Application Name and Description

The Identity Theft Protection Service (ITPS) allows Global Bank customers to sign up for

notification of suspect transactions by email, IM, text, and/or voice. To ensure security,

notifications provide general information and a URL for secure login to review transaction

details. Notifications can be set based on amount, credit used, location, or unexpected

spending pattern.

Owners, Authors, and Stakeholders

Owners Authors Stakeholders

 John Smith John Smith

Revision History

Name Change Date

 John Smith Created Jul 1st 2008

1. Security Objectives

Below are the goals and constraints that affect the confidentiality, integrity, and availability of

the data and application.

 Prevent attacker from obtaining Global Bank user’s profile information/ notification

preferences

 Prevent attacker to change Global Bank user’s notification preferences

 Prevent any unauthorized access to users account on public website

 Prevent attacker from obtaining the notifications sent to Global Bank customers

2. Application Overview

Customer self-service uses a service oriented, composite application. The application tier of the

application connects to multiple transactional back-ends to provide a single customer portal.

ITPS is intended to extend the customer self-service with following key features:

Key Features & Scenarios

• Preference settings for communications profile

• User logs on to the customer portal

• User enters preferences for notification

• Saves the preferences

• Enhancements to public website with real-time transaction review pages using Atlas

• User logs on the public website

• User reviews his/her transactions

• Notification services to consumer for data update availability (IM, text message, voice,

email)

• User gets notifications, based on the preferences set by the user, when an

transaction occurs on user account

• Enhanced client for customer service reps in the call center

• Customer service reps logs on to the client

• Customer service reps can enter customer account number and answer to 3

random security questions to open a customer account

• Customer service rep can view detailed transaction details for an account

• Customer service rep can search for a certain transaction based on date/time,

vendor name, or amount.

• Customer service rep can mark a transaction a fraud for further investigation.

• Customer service rep can record the conversation with the customer

Technologies

• Operating system: Microsoft Windows Server 2003 Enterprise Edition

• Web Server: IIS 6.0

• Database: SQL Server 2005

• Technologies:

• Presentation: ASP.NET, WCF

• Middle Tier & Data Access Layer: C#.Net

External Dependencies

(The External Dependency lists dependencies on other components or products that can

impact security. These are assumptions that are made about their usage or

behavior. Inconsistencies can lead to security weaknesses.)

The system has following external dependencies -

External Dependencies

ID Description

1 System uses external b2b services

2 System depends on external providers for delivering
notifications to end customers

Implementation Assumptions

(The Implementation Assumptions table describes those assumptions about the internal

workings of the component that are made during the specification phase, but before

implementation has started. The implementer should be aware that these should not be

violated. Typically, they will be further reviewed once implementation is in place.)

Below is the list of implementation assumptions that were discussed and decided.

Implementation Assumptions

ID Description

1. Use certificates for securing communication with
external B2B Services

2. User credentials/ profile information will be stored
in database in encrypted form.

3. Application configuration will be stored in SSO
database which stores the information in encrypted
format.

4.

External Security Notes

(The External Security Notes table includes those threats or other information that a user

of the component should be aware of to prevent possible vulnerabilities. These may

include features that, if used incorrectly, could cause security problems in consumers of

this component.)

External Security Notes

ID Description

1. User should use strong passwords.

2.

3. Application Decomposition

Data Flow Diagram

Entry Points

(The Entry Points table describes the interfaces through which external entities can

interact with the component, either through direct interaction or indirectly supplying it

with data.)

Entry Point

ID Name Description

1 Customer Portal User can log on to the portal to set notification
preferences

2 Public website User can view the transaction details

3 Customer service
rep system

Customer service rep can access user account to
view transaction

Protected Resources

(The Protected Resources table describes the data or functionality that the component

needs to protect. It lists the minimum Access Category that should be allowed to access

the resource.)

Protected Resources
ID Name Trust Level
1 User credentials

2 User profile/ notification preferences

3 Application configuration

4. Threats

List of threats and attacks that could affect the application

Threats

Threat

ID 1

Name Eavesdropping Attacks

Description Notification sent to users can be monitored

 Communication with B2B services can be
monitored by attacker

STRIDE Classification Tempering

 Information Disclosure

Mitigated? No

Known Mitigation Use certificates for securing communication with
B2B

Protected Resources Notification
User Data

Threat

ID 2

Name SQL injection Attacks

Description Attacker could enter SQL script though UI

STRIDE Classification Tampering

Threats

Mitigated? Yes

Known Mitigation Input validation
Using parameterized queries

Protected Resources User / System Data

5. Vulnerabilities

List of vulnerabilities in the application -

Vulnerabilities

Vulnerability

ID 2

Name Notifications in clear text

Description Notification sent to user as IM or Email are sent in
clear text.

STRIDE Classification Tempering

 Information Disclosure

Corresponding Threat Eavesdropping Attacks

ITPS Risk Assessment [GBS]

Global Bank ITPS Project Risk Assessment

P
ro

b
ab

ili
ty

 /
 L

ik
e

lih
o

o
d

H
Competitor plans a better
implementation

Marketing makes unealistic
promises;
Lots of data-driven bugs found
during beta

Test lab isn't available on time;
Performance is poor

M

Product is hard to test;
Connection technology between
teams is unreliable;
Regulatory body finds deficiencies;
Culture clash between teams cause
lack of communication

An attach breaches security;
Users can't figure out how to do
notification;
Privacy violation occurs after
deployment;

L
Indian outsourcer goes
bankrupt

Test logic makes it into production;
Expert on legacy components
leaves

Implicit requirements discovered
during AT;
Deployment fails;
Rollback to previous version fails;
Customer sues for damages b/c
of lack of notifications;
Lack of requirement consensus;
Inadequate technology selected

 L M H

 Consequence / Impact

Risk Mitigators:

Exploratory testing

Do usability early with prototypes

Do perf testing early

Involve customer in AT (ATDD)

Better functional testing during readiness

Incremental AT

Data analysis

Paired testing

Compliance testing and review during readiness

Get real data from customers

AT reviewed by customer

Persona-based testing ("Clumsy Clive")

Threat modeling

Hire independent external security test lab

Penetration testing

Hire a tiger team

Automate reimaging of test machines

Define and get consensus on the sandbox strategy in the test plan

Build testability into the system

Automate component testing

Early integration testing

Extract "to-be-modified" legacy mogic

Scenario / end-to-end testing

Stub out dependencies

Threat personas

Risk-driven testing

Integration testing

Shared code ownership

Automated regression tests

Early sharing of AT to improve communication

Early incremental acceptance testing

Soap opera testing

Plenty questions

Draft your disclosure documents early

Installation / Uninstallation testing

Content / documentation testing

Benchmarking / competitive testing

ITPS Security Testing [GBS]

Penetration Testing [GBS]

Fuzz Testing [GBS]

ITPS Test Planning [GBS]

ITPS Test Plan [GBS]

Author: <Author Name>

Date: July 21, 2008

Index

Index 229

Revision History 232

Distribution and Contact List 232

Introduction 233

Business Objective 233

Testing Risks & Issues 233

References 234

Acceptance Decision Makers 234

Testing Schedule & Cost Summary 235

Resource Plan 235

Feature History 235

Release - Electronic Bill Payment 236

Release - Identity Theft Protection Service 236

Test Coverage 236

 Functional 236

 Integration 236

 Regression 237

 Localization: 237

 Performance: 237

 Security 237

 Accessibility: 237

 Out of Scope 238

 Test Deliverables 238

Testing Assumptions & Goals 239

General Assumption 239

Test Goals 239

 Functional testing 239

 Performance & Stress Testing 239

 Security Testing 239

 Accessibility testing 239

External Dependencies 239

Test Tools & Libraries 240

Test Configurations 240

 Operating Systems 240

 Browser 240

 Globalization/Localization Test Matrix 240

 Setup Testing. 240

System Requirements 240

Area Breakout & Testing Approach 240

Revision History

Author Date Description

John July 01, 2008 Created

Distribution and Contact List

Program Managers: Steve [steve], San G [sang]

Developers: Al Wills [alwills], Francis [Francis]

Testers: Tim [tim], Kelly [kelly], Mike [mike]

Localization PM: Paul [paul]

Team Alias: gbproj

Introduction

This test plan addresses the test planning for the ITPS system, scheduled for December 2008 release of

Global Bank website.

Business Objective

Invest in developing an Identity Theft Protection Service (ITPS) for the Global Bank website to allow

premium account holders to monitor their accounts for suspicious activity like identity theft, fraud, and

infiltration.

ITPS is intended to extend the customer self-service with the following elements:

• Preference settings for communications profile

• Enhancements to public website with real-time transaction review pages

• Notification services to consumer for data update availability (IM, text message, voice, email)

• Enhanced client for customer service reps in the call center

• Enhanced b2b services with transaction clearing houses (e.g. First Data Corp)

Testing Risks & Issues

Below is the list of critical concerns of the test plan.

Legacy Code: There are no automated tests available for doing regression test pass on existing Global

Bank website and the test team does not have sufficient resources to build full automation test suite for

the website. As a result, there is a possibility that test team might miss issues/ bugs introduced by

integrating ITPS in existing website.

To minimize the risk:

- Test team will include the following in scope for this release

o Manual testing of priority 1 features of Global Bank website

o Testing and automation of Global Bank features that are identified as integration points

- Manual smoke test pass on other Global Bank features.

Resources: In-house expert on accessibility testing not available

To minimize the risk:

- 1 person from the test team will go through training on Accessibility testing

- External SME will be engaged

Below is the list of open issues:

Hot fixes/ patches: Strategy for applying hot fixes/ patches not finalized yet. Plan will be updated when

the strategy is in place

References

 Test plan:

<TBD>

 Feature specification:

<TBD>

 Dev specifications:

<TBD>

 Bug Database Queries:

<TBD>

 Test cases:

<TBD>

 Test Contract:

<TBD>

 Source Code:

<TBD>

Acceptance Decision Makers

The readiness decision will be made by <insert name here>, the director of IT, in consultation with

<insert name here>, Director of Corporate Security, based on readiness assessment activities conducted

by the development team, Security Tester, and Performance Tester.

The acceptance decision will be made by <insert name here>, the business sponsor, based on

acceptance testing conducted by customer proxies and end users.

Testing Schedule & Cost Summary

Break the testing down into phases (ex. Planning, Case Design, Unit Tests, Feature Tests, Integration

and Scenario Tests, Performance, Capacity, Stress, Compatibility Testing, Etc.) - and make a rough

schedule of sequence and dates. Of particular importance is what you expect to complete during the

feature crew and what will be delivered later.

If necessary, include a pointer to more detailed feature and team schedules here.

 Test Schedule

 Two test cycle planned for the ITPS release

 Each cycle is allotted two weeks with one week for bug fixes between cycles (total 5 weeks.)

 Week 1 is Readiness Assessment.

 Code will be moved to Acceptance environment upon completion

 Week 2 is Acceptance testing.

 Priority 1 & 2 bugs must be fixed before end of Cycle 2 Readiness Assessment.

<Need to define what kinds of testing in Readiness Assessment and what in Acceptance Testing.>

Resource Plan

Below is the test resource plan for the project

Tester Start Date End Date

Tim July 2008 Dec 2008 100%

Kelly Aug 2008 Dec 2008 100%

Mike Aug 2008 Dec 2008 50%

Security Tester Oct 2008 Nov 2008 50%

Performance Tester Oct 2008 Nov 2008 50%

Accessibility Tester Oct 2008 Nov 2008 50%

Feature History

Global bank website started off with very limited online banking capabilities. To support the full range of

bank’s financial services capabilities, new features were added to the web site in incremental releases.

Release - Electronic Bill Payment

The first update to the web site included electronic bill payment capability. The feature was successfully

deployed and had a immediate impact upon customer satisfaction.

Out of Scope - As the deadlines were fairly aggressively the management took a conscious decision to

not to invest in building comprehensive automated test harness to reduce the TTM.

Post Release Issues – Business analyst had a good idea of the load (hits/day) that the site would need to

support, however underestimated the peak load during busy hours. As a result, the some customers

reported time out issues and the web site design had be updated to support more simultaneous users.

Release - Identity Theft Protection Service

This release will add the Identity Theft Protection Service (ITPS) to global bank web site. ITPS allows

Global Bank customers to sign up for notification of suspect transactions by email, IM, text, and/or

voice. To ensure security, notifications provide general information and a URL for secure login to review

transaction details. Notifications can be set based on amount, credit used, location, or unexpected

spending pattern.

Test Coverage

 In Scope Testing Coverage

Function and non-functional testing planned for ITPS feature:

Functional

 Testing will be performed to verify that account holders can configure/ monitor

their accounts for suspicious activity like identity theft, fraud, and infiltration

 Functional testing will be performed to verify that the enhanced client for customer

service reps can be used to investigate the suspicious activities on the account

holders account.

Integration

 Verify integration between Global bank web site and ITPS

 Verify integration between Global bank website and external b2b services

Regression

 Automated regression testing will be run on all builds. This will include:

 All the automated unit tests implemented in xUnit

 All the business unit tests implemented in Fit

 All subcutaneous workflow tests automated using Fit or xUnit

 Full regression testing will be run on all release candidates starting with all the

automated regression tests and concluding with a high-coverage set of manual

regression tests based on business scenarios.

Localization:

o Only pseudo-localization testing will be performed. Test cases will verify that the ITPS

feature can be localized without any errors.

Performance:

 All ITPS features including priority 2 and 3features

 All global bank features that integrate with ITPS.

Security

 Security review will be performed on design and later on code to identify security

vurnabilities

 Threat modeling

 Fuzz testing

 Website site will be tested for following types of injection

 Attribute injection

 Protocol injection

 Script block injection

 Script injection

 Tag injection

Accessibility:

o The Global bank web site must meet Level ‘A’ Conformance as set by the Web Content

Accessibility Guidelines (WCAG) 1.0.

Detailed Test Approach per Area

The test team will conduct a detailed review of the design of IPTS feature; to benchmark the feature

quality the team will perform the following type of functional and non-functional testing:

Functional Testing: The test team will perform design review, code reviews, black box and manual

functional testing for validating the ITPS features.

The focus will be on ITPS features, integration points with Global Bank and other high priority Global

Bank features (satisfiers).

The test team was able to complete only full functional test pass and will automate all priority 1 test

cases. The second test pass/ regression test pass will only include regression of bugs running automated

tests to identify regression issues.

Security Testing: The test team will perform security testing of the tool, which will include reviewing the

code against the security checklists and preparation of security threat model. The security issues found

during security testing will be triaged and high priority issues were fixed. Test team will also run fuzz

testing on Global Bank site.

Localization Testing: Localized version of the web site is currently not available. However, bank might go

international in future, so pseudo-localization testing is included in scope for the release.

Out of Scope

o Testing of content for correctness and completeness is out of scope for this release.

o Performance testing of Global bank features is out of scope for this release

o Localization testing is out of scope

Test Deliverables

o Automated test cases for all IPTS features

o Automated test cases for Global bank features that integrate with ITPS

o Performance test cases w/ reports

Testing Assumptions & Goals

General Assumption

Test Goals

Functional testing

 Automate all Priority 1 test cases

 70% code coverage

 95% test passing on all supported configuration

Performance & Stress Testing

 70% pass rate on all short haul and long haul testing

 Each stress test case should be run for minimum of 8 hours

 Performance is signed off for each milestone based on the current checkpoint

criteria. All goals, or release targets, must be met

Security Testing

 Threat model for all priority features

 All security issues resolved

 Fuzz testing run completed and issues addressed

 Penetration testing completed and issues addressed

 Static analysis runs completes and no high severity issues

Accessibility testing

 Web site must meet Level ‘A’ Conformance as set by the Web Content Accessibility

Guidelines (WCAG) 1.0

External Dependencies

None

Test Tools & Libraries

The following tools will be used for UI test automation

• UIA Framework Directly

• White wrapper on UIA Framework

Unit Testing

• VSTT

Test Configurations

Operating Systems

Server: Win2k3 SP1

Client: Vista, Win XP SP2

Browser

Functional testing: IE 7, IE 6

Security testing: IE6

Globalization/Localization Test Matrix

Only ENU

Setup Testing.

No custom actions identified for setting up this feature.

System Requirements

Hardware Requirements

Software Requirements

 IIS 6.0

 VSTT

 IE 7.0, 6.0

Area Breakout & Testing Approach

This is a detailed list of the test cases required for this feature or area.

Area Location

Functional Tests <<Link to functional tests sample>>

Performance Tests <<Link to performance tests sample>>

Security Tests <<Link to security tests sample>>

Localization Tests <<Link to localization tests sample>>

Accessibility Tests http://www.w3.org/TR/WAI-WEBCONTENT/

 Process

 Acceptance Test identified during Iteration Planning

 Devs automate some acceptance test as part of unit tests

 Pairing with devs for writing acceptance unit/ functional tests

 Test owns acceptance test

http://www.w3.org/TR/WAI-WEBCONTENT/

Decision Roles [GBS]

Test Activities vs Phase [GBS]

Test Management Strategy [GBS]

Sample Test Cycle Schedule [GBS]

Regression Test Plan [GBS]

Done Done Checklist - Release [GBS]

ITPS Done-Done Checklist & Team Norms

The Global Bank customer for the ITPS project (Acceptance Decision Maker) worked with the delivery
team to create a list of criteria defining what it meant for a feature to be truly done (or “done-done” to
distinguish it from “I’m done coding.” The Web Development Team refers to this as the “Done-Done
Checklist”.

In addition to Customer Done-Done Checklist List, the development teams in Global Bank’s IT
department have development standards that they must follow for all development work (just like any
other large organization).

In addition, the Web Development Team has adopted a set of “team norms” for they work together.

Each of these lists has been printed on a plotter and posted on the walls of the Web Develoment Team

room as constant reminders of what constitutes “done-done”.

<PD Instructions to the editors: each of the following Heading 1’s should be typeset as a

separate virtual page with a border/background to make it look like a standalone artifact.>

Customer Done-Done Checklist

Feature Done-Done Checklist

A feature is considered done-done when:

 The development team is satisfied that the feature is ready for acceptance testing by

the customer:
o The quality of the code is sufficient and meets all Global Bank development

standards.
o It meets the acceptance criteria previously agreed to with our customer
o The functionality is fully integrated into a customer-accessible build of the product

 The feature has been demonstrated to the customer

 The customer has completed acceptance testing and has accepted the feature as done

Release Done-Done Checklist

A release of the product is considered done when:

 All features defined as part of the Minimum Credible Release are included in the

official release candidate build.

 All included features have been accepted by the customer.

 A security review has been conducted

 The test team is confident that none of the included features has a significant risk of causing
problems in the production environment

 The product can be deployed and rolled back if necessary

 There are clear, concise deployment and rollback instructions for the operations team

 There are clear trouble-shooting scripts and knowledge base articles for use by the help
desk representatives.

Global Bank Development Standards

 All code must follow the Global Bank code style guide

 All public APIs must be documented

 All code must be unit tested (preferably automated via xUnit)

 Any changes to the architecture must be communicated, reviewed and agreed to by the

team ahead of time

 All code must be checked by the static code analyzer (currently FXCop) and any rule

violations that cannot be fixed are reviewed with the team and an exception to the

corresponding rule added to the rule database

Web Development Team Norms

In addition, the web development team has adopted the following “team norms” for how we work.

 We use the simplest design that will solve the business problem; we don’t gold-plate our

designs.

 We document public APIs via XML comments as we build them rather than leaving all the

documentation work to the end where it will be rushed.

 We define the skeleton of the architecture as a team creates at the beginning of the project

and then follow it as closely as possible until a business need causes us to propose changes

to it.

 We write code using an evolutionary test-driven development (TDD) style

 All code must either:

o Be written by a pair

o Have a design document written and reviewed by the team before development

starts, and the code must be buddy reviewed before check-in

 We only check in code when all the unit tests pass

 When we break the continuous integration build, our top priority is to fix the build

 We document all interface agreements with the Call Center Development team using

automated tests and we run the tests on each build of software they provide us.

 If someone offers you a breath mint, you just take

Test Plan [OS]

Test Plan 2 [OS]

Testing Graphical Inputs and Outputs [GBS]

Test Strategy & Test Pre-factoring [GBS]

Using Human SMEs as Test Oracles [GBS]

Using Hand-Crafted Test Oracles [GBS]

Using Previous Result Test Oracles [GBS]

Testing Binary Data Outputs (BLOBs)

<insert timeline with timepoints=Project Planning, Test Authoring, Test Execution>

One of the bigger challenges for test automation is verifying logic that deals with binary data streams
such as images or audio. This is made difficult because it can be hard to describe what the test needs to
verify within the binary data in a form that is meaningful to the test automater or test specifier. This
example illustrates the application of a number of test practices that, when combined, can make
automated testing of this kind of functionality possible. The testing practices illustrated in this example
include:

 Story tests

 Design for testability

 Test automation strategy

 Result Assessment Using Human Oracle

 Result Assessment using Previous Output Oracle

 Result Assessment using Hand-Crafted Oracle

Global Bank ITPS Background

The Identity Theft Protection Service of the Global Bank includes several security features to
authenticate users. Users must first create sign up for an account or register an existing account on the
Global Bank web site. Many security measures can be overcome through brute force attacks by
computers. Therefore, the chief of security at Global Bank wants to ensure that only human users can
sign up for or register bank accounts. Based on some research, he has decided that he wants to use a
sequence of graphics that the human user will find easy to decipher and machines would have great
difficulty. Each consists of a single stylized letter onto which is superimposed a picture of either a cat or
a dog or neither plus some additional pictorial noise elements. Figure x shows an example of the Turing
Test verify that it is a human who is downloading a file:

https://sharepoint.partners.extranet.microsoft.com/sites/TestingGuidance/Whiteboard Captures/Turing Test images/catdog2.png

The vice president of customer service insists that the graphics not be too difficult to interpret as that
may discourage new customers from signing up. The requirements related to this functionality are
summarized in the following list of user stories from the ITPS story backlog:

User Story Title Description

ITPS will verify users are human before allowing
registration on the web site.

User is shown a set of graphics and asked to
enter number of cats, dogs and the letter from
each box.

ITPS will verify Turing Test is easily passed by
humans.

Graphics are pregenerated and shown to test
subjects before being approved for use with
real users.

ITPS will verify Turing Test is not easily cracked by
computers.

Graphics are shown to graphics analyser and
rejected if it can answer correctly.

ITPS Turing Test Software Design

<insert timeline with timepoints=Software Design>

Based on the requirements, the web development team has proposed the following solution.

A graphic generator component will generate new graphics and the associated metadata for use during
the account signup process. Each graphic object consists of one graphic and the associated meta data
that describes which pet the graphic contains and which letter is superimposed on it. Initially, the
account signup process would get five of these graphic objects from the generator and show them to
the new user along with field in which to type the number of cats, number of dogs, and the sequence
of letters and numbers they see in the graphics. The user’s responses are then compared with the meta
data associated with the graphics.

To address the concerns of ease of use, each graphic must first be inspected by a human to verify that
it can be deciphered relatively easily. To ensure security, each graphic will also be subjected to analysis
by one or more image analyzers to see if it is too easy to crack. To address response time concerns, the
graphics will be pregenerated and stored in a database and then analyzed during periods of low CPU
occupancy. Graphics that are “too easy” will not be presented to the human tester(s). Graphics the
human considered “too hard” or ones they were not able to identify correctly will not be used with
account owners.

Design for Testability

The web development team prefers to do highly incremental test-driven development. This involves
writing unit tests for all functionality before writing the code to implement it. It is also highly desirable
to have automated functional tests that can be used to regression test all functionality. The graphic
images represent a unique challenge for test automation for the very same reasons that they improve
the security of the system: recognizing graphical shapes is computationally expensive if even possible.
Therefore, the team needs to come up with a way to test this functionality without having to analyze
images as part every regression test. Fortunately, the team is thinking about the testability
requirements of the system early enough to influence the design. They decide to decompose the

functionality into a series of transformations arranged end to end as a pipeline either terminating in or
starting from the image database. Figure X shows the entire pipeline for each of the four scenarios.

Figure X:

Image Generation : [R]->(M1)->[T1]->(M2)->[T2]->(M3) ->[T3]->(M4) ->[G]->(B1)->[U]->DB
Too Easy : DB->[Q1]->(B1)->[P]->(M5)->[U1]->DB
Too Hard : DB-> [Q2]->(B1)->[I1]->(M6)->[D]->[U2]->DB
Usage: DB-> [Q3]-> (B1-5) ->[I2]->(M7)

The circles represent the various representations of the graphical images as models (M), binary objects
(B). The squares represent different kinds of transformations [T] between, parsing [P] binary objects
into models [P], generating binary objects randomly [R] or from models [G], storing or updating models
or binary objects in a database [U] or queries retrieving models or binary objects [R] from the database.

Graphical Image Generation

The graphical images are pregenerated and placed in the database ready to be verified by the automate

analyzer and the human administrator. The individual steps are:

[R] generates (M1) consisting of a random letter, a random skew factor, a randomly selected pet
picture (from a known set) and a random rotation factor for the picture.
[T1] generates a new model (M2) which includes the letter graphic
[T2] generates a new model (M3) which includes the skewed letter graphic
[T3] generates a new model (M4) which includes the rotated pet graphic
[G] generates (B1) the graphical bitmap with the skewed letter superimposed on the rotated pet
graphic

Rejecting Too Easy Images

[Q1] queries the database for the oldest graphic (B1) that hasn’t been tested for “too easy”-ness.
*P+ is the “too easy” parser. It generates (M5) indicating whether it found the letter and identified the
pet (too easy) or not (OK).
*U1+ updates the “too easy” field in the database with the result of *P+

Rejecting Too Hard Images

[Q2] queries the database for the oldest graphic (B1) that hasn’t been tested for “too hard”-ness.
[I1] is where it shows the graphic to the human and receives the input (M6) indicating which pet and
which letter they saw, or “can’t tell”.
*U2+ updates the “too hard” field in the database with the result of *I+

Selecting Images for Turing Test

[Q3] queries the database for five graphics (B1-5) that are neither “too easy” nor “too hard”. (We need
to make this deterministic; maybe the 5 least recently used ones?)
 [I2] is the input from the user (M7) consisting of how many of each kind of pet and which letters they
saw.

Other Testability Requirements

Testing the individual scenarios requires access to the components which the decomposition provides.
Doing full workflow testing will impose additional testability requirements on the ITPS system. For
example, since the generation of new images and their analysis for “too easy”-ness are scheduled jobs

(time triggered), either we need to have a way to control the ITPS system clock to cause them to be run
without waiting or we need a separate interface to allow them to be requested on-demand. Likewise,
the need to test how the system responds to user inputs when verifying images are not “too hard” and
when the Turing Test is conducted on end users, the automated tests needs to be able to pretend that
it is the user interface and the user using it. This demands that the UI logic is cleanly separated from
the underlying business logic and that the latter is accessible via an API.

Test Automation Strategy for the ITPS Turing Test

<insert timeline with timepoints=Software Design >

The web development team prefers to do highly incremental test-driven development. This requires
automated regression tests for all functionality. The graphic images represent a unique challenge for
test automation for the very same reasons that they improve the security of the system: recognizing
graphical shapes is computationally expensive if even possible. Therefore, the team needs to come up
with a way to test this functionality without having to analyze images as part every regression test. The
team observes that each of the four scenarios is composed of sequences of the following four patterns
in various orders:

 Model-Model : (M:x)->[T]->(M:y)

 BLOB-Model : (B)->[P]->(M)

 Model-Blob : (M)->[G]->(B)

 Database Query : [R]->(B:1-n)
If they can come up with a way to automate tests for each of these patterns they will be able to test
the entire sequence in stages. That would reduce the number of tests that need to verify the end to
end logic because each individual transformation is already well tested.
<figure x> Test Automation Pyramid for Turing Test

 Workflow tests

 Generate OK Graphic – Shown to end user

 Generate Too Hard Graphic – Not available to end user

 Generate Too Easy Graphic – Not shown to administrator

 Image Generator Scenario Tests

 …

 Too Easy Scenario Tests

 No Images to parse

 Image Too Easy

 Image OK

 Too Hard Scenario Tests

 …

<figure y> Detailed Test Automation Pyramid for Turing Test Scenario “Too Easy”

 End to End Tests
a. No Images to parse
b. Image Too Easy
c. Image OK

 Component tests:
d. DB Query [Q] tests:

i. Non found

ii. Oldest found
e. Image Parser [P] tests:

i. Recognized Image – Correct Results
ii. Recognized Image – Incorrect Results

iii. Didn’t Recognize
iv. Parser took too long – killed process
v. Parser threw exception

f. DB Updater [U] tests
i. Update as “Too Easy”

ii. Update as “OK”
iii. Invalid Inputs
iv. DB failure

Automated Functional Testing of Turing Test Components

<insert timeline with timepoints= Test Authoring, Test Execution>

The following are strategies for verifying the behavior of the components that, when strung together,

implement the steps of the Turing Test workflows.

Verifying the Model to Model Pattern

In the Model to Model pattern we start with a digital model with known attributes. The transformation
uses this digital model as one of its inputs and generates a new digital model with know attributes. One
example of this might be transforming one XML document into a different XML document using XSLT.
Each test of this model injects a known set of inputs (the input model along with other parameters that
may regulate the transformation) and should result in a new model with well known characteristics
that can be queried and compared to expected values. The comparison process is often called an
assertion. For the Turing Test, we use this transformation to generate models of the images we will
later render. Because the transformations are deterministic we can calculate what the resulting model
should be for each test and then compare the actual result with the Hand-Crafted Oracle using one or
more assertions. If we choose to represent our models as XML documents, we could use an XML
Document comparison utility to do the comparison. We simply provide the utility with a relevance
mask that tells it which elements of the two files should be compared and it can provide us with a list
of elements that don’t match. If the list is empty, the test has passed this step. Alternatively, we could
use x-path expressions to extract specific fields of interest in the generated XML document and use
assertions to compare them with expected values. The expected values may be values that were in the
original XML document, they may be Derived Values [XTP] based on values in the original document or
they may be related to the other parameters passed to the transformer. This approach is likely to result
in larger and more complex tests and would only be used when constructing the expected XML
document was too expensive or obscured the intent of the test.

Verifying the BLOB to Model Pattern

Verifying the BLOB to Model transformation can be verified in a similar way because the output is also
a digital model. The main decision here is whether to use static BLOBs as the input to the image
analyzer being tested or to use models generated from attributes that we then expect to show up in
the output model. That is,

 (B)->[P]->(M)<-[!] or

 (M)->[G]->(B)->[P]->(M) <-[!]
Where the italicized items are part of the test harness and the bold parts are what is being tested. The
former style may result in the Mystery Guest test smell [XTP] because the expected attributes of the
BLOB must be hard coded in the assertions. The second style starts and ends with the same model but
requires the the BLOB be generated each time the test is running which could result in Slow Tests [XTP].
A reasonable compromise might be to start with an object that contain both the seed data from which
the BLOB can be generated, and a previously generated BLOB. This keeps the seed data and the BLOB in
synch and if in doubt, one can regenerate the BLOB from the seed data.

Verifying the Database Query Pattern

The Database Query can be easily verified because the query returns a collection of BLOBs with their

corresponding meta data and what needs to be verified is that the query returned the correct set of

BLOBs; the BLOBs themselves do not need to be examined, just their identity.

Verifying the Model to BLOB Pattern

As long as the generation of the BLOB (graphic consisting of a picture and a letter superimposed on
each other) is a deterministic process, the generated BLOB should be identical each time it is
generated. Therefore, once we have generated the BLOB once and verified that it is correct, all
subsequent runs of the same Testcase (with the same input model) should be able to verify correct
execution simply by comparing the output with the previously generated output. This previously
generated output is known as a digital oracle. The human who originally certified that this digital oracle
is correct is know as a human oracle.

Automated Functional Testing of ITPS Turing Test Workflow

<insert timeline with timepoints= Test Authoring, Test Execution>

Verifying End to End Functionality

Each of the 4 scenarios needs to be verified independently because they happen at different time. For
each scenario we ignore the intermediate steps and find the appropriate test pattern based on the
original inputs and the final outputs. For example, the first scenario starts with generating a random
set of inputs and ends with putting a single BLOB plus metadata into the database. Testing with
random inputs is almost never a good idea so we should start the test with a known set of inputs either
by stubbing the random number generator, initializing it with a known seed, or injecting the input into
the process just after the where the generator is called. The end result should be a known model
stored in the database. The meta data can be compared with the original pseudo-random numbers and
the BLOB can be compared using a human oracle the first time and a digital oracle on subsequent test
runs.

To further verify that the four scenarios interact correctly, we need to get control of the system clock
so that we can simulate the passage of time to trigger the background analysis of newly generated
graphics. We also need to simulate an administrative user asking to be shown a series of “hard
enough” (“not too easy”?) graphics so they can make the “not too hard” assessment.

Test:

Step / Intent How

1. Initialize application Load assembly

2. Initialize database Load in known set of pet images, approved BLOBs,
generation/analysis job schedules

3. Trigger image generation Set time/date to scheduled generation time; wait long
enough

4. Verify generated images Look in database for new BLOBs

5. Trigger “too easy” analysis job Set time/date to scheduled analysis job time; wait long
enough

6. Verify work in “too hard” inbox Assert on BLOB metadata in database

7. Request “Too Hard” graphic Spoof Human Oracle UI and request next work item

8. Verify oldest “Not too easy” graphic
offered

Spoofed UI asserts on identity of BLOB offered

9. Respond with “Too Hard” Spoofed UI injects users “response”

10. Verify graphic marked “Too Hard” in DB Assert on BLOB metadata in database

11. Initiate Turing Test on End User Spoof User logging in and registering account; request
image set

12. User enters cat/dog count and letters
observed

Spoofed UI injects users “response” (wrong #)

13. Verify user rejected for wrong answer Spoofed UI assert correct exception thrown by system

Design for Testability

Figure Z: Testability Architecture

Test

ITPS

Business

Logic
Image

Generator

Image

Analyser

Account

Registration UI

Too

Hard UI

Database

Job

Scheduler

System

Clock

Data Access Layer

Test

I/F
Set Time

Scheduler

Schedule Job

Assert Image

Too Hard

Testing Functional Requirements

Workflow Testing Sample [GBS]

Scenario-based Test [GBS]

AUT SCENARIO TESTING

Scenario Testing Protocol and Setup

Mission Find important bugs quickly by exploring the product in ways that reflect complex, realistic, compelling usage.

Testers - As a rule, the testers should understand the product fairly well, though an interesting variation of a scenario

can be to direct a novice user to learn the product by attempting to perform the scenario test.

- The testers should understand likely users, and likely contexts of use, including the problems users are

trying to solve by using the product. When testers understand this, scenario testing will be a better

counterpoint to ordinary function testing.

- The testers should have the training, tools, and/or supervision sufficient to assure that they can recognize

and report bugs that occur.

Setup - Select a user database & project database that you can afford to mess up with your tests.

- Assure that the database has sample user data that does not violate privacy laws.

- Fulfill the setup requirements for the particular scenario test you are performing.

Activities In exploratory scenario testing, you design the tests as you run them, in accordance with a scenario test charter:

 Select a scenario test charter and spend about 90 minutes testing in accordance with it.

 Perform the activities described in the test charter, but also perform variations of them, and vary the

sequence of your operations.

 If you see something in the product that seems strange and may be a problem, investigate it, even if it is not

in the scope of the scenario test. You can return to the scenario test later.

 Incorporate micro-behaviors freely into your tests. Micro-behaviors include making mistakes and backing

up, getting online help in the middle of an operation, pressing the wrong keys, editing and re-editing fields,

and generally doing things imprecisely— the way real people do.

 Do things that should cause error messages, as well as things that should not.

 Ask questions about the product and let them flavor your testing: What will happen if I do this? Can the

product handle that?

 Consider working with more than one tester on more than one scenario. Perform multiple scenarios

together.

 Remember to advance the timeline periodically, either using the simulation date or using the system clock.

Oracle

Notes

- Review the oracle notes for the scenario charter that you are working with.

- For each operation that you witness the product perform, ask yourself how you know that it worked

correctly.

- Perform some operations with data chosen to make it easy to tell if the product gave correct output.

- Look out for progressive data corruption or performance degradation. It may be subtle.

Reporting - Make a note of anything strange that happens. If you see a problem, briefly try to reproduce it.

- Make a note of obstacles you encountered in the test process itself.

- Record test ideas that come to you while you are doing this, and pass them along to the test lead.

AUT SCENARIO TEST CHARTER

ADMIN1: “Basic account management”

Charter Simulate an admin who needs to manage a new member account.

Setup - 1. Create a dat file with 3000 rows

- 2. Pick a valid account

- 3. Obtain sql_queries.sql for setup and validation

Activities Monitor a new sign up and select a sign up to review

 Review client information, verify their identity and their IP address.

 Check for duplicate information.

 Add comments to the account.

 Re-open an account.

 Close the account.

 Make sure person is not a terrorist or blacklisted by AUT.

 Know the possible chance that this account is fraudulent

 Verify that the account can be indicated fraudulent.

Oracle

Notes

- Watch for email to Member Services (should be immediate)

Variations - TUG OF WAR: log in as the same user as if you forgot you already had another window open, then make

changes in both windows.

- OOPS: user that realizes they screwed up and tries to fix it.

- INTERRUPTION: Simulate a dropped internet connection while registering.

Defining & Automating Business Unit Tests [GBS]

Verifying the ITPS Suspicious Activity Algorithm

This is an example of a Business Unit Test implemented using Fit test automation. These tests allow us to

verify details of the ITPS Suspicious Activity Detection algorithm without having to go through the user

interface to set up users, accounts and preferences. It also avoids having to go through the transaction

integration interface to load the transactions to be tested. These tests were made possible by applying

the Design-for-Testability practice to the ITPS system architecture thereby making it possible to expose

the algorithm to the Fit fixtures that interpret these tables.

The tests below are intended to document the expected behavior at the business rule level in prose as

well as providing detailed examples of the rules. Each of the examples is executable and self-verifying.

The expected results (in the “IsSuspicious?” column) are an example of a Hand-Crafted Test Oracle.

<PD We may want to integrate with the Sample - Creating Acceptance Tests sample or with the

Usabilty Testing Sample that is built on the same requirements>

<PD: Start Sample Artifact timepoint=TBD >

Suspicious Activity Fit Tests

The following are the Fit tests for verifying the user stories related to configuration of thresholds by

location, charge type and account.

Suspicious Activity is Based on Threshold per Account, Location and Charge Type

A user has several accounts linked to their user profile, each with a unique text label.

UserAccounts

Customer Account Number Account Label Add()

TestUser01 100372 Checking OK

TestUser01 200991 Savings OK

TestUser01 9900412 Joint OK

Notes on this table:

 This “Column Fixture” is used to put data into the ITPS system database.

 The Add()” column causes this row to be added to the database. “OK” indicates the record was

added successfully.

The system automatically configures default preferences for all accounts for each user.

../Thumbnails/Business%20Unit%20Test%20Thumbnail.doc
../Thumbnails/Hand-Crafted%20Oracle%20Thumbnail.doc
Sample%20�%20Creating%20Acceptance%20Tests%20for%20User%20Stories.docx
Usability%20Testing%20Sample%20(GBS).doc

UserPreferences

Customer Account Location Charge Type Threshold

TestUser01 All All All 0

TestUser01 All NorthAm Travel 1000

TestUser01 All NorthAm Restaurant 500

TestUser01 All NorthAm Household 2000

Notes on this table:

 This “RowFixture” compares what is in the system’s database with what we specify in the table.

 The “All” values in the Account, Location and Charge Type columns indicates the threshold

applies to all Accounts, Locations and Charge Types for this user.

Transactions are compared against the threshold in effect for the specific account based on the location

of the transaction and the type of charge. The following transactions are all valid:

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 999.99 NorthAm Travel OK Default All NA Travel

100372 499.99 NorthAm Restaurant OK Default All NA

Restaurant

100372 1999.99 NorthAm Household OK Default All NA

Household

100372 100.00 NorthAm Travel OK Default All NA Travel

100372 100.00 NorthAm Restaurant OK Default All NA

Restaurant

100372 100.00 NorthAm Household OK Default All NA

Household

100372 0.01 NorthAm Travel OK Default All NA Travel

100372 0.01 NorthAm Restaurant OK Default All NA

Restaurant

100372 0.01 NorthAm Household OK Default All NA

Household

Notes on this table:

 This “Column Fixture” is used to exercise the ITPS logic that analyses the transactions for

suspicious activity.

 The “Comment” column describes the rule that should take effect. This column is for the reader

only and is not used by ITPS.

 The TX# column is omitted because it doesn’t affect the determination of suspicious activity.

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 500.00 NorthAm Travel Suspicious Default All NA Travel

100372 100.00 NorthAm Restaurant Suspicious Default All NA

Restaurant

100372 100.00 NorthAm Household Suspicious Default All NA

Household

100372 0.01 AustraliaNZ Travel Suspicious Default All-All-All

100372 0.01 SouthAm Travel Suspicious Default All-All-All

100372 0.01 Europe Travel Suspicious Default All-All-All

100372 0.01 Africa Travel Suspicious Default All-All-All

100372 0.01 Asia Travel Suspicious Default All-All-All

100372 0.01 AustraliaNZ Restaurant Suspicious Default All-All-All

100372 0.01 SouthAm Restaurant Suspicious Default All-All-All

100372 0.01 Europe Restaurant Suspicious Default All-All-All

100372 0.01 Africa Restaurant Suspicious Default All-All-All

100372 0.01 Asia Restaurant Suspicious Default All-All-All

100372 0.01 AustraliaNZ Household Suspicious Default All-All-All

100372 0.01 SouthAm Household Suspicious Default All-All-All

100372 0.01 Europe Household Suspicious Default All-All-All

100372 0.01 Africa Household Suspicious Default All-All-All

100372 0.01 Asia Household Suspicious Default All-All-All

Notes on this table:

 There is nothing special about this being a separate table; the transactions could easily have

been included in the previous table.

User Can Override Default Thresholds in User Profile by Account

A user can override the default threshold for a single account, a single location, or a single charge type.

SetUserPreferences

Customer Account Location Charge Type Threshold Add()

TestUser01 All Europe All 1000 OK

TestUser01 All NorthAm Restaurant 1500 OK

TestUser01 Joint NorthAm Restaurant 0 OK

Based on these overrides, the following transactions are all valid because they are 0.01 below the

threshold:

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 1499.99 NorthAm Restaurant OK Overridden All NA

Restaurant

200991 1499.99 NorthAm Restaurant OK Overridden All NA

Restaurant

100372 999.99 Europe Travel OK Overridden All Europe

All

200991 999.99 Europe Travel OK Overridden All Europe

All

9900412 999.99 Europe Travel OK Overridden All Europe

All

100372 999.99 Europe Restaurant OK Overridden All Europe

All

200991 999.99 Europe Restaurant OK Overridden All Europe

All

9900412 999.99 Europe Restaurant OK Overridden All Europe

All

100372 999.99 Europe Household OK Overridden All Europe

All

200991 999.99 Europe Household OK Overridden All Europe

All

9900412 999.99 Europe Household OK Overridden All Europe

All

The following are all suspicious because they equal the threshold:

SuspiciousActivity

Account Amount Location Charge Type IsSuspicious? Comment

100372 1500.00 NorthAm Restaurant Suspicious Overridden All NA

Restaurant

200991 1500.00 NorthAm Restaurant Suspicious Overridden All NA

Restaurant

9900412 0.01 NorthAm Restaurant Suspicious Overridden Joint NA

Restaurant

100372 1000 Europe Travel Suspicious Overridden All Europe

All

200991 1000 Europe Travel Suspicious Overridden All Europe

All

9900412 1000 Europe Travel Suspicious Overridden All Europe

All

100372 1000 Europe Restaurant Suspicious Overridden All Europe

All

200991 1000 Europe Restaurant Suspicious Overridden All Europe

All

9900412 1000 Europe Restaurant Suspicious Overridden All Europe

All

100372 1000 Europe Household Suspicious Overridden All Europe

All

200991 1000 Europe Household Suspicious Overridden All Europe

All

9900412 1000 Europe Household Suspicious Overridden All Europe

All

Users’ Preferences are Independent

Preferences set by one user are distinct from other users with the same account labels:

UserAccounts

Customer Account Number Account Label Add()

TestUser02 100888 Checking OK

TestUser02 200001 Savings OK

TestUser02 9900818 CreditCard OK

This user’s preferences haven’t been affected by the changes made by TestUser01:

UserPreferences

Customer Account Location Charge Type Threshold

TestUser02 All All All 0

TestUser02 All NorthAm Travel 1000

TestUser02 All NorthAm Restaurant 500

TestUser02 All NorthAm Household 2000

<PD: End Sample Artifact>

Defining & Automating Acceptance Tests[GBS]

Sample – Creating Acceptance Tests for User Stories

Creating User Interface Based Acceptance Tests

Let's take a simple example from our Global Bank application. The feature we will look at is

"As a signed in bank account owner, I can set preferences for receiving ITPS notification via

email".

We’ll apply a technique from interaction design called “Task Analysis” to determine what is really

needed.

Given this user story, the delivery team and the customer had a discussion about what the customer

wanted the user experience to be. From that they wrote a few simple manual test scripts (which can be

automated by the delivery team).

The team helps the customer sketch a UI workflow, and screen layouts to ensure that the web pages will

conform to what the customer expects. This includes fitting in with the existing Global Bank web site

themes and templates.

Then, based on this flow, they wrote the simple success case:

Test Case: SetItpsPreferencesEmailSuccess

1. Open page GlobalBank.com

2. Click the Login link

3. Login with the test account information ("test_account_001", "!Q@W#E$R%T")

4. On the user home page, click the "Identity Theft Prevention Service" link

5. Click the "Set Preferences" link

6. Click the "Email notification" link

7. Type in the email address "test_account_001@globalbank.com"

8. Click "Save Preferences" link

9. Verify the "Preferences Saved" page is displayed

Then there is a simple validation failure case:

Test Case: SetItpsPreferencesEmail_AddressValidationFailure

1. Open page GlobalBank.com

2. Click the Login link

3. Login with the test account information ("test_account_001", "!Q@W#E$R%T")

4. On the user home page, click the "Identity Theft Prevention Service" link

5. Click the "Set Preferences" link

6. Click the "Email notification" link

7. Type in the invalid email address "test_account_001"

8. Click "Save Preferences" link

9. Verify that the "Email Notification" preferences page is displayed with a message "Please use a valid

email address".

A few more failure tests around log-in failure, and edge cases for the email address validation are added.

Then the team asks the customer what should happen when a user who is not logged in tries to access

these pages. The customer wants the user to be directed to the login page, causing this test case to be

written:

Test Case: UauthorizedUserCannotAccessEmailPreferencesPage

1. Open page globalbank.com/account/ITPS/EMailPreferences.htm

2. Verify that the login page is displayed.

One of the system level requirements is that pages load within 500 ms, so the team creates copies of the

above tests and adds timing for each step of the process, SetItpsPreferencesEmailSuccess_LoadTime

and SetItpsPreferencesEmail_AddressValidationFailure_LoadTime. Then, the team writes a few system

stress scenarios to verify that the pages can handle multiple users with a system load of 100 transactions

per second. There are also a set of disaster recovery tests to write, including recovery when the back

end data store is not accessible, when the login service is unavailable, and when the account has been

locked down due to a fraud alert.

Creating Business Domain Acceptance Tests

The above tests have all been at the level of the user interface. Let’s consider another approach where

the tests are written in a domain language specific to the project. This approach is viewed favorably by

some, as it can lead to tests that are less fragile that the UI dependant tests above.

The same team, given another story from the backlog, and using an approach that targets only the

business logic will have a very different set of acceptance tests. Let’s look at the team’s discussion of

the story:

“As a signed in bank account owner, I can suspend notifications for X days.”

In the discussion that the Global Bank delivery team had with the customer, a number of issues were

raised, and a lot of questions were answered. Here is a summary of some of the discussion:

Delivery Team Customer

What industry and regulation standards do we need to

apply to this scenario?
All interactions that users have with the system need

to be logged.

Do you have an existing logging system we can tie into? Yes. Talk to the Architect for that area, <NAME>

Exactly what information needs to be logged? The user name, the action taken, whether the action

succeeded or failed, and the time that the action was

taken.

This caused another story to be written and added to the backlog:

“The system logs all account holder interactions to the existing log store.”

Since this story falls into the realm of a cross cutting concern, and needs to be considered in all stories

with an account holder as the actor, the team will keep it in mind as they work.

How does this feature interact with the user’s ability

to opt into the IPTS service?

Only users who have opted in can suspend

notifications

Does this effect one account or multiple accounts? What do you mean?

If the user has more than one account, say two checking

accounts and a savings account, does this apply to only

the primary account?

No. The user can suspend notifications for each account

separately.

The conversation continued for a while, in the end the supplier understood the terms that the customer

used, and the customer had explicitly stated what the requirement meant.

Automated Subcutaneous Workflow Test [GBS]

<insert timeline here with datePoint=TA (Test Authoring)>

The end result of this conversation was the following acceptance test:

1. Time now is |10:00AM,06/16/2008|

2. User |bobma| successfully logs in

3. User |suspends notification| on account number |10035692877| for |5| days

4. Check |system log| contains|”user bobma suspended notifications from account 10035692877

on 06/16/2008 at 10:00 AM for 5 days.

5. System |sends notification| to |bobma|

6. Check |system log| contains|”system sent user bobma email confirming suspended

notifications from account 10035692877 on 06/16/2008 at 10:00 AM for 5 days.

7. Check |message| “Your notifications on account XXXXXXX2877 are suspended until 10:00 AM

06/21/2008”

8. Time now is |12:00PM,06/18/2008|

9. Debit transaction of |$20,000| is performed on account |10035692877|

10. Check |notification sent?| false

11. Time now is |10:00AM, 06/21/2008|

12. System |sends notification| to |bobma|

13. Check |message| “Your notifications for account XXXXXXX2877 have resumed”

14. Check |system log| contains|”user bobma notifications from account 10035692877 on

06/21/2008 at 10:00 AM for 5 days.

15. Check |system log| contains|”system sent user bobma email confirming re-enabled

notifications for account 10035692877 on 06/21/2008 at 10:00 AM.

16. Debit transaction of |$25,000| is performed on account |10035692877|

17. Check |notification sent?| true

18. Check |message| contains |”system sent user bobma email notification at 10:00AM on

06/21/2008”|

When the test is run before the functionality is implemented, the results look like this:

<insert sample Fit output here>

Manual GUI-Based Workflow Test [GBS]

UIA GUI-Based Automated Test [GBS]

UI Automation Sample Application [GBS]

Automated UI Tests [GBS]

Record-Refactor Test

Built-in Record & Playback

Testing Para-functional Requirements

ITPS Scalability Testing

Performance Tests [GBS]

Stress Tests [GBS]

Data Scalability

Transaction Scalability

Configuration Testing

Combinatorial Test Optimization [GBS]

Before using the all-pairs tool, here is
what the grid looked like:

 Device Notification method Version
 cell1 IM v1
 cell2 SMS v2
 cell3 VM v3
 PDA1 email v4
 PDA2 alpha
 PDA3 beta
 pager candidate

 total combinations = 196

Using the tool, here are the raw pairing details
from the table above:

 PAIRING
DETAILS

var1 var2 value1 value2 appearances cases

Device Version cell1 v1 1 1

Device Version cell1 v2 1 2

Device Version cell1 v3 1 3

Device Version cell1 v4 1 4

Device Version cell1 alpha 1 29

Device Version cell1 beta 1 30

Device Version cell1 candidate 1 31

Device Version cell2 v1 1 5

Device Version cell2 v2 1 6

Device Version cell2 v3 1 7

Device Version cell2 v4 1 8

Device Version cell2 alpha 1 32

Device Version cell2 beta 1 33

Device Version cell2 candidate 1 34

Device Version cell3 v1 1 9

Device Version cell3 v2 1 10

Device Version cell3 v3 1 11

Device Version cell3 v4 1 12

Device Version cell3 alpha 1 35

Device Version cell3 beta 1 36

Device Version cell3 candidate 1 37

Device Version PDA1 v1 1 13

Device Version PDA1 v2 1 14

Device Version PDA1 v3 1 15

Device Version PDA1 v4 1 16

Device Version PDA1 alpha 1 38

Device Version PDA1 beta 1 39

Device Version PDA1 candidate 1 40

Device Version PDA2 v1 1 20

Device Version PDA2 v2 1 41

Device Version PDA2 v3 1 42

Device Version PDA2 v4 1 43

Device Version PDA2 alpha 1 17

Device Version PDA2 beta 1 18

Device Version PDA2 candidate 1 19

Device Version PDA3 v1 1 24

Device Version PDA3 v2 1 44

Device Version PDA3 v3 1 45

Device Version PDA3 v4 1 46

Device Version PDA3 alpha 1 21

Device Version PDA3 beta 1 22

Device Version PDA3 candidate 1 23

Device Version pager v1 1 28

Device Version pager v2 1 47

Device Version pager v3 1 48

Device Version pager v4 1 49

Device Version pager alpha 1 25

Device Version pager beta 1 26

Device Version pager candidate 1 27

Device
Notification
method cell1 IM 1 1

Device
Notification
method cell1 SMS 2 2, 31

Device
Notification
method cell1 VM 2 3, 30

Device
Notification
method cell1 email 2 4, 29

Device
Notification
method cell2 IM 2 6, 32

Device
Notification
method cell2 SMS 2 5, 33

Device
Notification
method cell2 VM 2 8, 34

Device
Notification
method cell2 email 1 7

Device
Notification
method cell3 IM 2

11,
36

Device
Notification
method cell3 SMS 2

12,
35

Device
Notification
method cell3 VM 1 9

Device
Notification
method cell3 email 2

10,
37

Device
Notification
method PDA1 IM 2

16,
40

Device
Notification
method PDA1 SMS 1 15

Device
Notification
method PDA1 VM 2

14,
38

Device
Notification
method PDA1 email 2

13,
39

Device
Notification
method PDA2 IM 2

17,
41

Device
Notification
method PDA2 SMS 2

18,
42

Device
Notification
method PDA2 VM 2

19,
43

Device
Notification
method PDA2 email 1 20

Device
Notification
method PDA3 IM 2

22,
45

Device
Notification
method PDA3 SMS 2

21,
44

Device
Notification
method PDA3 VM 1 24

Device
Notification
method PDA3 email 2

23,
46

Device
Notification
method pager IM 2

27,
49

Device
Notification
method pager SMS 1 28

Device
Notification
method pager VM 2

25,
47

Device
Notification
method pager email 2

26,
48

Version
Notification
method v1 IM 1 1

Version
Notification
method v1 SMS 2 5, 28

Version
Notification
method v1 VM 2 9, 24

Version
Notification
method v1 email 2

13,
20

Version
Notification
method v2 IM 2 6, 41

Version
Notification
method v2 SMS 2 2, 44

Version
Notification
method v2 VM 2

14,
47

Version
Notification
method v2 email 1 10

Version
Notification
method v3 IM 2

11,
45

Version
Notification
method v3 SMS 2

15,
42

Version
Notification
method v3 VM 1 3

Version
Notification
method v3 email 2 7, 48

Version
Notification
method v4 IM 2

16,
49

Version
Notification
method v4 SMS 1 12

Version
Notification
method v4 VM 2 8, 43

Version
Notification
method v4 email 2 4, 46

Version
Notification
method alpha IM 2

17,
32

Version
Notification
method alpha SMS 2

21,
35

Version
Notification
method alpha VM 2

25,
38

Version
Notification
method alpha email 1 29

Version
Notification
method beta IM 2

22,
36

Version
Notification
method beta SMS 2

18,
33

Version
Notification
method beta VM 1 30

Version
Notification
method beta email 2

26,
39

Version
Notification
method candidate IM 2

27,
40

Version
Notification
method candidate SMS 1 31

Version
Notification
method candidate VM 2

19,
34

Version
Notification
method candidate email 2

23,
37

 total combinations (removing duplicates) = 105

Here is the final matrix of cases
that have to be run:

 TEST
CASES

case Device
Notification
method Version pairings

1 cell1 IM v1 3

2 cell1 SMS v2 3

3 cell1 VM v3 3

4 cell1 email v4 3

5 cell2 SMS v1 3

6 cell2 IM v2 3

7 cell2 email v3 3

8 cell2 VM v4 3

9 cell3 VM v1 3

10 cell3 email v2 3

11 cell3 IM v3 3

12 cell3 SMS v4 3

13 PDA1 email v1 3

14 PDA1 VM v2 3

15 PDA1 SMS v3 3

16 PDA1 IM v4 3

17 PDA2 IM alpha 3

18 PDA2 SMS beta 3

19 PDA2 VM candidate 3

20 PDA2 email v1 2

21 PDA3 SMS alpha 3

22 PDA3 IM beta 3

23 PDA3 email candidate 3

24 PDA3 VM v1 2

25 pager VM alpha 3

26 pager email beta 3

27 pager IM candidate 3

28 pager SMS v1 2

29 cell1 email alpha 2

30 cell1 VM beta 2

31 cell1 SMS candidate 2

32 cell2 ~IM alpha 1

33 cell2 ~SMS beta 1

34 cell2 ~VM candidate 1

35 cell3 ~SMS alpha 1

36 cell3 ~IM beta 1

37 cell3 ~email candidate 1

38 PDA1 ~VM alpha 1

39 PDA1 ~email beta 1

40 PDA1 ~IM candidate 1

41 PDA2 ~IM v2 1

42 PDA2 ~SMS v3 1

43 PDA2 ~VM v4 1

44 PDA3 ~SMS v2 1

45 PDA3 ~IM v3 1

46 PDA3 ~email v4 1

47 pager ~VM v2 1

48 pager ~email v3 1

49 pager ~IM v4 1

total paired combinations = 49

Configuration & Hot Deployment Testing (GBS)

Globalization Testing (GBS)

Localization Testing (GBS)

ITPS Usability Testing [GBS]

User Stories

Usability Personas

User Task

Usability Test Plan

Wizard of Oz Test Session Report

Wizard of Oz Test Session Summary

Usability Lab tests

This example illustrates the use of Usability Testing as a way to verify that the behavior of the software

is acceptable to target users.

Practices Illustrated

 User Stories

 Use Cases

 Product Design including Paper Prototyping

 Usability Testing – specifically Wizard of Oz testing of Paper Prototypes

 Personas

The usability testing is focused on determining the ease of use of the user interface for the Manage

Notification Preferences use case, specifically the “e” variation of step 1:

<PD: Start Sample Artifact timepoint=TBD >

Use Case: Manage Notification Preferences

 Goal in Context: An account owner or a CSR may manage the notification preferences
associated with the account.

 Scope: Global Bank Identity Theft Protection Service

 Level: User Goal (sea level)

 Preconditions: User is already logged in and has sufficient privilege.

 Success End Condition: The notification preference has been modified as requested.

 Failed End Condition: The notification preference has not been modified.

 Primary Actor: Account Owner (or a CSR acting on their behalf)

 Trigger: User requests a change.

../Thumbnails/User%20Stories%20Thumbnail.docx
Use%20Cases%20(GBS).docx
../Thumbnails/Usability%20Testing%20Thumbnail.doc
../../../Wiki/Home.aspx

MAIN SUCCESS SCENARIO

 User requests a change to their notification profile

 System verifies user is allowed to modify this profile

 System logs the requesting user, account affected and a summary of the changes made

 System updates the profile as requested

 The use case ends in success

EXTENSIONS

2a. User not logged in or not authorized :

2a1. System logs unauthorized request, user information and time/date in the security log

2a2. System notifies user that request could not be completed

2a3. The use case fails

3a. Database cannot be updated :

3a1. System notifies user that request could not be completed

3a2. System notifies the monitoring system of the error

3a3. The use case fails

VARIATIONS

1a. The user requested notification via SMS

 :

 :

1e. The user adjusted the transaction size threshold

1e1.Based on Charge Type

1e2.Based on Location

ee3.Based on Account

<PD: End Sample Artifact>

Initial User Stories for Notification Threshold

The functionality to be tested is being developed incrementally through the following user stories:

<PD: Start Sample Artifact timepoint=TBD-1month>

User Story Name Notes

As a signed in bank account owner, I can set

preferences for sending notifications based on

amount spent

As a signed in bank account owner, I can set

preferences for sending notifications based on

credit or account used

As a signed in bank account owner, I can set

preferences for sending notifications based on

location

As a signed in bank account owner, I can set

preferences for sending notifications based on

a combination of reasons

<PD: End Sample Artifact>

In discussions with the on-site customer about the location story, it was split out into the following user

stories:

Expanded User Stories for Notification by Location

<PD: Start Sample Artifact timepoint=TBD>

User Story Name Notes

As a user, I can set the notification threshold

for an account by continent.

As a user, I can set a different notification

threshold for an account by country with a

continent.

Threshold for a specific country overrides the

threshold for the continent that contains the

country. Other countries are not affected.

As a user, I can set the notification threshold

for an account by state or province within a

country.

Threshold for a specific state or province

overrides the threshold for the entire country.

As a user, I can set the notification threshold

for an account by the city within a state or

province.

As a user, I can set a single notification

threshold for more than one city within a state

or province.

As a user, I can set a single notification

threshold for more than one country within a

User may select more than one country;

threshold applies to all countries selected.

continent.

As a user, I can set a single notification

threshold for several or all accounts.

As a user, I can set a single notification

threshold for several or all charge types.

<PD: End Sample Artifact>

The plan for conduction usability testing is just one part of the overall test plan. The following is the

usability portion of the main ITPS Test Plan document.

<PD Start Artifact Sample timepoint=TBD >

ITPS Usability Test Plan

For the purposes of usability testing, the functionality of ITPS has been divided into three topics:

1. Managing Accounts
2. Managing Notification Threshold
3. Managing Means of Notification

Usability testing of each topic will be done in two phases. The first phase will involve Wizard of Oz

testing as soon as the paper prototype for the Notification Threshold Configuration screen(s) is finished.

The second phase will consist of testing of the actual screens once they’ve been built. The same tasks

will be used for both rounds of testing unless the design changes enough to cause the tasks to be

revisited.

Usability Test Schedule

Approximate dates (based on the current iteration/release plan) for doing the usability testing are as

follows:

Topic: Wizard of Oz Testing Alpha Software Testing

Managing Accounts

Iteration 3 Iteration 7

Managing Notification

Threshold

Iteration 2 Iteration 7

Managing Means of

Notification

Iteration 3 Iteration 8

Wizard of Oz Testing of Paper Prototype

We will run 4 test sessions on each iteration of the design. Each one hour test session will consist of a

five minute introduction, three 15 minute tasks and a five minute wrap up. The session and each task

will be introduced by the business lead. Each one hour test session will be conducted on a fresh copy of

the paper prototype with 1 developer playing the role of computer, and 2 developers and 2 business

team members playing the role of observer. One developer will act as the “Help” system when a user

points to the “?” symbol in the top right corner of each window. They will provide a terse verbal

description of whatever the user points to next.

The test sessions will be run with pairs of users so that we can literally hear what they are thinking. For

two of the test sessions we will recruit users who fit the Newly Hired CSR persona. For the other two

session we will recruit New Home Banking User persona test subjects. At the end of each session, the

test subject will be given the chance to make a single suggestion “If there is one thing you could have

changed, what would it be?”

Usability Testing of Actual Software

The detailed plan has yet to be devised but the intent is to repeat more or less the same testing on a

fully functional (W.R.T. the test tasks) version of the software.

Estimated Effort for Wizard of Oz Testing per Topic

Preparation: 2 people by 2 days = 4 person days

Testing: 5 people by ½ day = 2.5 days

Follow up: 5 people by ½ day = 2.5 days

Total effort is about 9 days. Preparation excludes the design of the UI but includes the fabrication of the

test materials based on the design.

Estimated Effort for Alpha Software Testing per Topic

Preparation: 1 people by ½ days = ½ person days

Testing: 5 people by ½ day = 2.5 days

Follow up: 5 people by ½ day = 2.5 days

Total effort is about 5.5 days. Preparation includes setting up data required for the testing.

<PD End Artifact Sample >

The user interface design and the testing are both based on the following user personas.

<PD Start Artifact Sample timepoint=TBD+1month >

User Persona Descriptions

Ethnographic research has revealed that the target users can be characterized by one of the following

user personas:

Persona Newly Hired CSR

The typical Newly Hired CSR is highly computer literate. They spend a lot of time on the internet and use

a wide variety of web-based applications including online banking, social network, e-shops, … . They

pride themselves on their computer skills and particularly like keyboard shortcuts; anything to avoid

taking their hand off the keyboard to operate the mouse.

Their motivation for using GBS and ITPS is maximizing the savings on service fees and safety of their

money as well as getting instant gratification for all their banking needs.

Persona “New Home Banking User”

 The typical New Home Banking User is barely computer literate. They do not spend a lot of time on the

internet and only use those online applications that they are forced to. They use a basic point & click

strategy for navigating applications but are sometimes hesitant out of fear of “breaking it”. Things which

are accessed via “hidden” mechanisms, such as right-clicking on something, are pretty much inaccessible

to them.

Their motivation for using GBS is a need to transfer funds to relatives in other countries in which GBS

operates. They use the online banking functionality primarily because GBS is discontinuing paper

statements. Setting up electronic statements requires them to review and agree to the notification

preferences.

<PD End Artifact Sample >

The user interface design and the testing are both based on the following user personas.

<PD Start Artifact Sample timepoint=TBD+1month >

Usability Task Descriptions

The test subjects are asked to complete the following tasks using the user interface prototype we

provide them.

Task 1 – Change Restaurant Threshold for North America to $500

You will be travelling on business over the next month and will be entertaining clients at various

restaurants. You would like to avoid triggering the suspicious activity filter so you want to raise the

threshold for restaurants on your business credit card to $500 per charge anywhere in North America.

Task 2 – Change Threshold for Europe and Australia to $100

Your daughter will be travelling this summer and you’ve given her a “family card” on your personal

credit card account. She will only be going to Europe and Australia and you want to limit her to $100 per

charge regardless of the charge type.

Task 3 – Make all charges suspicious for Seattle Area cities

Your estranged spouse still has your credit card. You haven’t had a chance to get a replacement card

with a different number so you want to be alerted whenever a charge is made anywhere in the Greater

Seattle Area including Bellevue, Redmond, Kirkland or Tacoma.

<PD End Artifact Sample>

The team has built a paper prototype of the screens the user will use to modify their notification

threshold. This will be used in the Wizard of Oz testing.

Paper Prototype for Notification Threshold

<PD Start Artifact Sample timepoint=TBD>

<PD End Artifact Sample>

During each session, the observers record any usability concerns encountered by the users.

<PD Start Artifact Sample timepoint=TBD+1month >

Usabilty Test Session Observation Sheet

User: Fred Jones

Persona: YYY

Session: June 28th

Task: 1

Step Comments

User looks for way to add

another rule.

 User struggled to figure out that they could

use the blank row at the bottom of the grid

to add another rule.

User looks for way to fill in

country; tries typing in the name;

computer beeps

 Didn’t notice or comprehend the Location

Picker icon until the Help system pointed it

out to them.

If you could change one thing …

“I’d really like to have the system lead me through adding a new threshold step by step rather than

having to figure out how to enter stuff in a blank row in the grid.”

<PD End Artifact Sample>

The records of the individual observers are collated into a summary report of all usability concerns

encountered by the users.

<PD Start Artifact Sample timepoint=TBD+1month >

Usability Test Session Summary

Four test sessions were conducted between June 27th and July6th two each with persona Newly Hired

CST and persona New Home Banking Users.

Common Results:

1. All the pairs took a minute or so before they discovered the “Browse for Location” icon beside
the location name cell.

2. Three out of four test session subject-pairs encountered problems with selecting more than one
city in task 3. Two pairs had to ask “Help” whether there was a way to do multi-selection. Two
pairs mused that there must be a way to select “Greater Seattle” without having to know or
enumerate what cities were included in Greater Seattle.

3. Two of the pairs had trouble unselecting a state when they only wanted to select the whole
country. They didn’t figure out how to use <ctrl>-<click> to do it. They ended up selecting a
different country and then the country they wanted.

Persona Newly Hired CSR Results:

1. There were no issues noted that were specific to the persona-<yyy> test subjects.

Persona New Home Banking Users Results:

1. Half of the persona- New Home Banking Users subject pairs had trouble with …

If I Could Change One Thing

1. Include a preview of what will be put back into the location cell in the Active Thresholds grid as
the user is selecting Continents, Countries, States and Cities. (2 requests)

2. Provide a way to type-ahead when selecting state names; typing M 5 times to get Minnesota is
counter intuitive.

3. I’d really like to have the system lead me through adding a new threshold step by step rather
than having to figure out how to enter stuff in a blank row in the grid

<PD End Artifact Sample>

Based on the feedback from the Wizard of Oz testing, the team builds the actual Manage Notification

Configuration screens.

<PD Start Artifact Sample timepoint=TBD+2months >

Screen Captures for Notification Threshold

<insert screenshots of actual screens and dialogs here>

<PD End Artifact Sample>

Testing the actual screen behaviours results in the following test summary report:

<PD: Start Artifact Sample timepoint=TBD+2months>Usability Test Session Summary 2</PD>

Running the Tests

Sample Session-Based Testing plan [GBS]

Scenario Test [OS]

Exploratory Session Plan for Global Bank ITPS feature

<insert timeline here with datePoint=TP (Test Planning)>

<Session-based exploratory testing is a method for managing testing effort from exploration

(commonly known as ad-hoc testing).

Below are charters -- mission statements meant to guide the tester in explorations meant to last

anywhere from 1 to 2 hours. Each charter is to be executed by members of the test team, after

which, an accompanying session report is created using the template at the end of this

document.>

Session Plan

Assumptions:

1. 4 sessions per tester per day

2. 5 features areas

3. Average 4 sessions per feature

4. 20% contingency sessions for unfinished or newly discovered charters

5. One round of sessions in each of the first two Readiness Assessment cycles

Session Execution Plan

 24 sessions will be executed over 1 week by two testers.

 Session will be executed after all the automated tests are completed and in parallel with ….

During the 2nd week of the RA cycle.

Charter ideas:

1) Since notifications can be set based on location of unexpected spending patterns, the dev team

is worried that the latest import to the location table has redundant names that despite having

unique IDs, may show up as the wrong location (e.g. a suspicious transaction in Springfield, MA

shows as Springfield, MO). Using the latest location.dat file, set location preferences for some

of these identical city names and see if the problem is as bad as they think it might be.

2) There are 5 supported Instant Messaging applications for use with ITPS. Unit testing shows that

the IMAPI is passing at 100%, but there was a beta report from the Business Analysis team that

2 of their 5 IM applications did not work. Please reproduce the conditions they reported and

follow-up in this investigation.

3) Data Update Availability is one of the least risky features, but no one in development is planning

unit tests for this until the next release. Customer Service needs to be able to show that it has

been tested before they make claims that it will be an enhancement and incentive to use ITPS.

The DUA service will kick off an IMAPI message if you fake the increment of a build in the

registry. See if this “Upgrade Available” message gets received on all platforms and be on the

lookout for ways it may get stalled.

4) Transaction details can be viewed through a secure URL. Look for ways to use tools to penetrate

or circumvent the workflow to see those details as an unauthorized user. Try the 3 supported

browsers and see if the login sessions can be cached or preserved in offline states that may

allow them to be compromised.

5) Spending pattern threshholds is a priority 0 feature, that is so critical that management is saying

any and all bugs will be fixed. Identify boundaries for the threshold selectors and test for

accuracy. We’re looking for any “false positive” events that result in messages getting sent and

needlessly worrying account holders.

Session Template: ITPS-1

<insert timeline here with datePoint=RA,AT>

CHARTER

<A few sentences about the mission of this session>

FEATURE AREAS

START

<start date and time>

TESTER

<name(s)>

Jon Bach

TASK BREAKDOWN

DURATION

<values are "short", "normal", or "long" (either can have multipliers) i.e. "long * 2">

SESSION SETUP

<percent of session duration spent on setup. Syntax: integer between 0-100>

TEST DESIGN AND EXECUTION

<percent of session duration spent looking for problems -- breadth. Syntax: integer between 0-100>

BUG INVESTIGATION AND REPORTING

<percent of session duration spent investigating problems once they were found -- depth. Syntax:

integer between 0-100>

CHARTER VS. OPPORTUNITY

<syntax is a ratio of session duration they spent on mission (charter) vs investigating something else that

was not part of the charter i.e. 85/15>

DATA FILES

<syntax is 8.3 file format i.e. "foo.bat"> (If there are no datafiles, use #N/A)

TEST NOTES

<free-form text field... anything goes>

BUGS

<syntax is to list every bug with a #BUG tag. The text written between these tags can be free-form. (If

there are no bugs, use #N/A)

ISSUES

<same as BUG section above.> (If there are no ISSUES, use #N/A)

Sample Exploratory Session for GBS

CHARTER

Since notifications can be set based on location of unexpected spending patterns, the dev team is

worried that the latest import to the location table has redundant names that despite having unique IDs,

may show up as the wrong location (e.g. a suspicious transaction in Springfield, MA shows as Springfield,

MO). Using the latest location.dat file, set location preferences for some of these identical city names

and see if the problem is as bad as they think it might be.

#AREAS

Feature | Preferences

Feature | Notifications

START

7/11/08 12:30pm

TESTER

Jon Bach

TASK BREAKDOWN

#DURATION

normal

#TEST DESIGN AND EXECUTION

30

#BUG INVESTIGATION AND REPORTING

60

#SESSION SETUP

10

#CHARTER VS. OPPORTUNITY

100/0

DATA FILES

locations_7-8-08.dat

location_names.sql

dupe_cities.txt

TEST NOTES

* used the latest SQL query (location_names.sql) to run canned queries from the latest drop of the

database (locations_7-8-08.dat)

* to aid in testing, I exported the tables to a CSV file, sorted by name, and flagged all of the duplicate city

names (I called this file dupe_cities.txt)

* Found twice the duplicates than I thought there would be (over 700)

* Installed the latest version of SimDat, the simulator that pushes notifications to simulated mobile

devices and flagged the following 30 cities in the ITPS preferences window because they had the most

duplicates in the cities table

:

Franklin Manchester Cleveland

Salem Oak Grove Riverside

Washington Marion Aurora

Springfield Ashland Columbia

Clinton Oxford Lexington

Georgetown Centerville Columbus

Greenville Clayton Greenwood

Madison Jackson Milford

Fairview Richmond Lancaster

Midway Portland Paris

* Built some queries

* Set location preferences for the following 5 cities:

Washington (WV), Franklin (KY), Salem (MI), Springfield (SC), and Clinton (WA)

* Confirmed the Dev's team's worry. (see BUG 1 below) Using a sim test with "Washington, West

Virginia", it returned "Washington, Wisconsin".

 Checked with wikipedia as my source on this:

http://en.wikipedia.org/wiki/List_of_the_most_common_U.S._place_names#Washington_.2832.29

and found what may be an off-by-one error? The two are next to each other according to their list and

in our DAT file.

Also confirmed this with Springfield. The three other cities in my list of workded fine.

Tried the next 5 in the list: Georgetown, Greenville, Madison, Fairview, Midway.

Found the same problem with Georgetown and Greenville in that set.

Tried the next 5: Manchester, Oak Grove, Marion, Ashland, Oxford -- Manchester and Oak Grove

returned the wrong state names. Again,

 for the third time, that's 2 out of 5 entries. What pattern does that suggest?

Tried the next 5: Centerville, Clayton, Jackson, Richmond, Portland. -- only Centerville returned the

wrong set, breaking the 2 out of 5 paradigm.

Tried the next 5: Cleveland, Riverside, Aurora, Columbia, Lexington -- Cleveland, Riverside, and Lexington

failed -- that's 3 out of 5 this time.

Realized that all of the failed cities have one thing in common: they are over 8 characters. Maybe this is

leading to a truncation or overflow issue?

BUGS

#BUG 1066

Possible off-by-one error in the sorting algorithm for city names over 8 characters

Repro:

1 -- In the Preferences window, select Washington from the city name dropdown and WV from the state

name dropdown.

2 -- Save and exit

3 -- In the DatSim, Create New Transaction

4 -- click the "Suspsicious" checkbox

5 -- Under the "Target" dropdown, select "Jon's iPhone"

6 -- click Execute

Results:

Wrong city name is indicated. Text message reads: "Alert! Please log on to verify that transaction

#240567 is valid -- WASHINGTON, WISCONSIN -- 7/8/08 00:1:05 pm"

The next city in the DAT list is Washington, WI. See my other data file for other follow-up tests that

confirm a suspicion that only city names over 8 characters cause this problem.

ISSUES

#ISSUE 1

There are 711 identical city or place names in the database. We will need a longer session to complete

this testing if we want to do it exhaustively, or create an automated XML test to do all of the

verifications.

#ISSUE 2

Some states have more than one identical city name. For example, the state of Wisconsin has 8

different "Washington"s. How are we going to handle this in ITPS?

Test Evolution

Miscellanious Inconsistent Test Scripts [GBS]

Role play discovering Ubiquitous Language [GBS]

Refactored Keyword-Driven Workflow tests [GBS]

Refactored Data-Driven Business Unit tests [GBS]

Test Reporting

Executed VSTT Tests [GBS]

Executed FIT Tests [GBS]

Executed Perf Tests [GBS]

ITPS Bug Management

 ITPS Bug Management Plan [GBS]

ITPS Bugs Not Closed Query with Triage Fields in TFS [GBS]

Bug Triage Role Play script [GBS]

Bug Triage History Sample [GBS]

Bug Reporting [GBS]

Bug Status Report

Bugs by Severity

0

50

100

150

200

250

300

350

400

450

500

active closed fixed won't fix by design deferred

3/1/2008

3/1/2008

0

50

100

150

200

250

300

350

400

450

500

sev 1 sev 2 sev 3 sev 4

Bugs By Priority

Bugs by Method Found

0

50

100

150

200

250

300

350

400

450

pri 1 pri 2 pri 3 pri 4

Series1

0

50

100

150

200

250

300

350

Bugs Opened By Team

Bugs By Area

0

100

200

300

400

500

600

Customer PM User Dev Test

0

50

100

150

200

250

300

Bugs Found Per Day

Total Number of Bugs – Running total

Other Case Studies

0

20

40

60

80

Series1

0

200

400

600

800

1000

1200

1400

Series1

Appendices

Risk to Mitigating Practice Cross-Reference

Technique Applicability by Test Lifecycle Phase

Technique Applicability by Testing/Project Lifecycle Phase

FAQ to Narrative(Model)/Technique/Sample cross-reference

AT Synonyms

i
 We’ve seen people observing and driving the execution of the acceptance tests on a system without actual hands-

on manipulation.

