
Drilltrough and filtering on SSAS-cubes in SSRS
By Antoon Vansina

Abstract
In this article we will describe a technique to create Reporting services (SSRS) reports that use Analysis services (SSAS) cubes as data sources, have a very intuitive interface and take full advantage of SSAS performance optimization features.
Basically the user-friendliness of the interface is achieved by allowing users to drill up/down on the different hierarchies by simply clicking columns or rows, and applying filters by clicking on icons in rows or columns.
The performance is achieved by only retrieving the necessary data from the cube.
An image is better than a thousand words so let’s take a look at what we are trying to achieve:

Article structure
The article in divided in four parts, adding functionality (and complexity) in the first three parts and providing some template reports in the last parts that hide most of the complexity.
· Part 1: simple drill trough
· Part 2: performance and filtering on one member
· Part 3: filtering on multiple members
· Part 4: template reports
There is an example report for each part, based on the Adventure works cube.

References & sources
I found the basic idea for this technique in an example that was provide with a custom SSAS data source for SSRS (IQ by Intelligencia): http://www.it-workplace.co.uk/IQ.aspx
I also frequently use the MDX Studio (by the famous Mosha Pasumansky) to create and optimize my MDX-queries, and guess what, it’s free: http://www.mosha.com/msolap/mdxstudio.htm

P A R T 1 : S I M P L E D R I L L T R O U G H

Before we start building our first report we need to take a moment to choose the right data source.

Regarding data sources
When retrieving data from a SSAS cube the obvious data source type is the built-in “Microsoft SQL Server Analysis Services”. It has two modes: the user friendly design mode (where you create the MDX by dragging and dropping measures and hierarchies) and the “editor mode” (where you have to type in your own MDX).
For our purposes we cannot use the “Design mode”:
· We need to add parameters in the select-part of the MDX, and the designer doesn’t support that
· We want to retrieve the all-member of hierarchies and the designer won’t do that
Other drawbacks of this data source type, regardless of the mode you use, is that:
· it forces you to use the “StrToSet” function when you work with parameters, causing quite a bit off overhead in the execution (f.e. more than 100% when only using two parameters)
· this data source type will only allow measures on the column axis and we want to put hierarchies on the columns,
· and finally, this data source type will not retrieve the caption of the all-member (it will stay blank). You can fix that by adding the caption as a calculated member but, as you will find out, this can be quite tedious.
An alternative would be to use the OLE DB provider for OLAP, but then you would have to write the MDX in an expression to be able to use parameters. This solves the performance problem we mentioned before, but makes the MDX queries hard to read and you still have to add calculated members to retrieve the all-members’ caption.
Normally I don’t use any of the above, but work with an SSRS add-in (IQ by Intelligentia) that solves all these problems. But, in order to keep this article as general as possible, I’ll be using the standard “Microsoft SQL Server Analysis Services” data source type and work around most of the mentioned problems. Just remember that there is a much better solution available when it comes to designing MDX queries by drag and drop.

Building the main dataset
In this first part we’ll start with a very simple example and then expand on it a little more.
Our example report is going to report the internet sales of the “Adventure works” cube by two hierarchies: time (“Date.Calendar”) and product (“Product Categories”).
To create the main dataset open a new report project and create a shared data-source “SSAS Adventure works” on the Adventure works cube:
[image:]
Then create a new report, open it and create a new dataset “InternetSales”, using our shared data source:
[image:]
Click “Ok” and the designer will open. Now leave the designer (click the[image:]–icon).
We are now ready to create our query. We start by creating two parameters, one for each of the hierarchies were going to use. Click the [image:]- icon to enter the parameter-editor:
[image:]
Add some default values for the parameters.
Then change the MDX to the following:
SELECT
 [Measures].[Internet Sales Amount]
ON COLUMNS ,

Non empty
crossjoin
 (
 StrToSet(@Dates, constrained),
 StrToSet(@Products, constrained)
)
on rows

FROM [Adventure Works]
If we execute it we get the following result:
[image:]
You can see that the all-member for the Date.Calendar - and Product Category-hierarchies are left blank. To solve that we will add two calculated members that will contain the caption of the selected members:
with
member [Measures].[Products_Caption] as [Product].[Product Categories].currentmember.MEMBER_CAPTION
member [Measures].[Dates_Caption] as [Date].[Calendar].currentmember.MEMBER_CAPTION
SELECT
{
 [Measures].[Products_Caption],
 [Measures].[Dates_Caption],
 [Measures].[Internet Sales Amount]
}
ON COLUMNS ,

Non empty
crossjoin
 (
 StrToSet(@Dates, constrained),
 StrToSet(@Products, constrained)
)
on rows

FROM [Adventure Works]
We add these new members to the Measures dimension, allowing us to select them on the columns-axis:
[image:]
Both “Caption” columns give the desired result. Now we also want to have the unique names and level depths. So we add them in the same manner:
with
member [Measures].[Products_Caption] as [Product].[Product Categories].currentmember.MEMBER_CAPTION
member [Measures].[Products_UniqueName] as [Product].[Product Categories].currentmember.UNIQUENAME
member [Measures].[Products_LevelDepth] as [Product].[Product Categories].currentmember.LEVEL.ORDINAL
member [Measures].[Dates_Caption] as [Date].[Calendar].currentmember.MEMBER_CAPTION
member [Measures].[Dates_UniqueName] as [Date].[Calendar].currentmember.UNIQUENAME
member [Measures].[Dates_LevelDepth] as [Date].[Calendar].currentmember.LEVEL.ORDINAL
SELECT
{
 [Measures].[Products_Caption],
 [Measures].[Products_UniqueName],
 [Measures].[Products_LevelDepth],
 [Measures].[Dates_Caption],
 [Measures].[Dates_UniqueName],
 [Measures].[Dates_LevelDepth],
 [Measures].[Internet Sales Amount]
}
ON COLUMNS ,

Non empty
crossjoin
 (
 StrToSet(@Dates, constrained),
 StrToSet(@Products, constrained)
)
on rows

FROM [Adventure Works]

Because we are obviously not going to work with the actual members (the “Category” and “Calender Years” columns but with their captions, we will hide them from the Layout-tab. To do this click the [image:]–icon and select the Fields-tab.
[image:]
And simply delete both fields.
Now you’ll see that SSRS has been so friendly as to create selection-datasets for both parameters. Pity, because we won’t be using those. Just delete them.

The basic principles for the datasets that feed the report parameters
To create the drill up/drilldown effect, we are going to create datasets for both parameters that will feed our main dataset. It is these datasets that will provide the drill-functionality
To do this we will use the MDX-function “Toggledrillstate”. This function takes two parameters, both sets, and will return a set that is formed by toggling the drill state of each member of the second set that is present in the first set.
For example:
select
{} on columns,
toggledrillstate(
 [Product].[Product Categories].[All Products],
			Null,
		 Recursive
)

ON ROWS
FROM
[Adventure Works]
will return the all-member: “All Products”, whereas
select
{} on columns,
toggledrillstate(
 [Product].[Product Categories].[All Products],
		 [Product].[Product Categories].[All Products],
		 Recursive
)
ON ROWS
FROM
[Adventure Works]

will return the all-member and the members of the Category-level:

[image:]

And finally the query

select
{} on columns,
toggledrillstate(
 [Product].[Product Categories].[All Products],
		 {
 [Product].[Product Categories].[All Products],
 [Product].[Product Categories].[Category].&[1]
 },
		 Recursive
)
ON ROWS
FROM
[Adventure Works]

will add the members of the Product-level for Category “Bikes” :
[image:]
From these examples it should be clear what we have to do: each time a user wants to drill-down we have to add that member to the second set of the toggledrillstate-function. And if he/she wants to drill-up we have to remove it again.
So let’s do just that.
Creating the parameters
To keep things readable I would strongly advise to use a consistent naming scheme for parameters and datasets. I use a scheme that is based on the layout of the matrix on the report. This might sound a little strange at first, but it will allow us to create a template report that contains all the complexity and that can be reused in a number of situations (cfr. Part 4).
Don’t worry, it will not put any limitations on the ability to switch rows and columns in the matrix, on the contrary.

So let’s assume we’re going to put the Dates-hierarchy on the columns of the matrix and the Products-hierarchy on the rows.

	Parameter in the main dataset
	Name of the dataset for the parameter
	Parameter name for the first set in the toggledrillstate
	Parameter name for the second set in the toggledrillstate
	Parameter name for the default value

	Dates
	K0_List
	K0_Filter
	K0_List
	K0_Default

	Products
	R0_List
	R0_Filter
	R0_List
	R0_Default

	
	
	
	
	

To follow this logic thru in the main dataset, change the MDX to:

with
member [Measures].[R0_Caption] as [Product].[Product Categories].currentmember.MEMBER_CAPTION
member [Measures].[R0_UniqueName] as [Product].[Product Categories].currentmember.UNIQUENAME
member [Measures].[R0_LevelDepth] as [Product].[Product Categories].currentmember.LEVEL.ORDINAL
member [Measures].[K0_Caption] as [Date].[Calendar].currentmember.MEMBER_CAPTION
member [Measures].[K0_UniqueName] as [Date].[Calendar].currentmember.UNIQUENAME
member [Measures].[K0_LevelDepth] as [Date].[Calendar].currentmember.LEVEL.ORDINAL
SELECT
{
 [Measures].[K0_Caption],
 [Measures].[K0_UniqueName],
 [Measures].[K0_LevelDepth],
 [Measures].[R0_Caption],
 [Measures].[R0_UniqueName],
 [Measures].[R0_LevelDepth],
 [Measures].[Internet Sales Amount]
}
ON COLUMNS ,

Non empty
crossjoin
 (
 StrToSet(@Dates, constrained),
 StrToSet(@Products, constrained)
)
on rows

FROM [Adventure Works]
Now create the dataset for the R0_List:
[image:]
and add the calculated members to get the all-member like we did before, but now get the UNIQUENAME instead of the caption:

with
member [Measures].[R0_UniqueName] as [Product].[Product Categories].currentmember.UNIQUENAME
SELECT
{
 [Measures].[R0_UniqueName]
}
ON COLUMNS ,
Toggledrillstate(
 StrToSet(@R0_Filter),
 StrToSet(@R0_List)
 ,RECURSIVE)
ON ROWS FROM [Adventure Works]

Now open the parameter dialog. SSRS will have created the two parameters K0_Filter and K0_List. Move them up in the list so that they are defined before the Dates- and Products parameters.
Now create the parameter for the default K0 value and give it the all-member as default value (be sure to select the leaf, so not [Product].[Product Categories].[(All)]):

[image:]

Now let’s set the properties of our other parameters.
The R0_List parameters is obviously a multi-value parameter that we are going to keep hidden, we add two default values: “Null” and R0_Default.
The R0_Filter parameter is also multi-value and hidden, as default value we use R0_default.
This means that, by default, we will use
SELECT {} ON COLUMNS,
Toggledrillstate(
{ Null, [Product].[Product Categories].[(All)]},
{ [Product].[Product Categories].[(All)]},
RECURSIVE)
ON ROWS FROM [Adventure Works]
Giving us:
[image:]
If you only want to display the all-member (by default) change the default value of R0_Filter to “Null”.
Next we change the properties of the Products parameter. We will make this a multi-value, hidden parameter and we use the result of our R0_List dataset:
[image:]

Now do the same for the K0_List dataset.

Creating the report layout
Now we’re finally ready to create the report layout (remember when you get to part 4 of this article you’ll get a template that will eliminate most of the hard work above and below!).
Go to the layout tab off the report, drop a matrix-item on the report and link it to our InternSales dataset.
Now drag the R0_Caption to the rows-group, the K0_Caption to the columns-group and the Internet_Sales_Amount to the Data-field:
[image:]

Edit the row en column group and change the grouping expression to R0_UniqueName and K0_UniqueName respectively.
Now add some lines to the matrix and fix the font and format and take a look at the preview.
This is what I get:
[image:]
Notice that where I live we use a “,” to denote a decimal-point; life would be easier if we could all just agree on that.
Now before we start drilling, let's add some nice formatting elements.
It would be nice if the hierarchies would be nicely displayed in our report. We can do that by taking advantage of the LevelDepth property in our main dataset.
Change the expression of the row to:
=LSet(" ",Fields!R0_LevelDepth.Value) & Fields!R0_Caption.Value
And left align it. This way the different levels will be nicely aligned.

Lets also create a function for the background color. Choose “Report properties” from the “Report” menu and, on the Code tab, add the following function:
[image:]
Now change the expression for the background color of the row field to:
=code.DrillColor(Fields!R0_LevelDepth.Value)
Do the same for the column field.
Our report now looks like this:
[image:]
Nice, right?
Okay let's get on with it and add the drill-functionality.
Remember, what we want to do is to change the behavior of the Toglledrillstate function by clicking on a row or column.
More precisely we want to change the value of the R0_List parameter:
· To drill down we want to add the value (of the row that was clicked) to the parameter
We do this by first changing the parameter to a string, delimited with “|”:
Join(Parameters!R0_List.Value,”|”)
then adding our value:
Join(Parameters!R0_List.Value,”|”) & “|” & Fields!R0_UniqueName.Value
and finally recreating the parameter by using the spilt function:
Split(
 Join(Parameters!R0_List.Value,”|”) & “|” &
 Fields!R0_UniqueName.Value,
 “|”)
· To drill up we want to delete the value from the parameter
For this we use a similar technique:
Split(
 Join(Parameters!R0_List.Value,”|”).replace(“|” &
 Fields!R0_UniqueName.Value,””),
 “|”)
Now how do we decide if we are going (to drill) up or down?
Again our R0_List will solve that. If this list already contains the row-value then we go up, else we go down. This gives us the following expression:
=
Split(
 iif(
 Join(Parameters!R0_List.Value, "|").Contains(Fields!R0_UniqueName.Value),
 Join(Parameters!R0_List.Value, "|").Replace("|" + Fields!R0_UniqueName.Value, ""),
 Join(Parameters!R0_List.Value, "|") + "|" + Fields!R0_UniqueName.Value)
, "|")
Add this expression to the parameter list of the navigation-tab of the row-field:
[image:]
All the other parameter should just keep their values:
[image:]

Now do the same for the column field and you are ready to drill!

P A R T 2 : P E R F O R M A N C E A N D F I L T E R I N G O N O N E M E M B E R

Regarding performance
Now, the performance off this report is pretty good. But, that has a lot to do with the limited number of members in our two hierarchies.
If, instead of a product hierarchy, we were to use a customer hierarchy with possibly hundreds of thousands of clients, things would slow down a bit.
Now the obvious thing to do in such a scenario is to add the “non empty” keyword to our main MDX query. In our adapted (to counter the limitations of the data source type) MDX this is a little more complex (and a lot less performant[footnoteRef:1]) but it can be achieved by using the nonempty function: [1: You can find more on performance issues with regards to the nonempty function in this article by Mosha Pasumansky]

with
member [Measures].[R0_Caption] as [Product].[Product Categories].currentmember.MEMBER_CAPTION
member [Measures].[R0_UniqueName] as [Product].[Product Categories].currentmember.UNIQUENAME
member [Measures].[R0_LevelDepth] as [Product].[Product Categories].currentmember.LEVEL.ORDINAL
member [Measures].[K0_Caption] as [Date].[Calendar].currentmember.MEMBER_CAPTION
member [Measures].[K0_UniqueName] as [Date].[Calendar].currentmember.UNIQUENAME
member [Measures].[K0_LevelDepth] as [Date].[Calendar].currentmember.LEVEL.ORDINAL
SELECT non empty
{
 [Measures].[K0_Caption],
 [Measures].[K0_UniqueName],
 [Measures].[K0_LevelDepth],
 [Measures].[R0_Caption],
 [Measures].[R0_UniqueName],
 [Measures].[R0_LevelDepth],
 [Measures].[Internet Sales Amount]
}
ON COLUMNS ,

Nonempty(
crossjoin
 (
 StrToSet(@Dates, constrained),
 StrToSet(@Products, constrained)
),
		[Measures].[Internet Sales Amount])
on rows

FROM [Adventure Works]
But this alone won’t really solve our performance problem.
The thing is that our “toggledrillstate” datasets, will list all the members of the relevant hierarchy depth, regardless of the fact that they will yield a non empty value in the main MDX.
So the thing to do would be to add the “non empty” keyword to the “toggledrillstate” datasets. To do that we have to choose a measure to select on the columns, that should obviously be the same (set of) measure(s) as in the main MDX (a thing to remember when you start changing your main MDX!).

So f.e. the RO_List dataset, before adaption, now becomes:
SELECT non empty
[Measures].[Internet Sales Amount]
ON COLUMNS ,
non empty
Toggledrillstate(
 StrToSet(@R0_Filter),
 StrToSet(@R0_List)
 ,RECURSIVE))
ON ROWS FROM [Adventure Works]
This will limit the R0_List dataset to the members that actually have an internet sales value.

We can even improve performance further by only selecting the members that have internet sales for the time dimension members that the user has selected:
SELECT non empty
[Measures].[Internet Sales Amount]
ON COLUMNS ,
non empty
Toggledrillstate(
 StrToSet(@R0_Filter),
 StrToSet(@R0_List)
 ,RECURSIVE))
ON ROWS FROM [Adventure Works]
WHERE
StrToSet(@Dates)

This obviously implies that the @Products parameter has to be defined after the definition of the @Dates parameter. Consequently this last optimization is only possible on one of dimensions used.
You will have to make your choice based on the number of members (leaves) in a dimension and the level of discrimination[footnoteRef:2] of the other dimension(s).
 [2: Fe. the “level of discrimination” of the Date.Calander hiarchy will be high for the Product Categories hierarchy if, by putting the Dates hiarchy in the where-clause a lot of members of the Product Categories hierarchy are filterd.]

Now, let's translate this to our adapted MDX.
R0_List:
member [Measures].[R0_UniqueName] as [Product].[Product Categories].currentmember.UNIQUENAME
SELECT non empty
{
 [Measures].[R0_UniqueName],[Measures].[Internet Sales Amount]
}
ON COLUMNS , nonempty(
Toggledrillstate(
 StrToSet(@R0_Filter),
 StrToSet(@R0_List)
 ,RECURSIVE),[Measures].[Internet Sales Amount])
ON ROWS FROM [Adventure Works]
where
StrToSet(@Dates)
And the K0_List:
with
member [Measures].[K0_UniqueName] as [Date].[Calendar].currentmember.UNIQUENAME
SELECT non empty
{
 [Measures].[K0_UniqueName],[Measures].[Internet Sales Amount]
}
ON COLUMNS , nonempty(
Toggledrillstate(
 StrToSet(@K0_Filter),
 StrToSet(@K0_List)
 ,RECURSIVE), [Measures].[Internet Sales Amount])
ON ROWS FROM [Adventure Works]
That concludes our story on performance.

Filtering on one member
These kinds of drill-reports are very effective to analyze data.
Often you start drilling on one dimension (f.e. on our Product Categories hierarchy, looking for a category-subcategory-product that caused a drop in sales) and when you can’t find additional information by drilling down, you will start drilling on another dimension (f.e. our Date.Calendar hierarchy to narrow down the period in which the sales drop occurred).
When you try this in our report you might get annoyed by the following phenomena:
· When the members no longer fit on one page, and you want to drill on a member at the end of the matrix ,you have to keep scrolling down/to the right
· The matrix can become quit big and performance can drop

So it would be nice that, when you’ve found a member that is interesting, and you want to inspect it further, either by drilling down or by drilling on another dimension, that you could filter the report on it.
Obviously we want to keep this filtering-action very intuitive f.e. an icon on each row/column.
Let's do just that.
We start by creating a rectangle, outside of the matrix, and adding a textbox and (filter) image to it.

 [image:]
Transfer all the properties (expression, navigation, color) of the row-cell to the texbox in the rectangle, and set the background color of the rectangle to that of the textbox.
Then drag the rectangle on to the row-cell.
[image:]

Now do the same with the Column-cell.
Try the report, it should behave exactly as before.

Now we can add the filtering functionality.
First, we want to be able to filter the report on a member by clicking on the filter icon, secondly we want to be able to remove the filter by clicking. We can use our filter parameters to do just that.
Remember that the filter parameter is used as the first parameter in the toggledrillstate-function. So, if we add a member to the filter parameter and at the same time set the filter-parameter to Null, it will effectively filter the list to that member (or its children).
This means we can use the same type of expression we used on the list-parameters. For the RO_Filter-parameter this becomes:

=split(
 iif(
 Join(Parameters!R0_Filter.Value,
 "|").Contains(Fields!R0_UniqueName.Value) ,
 Parameters!R0_Default.Value,
 join(Parameters!R0_Filter.Value,"|") + "|" +
 Fields!R0_UniqueName.Value
),
 "|")
And the R0_List-parameter:
=split(
 iif(
 Join(Parameters!R0_Filter.Value,
 "|").Contains(Fields!R0_UniqueName.Value) ,
 "Null|" + Parameters!R0_Default.Value,
 "Null"
),"|")

First, we check if the filter already contains the member of our row. If it does (meaning we are already filtering on this row and want to disable the filter), we reset both parameters to their default values. If it doesn’t (meaning we want to start filtering on this row), we add the member to the filter and we set the list-parameter to “Null”.

We can now use these expression in the action property of the image (the other parameters will stay unchanged).

Now do the same for the column s of the matrix.

To make the report a bit more fancy, we add a second embedded image “filter_hide” (a filter with a bar across) and change the value-property of the image to:

=switch(
 Fields!R0_UniqueName.Value = Parameters!R0_Default.Value , Nothing,

 Join(Parameters!R0_Filter.Value, "|").Contains(Fields!R0_UniqueName.Value) , "filter_hide",
 true,"filter")

P A R T 3 : F I L T E R I N G O N M U L T I P L E M E M B E R S

When analyzing reports we often want to compare the evolution of two or more products over time. And perhaps even compare the internet sales of the first month of two different years across several products.

The filter we created in the previous report isn't really suited for that purpose, because it won’t allow us to filter on several product-members (or date-members). So what we need is to be able to add several members to the filter before we actually start filtering.
To do this we will create a “waiting list” for our filter and we will add a second icon above our filter icon. Clicking this icon will add/remove a member to/from the “waiting list”. Clicking on the filter-icon will then simply copy the “waiting list” to the actual filter.
Our waiting list will take the form of (yet another) report parameter: R0_WaitingList and K0_WaitingList. Both are multi-value parameters that are hidden and initialized to “Null”.
[image:]

We add a new icon to our row (we use a little downward green arrow and upward red arrow) just above the filter icon.
The action for this icon will be very straightforward: when clicked for the first time we add the row-member tot the waiting list and when clicked the second time we remove the member from the waiting list:
=
Split(
 iif(
 Join(Parameters!R0_WaitingList.Value,
 “|").Contains(Fields!R0_UniqueName.Value),

 <<Remove from the waiting list>> ,

 Join(Parameters!R0_WaitingList.Value, "|") + "|" +
 Fields!R0_UniqueName.Value
)
 , "|")
To remove a member from the waiting list we first check to see if it’s the last member that we are removing. If this is the case, we reset the waiting list to its default. If not, we simply remove this one member:
iif(
 Parameters!R0_WaitingList.Count = 1,
 Parameters!R0_Default.Value,
 join(Parameters!R0_WaitingList.Value,"|").Replace("|" +
 Fields!R0_UniqueName.Value ,"").Replace(Fields!R0_UniqueName.Value
 + "|" ,"")
)
We set the value property of the new icon to change from a green downward arrow to a red upward arrow whenever the row has been added to the waiting list (and visa versa):
=switch(
 Join(Parameters!R0_WaitingList.Value,
 "|").Contains(Fields!R0_UniqueName.Value),"filter_remove",
 true,"filter_add")
Now all we need to do is change the behavior of the filter button. Obviously when this icon is clicked our filter parameter will have to take the value of the waiting list. But we also want to make sure that when a user clicks the filter button on a row/column that hasn’t been added yet to the waiting list, that this row/column is also added to the filter.
=split(
 iif(
 Join(Parameters!R0_Filter.Value,
 "|").Contains(Fields!R0_UniqueName.Value) ,
 Parameters!R0_Default.Value,
 iif(
 join(Parameters!R0_WaitingList.Value,
 "|").Contains(Fields!R0_UniqueName.Value),		
 join(Parameters!R0_WaitingList.Value,"|"),		
 join(Parameters!R0_WaitingList.Value,"|") + "|" +
 Fields!R0_UniqueName.Value
)
),
"|")
…and if we do that we obviously have to add the member to the waiting list also, thus the expression for the waiting list becomes:
=split(
 iif(
 Join(Parameters!R0_Filter.Value,
 "|").Contains(Fields!R0_UniqueName.Value) ,
 "Null",
 iif(
 join(Parameters!R0_WaitingList.Value,
 "|").Contains(Fields!R0_UniqueName.Value),
 join(Parameters!R0_WaitingList.Value,"|"),
 join(Parameters!R0_WaitingList.Value,"|") + "|" +
 Fields!R0_UniqueName.Value
)
),
"|")
And finally the expression for the list parameter doesn’t change:
=split(
 iif(
 Join(Parameters!R0_Filter.Value,
 "|").Contains(Fields!R0_UniqueName.Value) ,
 "Null|" + Parameters!R0_Default.Value,
 "Null"
),"|")

Now do the same for the columns of the matrix.

Finally, we have to add the new waiting list parameters to the action properties of the row and column fields to make sure they keep their values when we drill:

[image:]

And by doing that we’ve finished our report.

P A R T 4 : T E M P L A T E R E P O R TS

Obviously you can’t go through the process of creating all these parameters and actions every time you want to make a “simple” drill- and filter- report.
So to cover most situations we use a template report that can quickly be adapted and hides most of the complexity we’ve covered in parts 1 to 3.

In the Reporting Services Project included in this article you will find 4 templates:
· A template for a matrix with one row-hierarchy and one column-hierarchy for use with the Microsoft SQL Server Analysis Services data source type (“Part4 R1C1 MS.rdl”)
· A template for a matrix with one row-hierarchy and two column-hierarchies for use with the Microsoft SQL Server Analysis Services data source type

· A template for a matrix with one row-hierarchy and one column-hierarchy for use with the Intellegentia IQ Custom data source component
· A template for a matrix with one row-hierarchy and two column-hierarchies for use with the Intellegentia IQ Custom data source component

One column-hierarchy template reports
Basically this is our report from part 3.
We’ve just changed and added a few minor things to make the report more generic:
· To generalize the report further we’ve changed the name of the “InternetSales” dataset to “MainDataset” and changed the parameters “Dates” and “Products” to “R0” and “K0”.
· We’ve added two more parameters: R0_MaxDepth and K0_MaxDepth.
We use these to define the maximum depth of the hierarchies. This way we can stop the drilling function when we reach the leaves of the hierarchy.
· We’ve changed the expression the names the report being called when clicking something (“Part3” in our last example) to always jump to the current report. So you can change the report name of the template without having to change all the action properties.
The expression for the report name then becomes:
=Globals!ReportName

Except for the row and column fields where it becomes:
=iif(Fields!R0_LevelDepth.Value >= Parameters!R0_MaxDepth.Value, Nothing, Globals!ReportName)
In the version to be used with the Intellegentia IQ Custom data source component we’ve changed the data sources to the IQ data source type which creates more readable and more efficient MDX queries.
We also changed the expressions of the row and column fields of our matrix, removing the indent-functionality as IQ takes care of that within the data source.

Two column-hierarchy template reports
In these templates we added a second hierarchy on the columns axis of our matrix.
This allows you to use a third dimension (or fourth if you count the measure-dimension) in your report.
A little warning though, this is still a multidimensional cube that we are displaying in a two-dimensional field. Meaning that when you drill down on the third dimension (our second column-group) you will get an extra level of detail for all members of the dates hierarchy, and not just for the date member of the column you clicked.
Obviously you can change this by adding a “little” more complexity to the expressions associated with the third dimension, but we’ll leave that for another time.

Using the template reports
If you want to create a new report based on the template this is what you have to do:
1. Copy/paste the template report and change its name to that of the report you want to create
2. Open your report
3. Go to the “MainDataset” dataset and write your MDX…
a. For Microsoft SQL Server Analysis Services data source type: … using the parameters R0, K0 (and possibly K1)
b. For Intellegentia IQ Custom data source component: … and link the parameter names (that IQ chose) to the provided parameters R0, K0 (and possibly K1).
You can do this by clicking the …-icon and then selecting the parameter tab.
Then delete the parameters that IQ has created from the reports parameters list.
4. Go to the “_List” (R0_List etc) datasets and change the cube and dimension to the ones you are using. Change the parameters used in the WHERE-clause to optimize the execution.
5. Got to the report parameters menu and
a. Change all the “_Default” parameters (R0_Default etc) to the all-member of your hierarchies
b. Change the value of the “_MaxDepth” parameters to the maximum depth of their relative hierarchies
c. If you want the report to initially only show level 0 off the hierarchy: change the default value of the “_List” parameter to (only) “Null”

And that’s all there is to it.
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image1.emf
Demo.avi

Demo.avi

