Real Time Data Integration with Service Broker and Other SQL Techniques
This article discusses how to use various SQL technologies to accomplish real time data integration between SQL Server instances. It provides a set of sample code to help users with their development. The document focuses on the usage of each technology which is incorporated into the data integration service. Please refer to provided links for detail information about the technologies.
Real time data integration definition
Real time data integration supports event-driven data movement and transformation between SQL Server instances which host databases with different schemas. The data integration should be transparent to source systems without significantly impacting the systems when events are captured and delivered. The technique also supports an intermediate format which allows decoupling of schemas between source and destination systems. It allows either system to change schemas without breaking the application in the other system. The data integration provides fast and efficient data delivery to a destination in an event-driven model, without polling the source system for new data. The following picture shows an overview of the service.

Sales data integration
The real time data integration demo shows the sales data integration between the databases, AdventureWorks (AW) and AdventureWorksDW (AWDW). The data integration service catches the sales data change on AW, and transforms the data in the schema supported in AW onto a general XML format. The service sends the data in XML onto AWDW, and transforms it to correspond to the AWDW schema.
The demo uses the sample databases on SQL Server. Please refer to the link for the detail information about the databases [http://msdn.microsoft.com/en-us/library/ms124659.aspx]. Users can download and install the databases for SQL Server 2008 from the following link [http://technet.microsoft.com/en-us/library/ms124501(SQL.100).aspx].
Techniques
· Change tracking
Change tracking provides a mechanism to query for changes to data and to access information related to the changes. This solution provides answer to the following questions. What rows have changed for a user table? What are the latest data in the rows? Change Tracking requires small amount of storage for each changed row, while it only works for getting the latest data. Please refer to the following link for detail information about Change Tracking [http://msdn.microsoft.com/en-us/library/bb933874(SQL.100).aspx]. If an application requires information about all the changes and the intermediate values of the changed data then it should use Change Data Capture (CDC). Please refer to the following document for the comparison of two techniques [http://msdn.microsoft.com/en-us/library/cc280519(SQL.100).aspx]. We plan to write another document which shows how to use CDC as a change tracking option. The following code block shows how to enable Change Tracking on the database and table levels.

 (
ALTER

DATABASE
 AdventureWorks
SET

CHANGE_TRACKING

=

ON
(
CHANGE_RETENTION

=
 2
DAYS
,

AUTO_CLEANUP

=

ON
)
ALTER

TABLE
 [AdventureWorks]
.
[Sales]
.
[SalesOrderHeader]
ENABLE

CHANGE_TRACKING
WITH
(
TRACK_COLUMNS_UPDATED

=

ON
)
ALTER

TABLE
 [AdventureWorks]
.
[Sales]
.
[SalesOrderDetail]
ENABLE

CHANGE_TRACKING
WITH
(
TRACK_COLUMNS_UPDATED

=

ON
)
)

· Changed data in XML
After setting change tracking on a database and tables the change tables are populated with the data change information when data is inserted, deleted or updated on the tables. The data integration service uses the following code block to fetch the change information and create an XML file with the data change. Using CHANGETABLE function it creates change tracking information for the tables, ‘SalesOrderHeader’ and ‘SalesOrderDetail’. The code generates an XML document containing the information using the FOR XML mode. In the XML file the root, top-level element is named with ‘Sales’, and each sales order header corresponds to an element named with ‘SalesOrderHeader’. A ‘SalesOrderHeader’ element contains one or more ‘SalesOrderDetail’ elements which describe the data change information on the table, ‘SalesOrderDetail’. INNER JOIN clauses make sure that all the change data information is retrieved from the tables.

 (
SET
 @changeReportXML
=

(
SELECT
 SYS_CHANGE_OPERATION
,
 c_soh
.
SalesOrderID
,

(
SELECT
 SYS_CHANGE_OPERATION
,
 c_sod
.
SalesOrderID
,

c_sod
.
SalesOrderDetailID
FROM

CHANGETABLE

(
CHANGES
 [AdventureWorks]
.
[Sales]
.
[SalesOrderDetail]
,

@last_sync_version
)

AS
 c_sod
INNER

JOIN
 [AdventureWorks]
.
[Sales]
.
[SalesOrderDetail] sod
ON
 sod
.
SalesOrderDetailID
=
 c_sod
.
SalesOrderDetailID
WHERE
 c_soh
.
SalesOrderID
=
 c_sod
.
SalesOrderID
FOR

XML

PATH
(
'SalesOrderDetail'
),

type
,

ELEMENTS

XSINIL

)
FROM

CHANGETABLE

(
CHANGES
 [AdventureWorks]
.
[Sales]
.
[SalesOrderHeader]
,

@last_sync_version
)

AS
 c_soh
INNER

JOIN
 [AdventureWorks]
.
[Sales]
.
[SalesOrderHeader] soh
ON
 soh
.
SalesOrderID
=
 c_soh
.
SalesOrderID
WHERE
 @salesOrderID
=
 c_soh
.
SalesOrderID
FOR

XML

PATH
(
'SalesOrderHeader'
),

root
(
'Sales'
),
ELEMENTS

XSINIL
);
)

· Change notification
SQL Server provides several mechanisms for notifying data change to an application. For example, Trigger [http://msdn.microsoft.com/en-us/library/ms189599.aspx] and Query Notification (QN) [http://msdn.microsoft.com/en-us/library/ms130764.aspx]. Trigger provides a simple way for the notification, while only supporting synchronous mechanism. QN supports asynchronous notification and rich filtering semantics. However QN cannot be configured in TSQL within SQL Server. In the Real Time Data integration demo we use a technique integrating Service Broker and Trigger. It provides a simple way to support event notification implementing asynchronous semantic in TSQL within SQL Server. The following code block shows the event notification on the demo.

 (
CREATE

TABLE
 ConversationHandle

(
conversationHandle
uniqueidentifier
);
--Create a dialog to send all the transactions on
BEGIN

TRANSACTION
DECLARE
 @conversationHandle
uniqueidentifier
--Create a new conversation on the table
BEGIN
 DIALOG @conversationHandle
FROM

SERVICE
 AsynchTriggerInitiatorService
TO

SERVICE

N'AsynchTriggerTargetService'
ON

CONTRACT
[AsynchTriggerContract]
WITH

ENCRYPTION

=

OFF
;
INSERT
 ConversationHandle

(
conversationHandle
)

VALUES
(
@conversationHandle
)
COMMIT
;
-- TRIGGER for initiating the change tracking demo
CREATE

TRIGGER
 ChangeTrackingTrigger
ON
 [AdventureWorks]
.
[Sales]
.
[SalesOrderHeader]
AFTER

INSERT
,

DELETE
,

UPDATE

AS
BEGIN

TRANSACTION
;
DECLARE
 @conversationHandle
uniqueidentifier
;
SELECT

TOP
(
1
)
 @conversationHandle
=
 conversationHandle
FROM
 ConversationHandle
;
SEND

ON

CONVERSATION
 @conversationHandle
MESSAGE

TYPE
 [AsynchTriggerMessageType]
COMMIT
;
)

· Reliable data movement
Service Broker provides asynchronous and reliable data movement. It supports TSQL programming model built on SQL Server database engine. Please refer to the following link for the detail information about Service Broker [http://technet.microsoft.com/en-us/sqlserver/bb671396.aspx].
The data integration service uses multiple conversations for message delivery to increase throughput. Using multiple dialogs brings the data parallelism on the receiving side. Multiple threads can receive and process the messages in the dialogs independently. However, initiating the conversations brings load to a system. Therefore right amounts of conversations should be chosen smartly. In the real time data integration demo we choose four conversations for processing the messages with high throughput. The following diagram shows service broker objects and conversations involved in the change notification and data movements. Asynchronous triggering initiator service notifies the data changes on monitored tables. Asynchronous triggering target service invokes the data integration initiator service in which creates an XML message with the changed data information, and sends it onto the data integration target service using the four conversations. The target service receives the messages, and transforms them corresponding to the schema supported in the database.
					
In the real time data integration service we initiate four dialogs, and store them onto a table. The demo uses the dialogs for sending messages about changed data information. Please refer to the following code block for the dialog creation.
The following code blocks present the procedure for sending an XML message using Service Broker. The procedure uses the four conversations evenly distributed messages based on the sales order ID (SET @dialogHandleID = @salesOrderID % 4) . Because messages for the same sales order ID are delivered in a single conversation it is guaranteed that the messages are delivered exactly once in order manner.
 (
CREATE

PROCEDURE
 SendChanges
AS
BEGIN
DECLARE
 @last_sync_version
bigint
;
DECLARE
 @salesOrderID
bigint
;
DECLARE
 @dialogHandleID
INT
;
DECLARE
 @dialogHandle
uniqueidentifier
;
DECLARE
 @changeReportXML
XML
;
DECLARE
 @next_baseline
bigint
;
DECLARE
 @TotalDialogs
INT
;
DECLARE
 @logMsg
VARCHAR
(
MAX
);
BEGIN

TRANSACTION
;
SELECT

TOP
(
1
)
 @last_sync_version
=
 lastVersion
FROM
 LastVersion
;
SET
 @TotalDialogs
=
 4
;
--Create a cursor on the change table for [SalesOrderHeader]
DECLARE
 cursorChangeOrderHeader
CURSOR

FORWARD_only

READ_ONLY
FOR

SELECT
 SalesOrderID
FROM
CHANGETABLE

(
CHANGES

[
SalesOrderHeader]
,

@last_sync_version
)

AS
 Cursor_CH
ORDER

BY
 SYS_CHANGE_VERSION
;
--Open the cursor on the change table for [SalesOrderHeader]
--Loop for each changed sales order id
OPEN
 cursorChangeOrderHeader
WHILE
(
1
=
1
)
BEGIN
FETCH

NEXT

FROM
 cursorChangeOrderHeader

INTO
 @salesOrderID
;
--If there is no more changed sales order then exit
IF
(
@@FETCH_STATUS

!=
 0
)

BREAK;
--
<
Fetching changed data and creating XML file
.
>
--<
Please refer to the code block on section 2.a.1.
>
--Find the conversation handle for the sales order
--
from the dialog handle table
SET
 @dialogHandleID
=
 @salesOrderID
%
 @TotalDialogs
;
SELECT
 @dialogHandle
=
 dialogHandle
FROM
 DialogHandles
WHERE
 ID
=
 @dialogHandleID
;
--Capture last version info
SELECT
 @next_baseline
=
 SYS_CHANGE_VERSION
FROM
CHANGETABLE

(
CHANGES
[AdventureWorks]
.
[Sales]
.
[SalesOrderHeader]
,
 @last_sync_version
)

as
 c_soh
WHERE
 @salesOrderID
=
 SalesOrderID
;
--Send the message using Broker
SEND

ON

CONVERSATION
 @dialogHandle
MESSAGE

TYPE
 [RealTimeDImessagetype]
(
@changeReportXML
);
END
CLOSE
 cursorChangeOrderHeader
;
DEALLOCATE
 cursorChangeOrderHeader
;
UPDATE
 LastVersion

SET
 lastVersion
=
 @next_baseline
;
COMMIT
;
END
;
)

· Activation
Activation allows message processing logic to be launched when a message arrives on a Service Broker queue. When an internal activation is used for processing messages a stored procedure is declared on a Service Broker queue, and invoked on a background thread when a message arrives. A user can also specify an executable for processing the messages as an external activator. For example, SQL Server Integration Services (SSIS) can be used as an external activation procedure to process messages. Please refer to the following link for the code sample and document of External Activator [http://www.codeplex.com/SQLSrvSrvcBrkr/Release/ProjectReleases.aspx?ReleaseId=3853].
In the real time data integration services demo we use internal activators to process event notification messages on the initiator service as well as changed data information messages on the target service. We briefly mention how the services process the messages in the activation procedures.
i. Message processing in the initiator
The real time data integration initiator handles messages from two different services. One of the services is an asynchronous event notification service, and the other is a real time data integration target service. A single service in the initiator handles the message from the two different sources based on message types and service names. The following pseudo-code block describes the message processing logic in the initiator.

 (
WHILE
 there is any message on ‘
RealTime_DI_Initiator_queue
’
RECEIVE
 a message
FROM
 the queue

IF
 message type is ‘
EndDialog
’
THEN
END CONVERSATION
;
ELSE IF
 message type is ‘ERROR’
THEN
IF
 service name is ‘
RealTime_DI_Initiator_Service
’
THEN
Raise error;
Create a new dialog;
Resend pending messages using the dialog;
Replace old dialog with the new one;
END CONVERSATION
 (old dialog);
IF
 service name is ‘
Asynchronous_Trigger_Target_Service
’
THEN
Raise error;
END CONVERSATION
;
ELSE IF
 message type is ‘Asynchronous triggering’
THEN
RECEIVE
 all the messages
FROM
 ‘
RealTime_DI_Initiaor_queue
’
WHERE

conversation_handle
 is identical with this message’s handle
EXEC

SendChanges

PROCEDURE
)
i.
ii. Message processing in the target
The message processing procedure in the real time data integration target receives messages from a target queue, and transforms the messages from the XML format into a supported schema. A simple and straightforward way to process messages is to receive a message from the queue and to transform it one by one until all the messages are processed on the queue. However, the mechanism may hurt the performance of the data integration target. Instead of receiving a single message and transform it the data integration target service uses a cursor-based processing mechanism. It receives all the messages from the target queue, and stores in a temporary table. A cursor iterates the table to fetch a message and process it to covert from an XML format to a desired schema. The following code block shows the activation procedure on the target.

 (
CREATE

PROCEDURE
 ProcessMessagesDW
AS
BEGIN
DECLARE
 @handle
uniqueidentifier
;
DECLARE
 @messageBody
XML
;
DECLARE
 @tableMessages
TABLE
(
queuing_order
BIGINT
,
conversation_handle

UNIQUEIDENTIFIER
,
message_body
VARBINARY
(
MAX
));
DECLARE
 cursorMessages
CURSOR

FORWARD_ONLY

READ_ONLY
FOR

SELECT

conversation_handle
,
message_body
FROM
 @tableMessages
ORDER

BY
 queuing_order
;
WHILE
(
1
=
1
)
BEGIN
BEGIN

TRANSACTION
;
WAITFOR
(
RECEIVE
queuing_order
,
conversation_handle
,
message_body
FROM
 [RealTimeDItargetqueue]
INTO
 @tableMessages
),

TIMEOUT
 1000
;
IF
(
@@ROWCOUNT

=
 0
)
BEGIN
COMMIT
;
BREAK
;
END
OPEN
 cursorMessages
;
WHILE
(
1
=
1
)
BEGIN
FETCH

NEXT

FROM
 cursorMessages
INTO
 @handle
,
 @messageBody
;
IF
(
@@FETCH_STATUS

!=
 0
)
BREAK
;
-
-
<Message transformation>
END
CLOSE
 cursorMessages
;
DELETE

FROM
 @tableMessages
;
COMMIT
;
END
DEALLOCATE
 cursorMessages
;
END
)

· Data transformation
After receiving messages the target service transforms the received messages, and populates tables with the changed data information from the messages. The received messages are in XML format. The service processes each of the messages to obtain required information from the message using TSQL language coupled with integrated XML support. The following code block shows a sample of the transformation using TSQL. On this example, the transformation is occurred only for the data insert event.

 (
INSERT

INTO
 [AdventureWorksDW]
.
[dbo]
.
[FactInternetSales]
SELECT
N1
.
SOH
.
value
(
'CustomerID[1]'
,

'int'
)
AS
 [CustomerKey]
,
N2
.
SOD
.
value
(
'SpecialOfferID[1]'
,

'int'
)

AS
 [PromotionKey]
,
N2
.
SOD
.
value
(
'CarrierTrackingNumber[1]'
,
'NCHAR(9)
'
)

AS
 CarrierTrackingNumber
,
N1
.
SOH
.
value
(
'PurchaseOrderNumber[1]'
,
'NV
CHAR(25)'
)
AS
 [CustomerPONumber]
FROM

@messageBody
.
nodes
(
'/Sales/SalesOrderHeader'
)
 N1
(
SOH
)
CROSS

APPLY
 soh
.
nodes
(
'SalesOrderDetail'
)
 N2
(
SOD
)
WHERE

N1
.
SOH
.
value
(
'CustomerType[1]'
,

'CHAR'
)

=

'I'

AND
 N2
.
SOD
.
value
(
'SYS_CHANGE_OPERATION[1]'
,
'CHAR'
)=
'I'
)

SQL Server Integration Services (SSIS) also provides the data transformations. SSIS supports various forms of data transformation between heterogeneous sources. Please refer to the following link for more detail information about SSIS [http://technet.microsoft.com/en-us/sqlserver/bb671392.aspx].
This document discusses about real-time data integration technologies with the coordination of a set of powerful SQL Server technologies. The service provides reliable and transparent data integration between instances. The service is composed with the following technologies.
· Data tracking: Change tracking
· Change notification: Triggers and Service Broker
· Reliable data movement: Service Broker
· Activation: Internal, Blocking with WAITFOR RECEIVE
· Transformation: TSQL with XML support

