
.NET Business Rules Engine
 http://nxbre.org

David Dossot, Project Lead

Version 3.2.0
January 5, 2009

http://www.windevpowertools.com/

.NET Business Rules Engine

Table of Contents
1. Introduction...4

1.1. What is NxBRE?...4
1.2. What is this documentation?..5
1.3. Release Notes..5
1.4. Content of the Rulefiles folder..5
1.5. How to choose between the Flow and the Inference Engine?...................................5

2. The Flow Engine...6
2.1. Introduction...6
2.2. The IFlowEngine interface..7
2.3. Rule Interpreter Implementation: NxBRE.FlowEngine.BREImpl................................8

2.3.1. Execution...9
2.3.2. Engine..9
2.3.3. Helper Objects...9
2.3.4. Rule Drivers...10
2.3.5. Factories..11
2.3.6. Threading Model..11

2.4. Rule Files Formats..12
2.4.1. Language constructs of the extended syntax... 12

2.4.1.a. Data assertion..12
2.4.1.b. Reflection and delegation calls..13
2.4.1.c. Increments..13
2.4.1.d. Operators and conditions...13
2.4.1.e. Logic blocks..14
2.4.1.f. Sets...14
2.4.1.g. Exceptions and logging..15

2.4.2. Native and extended syntax comparison..15
2.4.3. Pseudo-code Rendering..17
2.4.4. Rules Format Comparison..17

3. The Inference Engine: NxBRE.InferenceEngine...21
3.1. RuleML Naf Datalog Concepts...21

3.1.1. Atoms...21
3.1.2. Logical Operators..22
3.1.3. Facts..22
3.1.4. Queries..22
3.1.5. Implications..23
3.1.6. Slots...24
3.1.7. Multi-syntax..24
3.1.8. Typed data...25
3.1.9. Deterministic resolution...26
3.1.10. Equivalence...27
3.1.11. Integrity protection...28
3.1.12. Migrating from a previous version...29

3.2. Advanced Concepts..30
3.2.1. Priority..30

Documentation v3.2.0 2 / 57

.NET Business Rules Engine

3.2.2. Mutual Exclusion..30
3.2.3. Pre-Condition...31
3.2.4. Implication Action..32
3.2.5. Function Based Atom Relations..33
3.2.6. Formula..34
3.2.7. Salience and Weight...34

3.3. Data Binding Strategies..35
3.3.1. Basic..35
3.3.2. Rulebase Adapters..35
3.3.3. Business Object Binders...35

3.4. Expression Language Support...37
3.5. Engine...38

3.5.1. Working Memory...38
3.5.1.a. Fact Base...38
3.5.1.b. Global, Isolated and IsolatedEmpty Modes...39

3.5.2. Agenda..40
3.5.3. Implication Base..40
3.5.4. Query Base..40

3.6. Execution..41
3.7. Threading Model...42

3.7.1. Implementation sample...42
3.7.2. Hot swapping support..43

3.8. Microsoft Visio 2003 Adapter..44
3.9. Human Readable Format (experimental)...47
3.10. Registry...48

3.10.1. Concepts..48
3.10.2. File Registry...48

3.11. Performance tuning..49
3.11.1. Have strongly identified facts..49
3.11.2. Use small facts..49
3.11.3. Use typed data and storage..49
3.11.4. Order atoms in And blocks..50

4. Configuration..51
5. Logging...52
6. API Documentation..53
7. Support..54
8. Other engines...55

8.1. Open source engines..55
8.1.1. Drools DotNet..55
8.1.2. Simple Rule Engine (SDSRE)...55

8.2. Commercial engines...55

Disclaimer: Throughout this guide, all cited trademarks belong to their respective
owners.

Documentation v3.2.0 3 / 57

.NET Business Rules Engine

1. Introduction

1.1. What is NxBRE?

NxBRE is the first1 open-source rule engine for the .NET platform and a lightweight
Business Rules Engine (aka Rule-Based Engine) that offers two different approaches:

• the Flow Engine, which uses XML as a way to control process flow for an
application in an external entity. It is basically a wrapper on C#, as it offers all its
flow control commands (if/then/else, while, foreach), plus a context of business
objects and results. It started as a port of JxBRE v1.7.1 (from Sloan Seaman).

• the Inference Engine, which is a forward-chaining (data driven) deduction engine
and that supports concepts like Facts, Queries and Implications (as defined in
RuleML Datalog) and like Rule Priority, Mutual Exclusion and Precondition (as
found in many commercial engines). It is designed in a way that encourages the
separation of roles between the expert who designs the business rules and the
programmer who binds them to the business objects.

NxBRE's interest lies first into its simplicity, second in the possibility of easily extending its
features by delegating to custom code in the Flow Engine or by writing custom RuleBase
adapters or Business Objects binders in the Inference Engine.

NxBRE can be really useful for projects that have to deal with:

• complex business rules that can not be expressed into one uniform structured
manner but require the possibility to have free logical expressions,

• changing business rules that force recompilation if the new rules must meet
unexpected requirements.

NxBRE is released under LGPL license in order to allow users to legally embed it in
commercial solutions.

For comments or questions use the SourceForge forums or write to: contact@nxbre.org

1 Chronologically speaking.

Documentation v3.2.0 4 / 57

http://sourceforge.net/projects/jxbre/
mailto:contact@nxbre.org
mailto:contact@nxbre.org
mailto:contact@nxbre.org
http://sourceforge.net/users/sseaman
http://sourceforge.net/users/sseaman
http://sourceforge.net/users/sseaman
http://sourceforge.net/projects/jxbre/
http://sourceforge.net/projects/jxbre/

.NET Business Rules Engine

1.2. What is this documentation?

This documentation presents the general concepts in NxBRE, the main interfaces and
classes and the syntax of the XML rule files.

If you are looking for source code and rules samples, check first the regression test files
(both C# source code and the related rule files), which demonstrate all the features of
NxBRE, then look at the provided examples for more information.

1.3. Release Notes

The release notes can be found in the readme.txt file included in all NxBRE archives.

1.4. Content of the Rulefiles folder

Please check the “readme” file in this folder.

1.5. How to choose between the Flow and the Inference Engine?

This question comes regularly so it probably deserves a little paragraph here.

To select between the Flow Engine and the Inference Engine, consider the following
differences:

• the Inference Engine supports priority, mutual exclusions and pre-conditions,
• the Inference Engine uses a "standard" rule format (RuleML),
• the Inference Engine has an elaborated memory model with support for isolated

deduction space.

If any of these things is important for you, you can consider using the Inference Engine ;
else stick to the Flow Engine.

Moreover, the Inference Engine is well suited for knowledge bases and expert systems
where facts are important to keep and persist because they represent knowledge.

The Flow Engine is really an instantaneous traversal of logical branches using transient
data for evaluations of boolean expressions: if you think in terms of “if, then else, while”
then you surely want to go for the Flow Engine.

Documentation v3.2.0 5 / 57

.NET Business Rules Engine

2. The Flow Engine

2.1. Introduction

The Flow Engine of NxBRE is controlled by one XML file that contains instructions of three
main kinds: rules, logic tests and structure.

For the Flow Engine a rule is not an implication of some sort, like if-then, but a “value
object” that implements IBRERuleFactory2, identified by a unique id, and whose type is
either an helper object in the assembly or a delegate to a custom piece of code.

The important method in the IBRERuleFactory interface is ExecuteRule : this method
is called by the engine when it is time for the rule to compute its value, i.e. when the
execution flow has been directed to hit a rule element in the XML file.

In the same way, operators are defined by objects in the assembly, referenced by their
fully qualified names, which implement IBREOperator. The important method in the
IBREOperator interface is ExecuteComparison : this method is called by the engine
whenever it needs to perform a logical comparison.

Programmers are free to create their own implementations of these interfaces. The Flow
Engine comes complete with a reference implementation that provides helper objects
implementing these interfaces (chapter 2.3.3).

The engine itself is also defined by an interface (IFlowEngine, detailed in the next
chapter) that is implemented in NxBRE by one particular Flow Engine, the Rule
Interpreter : the XML rule file is parsed each time a process is launched and each rule is
interpreted when they are read,

2 Though IBRERule would have been a better name, the original JxBRE name has been kept (prefixed with I).

Documentation v3.2.0 6 / 57

.NET Business Rules Engine

2.2. The IFlowEngine interface
As explained before, the Flow Engine is defined by an interface named IFlowEngine,
which also implements several other interfaces. These are detailed in the following table.

Method, Property
or Event

Package.Interface Description

DispatchRuleResult NxBRE.FlowEngine.
IBREDispatcher

Called when a result is added to
the context.

Init
RuleContext
XmlDocumentRules
Process

Process(ruleSetId)

Stop
Reset

NxBRE.FlowEngine.
IFlowEngine

Defines the different ways to
initialize the engine.
The engine's context.
The loaded XML rules.
Start the engine and process all
accessible rules.
Start the engine and process all
rules in a set.
Stop the engine abruptly.
Place the engine in a state where
previous results are cleared,
ready to process again.

Clone System.
ICloneable

Returns a clone of the engine,
ready to process. The cloning
depth should not extend to the
objects in the context.

Documentation v3.2.0 7 / 57

.NET Business Rules Engine

2.3. Rule Interpreter Implementation: NxBRE.FlowEngine.BREImpl

Documentation v3.2.0 8 / 57

.NET Business Rules Engine

2.3.1. Execution

NxBRE uses a context object that is used to carry information about its execution
environment, which are:

• the available operators,
• the loaded rules,
• the user's business objects and the generated results,
• and a stack trace.

When parsing the rule file at initialization time, the engine loads all the rule objects in the
context. At execution time, the engine follows the execution flow defined by tests and
loops. When it reaches a rule element, it gets the corresponding object by its id and calls
the ExecuteRule method on it. It then stores the result of this call in the context result.

The ExecuteRule method provides the callee with the NxBRE's context, a map of the
optional additional parameters that could have been provided in the XML file and a third
parameter (Step) which can also be defined in the XML file.

User's business objects are placed before execution in the context result pool where they
are accessible to the engine. After execution, these objects might have been modified,
new ones might have been created in the result context (asserted) and some might have
been removed from there (retracted).

2.3.2. Engine
The Rule Interpreter engine has the following characteristics:

• it can be initialized either by an XPathDocument, or by rule driver that is
responsible for fetching rules from a specific source (see chapter 2.3.4),

• it will not break on exceptions, so it is of programmer's responsibility to stop it, if it
is necessary,

• it is thread safe, as long as each thread uses a clone.

2.3.3. Helper Objects
The following table presents different rules helpers in the Rule Interpreter implementation.

Class name in:
NxBRE.FlowEngine.Rules

Description

Decrement* Integer that decrements.
Exception Raises an exception.
False Constant boolean false.
FatalException Raises a fatal exception.
Increment* Integer that increments.

* This helper is stateful therefore not to be used in a multi-threaded approach.

Documentation v3.2.0 9 / 57

.NET Business Rules Engine

Class name in:
NxBRE.FlowEngine.Rules

Description

IncrementInit* Incrementor or Decrementor reset.
ObjectLookup Reflection call on a class or an object.
True Constant boolean true.
Value Instantiation of any type.

The following table presents different operators helpers in the Rule Interpreter
implementation.

Class name in:
NxBRE.FlowEngine.Rules

Description

Equals ==
GreaterThan >
GreaterThanEqualTo >=
InstanceOf InstanceOf || SubtypeOf
LessThan <
LessThanEqualTo <=
NotEquals !=
Matches regular expression matching

2.3.4. Rule Drivers

The following table presents the different drivers in the Rule Interpreter implementation.
They are able to read rules from any URI (file system or URL).

Class name in:
NxBRE.FlowEngine.IO

Description

BusinessRulesFileDriver Loads up rules in the native format, i.e.
defined by businessRules.xsd (see
chapter 2.4).

XSLTRulesFileDriver Loads rules in any custom format and
transform it to the native format by
performing an XSLT.

XBusinessRulesFileDriver Specialization of the previous driver that
transforms rules defined by
xBusinessRules.dtd (see chapter).

* This helper is stateful therefore not to be used in a multi-threaded approach.

Documentation v3.2.0 10 / 57

.NET Business Rules Engine

2.3.5. Factories

To facilitate the instantiation and initialization of the engine, a few factories are available.
After instantiation they return an object implementing IFlowEngine each time NewBRE is
called.

They are presented in the following table.

Class name in:
NxBRE.FlowEngine.Factories

Description

BREFactory Instantiate an engine with a specific
driver and optional event handlers.

BREFactoryConsole Specialization of the previous factory
that registers handlers that write their
events to the console.

BRECloneFactory Singleton-like instantiation of an engine
that returns a different clone each times
(useful for a multi-threaded environment).

2.3.6. Threading Model
Since the Rule Interpreter implementation is not knowledge-base oriented but flow-
oriented, it does not make sense to share the context between several engines. It is why
the recommended multi-threaded approach is to execute once (and discard after usage)
clones of a preloaded engine and using only stateless helpers (see chapter 2.3.3).

Consequently, the Rule Interpreter implementation is voluntarily not based on
synchronized collections (the context members). Should you need to use the same context
in different threads, serialize the calls in a synchronized calling method. Trying to
synchronize the core objects will expose the programmer to the difficulties of sharing the
context amongst concurrently executing flow engines.

Documentation v3.2.0 11 / 57

.NET Business Rules Engine

2.4. Rule Files Formats

The engine supports two rule languages, defined by two different schema:

• businessRules.xsd: the native syntax, coming from JxBRE,

• xBusinessRules.xsd.: the extended syntax, which can easily be XSL-Transformed
into the native syntax.

The new rule format, which is the format of choice for the Flow Engine, has been
introduced in order to solve the main issues of businessRules.xsd:

• direct references made to fully qualified class names of NxBRE and .NET,

• poor semantics leading to a confusing syntax.

2.4.1. Language constructs of the extended syntax

 Tip: Use a decent XML editor for writing rule base. It should provide XML
element insertion assistance.

NB. All examples come from the provided test file: test.xbre

2.4.1.a. Data assertion

xBusinessRules sample Description
<Assert id="5i" type="Integer" value="5"/> Create a variable in the memory context

named "5i", of type "Integer" and value
"5".
System types are: Exception, Boolean,
Byte, Short, Integer, Long, Single,
Double, Decimal, Date, DateTime, Time
and String.

<Assert id="TestObject2"
 type="NxBRE.Test.TestObject">
 <Argument valueId="STORED_TRUE"/>
 <Argument value="99" type="Integer"/>
 <Argument value="world"/>
</Assert>

A fully qualified class name, with
optionally the assembly name after a
coma, is also acceptable.

Constructor arguments can be passed, if
needed.

<Boolean id="TRUE" value="true"/>
<Byte id="8b" value="8"/>
<Date id="xmas2003" value="2003-12-25"/>
<DateTime id="manOnMoon" value="1969-07-
21T02:56:00"/>
<Time id="wakeUpCall" value="07:15:30"/>
<Decimal id="3.14m" value="3.14"/>
<Double id="3.14d" value="3.14"/>
<Integer id="ZERO" value="0"/>
<Integer id="10i" value="10"/>
<Short id="16s" value="16"/>
<Single id="3.14" value="3.14"/>
<String id="hello" value="world"/>

For system types, an element can also
be used to create the variable.

This is the best construct for system
types.

<False id="STORED_FALSE"/>
<True id="STORED_TRUE"/>

Booleans even exist in a shorter form!

Documentation v3.2.0 12 / 57

.NET Business Rules Engine

2.4.1.b. Reflection and delegation calls

xBusinessRules sample Description
<ObjectLookup id="TestObject_MyField"
objectId="TestObject" member="MyField"/>

Reads the value of a member of a
particular object (referenced by
objectId) and stores its value in the
context under the given id.

<ObjectLookup id="TestMultiply"
type="NxBRE.Util.Maths" member="Multiply">
 <Argument value="2" type="Integer" />
 <Argument value="5" type="Integer" />
 <Argument value="9" type="Integer" />
</ObjectLookup>

Performs a call to a static member of
an helper class, providing arguments
for the call, and storing the result in
the context under the given id.

<ObjectLookup objectId="TestObject"
member="MyField">
 <Argument valueId="STORED_FALSE"/>
</ObjectLookup>

Calls a particular member of a
particular object (referenced by
objectId), providing arguments for the
call. The engine's context is not
modified.

<Evaluate id="GlobalCounter"/> Calls the .NET delegate that have been
bound under id in the engine context
prior to processing the rule base.

2.4.1.c. Increments

xBusinessRules sample Description
<Increment id="INC_X" step="1"/> Adds 1 to the increment stored in the

context under the given id.
<Increment id="INC_X" value="6"/> Set the increment value to 6.
<Increment id="INC_Y" valueId="ZERO"/> Set the increment value to the content

of the context under the given valueId.

2.4.1.d. Operators and conditions

xBusinessRules sample Description
<Equals leftId="TRUE" rightId="VALUE1"/> Checks if the content of the context

under leftId is equal to the content of
the context under rightId.

<Equals leftId="T1" rightId="V1">
 <True id="T1"/>
 <Assert id="V1" type="Boolean"
 valueId="STORED_TRUE"/>
</Equals>

Values can be asserted in the context
at the operator level: in this case,
the values for leftId and rightId are
first asserted as described inside the
Equals operator element before being
compared.

<And>
 <IsTrue valueId="STORED_TRUE"/>
 <IsFalse valueId="STORED_FALSE"/>
</And>

A simple logical AND block.

<Or>
 <NotEquals leftId="TRUE"
 rightId="VALUE1"/>
 <Equals leftId="TRUE" rightId="VALUE1"/>
</Or>

A simple logical OR block.

Documentation v3.2.0 13 / 57

.NET Business Rules Engine

xBusinessRules sample Description
<And>
 <IsAsserted valueId="testAssert"/>
 <Not>
 <IsAsserted valueId="turnip"/>
 </Not>
</And>

Conditional blocks can be nested as
need be.

Not the IsAsserted operator that checks
the presence of a value in the context.

2.4.1.e. Logic blocks

xBusinessRules sample Description
<Logic>
 <If>
 <And>
 <Equals leftId="STORED_TRUE"
 rightId="VALUE1"/>
 </And>
 <Do>
 <ThrowFatalException value="LT3"/>
 </Do>
 </If>
 <Else>
 <True id="LT3"/>
 </Else>
</Logic>

A logic block should contain a main
condition (IF) and can contain an
alternative (ELSE).

The main condition first contains a
conditional top element (AND, OR, NOT)
then the action element (DO).

An action element can contain any valid
operation (including another logic
block).

The alternative contains the
operation(s) to execute.

<While>
 <And>
 <LessThan leftId="INC_X" rightId="10i">
 <Increment id="INC_X" step="1"/>
 </LessThan>
 </And>
 <Do>
 <Evaluate id="WhileCounter"/>
 </Do>
</While>

A while block first contains a
conditional top element (AND, OR, NOT)
then the action element.

<ForEach id="ForEachParser"
 valueId="GetEnumerable">
 <Evaluate id="ForEachTester"/>
</ForEach>

Enumerate the object stored in the
context under valueId and place its
current value under id.

Any operation is valid in a ForEach
block.

2.4.1.f. Sets

xBusinessRules sample Description
<Set id="BROKENSET">
...
</Set>

Defines a set which is a group of any
operations (except Set) identified by
an id.

<InvokeSet id="REFLECTION"/> Asks the engine to process the set
identified by its id. It is equivalent
to call Process(id) on IFlowEngine.

<InvokeSet valueId="TestObject2"/> Asks the engine to process the set
identified by the value stored in the
context under valueId.

Documentation v3.2.0 14 / 57

.NET Business Rules Engine

2.4.1.g. Exceptions and logging

xBusinessRules sample Description
<ThrowException/> Posts an empty Error event to the

FlowEngineRuleBase trace source
<ThrowException id="EXCP" value="This is
another exception!"/>

Alternative syntax that provides a text
for the event and stores it in the
engine context under the provided
id.

<ThrowException valueId="hello"/> Alternative syntax that uses the text
that is stored in the context under
valueId for the event.

<ThrowFatalException value="RT1"/> Posts a Critical event with the provided
text to the FlowEngineRuleBase trace
source.

<Log msg="WORKINGSET finished"
 level="5"/>

Posts an event with the provided text to
the FlowEngineRuleBase trace source.
The level is used as a numeric index
in the TraceEventType enumeration.
If no matching type is found,
Information is used.

<Log msgId="hello" level="3"/> Alternative syntax that uses the text
that is stored in the context under
msgId for the event.

2.4.2. Native and extended syntax comparison

The following tables show the details of the matching between the new syntax and the
native one.

xBusinessRules
Element

businessRules
Element

Factory(ies) in
NxBRE.FlowEngine.Rules

Between

In
IsAsserted
IsTrue
IsFalse
Equals
NotEquals
InstanceOf
LessThan
LessThanEqualTo
GreaterThan
GreaterThanEqualTo
Matches

Compare

LessThan, LessThanEqualTo,
GreaterThan, GreaterThanEqualTo
Equals
InstanceOf
Equals
Equals
Equals
NotEquals
InstanceOf
LessThan
LessThanEqualTo
GreaterThan
GreaterThanEqualTo
Matches

Documentation v3.2.0 15 / 57

.NET Business Rules Engine

xBusinessRules
Element

businessRules
Element

Factory in
NxBRE.FlowEngine.Rules

Type

Boolean
Byte
Date
DateTime
Time
Decimal
Double
Integer
Long
Exception
Short
Single
String

Rule Value

System.Boolean
System.SByte

System.DateTime

System.Decimal
System.Double
System.Int32
System.Int64
System.Exception
System.Int16
System.Single
System.String

xBusinessRules
Element

businessRules
Element

Factory in NxBRE.FlowEngine.Rules

True
False Rule NxBRE.FlowEngine.Rules.True

NxBRE.FlowEngine.Rules.False

xBusinessRules
Element

businessRules
Element

Assert NxBRE.FlowEngine.Rules.Value
Evaluate NxBRE.FlowEngine.Rules.Value
Modify NxBRE.FlowEngine.Rules.Value
ObjectLookup NxBRE.FlowEngine.Rules.ObjectLookup
Increment* NxBRE.FlowEngine.Rules.Increment
(not kept as it is simply a
negative Increment)

NxBRE.FlowEngine.Rules.Decrement

ThrowException NxBRE.FlowEngine.Rules.Exception
ThrowFatalException NxBRE.FlowEngine.Rules.FatalException

xBusinessRules
Element

businessRules
Element

Type

And
Or
Not

Condition
AND
OR
NOT

The following elements are similar in both grammars :

InvokeSet ForEach Log Logic Retract Set While

* This helper is stateful therefore not to be used in a multi-threaded approach.

Documentation v3.2.0 16 / 57

.NET Business Rules Engine

2.4.3. Pseudo-code Rendering

A utility class named PseudoCodeRenderer allows rules files that validate on
xBusinessRules.xsd to be rendered as pseudo-code HTML files.

The pseudo-code syntax used is somewhere between C# and Java, the main goal being
to facilitate the review of long and complex rules files by transforming highly hierarchical
XML files into a view that fits more the programmer's standards.

The renderer can generate the 3 HTML documents used to build the above view :

• the index on the left,
• the body on the right,
• and the frame set to bind them all.

2.4.4. Rules Format Comparison

The next 3 pages are designed to allow the comparison of the same rules expressed in
respectively native format, extended format and pseudo-code.

Documentation v3.2.0 17 / 57

.NET Business Rules Engine

<BusinessRules xsi:noNamespaceSchemaLocation="http://nxbre.org/businessRules.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Rule id="10i" factory="NxBRE.FlowEngine.Rules.Value">

<Parameter name="Value" value="10"/>
<Parameter name="Type" value="System.Int32"/>

</Rule>
<Rule id="40i" factory="NxBRE.FlowEngine.Rules.Value">

<Parameter name="Value" value="40"/>
<Parameter name="Type" value="System.Int32"/>

</Rule>
<Rule factory="NxBRE.FlowEngine.Rules.ObjectLookup" id="QuantityOrdered">

<Parameter name="ObjectId" value="CurrentOrder"/>
<Parameter name="Member" value="Quantity"/>

</Rule>
<Logic>

<If>
<Condition type="AND">

<Compare leftId="ClientRating" operator="NxBRE.FlowEngine.Rules.GreaterThanEqualTo" rightId="ClientRatingThreshold">
<Rule factory="NxBRE.FlowEngine.Rules.ObjectLookup" id="ClientRating">

<Parameter name="ObjectId" value="CurrentOrder"/>
<Parameter name="Member" value="ClientRating"/>

</Rule>
<Rule id="ClientRatingThreshold" factory="NxBRE.FlowEngine.Rules.Value">

<Parameter name="Value" value="C"/>
<Parameter name="Type" value="System.String"/>

</Rule>
</Compare>

</Condition>
<Do>

<!-- Discount rules for high rate customers -->
<Logic>

<If>
<Condition type="AND">

<Compare leftId="QuantityOrdered" operator="NxBRE.FlowEngine.Rules.GreaterThan" rightId="40i"/>
</Condition>
<Do>

<Rule id="AppliedDiscount">
<Parameter name="Type" value=""/>
<Parameter name="Percent" value=".7"/>

</Rule>
</Do>

</If>
<ElseIf>

<Condition type="AND">
<Compare leftId="QuantityOrdered" operator="NxBRE.FlowEngine.Rules.GreaterThan" rightId="10i"/>

</Condition>
<Do>

<Rule id="AppliedDiscount">
<Parameter name="Type" value=""/>
<Parameter name="Percent" value=".8"/>

</Rule>
</Do>

</ElseIf>
<Else>

<Rule id="AppliedDiscount">
<Parameter name="Type" value=""/>
<Parameter name="Percent" value=".9"/>

</Rule>
</Else>

</Logic>
</Do>

</If>
<Else>

<!-- Discount rules for low rate customers -->
<Logic>

<If>
<Condition type="AND">

<Compare leftId="QuantityOrdered" operator="NxBRE.FlowEngine.Rules.GreaterThan" rightId="40i"/>
</Condition>
<Do>

<Rule id="AppliedDiscount">
<Parameter name="Type" value=""/>
<Parameter name="Percent" value=".9"/>

</Rule>
</Do>

</If>
<Else>

<Rule id="AppliedDiscount">
<Parameter name="Type" value=""/>
<Parameter name="Percent" value="1"/>

</Rule>
</Else>

</Logic>
</Else>

</Logic>
</BusinessRules>

Documentation v3.2.0 18 / 57

.NET Business Rules Engine

<xBusinessRules xsi:noNamespaceSchemaLocation="http://nxbre.org/xBusinessRules.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- global values -->
<Integer id="10i" value="10"/>
<Integer id="40i" value="40"/>
<ObjectLookup id="QuantityOrdered" objectId="CurrentOrder" member="Quantity"/>
<Logic>

<If>
<And>

<GreaterThanEqualTo leftId="ClientRating" rightId="ClientRatingThreshold">
<ObjectLookup id="ClientRating" objectId="CurrentOrder" member="ClientRating"/>
<String id="ClientRatingThreshold" value="C"/>

</GreaterThanEqualTo>
</And>
<Do>

<!-- Discount rules for high rate customers -->
<Logic>

<If>
<And>

<GreaterThan leftId="QuantityOrdered" rightId="40i"/>
</And>
<Do>

<Evaluate id="AppliedDiscount">
<Parameter name="Percent" value=".7"/>

</Evaluate>
</Do>

</If>
<ElseIf>

<And>
<GreaterThan leftId="QuantityOrdered" rightId="10i"/>

</And>
<Do>

<Evaluate id="AppliedDiscount">
<Parameter name="Percent" value=".8"/>

</Evaluate>
</Do>

</ElseIf>
<Else>

<Evaluate id="AppliedDiscount">
<Parameter name="Percent" value=".9"/>

</Evaluate>
</Else>

</Logic>
</Do>

</If>
<Else>

<!-- Discount rules for low rate customers -->
<Logic>

<If>
<And>

<GreaterThan leftId="QuantityOrdered" rightId="40i"/>
</And>
<Do>

<Evaluate id="AppliedDiscount">
<Parameter name="Percent" value=".9"/>

</Evaluate>
</Do>

</If>
<Else>

<Evaluate id="AppliedDiscount">
<Parameter name="Percent" value="1"/>

</Evaluate>
</Else>

</Logic>
</Else>

</Logic>
</xBusinessRules>

Documentation v3.2.0 19 / 57

http://nxbre.org/xBusinessRules.xsd
http://nxbre.org/xBusinessRules.xsd
http://nxbre.org/xBusinessRules.xsd

.NET Business Rules Engine

/*
global values
*/
integer 10i = 10;
integer 40i = 40;
object QuantityOrdered = CurrentOrder.Quantity;

if ((object ClientRating = CurrentOrder.ClientRating) >= (string ClientRatingThreshold = "C"))
{

/*
Discount rules for high rate customers
*/

if (QuantityOrdered > 40i)
{
evaluate(AppliedDiscount(Percent = ".7"));
}
elseif (QuantityOrdered > 10i)
{
evaluate(AppliedDiscount(Percent = ".8"));
}
else
{
evaluate(AppliedDiscount(Percent = ".9"));
}

}
else
{

/*
Discount rules for low rate customers
*/

if (QuantityOrdered > 40i)
{
evaluate(AppliedDiscount(Percent = ".9"));
}
else
{
evaluate(AppliedDiscount(Percent = "1"));
}

}

Documentation v3.2.0 20 / 57

.NET Business Rules Engine

3. The Inference Engine: NxBRE.InferenceEngine

3.1. RuleML Naf Datalog Concepts
The inference engine has been developed using RuleML Naf Datalog3 as a conceptual
model. Please visit http://www.ruleml.org for more information.

NB. RuleML is constantly evolving. When stabilized on the official version 1.0, a big effort will
be made to allow NxBRE to support it ; or, at least, to replace the NxBRE specific sub-
constructs into normalized ones (for ex. Mutex, Expressions...).

 Tip: Use a decent XML editor for writing rule base. It should provide XML
element insertion assistance.

3.1.1. Atoms
An atom is a named relationship between predicates, either individual (fixed values) or
variable ones (value placeholders). Atoms can not be used on their own: they must be
used in facts, queries or implications.

In queries and implications, atoms are the “listening patterns” that select values from the
fact base. The pattern matching is based on the relationship name and the number, type
and position of predicates.

RuleML Natural Language
<Atom>
 <op>
 <Rel>luxury</Rel>
 </op>
 <Var>product</Var>
</Atom>

Select all products that are considered luxury.

NxBRE can also recognize function predicates by analyzing the values of individual
predicates (see chapter 3.3.3).

An atom can be made negative if it is surrounded by naf (negation as failure).

RuleML Natural Language
<Naf>
 <Atom>
 <op>
 <Rel>luxury</Rel>
 </op>
 <Var>product</Var>
 </Atom>
</Naf>

Be positive if no products are considered luxury.

NB. This negative atom will never produce any
value in a query or an implication. For example,
it does not select regular products!

NB. A negative atom never produces any value: this must be taken in account when
designing queries and implications...

3 Currently RuleML Naf Datalog version 0.86 and 0.9 are partially supported.

Documentation v3.2.0 21 / 57

http://www.ruleml.org/
http://www.ruleml.org/
http://www.ruleml.org/

.NET Business Rules Engine

3.1.2. Logical Operators

NxBRE supports the and and or logical operators. It must be very clear for the user that
these operators does not simply manipulate boolean values but also data emerging from
the atoms they link.

Moreover and groups can perform combination of atoms, as shown in the “sibling”
implication of the Gedcom rule base. By using different variable names (child1 and child2)
a the same position in the atom, this asks the engine to look for combination of different
facts that satisfy the and group.

3.1.3. Facts
A fact is an assertion about something that is true. It is a special atom that contains only
individual predicates.

RuleML Natural Language
<Atom>
 <op>
 <Rel>luxury</Rel>
 </op>
 <Ind>Porsche</Ind>
</Atom>

Porsche is luxury.

NB. The working memory of NxBRE can only contain one instance of a particular fact.

3.1.4. Queries
A query is a way of expressing a question that will be asked to the fact base. It is a group
of atoms that are not facts, linked together by a logical operator (and / or).

RuleML Natural Language
<Query>
 <body>
 <Atom>
 <op>
 <Rel>discount</Rel>
 </op>
 <Var>customer</Var>
 <Var>product</Var>
 <Var>amount</Var>
 </Atom>
 </body>
</Query>

Give the discount amounts for all customers buying
any products.

Documentation v3.2.0 22 / 57

.NET Business Rules Engine

RuleML Natural Language
<Query>
 <body>
 <And>
 <Atom>
 <op>
 <Rel>childIn</Rel>
 </op>
 <Var>child1</Var>
 <Var>family</Var>
 </Atom>
 <Atom>
 <op>
 <Rel>childIn</Rel>
 </op>
 <Var>child2</Var>
 <Var>family</Var>
 </Atom>
 </And>
 </body>
</Query>

Give pairs of different children in the same
family.

NB. The m results of a query containing n atoms in and group, will be an array of facts with
m rows and n columns. With or, the number of columns will vary. Same when using
negative atoms or function based atom relations (see chapter 3.2.5).

3.1.5. Implications
An implication is a query whose results will be used to assert new facts. The new facts will
be created by using the head atom as a template and the values of the variable parts of
the atoms of the query to populate the variables of this template.

RuleML Natural Language
<Implies>
 <head>
 <Atom>
 <op>
 <Rel>premium</Rel>
 </op>
 <Var>customer</Var>
 </Atom>
 </head>
 <body>
 <Atom>
 <op>
 <Rel>spending</Rel>
 </op>
 <Var>customer</Var>
 <Ind>min(5000,euro)</Ind>
 <Ind>previous year</Ind>
 </Atom>
 </body>
</Implies>

A customer is premium if their spending has been
min 5000 euro in the previous year.

If the head part does not contain any variable predicate, the fact will be asserted if the
body part returns at least one result.
Unless the engine has been set to enforce strict implications, NxBRE will ignore the
assertion attempt of a fact that is not completely resolved, i.e. If the body part has not

Documentation v3.2.0 23 / 57

.NET Business Rules Engine

produced enough data in a result to populate all the variable parts of the template atom of
the head part.

In NxBRE, advanced concepts like priority, mutual exclusion and pre-condition have been
introduced, allowed an even finer translation of business rules into RuleML.

3.1.6. Slots
Slots are a convenient way of naming an element, which allows an easy retrieval in the
application.

RuleML Description
<Atom>
 <op>
 <Rel>bonus</Rel>
 </op>
 <Var>employee</Var>
 <slot>
 <Ind>amount</Ind>
 <Ind uri="nxbre://expression">
 {var:score}*3
 </Ind>
 </slot>
</Atom>

A slot contains exactly two child elements:
the first one is the slot name and the second
one is the slot value.
Only individual are allowed for slot names ;
any supported elements are allowed for slot
values (Ind, Var...).

Getting the value of the slotted predicate would then be possible via this simple code:

myAtom.GetPredicateValue("amount");

Since version 2.5.1, slots can also be used to contribute named value to the deduction
part of the implication (head), much like variables do.

RuleML Description
<Implies>
 <Atom>
 <Rel>measure</Rel>
 <slot>
 <Ind>amount</Ind>
 <Ind uri="nxbre://operator">GreaterThan(25)</Ind>
 </slot>
 </Atom>
 <Atom>
 <Rel>warning</Rel>
 <Var>amount</Var>
 </Atom>
</Implies>

Using a slot allows a
comparison made at a
predicate level to produce
a named value, which is a
very efficient and compact
syntax.
Named values are directly
retrieved with variable
predicates in the
deduction part of the
implication.

3.1.7. Multi-syntax
RuleML 0.9 has introduced a flexible schema that allows the support for optional
elements. This has allowed to define three syntaxes: compact, standard and expanded.

Documentation v3.2.0 24 / 57

.NET Business Rules Engine

To discover how these syntaxes differ, the best is to compare the same rule base saved
under the three formats. The distribution of NxBRE contains the following sample rule
bases: own_expanded.ruleml, own.ruleml and own_compact.ruleml that demonstrate the
three syntaxes.

The compact syntax removes all optional elements (named with lower case, except slot)
and assumes that the children of an implication are in the body/head (if/then) order. This is
compulsory because body and head are optional elements, thus are not present in the
compact syntax.

The standard syntax uses only body, head and op optional elements.

The expanded syntax adds several optional elements, whose most notable is arg which
allows to position atom members with a numeric index, starting at 1.

3.1.8. Typed data
Support for XML Schema data types have been introduced, which allows a clean support
of typed data: XML editors provide immediate feedback if a data is not correct. This also
allows the creation of typed facts directly from rule bases, without using slow and error
prone C# expressions.

RuleML 0.86 + C# expression
<fact>

<_head>
<atom>

<ind>expr:System.DateTime.Parse("1999/12/31 23:59:59")</ind>
</atom>

</_head>
</fact>

Same fact in RuleML 0.9
<Atom>

<Data xsi:type="xs:dateTime">1999-12-31T23:59:59Z</Data>
</Atom>

If NxBRE loads this kind of typed data, it will save it as typed data. Facts asserted in
memory or loaded from Ind elements do not carry a XML Schema type and will not be
saved as typed data unless the “Force Data Typing” save attribute is used when
instantiating the adapter.

Documentation v3.2.0 25 / 57

.NET Business Rules Engine

3.1.9. Deterministic resolution
The uri attribute that has been introduced in RuleML 0.9 has been leveraged to replace
prefix-based content resolution with a deterministic one.

Type RuleML 0.86 + Prefix
RuleML 0.9

Operator <ind>NxBRE:Equals(100)</ind>
<Ind uri="nxbre://operator">Equals(100)</Ind>

Expression <ind>expr:{ind}.StartsWith("hello")</ind>
<Ind uri="nxbre://expression">{ind}.StartsWith("hello")</Ind>

Binder Resolved
Expression

<ind>binder:CalculateTotalWeight</ind>
or:

<ind>CalculateTotalWeight()</ind>

for regular expression based recognition.

<Ind uri="nxbre://binder">CalculateTotalWeight</Ind>
NB. The regular expression is used but only for parameters extraction.

Function Based
Atom Relation

<rel>expr:{var:Date} < System.DateTime.Now</rel>
<Rel uri="nxbre://expression">{var:Date} < System.DateTime.Now</Rel>

Binder Resolved
Atom Relation

<rel>binder:WithinTolerance</rel>
<Rel uri="nxbre://binder">WithinTolerance</Rel>

Documentation v3.2.0 26 / 57

.NET Business Rules Engine

3.1.10. Equivalence
It is possible to define two atoms as equivalent, which is a very useful feature for reducing
the size of queries or implications.

RuleML Natural Language
<Equivalent>
 <oid>
 <Ind>Own/belong equivalence</Ind>
 </oid>
 <Atom>
 <Rel>own</Rel>
 <Var>person</Var>
 <Var>stuff</Var>
 </Atom>
 <Atom>
 <Rel>belongs</Rel>
 <Var>stuff</Var>
 <Var>person</Var>
 </Atom>
</Equivalent>

Saying that a person owns a stuff is
equivalent to saying that the stuff
belongs to the person.

If more n atoms are equivalent, n-1 equivalent pairs are needed, as NxBRE explores the
equivalence graph.

It is not necessary that the atoms in the equivalence pairs have their variables named
identically with the atoms variables in the queries and implications: NxBRE recognizes
atoms on the relation type, number of members and equal individual/data values.

For example, the following atom:

 <Atom>
 <Rel>own</Rel>
 <Var>client</Var>
 <Var>object</Var>
 </Atom>

will be automatically translated into its equivalent:

 <Atom>
 <Rel>belongs</Rel>
 <Var>object</Var>
 <Var>client</Var>
 </Atom>

and the system will search matching facts for both.

When translating the body clause with equivalent atoms, NxBRE takes in account the
current logical operator and if the atom is in a Naf block. This means that in an Or block,
negative atoms are surrounded by And, while positive ones are directly inserted. And in an
And block, positive atoms are surrounded by Or, while negative ones are directly inserted.

Documentation v3.2.0 27 / 57

.NET Business Rules Engine

3.1.11. Integrity protection
It is possible to write special queries dedicated to verify the integrity of the rule base, ie the
facts present in the current working memory at the end of the inference process.

If this query does not return any row, NxBRE will throw an IntegrityException. Note that if
the query returns empty row(s), which is possible when using Naf or function based
relations, the system will not throw an exception. This means that integrity queries must be
written in a way that they return zero row if the rule base integrity has been violated.

RuleML
<Protect>
 <Integrity>
 <oid>
 <Ind>An object can not be gold and rusty</Ind>
 </oid>
 <Or>
 <And>
 <Atom>
 <Rel>gold</Rel>
 <Var>object</Var>
 </Atom>
 <Naf>
 <Atom>
 <Rel>rusty</Rel>
 <Var>object</Var>
 </Atom>
 </Naf>
 </And>
 <And>
 <Naf>
 <Atom>
 <Rel>gold</Rel>
 <Var>object</Var>
 </Atom>
 </Naf>
 <Atom>
 <Rel>rusty</Rel>
 <Var>object</Var>
 </Atom>
 </And>
 <And>
 <Naf>
 <Atom>
 <Rel>gold</Rel>
 <Var>object</Var>
 </Atom>
 </Naf>
 <Naf>
 <Atom>
 <Rel>rusty</Rel>
 <Var>object</Var>
 </Atom>
 </Naf>
 </And>
 </Or>
 </Integrity>
</Protect>

This example enforces the fact that an object can not be gold and rusty, so it is either
“gold and not rusty”, “not gold and rusty” or “neither gold nor rusty”.

Documentation v3.2.0 28 / 57

.NET Business Rules Engine

3.1.12. Migrating from a previous version

The simplest way of converting a rule base is to use the Inference Engine Console to
load in one format and save in the other.

Note that the Console saves in standard syntax and does not force the data typing.

It is also very important to note that if the rule base uses a binder to resolved expressions,
functions or formulas, the binder must have been loaded as well. Failing to load a required
binder will end up with a loss of information in the saved rule base.

Consequently, to have full control on the save options, the best is to use a code similar to
this one:

01 IInferenceEngine ie = new IEImpl(binder);
02 ie.LoadRuleBase(new RuleML086NafDatalogAdapter(oldRules, FileAccess.Read));
03 ie.SaveRuleBase(new RuleML09NafDatalogAdapter(newRules, FileAccess.Write,

SaveFormatAttributes.Compact |
SaveFormatAttributes.ForceDataTyping));

Documentation v3.2.0 29 / 57

.NET Business Rules Engine

3.2. Advanced Concepts
To remain valid with RuleML Datalog Schema (see http://www.ruleml.org), advanced
implication parameters can be stored in the optional rule label. This might sound like an
heresy but is conform with the original intention:

oid is a label for a clause ; it must be individual, this allows
naming of a rule in a fashion that is accessible, within the
knowledge representation; e.g., this can help for representing
prioritization between rules.

3.2.1. Priority
The priority defines in which order the implications will be evaluated. It is an integer
between 0 and 100 (both included), with 0 being the lowest priority.

RuleML Description
<Implies>
 <oid>
 <Ind>label:Lower;priority:20</Ind>
 </oid>
 <head>
 (...)

Defines an implication labeled “Lower”
whose priority is 20.

If all the implications have the same priority, there is no guarantee on which will be the first
evaluated implication.

3.2.2. Mutual Exclusion
The mutual exclusion (aka mutex) represents the fact that if one implication is positive
(i.e. its query part returned at least one result, whether the asserted fact was new or not
does affect implication positivity), all the implications it mutex-locks will not be evaluated.

Several implications can reciprocally mutex-lock themselves: they then form a mutex
chain. The first positive implication will disable all the other implications in the chain. The
priority of the implications defines what would be the mutex chain leader.

RuleML Description
<Implies>
 <oid>
 <Ind>label:polite;mutex:mundane</Ind>
 </oid>
 <head>
 (...)

Defines an implication labeled “polite”
that mutexes an implication labeled
“mundane”.

<Implies>
 <oid>
 <Ind>label:mundane;priority:25</Ind>
 </oid>
 <head>
 (...)

Defines an implication labeled
“mundane” whose priority is 25.
NB. the mutex with the implication
labeled “polite” could have been
defined here.

Documentation v3.2.0 30 / 57

http://www.ruleml.org/
http://www.ruleml.org/
http://www.ruleml.org/

.NET Business Rules Engine

It is very important to understand that the mutex-lock is maintained for the duration of the
process cycle (see chapter 3.6). Therefore the granularity of the asserted business objects
(see chapter 3.3.3) must be adapted in case mutex are used. In this case, you would
assert only the facts that can enter in a mutex lock (for example facts from a single
customer) before starting the process cycle. Asserting common facts in the global working
memory and related facts in isolated memories would be a good strategy (see chapter
3.5.1).

NB. The provided binding test rule files and related classes demonstrate the problematic
of facts granularity.

3.2.3. Pre-Condition
The pre-condition represents the fact that an implication will be evaluated only if another
implication was positive before its evaluation in the same process cycle.

Several implications can cascade pre-condition themselves: they then form a pre-condition
hierarchy. The position in the hierarchy defines what would be the pre-condition order.
Note that the priorities in one hierarchy must be equal or reflect the hierarchy (see chapter
3.2.7).

As for mutual exclusion, the same important remark concerning facts granularity applies to
pre-condition locking (see chapter 3.2.2).

RuleML Description
<Implies>
 <oid>
 <Ind>label:Rule X;precondition:Rule Z</Ind>
 </oid>
 <head>
 (...)

Defines an implication labeled
“Rule X” whose evaluation will
be done by the engine only if
the implication labeled “Rule Z”
has been positive in the same
process cycle.

Documentation v3.2.0 31 / 57

.NET Business Rules Engine

3.2.4. Implication Action
The action represents the fact that the implication will either assert, retract or count the
facts produced by the inference process, the default being assert.

RuleML Description
<Implies>
 <oid>
 <Ind>label:Rule X;action:retract</Ind>
 </oid>
 <head>
 (...)

Defines an implication labeled “Rule
X” whose evaluation will retract
facts produced by the inference
process.

<Implies>
 <oid>
 <Ind>label:Rule Y;action:modify</Ind>
 </oid>
 <head>
 (...)

Defines an implication labeled “Rule
Y” whose evaluation will modify the
facts found matching the resolved
head part of the implication.
This means that a query will be
dynamically built, based on the
deduction atom whose variable
predicates would have been resolved
with the values coming from the body
part.
The facts selected by this query
will then be modified, with any
formula resolved in the context of
each of them.
The label of the original facts is
preserved.

<Implies>
 <oid>
 <Ind>label:Rule Z;action:count</Ind>
 </oid>
 <head>
 (...)

Defines an implication labeled “Rule
Z” whose evaluation will produce a
fact where all the variable
predicates will be replaced by the
number of results produced by the
body part, even if it is 0.
Hence it is always positive, and
must be used with care.

Whether an implication has asserted, retracted or modified facts, it is considered positive
for the mutex and pre-condition mechanisms.

 When using the modify action, the implementer must bear in mind the need to
stabilize the fact base, i.e. Depending on the modification you perform and the conditions
that trigger this modification, it might be needed to implement a specific stop condition to
avoid infinite inference loops. For example, if an implication constantly modifies the same
fact, the fact base will not stabilize and the engine will keep on inferring until hitting the
maximum iteration limit (see chapter 3.6).

Documentation v3.2.0 32 / 57

.NET Business Rules Engine

3.2.5. Function Based Atom Relations
It is possible to use a function to define and evaluate the relation between the predicates
of an atom. This kind of atom does not perform any pattern matching in the fact base,
hence can not produce any value in a query or an implication, but are used for evaluating
the relation between predicates provided by other atoms in the same logical and block.

RuleML Description
<Atom>
 <op>
 <Rel uri="nxbre://operator">GreaterThan()</Rel>
 </op>
 (...)

Evaluates if the first predicate
is greater than the second one,
using an operator provided by
NxBRE.

<Atom>
 <op>
 <Rel uri="nxbre://binder">IsInRange</Rel>
 </op>
 (...)

Passes the predicates as
arguments to the IsInRange custom
function defined in the binder
associated with the rulebase.

<Atom>
 <op>
 <Rel uri="nxbre://expression">({var:X})>=5</Rel>
 </op>
 (...)

In this case, it evaluates the C#
expression by automatically
binding the variable predicates
of the atom to the
{var:variable_name} placeholders
of the expression.

NB. Unlike with standard relations, functions relations are evaluated at inference time,
leading to more flexibility and less performance.

Documentation v3.2.0 33 / 57

.NET Business Rules Engine

3.2.6. Formula
A formula is an expression used in the deduction atom of a modifying implication. It allows
to compute new predicate values based on the values coming from the query part of the
implication and from the current values of the modified fact(s).

RuleML Description
<Implies>
 <oid>
 <Ind>label:update total weight;action:modify</Ind>
 </oid>
 <head>
 <Atom>
 <op>
 <Rel>Chocolate_Box_Weight</Rel>
 </op>
 <Var>Box</Var>
 <Ind uri="nxbre://binder">CalculateTotalWeight</Ind>
 </Atom>
 </head>
 (...)

Compute the new value of the
fact “Chocolate_Box_Weight”
using a formula.

Here, a binder is used to
define and evaluate the formula
referred as
“CalculateTotalWeight”.

<Implies>
 <oid>
 <Ind>label:update total weight;action:modify</Ind>
 </oid>
 <head>
 <Atom>
 <op>
 <Rel>Chocolate_Box_Weight</Rel>
 </op>
 <Var>Box</Var>
 <Ind uri="nxbre://expression">
 expr:{predicate:1}+{var:Quantity}*{var:Weight}
 </Ind>
 </Atom>
 </head>
 (...)

Same, but in this case no
binder is used and the C#
expression is directly stored
in the rule.

See chapter 3.4 for more
information on the syntax.

3.2.7. Salience and Weight
The engine estimates the salience of implications only for the ones implied in pre-condition
hierarchies in order to prioritize correctly if they have the same priority level. Then engine
combines the priority and the salience in order to calculate the overall implication weight:

Weight = (1 + Priority) * 100 + Salience
This weight is used for prioritizing the implication at process time.

Documentation v3.2.0 34 / 57

.NET Business Rules Engine

3.3. Data Binding Strategies
By design, the Inference Engine does not offer reflection features to directly access
business objects. The main reason for this is that the rule files should not be cluttered with
programmatic concepts like object introspection but should only work on facts and their
underlying predicates. This should allow a business oriented analyst to focus on the rules
and, afterwards, to have a programmer to work on the binding of these rules (more
precisely the facts they rely on) with the business objects.

NxBRE offers three different strategies for accomplishing this binding.

3.3.1. Basic
The Inference Engine offers the possibility to directly assert facts in the working memory.
This is the simplest and fastest way of binding business objects facts. It is also the less
versatile strategy because re-compilation is always required.

3.3.2. Rulebase Adapters
The Inference Engine uses Rulebase adapters (i.e. classes implementing
NxBRE.InferenceEngine.IO.IRuleBaseAdapter or IExtendedRuleBaseAdapter) for loading
rule bases and fact bases. Only one rule base can be loaded, but when this is done many
fact bases can then be loaded.

By writing custom Rulebase adapters, like ones for fetching facts from a RDBMS or a web
service, the user can provide facts to NxBRE with a different approach than by directly
asserting facts in the engine.

The RuleML adapters are just a particular type of adapter: one is free not to use RuleML
at all for storing his rule and fact bases.

3.3.3. Business Object Binders
The interface NxBRE.InferenceEngine.IO.IBinder defines a more advanced concept for
binding business objects. Classes implementing this interface will be called by the engine
at specific moments in order to perform specific operations (the classical inversion of
control concept) like: assertion of facts, action on new facts, post-analysis of facts.

The Business Object Binders work in two distinct modes:

• the Control mode, where the binder orchestrates the facts assertion and engine
processing.

• the BeforeAfter mode, where the engine calls the binder at specific moments for
performing specific operations.

Please refer to chapter 3.6 for a detailed view of execution time and to the API
Documention for the detail of the IBinder contract (see page 54).

Binders not only perform assertion of facts based on business objects but also evaluate
function predicates. For example in the implication shown page 23, the binder could
recognize the individual predicate “min 5000 eur” as a function predicate (based on a
regular expression for example), and then be called whenever a fact should be evaluated
against the atom containing the function.

Documentation v3.2.0 35 / 57

.NET Business Rules Engine

NB. The Binder is not used for evaluating built-in operators, like NxBRE:LessThan(x). In
that case, the individual predicate is directly evaluated by calling the helper object.

NxBRE performs these evaluations at assertion time, therefore, while the processing will
always be very fast, the assertion of facts from the business objects will be significantly
slower if many functions have to be evaluated.

Implementing IBinder in a class of the project provides the fastest binding method but also
the less versatile one, as modification would require rebuilding the whole project. NxBRE
comes with two implementations of IBinder, one that uses the Flow Engine (see chapter 2)
for controlling the binding from XML files and one that performs on-the-fly compilation of
class files implementing IBinder.

If the Flow Engine binding is two slow or complex, a good approach consists in designing
and testing the binder in the development environment, then removing it from the project
and storing it as a file alongside the rule files, then using on-the-fly compilation.

This approach also offers the advantage of easily debugging the binder: keep it in your
source code until it is stable enough, then externalize it.

To summarize, the Binder is responsible for:

• asserting facts based on business objects and data sources,

• determining if an individual predicate must be interpreted as a function and then
is called-back to evaluate these functions when needed by the engine,

• evaluating custom function-based atom relations,

• asserting / retracting facts based on the results of a inference process (in this
sense, by leveraging the After part of the Before/After binder, implementers can
perform data drill down conducted by rules).

Think of the Binder as the code-behind your Rule Base. It is essential to get familiar with
this concept to truly leverage the Inference Engine of NxBRE.

Documentation v3.2.0 36 / 57

.NET Business Rules Engine

3.4. Expression Language Support
NxBRE supports C# based expressions that can be used in four places:

1. in the relation definition of a function based atom relations (see chapter 3.2.5),

2. in the individual comparison functions (see chapter 3.1.5),

3. in formulas for computing individual predicate values in the deduction part of an
implication (see chapter 3.2.6),

Expressions are evaluated to return a value: the type of the returned value depends of the
evaluation context.

Return Type Evaluation Context
boolean 1 and 2 in above list
object 3 and 4 in above list

This powerful feature can be interesting for projects where having technical concepts in
the rule file is acceptable. In this case, using a binder is not required for performing the
different evaluations detailed here above ; but it can still be very useful for dynamic fact
assertions and events processing.

 C# expressions are compiled at first use: the predicates types are then frozen. This
means that in a certain predicate, you must use the same type (or at least castable types)
throughout your application. Failing to do so will result in casting errors at run-time.

The C# expression supports three types of variable place-holders:

Placeholder Description
{var:XYZ} Contains the value of a variable predicate named XYZ, in

the body part of an implication or query.
{ind} Contains the value of the matched predicate. Used only

for individual match evaluation (see chapter 3.1.5).
{predicate:N} Contains the value of the Nth predicate (0 based count)

of a matching atom. Used only for deduction atom of a
modifying implication (see chapter 3.2.6).

Documentation v3.2.0 37 / 57

.NET Business Rules Engine

3.5. Engine

3.5.1. Working Memory
The Working Memory is composed of Running Fact Base and potentially an Idle Fact
Base, the existence of the latter being based on the operation mode, which could be
Global, Isolated or IsolatedEmpty.

3.5.1.a. Fact Base
The Fact Base main index is a hierarchical storage of facts using their signature (fact
relation type and number of predicates), predicates type, value and position as a
composed key. Technically it is a:

IDictionary<string, IDictionary<Type, IDictionary<object, IDictionary<int,
Icollection<Fact>>>>>

which gives a O(5) cost for accessing any fact from one particular predicate.

Documentation v3.2.0 38 / 57

.NET Business Rules Engine

When trying to match a particular atom with facts stored in the fact base, the engine will
first look for the smallest collection of fact matching a particular fixed predicate (like <Ind>
or <Data>). On this smallest possible collection, the engine will then apply the remaining
matching conditions, like other fixed predicate comparison, executing operator
comparisons or function resolutions in order to produce the list of matching facts. With
well discriminated facts (like facts having all a different ID), the cost of selecting one fact
can be very small: O(5)+n-1, where n is the number of predicates (see chapter 3.11 for
more tips on performance).

For critical systems, when loading facts in the engine, it is recommended to check that the
asserted facts where all accepted by the Fact Base to ensure that no collision on a similar
pre-existing fact occurred.

3.5.1.b. Global, Isolated and IsolatedEmpty Modes
When the Working Memory is in Global mode, all facts exists in a single Fact Base. This is
typically well adapted for a knowledge base that gets enriched as the engine infers and
that is persisted regularly.

The Isolated mode is created by cloning the Global mode Fact Base then asserting all new
facts in this clone. This clone is unique and transient in the sense that it is discarded when
the mode is changed. There is the possibility of “committing” the Isolated Memory, making
it the new Global one (for example if a process produced valid or expected results). The
Isolated mode is typically used when the knowledge based is constant (facts and
implications initially loaded from files in the Global memory) and the asserted and
deducted facts concern business objects undergoing an evaluation process.

Documentation v3.2.0 39 / 57

.NET Business Rules Engine

The IsolatedEmpty mode is created by instantiating a new empty Fact Base and using it
as the running one. This new Fact Base is also discarded when the mode changes ; but in
this case the commit feature performs an individual assertion of all the facts of the running
memory in the idle one, and establish the idle one as the new running one, while switching
the mode back to Global.

NB. Using Isolated memory does not allow multi-threading process as it is not
possible to fork different Isolated memories for different threads from a single
Global memory.

3.5.2. Agenda
The Agenda is the object responsible for scheduling the implications for the engine for
evaluation. The order of execution is based on the implication weight (see chapter 3.2.7).

The Agenda decides what implications must be scheduled by analyzing the results of the
previous iteration in the process cycle (see chapter 3.6). Based on what implications were
positive, the facts they potentially asserted and the other implications they potentially
preconditioned, the Agenda schedules just the implications that are worth evaluating for
the next iteration.

3.5.3. Implication Base
The Implication Base contains all the loaded implications. By design it is not possible to
programmatically alter this base. Instead it is recommended to persist the rule base,
amend it outside of NxBRE and reload it, NxBRE being only the execution environment.

3.5.4. Query Base
The Query Base contains all the loaded queries. Like for implications it is not possible to
programmatically add new queries in the base ; but it is possible to run new queries on the
current Working Memory.

Documentation v3.2.0 40 / 57

.NET Business Rules Engine

3.6. Execution
The process cycle of the Inference Engine (NxBRE.InferenceEngine.IEImpl) is very
simple: basically it infers as long as new facts are deducted. If during an iteration all the
deducted facts where already present in the Fact Base, then the process stops. There is
also a limit on the maximum number of iterations allowed in a process cycle: if this limit is
reached, the engine stops and throws an exception.

Hereafter a more detailed explanation of the process cycle:

1. If there is a Business Object Binder in Control mode, transfer control to it.
2. If there is a Business Object Binder in BeforeAfter mode, call its BeforeProcess

method.
3. If the maximum number of iteration is reached, throw an Exception.
4. Ask the Agenda to schedule the necessary implications.
5. Evaluate all the scheduled implications.
6. If new facts where asserted during point 5, perform a new iteration → 3.
7. If there is a Business Object Binder in BeforeAfter mode, call its AfterProcess

method.
8. If new facts where asserted or retracted during point 7, perform a new iteration

→ 3.

Documentation v3.2.0 41 / 57

.NET Business Rules Engine

3.7. Threading Model
Since version 2.4, the Inference Engine offers three threading models:

• Single, for mono-threaded applications,

• Multi, for multi threaded applications,

• Multi Hot Swap, for multi threaded applications with the need for hot swapping
rule base and/or binder at run-time without suspending the execution of the
hosting application.

3.7.1. Implementation sample
To leverage this feature, it is compulsory to use IsolatedMemory as each thread will be
assigned an instance of its own. The following code demonstrates a sample
implementation, in the case a binder is used:

(Initialization)
01 IInferenceEngine ie = new IEImpl(binder , ThreadingModelTypes.Multi);
02 ie.LoadRuleBase(adapter);
(Usage)
03 ie.NewWorkingMemory(WorkingMemoryTypes.Isolated);
04 ie.Process(businessObjects);

The initialization phase can happen in a singleton and can even be a static instance.

The important thing to bear in mind is that you should have one instance per rule file you
want to run in parallel: so if your application can potentially process simultaneously 5
different rule bases, you should have 5 engine instances somewhere (a Dictionary-based
registry would be indicated in that case).

Line 03 shows how to instantiate a non-empty isolated memory, which will be specific to
the current thread (an empty isolated memory would also work).

Documentation v3.2.0 42 / 57

.NET Business Rules Engine

3.7.2. Hot swapping support
This feature allows any thread to perform a rule base and/or binder reload at any time,
without interrupting the application: one can imagine monitoring file system events and
trigger a reload operation if a file has changed.

The following sample shows how to leverage this ability.

(Initialization)
01 IInferenceEngine ie = new IEImpl(ThreadingModelTypes.MultiHotSwap);
(Initialization & Hot Swap)
02 ie.LoadRuleBase(adapter, binder);
(Usage)
03 ie.NewWorkingMemory(WorkingMemoryTypes.Isolated);
04 ie.Process(businessObjects);
05 ie.DisposeIsolatedMemory();

Line 02 shows how to reload the rule base and the binder at the same time. It is possible
to reload the rule file only, but it is not possible to reload the binder only.

Line 05 shows how to specifically free this isolated memory. Note that this syntax is strictly
equivalent to:

ie.NewWorkingMemory(WorkingMemoryTypes.Global)
but it is simply much clearer. Freeing the working memory is not compulsory but is a good
practice as it releases internal locks and could then allow a reload operation, which is
exclusive, to happen.

When a reload is initiated the engine will suspend all new isolated memory requests until it
can perform the rule base / binder swap ; then it would release the locks and allow the
other threads to work again and acquire isolated memories.

These lock operations are conditioned by a configurable time-out (see chapter 4). This is
to prevent a deadlock situation of the engine. If a single processing on your rule base
takes more than this time-out, there is the risk that the hot swapping will never happen and
exceptions will be thrown. Tune this value according to your applications performances.

Documentation v3.2.0 43 / 57

.NET Business Rules Engine

3.8. Microsoft Visio 2003 Adapter
In order to provide a convenient environment for creating rule bases, we have decided to
leverage both Microsoft Visio 2003 excellent user interface and its XML format called
DatadiagramML.

This choice of a commercial product for an open source project can look odd, but we
wanted to avoid an editor we would have made from scratch, exposing the users to
potential bugs and poor ergonomics.

With the definition of a small set of specific shapes (available in a stencil provided with
this distribution: NxBRE-IE-*.vsx), and by using standard dynamic connectors to
connect these shapes together, it becomes possible to easily develop rule bases.

This edition model is extremely simple, but not fool proof: currently, there is no
enforcement of what shapes you use and connect together, so it is possible to create
meaningless rule bases. In that case it is most likely that the NxBRE adapter will reject the
rule base ; but be aware that this is not guaranteed.

The immediate advantage is to allow developers to model in a unique environment (Visio)
all their systems in UML, connecting use cases and other UML models to business rules
expressed with NXBRE's stencil.

Documentation v3.2.0 44 / 57

.NET Business Rules Engine

Ultimately, code generation tools should allow a complete generation of business objects,
rule base files and the scaffolding code (engine instantiation and fact binding).

There are different direct bonuses for designing rule bases in Visio:

• Multi pages: you can organize your implications, facts and queries on as many pages
as you want, allowing logical grouping of entities. On top of that, the NxBRE adapter is
able to load only a selection of these pages, providing a sub-grouping that is absent
from RuleML.

• Atom syndication: as shown above, it is possible to syndicate atoms that are used by
different implications (or queries), limiting potential mistakes and increasing readability
by reducing duplicated information.

• Easy operators: when transforming DataDiagramML to RuleML, the XSL-T takes care
of transforming basic operators to their NxBRE counterparts, as shown in the following
table:

Operator in
Visio

NxBRE Operator

>= GreaterThanEqualTo
<= LessThanEqualTo
<>
!= NotEquals

==
= Equals

< LessThan
> GreaterThan

Documentation v3.2.0 45 / 57

.NET Business Rules Engine

• Easy typed predicates: by using a prefix like (xs:int) it is possible to type a
predicate directly from the Visio rule base.

• Easy named predicates: using simple prefixes like (?Size) it is possible to name a
predicate directly from the Visio rule base. Note that this prefix must always be first in
the predicate description.

• Artifact mix: as shown below, it is possible to mix design artifacts coming from different
stencils in a rule base, the only constraint being to avoid dynamic connections between
NxBRE's artifacts and other ones.

 The rule base label is taken from the Title attribute of the File Properties.

Documentation v3.2.0 46 / 57

.NET Business Rules Engine

3.9. Human Readable Format (experimental)
The user can find in the resource folder a file named ruleml2hrf.xsl that can be useful for
generating human readable rule bases from RuleML 0.86 NafDatalog files.

Human Readable Samples

premium{?customer}
& regular{?product}
-> discount{?customer, ?product, 5.0 percent};

premium{?customer}
& luxury{?product}
-> discount{?customer, ?product, 7.5 percent};

spending{?customer, min 5000 euro, previous year}
-> premium{?customer};

luxury{Porsche};

regular{Honda};

spending{Peter Miller, min 5000 euro, previous year};

discount{?customer, ?product, ?amount};

[Safe Room List]
Room In Zone{?Room Number, ?Zone Number}
& Firemen In Room{?Room Number}
| ! Fire Alarm In Room{?Room Number}
& ! Alarm Fault In Room{?Event Type, ?Room Number};

[Test A and B or C]
id{?account, NxBRE:LessThan(500)}
& balance{?account, NxBRE:GreaterThanEqualTo(100)}
| balance{?account, NxBRE:LessThanEqualTo(50)}
-> testAandBorC{?account};

An adapter able to read and write rule bases in this format as been developed by Andre
Weber using Coco/R. This adapter has been improved by Ron Evans to support the latest
language constructs of RuleML 0.86 NafDatalog.

Currently, the adapter does not support complex nesting of AND/OR and only the US-
ASCII encoding is supported ; but it is already able to be used for simple rules (as shown
above).

Documentation v3.2.0 47 / 57

.NET Business Rules Engine

3.10. Registry

3.10.1. Concepts
The main goals of the NxBRE.InferenceEngine.Registry.IRegistry is to facilitate the
loading of multiple rule bases by storing them in shared registry and to encourage a
correct usage in a multi-threaded environment (as advocated in chapter 3.7).

Whatever the implementation is, the registry must exist as a single instance in the target
application. If a static instance is not an option for your project, an elegant solution
consists in using Spring 4 to manage your objects graph and have the registry singleton
instantiated and injected in your worker objects by this framework.

3.10.2. File Registry

NxBRE comes with one implementation of IRegistry, the FileRegistry. This implementation
works with all rule and binder files stored in one particular folder: it monitors any change to
these files and automatically reloads them without disturbing the application that uses the
engine managed by the registry (provided the recommendations in chapter 3.7 have been
followed!).

This registry is configured by an XML file constrained by the nxbre-file-registry.xsd schema
file. By default, it looks for binder and rule files in the same folder where the configuration
file is located, but another folder can be defined in the configuration file itself.

The following demonstrate a configuration file defining 5 engines and different rule files
formats and binder types:
<?xml version="1.0" encoding="utf-8"?>
<FileRegistryConfiguration xmlns="http://nxbre.org/registry/file"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://nxbre.org/registry/file
 nxbre-file-registry.xsd">
 <Engine id="chocolatebox-binderless">
 <Rules file="chocolatebox-binderless.ruleml" format="RuleML09NafDatalog"/>
 </Engine>
 <Engine id="chocolatebox-ccb">
 <Rules file="chocolatebox.ruleml" format="RuleML09NafDatalog"/>
 <CSharpBinder file="chocolatebox.ruleml.ccb"
 class="NxBRE.Test.InferenceEngine.ChocolateBoxBinder"/>
 </Engine>
 <Engine id="events-test-vcb">
 <Rules file="events-test.ruleml" format="RuleML09NafDatalog"/>
 <VisualBasicBinder file="events-test.ruleml.vcb"
 class="NxBRE.Test.InferenceEngine.EventTestBinder"/>
 </Engine>
 <Engine id="chocolatebox-feb">
 <Rules file="chocolatebox.ruleml" format="RuleML09NafDatalog"/>
 <FlowEngineBinder file="chocolatebox.ruleml.xbre" type="BeforeAfter"/>
 </Engine>
 <Engine id="chocolatebox-binderless-visio">
 <Rules file="chocolatebox-binderless.vdx" format="Visio2003"/>
 </Engine>
</FileRegistryConfiguration>

4 see: http://springframework.net – using Spring in your applications is a good idea anyway!

Documentation v3.2.0 48 / 57

http://nxbre.org/registry/file
http://nxbre.org/registry/file
http://nxbre.org/registry/file
http://nxbre.org/registry/file
http://nxbre.org/registry/file
http://nxbre.org/registry/file
http://springframework.net/
http://springframework.net/
http://springframework.net/
http://springframework.net/
http://springframework.net/
http://springframework.net/
http://springframework.net/
http://springframework.net/
http://springframework.net/

.NET Business Rules Engine

3.11. Performance tuning

Here are several tricks that can help you making the most of NxBRE in term of
performances.

3.11.1. Have strongly identified facts
If possible, each fact should have a unique identifier. Placing this identifier in the first
position of the predicate list helps accessing this fact faster:

Definition: DoB{CustomerId, CustomerDoB}

Sample: DoB{12345, "1971-01-02"}

3.11.2. Use small facts

NxBRE has an access time to any single fact that depends on the number of predicates in
this fact and not the amount of facts. Therefore it is better to break down a fact containing
several predicates into several smaller facts.

Moreover, it is good practices to have facts always carry sense in a self explicit way: this is
almost impossible with a big fact.

Consider the following comparison:

Definition: Details{CustomerId, CustomerDoB, CostumerCountry, CustomerRating}

Sample: Details{12345, "1971-01-02", "CA", "Premium"}

versus:

Definitions: DoB{CustomerId, CustomerDoB }
 Country{CustomerId, CostumerCountry }
 Rating{CustomerId, CustomerRating}

Samples: DoB{12345, "1971-01-02"}
 Country{12345, "CA"}
 Rating{12345, "Premium"}

Which approach is clearer? Remember that you will have to look at actual data (as shown
in the sample)...

3.11.3. Use typed data and storage
For this, first leverage RuleML 0.9 Data elements that allow creating typed predicate both
for facts defined in the rule file and for selection atoms in implications and queries.

Second, set the fact base to use strict typing only (see the configuration overview
chapter 4): this reduces the amount of stored data and casting operations.

Documentation v3.2.0 49 / 57

.NET Business Rules Engine

3.11.4. Order atoms in And blocks

NxBRE optimize the members of And and Or blocks by giving different priorities to atoms,
negative atoms and nested logical blocks. But it does not optimize the order of matching
the atoms patterns between themselves: thus, it is worth using your knowledge of the facts
that will be stored in the working memory to sort atoms (standard ones, not negative ones)
in a way that the ones producing the least results will be processed first.

Consider the following example:

BelongsTo{?Account, ?Transaction} AND Holds{?Customer, ?Account}

versus:

Holds{?Customer, ?Account} AND BelongsTo{?Account, ?Transaction}

The first condition will select all the transactions then filter out only the ones belonging to a
particular account while the second condition will first select a particular account then
select its transactions. Therefore, the latter is much better than the former.

Documentation v3.2.0 50 / 57

.NET Business Rules Engine

4. Configuration

NxBRE is fully configurable via the standard .NET application configuration mechanism.
The following table details these parameters.

AppSetting Key Name Default Description
nxbre.iterationLimit 1000 The maximum number of iteration to

perform in one process cycle.
If this limit is reached, the engine
will throw an exception.

nxbre.strictImplication False Defines whether the engine should throw
an exception in case an implication
tries to assert a fact whose variable
predicates have not all be resolved by
the data returned by the atoms of the
body.

nxbre.lockTimeOut 15000 The time-out in millisecond for
acquiring a lock when hot swapping a
rule base in multi-threaded
environments.

nxbre.abstractbinder.function.
regex

^(?<1>\w+)\x
28((?<2>[^,\
x28\x29]+),?)*\
x29$

The regular expression used by default
binders to estimate if the String
content of an Individual represents a
Function.

nxbre.factBase.strictTyping False Defines whether the fact storage should
consider typed objects as equivalent to
their String representation.
If StrictTyping is set to true, they are
will not be considered equivalent.
This implies that to match typed values,
<Data> elements instead of <Ind> must be
used in the rulebase.

nxbre.exposeEventContext False Defines if the events raised by the
engine should contain the context, i.e.
the source facts, implied in the event.

nxbre.referenceLinkMode CurrentDomain Defines the different strategies for
adding references when on-the-fly
compiling classes.

Can be set programmatically via this
static property:
NxBRE.Util.Compilation.ReferenceLinkMode

nxbre.extraReferences An optional semi-colon separated list of
extra DLLs to load when performing on-
the-fly compilation.

nxbre.generateInMemoryAssembly True Defines if the assemblies NxBRE
generates when performing on the fly
compilation will be in memory or not.

Can be set programmatically via this
static property:
NxBRE.Util.Compilation.GenerateInMemory
Assembly

nxbre.compilerOptions Defines optional additional-command line
arguments string to use when invoking
the on the fly compiler.

Can be set programmatically via this
static property:

Documentation v3.2.0 51 / 57

.NET Business Rules Engine

AppSetting Key Name Default Description
NxBRE.Util.Compilation.CompilerOptions

nxbre.cultureInfo en-US Defines the format used by NxBRE when
casting values.

Can be set programmatically via this
static property:
NxBRE.Util.Reflection.CULTURE_INFO

nxbre.embeddedResourcePrefix NxBRE.Resources Defines the string that prefixes the
resource names in the manifest.

Should not be changed if building with
VS.NET 2005/SharpDevelop2

nxbre.unittest.inputfile Q:/test.xbre
nxbre.unittest.inputnative Q:/discount.bre
nxbre.unittest.identityxsl Q:/identity.xsl

Files used during unit testing.

This configuration section is not
necessary in production.

nxbre.unittest.ruleml.inputfol
der

Q:/ Path to the Rulefiles folder of the
distribution.

nxbre.unittest.outputfolder C:/Temp Ensure that you have write privilege on
this folder.

Documentation v3.2.0 52 / 57

.NET Business Rules Engine

5. Logging

NxBRE provides different trace sources the implementer can leverage for debugging or for
monitoring particular behaviors. The tracing threshold of these sources are set by trace
switches of the same name.

NB. These trace sources replace the legacy event based logging mechanisms of
NxBRE 2.

 Please refer to the .NET framework SDK documentation for more information on
using trace sources (System.Diagnostics.TraceSource) and
switches (System.Diagnostics.TraceSwitch).

Here is the list of available sources and switches:

Source / Switch Name Purpose
NxBRE.FlowEngine Trace events emitted by the Flow Engine.
NxBRE.FlowEngine.RuleBase Trace events emitted by rule base level

operations (log, exceptions).
NxBRE.InferenceEngine Trace events emitted by the Inference

Engine.
NxBRE.Util Trace events emitted by the utility

classes.

Tracing is controlled via the standard configuration mechanisms and also by code via the
utility class NxBRE.Util.Logger (turn to the API Documentation of NxBRE for more
information).

Documentation v3.2.0 53 / 57

.NET Business Rules Engine

6. API Documentation

The API Documentation should be bundled with the current document.

NB. The current version of NxBRE is stored in this static:

NxBRE.Util.Reflection.NXBRE_VERSION

Documentation v3.2.0 54 / 57

.NET Business Rules Engine

7. Support

For comments or questions use the SourceForge forums or write to: contact@nxbre.org

You can also enter bugs and feature requests on SourceForge.

Additional support can be found at the NxBRE Wiki Knowledge Base.

Documentation v3.2.0 55 / 57

http://nxbre.org/kb
http://nxbre.org/kb
http://nxbre.org/kb
mailto:contact@nxbre.org
mailto:contact@nxbre.org
mailto:contact@nxbre.org
http://sourceforge.net/projects/nxbre
http://sourceforge.net/projects/nxbre
http://sourceforge.net/projects/nxbre

.NET Business Rules Engine

8. Other engines

The following is not an exhaustive list of alternative engines for the .NET platform but
should give you some hints on what is available out there.

8.1. Open source engines
There are much less open source engines in the .NET world than in the Java world. The
good news is that mainstream Java engines are now being ported to .NET!

8.1.1. Drools DotNet
Though in beta when this guide is being written, Drools will deliver a full fledged RETE
based rules engine to the .NET platform. The key feature differences with NxBRE are the
possibility to define domain specific languages (DSL) to express the rules and the opt for a
professional paid-for support.

Note that an Eclipse based editor that allows to edit the DSL-based rules is available.

8.1.2. Simple Rule Engine (SDSRE)
This is a lightweight forward chaining inference rule engine for .NET. It is considered
simple because of the simplicity in writing and understanding the rules written in XML, but
this simple engine can solve complex problems. It can be an alternative to NxBRE if none
of the available rule formats are satisfying the user's needs.

8.2. Commercial engines
There are plenty of available business rules engines that you can purchase. On top of
support and liability, your money will buy extra professional features that are not
commonly found in the open source world like advanced rules editors or rules testing and
staging features.

To list only a few, in no particular order:

● ILOG Rules
● Yasutech Quickrules
● Fair Isaac Blaze Advisor
● InRules

Documentation v3.2.0 56 / 57

.NET Business Rules Engine

NxBRE has been

Documentation v3.2.0 57 / 57

http://www.windevpowertools.com/

	1. Introduction
	1.1. What is NxBRE?
	1.2. What is this documentation?
	1.3. Release Notes
	1.4. Content of the Rulefiles folder
	1.5. How to choose between the Flow and the Inference Engine?

	2. The Flow Engine
	2.1. Introduction
	2.2. The IFlowEngine interface
	2.3. Rule Interpreter Implementation: NxBRE.FlowEngine.BREImpl
	2.3.1. Execution
	2.3.2. Engine
	2.3.3. Helper Objects
	2.3.4. Rule Drivers
	2.3.5. Factories
	2.3.6. Threading Model

	2.4. Rule Files Formats
	2.4.1. Language constructs of the extended syntax
	2.4.1.a. Data assertion
	2.4.1.b. Reflection and delegation calls
	2.4.1.c. Increments
	2.4.1.d. Operators and conditions
	2.4.1.e. Logic blocks
	2.4.1.f. Sets
	2.4.1.g. Exceptions and logging

	2.4.2. Native and extended syntax comparison
	2.4.3. Pseudo-code Rendering
	2.4.4. Rules Format Comparison

	3. The Inference Engine: NxBRE.InferenceEngine
	3.1. RuleML Naf Datalog Concepts
	3.1.1. Atoms
	3.1.2. Logical Operators
	3.1.3. Facts
	3.1.4. Queries
	3.1.5. Implications
	3.1.6. Slots
	3.1.7. Multi-syntax
	3.1.8. Typed data
	3.1.9. Deterministic resolution
	3.1.10. Equivalence
	3.1.11. Integrity protection
	3.1.12. Migrating from a previous version

	3.2. Advanced Concepts
	3.2.1. Priority
	3.2.2. Mutual Exclusion
	3.2.3. Pre-Condition
	3.2.4. Implication Action
	3.2.5. Function Based Atom Relations
	3.2.6. Formula
	3.2.7. Salience and Weight

	3.3. Data Binding Strategies
	3.3.1. Basic
	3.3.2. Rulebase Adapters
	3.3.3. Business Object Binders

	3.4. Expression Language Support
	3.5. Engine
	3.5.1. Working Memory
	3.5.1.a. Fact Base
	3.5.1.b. Global, Isolated and IsolatedEmpty Modes

	3.5.2. Agenda
	3.5.3. Implication Base
	3.5.4. Query Base

	3.6. Execution
	3.7. Threading Model
	3.7.1. Implementation sample
	3.7.2. Hot swapping support

	3.8. Microsoft Visio 2003 Adapter
	3.9. Human Readable Format (experimental)
	3.10. Registry
	3.10.1. Concepts
	3.10.2. File Registry

	3.11. Performance tuning
	3.11.1. Have strongly identified facts
	3.11.2. Use small facts
	3.11.3. Use typed data and storage
	3.11.4. Order atoms in And blocks

	4. Configuration
	5. Logging
	6. API Documentation
	7. Support
	8. Other engines
	8.1. Open source engines
	8.1.1. Drools DotNet
	8.1.2. Simple Rule Engine (SDSRE)

	8.2. Commercial engines

