MCMS to SharePoint 2007 Samples:
RandomFlashMovieControl

Mauricio Rojas
Artinsoft
May 2007
Contents
1Introduction

2Writing the Code

9Deploying the WebPart

10Creating a Solution Package

10DWP File

11Manifest.xml or Solution Description File

11A .DDF file to make the .WSP file

12Creating the .WSP file

13Installing the Solution Package

Introduction

One useful placeholder that I found in the gotdotnet site was the RandomFlashMovieControl developed by CroweMan. This control allows an author to select one or more flash movies from the resource gallery. Then one of the movies will be randomly displayed when the user is in presentation mode.

To provide equivalent functionality in Microsoft Office SharePoint Server (MOSS) we will develop a RandomFlashMovie WebPart.
[image: image4.png]RandomFlashMoviewebPart

[image: image5.png]RandomFlashMoviewebPart

[image: image1.png]o osol plo =0[x]

= s S 5 T
Qbsck =) - 1x] (2] (|) searh S Favortes €| - (3 - L) &,

Address [€] htps/j2003server:32490iPagesfelcome . aspx B ERE

My Site | My Links ~ | Welcome System Account ~ A
Version: Checked Out _Status: Only you can see snd modify ths page. _ Publication Start Date: Immediately
Page = | Workdlow = | Tools + | |3 EokPage | |Lly Checkinto shareDraft | 48 Subritfor Approval

@ Remember to check in so other pesple can see your changes. (Do not show tis message again)

Woodgrove

WoodgroveNetys > Welcome1
Welcomel

Lists
FAaQz

Documents
FlashMavies
Pictures RandomFlashMovieWebPart
Hala

Partners
Services

small Business
Services

Case Studies
AboutUs

Press Releases

Careers

@ oo T T T T T o

Writing the Code
So, to start our WebPart we will perform the following steps:

1. Create a Class Library project

2. Make sure you have a Reference to the following assemblies:

a. Microsoft.SharePoint.dll, Microsoft.SharePoint.Publishing.dll

b. System.dll

c. System.Drawing.dll

d. System.Web.dll

e. System.Web.Extensions.dll

f. System.Xml.dll

3. Now we will add a new code file and change its name to RandomFlashMovieWebPart.cs. We will add a new WebPart
	 [DefaultProperty("ImagesList"),

 Description("The Random Flash Movie WebPart will allow an author to select one or more flash movies from the resource gallery. One of the movies will be randomly displayed when the user is in presentation mode."),

 ToolboxData("<{0}:RandomFlashMovieWebPart runat=server></{0}:RandomFlashMovieWebPart>"),

 XmlRoot(Namespace = "RandomFlashMovieWebPart.RandomFlashMovieWebPart")]

 public class RandomFlashMovieWebPart : WebPart

 {
 . . .

 }

4. First we need a couple of properties to specify the name of the ImageList (the Sharepoint Document Library where the flash movie files are stored) and the ImagesNames (the list of names of the files that will be latter selected at random to be displayed to the user)

	 string myImagesList;

 /// <summary>

 /// To get a list of images a SharePoint Document Library must be specified.

 /// This property is edited using a ToolPart that populates a list of Sharepoint Document Libraries

 /// </summary>

 [Browsable(false),

 FriendlyName("Images List Name"),

 Description("This is the document list that holds the flash movies"),

 WebPartStorage(Storage.Personal)]

 public string ImagesList

 {

 get { return myImagesList; }

 set { myImagesList = value; }

 }

 string myImagesNames;

 /// <summary>

 /// For a given SharePoint Document Library a list of one or more images must be specified

 /// </summary>

 [Browsable(false),

 FriendlyName("Random Images"),

 Description("This is the list of images to randomly change"),

 WebPartStorage(Storage.Personal)]

 public string ImagesNames

 {

 get { return myImagesNames; }

 set { myImagesNames = value; }

 }

5. As you can see we made those properties Browsable(false) this makes that when you edit those properties they do not appear. But how will they be edited? We will develop latter a custom toolpart.

6. Now we will override the Render method. This method is simple. It first looks for the specified list. Then randomly select one of the filenames indicated, and generates the markup necessary.

	 /// <summary>

 /// Render this Web Part to the output parameter specified.

 /// </summary>

 /// <param name="output"> The HTML writer to write out to </param>

 protected override void Render(HtmlTextWriter output)

 {

 SPContext spc = SPContext.Current;

 SPDocumentLibrary documentLibrary = spc.Web.Lists[ImagesList] as SPDocumentLibrary;

 if (documentLibrary == null)

 output.Write("Sorry! you must first indicate a name for an SharePoint Document Library where the flash movies are stored.");

 else

 {

 if (ImagesNames == null)

 output.Write("Please select one or more movies that you what to be randomly selected and rendered in this control");

 else

 {

 EnsureChildControls();

 //Create a table

 output.RenderBeginTag("table");

 output.RenderBeginTag("tr"); //Add a row

 output.RenderBeginTag("td"); // Add a cell

 if (ImagesList != null && ImagesNames != null)

 {

 string[] images = ImagesNames.Split(',');

 int size = images.Length;

 Random random = new Random();

 int selectedImage = random.Next(size);

 //First create a markup that points to the image

 string markup = FLASH_MARKUP.Replace("XXX", SPContext.Current.Web.Url + "/" + ImagesList + "/" + images[selectedImage]);

 if (this.Width != null || this.Width.Equals(""))

 markup = markup.Replace("WWW", " width=\"" + this.Width + "\"");

 if (this.Height != null || this.Height.Equals(""))

 markup = markup.Replace("HHH", " height = \"" + this.Height + "\"");

 output.Write(markup);

 }

 output.RenderEndTag(); //End of the cell tag

 output.RenderEndTag(); //End of the row tag

 output.RenderEndTag(); //End of table tag

 }

 }

 }

	

7. We took a simple approach to generate the markup. We just have a constant that holds that markup and we replace the sections that are specific for our flash movie.

8. The markup constant should be like this:

	 /// <summary>

 /// This is the MARKUP that is generated to display the flash movie

 /// </summary>

 const String FLASH_MARKUP =

"<object classid=\"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000\"" +

"codebase=\"http://active.macromedia.com/flash4/cabs/swflash.cab#version=4,0,0,0\"" +

"WWW HHH>" +

"<param name=\"movie\" value=\"XXX\"> " +

"<param name=\"quality\" value=\"high\">" +

"<param name=\"bgcolor\" value=\"#FFFFFF\">" +

"<embed src=\"XXX\" " +

"quality=\"high\" " +

" bgcolor=\"#FFFFFF\" " +

" WWW " +

" HHH " +

"type=\"application/x-shockwave-flash\" " +

"pluginspage=\"http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Version=ShockwaveFlash\"> " +

" </embed> " +

" </object> ";

9. Ok. The web part is almost ready but we still need to create a ToolPart to allow the user to edit it.

10. A Toolpart appear in a tool pane generally to the right, that provides a simple UI to set WebPart properties. These webpart will have only 3 controls:
	 public class RandomFlashMovieToolPart : ToolPart

 {

 private Literal message = null;

 private ListBox listMovies = null;

 private DropDownList ddlList = null;

 ...

 }

11. We will add a simple contructor that sets the title for this ToolPart. The CreatChildControls is very important because it makes sure that the controls are created and initialized.
	 /// <summary>

 /// The controls are created and initialized here

 /// </summary>

 protected override void CreateChildControls()

 {

 ddlList = new DropDownList();

 ddlList.AutoPostBack = true;

 listMovies = new ListBox();

 listMovies.SelectionMode = ListSelectionMode.Multiple;

 ddlList.ID = "ddlLists";

 message = new Literal();

 message.Text = "Please choose a Document list to select the images:";

 Controls.Add(message);

 Controls.Add(ddlList);

 Controls.Add(listMovies);

 SPWeb currentWeb = SPContext.Current.Site.RootWeb;

 AddLists(currentWeb.Url, currentWeb, ddlList);

 ddlList.SelectedIndexChanged += new EventHandler(ddlList_SelectedIndexChanged);

 RandomFlashMovieWebPart webPart = ParentToolPane.SelectedWebPart as RandomFlashMovieWebPart;

 ddlList.SelectedValue = webPart.ImagesList;

 //For the selected list we must load all the available movies

 LoadMoviesList(ddlList.SelectedValue);

 UpdateSelectedMovies(webPart);

 }

12. The ddlList dropdown holds the name of all the DocumentLibraries available in the site. We collect this information with the AddLists method

	 /// <summary>

 /// Fills the list with all the document libraries
 /// it can find starting from the given web

 /// </summary>

 /// <param name="removePrefix">Removes this prefix form
 /// the title used in listitems</param>

 /// <param name="web"></param>

 /// <param name="ddlList"></param>

 protected void AddLists(string removePrefix, SPWeb web, DropDownList ddlList)

 {

 foreach (SPList list in web.Lists)

 {

 if (list is SPDocumentLibrary)

 {

 String myUrl = list.ParentWebUrl + "/" + list.Title;

 String itemTitle = myUrl.Replace(removePrefix, "");

 ddlList.Items.Add(new ListItem(itemTitle, list.Title));

 }

 foreach (SPWeb childWeb in web.Webs)

 {

 AddLists(removePrefix, childWeb, ddlList);

 }

 }

 }

13. Once a Document Library is selected the listbox with the movie files must be updated:

	 /// <summary>

 /// When this event is triggered the list of movies is updated

 /// </summary>

 /// <param name="sender"></param>

 /// <param name="e"></param>

 void ddlList_SelectedIndexChanged(object sender, EventArgs e)

 {

 LoadMoviesList(ddlList.SelectedValue);

 }

 private void LoadMoviesList(String listName)

 {

 SPList flashMoviesList = Utils.GetListByPath(ddlList.SelectedValue);

 listMovies.Items.Clear();

 foreach (SPListItem flashMovie in flashMoviesList.Items)

 {

 if (flashMovie.Name.ToLower().EndsWith("swf"))

 listMovies.Items.Add(new ListItem(flashMovie.Name));

 }

 }

14. Now we are ready to Render the ToolPart web interface:

	 protected override void RenderToolPart(HtmlTextWriter output)

 {

 EnsureChildControls();

 if (!Page.IsPostBack)

 {

 RandomFlashMovieWebPart webPart = ParentToolPane.SelectedWebPart as RandomFlashMovieWebPart;

 if (webPart.ImagesList != null)

 {

 ddlList.SelectedValue = webPart.ImagesList;

 }

 UpdateSelectedMovies(webPart);

 }

 output.RenderBeginTag("table");

 output.RenderBeginTag("tr"); //Add a row

 output.RenderBeginTag("td"); // Add a cell

 message.RenderControl(output);

 output.RenderEndTag();//closes cell

 output.RenderEndTag();//closes row

 output.RenderBeginTag("tr"); //Add a row

 output.RenderBeginTag("td"); // Add a cell

 ddlList.RenderControl(output);

 output.RenderEndTag();//closes cell

 output.RenderEndTag();//closes row

 output.RenderBeginTag("tr"); //Add a row

 output.RenderBeginTag("td"); // Add a cell

 listMovies.RenderControl(output);

 output.RenderEndTag();//closes cell

 output.RenderEndTag();//closes row

 output.RenderEndTag();//close table

 }

15. To Send the data back to the webpart the ApplyChanges method must be overridden
	 /// <summary>

 /// We override the ApplyChanges for storing the data back into the RandomFlashMovieWebPart

 /// Here we set the ImagesList and ImagesName propertues

 /// </summary>

 public override void ApplyChanges()

 {

 RandomFlashMovieWebPart webPart = ParentToolPane.SelectedWebPart as RandomFlashMovieWebPart;

 webPart.ImagesList = ddlList.SelectedValue;

 string strImagesNames = GetSelectedValues(listMovies);

 webPart.ImagesNames = strImagesNames;

 }

 /// <summary>

 /// Returns all the selected values concatenated as a

 /// string so it can be passed to the WebPart

 /// </summary>

 /// <param name="list"></param>

 /// <returns></returns>

 protected string GetSelectedValues(ListBox list)

 {

 StringBuilder sb = new StringBuilder();

 int count = 0;

 foreach (ListItem item in list.Items)

 {

 if (item.Selected)

 {

 if (count > 0) sb.Append(",");

 sb.Append(item.Value);

 count++;

 }

 }

 return sb.ToString();

 }

16. Now the WebPart must be updated to indicate that it will use the ToolPart:
	 /// <summary>

 /// We override this method to add a ToolPart where the user can select a document library and indicate the movies he/she wants.

 /// </summary>

 /// <returns></returns>

 public override ToolPart[] GetToolParts()

 {

 ToolPart[] toolParts = new ToolPart[2];

 //** The first ToolPart is our own created RandomFlashMovieToolPart

 //** The WebPartToolPart class represents a ToolPart

 //that can be used to show or modify web part base properties like the minimize and title properties.

 toolParts[0] = new RandomFlashMovieToolPart();

 toolParts[1] = new WebPartToolPart();

 return toolParts;

 }

Deploying the WebPart

WSS and of course MOSS have brought a great improvement for deployment, by a new mechanism called Solutions.

From http://msdn2.microsoft.com/en-us/library/aa543214.aspx
“The Microsoft Windows SharePoint Services solution framework provides a way to bundle all of the components for extending Windows SharePoint Services in a new file, called a solution file. A solution file is a cabinet or .CAB-based format with a .wsp extension. A solution is a deployable, reusable package that can contain a set of features, site definitions, and assemblies that you can apply to a site, and can also enable or disable individually. You can use the solution file to deploy the contents of a Web Part package, including assemblies, class resources, .dwp files, and other package components.”

So all we need is to create a solution package and then use the Sharepoint Administrative Interface to activate it.

Creating a Solution Package

 To create a solution package this is what you need:

1. A .dwp file that describes your WebPart.

2. A Manifest.xml file that follows the WSS Solution Schema

3. A .ddf that is the input for the makecab.exe tool that is used to create the Solution File (.wsp)

DWP File

	<?xml version="1.0" encoding="utf-8" ?>

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2">

<Assembly>RandomFlashMovieWebPart, Version=1.0.0.0, Culture=neutral, PublicKeyToken=c2c522ef2ad4ed47</Assembly>

<TypeName>RandomFlashMovieWebPart.RandomFlashMovieWebPart</TypeName>

<Title>RandomFlashMovieWebPart</Title>

<Description>It lets you choose a set of FlashMovies. The control will randomly select one of them and display it</Description>

</WebPart>

Manifest.xml or Solution Description File

	<?xml version="1.0" encoding="utf-8"?>

<Solution SolutionId="{DAA36B40-DD10-4e86-BB13-CA51CADAB4A1}" xmlns="http://schemas.microsoft.com/sharepoint/" ResetWebServer="TRUE">

 <Assemblies>

 <Assembly DeploymentTarget="GlobalAssemblyCache" Location="RandomFlashMovieWebPart.dll">

 <SafeControls>

<SafeControl Assembly="RandomFlashMovieWebPart, Version=1.0.0.0, Culture=neutral, PublicKeyToken=c2c522ef2ad4ed47" Namespace="RandomFlashMovieWebPart" TypeName="RandomFlashMovieWebPart" Safe="True" />

</SafeControls>

 </Assembly>

 </Assemblies>

 <DwpFiles>

 <DwpFile Location="RandomFlashMovieWebPart.dwp" />

 </DwpFiles>

</Solution>

A .DDF file to make the .WSP file

	;This file is for WSP CAB Generation

;A WSS or in this case MOSS solution file is essentially a .cab file,

;use the makecab.exe tool to create the solution package.

;The makecab.exe tool takes a pointer to a .ddf file,

;which describes the structure of the .cab file.

;The format of a .ddf file is basically that

;you declare a standard header and

;then enumerate, one file per line, the set of files by where they live on disk,

;separated by where they should live in the .cab file

.OPTION EXPLICIT ; Generate errors

.Set CabinetNameTemplate="RandomFlashMovieWebPart.wsp"

.set DiskDirectoryTemplate=CDROM ; All cabinets go in a single directory

.Set CompressionType=MSZIP;** All files are compressed in cabinet files

.Set UniqueFiles="ON"

.Set Cabinet=on

.Set DiskDirectory1="Package"

;All file reference should be from the project root

;Files to place into the CAB Root

Manifest.xml

RandomFlashMovieWebPart.dwp

bin\Release\RandomFlashMovieWebPart.dll

Creating the .WSP file

From the command line run:

Makecab.exe /F RandomFlashMovieWebPart.ddf

It will produce the file Package\ RandomFlashMovieWebPart.wsp

Installing the Solution Package

To install the solution package you must use the stsadm.exe program. From the command line execute:

Stsadm –o addsolution –filename RandomFlashMovieWebPart.wsp

This program is usually in C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\BIN
Now open the SharePoint Central Administration Page.

Go to Operations\Solution Management. The Solution will Appear in this page:

[image: image2.png]Ele Edt View Favortes Toos Help

Qb - O - A &) (h| Lsewch Joravorwes €| (07 i by - L) &

utess [s 5508t s

[=1 E3
| &
ECEEE
=

Central Adminitration

J% Central Administration

Home Applcation Management

ielcome 2003SERVER |acminstrator ~ | My St | My Links = |

View Al Site Content

This page has a st of the Solutions n the farm,

Central
Administration Name Status Deployed To
= Operations randorisshioviewebpart.wsp ot Deployed Nore
= Agplication
Management

Shared Services
Administration

= SharedServices!

& Recycle Bin

Bloos

L]
T T T R et y.

Click on the webpart solution. And click Deploy Solution:

[image: image3.png]op osol plo =[0[x]

B gt v rotes Tk i | &

Qb - O - A &) (h| Lsewch Joravorwes €| (07 i by - L) &

D T ————————

ECEEE
=l

Central Administration Welcome 2003SERVER|administrator = | My Site | My Links ~ |
J% Central Administration
e ppicton tanagenent

View Al Site Content

Central
Administration

Deplay Selution | Remave Salution | Back to Selutions

= Operations

= Agplication
Management Name randomflashmovisnebpartwsp
Err Type: Core Solution
‘Administration Contains Web Application Resource: Yes
ST Cantains Glabal Assembly: Yes
Cantains Code Access Security Policy o
 Recycle Bin Deployment Server Type: Front-end Web server
Deployment Status: ot Deployed
Deployed To: None
Last Operation Result Ho operstion has been performed on the solution.

L]
@ [[ocataret v

� These assemblies are installed during the MOSS installation. The default installion path for them will be: C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\ISAPI

� This assembly is installed with the ASP.NET Ajax installer. The default install directory will be something like: C:\Program Files\Microsoft ASP.NET\ASP.NET 2.0 AJAX Extensions\v<VersionNumber>\

