User and Use Case Relationships

[image: image1.emf]Model Tree Basic User

Software Architect

Business Analyst

«is a» «is a»

Manages Nodes

«uses»

Manages Entity

Types

Manages Properties

Manages Navigation

Properties

«extends»

«extends»

«extends»

Entities Hierarchy:

 EntitiesRoot
 Solution
 Project
 Model
 Namespace
 Entity_Container
 Entity_Set
 EntityType
 NavigationProperty
 EntityType
Business Requirements
Requirements for Solution Framework – Overall Project

· Provide a system to allow for a small to large company to develop a corporate web site by applying the best resources to the best areas, without requiring huge investments from outside consultants or development teams.

1. Maintains the extensibility of the project in regards to:
· AbstraX Providers

· Code Project Providers

· AbstraX Extensions (new)

· Type Mappings

· Provides the ability to create domain models.
2. Allows the creation of domain models as a hierarchical structure.
3. Provides a non-technical user the ability to model entities in a natural and intuitive manner.

4. Maintains state in real-time.

5. Uses non-technical terminology in user interface and menus.
Requirements for Model Tree Basic User

· Develops Domain Model based on requirements
6. User will have the ability to quickly add entities and properties for a given Domain without requiring the technical aspects such as field types and complex relationships.

7. User will be guided as much as possible for the correct location in the hierarchy in which to add certain elements to the Domain Tree.

8. It is assumed that the user at this point understands what a Domain Model entails, the definition of an Entity, and that an Entity is added to the tree as an Entity Type.
Note: The word Entity, in terms of this document will also mean “Entity Type”

· Manages Uncommitted Nodes - Adds nodes
9. User will have the ability to add entities to the Domain Tree.

10. User can add entities starting at:

· Entity Container

· Entity Set

· Entity Type

· Property

· Navigation Property

11. Entities will always be added to the tree under Entity Set

12. If an Entity is added to the tree elsewhere other than Entity Set, an Entity Set will be created by default as a collapsed node.

· Manages Uncommitted Nodes - Adds comments for node
13. The user will have the ability to add comments to a node in rich text format.

14. Entities that may occur in multiple places but represented by the same node in the database will have the same comments.

15.
 Comments will be used in the future to produce a database dictionary and will be added to the metadata of corresponding objects in the host database.

16. The first line of comments will display in the status bar when selected by the user.

17. The comment editor will display to the user on the Ctrl-D keystroke as well as have a context menu item.
18. User will have a dialog with Save and Cancel buttons to display comment editor.

19. Dialog will have a Windows-style close button in top-right corner.
20. Dialog will be non-modal and will allow the user to navigate nodes and see current comments on navigated node.

21. Dialog will detect that changes have occurred and will provide a dialog prompting “Are you sure? Yes/No” if Close or Cancel buttons are clicked or an attempt to navigate to another node.

22. Dialog will be dismissible via the Escape key.

23. Comments will be saved in real-time when clicking Save.

· Manages Uncommitted Nodes - Edits comments for node
24. Existing comments will display when user Views Comments.

25. User will have the ability to edit existing comments.

· Manages Uncommitted Nodes - Rename nodes

26. When adding a node, user will be prompted to name the node

27. After adding a node, the node will be in edit mode to force naming of the node

28. User has the ability to rename a node from a previous name

29. While in uncommitted state, there will be no validation on the name, other than requiring the name and making sure it is unique.

· Manages Uncommitted Nodes - Delete nodes

30. User cannot delete a node that has children.

31. User will be prompted with a message box that he/she cannot delete a node with children.

32. System will provide a dialog prompting “Are you sure? Yes/No” when a node is deleted.
33. A node can be deleted via the Delete keystroke as well as via a context menu item.

· Manages Uncommitted Nodes - Drag & Drop Copy & Paste nodes (phase 2)
· Manages Uncommitted Nodes - Sees visual indicator that node is uncommitted
34. Uncommitted nodes without documentation will have a red circle as a glyph preceding the node image.

35. Uncommitted with documentation will have a dark yellow circle as a glyph preceding the node image.

· Manages Uncommitted Nodes - Has assurance that nodes are saved in real-time
36. Any actions on nodes will occur immediately. This includes adding, editing, deleting.

· Manages Navigation Properties

37. User will have the ability to add a related entity.
38. User will have a context menu item to “Add Related Entity”

39. User will get a sub-menu with the following options:

· Undefined Multiplicity

· One-to-Many

· One-to-Zero or One

· Many-to-One

· Many-to-Many

· Relationship Wizard… (to be defined in later project)

· Manages Navigation Properties - Select Multiplicity

40. User will have the ability to select the multiplicity after adding an entity with Undefined Multiplicity.
· Manages Navigation Properties - Select existing or create new related entity

41. User will have the ability to select an existing related entity or create a new entity.

42. User will have the ability to enter the related entity and enter the navigation property name in a single operation (i.e. greater than key functionality)
· Manages Navigation Properties - Remove related entity

43. User will have the ability to remove a related entity.
44. System will provide a dialog prompting “Are you sure? Yes/No” when a related entity is removed.
45. A related entity can be removed via the Delete keystroke as well as via a context menu item.

46. Removing a related entity will not delete the related entity, just remove the relationship.

· Manages Navigation Properties - Change Multiplicity
47. User will have the ability to change the multiplicity of a related entity.

EntityProvider (instance of AbstraX Provider)
· Communicates with EntityProvider extension directly

48. EntityProvider will communicate changes with EntityProvider extension via Domain service methods.

· Communicate with database proxy on changes to the model.
49.The Base AbstraXProvider will provide an interface to represent the database proxy.

50. EntityProvider will request Database Proxy from system via the IDomainHostApplication.

51. IDomainHostApplication with provide a generic Database Proxy that can provide database persistence for any types of AbstraX Providers, not just the EntityProvider.
52. The Database Proxy will use Entity Framework to access the database.
· Provides extension if available.
53. The EntityProvider will provide a shared class to for the functionality on the front-end for the AbstraX Extension
· Retrieves uncommitted nodes from Database Proxy.

54. The Base AbstraXProvider server interface called IBase will include an event to allow for querying of child nodes that are uncommitted.
55. All existing AbstraX Provider entities (Elements, Attributes, and Operations) will be refactored to implement the interface.

56. The EntityProvider Domain class will listen for all events from the Entities

57. The parent entities will listen for events for all of its children, and will raise the events down to the EntityProvider Domain class.

58. All appropriate entity types will raise this event to query the Database Proxy for possible children and will be merged into the collection of existing children (i.e. a node can have a combination of committed and uncommitted children).

AbstraX Extensions
· Provided by AbstraX Provider.
59. The Base AbstraXProvider will provide a shared interface that must be implemented by all AbstraX Extensions.

60. The EntityProvider will have a shared class (i.e. EntityProviderExtension.shared.cs) that will provide functionality to the front-end.
61. The Base AbstraXProvider will provide the definition of an Attribute that will be acquired by the Silverlight front-end code generator (AbstraXGenerator) to instantiate and provide an instance of the extension.

62. A method will be added to the IBase server and client interfaces for returning an extension.

63. The EntityProvider back-end Entities will be refactored to provide the interface method

64. The back-end implementation of the interface method will be decorated with the Attribute as described above and will return null by default.

65. The AbstraXGenerator will read the Attribute from this method to instantiate and return the AbstraXExtension via a Unity IoC container.

· Provides custom menu items

66. The AbstraXProvider Extension will provide all custom menu items.

· Handles Tree View events.
67. The Base AbstraXProvider tree view node classes will query each internal node for an AbstraX Extension interface.
68. The Base AbstraXProvider tree view node classes forward all necessary fired events to the extension.

· Handles Tree View events - Create New
69. AbstraX Provider extension will handle the following events:

· Delete

· Rename

· Drag & Drop Copy & Paste (out-of-scope)
· Greater than keyboard event.

· “Shift-N” keystrokes to create a new node by default.

· Provides User Interface for schema changes.
70. AbstraX Provider extension will provide all necessary front-end user interfaces.

71. All front-end user interfaces will conform to the MVVM design pattern.

· Can be swapped out.

72. AbstraX Provider extension as provided by the Unity IoC container will allow for unit testing of both the extension itself as well as the Base AbstraX Provider front-end tree nodes.
_1387551033.vsd
Model Tree Basic User

Software Architect

Business Analyst

«is a»

«is a»

Manages Nodes

«uses»

Manages Entity
Types

Manages Properties

Manages Navigation
Properties

«extends»

«extends»

«extends»

