ASP.NET MVC Best Practices with NHibernate and Spring.NET

2Preparing the Development Environment

2Installing and Configuring Prerequisites

2Configuring IIS 7 for ASP.NET MVC

2Configuring IIS 6 for ASP.NET MVC

3Examining the Northwind Example Project

3Setting up the Northwind Example Project

3Examining the Project Tiers

3Northwind.Core: The Domain Layer and the “M” in MVC

3Northwind.Controllers: The “C” in MVC

3Northwind.Data: The Data Layer

4Northwind.Tests: The Unit Testing Layer

4Northwind.Web: The “V” in MVC

4Examining the Reusable Class Libraries

4ProjectBase.AspNetMvc

4ProjectBase.Core

4ProjectBase.Data

4ProjectBase.SpringDaoGen

4Developing with the Base Architecture Exercise

4Test Driven Development Cycle

5Developing the Staff Member Domain Model

7Enabling the Domain for Comparisons and Persistence

8Developing the Controller to Retrieve and Display Results

13Retrieving Results via the Custom DAO

19Showing the Results in a View

21What Was Accomplished?

21Development Guidelines

21Within the Web Layer

21When using ASPX views

21Configuring web.config

22Within the Tests Layer

22Solution Items

22NHibernate

22Spring.NET

23Microformats

23Common Development Problems & Exceptions

23Areas for Improvement

23Exception Troubleshooting

24Appendix A: Resources

24Referenced Works

Preparing the Development Environment

Installing and Configuring Prerequisites

1. Install Visual Studio 2008. After installing VS 2008, set auto-formatting options appropriately:

a. go to Tools / Options and check “Show all settings”

b. Expand Text Editor / C# / Formatting / New Lines and uncheck the following:

· Place open brace on new line for methods

· …for anonymous methods

· …for control blocks

· …for anonymous types

· …for object initializers

· …for lambda expressions

c. Expand Text Editor / HTML:

· Under Validation, set target to “XHTML 1.1”

· Under Miscellaneous:

1. Uncheck “Auto ID elements on paste in Source view”

2. Check “Format HTML on paste”

2. Install ASP.NET MVC Preview 2

3. Install NUnit 2.4.7 for .NET 2.0

4. Download NHibernate 1.2.1 and copy “\NHibernate-1.2.1.GA-bin*.xsd” to "C:\Program Files\Microsoft Visual Studio 9.0\Xml\Schemas" to enable NHibernate intellisense.

5. Download Spring.NET 1.1 and copy "\Spring.NET-1.1\Spring.NET\doc\schema*.xsd" to "C:\Program Files\Microsoft Visual Studio 9.0\Xml\Schemas"
Configuring IIS 7 for ASP.NET MVC

1. The easiest way to configure IIS 7 for the ASP.NET MVC sample project, is to modify IIS 7 to behave in classic mode for the configured virtual directory. To do so, first make sure the virtual directory has been given an application name; then set the application pool for it to the “classic mode” application pool.
2. In global.asax, modify the first route to reflect the following:
routes.Add(new Route(“{controller}/{action}/{id}”, new MvcRouteHandler())
Configuring IIS 6 for ASP.NET MVC

After installing ASP.NET MVC, IIS 6 still needs to be configured as follows:
1. Open IIS Mangaement Console

2. Expand your computer

3. Expand Websites

4. Right-click the website you'd like to edit (Most times it'll be called "Default Web Site") and click Properties

5. Click the Home Directory tab

6. Click Configuration...

7. Click Add

8. Executable: c:\windows\microsoft.net\framework\v2.0.50727\aspnet_isapi.dll

9. Extension: .mvc

10. Verbs: Limit to: GET,HEAD,POST,DEBUG

11. Un-check Verify that file exists

12. Click Ok

Examining the Northwind Example Project

Setting up the Northwind Example Project

· Unzip the Northwind example project somewhere; this will create the folders NorthwindMvc and ProjectBase.

· Open the VS 2008 solution file at <unzip location>\NorthwindMvc\Northwind.sln

· Modify the connection string in <unzip location>\NorthwindMvc\Northwind.Web\SpringConfig\Data.xml to point to a Northwind database. (It's currently configured for working with SQL Server 2005.)

· Compile the solution.

· Open NUnit and have it open <unzip location>\NorthwindMvc\Northwind.Tests\bin\Debug\Northwind.Tests.dll and run the tests. They should all pass.

· Create a new virtual directory called NorthwindMvc which points to the root of Northwind.Web.

· Open a browser and go to http://localhost/NorthwindMvc/Customers.mvc/List to see all of the project elements in action including controller injection and NHibernate lazy loading.
· (You can also hit F5 to run the sample in debug mode from VS 2008.)

Examining the Project Tiers

Northwind.Core: The Domain Layer and the “M” in MVC
Northwind.Core.OrdersExtensions is an example of adding a custom method to a NHibernate bound collection; e.g., IList<Order>. This removes the complexity of other custom collection alternatives.
Northwind.Controllers: The “C” in MVC

Spring.NET transaction management attributes should only be included in this layer.
Northwind.Data: The Data Layer

When compared to the NBP article, this new approach removes a ton of complexity because now there's no DaoFactory and it's much simpler to add new DAOs and extend them with custom methods. Look in <unzip location>\Northwind\src\Northwind.Tests\SpringConfig\Daos.xml and DomainAliases.xml to see how the DAOs are configured.
To make it even simpler, a custom process (discussed later) automatically creates and configures these Spring.NET XML files.

Northwind.Tests: The Unit Testing Layer

This class library contains all of the automated tests for testing the layers of your custom application.

Northwind.Web: The “V” in MVC

Examining the Reusable Class Libraries

ProjectBase.AspNetMvc

ProjectBase.Core

ProjectBase.Data
ProjectBase.SpringDaoGen
Developing with the Base Architecture Exercise

The following example details all steps for creating a new domain object listing form. It covers creating the domain objects, creating and testing the controller with mock objects, extending data access objects with a custom method, configuring Spring.NET and displaying the results on a web page.

Test Driven Development Cycle

The following test-driven cycle will be used:

1) Write your test as if the target objects and API already exists.

2) Compile the solution and see it break.

3) Write just enough code to get it to compile.

4) Run the test and see if fail.

5) Write just enough code to get it to pass.

6) Run the test and see it pass!

7) Refactor if necessary!

For the purposes of this example, the user story is as follows:

Users may search for staff members matching a name filter. The results should include any staff members with a first name, last name, or employee number containing the provided filter.

Assume that we haven’t yet tackled the “User may create staff member having a unique employee number” yet; so although not necessary yet, because it’s not dictated in the current user story that we’re tackling, let’s keep in mind that the staff member’s employee number is what makes it unique. With that said, let’s first create the staff member domain model.

Developing the Staff Member Domain Model

1) Go to Northwind.Tests/Northwind.Core and add a new tests class called StaffMemberTests.cs. with an initial test of CanCreateStaffMember(). (Note that the test is written as a question.) The class should look as follows:

	using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

using Northwind.Core;

namespace Tests.Northwind.Core

{

 [TestFixture]

 public class StaffMemberTests

 {

 [Test]

 public void CanCreateStaffMember() {

 string employeeNumber = "ABC123";

 string firstName = "Karel";

 string lastName = "Čapek";

 StaffMember staffMember =

 new StaffMember(employeeNumber) {

 FirstName = firstName,

 LastName = lastName

 };

 Assert.That(staffMember.EmployeeNumber,

 Is.EqualTo(employeeNumber));

 Assert.That(staffMember.FirstName,
 Is.EqualTo(firstName));

 Assert.That(staffMember.LastName,
 Is.EqualTo(lastName));

 }

 }

}

There are a couple of things to note in the above test:

· The constructor of StaffMember only takes an employee number. This is the minimal amount of information to create a valid, unique staff member, as specified by the requirements.

· The first assert compares the staff member to a new staff member with the same employee number. Since the employee number is what makes staff members unique, then this should pass without worrying about the first and last names.

· The next two asserts make sure the first and last names match as well.

2) Compile the build and notice that it breaks due to the missing StaffMember class.

3) Go to Northwind.Core and add the StaffMember domain object, as follows: (Note that we’ve only added just enough code to get the test to compile.)

	namespace Northwind.Core

{

 public class StaffMember

 {

 public StaffMember(string employeeNumber) {}

 public string EmployeeNumber { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 }

 }

4) Open NUnit and then load the test solution by going to File / Open Project and open Northwind.Tests/bin/Debug/Northwind.Tests.dll. Double click the CanCreateStaffMember test to have it run. You should see it fail because EmployeeNumber is null.

5) Go back to the StaffMember domain object and alter the constructor as follows:

	public StaffMember(string employeeNumber) {

 EmployeeNumber = employeeNumber;

}

6) Compile and run the test and again to see it go green…woohoo!

7) Time to refactor! In the constructor of StaffMember, it’s possible to set the employeeNumber parameter to a null or empty string object. This is bad. What we’d like to do is enforce a valid employee number is provide. Let’s use the design-by-contract utility to enforce this. This is good. Furthermore, to protect the employee number in the future, since it shouldn’t change, let’s protect the setter of EmployeeNumber. Be sure to run the unit tests again to make sure nothing broke while refactoring.

When implementing this refactoring, a test driven approach should be followed, as was performed in the previous six steps. For brevity, the unit test below demonstrates step one of the refactoring process followed by code which gets the test to pass in step six of the process. (Note that we can’t unit test proving that the EmployeeNumber’s setter is protected as it will not even compile if we attempt to set it.)

	[Test]

[ExpectedException(typeof(PreconditionException))]

public void CannotCreateStaffMemberWithInvalidEmployeeId() {

 new StaffMember(" ");

}

	using ProjectBase.Core;

using ProjectBase.Core.PersistenceSupport;

using System;

namespace Northwind.Core

{

 public class StaffMember : PersistentObject
 {

 public StaffMember(string employeeNumber) {

 Check.Require(!string.IsNullOrEmpty(employeeNumber)
 && employeeNumber.Trim() != String.Empty,

 "employeeNumber must be provided");

 EmployeeNumber = employeeNumber;

 }

 public string EmployeeNumber { get; protected set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 protected override string GetDomainObjectSignature() {

 return EmployeeNumber;

 }

 }

}

Enabling the Domain for Comparisons and Persistence

So now we have our basic domain model in place to support creating staff members from a domain perspective. Within the requirements, as was discussed, the employee number is the basis for staff member uniqueness; therefore, we’ll want to be able to compare staff members for equality for this field. Here’s where we begin leveraging the ProjectBase framework to support comparisons and, as a side effect, to prep our domain object for database storage and retrieval.

1) Within StaffMemberTests.cs, add a new test called CanCompareStaffMembers().The method should look as follows:

	[Test]

public void CanCompareStaffMembers() {

 string employeeNumber = "ABC123";

 StaffMember staffMember = new StaffMember(employeeNumber);

 Assert.That(staffMember, Is.EqualTo(

 new StaffMember(employeeNumber)));

}

2) Compile the build; it’ll compile because objects are always comparable. So we’ve also taken care of the write-just-enough-code-to-get-it-to-compile step.

3) Within NUnit, double click the CanCompareStaffMembers test to have it run. It will fail because the comparison is using the “out of the box” Equals() method.

4) To enable consistent comparisons of domain objects, alter StaffMember to inherit from PersistentObject, as follows:

	public class StaffMember : PersistentObject
{

 ...

 protected override string GetDomainObjectSignature() {

 return EmployeeNumber;

 }

}

Inheriting from PersistentObject has had a few effects on the StaffMember object:

· By default, PersistentObject assumes that the object has an ID of type in; consequently, StaffMember now has an ID property of type int with a public getter and protected setter. (Only the hydration mechanism, e.g., Nhibernate, should be able to set this ID property.) If you need an ID having a type other than ID, inherit instead from PersistenObjectWithTypedId<IdType>.
· Equals() and GetHashCode() have been provided and sealed; they cannot be overridden within StaffMember. Most of the details behind this may be found at http://devlicio.us/blogs/billy_mccafferty/archive/2007/04/25/using-equals-gethashcode-effectively.aspx. There is a crucial difference between the current architecture and what was described in this blog post: GetHashCode() has been moved up to PersistentObject so only the “domain signature” has to be defined via GetDomainObjectSignature(). The domain signature represents what makes the object

The “domain signature” should be a pipe-delimited string defining what makes an object unique. If the first and last names were the defining fields for uniqueness, the contents of GetDomainObjectSignature() would instead reflect the following:
return FirstName + “|” + LastName;

What if the domain signature included another PersistentObject as part of its domain signature? For example, assume that the FirstName, LastName and HomeAddress are what make the StaffMember unique. The contents of GetDomainObjectSignature() would then reflect:
return FirstName + “|” + LastName + “|” + HomeAddress.GetHashCode();
5) Compile and run the test and again to see it go green…gotta love the green!

Developing the Controller to Retrieve and Display Results

We now have the basics in place for our domain model. We have two options to proceed, we can take on developing the controller or we can build the mechanism to retrieve results from the database. There are two things that we want to delay as long as possible: writing any presentation pages and writing any data access code against a live database. Delaying these items keeps our attention focused on the domain and the interactions with the domain. Therefore, let’s proceed with developing the controller and we’ll fake our interactions with a live database.

1) As always, start with a unit test. Under Northwind.Tests/Northwind.Controllers, add a new class called StaffMembersControllerTests which contains a single test. An explanation of what is happening follows the code.

	using NUnit.Framework;

using Northwind.Core;

using MvcContrib.TestHelper;

using ProjectBase.Core.PersistenceSupport;

using Rhino.Mocks;

using System.Collections.Generic;

using NUnit.Framework.SyntaxHelpers;

using Northwind.Controllers;

using Northwind.Core.DataInterfaces;

namespace Tests.Northwind.Controllers

{

 [TestFixture]

 public class StaffMembersControllerTests

 {

 [Test]

 public void CanListFilteredStaffMembers() {

 TestControllerBuilder builder =

 new TestControllerBuilder();

 StaffMembersController controller = builder

 .CreateController<StaffMembersController>(

 CreateMockStaffMemberDao());

 controller.ListStaffMembersMatching("martin");

 // The builder object acts as a wrapper around the

 // controller, so be sure to interrogate it instead

 // of the controller

 Assert.That(builder.RenderViewData.ViewData,
 Is.Not.Null);

 Assert.That(

 builder.RenderViewData.ViewData as
 List<StaffMember>,

 Is.Not.Null);

 Assert.That(

 (builder.RenderViewData.ViewData as
 List<StaffMember>).Count,

 Is.EqualTo(4));

 }

 /// <summary>

 /// In most cases, we'd simply return

 /// IDao<MyPersistentObject>, but since we're
 /// leveraging a custom DAO method, we need a
 /// custom DAO interface.

 /// </summary>

 public IStaffMemberDao CreateMockStaffMemberDao() {

 MockRepository mocks = new MockRepository();

 IStaffMemberDao mockedDao =

 mocks.CreateMock<IStaffMemberDao>();

 Expect.Call(mockedDao.LoadAllMatching(null))

 .IgnoreArguments()

 .Return(CreateStaffMembers());

 mocks.Replay(mockedDao);

 return mockedDao;

 }

 private List<StaffMember> CreateStaffMembers() {

 List<StaffMember> staffMembers =
 new List<StaffMember>();

 staffMembers.Add(new StaffMember("ABC123"));

 staffMembers.Add(new StaffMember("DEF456"));

 staffMembers.Add(new StaffMember("GHI789"));

 staffMembers.Add(new StaffMember("Abracadabera"));

 return staffMembers;

 }

 }

}

That’s quite a mouthful! Here’s what’s trying to be done. We’re making sure that if we call the controller’s ListStaffMembersMatching() method, then the controller will communicate with call IStaffMemberDao . LoadAllMatching() to retrieve the results, and put the results into the ViewData.

Currently, with ASP.NET MVC Preview 2, an observer needs to be wrapped around the controller to monitor what items are being placed into ViewData. In future ASP.NET MVC releases, this wrapper will not be necessary.) This wrapper is provided by the MvcContrib project as TestControllerBuilder.

Notice that the controller accepts the return value from CreateMockStaffMemberDao(), which is a concrete instance of IStaffMemberDao. This doesn’t exist yet, but we know that the controller is going to need it. By passing IStaffMemberDao into the constructor of the controller, we’re facilitating dependency injection; thus, enabling ourselves to unit test the controller without a live database. For more information on dependency injection, read http://www.codeproject.com/KB/architecture/DependencyInjection.aspx. The unit test demonstrates the use of “manual dependency injection” of IStaffMemberDao into StaffMembersController.

The CreateMockStaffMemberDao() method itself is an example of creating a mock object, using an external library called Rhino Mocks (http://www.ayende.com/projects/rhino-mocks.aspx), which simulates interaction with a live database. In this way, we’ve foregone digging into the data access layer until we have the business logic completely pinned down. For more information on mocking the database (no pun intended ;), see http://www.martinfowler.com/articles/mocksArentStubs.html.

2) Compile the solution and see it break. It’ll complain because both StaffMembersController and IStaffMemberDao don’t yet exist.

3) To get the code to compile, create IStaffMemberDao first since the controller will be dependent on it. Go to Northwind.Core/DataInterfaces and add a new interface called IStaffMemberDao, as follows:
	using ProjectBase.Core.PersistenceSupport;

using System.Collections.Generic;

using Northwind.Core;

namespace Northwind.Core.DataInterfaces

{

 public interface IStaffMemberDao : IDao<StaffMember >

 {

 List<StaffMember> LoadAllMatching(string filter);

 }

}

This inherits from IDao<StaffMember > which resides in ProjectBase.Core. This general use DAO interface declares such methods as LoadAll() and Delete(). All that needs to be done is to extend it with one additional method, LoadAllMatching(). IDao<MyObject> should be used as the basis for all custom DAOs without exception. (If your object has an ID type other than int, then use IDaoWithTypedId<MyObject, IdType>.) The key point to recognize is that the Northwind.Core assembly does not contain any data access implementation details; it only declares and has access to data access interfaces. As discussed below, the concrete DAO, containing the implementation details, will be put into Northwind.Data (but not until we need it). Having the interface separated from the implementation details in a different assembly is known, appropriately enough, as “Separated Interface” (http://www.martinfowler.com/eaaCatalog/separatedInterface.html).

Go to Northwind.Controllers and add a StaffmemberController class; it should have just enough code to compile:

	using Northwind.Core;

using System.Collections.Generic;

using Northwind.Core.DataInterfaces;

using System.Web.Mvc;

namespace Northwind.Controllers

{

 public class StaffMembersController : Controller

 {

 public StaffMembersController(
 IStaffMemberDao staffMemberDao) {}

 public void ListStaffMembersMatching(string filter) {}

 }

}

4) Head back to NUnit, run the CanListFilteredStaffMembers test and see it fail it a fit of agonizing pain. (But that’s exactly what we want to see at this point.)

5) We now simply have to add a couple lines of code to the controller to get the unit test to pass:

	using Northwind.Core;

using System.Collections.Generic;

using Northwind.Core.DataInterfaces;

using System.Web.Mvc;

using ProjectBase.Core;

namespace Northwind.Controllers

{

 public class StaffMembersController : Controller

 {

 public StaffMembersController(
 IStaffMemberDao staffMemberDao) {

 Check.Require(staffMemberDao != null,

 "staffMemberDao may not be null");

 this.staffMemberDao = staffMemberDao;

 }

 public void ListStaffMembersMatching(string filter) {

 List<StaffMember> matchingStaffMembers =

 staffMemberDao.LoadAllMatching(filter);

 RenderView("ListStaffMembersMatchingFilter",

 matchingStaffMembers);

 }

 IStaffMemberDao staffMemberDao;

 }

}

Arguably, adding the Check.Require within the constructor is a little more than “just enough” code to get the test to pass. But with that said, adding Check.Require statements all over the place should become habitual. It only takes a moment to write and will end up saving you hours in the debugger. And if you’re worried about these checks causing a performance hit, there are far larger fish to fry than these.

6) Now run the NUnit test again and you should now be seeing green. We were able to do all of this without yet defining our staff members table in the database. But we’re not going to get much further without doing that bit…

Retrieving Results via the Custom DAO
As asked, the requirements stipulated that the user may provide a filter to retrieve users matching against their first name, last name, or employee number. Up to this point, we’ve been able to ignore the persistence layer, but will need to address it now.

1) Go to Northwind.Tests/Northwind.Data and add a new class called StaffMemberDaoTests; this will contain a single test to prove that our custom DAO method is working as expected:

	using NUnit.Framework;

using Northwind.Core;

using Northwind.Core.DataInterfaces;

using System.Collections.Generic;

using NUnit.Framework.SyntaxHelpers;

namespace Tests.Northwind.Data

{

 [TestFixture]

 [Category("DB Tests")]

 public class StaffMemberDaoTests : AbstractDaoTests

 {

 [Test]

 public void CanLoadStaffMembersMatchingFilter() {

 List<StaffMember> matchingStaffMembers =

 staffMemberDao.LoadAllMatching("TEST_FiLtEr");

 Assert.That(matchingStaffMembers.Count,
 Is.EqualTo(4));

 }

 /// <summary>

 /// A setter method to enable automatic DI of the
 /// DAO instance.

 /// </summary>

 public IStaffMemberDao StaffMemberDao {

 set { staffMemberDao = value; }

 }

 private IStaffMemberDao staffMemberDao;

 }

}

With this unit test, we’re finally going to get a taste of Spring.NET dependency injection. Because this class inherits from AbstractDaoTests, Spring.NET is going to inject the DAO dependency via the public setter for IStaffMemberDao. Additionally, Spring.NET is going to wrap each test method within a transaction which automatically gets rolled back at the end of each test. In this way, the database is left unmodified after all the tests have run.

At the top of the test class, an attribute has been included to indicate that this test is within the “DB Tests” category. Categorizing this test in this way allows you to disable the running of these unit tests within NUnit. Why would you want to do that? Because DB driven tests are painfully slow, taking a few seconds to load and run. This doesn’t sound too bad until you have dozens of DB tests to run. This can turn into minutes of test running time. If tests take more than a few seconds to run altogether, then developers stop running them. And once developers stop running them, tests start breaking and the quality of the code degrades. So by turning the DB tests off while running the domain logic tests allows a developer to run all of the fast tests very often and run the time consuming tests when appropriate. The continuous integration server will also be running all of the time consuming tests every time a change is checked in, so they’ll get checked sooner rather than later anyway…assuming you’re a good coder who checks in changes frequently!

2) Since we’ve already created IStaffMemberDao, this will compile just fine; so we can skip the next step in our test driven development cycle which dictates that we write just enough code to get it to compile.

3) Running the CanLoadStaffMembersMatchingFilter test in NUnit fails, as it should. It will complain that there was an “unsatisfied dependency expressed through object property ‘StaffmemberDao’.” This is because we haven’t yet told Spring.NET where the concrete implementation of the DAO resides. And since we haven’t even written the DAO, we should start there first…

4) In writing just enough code to get this test to pass, we’re going to have to do a few tasks to get the “data access piping” in place:

a. Create the DAO which implements IStaffMemberDao. This class will contain the implementation details of the custom DAO method that we added to the base IDao interface within IStaffMemberDao. To do so, go to Northwind.Data and add a new class called StaffMemberDao which implements IStaffMemberDao:

	using Northwind.Core.DataInterfaces;

using ProjectBase.Data.NHibernateSupport;

using Northwind.Core;

using System.Collections.Generic;

using NHibernate;

using NHibernate.Expression;

namespace Northwind.Data

{

 public class StaffMemberDao :

 GenericDao<StaffMember>, IStaffMemberDao

 {

 public List<StaffMember> LoadAllMatching(
 string filter) {

 ICriteria criteria =

 Session.CreateCriteria(typeof(StaffMember))

 .Add(

 Expression.Or(

 Expression.InsensitiveLike(

 "EmployeeNumber",

 filter,

 MatchMode.Anywhere),

 Expression.Or(

 Expression.InsensitiveLike(

 "FirstName",

 filter,

 MatchMode.Anywhere),

 Expression.InsensitiveLike(

 "LastName",

 filter,

 MatchMode.Anywhere))))

 .AddOrder(new Order("LastName", true));

 return criteria.List<StaffMember>()

 as List<StaffMember>;

 }

 }

}

The above code inherits from two objects: IStaffMemberDao which we’ve already seen, and GenericDao<StaffMember> which comes from ProjectBase.Data.NHibernateSupport. The GenericDao base class implements IDao and provides most of the basic DAO CRUD functionality that we’ll ever need. The benefit to inheriting from this base implementation in our custom DAO is that we only need to provide details for our custom method, LoadAllMatching(string filter). Writing a custom DAO should be much more the exception than the norm; usually GenericDao will provide all the DAO functionality we need.
The querying mechanism uses Hibernate Query Language (HQL); for more information about using HQL, see the NHibernate reference documentation at http://www.hibernate.org/hib_docs/nhibernate/1.2/reference/en/html. My only complaint with HQL is that string literals are used instead of strongly typed references; a few good solutions exist to solve this complaint:

· LINQ to NHibernate: http://www.hookedonlinq.com/LINQToNHibernate.ashx
· NHibernate Query Generator: http://www.ayende.com/Blog/archive/7186.aspx
· Strongly Typed Criteria: http://bugsquash.blogspot.com/2008/03/strongly-typed-nhibernate-criteria-with.html
b. Alter the domain object to have virtual properties and a no-argument constructor. When NHibernate loads objects, it does so “lazily” by default. This means that if a request is made to load an object, NHibernate returns a proxy to the object. Only when the object is used is an actual trip to the database made. This behavior can be modified on a case by case basis and may improve performance in some cases. To facilitate StafMember objects being lazily loaded by NHibernate, its class properties and methods need to be defined as virtual:
	public virtual string EmployeeNumber { get; protected set; }

public virtual string FirstName { get; set; }

public virtual string LastName { get; set; }

NHibernate will complain and let you know that the properties need to be defined as virtual to be cooperative. To learn more about the proxy design pattern, see http://www.dofactory.com/Patterns/PatternProxy.aspx.

In addition to requiring virtual properties and methods to lazily load an object, NHibernate also requires that the domain object have a no-argument constructor in order to create and “hydrate” the object with data from the database. As we did not want anyone creating a StaffMember object without supplying an employee number, we can simply add a protected no-argument constructor, as follows:

	protected StaffMember() { }

public StaffMember(string employeeNumber) {

 Check.Require(!string.IsNullOrEmpty(employeeNumber) &&

 employeeNumber.Trim() != String.Empty,

 "employeeNumber must be provided");

 EmployeeNumber = employeeNumber;

}

In this way, our domain logic is intact while facilitating NHibernate to load the object.

c. Create the NHibernate mapping file (HBM). This XML configuration file informs NHibernate how to translate the StaffMember object into a row in the database and vice versa. To do so, go to Northwind.Core and add a new XML file called StaffMember.hbm.xml. (The “hbm” in the name is very crucial.) Immediately after adding the file, right click it and bring up its properties; set the “Build Action” to “Embedded Resource.” Missing this step is probably the most common NHibernate mistake a developer makes; seeing an error of “unknown entity” is a good indication that this has not been set as an embedded resource. Setting it as an embedded resource embeds the XML file directly into the compiled DLL so that they do not have to be deployed to the deployment server. The StaffMember.hbm.xml should reflect as follows:

	<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

 assembly="Northwind.Core"

 namespace="Northwind.Core ">

 <class name="StaffMember" table="StaffMembers">

 <id name="ID" column="StaffMemberId"

 unsaved-value="0">

 <generator class="identity" />

 </id>

 <property name="EmployeeNumber"

 column="EmployeeNumber" />

 <property name="FirstName"

 column="FirstName" />

 <property name="LastName"

 column="LastName" />

 </class>

</hibernate-mapping>

This HBM is everything that is needed to inform NHibernate how to perform CRUD operations on a StaffMember object using the StaffMembers table. What StaffMembers table you ask? We’ll get to that next.

Logically, the HBM file is data-specific and belongs in Northwind.Data. It has everything to do with the data persistence mechanism and isn’t needed to support a domain driven design. There’s one specific reason that I put HBMs in the Northwind.Core assembly right next to the domain objects that they describe: convenience. Whenever I alter StaffMember.cs, it’s trivially simple for me to open up the describing HBM, sitting right next to it, to modify it, accordingly. If it were sitting in Northwind.Data, I’d have to search around in another class library to look for where it is. I can justify keeping it in Northwind.Core because it requires no physical references to be added to Northwind.Core for resources such as System.Data or NHibernate. The HBMs are simply along for the ride in Northwind.Core, quickly available to me whenever the domain gets altered.

d. Create the table to support the HBM. Many developers start with a database model and allow it to be the driving factor in designing the application. This is an aspect of model driven design. The ADO.NET Entity Framework is a perfect example of a solid model driven design framework. The approach that many espouse is domain driven design wherein the database becomes an afterthought to support the domain model. For more information on domain driven design, see http://www.infoq.com/minibooks/domain-driven-design-quickly which is a concise summary of Eric Evans’ classic book, Domain Driven Design. To add the table, run the following (which was generated with SQL Server 2005):

	USE Northwind

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_PADDING ON

GO

CREATE TABLE [dbo].[StaffMembers](

[StaffMemberId] [int] IDENTITY(1,1) NOT NULL,

[EmployeeNumber] [varchar](50) NOT NULL,

[FirstName] [varchar](50) NOT NULL CONSTRAINT [DF_StaffMembers_FirstName] DEFAULT (''),

[LastName] [varchar](50) NOT NULL CONSTRAINT [DF_StaffMembers_LastName] DEFAULT (''),

 CONSTRAINT [PK_StaffMembers] PRIMARY KEY CLUSTERED

(

[StaffMemberId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

SET ANSI_PADDING OFF

e. Populate the table with test data to support passing the test. Before inserting the test data, it should be noted that attention should be put towards how a test database will be managed. If the test data gets out of synch with the tests, then the tests start breaking. And once they start breaking, and aren’t fixed quickly, then people stop running them. So any test that depends on live data in a database should be considered a fragile test and avoided unless absolutely necessary. Due to the complexity of our query, this is one of those cases.
	USE Northwind

GO

INSERT INTO StaffMembers

VALUES ('thistest_Filter', 'Mike', 'Park')

INSERT INTO StaffMembers

VALUES ('ABC123', '_test_FiLtEr_', 'Vance')

INSERT INTO StaffMembers

VALUES ('GHI789', 'Lynette', 'Knackstedt')

INSERT INTO StaffMembers

VALUES ('DEF456', 'Gerry', 'Lundquistest_filtER')

With the above data in place, the “TEST_FiLtEr” filter in the unit test should match all but the third entry.

f. Configure Spring.NET with the custom DAO. Since this is a custom DAO, it needs to be manually declared within the Spring.NET configuration file. Go to Northwind.Web/SpringConfig/CustomDaos.xml and have it reflect the following:
	<?xml version="1.0" encoding="utf-8"?>

<objects xmlns="http://www.springframework.net">

<description>

Custom Data Access Object declarations.

autowire='byName' is included to allow the

HibernateTemplate property to be automatically bound

for every DAO. To be clear, this autowires the DAO's

properties; it does not autowire objects which expect

these DAOs.

</description>

<object id="StaffMemberDao"

 autowire="byName"

 type="Northwind.Data.StaffMemberDao, Northwind.Data" />

</objects>

This configuration file informs Spring.NET that a custom DAO has been created and available called StaffMemberDao. This will enable the unit test to be automatically wired up with the new DAO. (It’ll also be used soon for wiring up the dependencies of the controller.)

5) Now run the CanLoadStaffMembersMatchingFilter and see it pass! The test successfully connected to the database, ran the provided filtering query, loaded the objects with NHibernate’s help, and returned the results to the unit test as a strongly typed listing of StaffMember objects. No datasets…no ADO.NET…no connection management…no stored procedures…no thousands of lines of auto-generated data access code!

6) There’s nothing to refactor at this point, but a five minute break is certainly warranted!

Showing the Results in a View

The domain’s been created, the data access mechanism exists, the controller has been developed...the only thing remaining is a little HTML to pull it altogether. By the time you get here, the view is but a minor afterthought.

There are a variety of opinions on how much of the view layer should be unit tested. On one hand, the view layer changes so frequently a lot of maintenance is required to manage tightly coupled view oriented unit tests via a tool such as NUnitAsp (http://nunitasp.sourceforge.net) or Selenium (http://selenium.openqa.org). On the other hand, it’s not a bad idea to create web “smoke tests” to at least make sure the stated URL isn’t blatantly breaking. For an example of a web smoke test, see http://geekswithblogs.net/Billy/archive/2006/05/10/77820.aspx.

For this example, we’ll get right to the heart of the matter and create the view .

1) Go to Northwind.Web/Views and add a new directory called StaffMembers. This is the first half of the controller it is associated with, StaffMembersController; consequently, it’s very important that it’s named this way.

2) Under the StaffMembers directory, add a new MVC View Content Page called ListStaffMembersMatchingFilter.aspx and select Site.Master (in /Views/Shared) as the master page. The ASPX should reflect the following:
	<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"

 AutoEventWireup="true"

 CodeBehind="ListStaffMembersMatchingFilter.aspx.cs" Inherits="Northwind.Web.Views.StaffMembers.ListStaffMembersMatchingFilter" %>
<%@ Import Namespace="Northwind.Core " %>

<asp:Content ID="Content1"

 ContentPlaceHolderID="MainContentPlaceHolder"
 runat="server">

 <p>Matching Staff Members:</p>

 <asp:ListView ID="staffMemberList" runat="server">

 <LayoutTemplate>

 <asp:PlaceHolder ID="itemPlaceHolder" runat="server" />

 </LayoutTemplate>

 <ItemTemplate>

 <%# ((StaffMember) Container.DataItem).EmployeeNumber %>

 </ItemTemplate>

 </asp:ListView>

</asp:Content>

The corresponding code-behind should then look as follows:

	using System.Web.Mvc;

using Northwind.Core;

using System.Collections.Generic;

namespace Northwind.Web.Views.StaffMembers

{

 public partial class ListStaffMembersMatchingFilter :

 ViewPage<IEnumerable<StaffMember>>

 {

 public void Page_Load() {

 staffMemberList.DataSource = ViewData;

 staffMemberList.DataBind();

 }

 }

}

The code-behind could inherit from ViewPage<List<StaffMember>>, but inheriting from ViewPage<IEnumerable<StaffMember>> makes it much more flexible and reusable by various controllers which may not always have a List<StaffMember> available.

3) Configure Spring.NET to know how to inject the DAO dependencies into the controller. Go to Northwind.Web/SpringConfig and alter the Controllers.xml file to include the following in addition to any existing controllers:
	<object id="StaffMembersController"
 type="Northwind.Controllers.StaffMembersController, Northwind.Controllers">

<constructor-arg ref="StaffMemberDao" />

</object>

This setting informs Spring.NET that whenever it creates a StaffMembersController, it should inject the StaffMemberDao, defined in CustomDaos.xml, into the controller’s constructor.

4) Give it a whirl! Hit F5 and change the URL to reflect http://localhost:1660/StaffMembers.mvc/ListStaffMembersMatching?filter=test_Filter. You should be presented with the same three users that your unit test returned from the database.

What Was Accomplished?
The above steps have taken us through a test driven approach of designing a domain model, creating a controller which uses a custom DAO, testing with a mock database, interacting with a live database, and displaying results in an MVC view. There’s plenty more to learn, but this covers the basics.

Development Guidelines
All of the best practices described below should be seen as general rules of thumb which are certainly subject to excepted cases. But any exception to the rule should have a justifiable reason, accordingly.
Within the Web Layer
When using ASPX views
· Within a data bound control, avoid using Eval(“PropertyName”). Instead, convert the data item to a domain object to leverage strongly typed accessors; e.g.:
<%# ((Customer) Container.DataItem).ContactName %>
Configuring web.config

· In production environments, include the following setting:
<compilation debug=”false” />
· Disable session state by default:
<sessionState mode=”Off” />
· Disable view state by default:
<pages enableViewState=”false” />
If you find that you absolutely have to have it on a particular page or control, enable it on the page or control only:
For pages: <%@ Page EnableViewState=”True” %>
For controls: <asp:ControlType enableViewState=”true”>
· Declare customer server controls in web.config:
<pages>
 <controls>
 <add tagPrefix=”MyPrefix”
 namespace=”MyNamespace” assembly=”MyAssembly” />
 </controls>
</pages>
Within the Tests Layer

· Test classes should be organized under sub-folders, having one sub-folder for each layer being tested. For example, a folder would be added to ProjectName.Tests called ProjectName.Core. This folder would contain all the test fixtures for testing the Projectname.Core assembly.

· The default namespace of this class library should be changed to “Tests” to avoid domain name ambiguity.

Solution Items

Whenever possible, assembly dependencies should never be placed into the GAC. Instead, application dependencies should be maintained in a folder called “Solution Items” which resides in the source directory. This facilitates multiple applications on a single server using different versions of an assembly.
NHibernate

· Set “inverse=true” on the parent in a bi-directional parent/child relationship to avoid foreign key constraint violations (NRD 6.5 Lazy Initialization).

· For organization purposes, only declare one class per HBM.

· For maintainability and convenience, keep HBMs right next to the objects they describe in the .Core assembly.
Spring.NET

· Use constructor injection for clarity over setter injection.

· When needed, use constructor argument indexes instead of constructor arguments by name. Names should be considered “magic numbers” and should be avoided.

· When configuring Spring.NET config files, use idref with “local” or ref “local” when available over object referencing for quicker error detection (SRD 5.3.2.1.1 The idref element).
· When available, use constructor autowiring on <object /> declarations for constructor injection; no autowiring is recommended for setter injection for better clarity (SRD 5.3.5 Autowiring collaborators).

· Only use singleton object scope on stateless objects (SRD 5.4.1 The singleton scope).

· Avoid type aliases unless necessary – such as when providing generic specifications – or if the decreased configuration is appreciable.

· Do not upgrade the ANTLR.dll that comes with Spring.NET unless upgraded within a Spring.NET release (SRD 11.2 Evaluating Expressions).

Microformats

Per http://microformats.org/wiki/Main_Page, “microformats are small bits of HTML that represent things like people, events, tags, etc. in web pages. Microformats enable the publishing of higher fidelity information on the Web, providing the fastest and simplest way to support feeds and APIs for your website.”

To be more concise, microformats are industry accepted standards for facilitating semantic XHTML. CSS should be used to alter look and layout of microformat output.

The following microformat standards should be followed when applicable:

· hCard (http://microformats.org/wiki/hcard) for people, companies, organizations, and places.

· hCalendar (http://microformats.org/wiki/hcalendar) for calendaring and events.

· hReview (http://microformats.org/wiki/hreview) for reviews of products, services, business, events, etc.

· XFN (http://www.gmpg.org/xfn/) for organizational information, relationships, and social networks.

· XOXO (http://microformats.org/wiki/xoxo) for outlines.

· If another microformat is available for the information being displayed, use when appropriate.

Common Development Problems & Exceptions

Areas for Improvement

There exist a couple items which could be improved within the framework. Please notify Billy McCafferty if a fix is determined for any of the following.

· The database connection string resides in /Northwind.Web/SpringConfig/Data.xml. My preference is that the connection string be moved to web.config and referenced from Data.xml. Attempts to do so have thus far been unsuccessful.
Exception Troubleshooting
Exception: Reference to unmapped class
Fix: It is usually because the NHibernate HBM is not configured to be an embedded resource. Right click the newly added HBM, click properties, and then set its compilation mode to “Embedded Resource.”

Exception: Object reference null on HibernateTemplate

Fix: This is indicative of an incorrect SQL connection string. Verify the connection string in /Northwind.Web/SpringConfig/Data.xml.

Exception: Unable to load one or more of the requested types. Retrieve the LoaderExceptions property for more information. (If the page is refreshed, it may then say “The controller for path … could not be found…”

Fix: This is actually a mask over another exception due to the ASP.NET MVC framework. To see the actual exception, add the following code to Global.Application_Error: Exception exception = Server.GetLastError(). Then, place a breakpoint on the closing tag of Global.Application_Error and run the application in debug mode. The exception variable will hold the details.
Appendix A: Resources

Referenced Works

[NRD]

NHibernate Reference Documentation Version 1.2.0. http://www.hibernate.org/hib_docs/nhibernate/1.2/reference/en/html/.

The definitive reference guide to NHibernate.

[SRD]

Spring.NET Reference Documentation Version 1.1. http://www.springframework.net/doc-latest/reference/html/index.html.
The definitive reference guide to Spring.NET.

