

Enterprise Development
Reference Implementation
Version 1.1

Enterprise Development
Reference Implementation

Version 1.1

patterns & practices

Jason Hogg, Microsoft Corporation

Naveen Yajaman, Microsoft Corporation

Jim Newkirk, Microsoft Corporation

Jonathan Wanagel, Microsoft Corporation

Wojtek Kozaczynski, Microsoft Corporation

Ron Jacobs, Microsoft Corporation

Edward Lafferty, Microsoft Corporation

RoAnn Corbisier, Microsoft Corporation

Sameer Tarey, Infosys Technologies Ltd

Alejandro Guillermo Jack, Southworks S.R.L.

Lonnie Wall, RDA Corporation

Andrew Lader, RDA Corporation

Nelly Delgado, Wadeware LLC

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, BizTalk, Microsoft Press,
Visual Basic, Visual C#, and Visual Studio are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Chapter 1
Overview and Use Cases 1

Introduction . 1
Intended Audience . 2
Prerequisites . 2

Global Bank Scenario . 3
Enterprise Development Reference Implementation Community. 5
Use of Existing Patterns and Practices . 6
EDRI Documentation . 6
Use Cases . 7

Login . 8
Consolidated Account Statement . 10
Transfer Funds . 12
Bill Subscriptions . 14
Bill Payment . 15
Transaction Log Report . 16

Non-Functional Application Considerations . 17
Application Availability . 17
Data Integrity . 17
Performance . 18
Security . 18
Browser Compatibility . 21

Use Case Realization . 21
Login and Consolidated Account Statement Use Cases. 23
Transfer Funds Use Case. 26
Bill Subscriptions Use Case. 29

Add Bill Subscription . 29
Delete Bill Subscription . 32

Bill Payment Use Case. 35
Transaction Log Report Use Case . 39

Chapter 2
Architecture 41

Design Objectives and Principles . 41
Objectives. 42
Enterprise Framework . 42
Service Oriented Integration . 42

Architectural Representation . 43
Terminology and Key Concepts. 44

 Contents v

Conceptual View . 45
Dominant Patterns . 45
Model-View-Controller Pattern . 45
Page Controller Pattern . 46

Logical View . 46
Model-View-Controller Pattern . 46
Page Controller Pattern . 48
Service Invocation. 52

Implementation View . 54
WebApplicationUI . 55
WebApplication.UIProcess . 56
Configuration . 56

Deployment View. 57
Architecture Properties View . 58

Security . 58
Localization . 59

Chapter 3
Services 60

Service Infrastructure . 61
Request Message Validation . 61
Custom LoggingHandler. 62

Service Interface and Service Implementation Pipelines . 63
Web Service Headers . 64

Common Design Views . 64
Deployment View. 65
Policy View . 66

Service Documentation . 67
Messages. 67
Conceptual View . 69

AccountStatement Service. 70
Logical View . 70
Client Interface . 72
Deployment View. 79

Authentication Service. 80
Logical View . 80
Client Interface . 81
Deployment View. 85

BillPayment Service. 86
Logical View . 86
Client Interface . 88
Deployment View. 93

BillSubscription Service. 94
Logical View . 94
Client Interface . 95
Deployment View. 101

vi Enterprise Development Reference Implementation

FundsTransfer Service . 101
Logical View . 101
Client Interface . 103
Deployment View. 107

TransactionLog Service . 108
Logical View . 108
Client Interface . 109
Deployment View. 114

Summary . 115
More Information. 115

Chapter 4
Installation 117

Introduction . 117
Platform Prerequisites . 117
Before You Begin. 118

Installing the Enterprise Development Reference Implementation 120
Verifying the Installation. 120
Setting Up and Running the EDRI . 121
Using the Various Dispatching Transports. 123
To Uninstall. 125
Troubleshooting. 127

Troubleshooting Web Service Projects . 127
Troubleshooting Set Up . 127

More Information. 129

Appendix A
Inside the Enterprise Development Application Framework 131

Introduction . 131
Architectural Goals and Prerequisites . 131

Goals . 131
EDAF at a Glance . 132

Dominant Patterns . 136
Service Request Flow . 139

Appendix B
Exploring the EDAF Using the Bill Payment Use Case 143

Contributors 150

Additional Resources 153

1
Overview and Use Cases

Introduction
Welcome to the Microsoft® Enterprise Development Reference Implementation
(EDRI), version 1.1. This reference implementation is based on a fictitious banking
business named Global Bank. The EDRI illustrates some of the challenges common
to a wide variety of organizations, not just retail banks. This release of the EDRI is
designed to serve three main purposes:
● Demonstrate the use of patterns & practices guidance within a reference

implementation.
● Demonstrate the use of the Enterprise Development Application Framework

(EDAF).
● Establish a community that influences the development of new business scenarios

and the selection of appropriate technologies.

Note: The EDRI is not intended as a template for an online banking application, and does not solve
all the challenges that would be faced in a real implementation.

This release of the EDRI also illustrates the implementation of a loosely coupled
application. It demonstrates the use of design patterns, such as Page Controller
and Model-View-Controller, within the Presentation tier, as well as service-oriented
integration using ASP.NET Web services, and the recently released EDAF within
the Business Services tier.

2 Enterprise Development Reference Implementation

Version 1.1 of the EDRI is not intended to solve all problems relating to the
development of a loosely coupled application. For example, this release does not
cover securing Web services. However, Microsoft intends to provide regular updates
to this scenario that address this and other challenges. Future releases of the EDRI
may address other challenges including:
● Guidance for using WS-Security and Web Services Enhancements (WSE 2.0) to

secure the application.
● Demonstration of the use of the User Interface Process (UIP) Application Block –

version 2.0.
● Implementation of a Windows Forms client with offline capabilities.
● Localization support.
● Implementation of key integration patterns demonstrating business process

orchestration using BizTalk® Server 2004.
● Development guidance to illustrate the tenets of service orientation.
● Deployment scenarios using Virtual PC 2004 and Virtual Server 2005 in a

Microsoft Solution Architecture environment.

Your feedback will guide the evolution of this program. For more information about
how you can contribute, see the “Enterprise Development Reference Implementation
Community” section.

Intended Audience
The Enterprise Development Reference Implementation demonstrates development
of a loosely coupled Internet banking application for architects and lead developers
who are interested in the following:
● Seeing patterns & practices guidance applied.
● Learning more about how to apply the EDAF.

Prerequisites
Because the reference implementation is built using the EDAF, you must install
the framework. See Chapter 7, “Installation and QuickStarts” in the Enterprise
Development Reference Architecture (EDRA) documentation for details. You can
download the Enterprise Development Reference Architecture.msi. file from
the community workspace.

Additionally, the EDRI and EDAF use Microsoft .NET technologies, so it is helpful to
be familiar with the Microsoft .NET Framework, Microsoft Visual Studio® .NET 2003
development system, and either the Microsoft Visual C#® or Microsoft Visual Basic®
development systems.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/uipab.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/uipab.asp
http://channel9.msdn.com/wiki/wikiedit.aspx?topic=Channel9.WinForms&return=Channel9.WhatIsGlobalBank
http://go.microsoft.com/fwlink/?LinkId=31528

 Chapter 1: Overview and Use Cases 3

Note: The EDRI and EDAF require either the Enterprise Architect edition or Enterprise Developer
edition of Microsoft Visual Studio .NET 2003 because these editions have enterprise template
support. See Chapter 4, “Installation” for additional platform prerequisites.

Some familiarity with the issues and challenges of developing distributed enterprise
solutions is required. For more information about designing distributed applications,
see Application Architecture for .NET: Designing Applications and Services.

Finally, many principles described in patterns & practices guidance have been applied
during the development of the Enterprise Development Reference Implementation.
A complete list of these topics is available in “Use of Existing Patterns and Practices.”

Global Bank Scenario
Global Bank is a midsize, traditional bank that acquired a complete range of
financial services capabilities through a series of acquisitions. Global Bank’s systems
and supporting technologies evolved over time at different rates. Due to these
acquisitions, the fragmentation of technology within its divisions, and the natural
evolution of technology, Global Bank struggled to establish an online presence.

Global Bank’s executive management has decided to expand its online capabilities
by offering customers access to a full range of services through an Internet banking
application. In addition to visiting Global Bank’s brick and mortar locations,
customers will be able to visit the Internet banking application to transfer funds,
view account information, request reports, obtain financial advice, create financial
plans, or access other services that Global Bank offers. Not all of these features are
available in this release of the EDRI.

Like many large organizations, Global Bank has a diverse range of back-end
technologies that support the day-to-day operations of the bank. Many of these
technologies run on proprietary software and hardware with limited capability for
reuse. As a move toward broader adoption of a service oriented architecture, Global
Bank is investigating extending its functional integration strategy to incorporate
standards-based Web services.

Figure 1 illustrates key systems that the Global Bank Internet banking application
will interact with. Future updates to the Voice Response System and the Smart Client
Teller Applications plan to use services developed in this release to optimize
functional integration.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

4 Enterprise Development Reference Implementation

Data
Firewall

External Partner
(SWIFT)

External Partner
(Manual Fulfillment)

Online
Customer

Voice Response
System

Teller

SMTP Integration
Server

Online Portal
Web Server

Firewall

Online Portal
Application Server

Gateway
Service

Gateway

Mainframe

Investment
Funds

Ethernet

Ethernet

Firewall
(Perimeter Network)

Not implemented

Core Accounts
Loans and Credit Cards
Bill Payments

Figure 1
Enterprise network diagram

 Chapter 1: Overview and Use Cases 5

The EDRI will allow customers to conduct one stop banking across products such as
the following:
● Core accounts. This includes savings and checking accounts.
● Lending. This includes credit cards, consumer loans (such as, auto and line

of credit), mortgage, and home equity.
● Investing. This includes certificates of deposit, trust services, brokerage services

(including securities), annuities, individual retirement accounts, and mutual
funds.

● Financial planning. This includes comprehensive financial planning services,
including retirement, education, tax, and estate planning, including both future
planning and plan execution services.

Note: Some features in the preceding list are available in EDRI version 1.1. Other features are out
of scope but could be addressed in another implementation of the Global Bank scenario.

Enterprise Development Reference Implementation Community
The EDRI was designed with the Microsoft developer community’s participation in
mind. The pattern & practices team has been using a community workspace as a way
for the community members to review the EDRI and to provide feedback.

We encourage you to join the community at our workspace, where you can ask
questions, get answers and share your ideas.

To get involved,
● Visit the EDRA community workspace.
● Visit the EDRA Wiki.
● Visit the EDRI Wiki.

http://go.microsoft.com/fwlink/?LinkId=31528
http://go.microsoft.com/fwlink/?LinkId=31530
http://go.microsoft.com/fwlink/?LinkId=31531

6 Enterprise Development Reference Implementation

Use of Existing Patterns and Practices
An important goal in developing the GBRI was to demonstrate usage of patterns &
practices guidance, including the following:
● patterns & practices and industry standard design patterns, including the following:

● Model-View-Controller
● Page Controller

● patterns & practices Enterprise Development Application Framework, which in
turn uses patterns & practices application blocks, including the following:
● Authorization and Profile Application Block
● Configuration Management Application Block
● Data Access Application Block
● Logging Application Block

● Guidance from patterns & practices books on designing secure, scalable,
and performant applications, including the following:
● Improving Web Application Security: Threats and Countermeasures, Redmond:

Microsoft Press, 2003, ISBN: 0735618429
● Building Secure Microsoft ASP.Net Applications: Authentication, Authorization and

Secure Communication, Redmond: Microsoft Press, 2003, ISBN: 0735618909
● Improving .NET Application Performance and Scalability, Redmond:

Microsoft Press, 2004, ISBN: 0735618518

EDRI Documentation
The remainder of this chapter covers the following topics:
● Use Cases. This section presents use cases that describe the features and functional

requirements that are implemented in the EDRI.
● Non-Functional Application Considerations. This section describes the non-

functional requirements that were considered in the development of the EDRI.
● Use Case Realization. This section provides a story board description (through

screen shots and sequence diagrams) of each use case.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp
http://msdn.microsoft.com/library/en-us/dnpag/html/EDRA.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/authpro.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/cmab.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/logging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp

 Chapter 1: Overview and Use Cases 7

The remaining chapters are as follows:
● Chapter 2, Architecture. This chapter discusses the design objectives and

principles as well as the conceptual, logical, implementation, and deployment
view for the Enterprise Development Reference Implementation.

● Chapter 3, Services. This chapter presents a conceptual, logical, and deployment
view to illustrate each of the EDRI services.

● Chapter 4, Installation. This chapter describes the required platform prerequisites
and the steps you should follow to install the EDRI.

● Appendix A — Enterprise Development Application Framework Overview.
This section gives a brief introduction to the EDAF.

● Appendix B — Exploring the EDAF Using the Bill Payment Use Case.
This section gives an example of how the EDRI uses the EDAF.

Use Cases
The Enterprise Development Reference Implementation is a partial realization
of a business scenario that incorporates challenges common to a wide variety of
organizations — it does not apply only to banks. The EDRI functional requirements
were determined through the process of analyzing the problem statement and
forming use cases. A use case is a description of a system behavior observable
by a user. This release concentrates on the following six use cases:
● Login
● Consolidated Account Statement
● Transfer Funds
● Bill Subscriptions
● Bill Payment
● Transaction Log Report

In many cases, only parts of the use case are implemented. This allows us to focus
on challenging scenarios instead of the more routine aspects of the system that
would normally be developed in such an application. Additional use cases may
be implemented in future implementations of the Global Bank scenario. The parts
of each use case that are not implemented are noted as “out of scope” within the
discussion of each use case. The following sections describe in more detail the use
cases the EDRI implements.

8 Enterprise Development Reference Implementation

Login
The Login use case allows the Global Bank’s Internet Banking Application to
identify customers. The system prompts the user to enter his or her account
number and password. Each login attempt is logged for auditing purposes. The
user is authenticated after the system successfully identifies the user. The system’s
transactions and customization options are available only to authenticated users.
Table 1 provides details of the Login use case.

Table 1: Login Use Case

Actors Customer, System

Pre-Conditions None

Actions 1. The customer enters his or her account number and password on the home
page and clicks the Go button.

2. If the supplied credentials match those stored in the Customer Information
database, the system presents the Consolidated Account Summary report.
For more information, see the Consolidated Account Summary report use
case.

3. The system shows a personalized welcome message that includes the
customer’s name and last login date.

4. The auditing system logs each login attempt including the following
information: customer name, channel, last login date, and context
information indicating whether the login was successful.

Alternative Flows Login on home page fails
If the supplied credentials on the home page are incorrect, the system
redisplays the login screen. The customer may then reenter his or her
credentials.

Login attempts and expiration
If the customer unsuccessfully attempts to login more than five times, the
customer’s account is disabled. The customer will need to speak with a bank
representative to reactivate the account.

Login sessions are valid for 20 minutes. If the customer’s session is inactive
for more than 20 minutes, any attempt to access restricted information results
in a redirection to the Login screen. The customer should open a new browser
session.

(continued)

 Chapter 1: Overview and Use Cases 9

Table 1: Login Use Case (continued)

Actors Customer, System

Alternative Flows
(out of scope)

First time logins
When a customer logs in to the system for the first time, the system prompts
the customer to change his or her password before proceeding to the next
page. This occurs when he or she first subscribes to the system or forgets the
password and requests a new one.

Change password request
Customers may change their password. Passwords must comply with the
system password policy. All attempts to change the password are logged in
the Auditing and Security System.

Customer forgets the account number or password
If the customer forgets the account number or password, he or she needs to
contact the Help Desk for assistance. In the case of the password, the Help
Desk will assign a new password to the customer. After logging in with the
newly assigned password, the system prompts the customer to change his
or her password.

Post-Conditions None

Business Rules
(out of scope)

Passwords must have a minimum length of four digits and a maximum length
of eight digits. No more than two digits may appear consecutively. No more
than two consecutive digits should appear in the sequence.

Comments The 8-digit account number would likely be insufficient for a real bank over a
large number of years.

10 Enterprise Development Reference Implementation

Consolidated Account Statement
The Consolidated Account Statement use case describes the process of generating
an on-demand, consolidated report summarizing the customer’s contracts with
the bank. It includes checking and savings accounts, credit cards, term deposits,
investment funds, and pending bills. Table 2 provides details of the Consolidated
Account Statement use case.

Table 2: Consolidated Account Statement Use Case

Actors Customer, System

Pre-Conditions The customer must be authenticated. Anonymous requests are forbidden.

Actions 1. The customer selects the Account Summary option in the Global Bank
online banking portal.

2. The system presents a summarized report of all contracts between the
customer and the bank. Customers may expand each product to obtain
more information (out of scope). See Table 3 for details.

3. A report displays the information grouped by the following sections: cash
accounts, investment funds, cumulative deposits, credit cards, and
pending bills.

4. The system displays the groups in the order specified in step 3, except
when the customer’s personalization options indicate otherwise (out of
scope).

5. The system displays the information within each group. For details,
see Table 3.

Alternative Flows Customer does not have products in a particular section
If the customer does not own any products in a particular section, the system
does not display the whole section. For example, if he or she does not have
term deposits, the Investments section is not presented. The only exception
is pending bills. If the customer subscribes to the Bill Payment system and
does not have any pending bills, the system displays “No pending bills to
display.” If the customer does not subscribe to the Bill Payment system,
the entire section does not appear.

Post-Conditions None

Business Rules The account summary option is available only to authenticated users.

A customer may request a report only on his or her products.

 Chapter 1: Overview and Use Cases 11

Table 3: Account Product Detail Information

Product Fields Description

Account Type Account type

Account Number Account number

Checking and
Savings Account

Balance (USD) USD available balance

Card Number Card number

Card Type Master Card or Visa

Balance (USD) Current balance

Credit Limit (USD) Credit limit on the card

Expiration Date Date card expires

Payment Due Date Date current payment is due

Credit Cards

Name on card Customer name as it appears on the card

Identifier Identifier

Principal Principal amount

Interest Interest accrued at the end of the term

Term Number of days

Action on due date Action may be: automatic renewal, deposit

Cumulative Deposits

Due Date Date the cumulative deposit is due

Name Name of the fund

Shares Number of shares (units) owned

Investment Funds

Quote Quote for each share (unit)

Bill Payee The name of the company

Bill Identifier for the bill

Due Date Date the bill is due

Bills

Amount (USD) The bill amount

12 Enterprise Development Reference Implementation

Transfer Funds
The Transfer Funds use case allows customers to transfer money between accounts.
Table 4 provides details of the Transfer Funds use case.

Table 4: Transfer Funds Use Case Details

Actors Customer, System

Pre-Conditions The customer must be authenticated. Anonymous requests are forbidden.

Actions 1. The customer selects the Funds Transfer option in the Global Bank online
banking portal.

2. The customer enters the source account from a list containing all of his or
her savings and checking accounts, the destination account, the amount of
money to transfer and a comment for future reference. The listing of
multiple configured accounts and multiple currencies is out of scope.

3. The system prompts the customer for transaction confirmation. This step
ensures that the destination account is eligible for this transaction
(account is active and exists).

4. The system displays a unique identifier of the operation for the customer’s
future reference and the transfer is complete.

Alternative Flows Transfer limits
The amount of money that can be transferred in a single transaction is set
across the system and can be configurable by Global Bank.

Alternative Flows
(out of scope)

Transfer limits
There will be a maximum amount of money that can be transferred in a month.
The monthly limit applies to all transfers performed by the customer regardless
of the account type. If the limit is exceeded, an error message is presented
and the transfer is canceled.

Transfers between accounts of different currencies
Limits are expressed in the debiting account currency. If the debit and credit
currencies differ, a foreign currency exchange transaction is triggered. The
system displays a foreign exchange transaction confirmation for the
customer’s approval. Upon confirmation, the system displays the exchange
rate used to perform the transaction. The system will log one entry for the
exchange and another entry for the transfer to the Auditing and Security
System.

Third-party transfer limits
If the destination account is not owned by the customer, a different system-
wide limit applies to the maximum transfer amount. If the limit is exceeded,
an error message is displayed and the transfer is canceled.

(continued)

 Chapter 1: Overview and Use Cases 13

Table 4: Transfer Funds Use Case Details (continued)

Actors Customer, System

Alternative Flows
(out of scope)
(continued)

Scheduled transfers
By default, transfers take effect immediately after confirmation. The customer
may defer the transfer by entering an effective date. The scheduled transaction
is performed at the bank’s opening time on the selected date. The system logs
one entry when the customer requests the transfer and another entry when the
transfer occurs to the Auditing and Security System.

Transfers to any account can be scheduled. If the amount transferred exceeds
the limit, an error message is displayed and the transfer is canceled.

Post-Conditions Available balances
Balances are updated after the operation is confirmed. If the customer
requests a Consolidated Account Statement, the updated balances are
displayed. The only exception is when the customer requests a scheduled
transfer.

Business Rules A customer can transfer funds from only his or her savings or checking
accounts.

The system will not allow duplicate transactions. If the user confirms an
operation twice, the operation should not produce two transactions.

Funds from the source account will be debited immediately after confirmation.
If there are not enough funds to perform the transaction, the system will
display an error message and return to the previous screen.

The source and destination accounts for the funds transfer must be different.

Business Rules
(out of scope)

The system will allow the maximum transfer amount to be set by the system
administrator.

If the currencies of a debit and credit amount during a funds transfer differ,
the system will trigger a foreign currency exchange transaction.

If the system triggers a foreign currency exchange during a transfer funds
transaction, the system will display the exchange rate used to the customer
during the confirmation process.

Scheduled transfers will be automatically executed by the system at the bank’s
opening time on the scheduled date.

Comments Data entered on the page is validated both on the client and in the service.

14 Enterprise Development Reference Implementation

Bill Subscriptions
The Bill Subscriptions use case allows customers to subscribe to bill payments.
New bills coming from the subscribed external company are presented to the
customer for payment. Table 5 provides details of the Bill Subscription use case.

Table 5: Bill Subscriptions Use Case

Actors Customer, System

Pre-Conditions The customer must be authenticated. Anonymous requests are forbidden.

Actions 1. The customer selects the Bill Subscription option in the Global Bank online
banking portal.

2. The system displays a list of the customer’s subscribed bills.

3. The customer selects a bill payee from the list and the enters his or her
account number for the selected payee.

4. The customer confirms the request and the new subscription is added to
the list.

5. The system displays a unique identifier of the operation and the Bill
Subscription — Receipt page.

Alternative Flows Delete subscription
Each row on the subscribed bills section will have a delete button. If the
customer clicks this button, the bill subscription is set to inactive. This will be
allowed only if there are no pending bills to be paid.

Alternative Flows
(out of scope)

Bill identifier validation
The customer enters a Bill Identifier that identifies the relationship between
him or her and the external company. If the external company provides this
service to the bank, validations will occur.

Billing Company Notification
The billing company may be notified of the subscription. Notifications will
happen asynchronously, meaning that they will not affect the subscription
transaction. The EDRI does not show processing that would normally occur in
an offline batch mode.

Post-Conditions Cached Account Summary Information
The cached Account Summary in the Web application is automatically updated.
The Bill Subscription service returns the state of the accounts after
subscribing the bills. This information is used by the Web application to
update the cache.

 Chapter 1: Overview and Use Cases 15

Bill Payment
The Bill Payment use case allows customers to pay bills. Table 6 provides details of
the Bill Payment use case.

Table 6: Bill Payment Use Case

Actors Customer, System, External Company, Bill System

Pre-Conditions The customer must be authenticated. Anonymous requests are forbidden.

Actions 1. The customer selects the Bill Payment option in the Global Bank online
banking portal.

2. The customer selects an account from a list of his or her checking or
savings accounts.

3. The customer selects one of the pending bills from a list of pending bills.

4. The system prompts the customer for transaction confirmation.

5. The system prompts the customer to confirm the request.

6. The system completes the transaction and displays the Bill Payment page.

Alternative Flows Billing Company Notification
The payment process implies a funds transfer operation between the customer
account and a collection account belonging to the external company. The
company may request to be notified and validate the transaction as part of the
payment. This notification will be managed through a business event queue. If
the publish fails, the implicit funds transfer operation must be reversed. Each
of these events is logged.

Alternative Flows
(out of scope)

Bill Company Notification, continued
Subscription to the business event queue and notification to the bill payee is
out of scope.

Post-Conditions Cached Account Summary Information
The service that performs the bill payment returns the state of the accounts
after paying the bills. The Web application uses this information to update the
cached information.

Business Rules After a bill is paid, it will not be shown in the account summary screen.

The system will perform a check against a system-wide limit for each bill.
Bills exceeding the limit will not be eligible and will be rejected.

Limits on fund transfers will not affect and are not affected by bill payments.

Funds from the source account will be debited immediately upon confirmation.
If there are not enough funds to perform the transaction, the system will
display an error message and return to the bill payment initial screen.

The customer will not have the ability to select bills with amounts exceeding
the account balance. This will be updated if the customer modifies the
payment account.

16 Enterprise Development Reference Implementation

Transaction Log Report
The Transaction Log Report use case allows customers to view a log of selected
transactions using a search criteria based on date ranges. Table 7 provides details
of the Transaction Log Report use case.

Table 7: Transaction Log Report Use Case

Actors Customer, System

Pre-Conditions The customer must be authenticated. Anonymous requests are forbidden.

Actions 1. The customer selects the Transaction Log option in the Global Bank online
banking portal.

2. The system will show all transactions done on the selected date, including
funds transfers and bill payments.

3. The system displays a list of records. The records contain information
regarding the original operation including bill payee, account information,
amount, and date.

Alternative Flows Custom Report
The customer selects a range of dates for a report using the Transaction Log
Report. Only records for the previous three months are presented.

Alternative Flows
(out of scope)

Logout Report
When the customer logs out of the Global Bank online banking portal,
the system prompts the customer for an optional Transaction Log Report.
This option is a customization option and the customer may activate or
deactivate it.

Post-Conditions None

Business Rules If the customer selects the custom date range, the “To” date must be greater
than the “From” date.

Comments The business rule validation should be done both on the client and in the
service.

 Chapter 1: Overview and Use Cases 17

Non-Functional Application Considerations
In addition to the functional requirements discussed within the use cases,
Global Bank also considered non-functional requirements related to areas such as
availability, data integrity, performance, and security. Many of these issues are out
of scope for this version.

Application Availability
The CIO is willing to allocate infrastructure dollars to support four nines (99.99%) of
planned availability. Meeting this goal will require careful design of both the network
and application architecture. Single points of failure within the infrastructure should
be reduced by deploying redundant network switches, firewalls, application servers,
and database servers.

The Internet banking application and dependent services should be designed so that
additional servers can be added based on increases in traffic. The Presentation tier
should be designed to scale horizontally, meaning that additional Web servers can
be added to the Web farm as traffic increases.

Session state within the Presentation tier should be stored on a central database
server to ensure users’ sessions are not lost if a Web server goes offline. Web services
running on the application servers should not maintain session state. This simplifies
horizontal scaling, and it ensures service and data availability if an application server
goes offline. To help support autonomy of deployed services, all services should react
appropriately when dependent resources are unavailable.

Database servers should be deployed within a cluster to ensure availability if the
database server goes offline. Databases can be designed to scale either vertically or
horizontally. Most services in this fictitious scenario interact with applications which
would, in real life, need to be tested to determine the extent to which they could meet
the CIO’s availability objectives.

“Stand in balance” services are often used to provide offline information when any
back-end system becomes unavailable. For instance, if the mainframe is running
batch processes and a customer requests an account summary, a handler routes the
request to a different business action that reads the data from a stand-in database.
This is out of scope.

Data Integrity
Autonomous services should handle failure of the client or service infrastructure
without notification. System integrity should be ensured using techniques such as
transactions, durable queues, redundant deployment, and failover.

18 Enterprise Development Reference Implementation

Each service should describe the techniques that are being used to ensure system
integrity. Examples include atomic transactions, compensating transactions, and
message queues. Data integrity considerations include the following:
● A user may view or perform transactions only for accounts that they own.
● The system should not allow duplicate transactions. For example, if the user

confirms the same operation twice, only one transaction should be produced.
● The system should not be affected by threats such as URL changes, hidden field

hacks, or spoofing.
● Each Web service should validate messages to ensure adherence to WSDL contract

and XSD schema.
● SSL and IPSec can also be used to ensure messages are not modified in transit. For

pointers to information about how to configure SSL and IPSec, see the “Enterprise
Development Reference Implementation Installation Guide.”

● The system should log the last date and time when any data is added, modified, or
deleted; and it should log the user name that added, modified, or deleted the data.

● Passwords and credit card numbers should be transmitted by way of SSL, and the
credit card numbers should be protected in the database. This is not supported in
version 1.1.

Performance
Global Bank has referenced online banking application response time statistics
available from Keynote and Gomez. Global Bank has set an average page response
time goal of 10–15 seconds (depending on site traffic).

This release of Global Bank has undergone performance and scalability testing,
within a laboratory environment, to ensure this goal can be met. However, a later
release of this solution may (depending on customer feedback) include a complete
performance model and a sample capacity plan based on prescribed guidance. For
end-to-end guidance for managing performance and scalability throughout your
application life style, see Improving .NET Application Performance and Scalability.

Security
The application and Web service implementations described in this document would,
in reality, rely on a combination of trusted subsystem security for authentication
and transport-level security for encryption and data integrity. A future release of
Global Bank may demonstrate message level security using Web Services Security
(WS-Security) as implemented by Web Services Enhancements (WSE) for
Microsoft .NET. For more information about the trusted subsystem model,
see Chapter 3: Authentication and Authorization in Building Secure Microsoft
ASP.NET Applications: Authentication, Authorization, and Secure Communication.

http://www.keynote.com/
http://www.gomez.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp

 Chapter 1: Overview and Use Cases 19

Note: EDRI version 1.1 is set up for a development environment; it is not set up for a production
environment. It is up to the developer to implement security based on their organizational and
application specific requirements. You may also want to review the “Security Considerations”
topic in the Enterprise Development Reference Architecture documentation.

For complete guidance on security issues, see the following resources:

• Building Secure Microsoft ASP.NET Applications: Authentication, Authorization, and Secure
Communication, Redmond: Microsoft Press, 2003

• Improving Web Application Security: Threats and Countermeasures, Redmond: Microsoft Press,
2003

User Authentication
User identification and passwords will be obtained using ASP.NET forms
authentication. SSL would, of course, be used to ensure confidentially of user data
during authentication — this is not configured, by default, when the application is
installed.

User credentials will be validated, and a generic principal containing the end-user’s
identity will be created and stored in the session state on the Web servers. This allows
interactions with back-end services to validate data entitlement of the originating
user.

Global Bank has two future requirements that will impact how end-user credentials
are managed in the long term:
● Support for additional channels. A future update of the Voice Response System

and proposed Smart Client applications that tellers use will consume the same
Web services as those developed for the online banking application. At that point,
the Web services will be exposed to more than one client, making sole reliance on
a trusted subsystem model a little more complex.
To provide a greater degree of security when the services are exposed to more
than one client, Global Bank is considering developing a service that would issue
tokens when an end user is initially authenticated. This token would be stored in
a transient token database that will be keyed by session ID. The table would also
contain the user’s identity and other information related to token expiration.
This is not implemented in this release.

● Client authentication using X509 certificates. Global Bank would like to
investigate options for authenticating end users using solutions such as X509
certificates; however, this capability is not widely used in the United States
where Global Bank is currently based.

20 Enterprise Development Reference Implementation

Additional user identification and authentication considerations include the
following:
● The system should uniquely identify a user with a user account and password

combination before allowing him or her to access the system. The user account
must be a minimum of eight characters.

● After users are logged in, they will automatically be logged out if the session is
idle for 20 minutes. Subsequent requests to protected pages will force the user
to reenter his or her credentials at the Login page.

● The system should allow the user to change his or her password at any time.
This is not implemented in this release.

User Authorization
Global Bank should enforce the following functional entitlement requirements:
● The Login page can be accessed by any user.
● The Account Summary, Funds Transfer, Bill Subscription, Bill Payment,

and Online Help pages can be accessed only by authenticated users.
● Data entitlement should also be implemented to ensure that a user can view his

or her own data.

Service Authentication
In this release of Global Bank, the Presentation tier will be the only client using the
Web services. Network level security, such as firewalls and private IP addresses,
should be used to restrict access to these services.

Authentication between the Presentation tier and the application server will rely on
a trusted subsystem model where the application server validates the calling server’s
credentials, not those of the end user initiating the request. See “The Trusted
Subsystem Model” in Chapter 3: Authentication and Authorization in Building
Secure Microsoft ASP.NET Applications: Authentication, Authorization, and Secure
Communication.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp

 Chapter 1: Overview and Use Cases 21

Transport Layer Security
Interactions between client and Presentation tier are assumed to occur using SSL/TLS
with server certificates. Security between the Presentation tier and the application
servers hosting the business logic includes network level security using SSL to
encrypt the transport. IPSec will also be used to secure the data transported between
the Presentation tier and the Application tier. SSL client certificates are also being
considered as an additional means of allowing the application server to validate
the credentials of the Presentation tier.

Browser Compatibility
The system should take multiple browsers into consideration. For this release,
the EDRI has been tested only against Microsoft Internet Explorer 6.0 or later.

Use Case Realization
The Global Bank Internet banking application presents the user with a Web interface
to the Global Bank functionality. The number of pages is small in this case, because
only a few functional areas are available:
● Login
● Consolidated Account Statement
● Transfer Funds
● Bill Subscriptions
● Bill Payment
● Transaction Log Report

The number of use cases being implemented is a subset intended to demonstrate
complex problems. This section provides a story board description of each use case.
The story board walks you through the user interface that implements the use case.
Each use case also contains a sequence diagram that describes the interaction
between users, systems, and services used to implement the use case.
Implementation of the presentation tier and back-end Web services is described
in detail in Chapter 2, “Architecture” and Chapter 3, “Services.”

22 Enterprise Development Reference Implementation

Figure 2 presents the Global Bank Internet banking application’s screens and
navigation paths.

Funds Transfer -
Receipt

Add Bill
Subscription

- Receipt

Login

Home

Account
Summary

Transaction
Log

Funds Transfer -
Preparation

Bill
Subscription

Bill
Payment Help

Funds Transfer -
Confirmation

Add Bill
Subscription -
Confirmation

Delete Bill
Subscription -

Receipt

Delete Bill
Subscription -
Confirmation

Bill Payment -
Confirmation

Bill Payment -
Receipt

Figure 2
Global Bank navigation map

 Chapter 1: Overview and Use Cases 23

Login and Consolidated Account Statement Use Cases
The Login page is the first screen in the Global Bank Internet banking application.
Each user will enter his or her user name and password, and then clicks the Go
button. Figure 3 shows the Login page.

Figure 3
Login page

24 Enterprise Development Reference Implementation

After the user’s credentials are validated, the Account Summary page displays.
This page is similar to the page in Figure 4; it shows the user’s aggregated summary
information. The user can perform tasks such as bill payment, funds transfer, and
bill subscription using the menu bar at the top of the page.

Figure 4
Account Summary page

 Chapter 1: Overview and Use Cases 25

The sequence diagram in Figure 5 shows how the user, systems, and services interact
to implement the Login and Consolidated Account Sequence use cases.

Enter
Credentials

:AccountSummary.DisplayView:Home.PublicHomePage
:Authentication

Service

Page Redirect

Display Page

Validated

Authenticate Credentials

User

Figure 5
Login and Consolidated Account sequence diagram

26 Enterprise Development Reference Implementation

Transfer Funds Use Case
Figure 6 shows how user can select the accounts to transfer funds, the amount to
transfer, and enter comments.

Figure 6
Prepare page

 Chapter 1: Overview and Use Cases 27

After the user clicks the Prepare button, the Confirm page shown in Figure 7
displays.

Figure 7
Confirm page

The user clicks the Confirm button to complete the funds transfer. The Receipt page
in Figure 8 is then displayed. If the user wants to go back to the Prepare page to edit
the funds transfer information, the user can click the Edit button.

Figure 8
Receipt page

The Receipt page displays the funds transfer transaction reference code. The user
clicks the Done button to complete the use case.

28 Enterprise Development Reference Implementation

The sequence diagram in Figure 9 describes how the user, systems, and services
interact to implement this use case.

Page Redirect

Selects From
and To

accounts

Enters
Amount to
Transfer

Enters
Description

Page Redirect

:ReceiptView
:FundsTransfer

Service
:PreparationView :ConfirmationView

Click on Confirmation

Display Confirmation

Display Funds Transfer Completed Message

Funds Transfer Processed

PerformFundsTransfer

User

Figure 9
Funds Transfer sequence diagram

 Chapter 1: Overview and Use Cases 29

Bill Subscriptions Use Case
The Bill Subscriptions use case supports two different actions: adding a bill
subscription and deleting a bill subscription.

Add Bill Subscription
In this scenario, the user selects the payee from the drop-down list and enters
the payee account number in the text box as shown in Figure 10.

Figure 10
Prepare page

30 Enterprise Development Reference Implementation

The user clicks the Add button to create an additional bill subscription. The Confirm
page will summarize the request; this page is shown in Figure 11.

Figure 11
Confirm page

The user clicks the Confirm button to complete the bill subscription addition, and the
Receipt page is displayed; Figure 12 shows this page. The user can also click the Back
button to go back to the Prepare page to edit the bill subscription information.

Figure 12
Receipt page

The Receipt page displays a confirmation message that the task is complete. The user
clicks the Done button to complete the use case.

 Chapter 1: Overview and Use Cases 31

The sequence diagram in Figure 13 describes the steps used to add a bill subscription.

Page Redirect

Selects Payee,
Enters

Account #

Page Redirect

:ReceiptView
:BillSubscription

Service
:PreparationView :AddConfirmationView

Click on Confirmation

Display Confirmation

Display Bill Subscription Completed Message

Subscription Processed

Invoke

User

Figure 13
Add Bill Subscription sequence diagram

32 Enterprise Development Reference Implementation

Delete Bill Subscription
The user deletes a bill subscription by clicking on the Delete link next to the bill in
the Subscribed section as shown in Figure 14.

Figure 14
Prepare page

The Confirm page, as shown in Figure 15, displays.

Figure 15
Confirm page

 Chapter 1: Overview and Use Cases 33

The user clicks the Confirm button to complete the bill subscription deletion, and
the Receipt page displays; this page is shown in Figure 16. The user can also click
the Back button to go back to the Prepare page to edit the bill subscription.

Figure 16
Receipt page

The Receipt page displays a confirmation message that the task is complete. The user
clicks the Done button to complete the use case.

34 Enterprise Development Reference Implementation

The sequence diagram in Figure 17 describes the steps used to delete a bill
subscription.

Page Redirect

Selects Payee
to Delete

Page Redirect

:ReceiptView
:BillSubscription

Service
:PreparationView

:Delete
ConfirmationView

Click on Confirmation

Display Confirmation

Bill Subscription Removed Message

Subscription Removal Processed

Invoke

User

Figure 17
Delete Bill Subscription sequence diagram

 Chapter 1: Overview and Use Cases 35

Bill Payment Use Case
In this use case, the user pays a bill. The user first selects the source account used to
pay the bill from the drop-down list. The pending bills in the grid are listed as shown
in Figure 18.

Figure 18
Prepare Account page

36 Enterprise Development Reference Implementation

The user selects the bill to pay by clicking the Select link next to the appropriate
pending bill, as shown in Figure 19.

Figure 19
Prepare Bill page

The Confirm page, as shown in Figure 20, displays.

Figure 20
Confirm page

 Chapter 1: Overview and Use Cases 37

The user clicks the Confirm button to complete the bill payment, and the Receipt
page displays; this page is shown in Figure 21. The user can also click the Back
button to go back to the Prepare page to edit the bill payment information.

Figure 21
Receipt page

The Receipt page displays a confirmation message that the task is complete. The user
clicks the Done button to complete the use case.

38 Enterprise Development Reference Implementation

The sequence diagram in Figure 22 describes the steps used to pay bill subscriptions.

Page Redirect

Selects
Account

Bill Payment
Selected

Enables
Pending

Payments

Page Redirect

:ReceiptView
:BillPayment

Service
:PreparationView :ConfirmationView

Click on Confirmation

Display Confirmation

Display Results

Payment Processed

Invoke

User

Figure 22
Bill Payment sequence diagram

 Chapter 1: Overview and Use Cases 39

Transaction Log Report Use Case
When the user views this page, the default transaction log data for the current date
displays. The user can alter the From and To dates and click the Get Transaction Log
button to request the transaction log data for the specified date range, as shown in
Figure 23.

Figure 23
Transaction Log page

40 Enterprise Development Reference Implementation

The sequence diagram in Figure 24 describes how the user, systems, and services
interact to implement this use case.

Display Transaction Logs

Navigates to Page
OR Selects New Dates

User
:TransactionLog.DisplayView :TransactionLogService

Data Returned

Invoke

Figure 24
Transaction Log sequence diagram

2
Architecture

Good software architecture provides both a blueprint of a system (a detailed design)
and an abstraction that serves to manage the complexities of the design so that the
application’s intent and functionality can be more easily understood.*

This section describes the major structural elements of the EDRI. It explains
and illustrates the architecture from a number of perspectives. Collectively, these
representations provide a comprehensive and detailed introduction to the reference
implementation, how it is designed to function, and how it is organized.

Design Objectives and Principles
Global Bank is an established national bank that serves customers and businesses that
are small to medium in size. Global Bank has made a series of strategic acquisitions
in recent years to help sustain growth in emerging markets. Global Bank plans to
develop an online banking portal to allow customers to access personal finance
information online.

Like many large organizations, Global Bank has a diverse range of back-end
technologies that support the day-to-day operations of the bank. Many of these
technologies run on proprietary software and hardware with limited capability for
reuse. Global Bank is committed to extending its functional integration strategy to
incorporate standards-based Web services — as a move toward broader adoption
of a service oriented architecture.

* Hofmeister, Christine, Robert Nord, and Dilip Soni. Applied Software Architecture. Reading,
Massachusetts: Addison-Wesley, 1999

42 Enterprise Development Reference Implementation

Objectives
In addition to meeting the business requirements for an online banking application,
the Global Bank chief architect responsible for the enterprise architecture has stated
two strategic objectives:
● Standardize using an enterprise framework to ensure consistent and timely

development of business logic.
● Establish standards for using service-oriented integration as a means to expose

system functionality so that other channels, such as Teller Terminals, Voice
Response Systems, and ATMs, can use the same functionality at a later point.

Enterprise Framework
After studying the options, the project architect chose to standardize development of
services using the patterns & practices Enterprise Development Reference Architecture.
This solution will facilitate the following:
● Separation of business logic from underlying transports.
● Separation of cross-cutting concerns from business logic.
● Separation of Service Interface from Service Implementation to support resiliency

and alternate deployment scenarios for services.

To understand how the framework processes requests and associated details, see
“Appendix A — Inside the Enterprise Development Application Framework.” The
following sections discuss the architecture of the Global Bank online banking system.

Service Oriented Integration
Over the years, Global Bank invested in technologies that were not always designed
with interoperability in mind. Like most organizations, Global Bank does not have
the luxury of rewriting these applications when new technologies emerge.

The project architect is following the guidance contained within the patterns &
practices Functional Integration pattern to integrate information systems that
were not designed to work together. The service-oriented integration approach
to functional integration will enable system functionality to be exposed using
standards-based Web services.

 Chapter 2: Architecture 43

The project architect proposed a small number of Web services that will provide
access to disparate back-end systems. Each service was designed to do the following:
● Generalize functionality independently of platform or application specific

execution context.
● Use an XML Schema to specify a service’s structure. This reduces type system

coupling and allows for automated validation of a message against a schema.
● Protect the integrity of each system’s data by validating all requests to a service.

This includes ensuring only trusted clients can call the service.
● Plan for unavailability of dependent services within a client. For example, if the

Investment Fund System is unavailable, the Account Statement Service should
still return data from the other systems that are available.

● Separate enforcement of a service’s policy requirements, such as authentication,
from business logic to simplify adoption of emerging WS-Policy specifications
in the future.

Architectural Representation
A software architecture is a complex, multifaceted set of artifacts that cannot be
fully explained in a single diagram or from a single viewpoint. To help explain these
artifacts, software architects typically use a number of different perspectives, or views,
to depict architectures. In this chapter, the combination of these views provides a
comprehensive picture of the EDRI, its functional elements, and the interactions
between those elements. The views and their objectives are as follows:
● Conceptual view. The conceptual view is a high-level overview of the key

architecture elements and their relationships.
● Logical view. The logical view is a detailed description of key elements of the

architecture. The view describes the grouping of design elements (classes and
interfaces) into packages represented as namespaces; it also describes the static
and dynamic relationships between the classes.

● Implementation view. The implementation view describes how the classes and
interfaces are organized into directories, projects, and assemblies in the file system
and in the Microsoft® Visual Studio® development system.

● Deployment view. For the system architecture, this view documents the likely
physical topology. It includes each computer in the implementation and describes
how they are interconnected. The configuration for each node is also specified —
operating system, database, and applications.
For the services, the deployment view shows the distribution of components
across distinct processing nodes.

44 Enterprise Development Reference Implementation

Terminology and Key Concepts
Before you begin to review the architectural details of the EDRI, it would be helpful
to review the following terms. Many of these terms are commonly used within the
industry; however, some of these terms may have different connotations in this
document or in the field of software architecture in general. (Note that these terms
are presented in logical order, rather than the more typical alphabetical sequencing
of a glossary.)

Reference architecture
Architectural blueprint describing a selection and composition of architectural
patterns best addressing the needs of a class of solutions with known properties.

Application framework
A domain-specific, partially complete software (sub-) system that is intended to
be instantiated. Incorporates provision for extensions and adaptations.

Reference implementation
Partial implementation of a solution for a compelling business scenario.
Implements selected use cases in the scenario. Developed with the explicit
objective of demonstrating the use of a reference architecture exemplifying
prescriptive guidance.

Pattern
A description of a recurring problem that occurs in a given context and, based
on a set of guiding forces, recommends a solution. The solution is usually a
simple mechanism: a collaboration between two or more classes, objects,
services, processes, threads, components, or nodes that work together to
resolve the problem identified in the pattern.

Cross-cutting concern
A type of functionality that can be applied to multiple classes and/or applications
as they do not typically relate to a specific business problem. Typical cross-cutting
concerns include functionality such as authentication, authorization, and
application instrumentation.

Loosely coupled
A type of distributed application that is designed to function autonomously.
Design and implementation make few assumptions about the application in
which they interact, and can be deployed and versioned independently.

 Chapter 2: Architecture 45

Conceptual View
The conceptual view identifies, at a high level, the interaction of architectural
elements. It serves to identify the project vision based on previously identified
business and user requirements.

Dominant Patterns
The process design requirements for the Global Bank Internet banking application
center around three considerations:
● Separation of viewer and controller logic. This involves ensuring that the logic

of rendering the presentation is separated from the logic for interacting with the
model (services).

● Navigation between views of a use case. This ensures that the logic is centralized
into classes for maintainability and consistency.

● Managing state when navigating between views. This preserves state across the
views connected to a particular use case. It provides the views of the use case with
consistent access to the data.

To separate the user interface implementation from the navigation logic,
the Global Bank Internet banking application implements two patterns; the
Model-View-Controller pattern and a variant of the Model-View-Controller
pattern — the Page Controller pattern. The Presentation tier uses variants of the
Model-Viewer-Controller pattern. The Page Controller pattern is intended for
Web applications where navigation is fixed and complexity is relatively small.
The result is a Web-based application that is easy to develop and extend as new
functional areas are added to the system.

Model-View-Controller Pattern
The traditional Model-View-Controller pattern was used to implement the following
three use cases:
● Login
● Consolidated Account Statement
● Transaction Log Report

In this implementation, the views are the ASP.NET Web pages. The controllers are
separate classes used by these views. And the model is implemented within the
Web service. In these use cases, the controller and view are independent, and the
view has a reference to the instance of the controller. The controller logic can be
invoked by several views but only by the views within the appropriate use case.
For these use cases, the controller can be used by views in any of the use cases.
For more information, see the Model-View-Controller pattern in Enterprise Solution
Patterns Using Microsoft .NET, Redmond: Microsoft Press, 2003.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp

46 Enterprise Development Reference Implementation

Page Controller Pattern
For the other more complex use cases, the Page Controller pattern was used to more
clearly separate the view from the controller. Because the controller and view derive
from the same class without additional functionality, the controller can access all
functionality the Page class provides. In addition, the state was shared and could
easily be modified.

This pattern implies that the views derive from the controllers. There is an inherent
dependency between views and controller due to this relationship, and therefore,
some of the state manipulation logic can be found in the views. All of the interactions
with the model, which in this case is the services, is found only in the controller,
therefore preserving a clean separation of responsibilities. It is important to keep in
mind the complexity of the UI design when using this pattern. For more information,
see the Page Controller pattern in Enterprise Solution Patterns Using Microsoft .NET.

In the Global Bank application, this pattern is applied with a small variation:
There is one controller for each use case. This can be seen in the Bill Payment, Bill
Subscription, and Funds Transfer use cases. The Web application design used here is
targeted at Web applications with a relatively simple UI requirement where each use
case typically is associated with around three screens.

Logical View
The logical view presents the core design of the system. It presents the primary
classes that collaborate to implement the system functionality and communicate their
behavior. With respect to this Web application, the focus is on the pages that provide
the core set of functionality and the page controller classes they derive from.

Model-View-Controller Pattern
As mentioned above, the Model-View-Controller pattern is used in the Login,
Account Summary, and Transaction Log use cases. This pattern uses a separate
class for the view, the controller, and the model as shown in Figure 1. They are
aligned according to the use cases. In this Web application, the pattern is applied
to the following functional areas:
● Login
● Account Summary
● Transaction Log

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesPageController.asp

 Chapter 2: Architecture 47

Each Web page (view) employs a controller class. The controller class uses a Web
service proxy to invoke the desired service. The only exception is that the view for
the authentication functional area is an ASP.NET user control rather than a Web page.
The following class diagram illustrates the relationships between these classes:

AuthenticationService::
AuthenticationService

Model

AccountSummaryService::
AccountStatementService <<uses>>

<<uses>>

TransactionLogService::
TransactionLogService

<<uses>>

Login::LoginController

Controller

AccountSummary::
AccountSummaryController

<<uses>>

<<uses>>

TransactionLog::
TransactionLogController

<<uses>>

Controls::Login

View

AccountSummary::
DisplayView

TransactionLog::
DisplayView

Figure 1
Model-View-Controller pattern

48 Enterprise Development Reference Implementation

Page Controller Pattern
The classes involved in the implementation of the Page Controller Pattern in the
Global Bank Internet banking application are the following:
● View (Web page). This is implemented by the .aspx pages in the application.

They are responsible for rendering the data for presentation. For example,
the Bill Payment use case views: Bill\Payment\Confirmation.aspx, Bill\Payment
\Preparation.aspx, Bill\Subscription\Receipt.aspx.

● Controller. There is one controller for each use case. This class is responsible for
navigation between the views of the use case, preserving the use case state during
view navigation, and communicating with the Web services. The two billing uses
cases have the following page controllers: Bill\Payment\PageController.cs,
Bill\Subscription\PageController.cs.

● Navigation Controller. All controllers derive from this class. This class provides
the functionality for navigating between the views and preserving the use case
state. There is only one PageNavigationController class.

● Graph. There is one graph (navigation graph) per use case. This class is
responsible for managing the view navigation graph. It contains information
about which are valid views to navigate to and from for any given view. You can
see a graph class in Bill\Payment\Graph.cs or Bill\Subscription\Graph.cs.

● Webview. This represents a Web page view. It contains the data specific to a Web
page view, namely a URL; the valid navigable views from this page in the form of
a navigation graph object; and the logic to determine whether a specified view is
valid to navigate to. There is only one webview class.

● Use case state. This class is used to preserve the state for the use case. The state
contains the user entered information and can be used in other views of the use
case. This is stored in a user-defined struct type. There is one state type for each
use case. The state is preserved during the use case in the session state. Two
examples are Bill\Payment\BillPaymentState.cs and Bill\Subscription
\BillSubscriptionState.cs.

 Chapter 2: Architecture 49

The Web application uses the Page Controller pattern because the user interface
is relatively simple and does not warrant the additional complexity of the Front
Controller pattern or the UIP Application Block. For more information, see the
Front Controller pattern in Enterprise Solution Patterns Using Microsoft .NET.

You should consider using the UIP Application Block where you have complex
decision paths, and where you want to have configurable navigation graphs. To
qualify, each use case should have at least five screens. To determine whether it
fits your requirements, see the User Interface Process (UIP) Application Block –
Version 2.0.

The Page Controller pattern uses a page controller class for each functional area.
This page controller class derives from a single page navigation controller class.
In this Web application, there are only three dynamic functional areas:
● Bill payment
● Bill subscription
● Funds transfer

Each Web page belonging to a functional area derives from that area’s page controller
class. For example, the preparation, confirmation, and receipt views for the funds
transfer functionality area all derive from the funds transfer page controller class.
The class diagram in Figure 2 illustrates the relationships between these classes.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesFrontController.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/uipab.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/uipab.asp

50 Enterprise Development Reference Implementation

System.Web.UI.Page

Bill Subscription
Graph

Bill Subscription
State

Bill Subscription
Receipt View

Bill Subscription
Add Confirmation View

Bill Subscription Delete
Confirmation View

Bill Subscription
Preparation View

Bill Payment
Graph

Bill Payment
State

Bill Payment
Preparation View

Bill Payment
Page Controller

Bill Subscription
Page Controller

Bill Payment
Confirmation View

Bill Payment
Receipt View

Funds Transfer
Preparation View

Page Navigation Controller

Funds Transfer Page Controller

Funds Transfer Confirmation View

Funds Transfer
State

Funds Transfer
Receipt View

1

1

1

11

11

1

1

1 1 1

Funds Transfer
Graph

Figure 2
Implementation of Page Controller pattern in the EDRI

 Chapter 2: Architecture 51

Funds Transfer Walkthrough
Using the Funds Transfer use case as a scenario, Figure 3 describes how these objects
collaborate in the Page Controller pattern to perform a funds transfer from one
account to another.

3 GoToReceipt()

6 GoToPreparation()1 GoToConfirmation()

FundsTransferService:
WebService

FundsTransfer.PageController:
PageNavigationController

ReceiptView:FundsTransfer.
PageController

PreparationView:FundsTransfer.
PageController

ConfirmationView:FundsTransfer.
PageController

PageNavigationController:
Web.UI.Page5

2,4

PerformFundsTransfer(request)

NavigateTo(destinationPage)

Figure 3
Funds Transfer walkthrough

52 Enterprise Development Reference Implementation

This walkthrough begins with the user clicking on the funds transfer link of the
navigation bar at the top of a Web page. This loads the Preparation.aspx page.
The walkthrough includes the following steps:
1. After the user enters the appropriate information for a funds transfer, he or

she clicks the Prepare button. This calls the GotoConfirmation() method of the
PageController class. The page controller class now loads the Confirmation.aspx
page using the Server.Transfer() method.

2. After reviewing the information entered on the preparation page, the user clicks
the Confirm button (as opposed to returning to the preparation page by clicking
the Edit button). This calls the GotoReceipt() method of the
FundsTansferPageController class.

3. The GotoReceipt() method performs the service request, invoking the
PerfromFundsTransfer() method of the FundsTransferService class. It passes
the method an instance of the FundsTransferRequest class. When the service
completes, a response is returned to the page controller class. The controller
class now loads the Receipt.aspx page.

4. The Receipt.aspx page uses the response to display the results of the operation.
When the user clicks the Done button, the GotoPreparation() method of the
FundsTansferPageController class is invoked. The page controller class now
loads the Preparation.aspx page using the Server.Transfer() method.

Service Invocation
The Global Bank Internet banking application invokes the services it uses through
the use of Web service proxies. These proxies were compiled using the .NET WSDL
utility by passing in the service URL. This tool generates a class in the specified
language, Microsoft Visual C#® development tool in this case, that maps the
parameters for a Web method to XML elements in a SOAP message. For more
information about generating a Web service proxy with the WSDL utility, see
Creating the Web Service Proxy on MSDN.

For the Global Bank application, Web service proxies were generated for
each of the services used: AuthenticationService, AccountStatementService,
BillPaymentService, BillSubscriptionService, FundsTransferService and
TransactionLogService. The WSDL utility creates these classes so that they derive
from the SoapHttpClientProtocol class found in the System.Web.Services.Protocols
namespace. Each Web service proxy class was added to the Global Bank solution.
They can be found in the WebApplication.WebServiceProxies assembly.

Returning to the Funds Transfer use case scenario to demonstrate how this works,
the PageController class for the funds transfer functional area calls the service proxy
from within the GotoReceipt() method. The following code examples illustrate how
to perform this action in code. First, an instance of the proxy is created.

// create an instance of the service proxy
FundsTransferService service = new FundsTransferService();

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rsprog/htm/rsp_prog_soapapi_dev_57fm.asp

 Chapter 2: Architecture 53

Next, an instance of the service’s request header is created and populated with the
user’s login ID using the following code.

RequestHeader requestHeaders = new RequestHeader();
requestHeaders.Headers = new object[2];
object[] userName = new object[2];
userName[0] = "UserName";
userName[1] = "11111111";
object[] channel = new object[2];
channel[0] = "Channel";
channel[1] = "Home Banking";
requestHeaders.Headers[0] = userName;
requestHeaders.Headers[1] = channel;

Then an instance of the FundsTransferRequest class is created and initialized with
the contents of the message.

FundsTransferRequest request = new FundsTransferRequest();
// the request parameters are filled in here…
request.SourceAccountNumber = this.fundsTransferState.SourceAccountNumber;
request.DestinationAccountNumber =
this.fundsTransferState.DestinationAccountNumber;
request.Amount = this.fundsTransferState.TransferAmount;
request.EffectiveOn = this.fundsTransferState.TransferEffectiveDate;
request.Description = this.fundsTransferState.Description;

Finally, the Web method is invoked using the service proxy, passing it the request
object.

// invoke the service…
FundsTransferResponse response = service.PerformFundsTransfer(request);

The preceding code example demonstrates how to invoke the
PerformFundsTransfer() Web method using the Web service proxy
FundsTransferService. When the service proxy is called, it generates a SOAP
message and invokes the Web service. At this point, the Enterprise Development
Application Framework (EDAF) intercepts the request and begins processing it.
Ultimately, the EDAF calls the business action described in the FundsTransfer Service
section. When the business action completes, it returns a response. The response sent
back through the EDAF, to the service proxy, and then back to the calling function,
GotoReceipt(), in the page controller class.

The information in the SOAP header includes the channel name, which is currently
used only for auditing purposes. In the future, different types of channels may be
supported to expose additional capabilities, for instance smart client or interactive
voice response channel.

54 Enterprise Development Reference Implementation

Implementation View
The implementation view maps the classes from the logical view to their physical
structure in the solution projects. The implementation view serves as the roadmap
from the source code to the physical binaries.

The two main assemblies built for the Global Bank Internet banking
application are the WebApplicationUI and the WebApplication.UIProcess.
The first, the WebApplicationUI, contains the actual pages viewed by a user.
The WebApplication.UIProcess assembly contains the page controller classes
these pages derive from. Therefore, the WebApplicationUI assembly depends on
the WebApplication.UIProcess assembly. The diagram in Figure 4 illustrates this
dependency.

WebApplicationUI.dll

WebApplication.UIProcess.dll

WebApplication.MessageAdapters.dll

WebApplication.Common.dll

WebApplication.Utilities.dll

WebApplication.WebServiceProxies.dll

Figure 4
Web application assembly dependencies

 Chapter 2: Architecture 55

The Web application has four additional assemblies that provide some common
functionality and the proxies for the Web services. Both the WebApplicationUI
and the WebApplication.UIProcess assemblies reference all four assemblies.

WebApplicationUI
The WebApplicationUI assembly contains several subfolders. These subfolders
organize the classes into groups and subgroups. The namespaces all begin with
Microsoft.ReferenceImplementation.WebApplication. For example, the
Display.aspx class found in the AccountSummary folder within the Task
folder has the following namespace:

Microsoft.ReferenceImplementation.WebApplication.WebApplicationUI.Task.
 AccountSummary

As the following folder structure demonstrates, the assembly contains the Task,
Home, and Controls top-level folders. Within the Task folder, there are several
subfolders that are used to organize the Web pages by use case functional area.

- WebApplicationUI
 + bin
 + Controls
 + Home
 + mm
 - Task
 + AccountSummary
 - Bill
 + Payment
 + Subscription
 + FundsTransfer
 + TransactionLog
 - tools
 + css
 + js

The Home directory contains the initial pages that are displayed when a user first
visits the site. The public page is for anyone visiting the site, while the private page
is for authenticated users.

The Controls directory contains several ASP.NET user controls. These are used as
custom controls in the application. The AmountPicker and DatePicker are text
boxes that allow users to enter amounts and dates respectively. The LoggedInHeader
is used to provide navigation. And the Login control is used for ASP.NET forms
authentication. The user enters their credentials here so they can be validated by
the system.

The Task directory contains all of the Web pages (.aspx) and associated classes
pertaining to the user interface for each use case. The tools directory contains
cascading style sheets (.css) and Java script files. The mm directory contains
the images for the user interface. The bin directory contains the binary files.

56 Enterprise Development Reference Implementation

WebApplication.UIProcess
The same can be done for the WebApplication.UIProcess assembly. The directories
contain the page controller classes for each functional areas corresponding to the
use cases. The PageController classes are what the Web pages derive from. The
<Installation Location>\Microsoft EDRA\CS\ReferenceImplementation
\GlobalBank\WebApplication\UIProcess directory contains the following
files and folders.

- UIProcess
 + bin
 - Controller
 + AccountSummary
 - Bill
 + Payment
 + Subscription
 + FundsTransfer
 + Login
 + TransactionLog

The common files are in the UIProcess directory. The controllers corresponding to
each of the use cases are located in each of the subfolders in the Controller directory.
The bin directory contains the binary files.

These two assemblies, WebApplicationUI and WebApplication.UIProcess, make
up the majority of the Global Bank Internet banking application. The Page Controller
pattern makes it easy to expand this application through new page controllers as new
functionality is made available.

Configuration
Global Bank uses two configuration files:
● GlobalBank.config. Similar to the ServicesReferenceArchitecture.config file in

the EDRA ApplicationTemplate, this file contains the configuration information
for the transports, targets, handlers, framework helpers, and events.

● GlobalBankServices.config. Similar to the TemplateServices.config file in the
EDRA ApplicationTemplate, this file contains the configuration information for
Global Bank’s Service Interface pipeline, Service Implementation pipeline, and
business actions.

These files can be found in <Installation Location>\Microsoft EDRA\CS
\ReferenceImplementation\GlobalBank\Services directory.

 Chapter 2: Architecture 57

Deployment View
The default installation of the Global Bank Internet banking application is configured
for a development environment where the Presentation tier, services, and database
are deployed on a single server. The Web services are configured to use inproc
dispatching to communicate between the Service Interface and Service
Implementation.

An alternative deployment configuration could achieve greater security by
separating the Service Interface from the Service Implementation by using multiple
servers separated by a firewall. This is often used where Web services are accessed
by clients over a public network. Figure 5 shows an external Web server accessing
a service interface deployed within a perimeter network.

Figure 5
EDAF deployment view

Users access the Global Bank Internet banking application from desktops or laptops.
From their interaction with the Web application, requests are generated and sent
through the Web service transport to the Service Interface server. This server receives
the request, invoking its pipeline. The request continues through the second firewall
to the Service Implementation server, which ultimately invokes the business action.
After this completes, the results are returned to the Web server, and then displayed to
the user.

58 Enterprise Development Reference Implementation

All of the assemblies for the Web application are deployed to the server for the Global
Bank Internet banking application. The following assemblies are deployed:
● WebApplicationUI.dll
● WebApplication.UIProcess.dll
● WebApplication.MessageAdapters.dll
● WebApplication.Utilities.dll
● WebApplication.Common.dll
● WebApplication.WebServiceProxies.dll

Architecture Properties View
Architecture properties were considered throughout the development of the EDRI.
Below are some considerations on security and localization.

Security
Security is comprised of several facets, but the two discussed here are authentication
and authorization. Authentication is the process of uniquely identifying a user by
verifying his or her credentials when the user attempts to make a connection to your
application or service.

After users are authenticated, you can determine what they have access to within the
system by using authorization. Authorization is confirmation that an authenticated
user has permission to perform an operation. Authorization governs the resources
(for example, files and databases) that an authenticated user can access and the
operations (for example, changing passwords or deleting files) that an authenticated
user can perform. Some users may be granted all of the privileges. This means they
can access the entire functionality of the system. Others may be granted fewer
privileges, meaning there may be some functions they are not permitted to use.

Security is an essential practice for building a Web service. For complete guidance,
see the following resources:
● Building Secure Microsoft ASP.NET Applications: Authentication, Authorization, and

Secure Communication, Redmond: Microsoft Press, 2003
● Improving Web Application Security: Threats and Countermeasures, Redmond:

Microsoft Press, 2003

A later release of Global Bank will use the Web Services Enhancements toolkit to add
additional security capabilities such as message level encryption and data integrity.
This release assumes that the system would rely largely on a trusted subsystem
model using Windows integrated security, SSL, and IPSec.

 Chapter 2: Architecture 59

Authentication
You should use SSL to secure the data transported between the client browser and
the Presentation tier. This is not implemented on the default installation. For more
information, see How To: Use SSL to Secure Communication with SQL Server 2000
in Building Secure Microsoft ASP.NET Applications: Authentication, Authorization, and
Secure Communication.

After a user’s credentials are validated, the user’s identity (login ID) is stored
in session state. The identity is then supplied to the back-end services for data
entitlement. In other words, authentication between the Presentation tier and the
application server will rely on a trusted subsystem model where the application
server validates the calling server’s credentials — not those of the end user initiating
the request. This is not implemented on the default installation. For more
information, see “The Trusted Subsystem Model” in Chapter 3: Authentication
and Authorization in Building Secure Microsoft ASP.NET Applications: Authentication,
Authorization, and Secure Communication.

The user’s identity will be retrieved from the session state on the Presentation tier.
It is passed to the receiving service to allow data entitlement rules to be executed,
thus ensuring that users will be able to access only their own resources.

Authorization
Currently, all users are allowed to perform functionality provided by the Global Bank
Internet banking application. In this version of the EDRI, no authorization has been
implemented.

Localization
Global Bank is hoping to expand to non-English speaking countries in the near
future. In this version of the EDRI several techniques were used to help make the
transition easier. The following techniques were used for the Web application:
● Text displayed within the UI elements and error messages are stored in

resource files.
● Cascading style sheets (CSS) are used in parts of the UI to enable support for

localization.

For services, error messages and messages returned to the consumer of the services
are stored in resource files.

For more details, see Chapter 7: Globalization and Localization in “Design and
Implementation Guidelines for Web Clients.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/diforwc-ch07.asp

3
Services

The services in the EDRI are designed to simulate interfaces into legacy systems.
In many cases these services would call existing components that might, for example,
have been developed in Microsoft Visual Basic® 6.0 development system to interact
with the Microsoft Host Integration Server which would then provide access to
legacy mainframe transactions.

The implementation of each service uses several databases to manage the data.
The business action classes are designed to interact with the core database using
the Microsoft Data Access Application Block. The end result is a lightweight
implementation that allows us to simulate the interaction with legacy systems.

As previously described, the Global Bank Internet banking application uses a set
of services to perform operations. This section focuses on the high-level design
and implementation details of each service deployed in the Global Bank enterprise
environment. However, before describing the services, we need to review common
infrastructure support, common design views, and documentation standards.

Prior to developing services, an infrastructure was created that includes common
XML schema types and custom handlers. In addition, there are elements of the
EDAF that are common to all of the services. These elements include a default Service
Implementation pipeline and use of SOAP message headers. For an overview of the
EDAF, see “Appendix A — Inside the Enterprise Development Application
Framework.”

Typically each service would be designed independently and there would be separate
design documents for each one. Because this is a reference implementation with
simulated services that would be impractical. Instead, we will discuss common
design patterns before describing each service. The description of each service
will contain some design views along with client interface information. The
documentation structure and definition of messages will also be discussed
prior to describing each service.

 Chapter 3: Services 61

Service Infrastructure
Because Global Bank is using the EDAF to standardize the development of services,
there are some common capabilities that can be applied to services. These capabilities
are described in this section.

Request Message Validation
All of the services used by the Global Bank Internet banking application also use
the SyntaticValidation handler to validate request messages. As a result, each request
has an associated XML schema file used for the validation.

These files are located in the <Installation Location>\Microsoft EDRA\CS
\ReferenceImplementation\GlobalBank\Services\Schemas folder. For detailed
information on the SyntaticValidation handler, see Chapter 11, “Handlers Reference”
in the EDRA documentation.

Any type restrictions defined in these schema files will also be described in the
“Messages” section in each service description. The types described in Table 1 apply
to the messages used by the different services to describe and validate input data.

Table 1: XML Schema Types

Name

Min/Max
Length

Description

AccountNumberType 1/32 Uses a regular expression to restrict the first character to
letters and decimal digits. All other characters are restricted
to letters, decimal digits, dashes, and underlines.

DescriptionType 0/200 Uses a regular expression to restrict all characters to letters,
decimal digits, spaces, and the following characters:
_ $ * % @ ! + = / \ () ? [] & " .

EntityNameType 0/50 Uses a regular expression to restrict the first character to
letters and decimal digits. All other characters are restricted
to letters, decimal digits, dashes, underlines, spaces, and
ampersands (&).

ExternalIdentifierType 1/32 Uses a regular expression to restrict the first character to
letters and decimal digits. All other characters are restricted
to letters, decimal digits, dashes, and underlines.

PasswordType 1/16 Uses a regular expression to restrict all characters to letters,
decimal digits, and underlines.

UserNameType 1/32 Uses a regular expression to restrict the first character to
letters and decimal digits. All other characters are restricted
to letters, decimal digits, dashes, and underlines.

62 Enterprise Development Reference Implementation

These types are used to define String types that have additional restrictions. For
instance, instead of defining an element named FirstName as a String type in the
message, we would use UserNameType instead. This would define the element as
a string with the restrictions defined above.

Note: It is possible to optimize performance of services by replacing XSD validations with C# or
Visual Basic .NET code that performs similar validations.

Custom LoggingHandler
This is an atomic handler used to write log entries to the Microsoft SQL Server™
database named GlobalBank_Core. Handlers are used to implement cross cutting
concerns. The custom LoggingHandler uses application configuration information to
get a connection string and then writes request message information to the database.

When To Use

Because this is an atomic handler, it could be used anywhere in the pipelines;
however, it will only log request messages and handlers that are specific to the
application should generally be used in the Service Implementation pipeline. For
more information about exceptions in handlers, see Chapter 11, “Handlers Reference”
in the EDRA documentation.

Configuration

To use this handler you will need to add an application configuration entry for the
database connection. Currently this information has been added to all of the Web
service transports used by the Global Bank services, as shown in the following code.

<appSettings>
 <add key="AppDBConnectionString"
 value="Initial Catalog=GlobalBank_Core;Data Source=localhost;
 User Id=ReferenceImplementationSystemAccount;
 Password=ServicesRI$31687#"/>
</appSettings>

If this entry does not exist and the Logging handler is used, the handler will throw an
exception.

Note: You can use Windows integrated security to modify the EDRI configuration files to access
SQL Server. However, you must set up the <Machine Name>\ASPNET account in Windows XP. For
Windows 2003, use the Windows NT Authority\Network Service account as a user on SQL Server
and grant the appropriate permissions. For information, see Accessing SQL Server Using Windows
Integrated Security on MSDN.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskaccessingsqlserverusingwindowsintegratedsecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskaccessingsqlserverusingwindowsintegratedsecurity.asp

 Chapter 3: Services 63

When using this handler in a pipeline, all you need to do is add it to the before group
of the pipeline as shown in the following code.

<before>
 <handler handlerName="LoggingHandler"/>
</before>

Implementation

When this handler is added to a pipeline, request messages will be serialized into a
string using Base64 encoding and written to the CustomerActivitySecurityLog table
of the GlobalBank_Core database.

Figure 1 shows an example entry.

Figure 1
Example log entry

Notice that the SerializedContextInformation contains the name of the service action
followed by a string of characters. These characters represent the Base64 encoded
request message. To read these entries, you will need to decode the message data.

Service Interface and Service Implementation Pipelines
The Service Interface and Service Implementation pipelines are configured in the
GlobalBankServices.config file. The Service Interface pipeline for all of the services
in the EDRI uses the following default configuration.

<pipeline name="Default"
 transportName="*"
 serviceActionName="*"
 targetName="*"/>

Typically, the transportName is one of the following: InProcTransport,
WebServiceTransport, MessageQueueTransport, or RemotingTransport. In the
EDRI, however, all the services use the Web Service Interface Transport because
the EDRI only supports the Web Service Interface Transport out of the box. The
serviceActionName attribute provides the name of a specific service action that
the pipeline is associated with. The targetName for the Service Interface pipeline is
typically any of the dispatching transports (or possibly the business action target).

64 Enterprise Development Reference Implementation

The Service Implementation pipeline for all of the services in the EDRI uses the
following default configuration.

<pipeline name="Default"
 serviceActionName="*"
 targetName="businessAction"/>

Handlers can be defined within the <before> and <after> sections of the Service
Interface and Service Implementation pipelines. Generally, you should use handlers
that are transport dependent in the service interface pipeline and handlers that are
specific to your application in the service implementation pipeline. The targetName
for the Service Implementation pipeline is typically the business action target.

Web Service Headers
All of the services in the EDRI are implemented using Web service transports. Any
header information passed into these services needs to be added as a SOAP header.
Fortunately, the EDAF defines a RequestHeader class that extends the SoapHeader
class provided by the Microsoft .NET Framework. This class provides a public field
named Headers that is defined as an array of objects. To add header information,
you must first initialize this collection. Each header is then added as another array
of objects that contains the key and value.

The following code example shows how to add a single header with UserName and
Channel information.

RequestHeader requestHeaders = new RequestHeader();
requestHeaders.Headers = new object[2];
object[] userName = new object[2];
userName[0] = "UserName";
userName[1] = "11111111";
object[] channel = new object[2];
channel[0] = "Channel";
channel[1] = "Home Banking";
requestHeaders.Headers[0] = userName;
requestHeaders.Headers[1] = channel;

In this example we initialized the Headers collection as an array containing two
objects. Next we initialized two additional arrays, added key/value information,
and then added the new arrays to the Headers collection.

Common Design Views
There are two views that are common to all services in the Global Bank system.
One is a deployment view that describes how the services are deployed within the
enterprise. Another is the policy view, which describes authentication and transport
level security used by the services.

 Chapter 3: Services 65

Deployment View
The diagram in Figure 2 shows the main systems used to support Global Bank
services. In addition, this diagram describes the network topology, which includes
subnet boundaries and firewalls.

Data
Firewall

External Partner
(SWIFT)

External Partner
(Manual Fulfillment)

Online
Customer

Voice Response
System

Teller

SMTP Integration
Server

Online Portal
Web Server

Firewall

Online Portal
Application Server

Gateway
Service

Gateway

Mainframe

Investment
Funds

Ethernet

Ethernet

Firewall
(Perimeter Network)

Not implemented

Core Accounts
Loans and Credit Cards
Bill Payments

Figure 2
Enterprise network diagram

66 Enterprise Development Reference Implementation

Because the services use Web services, the assemblies for each one will be located
in the Bin folder under the Project folder. In addition, clients should not access these
assemblies directly; instead, the clients should use Web service proxies to access the
service. As a result, it is not necessary to list the service assemblies.

Policy View
The policy view provides information about the security requirements for this
service. The information provided includes authentication and transport security.

Service Authentication
The services proposed in this chapter are for internal use only. Network level security
such as firewalls and private IP addresses prevent external access to these services.

In the first release of this solution, the Presentation tier will be the only client using
the Web services. Authentication between the Presentation tier and the application
server will rely on a trusted subsystem model where the application server validates
the calling server’s credentials — not those of the end user initiating the request. For
more information, see “The Trusted Subsystem Model” in Chapter 3: Authentication
and Authorization in Building Secure Microsoft ASP.NET Applications: Authentication,
Authorization, and Secure Communication.

The end user’s identity will be retrieved from session state on the Presentation tier
and passed to the receiving service to allow data entitlement rules to be executed —
thus ensuring that end users are able to access only their own data.

As mentioned in the “Security” topic in the “Non-Functional Application
Considerations” section, an upcoming update to the voice response system will use
the same set of services. In addition, a scenario for teller terminals based on smart
client technologies will also use the same set of services. At that point, a token-issuing
service will be developed and a session ID will be passed to the service instead of the
user’s identity.

The Global Bank Internet banking application will use the Enterprise Development
Application Framework (EDAF), which simplifies this process because the Identity
handler will be replaced with a custom token authentication handler and no changes
to the services interface or business logic will be required.

Transport Layer Security
Interactions between the client and the Presentation tier are assumed to occur using
SSL/TLS with server certificates. Security between the Presentation tier and the
application servers hosting the business logic would typically include network level
security using SSL and IPSec. SSL is used to encrypt the transport. IPSec is used to
restrict access so that only Presentation tier servers access the application servers. The
application servers will use Windows integrated security to authenticate the calling
servers. SSL client certificates are also being considered as an additional means of
allowing the application server to validate the credentials of the Presentation tier.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp

 Chapter 3: Services 67

Service Documentation
Because the Service Implementations are simulated, we will not attempt to create
standard design documents. Instead, we will provide a high-level description of the
simulated design, along with information used to interact with the service from a
client.

The Logical view within each service includes an activity diagram that shows
operations performed by the service, along with information about the Web Service
Interface. The “Client Interface” section focuses on message definitions, along with
configuration of the service and a description of handlers used.

Messages
The example in Figure 3 shows a class diagram followed by several tables that
describe a generic response message.

MessageResponse

Address Owner

Figure 3
Sample response message

The following tables provide information about the XSD data types and element
names used to define the response message.

Table 2: MessageResponse Type

Element Type Description

Addresses AddressCollection Collection of addresses

OwnerInfo Owner Owner information

68 Enterprise Development Reference Implementation

Table 3: Address Type

Element Type Description

LineOne String Line one of the address

LineTwo String Line two of the address

State String State

Country String Country

Zip String Zip code

Table 4: Owner Type

Element Type Description

FirstName String Owner’s first name

LastName String Owner’s last name

MiddleInitial String Owner’s middle initial

The information in the preceding diagram and tables can be mapped to an XML
structure by using the type and element names. The following is an example of what
the XML would look like for our MessageResponse type.

<MessageResponse>
 <Addresses>
 <Address>
 <LineOne>123 Main Street</LineOne>
 <LineTwo></LineTwo>
 <State>MD</State>
 <Country>USA</Country>
 <Zip>12345</Zip>
 </Address>
 <Address>
 <LineOne>228 Pleasant Street</LineOne>
 <LineTwo></LineTwo>
 <State>VA</State>
 <Country>USA</Country>
 <Zip>67890</Zip>
 </Address>
 </Addresses>
 <OwnerInfo>
 <FirstName>Gytis</FirstName>
 <LastName>Barzdukas</LastName>
 <MiddleInitial>M</MiddleInitial>
 </OwnerInfo>
</MessageResponse>

 Chapter 3: Services 69

Notice that the Addresses element of the MessageResponse type contains multiple
Address elements. When looking at the type definition for Addresses in Table 3, you
will see that it is defined as an AddressCollection. Any time you see collection types,
the element name is used to define the collection element and the type name is used
for each child element in the collection.

The OwnerInfo element represents a single Owner type, which is a child element of
the MessageResponse. Notice that the OwnerInfo type in Table 2 is a reference to the
Owner type described in Table 4. As with the collection, the element name is used to
define the XML element. The difference here is that the type name is not used.

Conceptual View
Global Bank’s chief architect stated two strategic goals for the Global Bank Internet
banking application architecture:
● Standardize the development of services using an enterprise framework to ensure

consistent and timely development of services.
● Consider WS-I conformant Web services as a means to expose system functionality

so that other channels, such as Teller Terminals, Voice Response Systems and
ATMs, can use the same functionality at a later point.

The Global Bank Internet banking application uses the Microsoft Service-Oriented
Integration pattern and the EDAF to help meet these requirements. In addition to
using WS-I conformant Web services, the Service-Oriented Integration pattern
recommends using the Service Interface pattern to separate transport specific service
interface mechanics from application logic. This pattern is fundamental to the design
of the EDAF. Figure 4 illustrates service design using the Service-Oriented Integration
pattern. Appendix A provides the conceptual view of the EDAF.

Service Gateway Service Interface Service Implementation

Service Provider ApplicationService Consumer

Figure 4
Separation of Service Interface and Service Implementation

See the following patterns for more information:
● Service-Oriented Integration
● Service Interface

http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/dnpag/html/archserviceorientedintegration.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp

70 Enterprise Development Reference Implementation

AccountStatement Service
This service provides a single action that returns all of the user’s account statement
information. When the service action is invoked the service interacts with legacy
systems, through several different interfaces, which includes another service.

Logical View
The EDAF requires each service to define a Service Interface transport and a business
action component. For details about the framework, see the Enterprise Development
Reference Architecture documentation. In addition, the “Funds Transfer
Walkthrough” section describes how the framework processes a service request.

The Service Interface transport used for this service is a Web service named
AccountStatementService, as follows:

AccountStatementService

+Credentials : RequestHeader

+GetCustomerConsolidatedAccountStatement(VoidInput : VoidInput) :

 ConsolidatedAccountStatementResponse

The AccountStatementService class defines a public method named
GetCustomerConsolidatedAccountStatement, which takes a VoidInput as the
request parameter and returns a ConsolidatedAccountStatementResponse. This
class also defines a public attribute named Credentials, which is a SOAP request
header.

The SOAP header should contain the following values:

Name Value

UserName Name of the user.

Channel Identifies the application used to make the request.

The business action class for the AccountStatement service is named
AccountStatementBusinessAction, which also has a method named
GetCustomerConsolidatedAccountStatement. The business action method is
responsible for collecting account information as shown in the activity diagram
in Figure 5. The account information is obtained asynchronously.

http://go.microsoft.com/fwlink/?LinkId=31528
http://go.microsoft.com/fwlink/?LinkId=31528

 Chapter 3: Services 71

GetExternalCumulative
DepositsInformation

GetCustomerConsolidatedAccountSummary

[Cumulative Deposits]

GetExternalCreditCard
Information

GetCreditCards
Information

[Credit Cards]

GetInvestment
FundInformation

GetInvestment
FundsInformation

[Investment Funds]

GetPayeeList

[Payee
List]

GetPendingBills

[Pending
Bills]

GetSystem
WideLimit

[System
Wide

Limits]

GetCashAccount
Information

[Checking
Or

Savings
Account]

GetActiveBill
Subscriptions

[Bill
Subscriptions]

GetCumulative
DepositsInformation

Figure 5
GetCustomerConsolidatedAccountStatement activity diagram

72 Enterprise Development Reference Implementation

As you can see, there are many parallel actions that are performed by this business
action. In most cases the service will not attempt to gather data if the user does not
have a particular type of account or data for an account.

Client Interface
To interact with the service, a client will need to know the structure of messages,
the configuration information of this service, and the handlers that it will use.

Messages
This service uses a common type named VoidInput as the request parameter and
returns a type named ConsolidateAccountStatementResponse, which contains
several other types.

Request Message — VoidInput

This is defined as a common message type used by any service that does not have
input parameters. This type does not contain any values.

ResponseMessage — ConsolidatedAccountStatementResponse

This type contains many other types, which contains account statement information.

 Chapter 3: Services 73

ConsolidatedAccountStatementResponse

ConsolidatedInvestment
FundInformation

PendingBillCollection

ConsolidatedCreditCardInformation

CashAccountCollection

SystemWideLimitSettings

BillSubscriptionCollection

PayeeCollection

ConsolidatedCumulative
DepositInformation

Figure 6
ConsolidatedAccountStatementResponse

74 Enterprise Development Reference Implementation

The following tables provide information about the types and element names used to
define the response message.

Table 5: ConsolidatedAccountStatementResponse

Element Type Description

CashAccounts CashAccountCollection Cash accounts

PendingBills PendingBillCollection Pending bills

PayeeList PayeeCollection Payees

SubscribedBills BillSubscriptionCollection Bill subscriptions

SystemWideLimits SystemWideLimitSettings System settings

ConsolidatedCreditCardInfo ConsolidatedCreditCard
Information

Credit cards

Consolidated Cumulative
DepositInfo

ConsolidatedCumulative
DepositInformation

Cumulative deposits

Consolidated
InvestmentFundInfo

ConsolidatedInvestment
FundInformation

Investment funds

Table 6: CashAccount

Element Type Description

AccountNumber string Number assigned to this account

ProductType Int Type of product

Balance decimal Balance for this account

AccountType string Type of account

Table 7: CreditCard

Element Type Description

CreditCardNumber string Credit card number

Type string Type of credit card

Balance decimal Balance on credit card

PaymentDueDate dateTime Date payment is due

ExpirationDate dateTime Credit card expiration date

NameOnCard string Name on the credit card

CreditLimit decimal Maximum credit allowed

 Chapter 3: Services 75

Table 8: PendingBill

Element Type Description

BillIdInBillingSystem string ID used by billing system

Amount decimal Amount of the bill

DueDate dateTime Date the bill is due

PayeeIdentifier Int Link to payee information

CustomerIdInBillingSystem string Customer ID used by billing system

PayeeName string Name of the payee

Table 9: InvestmentFund

Element Type Description

InvestmentFundIdentifier string ID of this investment fund

Name string Name of the fund

Shares decimal Number of shares

Quote decimal Quoted price of the fund

Table 10: CumulativeDeposit

Element Type Description

CumulativeDepositIdentifier string ID for this record

PrincipalAmount decimal Principal amount of deposit

InterestAmount decimal Interest amount of deposit

TermDurationInDays Int Duration in days

ActionOnDueDate string Action to take when due

DueDate dateTime Date the deposit is due

Table 11: BillSubscription

Element Type Description

CustomerExternalIdentifier string ID of the customer

AccountActive boolean Flag indicating active state

PayeeId Int Link to payee information

PayeeName string Name of the payee

76 Enterprise Development Reference Implementation

Table 12: SystemWideLimitSettings

Element Type Description

Channel string Identifies the application such as “Home Banking”

SingleBillPaymentLimit decimal Maximum amount for a bill

SingleFundTransferLimit Decimal Maximum amount that can be transferred

MonthlyFundTransferLimit Decimal Maximum amount that can be transferred in a month

Service Configuration
The Service Interface pipeline configuration in GlobalBankServices.config is shown in
the following code.

<pipeline name="AccountStatementPipeline"
 transportName="WebServiceTransport"
 serviceActionName="GetCustomerConsolidatedAccountStatement"
 targetName="inproc">
 <before>
 <handler handlerName="ExecutionTimeout">
 <timeoutConfiguration timeout="300"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 ConsolidatedAccountStatementRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="Identity"/>
 </before>
 <after>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 ConsolidatedAccountStatementRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="ExecutionTimeout"/>
 </after>
</pipeline>

Note: The requestSchema path information in the preceding code is displayed on multiple lines due
to formatting restrictions. If this configuration is copied, you will need to modify the schema path
information so that it is all on one line.

 Chapter 3: Services 77

Notice that the serviceActionName matches the name of the public method shown
in the AccountStatementService class. The EDAF uses the method name to look for
pipeline and business action entries with the same serviceActionName. This pipeline
is also configured to use a Web service transport, an inproc target,
an ExecutionTimeout handler, and a SyntacticValidation handler.

The Service Implementation pipeline configuration in GlobalBankServices.config is
shown in the following code.

<pipeline name="AccountStatementImplementationPipeline"
 serviceActionName="GetCustomerConsolidatedAccountStatement"
 targetName="businessAction">
 <before>
 <handler handlerName="LoggingHandler"/>
 <handler handlerName="AppInstrumentation"/>
 </before>
 <after>
 </after>
</pipeline>

The Service Implementation pipeline uses the LoggingHandler and
the AppInstrumentation handlers, and executes the business action.
When the businessAction target is invoked, the framework looks in the
GlobalBankServices.config file for a businessAction element with the same
serviceActionName attribute, which is shown in the following code.

<businessAction
 serviceActionName="GetCustomerConsolidatedAccountStatement"
 type="Microsoft.ReferenceImplementation.Services.AccountStatement.
 BusinessActions.AccountStatementBusinessAction,
 AccountStatement.BusinessActions"
 invocationMethod="Serialization">
 <request type="Microsoft.ReferenceImplementation.Services.
 CommonMessageDefinitions.VoidInput,
 Services.CommonMessageDefinitions">
 <method name="GetCustomerConsolidatedAccountStatement"/>
 </request>
 <response
 type="Microsoft.ReferenceImplementation.Services.AccountStatement.
 MessageDefinitions.ConsolidatedAccountStatementResponse,
 AccountStatement.MessageDefinitions"/>
</businessAction>

Note: The type information shown in the preceding code was broken across multiple lines due to
formatting constraints. If this configuration is copied, you will need to modify the type information
so that it is all on one line.

78 Enterprise Development Reference Implementation

Handlers
The following handlers are used by this service:

Table 13: AccountStatement Handlers

Name Description

ExecutionTimeout Aborts the current thread if execution time exceeds 300 seconds.

SyntacticValidation Uses the ConsolidatedAccountStatementRequest.xsd schema to validate
the request message. Not configured to validate a response message.

Identity Extracts the UserName from the message header and creates an
authenticated GenericPrincipal using the name.

LoggingHandler Writes log entries to the GlobalBank_Core database.

AppInstrumentation Updates the following Performance Monitor counters:

ReferenceArchitecture.TotalRequests

ReferenceArchitecture.RequestsPerSecond

 Chapter 3: Services 79

Deployment View
The AccountStatement service is located within the Global Bank system. The service
uses internal resources as well as information from external systems when gathering
statement information. The deployment diagram in Figure 7 shows the different
systems involved.

.NET Component

Cumulative Deposit System

J2EE Web Service

Investment Fund System

Account
Statement Service

Global Bank Services

Web Application

Global Bank Web Client

.NET Component

Credit Card System

Figure 7
AccounStatement service deployment diagram

Note: The Investment Fund System has been developed as a standard .asmx Web service with the
intention of simulating a service running on another platform; therefore, handlers have not been
applied to it. Security would rely on a trusted subsystem model using either SSL or IPSec.

80 Enterprise Development Reference Implementation

Authentication Service
This service provides a single point for authenticating users of the Global Bank
Internet banking application.

Logical View
The Enterprise Development Application Framework requires each service to define
a Service Interface transport and a business action component. For details about the
framework, see the Enterprise Development Reference Architecture documentation.
In addition, the “Funds Transfer Walkthrough” section describes how the framework
processes a service request.

The Service Interface transport used for this service is a Web service named
AuthenticationService, as follows:

AuthenticationService

+Authenticate(AuthenticationRequest : AuthenticationRequest): AuthenticationResponse

+DisableAccount(AuthenticationRequest : AuthenticationRequest): VoidResponse

The AuthenticationService class defines two public methods named Authenticate
and DisableAccount, both of which take an AuthenticationRequest as the request
parameter. The Authenticate method returns an AuthenticationResponse while the
DisableAccount method returns a VoidResponse. This service does not use any
header information.

http://go.microsoft.com/fwlink/?LinkId=31528

 Chapter 3: Services 81

The business action class for the AuthenicationService is named
LoginBusinssAction. This class also defines two methods named Authenticate and
DisableAccount, both of which take the same parameters as the authentication
service methods. The business action class is responsible for authenticating the
user as shown in the activity diagram in Figure 8.

GetUserDetails

Verify

Authenticate

[True] [False]

Figure 8
Authenticate activity diagram

When looking at the diagram, you can see that the first step is to verify the user. If the
user is verified, the next step is to retrieve user detail information.

The DiasableAccount action does not perform any additional steps other than
disabling an account and returning.

Client Interface
To interact with the service, a client will need to know the structure of messages,
the configuration information of this service, and the handlers that it will use.

Messages
This service uses an AuthenticateRequest message for the input parameters and
returns the result in an AuthenticationResponse message.

82 Enterprise Development Reference Implementation

Request Message — AuthenticationRequest

The AuthenticationRequest message uses a single type that contains the elements
listed in Table 14.

Table 14: AuthenticationRequest

Element Type Description

UserName UserNameType User name used for authentication. This is the
ATM card number (16 digits).

Password PasswordType Password used for authentication. This is the
PIN number of 4 digits length. This restriction is
placed on the client, not on the service. The
service allows up to 16 characters.

Channel EntityNameType Channel used to access the banking information.
This identifies the application such as “Home
Banking” used to make the request.

AllowedPasswordRetryLimit Int The maximum number of password retries
allowed.

Response Message — AuthenticationResponse

The AuthenticationResponse message is also a single type that contains the elements
listed in Table 15.

Table 15: AuthenticationResponse

Element Type Description

ReturnValue Boolean Value that determines if the authentication was
successful or not. Allowed value is true/false.

UserFirstName String User’s first name.

UserLastName String User’s last name.

LastLoginDate DateTime Last login date for the user.

Response Message — VoidResponse

This is defined as a common message type use by any service that does not return a
response. This type does not contain any values.

 Chapter 3: Services 83

Service Configuration
The Service Interface pipeline configuration in GlobalBankServices.config is shown in
the following code.

<pipeline name="AuthenticationPipeline"
 transportName="WebServiceTransport"
 serviceActionName="Authenticate"
 targetName="inproc">
 <before>
 <handler handlerName="ExecutionTimeout">
 <timeoutConfiguration timeout="300"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 AuthenticationRequest.xsd"
 responseSchema=""/>
 </handler>
 </before>
 <after>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 AuthenticationRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="ExecutionTimeout"/>
 </after>
</pipeline>

Note: The requestSchema path information in the preceding code is displayed on multiple lines due
to formatting restrictions. If this configuration is copied, you will need to modify the schema path
information so that it is all on one line.

Notice that the serviceActionName matches the name of the public method shown
in the AuthenticationService class. The EDAF uses the method name to look for
pipeline and business action entries with the same serviceActionName. This
pipeline is also configured to use a Web service transport, an inproc target,
an ExecutionTimeout handler, and a SyntacticValidation handler.

84 Enterprise Development Reference Implementation

The Service Implementation pipeline configuration in GlobalBankServices.config is
shown in the following code.

<pipeline name="AuthenticationImplementationPipeline"
 serviceActionName="Authenticate" targetName="businessAction">
 <before>
 <handler handlerName="AppInstrumentation"/>
 </before>
 <after>
 </after>
</pipeline>

The Service Implementation pipeline uses the AppInstrumentation handler
and executes the business action. When the businessAction target is invoked, the
framework looks in the GlobalBankServices.config file for a businessAction element
with the same serviceActionName attribute, which is shown in the following code.

<businessAction
 serviceActionName="Authenticate"
 type="Microsoft.ReferenceImplementation.Services.Authentication.
 BusinessActions.LoginBusinessAction,
 Authentication.BusinessActions"
 invocationMethod="Serialization">
 <request type="Microsoft.ReferenceImplementation.Services.Authentication.
 MessageDefinitions.AuthenticationRequest,
 Authentication.MessageDefinitions">
 <method name="Authenticate"/>
 </request>
 <response type="Microsoft.ReferenceImplementation.Services.Authentication.
 MessageDefinitions.AuthenticationResponse,
 Authentication.MessageDefinitions"/>
</businessAction>

Note: The type information was broken across multiple lines due to formatting constraints. If this
configuration is copied, you will need to modify the type information so that it is all on one line.

 Chapter 3: Services 85

Handlers
Table 16 lists the handlers this service uses.

Table 16: Authentication Handlers

Name Description

ExecutionTimeout Aborts the current thread if execution time exceeds 300 seconds.

SyntacticValidation Uses the AuthenticationRequest.xsd schema to validate the request
message. Not configured to validate a response message.

AppInstrumentation Updates the following Performance Monitor counters:

ReferenceArchitecture.TotalRequests

ReferenceArchitecture.RequestsPerSecond

Deployment View
The Authentication service is located within the Global Bank system.
The deployment diagram in Figure 9 shows the different systems involved.

Authentication Service

Global Bank Services

Web Application

Global Bank Web Client

Figure 9
Authentication Service deployment diagram

86 Enterprise Development Reference Implementation

BillPayment Service
The BillPayment service performs bill payment operations by initiating a funds
transfer operation between the customer account and the bill payee collection
account. This also includes a compensating transaction, which will undo the
operation if an exception occurs.

Logical View
The Enterprise Development Application Framework requires each service to define
a Service Interface transport and a business action component. For details about the
framework, see the Enterprise Development Reference Architecture documentation.
Appendix B, “Exploring the EDAF Using the Bill Payment Use Case” shows the
high-level interactions between the client and EDAF components for the Bill Payment
use case. In addition, the “Funds Transfer Walkthrough” section describes how the
framework processes a service request.

The Service Interface transport used for this service is a Web service named
BillPaymentService, as follows:

BillPaymentService

+Credentials : RequestHeader

+PayPendingBill(BillPaymentRequest : BillPaymentRequest) : BillPaymentResponse

The BillPaymentService class defines a public method named PayPendingBill,
which takes a BillPaymentRequest as the request parameter and returns a
BillPaymentResponse. This class also defines a public attribute named Credentials,
which is a SOAP request header.

The SOAP header should contain the following values:

Name Value

UserName Name of the user.

Channel Identifies the application used to make the request.

The business action class for the BillPaymentService is named
BillPaymentBusinessAction. This class also defines a method named
PayPendingBill, which takes the same parameters as the bill payment service and
returns the same response. The business action class is responsible for validating
account information, paying the bills, and rolling back transactions as shown in
the activity diagram in Figure 10.

http://go.microsoft.com/fwlink/?LinkId=31528

 Chapter 3: Services 87

ValidateBillPayment

PayPendingBill

CreateBillPayment
TransactionRecord

ValidatePayee
AccountNumber

UndoPayPending
BillTransaction

[Exception]

[Not
Valid]

TransferFunds

CompleteBill
PaymentInitiation

NotifyBillPayment
ToExternalSystem

[Not
Valid

Exception]

[No Pending
Bills]

[Valid]

Figure 10
Bill Payment activity diagram

88 Enterprise Development Reference Implementation

When looking at the activity diagram, you can see that there are three possible paths.
The first action is to validate the bill payment information. If that is successful, the
pending bill is paid; if it is not successful, a validation failure message is sent to the
client. At any time while processing this request, an exception can be thrown. If that
occurs, the UndoPayPendingBillTransaction action will be performed.

Client Interface
To interact with the service, a client will need to know the structure of messages,
the configuration information of this service, and the handlers that it will use.

Messages
This service uses a BillPaymentRequest message for the input parameters and
returns the result in a BillPaymentResponse message.

Request Message — BillPaymentRequest

The BillPaymentRequest message uses a single type that contains the elements listed
in Table 17.

Table 17: BillPaymentRequest

Element Type Description

SourceAccountNumber AccountNumberType The account number identifying the source
account for the bill payment.

Amount Decimal Bill amount to be paid.

CustomerExternalIdentifier ExternalIdentifierType User account number in the payee system.

PayeeIdentifier Int32 Identifier for the payee corresponding to
the bill.

PayeeFriendlyName EntityNameType Friendly name of the payee corresponding to
the bill.

ExternalBillIdentifier ExternalIdentifierType Identifier for the bill in the external bill
payment system.

 Chapter 3: Services 89

Response Message — BillPaymentResponse

This type contains CashAccount information along with the response information,
as shown in Figure 11.

BillPaymentResponse

CashAccount

Figure 11
BillPaymentResponse

The following tables provide information about the types and element names used to
define the response message.

Table 18: BillPaymentResponse

Element Type Description

SourceAccount CashAccount The source account for the bill payment.

BillPaymentinitiationSuccessful Boolean Indicates whether the bill payment initiation was
successful.

FailureReason String If the bill payment initiation failed contains the
reason for failure.

ReferenceCode Int32 Reference code for the transaction that the user
can use to track the transaction.

Table 19: CashAccount

Element Type Description

AccountNumber String Account number uniquely identifying the account.

ProductTypeId Int32 The integral value maps to indicates the type of
the product, such as a savings account or
checking account.

Balance Decimal The balance amount in the account.

AccountType String Type of account, such as checking account or
savings account.

90 Enterprise Development Reference Implementation

Service Configuration
The Service Interface pipeline configuration in GlobalBankServices.config is shown in
the following code.

<pipeline name="BillPaymentPipeline"
 transportName="WebServiceTransport"
 serviceActionName="PayPendingBill"
 targetName="inproc">
 <before>
 <handler handlerName="ExecutionTimeout">
 <timeoutConfiguration timeout="300"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 BillPaymentRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="Identity"/>
 <handler handlerName="DuplicateMessage"/>
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 </handler>
 </before>
 <after>
 <handler handlerName="DuplicateMessage">
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 BillPaymentRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="ExecutionTimeout"/>
 </after>
</pipeline>

Note: The requestSchema path information in the preceding code is displayed on multiple lines due
to formatting restrictions. If this configuration is copied, you will need to modify the schema path
information so that it is all on one line.

 Chapter 3: Services 91

Notice that the serviceActionName matches the name of the public method shown
in the BillPaymentService class. The EDAF uses the method name to look for
pipeline and business action entries with the same serviceActionName. This pipeline
is also configured to use a Web service transport, an inproc target, ExecutionTimeout
handler, SyntacticValidation handler, Identity handler, and a DuplicateMessage
handler.

The Service Implementation pipeline configuration in GlobalBankServices.config is
shown in the following code.

<pipeline name="BillPaymentImplementationPipeline"
 serviceActionName="PayPendingBill" targetName="businessAction">
 <before>
 <handler handlerName="LoggingHandler"/>
 <handler handlerName="AppInstrumentation"/>
 </before>
 <after>
 </after>
</pipeline>

The Service Implementation pipeline uses the LoggingHandler and the
AppInstrumentation handlers, and executes the business action. When
the businessAction target is invoked, the framework looks in the
GlobalBankServices.config file for a businessAction element with the same
serviceActionName attribute, which is shown in the following code.

<businessAction serviceActionName="PayPendingBill"
 type="Microsoft.ReferenceImplementation.Services.BillPayment.
 BusinessActions.BillPaymentBusinessAction,
 BillPayment.BusinessActions"
 invocationMethod="Serialization"
 compensate="UndoPayPendingBillTransaction"
 validate="true" validationMethod="ValidateBillPayment">
 <request type="Microsoft.ReferenceImplementation.Services.BillPayment.
 MessageDefinitions.BillPaymentRequest,
 BillPayment.MessageDefinitions">
 <method name="PayPendingBill"/>
 </request>
 <response type="Microsoft.ReferenceImplementation.Services.BillPayment.
 MessageDefinitions.BillPaymentResponse,
 BillPayment.MessageDefinitions"/>
</businessAction>

Note: The type information shown in the preceding code was broken across multiple lines due to
formatting constraints. If this configuration is copied, you will need to modify the type information
so that it is all on one line.

92 Enterprise Development Reference Implementation

The business action class also defines a public method named
UndoPayPendingBillTransaction, which is defined as the compensate method in the
businessAction configuration. The following businessAction configuration is used
to define the compensate method.

<businessAction serviceActionName="UndoPayPendingBillTransaction"
 type="Microsoft.ReferenceImplementation.Services.BillPayment.
 BusinessActions.BillPaymentBusinessAction,
 BillPayment.BusinessActions"
 invocationMethod="Serialization">
 <request type="Microsoft.ReferenceImplementation.Services.BillPayment.
 MessageDefinitions.BillPaymentRequest,
 BillPayment.MessageDefinitions">
 <method name="UndoPayPendingBillTransaction"/>
 </request>
</businessAction>

Note: The type information shown in the preceding code was broken across multiple lines due to
formatting constraints. If this configuration is copied, you will need to modify the type information so
that it is all on one line.

This method takes the BillPaymentRequest type as an input parameter and
does not return a result. Its purpose is to undo changes that were made during
a PayPendingBill operation.

 Chapter 3: Services 93

Handlers
Table 20 lists the handlers this service uses.

Table 20: BillPayment Handlers

Name Description

ExecutionTimeout Aborts the current thread if execution time exceeds 300 seconds.

SyntacticValidation Uses the BillPaymentRequest.xsd schema to validate the request message.
Not configured to validate a response message.

Identity Extracts the UserName from the message header and creates an
authenticated GenericPrincipal using the name.

DuplicateMessage Keeps track of service action requests to prevent duplicate
implementations of the same request. If a result is available from a
previous request, it will be returned; otherwise, a null value is returned.
This is configured to hold a result for 60 seconds.

LoggingHandler Writes log entries to the GlobalBank_Core database.

AppInstrumentation Updates the following Performance Monitor counters:

ReferenceArchitecture.TotalRequests

ReferenceArchitecture.RequestsPerSecond

Deployment View
The BillPayment service is located within the Global Bank system. The deployment
diagram in Figure 12 shows the different systems involved.

Message Queuing

Billing System

Bill Payment Service

Global Bank Services

Web Application

Global Bank Web Client

Figure 12
BillPayment service deployment diagram

94 Enterprise Development Reference Implementation

BillSubscription Service
This service provides actions to subscribe or unsubscribe from bill payment
subscriptions.

Logical View
The Enterprise Development Application Framework requires each service to define
a Service Interface transport and a business action component. For details about the
framework, see the Enterprise Development Reference Architecture documentation.
In addition, the “Funds Transfer Walkthrough” section describes how the framework
processes a service request.

The service interface transport used for this service is a Web service named
BillSubscriptionService, as follows:

BillSubscriptionService

+Credentials : RequestHeader

+SubscribeToPayBill(BillSubscriptionRequest : BillSubscriptionRequest) :

 BillSubscriptionResponse

+UnsubscribeToPayBill(BillSubscriptionRequest : BillSubscriptionRequest) :

 BillSubscriptionResponse

The BillSubscriptionService class defines two public methods named
SubscribeToPayBills and UnsubscribeToPayBills. Both methods take
a BillSubscriptionRequest as the request parameter and returns a
BillSubscriptionResponse. This class also defines a public attribute
named Credentials, which is a SOAP request header.

The SOAP header should contain the following values:

Name Value

UserName Name of the user.

Channel Identifies the application used to make the request.

http://go.microsoft.com/fwlink/?LinkId=31528

 Chapter 3: Services 95

The business action class for the BillSubscriptionService is named
BillSubscriptionBusinssAction. This class also defines two methods named
SubscribeToPayBills and UnsubscribeToPayBills, which both take the same
parameters as the bill subscription service methods. In addition, both of these
actions are very simple as shown in the diagram in Figure 13.

SubscribeToPayBill

Unsubscribe
ToPayBill

ValidateBillUnsubscription

[No Pending
Bills]

[Pending
Bills]

Figure 13
Bill Subscription activity diagrams

From the diagram in Figure 42, you can see that both business actions perform a
single operation and then return.

Client Interface
To interact with the service, a client will need to know the structure of messages,
the configuration information of this service, and the handlers that it will use.

Messages
This service uses a BillPaymentRequest message for the input parameters and
returns the result in a BillPaymentResponse message.

96 Enterprise Development Reference Implementation

Request Message — BillSubscriptionRequest

The BillSubscriptionRequest message uses a single type that contains the elements
listed in Table 21.
Table 21: BillSubscriptionRequest

Element Type Description

PayeeIdentifier Int32 Unique Identifier for the payee that offers bill
subscription service.

PayeeName EntityNameType Name of the payee for which the bill is
being paid.

CustomerExternalIdentifier ExternalIdentifierType User account number in the payee system.

Response Message — BillSubscriptionResponse

The BillSubscriptionResponse type contains BillSubscription information along
with the response information, shown in Figure 14.

BillSubscriptionResponse

BillSubscription

Figure 14
BillSubscriptionResponse

The following tables provide information about the types and element names used to
define the response message.

Table 22: BillSubscriptionResponse

Element Type Description

UserSubscribedBill BillSubscription Contains the bill the user is subscribed to or
unsubscribed to.

OperationSuccessful Boolean Indicates whether the subscription to the bill or
deletion of a current subscription was successful.

FailureReason String If the subscription failed contains the reason for
the failure.

 Chapter 3: Services 97

Table 23: BillSubscription

Element Type Description

CustomerExternalIdentifier String ID of the customer

AccountActive Boolean Flag indicating active state

PayeeId Int32 Link to payee information

PayeeName String Name of the payee

Service Configuration
The Service Interface pipeline configuration for the SubscribeToPayBill action in
GlobalBankServices.config is shown in the following code.

<pipeline name="BillSubscriptionPipeline"
 transportName="WebServiceTransport"
 serviceActionName="SubscribeToPayBill"
 targetName="inproc">
 <before>
 <handler handlerName="ExecutionTimeout">
 <timeoutConfiguration timeout="300"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 BillSubscriptionRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="Identity"/>
 <handler handlerName="DuplicateMessage">
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 </handler>
 </before>
 <after>
 <handler handlerName="DuplicateMessage">
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 BillSubscriptionRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="ExecutionTimeout"/>
 </after>
</pipeline>

98 Enterprise Development Reference Implementation

This pipeline is configured to use a Web service transport, an inproc target,
ExecutionTimeout handler, SyntacticValidation handler, Identity handler, and
a DuplicateMessage handler. The Service Implementation pipeline configuration
in GlobalBankServices.config is shown in the following code.

<pipeline name="BillSubscriptionImplementationPipeline"
 serviceActionName="SubscribeToPayBill" targetName="businessAction">
 <before>
 <handler handlerName="LoggingHandler"/>
 <handler handlerName="AppInstrumentation"/>
 </before>
 <after>
 </after>
</pipeline>

The Service Implementation pipeline uses the LoggingHandler and the
AppInstrumentation handlers, and executes the business action.

The Service Interface pipeline configuration for the UnSubscribeToPayBill in
GlobalBankServices.config action is shown in the following code.

<pipeline name="UnsubscribeToPayBillPipeline"
 transportName="WebServiceTransport"
 serviceActionName="UnsubscribeToPayBill"
 targetName="inproc">
 <before>
 <handler handlerName="ExecutionTimeout">
 <timeoutConfiguration timeout="300"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 BillSubscriptionRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="Identity"/>
 <handler handlerName="DuplicateMessage">
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 </handler>
 </before>
 <after>
 <handler handlerName="DuplicateMessage">
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 </handler>

(continued)

 Chapter 3: Services 99

(continued)

 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema=""
 responseSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 BillSubscriptionRequest.xsd"/>
 </handler>
 <handler handlerName="ExecutionTimeout"/>
 </after>
</pipeline>

This pipeline is configured to use a Web service transport, an inproc target,
ExecutionTimeout handler, SyntacticValidation handler, Identity handler, and
a DuplicateMessage handler. The Service Implementation pipeline configuration
in GlobalBankServices.config is shown in the following code.

<pipeline name="UnsubscribeToPayBillImplementationPipeline"
 serviceActionName="UnsubscribeToPayBill" targetName="businessAction">
 <before>
 <handler handlerName="LoggingHandler"/>
 <handler handlerName="AppInstrumentation"/>
 </before>
 <after>
 </after>
</pipeline>

The Service Implementation pipeline uses the LoggingHandler and the
AppInstrumentation handlers, and executes the business action. The only
difference between the configuration for the SubscribeToPayBill action and
UnSubscribeToPayBill action is the serviceActionName because there is a separate
pipeline for each service action. When the businessAction target is invoked, the
framework looks in the GlobalBankServices.config file for a businessAction element
with the same serviceActionName attribute. Both business action configurations are
shown in the following code.

<businessAction serviceActionName="SubscribeToPayBill"
 type="Microsoft.ReferenceImplementation.Services.
 BillSubscription.BusinessActions.
 BillSubscriptionBusinessAction,
 BillSubscription.BusinessActions"
 invocationMethod="Serialization">
 <request type="Microsoft.ReferenceImplementation.Services.
 BillSubscription.MessageDefinitions.
 BillSubscriptionRequest,
 BillSubscription.MessageDefinitions">
 <method name="SubscribeToPayBill"/>
 </request>

(continued)

100 Enterprise Development Reference Implementation

(continued)

 <response type="Microsoft.ReferenceImplementation.Services.
 BillSubscription.MessageDefinitions.
 BillSubscriptionResponse,
 BillSubscription.MessageDefinitions"/>
</businessAction>
<businessAction serviceActionName="UnsubscribeToPayBill"
 type="Microsoft.ReferenceImplementation.Services.
 BillSubscription.BusinessActions.
 BillSubscriptionBusinessAction,
 BillSubscription.BusinessActions"
 invocationMethod="Serialization">
 <request type="Microsoft.ReferenceImplementation.Services.
 BillSubscription.MessageDefinitions.
 BillSubscriptionRequest,
 BillSubscription.MessageDefinitions">
 <method name="UnsubscribeToPayBill"/>
 </request>
 <response type="Microsoft.ReferenceImplementation.Services.
 BillSubscription.MessageDefinitions.
 BillSubscriptionResponse,
 BillSubscription.MessageDefinitions"/>
</businessAction>

Handlers
Table 24 lists the handlers this service uses.

Table 24: BillSubscription Handlers

Name Description

ExecutionTimeout Aborts the current thread if execution time exceeds 300 seconds.

SyntacticValidation Uses the BillSubscriptionRequest.xsd schema to validate the request
message. Not configured to validate a response message.

Identity Extracts the UserName from the message header and creates an
authenticated GenericPrincipal using the name.

DuplicateMessage Keeps track of service action requests to prevent duplicate
implementations of the same request. If a result is available from a
previous request it will be returned, otherwise a null value is returned.
This is configured to hold a result for 60 seconds.

LoggingHandler Writes log entries to the GlobalBank_Core database.

AppInstrumentation Updates the following Performance Monitor counters:

ReferenceArchitecture.TotalRequests

ReferenceArchitecture.RequestsPerSecond

 Chapter 3: Services 101

Deployment View
The BillSubscription service is located within the Global Bank system.
The deployment diagram in Figure 15 shows the different systems involved.

Bill Subscription Service

Global Bank Services

Web Application

Global Bank Web Client

Figure 15
BillSubscription service deployment diagram

FundsTransfer Service
This service is used to transfer funds between accounts.

Logical View
The Enterprise Development Application Framework requires each service to define
a Service Interface transport and a business action component. For details about the
framework, see the Enterprise Development Reference Architecture documentation.
In addition, the “Funds Transfer Walkthrough” section describes how the framework
processes a service request.

The service interface transport used for this service is a Web service named
FundsTransferService, as follows:

FundsTransferService

+Credentials : RequestHeader

+PerformFundsTransfer(FundsTransferRequest : FundsTransferRequest) :

 FundsTransferResponse

http://go.microsoft.com/fwlink/?LinkId=31528

102 Enterprise Development Reference Implementation

The FundsTransferService class defines a public method named
PerformFundsTransfer, which takes a FundsTransferRequest as the request
parameter and returns a FundsTransferResponse. This class also defines a public
attribute named Credentials, which is a SOAP request header.

The SOAP header should contain the following values:

Name Value

UserName Name of the user.

Channel Identifies the application used to make the request.

The business action class for the FundsTransferService class is named
FundsTransferBusinessAction. This class also defines two public methods named
PerformFundsTransfer and ValidateSourceAccount. The business action class is
responsible for validating account information and transferring funds as shown
in the activity diagram in Figure 16.

ValidateSourceAccount

PreformFundsTransfer

GetSourceAccountInformation

GetDestinationAccountInformation

[Is Valid]

[Not Valid]

Figure 16
Funds Transfer activity diagram

 Chapter 3: Services 103

As you can see in the preceding diagram, the first action is to validate the source
account. If the account is valid, a transfer is performed, and account information
for both the source and destination accounts are retrieved.

Client Interface
To interact with the service, a client will need to know the structure of messages,
the configuration information of this service, and the handlers that it will use.

Messages
This service uses a FundsTransferRequest message for the input parameters and
returns the result in a FundsTransferResponse message.

Request Message — FundsTransferRequest

The FundsTransferRequest message uses a single type that contains the elements
listed in Table 25.

Table 25: FundsTransferRequest

Element Type Description

SourceAccountNumber AccountNumberType The account number identifying the source
account for the bill payment.

DestinationAccountNumber AccountNumberType The account number identifying the
destination account for the funds transfer.

Amount Decimal Amount to transfer.

Description DescriptionType Description provided by the user during funds
transfer.

EffectiveOn DateTime Date on which the transfer will be completed.
This is set to the current date when the
transfer was initiated.

104 Enterprise Development Reference Implementation

Response Message — FundsTransferResponse
The FundsTransferResponse type contains two different elements with CashAccount
information along with the response information, as shown in Figure 17.

FundsTransferResponse

CashAccountCashAccount

Figure 17
FundsTransferResponse

The following tables provide information about the types and element names used to
define the response message.

Table 26: FundsTransferResponse

Element Type Description

SourceAccount CashAccount The source account for the funds transfer.

DestinationAccount CashAccount The destination account for the funds transfer.

TransferSuccessful Boolean Indicates whether the transfer was successful.

FailureReason String If the transfer failed contains the reason for failure.

ReferenceCode Int32 Reference code for the transaction that the user can use
to track the transaction.

Table 27: CashAccount

Element Type Description

AccountNumber String Account number uniquely identifying the account.

ProductTypeId Int32 The integral value maps to indicates the type of the
product, such as a savings account or checking account.

Balance Decimal The balance amount in the account.

AccountType String Type of account, such as a checking account or savings
account.

 Chapter 3: Services 105

Service Configuration
The Service Interface pipeline configuration in GlobalBankServices.config is shown in
the following code.

<pipeline name="FundsTransferPipeline"
 transportName="WebServiceTransport"
 serviceActionName="PerformFundsTransfer"
 targetName="inproc">
 <before>
 <handler handlerName="ExecutionTimeout">
 <timeoutConfiguration timeout="300"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 FundsTransferRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="Identity"/>
 <handler handlerName="DuplicateMessage">
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 </handler>
 </before>
 <after>
 <handler handlerName="DuplicateMessage">
 <duplicateHandlerSettings lifeTime="60"
 messageHandlingOption="Cache"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 FundsTransferRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="ExecutionTimeout"/>
 </after>
</pipeline>

Note: The requestSchema path information in the preceding code is displayed on multiple lines due
to formatting restrictions. If this configuration is copied, you will need to modify the schema path
information so that it is all on one line.

106 Enterprise Development Reference Implementation

Notice that the serviceActionName matches the name of the public method shown
in the FundsTransferService class. The EDAF uses the method name to look for
pipeline and business action entries with the same serviceActionName. This pipeline
is also configured to use a Web service transport, an inproc target, an
ExecutionTimeout handler, SyntacticValidation handler, Identity handler,
and a DuplicateMessage handler.

The Service Implementation pipeline configuration in GlobalBankServices.config is
shown in the following code.

<pipeline name="FundsTransferImplementationPipeline"
 serviceActionName="PerformFundsTransfer"
 targetName="businessAction">
 <before>
 <handler handlerName="LoggingHandler"/>
 <handler handlerName="AppInstrumentation"/>
 </before>
 <after>
 </after>
</pipeline>

The Service Implementation pipeline uses the LoggingHandler and the
AppInstrumentation handlers, and executes the business action. When
the businessAction target is invoked, the framework looks in the
GlobalBankServices.config file for a businessAction element with the same
serviceActionName attribute, which is shown in the following code.

<businessAction serviceActionName="PerformFundsTransfer"
 type="Microsoft.ReferenceImplementation.Services.FundsTransfer.
 BusinessActions.FundsTransferBusinessAction,
 FundsTransfer.BusinessActions"
 invocationMethod="Serialization" validate="true"
 validationMethod="ValidateSourceAccount">
 <request type="Microsoft.ReferenceImplementation.Services.FundsTransfer.
 MessageDefinitions.FundsTransferRequest,
 FundsTransfer.MessageDefinitions">
 <method name="PerformFundsTransfer"/>
 </request>
 <response type="Microsoft.ReferenceImplementation.Services.FundsTransfer.
 MessageDefinitions.FundsTransferResponse,
 FundsTransfer.MessageDefinitions"/>
</businessAction>

Note: The type information shown in the preceding code was broken across multiple lines due to
formatting constraints. If this configuration is copied, you will need to modify the type information
so that it is all on one line.

 Chapter 3: Services 107

Handlers
Table 28 lists the handlers this service uses.

Table 28: FundsTransfer Handlers

Name Description

ExecutionTimeout Aborts the current thread if execution time exceeds 300 seconds.

SyntacticValidation Uses the FundsTransferRequest.xsd schema to validate the request
message. Not configured to validate a response message.

Identity Extracts the UserName from the message header and creates an
authenticated GenericPrincipal using the name.

DuplicateMessage Keeps track of service action requests to prevent duplicate
implementations of the same request. If a result is available from a
previous request, it will be returned; otherwise, a null value is returned.
This is configured to hold a result for 60 seconds.

LoggingHandler Writes log entries to the GlobalBank_Core database.

AppInstrumentation Updates the following Performance Monitor counters:

ReferenceArchitecture.TotalRequests

ReferenceArchitecture.RequestsPerSecond

Deployment View
The FundsTransfer service is located within the Global Bank system. The deployment
diagram in Figure 18 shows the different systems involved.

Funds Transfer Service

Global Bank Services

Web Application

Global Bank Web Client

Figure 18
FundsTransfer service deployment diagram

108 Enterprise Development Reference Implementation

TransactionLog Service
This service retrieves transaction information from database logs. This information
can be used to track transactions performed by a user.

Logical View
The Enterprise Development Application Framework requires each service to define
a Service Interface transport and a business action component. For details about the
framework, see the Enterprise Development Reference Architecture documentation.
In addition, the “Funds Transfer Walkthrough” section describes how the framework
processes a service request.

The Service Interface transport used for this service is a Web service named
TransactionLogService, as follows:

TransactionLogService

+Credentials : RequestHeader

+GetCustomerTransactionLog(TransactionLogReportRequest :

 TransactionLogReportRequest) : TransactionLogReportResponse

The TransactionLogService class defines a public method named
GetCustomerTransactionLog, which takes a TransactionLogReportRequest as the
request parameter and returns a TransactionLogReportResponse. This class also
defines a public attribute named Credentials, which is a SOAP request header.

The SOAP header should contain the following values:

Name Value

UserName Name of the user.

Channel Identifies the application used to make the request.

http://go.microsoft.com/fwlink/?LinkId=31528

 Chapter 3: Services 109

The business action class for the TransactionLogService is named
TransactionLogBusinessAction. This class defines two public methods named
GetCustomerTransactionLog and ValidateInputDateRange. The business action
class is responsible for validating date ranges and retrieving the transaction log as
shown in the activity diagram in Figure 19.

ValidateInputDateRange

GetCustomerTransactionLog

RetrieveFundsTransferTransactionLog

RetrieveBillPaymentTransactionLog

[Is Valid]

[Not Valid]

Figure 19
Transfer Log activity diagram

Client Interface
To interact with the service, a client will need to know the structure of messages,
the configuration information of this service, and the handlers that it will use.

Messages
This service uses a TransactionLogReportRequest message for the input parameters
and returns the result in a TransactionLogReportResponse message.

110 Enterprise Development Reference Implementation

Request Message — TransactionLogReportRequest

The TransactionLogReportRequest message uses a single type that contains the
elements listed in Table 29.

Table 29: TransactionLogReportRequest

Element Type Description

StartDate DateTime The start date for the transaction log report.

EndDate DateTime The end date for the transaction log report.

Response Message — TransactionLogReportResponse

The TransactionLogReportResponse type contains two different elements with
BillPayment and FundsTransfer information along with the response information,
as shown in Figure 20.

TransactionLogReportResponse

FundsTransferBillPayment

Figure 20
TransactionLogReportResponse

The following tables provide information about the types and element names used to
define the response message.

Table 30: TransactionLogReportResponse

Element Type Description

TransactionLogReportFundsTransfer
Collection

FundsTransferCollection Includes all of the funds transfers
initiated during the specified date
range.

TransactionLogReportBillPayment
Collection

BillPaymentCollection Includes all the bill payments
initiated during the date range.

 Chapter 3: Services 111

Table 31: BillPayment

Element Type Description

ReferenceCode String Reference number generated for the transaction.

BillIdInBillingSystem String External identifier for the bill in the payee system.

SourceAccountId String Identifier for the account from which the bill is being
paid.

Amount Decimal Amount of the bill.

DateEffectiveOn DateTime The date on which the bill payment is completed.
This version defaults to the current date.

Executed Boolean Indicates whether the bill payment was completed
or not.

PayeeName String Indicates the payee name.

CustomerIdInBillingSystem String Customer account number in the external system.

Table 32: FundsTransfer

Element Type Description

ReferenceCode String Reference number generated for the transaction.

SourceAccountId String Unique identifier for the source account in the funds
transfer.

DestinationAccountId String Unique identifier for the destination account in the
funds transfer.

AmountToTransfer Decimal Amount being transferred.

DateEffectiveOn DateTime Date on which the transfer is done. This will always
default to the current date in this version.

Description String The description specified by the user when initiating the
funds transfer.

Executed Boolean Indicates whether the transfer was completed or not.

112 Enterprise Development Reference Implementation

Service Configuration
The Service Interface pipeline configuration in GlobalBankServices.config is shown in
the following code.

<pipeline name="TransactionLogPipeline"
 transportName="WebServiceTransport"
 serviceActionName="GetCustomerTransactionLog"
 targetName="inproc">
 <before>
 <handler handlerName="ExecutionTimeout">
 <timeoutConfiguration timeout="300"/>
 </handler>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 TransactionLogRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="Identity"/>
 </before>
 <after>
 <handler handlerName="SyntacticValidation">
 <syntactValidationSettings
 requestSchema="C:\Program Files\Microsoft EDRA\CS\
 ReferenceImplementation\GlobalBank\Services\Schemas\
 TransactionLogRequest.xsd"
 responseSchema=""/>
 </handler>
 <handler handlerName="ExecutionTimeout"/>
 </after>
</pipeline>

Note: The requestSchema path information in the preceding code is displayed on multiple lines due
to formatting restrictions. If this configuration is copied, you will need to modify the schema path
information so that it is all on one line.

Notice that the serviceActionName matches the name of the public method shown
in the TransactionLogService class. The EDAF uses the method name to look for
pipeline and business action entries with the same serviceActionName. This
pipeline is also configured to use a Web service transport, an inproc target, an
ExecutionTimeout handler, SyntacticValidation handler, and Identity handler.

 Chapter 3: Services 113

The Service Implementation pipeline configuration in GlobalBankServices.config is
shown in the following code.

<pipeline name="TransactionLogImplementationPipeline"
 serviceActionName="GetCustomerTransactionLog"
 targetName="businessAction">
 <before>
 <handler handlerName="AppInstrumentation"/>
 </before>
 <after>
 </after>
</pipeline>

The Service Implementation pipeline uses the AppInstrumentation handler
and executes the business action. When the businessAction target is invoked, the
framework looks in the GlobalBankServices.config file for a businessAction element
with the same serviceActionName attribute, which is shown in the following code.

<businessAction serviceActionName="GetCustomerTransactionLog"
 type="Microsoft.ReferenceImplementation.Services.
 TransactionLog.BusinessActions.
 TransactionLogBusinessAction,
 TransactionLog.BusinessActions"
 invocationMethod="Serialization"
 validate="true" validationMethod="ValidateInputDateRange">
 <request type="Microsoft.ReferenceImplementation.Services.TransactionLog.
 MessageDefinitions.TransactionLogReportRequest,
 TransactionLog.MessageDefinitions">
 <method name="GetCustomerTransactionLog”/>
 </request>
 <response type=“Microsoft.ReferenceImplementation.Services.TransactionLog.
 MessageDefinitions.TransactionLogReportResponse,
 TransactionLog.MessageDefinitions”/>
</businessAction>

Note: The type information shown in the preceding code was broken across multiple lines due to
formatting constraints. If this configuration is copied, you will need to modify the type information
so that it is all on one line.

114 Enterprise Development Reference Implementation

Handlers
Table 33 lists the handlers this service uses.

Table 33: TransactionLog Handlers

Name Description

ExecutionTimeout Aborts the current thread if execution time exceeds 300 seconds.

SyntacticValidation Uses the TransactionLogRequest.xsd schema to validate the request
message. Not configured to validate a response message.

Identity Extracts the UserName from the message header and creates an
authenticated GenericPrincipal using the name.

AppInstrumentation Updates the following Performance Monitor counters:

ReferenceArchitecture.TotalRequests

ReferenceArchitecture.RequestsPerSecond

Deployment View
The TransactionLog service is located within the Global Bank system.
The deployment diagram in Figure 21 shows the different systems involved.

Funds Transfer Service

Global Bank Services

Web Application

Global Bank Web Client

Figure 21
TransactionLog service deployment diagram

 Chapter 3: Services 115

Summary
The Enterprise Development Reference Implementation applies patterns & practices
guidance and demonstrates the use of the Enterprise Development Application
Framework. This document outlined the design objectives and principles for the
Global Bank Internet banking application Presentation tier and the EDRI services.
For additional information, see “Appendix A — Inside the Enterprise Development
Application Framework” and “Appendix B — Exploring the EDAF Using the Bill
Payment Use Case.”

More Information
For information about Visual Studio.NET, see the Microsoft Visual Studio Developer
Center at http://msdn.microsoft.com/vstudio/.

For information about ASP.NET, see the Microsoft ASP.NET Developer Center at
http://msdn.microsoft.com/asp.net/.

For information about Enterprise Services, see “Understanding Enterprise Services
(COM+) in .NET,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dndotnet/html/entserv.asp.

For information about BizTalk Server, see http://msdn.microsoft.com/library
/default.asp?url=/nhp/default.asp?contentid=28000399.

For information on Web Service Enhancements (WSE), see “Programming with Web
Services Enhancements 2.0” at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnwse/html/programwse2.asp.

For information about Indigo, see Microsoft “Indigo” Frequently Asked Questions at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/indigofaq1.asp.

For information about designing distributed applications, see
“Application Architecture for .NET: Designing Applications and Services,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

To interact with the Enterprise Development Reference Architecture Community,
see the GotDotNet workspace, at http://go.microsoft.com/fwlink/?LinkId=31528.

To interact with the Enterprise Development Reference Architecture Community,
you can also use the Wiki at http://go.microsoft.com/fwlink/?LinkId=31530.

To interact with the Enterprise Development Reference Implementation Community,
you can also use the Wiki at http://go.microsoft.com/fwlink/?LinkId=31531.

For information about online banking application response time statistics;
see www.keynote.com or www.gomez.com.

http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/asp.net/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/entserv.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/entserv.asp
http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000399
http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000399
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/programwse2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/programwse2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/indigofaq1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://go.microsoft.com/fwlink/?LinkId=31528
http://go.microsoft.com/fwlink/?LinkId=31530
http://go.microsoft.com/fwlink/?LinkId=31531
www.keynote.com
www.gomez.com

116 Enterprise Development Reference Implementation

Improving Web Application Security: Threats and Countermeasures, Redmond: Microsoft
Press, 2003, ISBN: 0735618429. Also available on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp.

Building Secure Microsoft ASP.Net Applications — Authentication, Authorization
and Secure Communication, Microsoft Press, ISBN: 0735618909, available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/secnetlpMSDN.asp.

Improving .NET Application Performance and Scalability, Microsoft Press,
ISBN: 0735618518, available at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/scalenet.asp.

Frank Buschmann et al., Pattern-Oriented Software Architecture, Volume 1, A System of
Patterns. Chichester, England: John Wiley & Sons, 1996

Hofmeister, Christine, Robert Nord, and Dilip Soni. Applied Software Architecture.
Reading Massachusetts: Addison-Wesley, 1999

Enterprise Solution Patterns Using Microsoft .NET, Redmond: Microsoft Press, 2003,
ISBN: 0735618399. Also available on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp.

For information about the Model-View-Controller pattern in Enterprise Solution
Patterns Using Microsoft .NET at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnpatterns/html/DesMVC.asp.

For information about the Page Controller pattern in Enterprise Solution Patterns
Using Microsoft .NET at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnpatterns/html/DesPageController.asp.

For information about the Service Interface Pattern in Enterprise Solution Patterns
Using Microsoft .NET at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnpatterns/html/DesServiceInterface.asp.

For information about the Front Controller pattern in Enterprise Solution Patterns
Using Microsoft .NET at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnpatterns/html/DesFrontController.asp.

For information about the Service-Oriented Integration Pattern, see Integration
Patterns at http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us
/dnpag/html/archserviceorientedintegration.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesPageController.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesPageController.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesFrontController.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesFrontController.asp
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/dnpag/html/archserviceorientedintegration.asp
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/dnpag/html/archserviceorientedintegration.asp

4
Installation

Introduction
This section describes how to install the Enterprise Development Reference
Implementation (EDRI). Before you install the EDRI, you should have the Enterprise
Development Application Framework (EDAF) installed. For details, see the “Before
You Begin” section.

Platform Prerequisites
To install and use the EDRI, you need to ensure that your system meets the following
minimum software requirements:
● Microsoft® Windows® 2000, Windows XP, or Windows Server™ 2003 operating

system

Note: If you use Windows Server 2003, verify that ASP.NET is enabled. You can do this from
Add/Remove Programs in Control Panel. Click Add/Remove Windows Components, select
Application Server, and then click the Details button. Verify that the ASP.NET check box is
selected.

● Microsoft Internet Information Server (IIS) version 5.1 or later
● Microsoft .NET Framework version 1.1
● Microsoft SQL Server™ 2000 with SP3a
● Microsoft Windows Message Queuing (also known as MSMQ)
● Microsoft Enterprise Instrumentation Framework (EIF)
● Microsoft WMI (Windows Management Instrumentation)
● Enterprise Development Application Framework (EDAF) version 1.1
● Microsoft Visual Studio® .NET 2003 development system, Enterprise Architect

edition or Enterprise Developer edition

http://msdn.microsoft.com/vstudio/teamsystem/eif/

118 Enterprise Development Reference Implementation

Note: The EDAF requires one of the enterprise editions of Microsoft Visual Studio .NET 2003
because these editions have enterprise template support.

Before You Begin
If you have not already installed the EDAF, you can download it from the
community workspace.

 To install the EDAF

1. In the folder where you downloaded the .msi file, double-click Enterprise
Development Reference Architecture.msi.

2. In the Welcome to the Enterprise Development Reference Architecture Setup
Wizard dialog box, read the provided information, and then click Next if you
agree or click Cancel to exit the installation.

3. Review the terms of the End User License Agreement. If you agree to the terms
and conditions, select I Agree, and then click Next. If you do not agree, click
Cancel to exit the installation.

4. In the Enterprise Development Reference Architecture dialog box, select the
appropriate SNK file generation option, and then click Next. For a development
environment, the default option is appropriate.

5. In the Select Installation Folder dialog box, change the default installation folder,
if desired, select Everyone or Just Me, and then click Next. The default installation
location is C:\Program Files\Microsoft EDRA.

6. In the Confirm Installation dialog box, read the provided information. Click Next
to install the Enterprise Development Reference Architecture, click Back to modify
the settings, or click Cancel to exit the installation.

7. In the Installation Complete dialog box, read the provided information, and then
click Close to complete the installation.

Note: After you install the EDAF, you can access the EDAF documentation. On the taskbar, click
Start, point to Programs, and then point to Microsoft patterns & practices. You should see the
icon for the patterns & practices Web site and the Enterprise Development Reference Architecture
menu. There are several options when you point to Enterprise Development Reference Architecture.
One of the options is Enterprise Development Application Framework Documentation. This
contains supporting documentation for the EDAF and guidance on how to build your own
solution using the EDAF.

http://go.microsoft.com/fwlink/?LinkId=31528

 Chapter 4: Installation 119

Before you install the EDRI, make sure the security settings for SQL Server are
correct. The SQL Server must have its logon security mode set to SQL Server and
Windows authentication. By default, the setup scripts use SQL Server authentication.

 To check the SQL Server authentication settings

1. On the taskbar, click Start, point to Programs, point to Microsoft SQL Server,
and then click Enterprise Manager.

2. In the SQL Server Enterprise Manager window, expand Microsoft SQL Servers,
expand SQL Server Group, right-click your SQL Server instance, and then click
Properties.

3. In the SQL Server Properties (Configure) dialog box, click the Security tab.
In the Security section, select the SQL Server and Windows option under
Authentication.

Note: You can modify the EDRI configuration files for Global Bank to access SQL Server using
Windows Integrated Security. However, you must set up the <Machine Name>\ASPNET account in
Windows XP. For Windows 2003, use the Windows NT Authority\Network Service account as a user
on SQL Server and grant the appropriate permissions. For information, see “Accessing SQL Server
Using Windows Integrated Security.”

You also need to ensure the VSWebCache folder is cleared of any Web cache folders
from earlier installations of the framework. If a compile is performed with incorrect
configuration path settings in the configuration files, these incorrect settings are
cached, and Visual Studio .NET continues to reference the invalid paths.

 To clear the VSWebCache

● Delete the following folders from
C:\Documents and Settings\<login account>\VSWebCache\<machine name>:
● AccountStatementService
● AuthenticationService
● BillPaymentService
● BillSubscriptionService
● ExternalInvestmentFundSystemService
● FundsTransferService
● GlobalBank
● TransactionLogService

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskaccessingsqlserverusingwindowsintegratedsecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskaccessingsqlserverusingwindowsintegratedsecurity.asp

120 Enterprise Development Reference Implementation

Installing the Enterprise Development Reference
Implementation

This section outlines the steps you should follow to install the EDRI.

Note: Before attempting to install the EDRI, you must install the EDAF. For details, see the
“Before You Begin” section.

 To install the EDRI

1. In the folder where you downloaded the .msi file, double-click Enterprise
Development Reference Implementation.msi.

2. In the Welcome to the Enterprise Development Reference Implementation
Setup Wizard dialog box, read the provided information, and then click Next
if you agree or click Cancel to exit the installation.

3. Review the terms of the End User License Agreement. If you agree to the
terms and conditions, select I Agree, and then click Next. If you do not agree,
click Cancel to exit the installation.

4. In the Confirm Installation dialog box, select Next to install the reference
implementation or click Cancel to exit the installation.

5. In the Installation Complete dialog box, read the provided information,
and then click Close to complete this portion of the installation. The default
installation location is the location where the EDRA is installed. For example,
C:\Program Files\Microsoft EDRA\CS\ReferenceImplementation.

Verifying the Installation
You should now verify that you have the correct menu items set up. On the taskbar,
click Start, point to Programs, and then point to Microsoft patterns & practices. You
should see the icon for the patterns & practices Web site, the menu for the Enterprise
Development Reference Architecture, and the Enterprise Development Reference
Implementation menu. There are several options when you point to Enterprise
Development Reference Implementation:
● Build and Deploy Reference Implementation.wsf. This is the setup script for

the EDRI.
● GlobalBank C#. This is the solution file for the EDRI.

 Chapter 4: Installation 121

● GlobalBank Community Workspace. The pattern & practices team has been
using a community workspace as a way for the community members to review
the EDRI, and to provide feedback. We encourage you to join the community at
our workspace, where you can ask questions, get answers, share your ideas,
and provide input for future releases.

● GlobalBank Wiki. This is the Web site for the Channel 9 EDRI Discussion Forum.
This provides a space for you to discuss the EDRI, get the latest information,
and share your suggestions with the development team.

Setting Up and Running the EDRI
This section describes how to set up and run the Enterprise Development Reference
Implementation solution. If you encounter any problems setting up the EDRI,
see the “Troubleshooting Set Up” section.

 To set up the EDRI

1. On the taskbar, click Start, point to Programs, point to Microsoft patterns &
practices, point to Enterprise Development Reference Implementation, and
then click Build and Deploy Reference Implementation.wsf. This script builds
and deploys the code.

2. When the script runs, a pop-up window prompts you to confirm whether the
software prerequisites are installed. Click Yes if you have verified this to be true
and want to continue the installation. Otherwise, click No.

3. The script prompts you to enter the SQL Server instance name. The default
instance name is (local). If the SQL Server database you are using is Microsoft
SQL Server Desktop Engine (MSDE), you need to enter the instance name, instead
of (local), in the text box in the following format: server_name\instance_name. In
most cases, this is the instance name of the database, such as the machine name.

4. When the script runs, you will see the following output to the Setup console that
launches.

Starting Enterprise Development Reference Implementation setup and deploy...
Starting Enterprise Development Reference Architecture setup...
Compiling Services Reference Architecture...
Setting up Business Event Handler...
Setting up Transaction Handler...
Setting up Performance Counters...
Setting up Event Log Source...
Setting up Logging Application Block...
Starting database setup...
Starting compilation of the Enterprise Development Reference Implementation
solution...
Starting config files update...
Starting Transport config files update...
Starting Web Application config file update...

(continued)

122 Enterprise Development Reference Implementation

(continued)

Starting deployment of the binaries...
Creating the setup completed flag file...
Setup Completed.

Check the Setup.log file for more details

Script finished. Press [ENTER] to close

5. Using the Visual Studio .NET command prompt, go to the <Installation Location>
\Microsoft EDRA\CS\ReferenceImplementation directory and run the
CreateDatabaseAndPopulateDataForReferenceImplementation.cmd script with
debug or release as the parameter. This script sets up four databases and creates
the appropriate accounts for accessing each database. For example, run the script
with the following line.

CreateDatabaseAndPopulateDataForReferenceImplementation.cmd debug

When the script runs, you will see the following output to the Setup console that
launches.

Copying the UserNamePasswordUtility files to the local folder...
 1 file(s) copied.
 1 file(s) copied.
Creating the GlobalBank_Core database...
Creating the GlobalBank_CreditCard database...
Creating the GlobalBank_CumulativeDeposit database...
Creating the GlobalBank_InvestmentFund database...
Populating database with data...
Populating database with base data...
Populating database with customer data...
Updating User Name and Password...
Removing the UserNamePasswordUtility files from the folder...

Script execution is complete!

 To run the EDRI

1. Run the Web application using the following URL:
http://localhost/GlobalBank/Default.aspx
Make sure to use the right case when specifying the address in the browser.
Global Bank enforces tighter security by restricting access (using the cookie
path attribute) to issued cookies, to those originating with the application
name “GlobalBank.”

Note: When you load the EDRI Web site, it is slower the first time you access the site. This is
due to the ASP.NET initialization that occurs the first time. Subsequent loadings will be much
faster.

 Chapter 4: Installation 123

2. Use the following accounts to access Global Bank:

Online ID Password

11111111 1111

22222222 2222

33333333 3333

44444444 4444

55555555 5555

3. You can open the GlobalBank.sln solution file in Visual Studio .NET 2003
to look at the code. On the taskbar, click Start, point to Programs, point to
Microsoft patterns & practices, point to Enterprise Development Reference
Implementation, and then click GlobalBank C#. Alternatively, you can navigate
to the <Installation Location>\Microsoft EDRA\CS \ReferenceImplementation
directory, and then double-click GlobalBank.sln.

Note: By default, the code is built in the debug configuration so that you can debug the code
when troubleshooting.

Using the Various Dispatching Transports
An important benefit from using the Enterprise Development Application
Framework is that each service’s service interface can be separated from its
service implementation using four different transports. This separation can be
used to add an additional layer of security between the service interface and service
implementation, and it can also be used to increase scalability and resiliency of a
service. A brief introduction to the EDAF can be found in “Appendix A: Inside the
Enterprise Development Application Framework” of the EDRI documentation. For
more information about the EDAF, on the taskbar, click Start, point to Programs, and
point to Microsoft patterns & practices, point to Enterprise Development Reference
Architecture, and click on Enterprise Development Application Framework
Documentation.

By default, the targetName attribute for the service interface pipeline is set to inproc
in the GlobalBankServices.config file. The inproc dispatching transport is used to run
the service implementation in the same host process as the service interface.

You may also set DCOM, Web service, and Message Queuing as the dispatching
transport. This allows you to deploy an additional firewall between the service
interface and the service implementation and to use one of the dispatching transports
to communicate between the service interface and service implementation.

124 Enterprise Development Reference Implementation

This section shows you how to modify the default service implementation from
inproc to DCOM, Web service, and Message Queuing dispatching transport.

 To set the DCOM dispatching transport

1. Open the GlobalBankServices.config file in the <Installation Location>
\Microsoft EDRA\CS\ReferenceImplementation\GlobalBank\Services directory.
Change the targetName attribute to dcom for the service interface pipeline being
tested, and then save the configuration file.

2. Run the Setup.wsf script from the <Installation Location>\Microsoft EDRA\CS
\ReferenceArchitecture\Template\CS directory. From the taskbar, click Start,
point to Programs, point to Microsoft patterns & practices, point to Enterprise
Development Reference Architecture, point to Starter Templates, point to C#,
and then click Setup.wsf.

3. Run the Web application using the following URL:
http://localhost/GlobalBank/Default.aspx

 To set the Web service dispatching transport

1. Open the GlobalBankServices.config file in the <Installation Location>
\Microsoft EDRA\CS\ReferenceImplementation\GlobalBank\Services directory.
Change the targetName attribute to webservice for the service interface pipeline
being tested, and then save the configuration file.

2. Run the Web application using the following URL:
http://localhost/GlobalBank/Default.aspx

 To set the Message Queuing dispatching transport

1. Open the GlobalBankServices.config file in the <Installation Location>
\Microsoft EDRA\CS\ReferenceImplementation\GlobalBank\Services directory.
Change the targetName attribute to msmq for the service interface pipeline being
tested, and then save the configuration file.

2. Run the Setup.wsf script from the <Installation Location>\Microsoft EDRA\CS
\ReferenceArchitecture\Template\CS directory. From the taskbar, click Start,
point to Programs, point to Microsoft patterns & practices, point to Enterprise
Development Reference Architecture, point to Starter Templates, point to C#,
and then click Setup.wsf.

3. Run the Deploy Reference Implementation.wsf script from the
<Installation Location>\Microsoft EDRA\CS\ReferenceImplementation directory.

Note: If you are already using the DCOM dispatching transport and it is running then the Deploy
Reference Implementation.wsf script will fail and you will get an “Access denied” error. Before
executing the script, you should stop running the DCOM component to resolve the error.

 Chapter 4: Installation 125

4. Run TransportConsole.exe from the <Installation Location>\Microsoft EDRA\CS
\ReferenceArchitecture\Transports\Hosts\Console\bin\Debug directory and
verify that only MSMQDispatchingTransport is running. RemotingTransport
and MSMQTransport should not be running.

5. Run the Web application using the following URL:
http://localhost/GlobalBank/Default.aspx

To Uninstall
This section outlines the steps you should follow to uninstall the EDRI.

 To uninstall the EDRI

1. Run the UnInstall Reference Implementation.wsf script from the
<Installation Location>\Microsoft EDRA\CS\ReferenceImplementation directory.
This script removes the virtual directories that were created during the installation
and removes all the databases that were installed. When the script runs, you will
see the following output to the Setup console that launches.

Starting Enterprise Development Reference Implementation uninstall...
Removing the virtual directories...
Restarting IIS...
Running the database deletion script...
UnInstall Completed.

Creating the UnInstall completed flag file...
UnInstall Completed.

Check the Setup.log file for more details

Script finished. Press [ENTER] to close

2. Use Add/Remove Programs in Control Panel to uninstall the Enterprise
Development Reference Implementation. Alternatively, you can uninstall by
navigating to the location where you downloaded the .msi file, and then double-
click Enterprise Development Reference Implementation.msi. In the Welcome
to the Enterprise Development Reference Implementation Setup Wizard dialog
box, select Remove Enterprise Development Reference Implementation, and
then click Finish.

126 Enterprise Development Reference Implementation

3. Check that the Global Bank databases installed by the EDRI were deleted. The
databases are the following:
● GlobalBank_Core
● GlobalBank_CreditCard
● GlobalBank_CumulativeDeposit
● GlobalBank_InvestmentFund
If the SQL Server process is stopped, you will not be able to drop the database
as you will not be able to connect to the SQL Server. SQL Server doesn’t allow
you to drop the database if there are any existing connections to the database.
SQL Enterprise Manager might have a connection to the database if you are
browsing it, or Query Analyzer might, or IIS if it has a cached connection, and
so on. These processes must be stopped with the main SQL Server process left
running for the database to get dropped successfully by the uninstall script.

4. Check that the following folders were removed from the
C:\Documents and Settings\<Login Account>\VSWebCache\<Machine Name>
folder:
● AccountStatementService
● AuthenticationService
● BillPaymentService
● BillSubscriptionService
● ExternalInvestmentFundSystemService
● FundsTransferService
● GlobalBank
● TransactionLogService

5. Delete the <Installation Location>\Microsoft EDRA\CS
\ReferenceImplementation directory. This ensures that all files created during
the build and test process are removed.

 Chapter 4: Installation 127

Troubleshooting
This section provides guidance on troubleshooting Web service projects and the
EDRI set up.

Troubleshooting Web Service Projects
If you have problems with Web service projects when opening the GlobalBank
solution in Visual Studio .NET, clear the VSWebCache.

 To clear the VSWebCache

● Delete the following folders from
C:\Documents and Settings\<login account>\VSWebCache\<Machine Name>:
● AccountStatementService
● AuthenticationService
● BillPaymentService
● BillSubscriptionService
● ExternalInvestmentFundSystemService
● FundsTransferService
● GlobalBank
● TransactionLogService

Troubleshooting Set Up
This section provides an alternate process for setting up the EDRI in case you
experience any problems with the Build and Deploy Reference Implementation.wsf
script. You should first follow the installation instructions in the “Installing the
Enterprise Development Reference Implementation” section.

 To set up the EDRI

1. Run the Setup Reference Implementation.wsf script from the
<Installation Location>\Microsoft EDRA\CS\ReferenceImplementation directory.
When the script runs, the Setup console prompts you to confirm whether the
software prerequisites are installed. Click Yes if you have verified this to be true.
Otherwise, click No.

2. The script prompts you to enter the SQL Server instance name. The default
instance name is (local). If the SQL Server database you are using is MSDE, you
need to enter the instance name, instead of (local), in the text box in the following
format: server_name\instance_name. In most cases, this is the instance name of the
database, such as the machine name.

128 Enterprise Development Reference Implementation

3. When the script runs, you will see the following output to the Setup console that
launches.

Starting Enterprise Development Reference Implementation setup and deploy...
Starting Enterprise Development Reference Architecture setup...
Compiling Services Reference Architecture...
Setting up Business Event Handler...
Setting up Transaction Handler...
Setting up Performance Counters...
Setting up Event Log Source...
Setting up Logging Application Block...
Starting database setup...
Creating the setup completed flag file...
Setup Completed.

Check the Setup.log file for more details

Script finished. Press [ENTER] to close

4. On the taskbar, click Start, point to Programs, point to Microsoft patterns
& practices, point to Enterprise Development Reference Implementation,
and then click GlobalBank C#. Alternatively, you can navigate to the
<Installation Location>\Microsoft EDRA\CS \ReferenceImplementation
directory, and then double-click GlobalBank.sln.

5. To build the solution; in Visual Studio .NET, click Build Solution on the Build
menu, or press CTRL+SHIFT+B.

6. Using the Visual Studio .NET command prompt, go to the <Installation Location>
\Microsoft EDRA\CS\ReferenceImplementation directory and run the
CreateDatabaseAndPopulateDataForReferenceImplementation.cmd script with
debug or release as the parameter. This script sets up four databases and creates
the appropriate accounts for accessing each database. For example, run the script
with the following line.

CreateDatabaseAndPopulateDataForReferenceImplementation.cmd debug

When the script runs, you will see the following output to the Setup console that
launches.

Copying the UserNamePasswordUtility files to the local folder...
 1 file(s) copied.
 1 file(s) copied.
Creating the GlobalBank_Core database...
Creating the GlobalBank_CreditCard database...
Creating the GlobalBank_CumulativeDeposit database...
Creating the GlobalBank_InvestmentFund database...
Populating database with data...
Populating database with base data...

(continued)

 Chapter 4: Installation 129

(continued)

Populating database with customer data...
Updating User Name and Password...
Removing the UserNamePasswordUtility files from the folder...

Script execution is complete!

7. Run the Deploy Reference Implementation.wsf script from the
<Installation Location>\Microsoft EDRA\CS\ReferenceImplementation directory.
When the script runs, you will see the following output to the Setup console that
launches.

Starting Enterprise Development Reference Implementation Deploy...
Starting config files update...
Starting Transport config files update...
Starting Web Application config file update...
Starting deployment of the binaries...
Creating the setup completed flag file...
Setup Completed.

Check the Setup.log file for more details

Script finished. Press [ENTER] to close

You should now be able to run the Web application using the following URL:

http://localhost/GlobalBank/Default.aspx

You can log on to Global Bank using the Online ID and password listed in the
“Setting Up and Running the EDRI” section earlier in this chapter.

More Information
For information about how to configure Microsoft SQL Server to store ASP.NET
session state, see:

HOW TO: Configure SQL Server to Store ASP.NET Session State
http://support.microsoft.com/default.aspx?kbid=317604

The remaining references in this section are to Building Secure Microsoft ASP.NET
Applications: Authentication, Authorization, and Secure Communication, Redmond:
Microsoft Press, 2003, ISBN: 0735618909. The material can be read online at the
following MSDN locations.

http://support.microsoft.com/default.aspx?kbid=317604

130 Enterprise Development Reference Implementation

For information about securing the data transported between the client browser
and the Presentation tier (Web server), see:

How To: Set Up SSL on a Web Server
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetHT16.asp

For information about securing the data transported between the Presentation tier
and the Application tier, see:
● “The Trusted Subsystem Model” in Chapter 3: Authentication and Authorization

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch03.asp

● How To: Use IPSec to Provide Secure Communication Between Two Servers
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetHT18.asp

● How To: Use SSL to Secure Communication with SQL Server 2000
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetHT19.asp

For information about securing the data transported between the Application tier
and the Data tier, see:
● Accessing SQL Server Using Windows Integrated Security

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vbtskaccessingsqlserverusingwindowsintegratedsecurity.asp

● How To: Use IPSec to Provide Secure Communication Between Two Servers
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetHT18.asp

● How To: Use SSL to Secure Communication with SQL Server 2000
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetHT19.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT16.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT16.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT18.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT18.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskaccessingsqlserverusingwindowsintegratedsecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskaccessingsqlserverusingwindowsintegratedsecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT18.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT18.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT19.asp

Appendix A
Inside the Enterprise Development
Application Framework

Introduction
The Enterprise Development Reference Implementation uses the Enterprise
Development Application Framework to standardize the development of services.
This appendix includes extracts from the “Enterprise Development Application
Framework Architecture” section to help you become familiar with the EDAF.
See the Enterprise Development Reference Architecture for more information.

Architectural Goals and Prerequisites
The Enterprise Development Application Framework was developed to meet a
number of key architectural requirements and goals. These goals have had a major
impact on the framework design.

Goals
Organizations transitioning from tightly coupled application architectures to loosely
coupled, service-based architectures face numerous challenges. The more significant
challenges include:
● Separating the service interface from the internal service implementation. This

separation allows an enterprise to develop a custom deployment scenario that is
optimized for scalability, reliability, security, performance, and availability.

● Separating business logic from cross-cutting concerns such as logging, monitoring,
or raising business events.

● Separating business logic from the underlying transport so that multiple
transports can be used to access a single service implementation.

http://go.microsoft.com/fwlink/?LinkId=31528

132 Enterprise Development Reference Implementation

The Enterprise Development Application Framework simplifies the development of
distributed applications. It does this by providing standardized, reusable solutions to
common challenges that software professionals face when developing and exposing
business services.

For the purposes of the EDAF, these challenges were refined into the following
architectural requirements:
● Provide support for sending service requests and receiving service responses over

multiple transports, including Web services, message queuing, and remoting.
● Provide a declarative mechanism for specifying and applying cross-cutting

concerns to a service across multiple transports.
● Separate service interface and service implementation elements so that they can

run on different hosts.
● Allow business logic to be dispatched on Internet Information Service (IIS),

COM+, or Microsoft Windows® service–based hosts, independent of the interface
that transport requests came on.

● Separate business logic from transaction logic; treat transactions as cross-cutting
concerns.

● Provide a simple means of integration with Microsoft BizTalk® server orchestration
by using Microsoft Message Queuing.

EDAF at a Glance
The interaction between a client application and the service (or business action) it
invokes can be simplified as a request and a response. Within the EDAF, the business
action refers to the requested service and excludes everything but the actual business
logic. In other words, it is the component that performs the business logic requested
by the client application. Figure 1 illustrates this simple concept.

Figure 1
Simple service request from client application to business action

 Appendix A: Inside the Enterprise Development Application Framework 133

There is more involved in this process than simply sending a request to a business
action and waiting for the response. For example:
● How will the message be delivered?
● Is the request sent across process boundaries or server boundaries?
● How will errors be handled?
● Will transactions be supported?

Considerations such as these are just a few of many that can complicate this
interaction. To solve these complexities and make the interaction simpler for both
the client application and the business action, the EDAF addresses these cross-cutting
concerns. It does this by intercepting the request and processing it before sending it
on to the business action. Figure 2 demonstrates how this works.

Figure 2
Client application invokes the business action using the Enterprise Development
Application Framework

134 Enterprise Development Reference Implementation

Conceptually, the EDAF sits between the client application and the business action.
Within the EDAF, you find two layers: the Service Interface layer, and the Service
Implementation layer. The Service Interface layer serves as a boundary, rejecting
unauthorized or invalid requests. The Service Implementation layer is responsible
for invoking the business action.

Figure 3 provides a high-level conceptual view of the key elements of the EDAF.

Figure 3
A high-level look inside the Enterprise Development Application Framework

 Appendix A: Inside the Enterprise Development Application Framework 135

The architectural goals of the framework include the ability for client applications to
invoke components over multiple transports. Figure 3 illustrates how this works.
1. A client application sends a request for a service using one of the available

transports, such as a Web service, a message queue, an InProc, or a Microsoft
.NET Remoting component.

2. The transport receives the request and passes it to an instance of the Service
Interface pipeline.

3. The pipeline applies handlers to the incoming request, passes the request to the
pipeline target, which takes some action, and then applies the remaining handlers
to the response received from the target. Each handler implements its logic and is
executed in turn.

In the EDAF, the first pipeline (the Service Interface pipeline) is transport-specific
and focused on service boundary handlers. These handlers exist at the periphery
of the EDAF and perform initial checks and validations. For example, they request
authentication and perform message request validation. The target of the Service
Interface pipeline is another transport. This transport is responsible for invoking
the second pipeline (the Service Implementation pipeline).

The Service Implementation pipeline is service-specific and focuses on business-
related handlers. These handlers raise business events, log requests, initiate
transactions, and so on. The target of the Service Implementation pipeline is
responsible for invoking the business action.

A business action is the actual implementation of the requested service. It is either
an internal business component or some other component that can call a business
component(s). In either case, the business action is the ultimate target of the original
service request from the client application. In most cases, when the business action is
executed, it produces a response. The response is returned to the client application
as follows:
1. When the business action is completed, it issues a response.
2. The Service Implementation pipeline receives the response, applies its remaining

handlers, and returns the response to the Service Interface pipeline.
3. The Service Interface pipeline executes its remaining handlers, and sends the

response to the transport.
4. The transport returns the response to the client application.

136 Enterprise Development Reference Implementation

Dominant Patterns
Three patterns have dominated the architecture of the framework:
● The Service Interface pattern, as described in Enterprise Solution Patterns Using

Microsoft .NET, Redmond: Microsoft Press®, 2003
● A variant of the Interceptor pattern called the Delegator pattern, as described

in Pattern-Oriented Software Architecture, Volume 2, Patterns for Concurrent and
Networked Objects, by Douglas Schmidt et al., Chichester, England: John Wiley
& Sons, 2000

● The Chain of Responsibility pattern, as described in Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma et al., Reading, Massachusetts:
Addison Wesley Longman, Inc., 1995

The Service Interface pattern decouples service interface mechanisms from the
service implementation, so that they can vary independently. In the framework,
the service implementation is represented by business action objects. Business action
objects are invoked by the service implementation elements of the framework and
serve as entry points to service business logic.

Service interface elements perform boundary functions for the service. They receive
service requests from clients, dispatch those requests to service implementation
elements, and return results to clients. The framework provides multiple mechanisms
to allow independent evolution of the service interface and the service
implementation. It also allows for multiple ways of hosting and deploying service
interface and service implementation elements, either together or separately.

The Delegator pattern provides a request interception mechanism that allows cross-
cutting logic to be inserted into the request processing flow. The interceptor takes the
form of two pipelines as shown in Figure 4. The primary reason for using two distinct
pipelines is to enable deployment scenarios where they are on separate computers for
reasons such as security or reliability.

 Appendix A: Inside the Enterprise Development Application Framework 137

Figure 4
EDAF implementation of the Delegator pattern

138 Enterprise Development Reference Implementation

The cross-cutting logic is included in the pipelines as handler objects. The same
pipeline class (type) is used for all service interface transports. Each time a service
request message arrives, an interface transport adapter places the message into a
common envelope object (the Context object), and passes it to a pipeline instance.
The pipeline instance uses configuration data supplied by the adapter to identify:
● The handlers to be invoked on the inbound service request message.
● The pipeline target to be invoked when the request reaches the end of the pipeline.
● The handlers to be invoked when the service response message is returned.

As described above, the framework has separate pipelines for the Service Interface
and Service Implementation layers. The Service Interface pipeline is transport-
specific (it is used for Web services, Message Queuing, InProc, or .NET Remoting),
and focuses on service boundary handlers. Service boundary handlers usually
perform initial checks and validations, such as authentication, request monitoring,
and message request validation. The target of this pipeline is the dispatching target,
which is responsible for invoking the second pipeline in the service implementation.
This approach is known as a Bridge pattern. (For more information about dispatching
targets, see “Service Request Flow” in the next section.)

The pipeline in the Service Implementation layer (the implementation pipeline) is
service-specific and focuses on service-specific behavior. Handlers in this pipeline
are usually related to and focused on business actions. These handlers raise business
events, log service requests, or manage transactions. The target of an implementation
pipeline is responsible for invoking a business action.

A business action is the entry point into the implementation of the requested service.
It is either a business component, or it calls your business component(s). In either
case, this is the ultimate target of the original service request. A business action is
executed and, in most cases, produces a response.

 Appendix A: Inside the Enterprise Development Application Framework 139

The Chain of Responsibility pattern is used to guide the design pipelines. In the
framework, pipelines assemble handlers in a chain of responsibility, as shown in
Figure 5.

Figure 5
The Chain of Responsibility pattern

For a description of the details of pipeline design, see “Pipelines” in Chapter 3,
“Logical View” in the EDRA documentation.

The pipeline constructor uses configuration data to stack handler objects in such
a way that the pipeline calls the first handler, and each subsequent handler calls
the next handler. The last element in the chain is the pipeline target, which reverses
the process, returning control to the last handler, which then returns control to the
handler that called it, and so on. This design allows handlers to act on requests and
on the responses that are returned. Not all handlers take advantage of this feature.
Handlers that process both requests and responses are referred to as around and
stacked around handlers. Handlers that handle only requests or responses are
referred to as atomic handlers.

Service Request Flow
To complete the conceptual view of the framework, you should understand the
flow of service request from client to business action and the flow of the response
back to the client. This section explains the request flow, reiterating key processes
and concepts. In addition, Figure 6 provides a high-level representation of the service
request flow from start to finish.

Note: The framework also supports a one-way service request flow (the fire-and-forget-it request
model), in which no result is returned to the client.

140 Enterprise Development Reference Implementation

Figure 6
The EDAF process flow

 Appendix A: Inside the Enterprise Development Application Framework 141

In this process, the client application creates a service request message and submits
it by sending the message over the appropriate transport to the server that hosts the
service interface.

Each transport is associated with a host. For example, the Web service transport is
hosted in IIS, while most Message Queuing and remoting transports are hosted in a
Windows service. A transport has an adapter that receives the message and initiates
message processing. It creates a Context object, inserts the message into the object,
creates an interface pipeline instance, and then passes the context to the pipeline to
be processed.

The pipeline consists of a chain of handlers followed by a target object. As the control
moves from handler to handler, each handler has access to the Context object and
uses it to carry out its operation.

Pipelines are configurable in that different handlers can be chained within them.
They are also configurable, in terms of which target they use. Interface pipeline
targets (dispatching targets) implement different, transport-specific strategies
when calling the implementation pipeline in the service implementation.

Dispatching targets are transport-specific in that they call implementation pipelines
over specific transports. The framework provides supports for the following
dispatching transports:
● Web service
● Inproc
● Message Queuing
● DCOM

Each dispatching transport has an adapter — similar to an interface transport adapter
— that creates an instance of an implementation pipeline and passes the Context
object to it.

The target of an implementation pipeline is a business action target. The target is
responsible for calling the business action identified in the configuration data. The
business action executes, places the results in a response message, adds the message
to the Context object, and returns it to the business action target.

The target returns the context to the last handler in the pipeline chain that called it.
This handler now has the Context object — with both the request message and the
response message — and can perform an action on it before returning it to the
adjacent handler in the stack. This process repeats until the first handler in the
chain returns the Context object to the dispatching transport adapter.

142 Enterprise Development Reference Implementation

The dispatching transport adapter returns the Context object by using its transport
to the dispatching target of the interface pipeline, which returns it to the last handler,
and so on. Finally, the interface transport adapter that initiated the request receives
the Context object with request and response messages in it. Before returning the
response to the client application, the adapter determines whether any exceptions
have occurred. If an exception has occurred, the adapter establishes whether it was
a business exception or infrastructure (framework) exception. Business exceptions
are returned to the client. Infrastructure exceptions are caught, logged, and a safe
error message is sent to the client with information about the exception that the
system administrator can use to locate the exception details in a log.

Appendix B
Exploring the EDAF Using the
Bill Payment Use Case

The collaboration diagram in Figure 1 will help you understand how the EDAF
processes requests. Figure 1 shows the high-level interactions between client and
framework components for the Bill Payment use case. The Pay Pending Bills use case
is described because it covers many of the features exposed by the EDRI. Most of the
other use cases are not as complex.

144 Enterprise Development Reference Implementation

5.n: Execute ()

2: PayPendingBill ()

()

3: ProcessMessage()

3.1: ExecuteRequest

4: E
xe

cu
te()

5: Execute()

 : ConfirmationView

1: ConfirmButtonClicked ()
1.1: base.GoToReceipt ()

4.1, 7.1: CreateHandlerChain

IHandlerAdapter
 : InProcDispatchingAdapter

7:
 E

xe
cu

te
()

 : PipelineTargetAdapter

8: Execute

()6: Submit
:BusinessActionTarget

:SerializationTargetInvocator

10: Execute()

:BillPaymentBusinessAction

11: ValidateBillPayment ()

:BillPaymentBusinessAction

12: PayPendingBill()

:BillPaymentBusinessAction

13: UndoPayPendingBillTransaction()

9:
 S

ub
m

it(
)

{Validate = True}

{On Exception}

:BillPaymentService WebServiceInterfaceAdapter:

:PipelineController

Figure 1
Pay Pending Bill collaboration

 Appendix B: Exploring the EDAF Using the Bill Payment Use Case 145

This collaboration diagram begins on the Confirmation page of the user interface
and includes the following steps:
1. The user clicks the Confirm button.

1.1 The GoToReceipt method on the base class is called. The base class for
Confirmation view is the PageController class, which initializes and
invokes the Web service.

2. The PayPendingBill method is executed on the Web service.
3. The WebServiceInterfaceAdapter is a Web service extension provided by the

EDAF. The Web service extension intercepts and processes the requests coming
to the service.
3.1 An internal method named ExecuteRequest is used to process the request.

This method also packages the message into a Context object and initializes
the context with requested information.

4. The WebServiceInterfaceAdapter calls the Execute method on the
PipelineController.
4.1 The PipelineController uses information passed in the Context object to

create a collection of handler adapters. The handler adapters are used to
execute handlers as well as pipeline targets.

5. The PipelineController calls the Execute method on the first handler in the
collection using the associated handler adapter.
5.1 The Execute method is called on each handler in the collection for the

pipeline associated with the invoked target. In this case, the target is the
InProcDispatchingAdapter.

6. The Submit method is called on the InProcDispatchingAdapter. The adapter
creates a new Context object using information from the original.

7. The InProcDispatchingAdapter calls the Execute method on the
PipelineController. This PipelineController is associated with the
Implementation pipeline.
7.1 The PipelineController uses information passed in the Context object to

create a collection of handler adapters. In this case, the only adapter is the
PipelineTargetAdapter.

8. The PipelineController calls the Execute method on the PipelineTargetAdapter.
9. The PipelineTargetAdapter calls the Submit method on the

BusinessActionTarget.
10. The BusinessActionTarget instantiates a target invocator based on the invocation

type and calls the Execute method on that invocator instance. The target invocator
used in this case is the SerializationTargetInvocator because the type of
invocation is serialization. The SerializationTargetInvocator is responsible
for instantiating the business action.

146 Enterprise Development Reference Implementation

11. The appropriate validation method on the business action instance is called. In this
case, the ValidateBillPayment method is called. This is called when the validate
attribute on the business action is set to true.

12. If the validation is successful, the PayPendingBill method is invoked on the
business action instance.

13. If there is an exception, the target invocator executes the method specified by
the compensate attribute. In this case, it is the UndoPayPendingBillTransaction
compensation method.

Now we can take a look at the handlers that the bill payment business action uses
starting with the handlers in the Service Interface pipeline. The ordering of the
handlers in the Service Interface pipeline is as follows:
1. ExecutionTimeout handler. First, we want to ensure the stability of the system

by monitoring for hung threads from the beginning of the pipeline.
2. SyntacticValidation handler. Next, we will validate the request before doing any

processing.
3. Identity handler. Authentication is another form of validation, so it makes sense

to do it early. Also, it must happen before the DuplicateMessage handler.
4. DuplicateMessage handler. We use the DuplicateMessage handler with the mode

set to “cache” for idempotency.

The ordering of the handlers in the Service Implementation pipeline is:
1. LoggingHandler. Because this is an application specific responsibility, we will

place this handler in the Service Implementation pipeline.
2. AppInstrumentation handler. Because this is an application specific responsibility,

we will place this handler in the Service Implementation pipeline.

In this case, the ordering of the handlers in the Service Implementation pipeline is not
important. For the configuration of each handler, see the “BillPayment Service”
section in Chapter 2, “Architecture.”

 Appendix B: Exploring the EDAF Using the Bill Payment Use Case 147

Before looking at the collaboration diagrams, it is important to understand that each
handler entry in the configuration file implements a separate handler adapter. When
created, each handler adapter contains a reference to the handler it manages along
with the configuration stage that the handler came from, which will be referred to
as the handler stage in the following diagrams.

IHandlerAdapter
1

adapter : AtomicHandlerAdapter

handler : InstrumentationHandler handler : PublishBusinessEventHandler

Execute(context)

2 Execute(context)

{stage = before}

{type = atomic}

4 Execute(context)

3 Next.Execute(context)

{stage = after}

Figure 2
AtomicHandlerAdapter

1. Execute is called on the first handler adapter in the collection.
2. If the adapter stage = before, then Execute is called on the handler instance.
3. The Next handler adapter is accessed and Execute is called.
4. If the adapter stage = after, then Execute is called on the handler instance.

The example above also shows two separate handlers, one that is called before the
target and another that is called after the target. Each handler is called only one time,
and each handler has access to the current context. During the before stage the
context will only contain the request. During the after stage the context will
contain both the request and response messages.

148 Enterprise Development Reference Implementation

IHandlerAdapter
1

adapter : StackedAroundHandlerAdapter

handler : DuplicateHandlingHandler

Execute(context)

2 Execute(context, next)

{type = stateful around}

3 Next.Execute(context)

Figure 3
StackedAroundHandlerAdapter

1. Execute is called on the first handler adapter in the collection.
2. The adapter calls Execute on the handler, passing it the context and a delegate

used to access the next handler adapter in the collection.
3. The next handler adapter is accessed, and Execute is called.

By calling the next adapter directly, the handler is able to process the request message
prior to making that call, and then process the response once the next adapter returns
control. In addition, the execution of all wrapped handlers and the target occur
within this handler’s execution call stack (and thread), which makes it possible
to maintain state during those operations.

 Appendix B: Exploring the EDAF Using the Bill Payment Use Case 149

2 Before(context)
: ReturnOption

{stage = before}

4 After(context)

{stage = after}

IHandlerAdapter
1

adapter : AroundHandlerAdapter

handler : AroundHandler

Execute(context)

{type = stateless around}{stage = before
and

ReturnOption = KeepExecuting}

3 Next.Execute
(context)

Figure 4
AroundHandlerAdapter

1. Execute is called on the first handler adapter in the collection.
2. If the handler stage = before, then the Before method of the handler is called.
3. If the handler stage = before and the ReturnOption = KeepExecuting, then the

Next adapter is accessed and Execute is called.
4. If the handler stage = after, then the After method of the handler is called.

Similar to the atomic handler example, this example shows how two around handlers
are treated as one. In reality there will be two handler adapters created, one for the
before handler and another for the after handler. Each adapter is then initialized
with the appropriate stage information.

When the adapter that contains the before handler is called, it will have access to the
request only. When the adapter that contains the after handler is called, it will have
access to both the request and response.

The Before method also returns a value that is used to indicate whether processing
should continue or stop. When a value of KeepExecuting is returned, the adapter
calls the next handler adapter. When a value of StopExecuting is returned, the next
adapter is not called, and control is returned to the previous adapter or handler.

Contributors

The team that produced the Enterprise Development Reference Implementation
came from a wide range of areas within Microsoft and from many of our partner
organizations. The following people made a substantial contribution to the writing,
developing, and testing of this content.

Program Management
Jason Hogg, Microsoft Corporation
Ron Jacobs, Microsoft Corporation
Sanjeev Garg, Satyam Computer Services

Architecture and Development
Naveen Yajaman, Microsoft Corporation
Jim Newkirk, Microsoft Corporation
Wojtek Kozaczynski, Microsoft Corporation
Jonathan Wanagel, Microsoft Corporation
Eugenio Pace, Microsoft Corporation
Alejandro Guillermo Jack, Southworks S.R.L.
Pedro Deviggiano, Southworks S.R.L.
Anil Jaswal, Infosys Technologies Ltd

Test
Edward Lafferty, Microsoft Corporation
Larry Brader, Microsoft Corporation
Sameer Tarey, Infosys Technologies Ltd
Mrinal Bhao, Infosys Technologies Ltd
Carlos Farre, Microsoft Corporation
V V Raviprasad, Infosys Technologies Ltd
Rohit Sharma, Infosys Technologies Ltd
Sireesha Tummala, Infosys Technologies Ltd
Mani Krishnaswami Subramanian, Infosys Technologies Ltd
Kaushik Barat, Infosys Technologies Ltd
Ganesh Gudaru, Infosys Technologies Ltd
Rajul Vashistha, Infosys Technologies Ltd
Ravi Kant, Infosys Technologies Ltd
Prasanna S Raghavendra, Infosys Technologies Ltd
Ashima Aggarwal, Infosys Technologies Ltd
Ashok Reddy, Infosys Technologies Ltd

 Contributors 151

Mahesh Kumar, Infosys Technologies Ltd
Vani Gupta, Infosys Technologies Ltd
Sumit Kumar, Infosys Technologies Ltd
Pete Coupland, VMC Consulting Corporation
Scott Stender, @stake, Inc.
Andreas Junestam, @stake, Inc.
Kalyana Chakravarti Lakkamraju, Infosys Technologies Ltd
Ashok Bohra, Infosys Technologies Ltd
Harinarayan Paramasivan, Infosys Technologies Ltd

Documentation
RoAnn Corbisier, Microsoft Corporation
Sharon Smith Jansen, Microsoft Corporation
Lonnie Wall, RDA Corporation
Andrew Lader, RDA Corporation
Nelly Delgado, Wadeware LLC
Claudette Iebbiano, CI Design Studio
Brett R. Shriver, RDA Corporation
Tina Burden McGrayne, Entirenet
Erin Kilpatrick
Ping Kong

Review
Vijay Gajjala, Microsoft Corporation
Anna Liu, Microsoft Corporation
Andrew Mason, Microsoft Corporation
Stefan Schackow, Microsoft Corporation
Gandhi Swaminathan, Microsoft Corporation
Jim Williams, Microsoft Corporation
David Aiken, Arkitec
Brandon Bohling, Intel Corporation
Sergio A. Borromei
Vassilis Chazapis, Accenture
Michael Cleary
Benni DeMarco, FourThought Group Inc.
C. Bart Elia, Epicor Software Corporation
Adrie Geelhoed, LogicaCMG
Gerke Geurts, LogicaCMG
Christopher Haddix, Intel Corporation
Scott Hanselman, Corillian
Vaughn Hughes, Intel Corporation
Justin James, Intel Corporation
Gareth Jane, Ke Concepts

152 Enterprise Development Reference Implementation

David Johnston, Intel Corporation
Boris Lublinsky
Marcus Mac Innes, StyleDesign.biz
Don Michie, Intel Corporation
Erymuzuan Mustapa, Inter Virtual Sdn. Bhd.
Henrik Natstrand, WM-data Consulting AB
Keith Organ, Arkitec
Mariano Omar Rodriguez
Roberto Schatz, Erbauer S.A.
JP Sklenka, LUCRUM Inc.
Hanspeter Stamm, Humm Computer Engineering AG
Randall Willis, Intel Corporation

patterns & practices
Mohammad Al-Sabt, Microsoft Corporation
Ward Cunningham, Microsoft Corporation
Scott Densmore, Microsoft Corporation
Matt Evans, Microsoft Corporation
Shaun Hayes, Microsoft Corporation
Sandy Khaund, Microsoft Corporation
Michael Kropp, Microsoft Corporation
William Loeffler, Microsoft Corporation
Rick Maguire, Microsoft Corporation
J.D. Meier, Microsoft Corporation
Per Vonge Nielsen, Microsoft Corporation
Ken Perilman, Microsoft Corporation
Juan Fernando Rivera, Microsoft Corporation
David Trowbridge, Microsoft Corporation
Srinath Vasireddy, Microsoft Corporation

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

About Microsoft patterns & practices

Microsoft patterns & practices guides contain specific recommendations illustrating how to design,
build, deploy, and operate architecturally sound solutions to challenging business and technical
scenarios. They offer deep technical guidance based on real-world experience that goes far beyond
white papers to help enterprise IT professionals, information workers, and developers quickly
deliver sound solutions.

IT Professionals, information workers, and developers can choose from four types of patterns &
practices:

● Patterns—Patterns are a consistent way of documenting solutions to commonly occurring
problems. Patterns are available that address specific architecture, design, and implementation
problems. Each pattern also has an associated GotDotNet Community.

● Reference Architectures—Reference Architectures are IT system-level architectures that
address the business requirements, LifeCycle requirements, and technical constraints for
commonly occurring scenarios. Reference Architectures focus on planning the architecture
of IT systems.

● Reference Building Blocks and IT Services—References Building Blocks and IT Services are
re-usable sub-system designs that address common technical challenges across a wide range
of scenarios. Many include tested reference implementations to accelerate development.
Reference Building Blocks and IT Services focus on the design and implementation of sub-
systems.

● Lifecycle Practices—Lifecycle Practices provide guidance for tasks outside the scope of
architecture and design such as deployment and operations in a production environment.

Patterns & practices guides are reviewed and approved by Microsoft engineering teams, consultants,
Product Support Services, and by partners and customers. Patterns & practices guides are:

● Proven—They are based on field experience.

● Authoritative—They offer the best advice available.

● Accurate—They are technically validated and tested.

● Actionable—They provide the steps to success.

● Relevant—They address real-world problems based on customer scenarios.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Patterns & practices guides are designed to help IT professionals, information workers, and
developers:

Reduce project cost
● Exploit the Microsoft engineering efforts to save time and money on your projects.

● Follow the Microsoft recommendations to lower your project risk and achieve predictable
outcomes.

Increase confidence in solutions
● Build your solutions on proven Microsoft recommendations so you can have total confidence in

your results.

● Rely on thoroughly tested and supported guidance, but production quality recommendations and
code, not just samples.

Deliver strategic IT advantage
● Solve your problems today and take advantage of future Microsoft technologies with practical

advice.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

patterns & practices: Current Titles
October 2003

Title Link to Online Version Book

Patterns

Enterprise Solution Patterns http://msdn.microsoft.com/practices/type/Patterns
using Microsoft .NET /Enterprise/default.asp

Microsoft Data Patterns http://msdn.microsoft.com/practices/type/Patterns
/Data/default.asp

Reference Architectures

Application Architecture for http://msdn.microsoft.com/library/default.asp?url=
.NET: Designing Applications /library/en-us/dnbda/html/distapp.asp
and Services

Enterprise Notification http://msdn.microsoft.com/library/default.asp?url=
Reference Architecture for /library/en-us/dnentdevgen/html/enraelp.asp
Exchange 2000 Server

Improving Web Application http://msdn.microsoft.com/library/default.asp?url=
Security: Threats and /library/en-us/dnnetsec/html/ThreatCounter.asp
Countermeasures

Microsoft Accelerator http://www.microsoft.com/technet/treeview
for Six Sigma /default.asp?url=/technet/itsolutions/mso/sixsigma

/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Guide: /default.asp?url=/technet/prodtechnol/ad
Volume 1: Planning /windows2000/deploy/adguide/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Series /default.asp?url=/technet/prodtechnol/ad
Volume 2: Deployment and /windows2000/deploy/adguide/default.asp
Operations

Microsoft Content Integration http://msdn.microsoft.com/library/default.asp?url=
Pack for Content Management /library/en-us/dncip/html/cip.asp
Server 2001 and SharePoint
Portal Server 2001

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 1: Planning

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 2: Deployment

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 1: Planning /default.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 2: Deployment /default.asp

Microsoft Solution http://www.microsoft.com/technet/treeview
for Intranets /default.asp?url=/technet/itsolutions/mso

/msi/Default.asp

Microsoft Solution for http://www.microsoft.com/downloads
Securing Wireless LANs /details.aspx?FamilyId=CDB639B3-010B-47E7-B23

4-A27CDA291DAD&displaylang=en

Microsoft Systems http://www.microsoft.com/technet/treeview
Architecture— /default.asp?url=/technet/itsolutions/edc
Enterprise Data Center /Default.asp

Microsoft Systems http://www.microsoft.com/technet/treeview/
Architecture— default.asp?url=/technet/itsolutions/idc/default.asp
Internet Data Center

The Enterprise Project http://www.microsoft.com/technet/treeview
Management Solution /default.asp?url=/technet/itsolutions/mso/epm

/default.asp

UNIX Application http://msdn.microsoft.com/library/default.asp?url=
Migration Guide /library/en-us/dnucmg/html/ucmglp.asp

Reference Building Blocks and IT Services

.NET Data Access http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/daag.asp

Application Updater http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/updater.asp

Asynchronous Invocation http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnpag/html/paiblock.asp

Authentication in ASP.NET: http://msdn.microsoft.com/library/default.asp?url=
.NET Security Guidance /library/en-us/dnbda/html/authaspdotnet.asp

Building Interoperable Web http://msdn.microsoft.com/library/default.asp?url=
Services: WS-I Basic /library/en-us/dnsvcinter/html/wsi-bp_msdn_
Profile 1.0 landingpage.asp

Building Secure ASP.NET http://msdn.microsoft.com/library/default.asp?url=
Applications: Authentication, /library/en-us/dnnetsec/html/secnetlpMSDN.asp
Authorization, and Secure
Communication

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Caching Application Block http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/Cachingblock.asp

Caching Architecture Guide for http://msdn.microsoft.com/library/default.asp?url=
.Net Framework Applications /library/en-us/dnbda/html/CachingArch.asp?frame=

true

Configuration Management http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/cmab.asp

Data Access Application Block http://msdn.microsoft.com/library/default.asp?url=
for .NET /library/en-us/dnbda/html/daab-rm.asp

Designing Application-Managed http://msdn.microsoft.com/library/?url=/library
Authorization /en-us/dnbda/html/damaz.asp

Designing Data Tier Components http://msdn.microsoft.com/library/default.asp?url=
and Passing Data Through Tiers /library/en-us/dnbda/html/BOAGag.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Application Block for .NET /library/en-us/dnbda/html/emab-rm.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/exceptdotnet.asp

Microsoft .NET/COM Migration http://msdn.microsoft.com/library/default.asp?url=
and Interoperability /library/en-us/dnbda/html/cominterop.asp

Microsoft Windows Server http://www.microsoft.com/downloads/
2003 Security Guide details.aspx?FamilyId=8A2643C1-0685-4D89-B655-

521EA6C7B4DB&displaylang=en

Monitoring in .NET Distributed http://msdn.microsoft.com/library/default.asp?url=
Application Design /library/en-us/dnbda/html/monitordotnet.asp

New Application Installation http://www.microsoft.com/business/reducecosts
using Systems Management /efficiency/manageability/application.mspx
Server

Patch Management using http://www.microsoft.com/technet/treeview/
Microsoft Systems Management default.asp?url=/technet/itsolutions/msm/swdist/
Server - Operations Guide pmsms/pmsmsog.asp

Patch Management Using http://www.microsoft.com/technet/treeview/
Microsoft Software Update default.asp?url=/technet/itsolutions/msm/swdist/
Services - Operations Guide pmsus/pmsusog.asp

Service Aggregation Application http://msdn.microsoft.com/library/default.asp?url=
Block /library/en-us/dnpag/html/serviceagg.asp

Service Monitoring and Control http://www.microsoft.com/business/reducecosts
using Microsoft Operations /efficiency/manageability/monitoring.mspx
Manager

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

User Interface Process http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/uip.asp

Web Service Façade for http://msdn.microsoft.com/library/default.asp?url=
Legacy Applications /library/en-us/dnpag/html/wsfacadelegacyapp.asp

Lifecycle Practices

Backup and Restore for http://www.microsoft.com/technet/treeview/default.asp
Internet Data Center ?url=/technet/ittasks/maintain/backuprest/Default.asp

Deploying .NET Applications: http://msdn.microsoft.com/library/default.asp?url=
Lifecycle Guide /library/en-us/dnbda/html/DALGRoadmap.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview/default.
Server Operations Guide asp?url=/technet/prodtechnol/exchange/exchange

2000/maintain/operate/opsguide/default.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 1: Planning /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 2: Deployment /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
Operations Guide /default.asp?url=/technet/prodtechnol/sql/maintain

/operate/opsguide/default.asp

Operating .NET-Based http://www.microsoft.com/technet/treeview
Applications /default.asp?url=/technet/itsolutions/net/maintain

/opnetapp/default.asp

Production Debugging for http://msdn.microsoft.com/library/default.asp?url=
.NET-Connected Applications /library/en-us/dnbda/html/DBGrm.asp

Security Operations for http://www.microsoft.com/technet/treeview
Microsoft Windows 2000 Server /default.asp?url=/technet/security/prodtech

/win2000/secwin2k/default.asp

Security Operations Guide for http://www.microsoft.com/technet/treeview
Exchange 2000 Server /default.asp?url=/technet/security/prodtech

/mailexch/opsguide/default.asp

Team Development with Visual http://msdn.microsoft.com/library/default.asp?url=
Studio .NET and Visual /library/en-us/dnbda/html/tdlg_rm.asp
SourceSafe

This title is available as a Book

	Enterprise Development Reference Implementation
	Title Page
	Contents
	Chapter 1: Overview and Use Cases
	Introduction
	Intended Audience
	Prerequisites

	Global Bank Scenario
	Enterprise Development Reference Implementation Community
	Use of Existing Patterns and Practices
	EDRI Documentation
	Use Cases
	Login
	Consolidated Account Statement
	Transfer Funds
	Bill Subscriptions
	Bill Payment
	Transaction Log Report

	Non-Functional Application Considerations
	Application Availability
	Data Integrity
	Performance
	Security
	User Authentication
	User Authorization
	Service Authentication
	Transport Layer Security

	Browser Compatibility

	Use Case Realization
	Login and Consolidated Account Statement Use Cases
	Transfer Funds Use Case
	Bill Subscriptions Use Case
	Add Bill Subscription
	Delete Bill Subscription

	Bill Payment Use Case
	Transaction Log Report Use Case

	Chapter 2: Architecture
	Design Objectives and Principles
	Objectives
	Enterprise Framework
	Service Oriented Integration

	Architectural Representation
	Terminology and Key Concepts
	Conceptual View
	Dominant Patterns
	Model-View-Controller Pattern
	Page Controller Pattern

	Logical View
	Model-View-Controller Pattern
	Page Controller Pattern
	Funds Transfer Walkthrough

	Service Invocation

	Implementation View
	WebApplicationUI
	WebApplication.UIProcess
	Configuration

	Deployment View
	Architecture Properties View
	Security
	Authentication
	Authorization

	Localization

	Chapter 3: Services
	Service Infrastructure
	Request Message Validation
	Custom LoggingHandler

	Service Interface and Service Implementation Pipelines
	Web Service Headers

	Common Design Views
	Deployment View
	Policy View
	Service Authentication
	Transport Layer Security

	Service Documentation
	Messages
	Conceptual View

	AccountStatement Service
	Logical View
	Client Interface
	Messages
	Service Configuration
	Handlers

	Deployment View

	Authentication Service
	Logical View
	Client Interface
	Messages
	Service Configuration
	Handlers

	Deployment View

	BillPayment Service
	Logical View
	Client Interface
	Messages
	Service Configuration
	Handlers

	Deployment View

	BillSubscription Service
	Logical View
	Client Interface
	Messages
	Service Configuration
	Handlers

	Deployment View

	FundsTransfer Service
	Logical View
	Client Interface
	Messages
	Service Configuration
	Handlers

	Deployment View

	TransactionLog Service
	Logical View
	Client Interface
	Messages
	Service Configuration
	Handlers

	Deployment View

	Summary
	More Information

	Chapter 4: Installation
	Introduction
	Platform Prerequisites
	Before You Begin

	Installing the Enterprise Development Reference Implementation
	Verifying the Installation
	Setting Up and Running the EDRI
	Using the Various Dispatching Transports
	To Uninstall
	Troubleshooting
	Troubleshooting Web Service Projects
	Troubleshooting Set Up

	More Information

	Appendix A: Inside the Enterprise Development Application Framework
	Introduction
	Architectural Goals and Prerequisites
	Goals

	EDAF at a Glance
	Dominant Patterns
	Service Request Flow

	Appendix B: Exploring the EDAF Using the Bill Payment Use Case
	Contributors
	Additional Resources

