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Abstract

In this paper we outline two previously suggested methods for quantita-
tive motivated trading in pairs. We focus on the method of cointegration and
a unobserved mean reversion model called the stochastic spread model. The
methods are used to implement a search procedure that aims to reveal prof-
itable pairs among all possible pairs available on the German, French and
Dutch stock exchanges. The intended user of this application is the trading
desk at Amsterdams Effektenkantoor for which this investigation has been
done.

1



Contents

1 Internship assignment 3
1.1 The company . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Internship project aim and deliverables . . . . . . . . . . . . . . . 3
1.3 Developing a search procedure for profitable spreads . . . . . . . 3
1.4 Definition of the investment and its return . . . . . . . . . . . . . 4
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Cointegration in time series 4
2.1 Definition and properties of time series . . . . . . . . . . . . . . 5
2.2 Characterization of cointegration for a VAR system . . . . . . . . 6

2.2.1 An alternative representation for the VAR(p) process. . . . 8
2.3 Maximum likelihood estimate of ζ0 under the restriction of h coin-

tegrated vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Limiting distribution of the test statistic . . . . . . . . . . . . . . 17
2.6 Estimating the cointegrating vectors . . . . . . . . . . . . . . . . 20

3 The hidden Ohrnstein-Uhlenbeck model 20
3.1 Ornstein-Uhlenbeck process . . . . . . . . . . . . . . . . . . . . 21
3.2 Asset pricing theory (APT . . . . . . . . . . . . . . . . . . . . . 23
3.3 The state-space representation of a dynamic system . . . . . . . . 23

3.3.1 Derivation of the Kalman Filter . . . . . . . . . . . . . . 24
3.3.2 Kalman smoothing estimates . . . . . . . . . . . . . . . 27
3.3.3 The maximum likelihood estimates . . . . . . . . . . . . 28

4 A profitability measure for a mean reverting spread 29

5 Applying the search procedure 29
5.1 Treating historical and new information in the search procedure . . 29
5.2 Search criteria and results for the co-integration method . . . . . 30
5.3 Search criteria and results for the stochastic spread method . . . . 30

6 The software user interface 30

7 References 35

8 Appendix A - further results 35
8.1 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Stochastic spread . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



1 Internship assignment

1.1 The company

Amsterdams Effectenkantoor (AEK) operates as an intermediary in transactions in
stocks, bonds, real estate shares and derivatives focusing on domestic and foreign
institutional investors as well as affluent private clients who appreciate the dedi-
cation and service of a personal approach. Within AEK, the research department
provides valuable information for clients about movements in financial markets
and investigates statistical trading strategies.

1.2 Internship project aim and deliverables

Pairs trading is a trading strategy used to exploit markets that are out of equilibrium
assuming that over time they will move to a rational equilibrium. Pairs trading is
performed by taking a long position (buying) one security and taking a short po-
sition (borrowing) another security. This relative position is called a spread. The
profit is made by taking the position in the spread when it is out of equilibrium
and unwind the position and make a profit when the spread is at its equilibrium.
A spread that has this quality is called mean reverting, with mean indicating equi-
librium. AEK is familiar to pairs trading, and pairs trading is carried out on a
experimental level based on their industry knowledge. The internship project was
initiated to find out if there exist a systematic approach to identify pairs that would
make profit for AEK. In order to achieve this it was decided to develop a search
procedure for profitable spreads. This search procedure uses available information
on securities at stock exchanges in the Netherlands, Germany and France. The
search procedure is implemented as as software application with a user interface
that give the trader enough flexibility to continuously search for mean reverting
spreads and administer the search results. The project was limited to 6 months.

1.3 Developing a search procedure for profitable spreads

Some information on pairs trading is available in the literature and the book by
Vidyamurthy (2004) gives the most elaborate discussion on pairs trading. The
method of cointegration, Johansen (1991), and the stochastic spread method de-
scribed in Do, Faff and Hamza (2006) and Elliot, vd Hoek and Malcolm (2004)
were chosen as the most promising ones for the search procedure. Johansen (1991)
provides an efficient estimation technique of cointegrated vectors given full infor-
mation of a stochastic processes. The stochastic spread method verifies the exis-
tence of a well-known stochastic model for mean reversion called the Ohrnstein-
Uhlenbeck process. Statistical tests are used as search criteria for the search pro-
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cedure to identify a spread as profitable. Furthermore a optimal distance from the
equilibrium is calculated in order to give the trader a signal on when to enter the
position in the spread. This distance is also used to calculate a historical profit for
a given spread.

1.4 Definition of the investment and its return

Pairs trading can be summarized as follows; the trader invests an equal amount
in asset A and asset B, αpA

t = pB
t , provided that it is impossible to buy fraction

of assets. This can be done without funding by borrowing a number of shares of
assets B, immediately sell these and invest the amount in α shares of asset A. This
is called shorting of asset B. We define the investment equation as follows:

0 = log(α) + log(pA
t ) − log(pB

t ). (1)

The minus sign reflects the fact that asset B is shorted. We express the investment
equation in a logarithmic transformation since this will ease the calculation of the
returns on the investment. The return on this investment expressed in percentage
of the invested amount in asset A over a small horizon (t − 1, t] is

log(
αpA

t

αpA
t−1

) − log(
pB

t

pB
t−1

) = log(
pA

t

pB
t

) − log(
pA

t−1

pB
t−1

). (2)

This is justified by the fact that log(st/st−1) ≈ (st − st−1)/st−1 . The largest accu-
mulated return is obtained from the largest number of consecutive positive returns.
This means that if the behavior of log(pA

t ) − log(pB
t ) could be predicted, the in-

vestor could enter the trade when this value is low and make profit when then value
is high.

1.5 Structure of the thesis

Section 2 describes the method of cointegration and Section 3 the method of stochas-
tic spread. Both methods are described with the aim to develop statistical tests to
be used as search criteria, found in section 5. Section 4 describes the optimal trad-
ing points and profitability calculations. Section 6 shows the user interface of the
software application.

2 Cointegration in time series

This section will focus on the stationary properties of the investment (1) as from
Definition 3, any mean reverting process is stationary. Engle and Granger (1987)
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and Johansen (1988) developed a theoretical framework for a particular class of
non stationary VAR(p) processes called cointegrated processes. This class of pro-
cesses has the property that there may exists stationary linear combinations called
cointegrated vectors. If we assume that {log(pA

t ), log(pB
t )} in (1) is a non-stationary

VAR(p) process, this framework will enable us in some cases to determine γ such
that log(pA

t )− γ log(pB
t ) is stationary with mean − log(α). The investment equation

will then become
0 = log(α) + log(pA

t ) − γ log(pB
t ).

The value of γ will be determined by the cointegration method, and the long run
relationship between the assets determines α. The return on the investment will be

log(
αpA

t

αpA
t−1

) − γ log(
pB

t

pB
t−1

).

The investor is still able to profit from the trade, but the investment may have not
have an initial value of 0 and the profit will for this method be dependent on γ. A
γ close to zero requires funds to invest in A. A large γ exposes the investor to risk
in going short on B. The preferable γ would be around 1, which then again reduces
the cointegration method to a test for stationarity in the investment. Section 2.2
characterizes a cointegrated system. Section 2.3 describes maximum likelihood
estimation under the restriction of h cointegrated vectors, section 2.4 describes
hypothesis testing of h cointegrated vectors using the likelihood ratio test and 2.5
describes the asymptotic distribution of the likelihood ratio test statistics. Section
2.6 describes the estimation of the cointegration vectors.

2.1 Definition and properties of time series

Definition 1. Timeseries. A time series is an infinite sequence

y1, y2, . . . (3)

of random variables or random vectors. These random variables are defined as
measurable maps on some underlying probability space. Normally the variables
are observed in time and then the index t denotes a real valued date of the observed
y.

Definition 2. Covariance stationary time series. The time series yt is (covariance)
stationary if E(yt) and E(ytyt+h) exists and are finite and do not depend on t, for
every h ∈ N.

Definition 3. Mean reverting time series. A time series is considered mean revert-
ing if
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i. The time series is stationary, and

ii. E(yt − yt−1|Yt−1) < 0 if yt−1 > E(yt)
E(yt − yt−1|Yt−1) > 0 if yt−1 < E(yt),
where Yt denotes the history of observation through date t, formally defined
as the sigma algebra

Yt = σ{y1, y2, . . . , yt}.

2.2 Characterization of cointegration for a VAR system

Consider the VAR(p) equation for yt the (n × 1) collection of random variables

yt = α +Φ1yt−1 +Φ2yt−2, · · ·Φt−pyt−p + εt (4)

or
Φ(L)yt = α + εt (5)

with
Φ(L) = [In −Φ1L −Φ2L2 − · · · −ΦpLp].

We assume

E(εt) = 0

E(εtε
′
τ) =

{ Ω for t = τ

0 otherwise,

where Ω is a (n × n) positive definite matrix. We note that εt is a strictly stationary
process and it is called a white noise process. We will use the fact that a VAR(p)
process is non stationary if the determinantal equation

|In −Φ1z −Φ2z2 − · · · −Φpzp| = 0 (6)

has at least one solution for z on or inside the unit circle.

Definition 4. A (n × 1) vector yt time series is cointegrated if

i. each of its elements individually are non-stationary and

ii. there exists a nonzero vector a′ such that a′yt is stationary.

The vector a is not unique. There may be h < n linearly independent vectors
(a1, a2, · · · , ah), since if there were n independent vectors, yt is itself stationary and
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the concept of a cointegration will have no meaning. For a cointegrated system, we
have that A′yt is stationary where A′ is the following (h × n) matrix:

A′ ≡


a′1
a′2
...

ah


Suppose that ∆yt = (1 − L)yt has the Wold representation

(1 − L)yt = δ +Ψ(L)εt, (7)

where Ψ(L) =
∑∞

j=0Ψ jεt− j. The Wold representation is stationary when the deter-
minantal equation in (6) has a single solution for z = 1. Necessary conditions for
cointegration with cointegrated vectors in A can be found in Engle and Yoo (1987)
or Ogaki and Park (1992). Following these papers, stationarity for A′yt requires
that

A′Ψ(1) = 0 and (8)

A′δ = 0. (9)

Premultiplying (7) by Φ(L) results in :

(1 − L)Φ(L)yt = Φ(1)δ +Φ(L)Ψ(L)εt. (10)

Substituting (5) into (10) we have

(1 − L)εt = Φ(1)δ +Φ(L)Ψ(L)εt. (11)

This relation has to hold for all realizations of εt which requires that

Φ(1)δ = 0 (12)

and then
(1 − z)In = Φ(z)Ψ(z) (13)

for all values of z. For z = 1, equation (13) implies that

Φ(1)Ψ(1) = 0 (14)

Let π′ denote any row of Φ(1). Then (12) and (14) state that π′Ψ(1) = 0′ and
π′δ = 0. By (8) and (9) , π is a cointegrating vector. But by the discussion leading
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to (7), it must be possible to express π as a linear combination of a1, . . . , ah, i.e. it
exists an (h × 1) vector b such that

π = [a1 a2 · · · ah]b

or
π′ = b′A′.

Applying this reasoning to each of the rows of Φ(1), it follows that there exists an
n × h, h < n matrix B such that

Φ(1) = BA′. (15)

The h linear independent rows of BA′ forms the basis of the space of cointegrating
vectors. Note that (14) implies that Φ(1) is a singular (n × n) matrix; linear com-
binations of the columns of Φ(1) of the form Φ(1)x are zero for x any column of
Ψ(1). Thus the determinant |Φ(z)| contains a unit root:

|In −Φ1z −Φ2z2 − · · · −Φpzp| = 0 at z = 1.

In the following section we will develop another representation of the matrixΦ(1),
but with opposite signs. This representation will prove useful in developing the
maximum likelihood estimator and the likelihood ratio test.

2.2.1 An alternative representation for the VAR(p) process.

First we consider representation (4):

(In −Φ1L −Φ2L2 − · · · −ΦpLp)yt = α + εt

The polynomial on the left side can be rewritten as:

(In −Φ1L−Φ2L2 − · · · −ΦpLp)

= (In − ρL) − (ζ1L + ζ2L2 + · · · + ζp−1Lp−1)(1 − L),

where

ρ ≡ Φ1 +Φ2 + · · · +Φp

ζs ≡ −[Φs+1 +Φs+2 + · · · +Φp] for s = 1, 2, . . . , p − 1.

It follows that any VAR(p) process can be written as:

(In − ρL)yt − (ζ1L − ζ2L2 − · · · − ζp−1Lp−1)(1 − L)yt = α + εt
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or
yt = ζ1∆yt−1 + ζ2∆yt−2 + · · · + ζp−1∆yt−p+1 + α + ρyt−1 + εt (16)

Subtracting yt−1 from both sides of (16) produces:

∆yt = ζ1∆yt−1 + ζ2∆yt−2 + · · · + ζp−1∆yt−p+1 + α + ζ0yt−1 + εt (17)

where
ζ0 = ρ − In = −(In −Φ1 −Φ2 − · · · −Φp) = −Φ(1).

It follows from (15) that
ζ0 = −BA′ (18)

also forms the basis of the space of cointegrated vectors.

2.3 Maximum likelihood estimate of ζ0 under the restriction of h coin-
tegrated vectors.

Consider a sample of T + p observations on yt, denoted (y−p+1, y−p+2, · · · , yT ).
Assuming Gaussian errors εt, the log likelihood of the equation (17) conditional
on the p first observations is

L(Ω, ζ1, ζ2, · · · , ζp−1, α, ζ0)

= (−Tn/2) log(2π) − (T/2) log |Ω|

− (1/2)
T∑

t=1

[
(∆yt − ζ1∆yt−1 − ζ2∆yt−2 − · · · − ζp−1∆yt−p+1 − α − ζ0yt−1)′

×Ω−1(∆yt − ζ1∆yt−1 − ζ2∆yt−2 − · · · − ζp−1∆yt−p+1 − α − ζ0yt−1)
]
,

(19)

with |·|, the determinantal operator. Consider on one hand the OLS regression of the
elements of the (n×1) vector ∆yt−ζ0yt−1 on a constant and (∆yt−1,∆yt−2, · · · ,∆yt−p+1).
The noise term vector is

[∆yt − ζ0yt−1] −
{
α(ζ0) + ζ1(ζ0)∆yt−1 + ζ2(ζ0)∆yt−2 + · · · + ζp−1(ζ0)∆yt−p+1

}
(20)

and has mean zero and is orthogonal to (∆yt−1,∆yt−2, · · · ,∆yt−p+1). Here we treat
ζ0 as given. On the other hand consider the result of 2 × n OLS regressions

∆yt = π0 +Π1∆yt−1 +Π2∆yt−2 + · · · +Πp−1∆yt−p+1 + ut (21)

from regressing ∆yit on (∆yt−1,∆yt−2, · · · ,∆yt−p+1) and

yt−1 = θ +A1∆yt−1 +A2∆yt−2 + · · · +Ap−1∆yt−p+1 + vt (22)
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from regressing yi,t−1 on (∆yt−1,∆yt−2, · · · ,∆yt−p+1). The error terms ut and vt are
orthogonal to (∆yt−1,∆yt−2, · · · ,∆yt−p+1) and with mean zero. Therefore

ut − ζ0vt

also has these properties. Setting

α(ζ0) = π0 − ζ0θ

ζi(ζ0) = Πi − ζ0Ai for i = 1, 2, · · · , p − 1,

we can conclude that (20) is equal to:

ut − ζ0vt.

Equation (19) becomes for given ζ0 and Ω.

M(Ω, ζ0) ≡ L{Ω, α(ζ0), ζ1(ζ0), · · · , ζp−1(ζ0), ζ0}

= (−Tn/2) log(2π) − (T/2) log |Ω|−

− (1/2)
T∑

t=1

[(ut − ζ0vt)′Ω−1(ut − ζ0vt)].

If we can find the values ζ0 andΩ for whichM is maximized, then we will find the
value that maximizes (19). We can express the estimator of Ω in the well known
way as

Ω(ζ0) = (1/T )
T∑

t=1

[(ut − ζ0vt)(ut − ζ0vt)′],

still treating ζ0 as given. The likelihood function becomes

N(ζ0) ≡ M{Ω(ζ0), ζ0}

= (−Tn/2) log(2π) − (T/2) log |Ω(ζ0)| − (Tn/2)

= (−Tn/2) log(2π) − (Tn/2)

− (T/2) log
∣∣∣∣(1/T )

T∑
t=1

[(ut − ζ0vt)(ut − ζ0vt)′]
∣∣∣∣ (23)

To maximize N , me must chose ζ0 that minimizes∣∣∣∣(1/T )
T∑

t=1

[(ut − ζ0vt)(ut − ζ0vt)′]
∣∣∣∣ (24)

This will now be our main objective. First we define canonical correlation for
random vectors.
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Definition 5. We say that the n-dimensional random vectors ηt and ξt are in canon-
ical form if

i.

E(ηtη
′
t) = In (25)

E(ξtξ
′
t ) = In (26)

E(ηtξ
′
t ) = R (27)

where

R =


r1 0 · · · 0
0 r2 · · · 0
...

... · · ·
...

0 0 · · · rn

 .
ii. The elements of ηt and ηt are ordered in such a way that

(1 ≥ r1 ≥ r2 ≥ · · · ≥ rn ≥ 0) (28)

For now we suppose for simplicity that ut and vt are in a canonical form as the
generalization to (21) and (22) will follow after having obtained some result in this
simple case. Let

ut = ηt

vt = ξt

We would like to choose ζ0 to minimize the expression of the form (24)

∣∣∣∣(1/T )
T∑

t=1

[(ηt − ζ0ξt)(ηt − ζ0ξt)′]
∣∣∣∣ (29)

subject to the constraint that ζ0ξt could make use of only h linear combinations
of ξt. No restrictions on ζ0 would mean that (29) would be minimized by OLS
regressions of

ηit on ξt

for i = 1, 2, ..., n. The estimation error ηit − ζ0,iξt is uncorrelated with ξt :

E[(ηit − ζ0,iξt)ξ′t ] = 0′. (30)

Then
ζ0,i = E(ξtξ

′
t )
−1E(ξtηit). (31)
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Conditions (26) and (27) establish that the ith regression will satisfy{
Eξtξ

′
t

}−1{
Eξtηit

}
= ri · ei,

where ei denotes the ith column of In Thus, the ith diagonal element in the matrix
in (29) becomes: {

Eη2
it

}
−

{
Eηitξ

′
t

}{
Eξtξ

′
t

}−1{
Eξtηit

}
= 1 − ri · e′i · In · ei · ri

= 1 − r2
i

So for an unrestricted ζ0 the optimal value for the matrix in (29) would have 1− r2
i

on the diagonal and 0 elsewhere. If we were restricted to only use h linear combi-
nations of ξt, the minimal value of (29) will appear by using only the h elements in
ξt that have the highest correlations. See Johansen (1988) for a reference:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − r2
1 0 · · · 0 0 · · · 0

0 1 − r2
2 · · · 0 0 · · · 0

...
... · · ·

...
... · · ·

...

0 0 · · · 1 − r2
h 0 · · · 0

0 0 · · · 0 1 · · · 0
...

... · · ·
...

... · · ·
...

0 0 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(32)

=

h∏
i=1

(1 − r2
i ).

This method of finding the maximizer for ζ0 is convenient but assumes canonical
error terms. The vectors ut and vt from (21) and (22) are not canonical. However,
we will find matrices K andA such that

ηt = K ′ut (33)

ξt = A′vt (34)

and ηt and ξt are in canonical form. The conditions (25) to (27) becomes:

E(ηtη
′
t) =K ′ΣVVK = In (35)

E(ξtξ
′
t ) =A′ΣUUA = In (36)

E(ξtη
′
t) =A′ΣUVK = R (37)

12



where

R =


r1 0 · · · 0
0 r2 · · · 0
...

... · · ·
...

0 0 · · · rn

 .
and ΣUU is the covariance matrix of the white noise process ut defined in (21), ΣUV
is the covariance matrix of ut and vt and vt is the white noise process defined in
(22).
We will show that the eigenvalues of two known matrices fully characterizes K
andA. The following proposition must be satisfied.

Proposition 1. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the ordered eigenvalues of the
matrix

ΣVV
−1ΣVUΣUU

−1ΣUV.

Let {k1, · · · ,kn} be the associated eigenvectors normalized by k′iΣVVki = 1. Let
µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 be the eigenvalues of

ΣUU
−1ΣUVΣVV

−1ΣVU.

with the associated eigenvectors {a1, · · · , an} normalized by a′iΣUUai = 1. Let

A ≡ [a1 · · · an]

K ≡ [k1 · · · kn].

Assuming that λ1, λ2, . . . , λn are distinct, then

a. 0 ≤ λi < 1 for i = 1, 2, . . . , n;

b. λi = µ j for i = 1, 2, . . . , n;

c. K ′ΣVVK = In andA′ΣUUA = In:

d. A′ΣUVK = R, where

R2 =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn

 .

13



Proof of a. The eigenvalues solves the equation

|λΣVV − ΣVUΣUU
−1ΣUV| = 0. (38)

If we assume on the contrary that any of these eigenvalues is negative, then since
ΣVV is positive definite, λΣVV is also negative which means thatΣVV−ΣVUΣUU

−1ΣUV
is negative. Hence the determinant of (38) could not be zero for any value λ < 0.

�

Proof of c. The eigenvalue-eigenvector pair (λi,ki) satisfies

ΣVV
−1ΣVUΣUU

−1ΣUVki = λiki. (39)

We pre multiply expression (39) by k′jΣVV:

k′jΣVVΣVUΣUU
−1ΣUVki = λik′jΣVVki (40)

Similarly, replace i with j in (39) and pre multiply by k′iΣVV:

k′iΣVUΣUU
−1ΣUVk j = λ jk′iΣVVk j (41)

Subtracting (41) from (40) we see that:

0 = (λi − λ j)k′jΣVVki (42)

If i , j and λi , λ j then (42) establishes that k′jΣVVki = 0 for i , j. Also
for i = j, the normalization concludes that for distinct eigenvalues, relation (35)
holds. Virtually identical calculations show that if we choose the columns of A,
the eigenvectors [a1, a2, . . . , an] such that

ΣUU
−1ΣUVΣVV

−1ΣVUai = λiai, (43)

condition (36) holds. �

Proof of d. First we transpose (43) and postmultiply by ΣUVki:

a′iΣUU
−1ΣUVΣVV

−1ΣVUΣUVki = λia′iΣUVki (44)

Similarly, pre multiply (39) by a′iΣUV

a′iΣUU
−1ΣUVΣVV

−1ΣVUΣUVki = λ ja′iΣUVki (45)

Subtracting (45) from (44) results in

0 = (λi − λ j)a′iΣVVk j
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This shows that a′iΣVVk j = 0 for λi , λ j as required in (37) To find the value of
a′iΣVVk j for λi = λ j premultiply (43) by a′iΣUV and using the normalization:

a′iΣUVΣVV
−1ΣVUai = λi (46)

For nonsingular K (35) implies that:

ΣVV = [K]−1K−1 (47)

or taking inverses:
ΣVV

−1 = KK ′

Substituting (47) into (46), we find that:

a′iΣUVKK
′ΣVUai = λi (48)

Now

a′iΣUVK = a′iΣUV[k1 k2 · · · kn]

= [a′iΣUVk1 · · · a′iΣUVki · · · a′iΣUVkn ]

= [0 0 · · · a′iΣUVki · · · 0] (49)

Substituting (49) into (48), it follows that

(a′iΣUVki)2 = λi.

So ri from (37) is given by the square root of the eigenvalue λi,

r2
i = λi. (50)

�

Having characterized K and A, we assume that they are nonsingular. Then
equations (33) and (34) allow (24) to be written as∣∣∣∣(1/T )

T∑
t=1

[
(ut − ξ0vt)(ut − ξ0vt)′

]∣∣∣∣
=

∣∣∣∣(1/T )
T∑

t=1

[
[(K ′)−1ηt − ζ0(A′)−1ξt][(K ′)

−1ηt − ζ0(A′)−1ξt]′
]∣∣∣∣

=
∣∣∣∣(K ′)−1(1/T )

T∑
t=1

[
[ηt − K

′ζ0(A′)−1ξt][(K ′)−1ηt − K
′ζ0(A′)−1ξt]′

]
(K)−1

∣∣∣∣
= |(K ′)−1|

∣∣∣∣ T∑
t=1

[
[ηt −Πξt][ηt −Πξt]′

]∣∣∣∣|(K)−1|

=
∣∣∣∣ T∑

t=1

[
[ηt −Πξt][ηt −Πξt]′

]∣∣∣∣ ÷ |K|2
15



where
Π ≡ K ′ζ0(A′)−1ξt

The method of minimizing (24) is to use the regressors of the first h elements of ξt

and the value at the optimum is

h∏
i=1

(1 − r2
i ) ÷ |K|2

Moreover, the matrix K satisfies

In = (1/T )
T∑

t=1

ηtη
′
t = (1/T )

T∑
t=1

K ′ηtη
′
tK = K ′ΣUUK

Taking determinants on both sides establish that

1/|K|2 = |ΣUU|.

The optimizing value is then

|ΣUU| ×

h∏
i=1

(1 − r2
i ).

The maximum of the log likelihood function of (23) is given by :

L = N(ζ0) = (−Tn/2) log(2π)− (Tn/2)− (T/2) log |ΣUU|− (T/2)
h∑

i=1

(1−λi), (51)

using (50).

2.4 Hypothesis testing

We have seen in that under the restriction of h linear combination of the elements
of yt, the maximum log likelihood is given by (51). This forms the hypothesis H0:
h < n contegrating vectors against the alternative hypothesis HA: n cointegrating
vectors. The maximum log likelihood in the absence of constraints where h = n is:

LA = (−Tn/2) log(2π) − (Tn/2) − (T/2) log |ΣUU| − (T/2)
h∑

i=1

log(1 − λi) (52)

A likelihood ratio test of H0 against HA can be based on

LA − L0 = (−T/2)
n∑

i=h+1

log(1 − λi) (53)
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To test if the bivariate VAR(p) series described in the introduction to this section
contains one cointegration relation means first testing the null hypothesis: h = 0
cointegrating relation against the alternative HA: n cointegrating relations. Then
we need to test the null hypothesis of h = 1 cointegrating relation against the same
alternative as for the first test; if the first test is rejected and the second is accepted,
we have statistical evidence of a single cointegrating relation. Johansen (1988)
developed the asymptotic properties distribution of the test statistic as we will see
in the next section.

2.5 Limiting distribution of the test statistic

This section is only illustrative in the sense that the asymptotic distribution of the
test statistic (53) is developed under the restriction that there is no constant term α

in (16). In our application this may very well be the case. Without this restriction
other critical values will emerge, but the development of the asymptotic distribution
is similar. Consider the Wold representation of ∆yt as in (7)

∆yt =

∞∑
j=0

Ψ jεt− j.

The null space of Ψ′ =
∑∞

j=0Ψ
′

j given by {ξ|Ψ′ξ = 0} is exactly the range space of
ζ0. We have the two representations

ζ0 = −BA′ and Ψ′ = EFG′, (54)

Where E′A = G′B = 0, and E,G are n × (n − h) and G is (n − h) × (n − h), and all
three matrices are of full rank. See Granger and Engle (1981) for details on these
results.

Definition 6. The following definitions will prove useful:

i. Let PB be the projection of Rp onto the column space spanned by B with
respect to Ω−1, i.e., PB(Ω) = B(B′Ω−1B)−1B′Ω−1

ii. Let G be a matrix that fit the description in (54) and such that GG′ = Ω−1(I−
PB(Ω))

iii. A result from regression on random coefficients found in Johansen (1984)
concludes that PB(Ω) = PB(ΣUU)

The following proposition derived by Johansen (1988) and Phillips and Durlauf
(1986) describing stochastic limit results in terms of stochastic integrals will help
us establish the limit distribution.
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Proposition 2. Let W be a Brownian motion in n dimensions with covariance
matrix Ω. For T → ∞ it holds that

Σ̂UU
a.s.
→ ΣUU, (55)

G′Σ̂UV
w
→ G′

∫ 1

0
W(r)dW(r)′drΨ′ (56)

A′Σ̂UV
a.s.
→ A′ΣUV (57)

T−1Σ̂VV
w
→ Ψ′

∫ 1

0
W(r)W(r)′drΨ′ (58)

A′Σ̂VVA
a.s.
→ A′ΣVVA′. (59)

Consider the eigenvalues that solves the maximum likelihood problem (23)

|Σ̂−1
VVΣ̂VUΣ̂

−1
UUΣ̂UV − λIn| = 0 (60)

Since Σ̂VV is positive definite, this will be true if and only if

|λΣ̂VV − Σ̂VUΣ̂
−1
UUΣ̂UV| = 0

We multiply the matrix inside the determinant in (60) by (A,E) and its transposed
on both sides and obtain:∣∣∣∣∣∣∣λ

[
A′Σ̂VVA A′Σ̂VVE
E′Σ̂VVA EΣ̂VVE

]
−

A′Σ̂VUΣ̂UU
−1
Σ̂UVA A′Σ̂VUΣ̂UU

−1
Σ̂UVE

E′Σ̂VUΣ̂UU
−1
Σ̂UVA E′Σ̂VUΣ̂UU

−1
Σ̂UVE


∣∣∣∣∣∣∣ = 0 (61)

Which is the same as∣∣∣∣∣∣∣
[
A′Σ̂VVA/T A′Σ̂VVE/T
E′Σ̂VVA/T E′Σ̂VVE/T

]
− µ

A′Σ̂VUΣ̂UU
−1
Σ̂UVA A′Σ̂VUΣ̂UU

−1
Σ̂UVE

E′Σ̂VUΣ̂UU
−1
Σ̂UVA E′Σ̂VUΣ̂UU

−1
Σ̂UVE


∣∣∣∣∣∣∣ = 0

(62)
where

µ̂1 = (T λ̂n)−1, . . . , µ̂n = (T λ̂1)−1

In this way the distributions of largest µ’s are given as continuous functions of the
ordered eigenvalues of (61). From (57), Σ̂UVE

a.s
→ ΣUVE ≡ Q and (62) converges

in distribution to the ordered eigenvalues 1/µ1, . . . , 1/µn of the equation∣∣∣∣∣∣
0 0
0 E′Ψ

∫ 1
0 W(r)W′(r)drΨ′E

 − µ [
A′ΣUVΣUU

−1ΣUVA A′ΣUVΣUU
−1Q

Q′ΣUU
−1ΣUVA Q′ΣUU

−1Q

]∣∣∣∣∣∣ = 0
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for which the left side is identical to

|µA′ΣUVΣUU
−1
ΣUVA|

∣∣∣∣E′Ψ∫ 1

0
W(r)W′(r)drΨ′E − µQ′

[
ΣUU

−1

− ΣUU
−1ΣUVA(A′ΣUVΣUU

−1
ΣUVA)−1A′ΣUVΣUU

−1
]
Q

∣∣∣∣. (63)

Now we use definition (6). The term in the square brackets is then equal to

ΣUU
−1(I − PB(ΣUU)) = Ω−1(I − PB(Ω)) = GG′. (64)

Also using (56) on the second term, equation (63) becomes, when eliminating the
first factor,∣∣∣∣∣∣E′Ψ

∫ 1

0
W(r)W(r)′drΨ′E − µE′Ψ

∫ 1

0
W(r)dW(r)′GG′

∫ 1

0
W(r)dW(r)′Ψ′G

∣∣∣∣∣∣ = 0.

(65)
We rewrite this equation using the second relation in (54), |FF′| , 0 and |D| , 0.
We then get∣∣∣∣∣∣G′

∫ 1

0
W(r)W′(r)drG − µG′

∫ 1

0
W(r)dW(r)′GG′

∫ 1

0
W(r)dW(r)′G

∣∣∣∣∣∣ = 0.

But B = G′W is also a Brownian motion and has variance G′ΩG = I. So the we
can conclude that the eigenvalues T λ̂h+1, . . . ,T λ̂n converge in distribution to the
eigenvalues that solves the equation∣∣∣∣∣∣λ

∫ 1

0
W(r)W′(r)dr −

∫ 1

0
W(r)dW(r)′

∫ 1

0
dW(r)W(r)′

∣∣∣∣∣∣ = 0.

as T → ∞. Then the sum of the eigenvalues λ̂h+1, . . . , λ̂n is given by:

tr


∫ 1

0
dW(r)W(r)′

(∫ 1

0
W(r)W′(r)dr

)−1 ∫ 1

0
W(r)dW(r)′

 . (66)

Now consider (53) :

LA − L0 = (−T/2)
n∑

i=h+1

log(1 − λi).

We rewrite and obtain

2(LA − L0) = (−T )
n∑

i=h+1

log(1 − λi) =

n∑
i=h+1

Tλi + op(1).

We conclude that this expression converge in distribution to (66) and the critical
values for this statistic can be found in Johansen (1988).
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2.6 Estimating the cointegrating vectors

The log likelihood function is maximized by selecting as regressors the first h ele-
ments of ξt. Since from (34) ξt = A′vt, this means using A′vt as regressors, where
the (n × h) matrix A denotes the first h columns of the (n × n) matrixA. Thus

ζ0vt = −BA′vt (67)

The matrix A is found using the normalized eigenvectors from (43). Let w ≡ A′vt

we have that the value of B that maximizes the likelihood is given by regressing ut

on wt, obtaining the OLS estimate of B as

B = −
[
(1/T )

T∑
t=1

utw′t
][

(1/T )
T∑

t=1

wtw′t
]

(68)

But wt is composed of h canonical covariates from (35) so

[
(1/T )

T∑
t=1

wtw′t
]

= Ih (69)

Also

[
(1/T )

T∑
t=1

utw′t
]

=
[
(1/T )

T∑
t=1

utv′tA
]

= ΣUVA (70)

We get by substituting (69) and (70) into (68)

B = −ΣUVA,

and so, from (18), ζ0 is given by

ζ0 = ΣUVAA′.

3 The hidden Ohrnstein-Uhlenbeck model

In this section we will formulate a model for the investment in equation (1). The
model assumes that the true mean reverting process can be described as a discrete
version of the Ohrstein-Uhlenbeck continuous stochastic process. Elliot, Hoek
and Malcolm (2004) suggest to use this process to model mean reverting pairs
and Do, Faff and Hamza (2006) carry this idea further by combining it with the
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Arbitrage Pricing Theory, Ross (1976). They claim that if the two stocks that
form a pair belong to the same industry sector and are influenced by the same
set of risk factors, the APT-theory will explain the difference between the prices
returns, leaving the ’true’ mean reversion to be modeled by the OU-process. The
APT operates on return of assets instead of the prices themselves as in (1), and the
investment expressed in returns becomes

log(αrA
t ) − log(rB

t ) − ω log(rX
t ) = 0

The first two terms are explained by the OU-process and the third by APT. Let
rA

t be the logarithmic return of asset A and likewise for asset B. Let rX
t be the

excess return of a single risk factor described by the APT. Then we can derive
log(pA

t ) = log(pA
0 ) +

∑i=t
i=0 log(rA

i ) and likewise for X and B. The investment (1)
becomes

log(αpA
t ) − log(pB

t ) − ω log(pX
t ) = 0.

The value of ω is determined by the stochastic spread method. Depending on the
sign of the estimated ω, the investor must invest or borrow an asset reflecting the
index with this portion of its value. Both papers mentioned above assume that
the OU-process is observed only with model noise and uses a state-space model
to represent this as a dynamical system, described in section 3.3. The state-space
representation is a form that can be analyzed with the Kalman filter introduced by
R.E. Kalman (1960). Section 3.3.2 describes the maximum likelihood estimates
of the state-space representation using the Kalman filter. The unobserved OU-
process, i.e. the process path with highest probability given the observed data, is
reconstructed using the Kalman smoothing procedure described in 3.3.1.
Section 3.1 describes the Ohrnstein-Uhlenbeck process, the following section 3.2
describes the APT theory and how it is applied to mean reverting pairs.

3.1 Ornstein-Uhlenbeck process

In this section we consider the one dimensional stochastic process given by the
stochastic differential equation (SDE)

drt = −θ(rt − µ)dt + σdWt, θ > 0 (71)

known as the Ornstein-Uhlenbeck continuous time process. We will show that
there exists a stationary solution to this SDE that could be used to model our
spread. For the purpose of intuition about mean reversion, we compare (71) to
the geometric Brownian motion SDE

dS t = αS tdt + σS tdWt (72)
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with drift α and volatility σ. For the Ornstein-Uhlenbeck process, the drift is neg-
ative for rt > µ and positive for rt > µ, causing the process to revert to the mean µ
with speed θ. Applying Ito’s lemma to the function f (rt, t) = rteθt, we get

d f (rt, t) = θrteθtdt + eθtdrt

= eθtθµdt + σeθtdWt.

Integrating from 0 to t, we get

rteθt = r0 +

∫ t

0
eθsθµds +

∫ t

0
σeθsdWs

(73)

And so

rt = r0e−θt + µ(1 − e−θt) +

∫ t

0
σeθ(s−t)dWs (74)

Firstly we see

E(rt) = r0e−θt + µ(1 − e−θt).

Consequently,

lim
t→∞

E(rt) = µ

We let s ∧ t = min(s, t) and we get

cov(rt, rs) = E[(rs − E[rs])(rt − E[rt])] (75)

= E[
∫ t

0
σeθ(u−s)dWu

∫ s

0
σeθ(v−t)dWv]

= σ2e−θ(t+s)E[
∫ s

0
eθudWu

∫ t

0
eθvdWv]

=
σ2

2θ
e−θ(t+s)(e2θ(s∧t) − 1),

using the Ito isometry in the second last line of the calculation. Setting s = t, we
get:

VAR(rt) =
σ2

2θ
(1 − e−2θt).

Consequently,

lim
t→∞

VAR(rt) =
σ2

2θ
.
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If we set r0 ∼ N(µ, σ
2

2θ ), the solution in (74) is stationary according to Definition 2.
We rewrite equation (74) with ∆t = ti − ti−1, keeping ∆t small to obtain the discrete
version of this process:

rt = µ(1 − e−θ∆t) + e−θ∆trt−1 + εt, (76)

with εt a white noise process. This version is necessary for applying the Kalman
filter as we will see in the following sections.

3.2 Asset pricing theory

Ross (1976) assumed that the return of a single asset can be formulated as

at = rt + βbt + εt, (77)

where rt is the deterministic risk free return, bt = [( f 1
t −rt), ( f 2

t −rt), . . . , ( f n
t −rt)] is

the return above the risk free return from some factors f 1, . . . , f n and the prediction
error εt that is uncorrelated with at . We assume that the these factors have mean
zero and that their variance exists. The APT says that the expected return is linear
in the factor weights:

E(at) = rt + βE(bt). (78)

with β = [β1, β1, . . . βn]. We apply this theory to the difference between two assets
returns at, bt which then can be formulated as

at − bt = αbt + ε̃t,

with α = [(βa
1−β

b
1), . . . , (βa

n−β
b
n)]′. We assume that ε̃t is independent of εt and that

two assets can be explained by the same factors f 1, . . . , f n. In our numerical exper-
iments we will use an industry index as a single factor to this purpose, explaining
two assets in the same industry.

3.3 The state-space representation of a dynamic system

A model of the observed variable y can be described in terms of the possibly unob-
served ξt known as the state variable. We consider the following definition:

Definition 7. The state-space representation of the dynamics of y is given by the
following system of equations.

ξt+1 = Fξt + vt+1 (79)

yt = Axt + H′ξt + wt, (80)
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where the matrices F and H are assumed to be known of dimensions (2 × 2) and
(2 × 1), and A is a scalar. The errors vt and wt are white noise processes with
assumed known parameters Q and R :

E(vtv′τ) =
{ Q for t = τ

0 otherwise
(81)

E(wtwτ) =
{ R for t = τ

0 otherwise
, (82)

and are assumed to be uncorrelated at all lags:

E(vtwτ) = 0 for all t and τ. (83)

We also assume that xt is predetermined which implies that xt is independent of
ξt+1 and wt+s for s = 0, 1, 2, . . . .

We will keep in mind that the discretized OU-process of equation (76) is here
represented as the state variable with the constant term set to ξt,1, and the predeter-
mined variable xt represent the risk factor excess return described in section 3.2.
The system of equations (79) through (83) is typically used to describe a finite
series of observations {y1, y2, . . . , yT }. Initial conditions are needed for ξ1:

E(vtξ
′
1) = 0 for all t and τ. (84)

E(wtξ
′
1) = 0 for all t and τ. (85)

The state equation (79) implies that ξt can be written as a linear function of
(ξ1, v2, v3, . . . , vt):

ξt = vt + Fvt−1+F2vt−2 + · · · + Ft−2v2 + Ft−1ξ1 (86)

for t = 2, 3, . . . ,T.

Thus (84) and (81) imply that vt is uncorrelated with lagged values of ξ:

E(vtξ
′
τ) = 0 for t = t − 1, t − 2, . . . , 1. (87)

Similarily
E(wtξ

′
τ) = 0 for τ = t − 1, t − 2, . . . , 1.

3.3.1 Derivation of the Kalman Filter

This section aims at deriving the Kalman filter or the linear least square forecast of
the state vector on the basis of data observed through date t:

ξ̂t+1|t ≡ Ê(ξt+1|Yt),
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where
Yt ≡ (yt, yt−1, · · · , y1, xt, xt−1, . . . , x1)

and Ê(ξt+1|Yt) is the linear projection onYt and a constant. The Kalman procedure
calculates these forecasts recursively, generating ξ̂1|0, ξ̂2|1, . . . , ξ̂T |T−1 in succession,
thus improving the estimate with the added information. Associated with each of
these forecasts is the mean squared error (MSE)

Pt+1|t ≡ E[(ξt+1 − ξ̂t+1|t)(ξt+1 − ξ̂t+1|t)′]. (88)

The recursion begins with ξ̂1|0 which is the unconditional mean of ξ1,

ξ̂1|0 = E(ξ1)

Since by (86), ξt is stationary and the unconditional mean of ξt can be found by
taking expectations of (79) producing

E(ξt+1) = FE(ξt).

The matrix F has no singular eigenvalues if we assume stationarity in equation
(79). This equation therefore has one unique solution in E(ξt) = 0. Similarly the
unconditional variance P can be found by:

E[(ξt+1ξ
′
t+1)] = E[(Fξt + vt+1)(ξ′t F

′ + v′t+1)] = FE[ξtξ
′
t ]F
′ + E[vt+1v′t+1].

The cross product has disappeared in the light of (87). Then

P1|0 = FP1|0F′ + Q.

Given the values of ξ̂1|0 and P1|0 the next step is to calculate the magnitudes for the
following date, ξ̂2|1 and P2|1. Since we have assumed that xt contains no informa-
tion on ξt beyond that contained in Yt−1 ,

Ê(ξt|xt,Yt−1) = Ê(ξt|Yt−1) = ξ̂t|t−1.

Next consider forecasting the value of yt:

ŷt|t−1 ≡ Ê(ξt|xt,Yt−1).

From (80) we have that

Ê(ξt|xt,Yt−1) = Axt + H′ξt,

and so, from the law of iterated projections,

ŷt|t−1 = Axt + H′Ê(ξt|xt,Yt) = Axt + H′ξ̂t|t−1. (89)
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Its forecast error is

yt − ŷt|t−1 = Axt + H′ξt + wt − Axt −H′ξ̂t|t−1 = H(ξt − ξ̂t|t−1) + wt.

with MSE

E[(yt − ŷt|t−1)2] = E[H′(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)H] + E(w2
t ). (90)

Cross-product terms have disappeared, since

E[wt(ξt − ξ̂t|t−1)′] = 0 (91)

To justify this, recall from by (85) that wt and ξt are uncorrelated and ξ̂t|t−1 is a
linear function ofYt−1 so it too must be uncorrelated with wt. Using (82) and (88),
(90) can be written

E[(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)′] = HPt|t−1H′ + R. (92)

The inference about the current value of ξt based on the observation of yt is given
by:

ξ̂t|t = Ê(ξt|yt, xt,Yt−1) = Ê(ξt|yt)

This is evaluated using the formula for updating a linear projection as described in
Hamilton (1994):

ξ̂t|t = ξ̂t|t−1 + E[(ξt − ξ̂t|t−1)(yt − ŷt|t−1)] × E[(yt − ŷt|t−1)2]−1 × (yt − ŷt|t−1). (93)

But

E{(ξt − ξ̂t|t−1)(yt − ŷt|t−1)}

= E{[ξt − ξ̂t|t−1][H′(ξt − ξ̂t|t−1) + wt]}

= E[(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)′H]

= Pt|t−1H (94)

using (91) and (88). Substituting (94), (92) and (89) into (93) gives

ξ̂t|t = ξ̂t|t−1 + Pt|t−1H′(H′Pt|t−1H + R)−1(yt − Axt −H′ξ̂t|t−1). (95)

Its MSE is:

Pt|t ≡ E[(ξt − ξ̂t|t)(ξt − ξ̂t|t)′] = E[(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)′]

− {E[(ξt − ξ̂t|t−1)(yt − ŷt|t−1)]}

× E[(yt − ŷt|t−1)2]−1

× {E[(yt − ŷt|t−1)(ξt − ξ̂t|t−1)′]}

= Pt|t−1 − Pt|t−1H′(HPt|t−1H + R)−1H′Pt|t−1 (96)
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The state equation (79) is used to forecast ξt+1:

ξ̂t+1|t = Ê(ξt+1|Yt)

= FÊ(ξt|Yt) + Ê(vt|Yt)

= Fξ̂t|t + 0. (97)

Substituting (95) into (97),

ξ̂t+1|t = Fξ̂t|t−1

+ FPt|t−1H(H′Pt|t−1H + R)−1(yt − Axt −H′ξ̂t|t−1).

Its MSE is found from (97) and (79) :

Pt+1|t = E[(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)′]

= E[(Fξt + vt − Fξ̂t|t)(Fξt + vt − Fξ̂t|t)′]

= FE[(ξt − ξ̂t|t)(ξt − ξ̂t|t)′]F′ + E[vt+1v′t+1]

= FPt|tF′ + Q, (98)

with cross-products again clearly zero. Substituting (96) into (98) produces:

Pt+1|t = F[Pt|t−1 − Pt|t−1H(HPt|t−1H′ + R)−1H′Pt|t−1]F + Q.

This completes one iteration step.

3.3.2 Kalman smoothing estimates

Suppose we were told the true value of ξt+1 at t. Then the estimate of ξt can be
expressed as follows:

Ê(ξt|ξt+1,Yt) = ξ̂t|t + {E[(ξt − ξ̂t|t)(ξt+1 − ξ̂t|t)′]}

×{E[(ξt+1 − ξ̂t+1|t)(ξt+1 − ξ̂t|t)′]}−1

×(ξt+1 − ξ̂t+1|t), (99)

by the law for updating a linear projection. Using (79) and (97), the first term in
the product on the right side of (99) can be written

E[(ξt − ξ̂t|t)(ξt+1 − ξ̂t|t)′] = E[(ξt − ξ̂t|t)(Fξt + vt+1 − Fξ̂t|t)′].

Since vt+1 is uncorrelated with ξt and ξ̂t|t, we have:

E[(ξt − ξ̂t|t)(ξt+1 − ξ̂t|t)′] = E[(ξt − ξ̂t|t)(ξt − ξ̂t|t)′F′] = Pt|tF′ (100)
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Substituting (100) and (88) into (99) produces:

Ê(ξt|ξt+1,Yt) = ξ̂t|t + Pt|tF′P−1
t+1|t(ξt+1 − ξ̂t+1|t)

Defining
Jt ≡ Pt|tF′P−1

t+1|t, (101)

we have
Ê(ξt|ξt+1,Yt) = ξ̂t|t + Jt(ξt+1 − ξ̂t+1|t)

We claim that
Ê(ξt|ξt+1,Yt) = Ê(ξt|ξt+1,YT )

To verify this it is sufficient to use the fact that the error ξt+1 − Ê(ξt|ξt+1,Yt) is
uncorrelated with yt+ j and xt+ j for j > 0. Taking conditional expectation w.r.t YT ,
we get

Ê(ξt|YT ) = ξ̂t|t + Jt(Ê(ξt+1|YT ) − ξ̂t+1|t),

or
ξ̂t|T = ξ̂t|t + Jt(ξ̂t+1 − ξ̂t+1|t). (102)

We proceed as follows; first the Kalman filter in section 3.3.1 is calculated and
sequences {ξ̂t|t}

T
t=1, {ξ̂t+1|t}

T−1
t=0 , {Pt|t}

T
t=1 and {Pt+1|t}

T
t=1 are stored. Then (101) is used

to generate {Jt|t}
T−1
t=1 . From this (102) is used to for t = T − 1 to calculate

ξ̂T−1|T = ξ̂T−1|T−1 + JT−1(ξ̂T |T − ξ̂T |T−1).

Proceeding the same way for T − 2, the whole sequence of smoothed estimates
{ξ̂t|T }

T
t=1 is calculated.

3.3.3 The maximum likelihood estimates

The forecasts ξ̂t+1|t and ŷt+1|t are optimal within the set of forecasts that are linear in
(xt,Yt−1). If the initial state ξ1 and the innovations {vt,wt} are multivariate Gaus-
sian, then these forecasts are optimal among any functions of (xt,Yt−1). Moreover,
the conditional distribution of yt on (xt,Yt−1) is:

yt|xt,Yt−1 ∼ N(Axt + Hξ̂t|t−1,H′Pt|t−1H + R), (103)

that is

fyt |xt ,Yt−1(yt|xt,Yt−1)

= (2π)−1/2|(H′Pt|t−1H + R|−1/2

× exp{−
1
2

(yt − Axt + Hξ̂t|t−1)2(H′Pt|t−1H + R)−1}

for t = 1, 2, . . . ,T. (104)
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The maximum likelihood is constructed by:

T∑
t=1

log fyt |xt ,Yt−1(yt|xt,Yt−1).

This expression is then maximized numerically with respect to F,A,H,R and Q:
See Burmeister and Wall (1982) for an illustrative application. Statistical inference
of these estimates will be important in assessing the fit of the model and will be
discussed in Section 6.

4 A profitability measure for a mean reverting spread

Let f (0), f (δk), . . . , f (δn) be the limiting density of pt ≡ log(α) + log(pA
t )− log(pB

t )
at values 0 ≤ δk ≤ . . . δn. The value of δk that maximizes the profit is given by

δmax = arg max
δk
{δk f (δk)},

where n is chosen is sufficiently large. The expected profit for one trade is given
that a position is entered where the spread is zero is:

E(pt|pt ≥ δmax) =

∑
δk≥δmax δk f (δk)∑
δk≥δmax f (δk)

(105)

.

5 Applying the search procedure

5.1 Treating historical and new information in the search procedure

At a given date the trader possesses practically infinite historical information on
potential spreads on which the search procedure can be applied. However the most
interesting spreads are those who show mean reversion up to the current date and
therefore possibly would continue to show mean reversion in the future. The search
procedure is initiated with 40 days of historical data. If the statistical tests for mean
reversion are significant, the spread is extended with 20 days. This step is repeated
until there is no significant evidence for mean reversion. The resulting spreads are
then stored. When new information for these spreads becomes available, the tests
are performed again to verify the mean reversion. Typically the trader would like
to follow a self chosen set of spreads by excluding some spreads that are for some
reasons not reliable. This subset is stored separately as Favorites in the search
application.
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5.2 Search criteria and results for the co-integration method

We must verify the existence of one stationary cointegrating relation described in
the introduction to Section 2. The assumption of non-stationarity for the individual
price series is verified if a unit-root test is not rejected. See Dickey, Said (1984)
for a reference on unit root tests. The test described in section 2.4 is used to verify
the hypothesis of zero cointegration relations against the alternative of 2. If this
hypothesis is rejected at a 0.05 significance level, we must verify the hypothesis
of 1 cointegration relation against the alternative of 2 relations. If this hypothesis
cannot be rejected, we have evidence of one cointegration relation. Furthermore
we must assess the second characteristic in Definition 3, Section 2, and thus reject
a unit root in the series formed by the cointegrating relation. This is merely a
verification of the cointegrating theory. Some of the results are found in Table 1.
below, and the complete result table is found in appendix A.

5.3 Search criteria and results for the stochastic spread method

Besides information on the value of the spread, this method uses information from
an industry index acting as a risk factor in the APT model, and the short (3 months)
eurolib interest rate acting as the risk free rate. For this model to be evident, the
OU model represented by the state equation (79) should show significance it its
parameters, especially F1,2. This is also the AR-parameter of the equation (79).
If this parameter has a value very close to 0, the stationarity for the accumulated
series is questionable, and therefore the hypothesis of a unit root has to be rejected
at a significance level of 0.05 to verify the claim of stationarity. The table below
show some of the pairs found under these criteria.

6 The software user interface

The images below show the user interface of the software application. It has three
elementary functions:

i. Get new pairs - all available historical data is searched for potential pairs.

ii. Update Favorites - this function updates the Favorites subset of pairs with
new data

iii. Update pairs - this function updates all previously found pairs with new data
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Spread name AR.parameter Length Delta RT γ

dte gy /man gy 0.621 81 0.03 0.07 -1.02
dbk gy /man gy 0.812 171 0.02 0.05 -0.58
alv gy /man gy 0.765 171 0.02 0.06 -0.81
fp fp /muv2 gy 1 81 0.20 0.60 -3.33
fp fp /con gy 0.931 81 0.08 0.22 1.91
stm fp /man gy 0.713 81 0.03 0.07 -0.45
gle fp /bmw gy 0.703 81 0.02 0.04 -0.48
ml fp /vow gy 0.72 81 0.02 0.04 -0.84
fte fp /man gy 0.639 81 0.03 0.06 -1.11
dx fp /bay gy 0.736 111 0.03 0.06 -1.94
bn fp /vow gy 0.706 111 0.01 0.04 -0.38
bn fp /man gy 0.854 141 0.04 0.11 -0.71
bn fp /alv gy 0.678 111 0.01 0.04 -0.71
bn fp /fte fp 0.735 81 0.02 0.06 -0.47
agf fp /man gy 0.663 81 0.03 0.08 -1.02
wlsnc na /man gy 0.774 171 0.02 0.05 -0.71
wlsnc na /bn fp 0.632 111 0.02 0.06 -1.38
una na /man gy 0.655 81 0.01 0.03 -0.45

Table 1: The table shows some of the spreads where all criteria are met for the
cointegration method. The first column shows the name of the spread with a three
letter asset code and a two letter stock exchange code. The AR-parameter is shown
verifying the stationarity of the spread. Its p-value of the standard t-test is given
in parentheses, with 0 meaning negligible. The column Length shows the length
in days for the spread. The column Delta shows the optimal trading point and R
shows the expected profit of the spread in percentages of the exposed amount.
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Spread name AR.parameter Length Delta R ω

con gy /man gy -0.086(0.067) 229 0.03 0.08 0.11(0.38)
con gy /dcx gy 0.867(0) 199 0.02 0.05 0.004(0.957)
bmw gy /dcx gy -0.958(0) 259 0.00 0.00 -0.221(0)
rno fp /man gy -0.073(0.098) 139 0.04 0.10 0.196(0.168)
rno fp /dcx gy 0.941(0) 169 0.02 0.05 0.01(0.874)
rno fp /con gy -0.66(0.039) 79 0.01 0.01 0.286(0.066)
ug fp /vow gy 0.753(0.01) 349 0.06 0.24 -0.243(0)
ug fp /man gy -1(0) 79 0.00 0.00 0.694(0.048)
ug fp /dcx gy 0.846(0.017) 259 0.05 0.14 -0.241(0.002)
ug fp /con gy -0.992(0) 259 0.00 0.00 -0.15(0.138)
ug fp /bmw gy -0.984(0) 199 0.00 0.00 -0.114(0.188)
ug fp /rno fp -0.985(0) 229 0.00 0.00 -0.161(0.043)
ml fp /vow gy -0.992(0) 379 0.00 0.00 -0.178(0.002)
ml fp /man gy -0.935(0) 139 0.00 0.01 0.145(0.4)
ml fp /dcx gy -0.624(0.073) 169 0.00 0.01 -0.009(0.897)
ml fp /bmw gy -0.893(0) 379 0.00 0.00 0.076(0.137)
ml fp /rno fp -0.583(0.052) 229 0.01 0.02 0.007(0.918)
ml fp /ug fp -0.695(0.075) 319 0.00 0.01 0.061(0.397)

Table 2: The table shows spread where all criteria are met for the stochastic spread
method. The columns in this table are identical to the columns in Table 2, except
from ω that represent the weight of the risk factor. The AR-parameter now reflects
the stationarity of the returns of the spread in equation (79).
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Figure 1: The user interface when using the stochastic spread method.
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Figure 2: The user interface when using the stochastic spread method and selecting
another plot view.
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8 Appendix A - further results

8.1 Cointegration

Pair AR.parameter Length R Delta γ

dte gy /man gy 0.621 81 0.03 0.07 -1.02
dbk gy /man gy 0.812 171 0.02 0.05 -0.58
alv gy /man gy 0.765 171 0.02 0.06 -0.81
fp fp /muv2 gy 1 81 0.20 0.60 -3.33
fp fp /con gy 0.931 81 0.08 0.22 1.91
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Pair AR.parameter Length R Delta γ

stm fp /man gy 0.713 81 0.03 0.07 -0.45
gle fp /bmw gy 0.703 81 0.02 0.04 -0.48
ml fp /vow gy 0.72 81 0.02 0.04 -0.84
fte fp /man gy 0.639 81 0.03 0.06 -1.11
dx fp /bay gy 0.736 111 0.03 0.06 -1.94
bn fp /vow gy 0.706 111 0.01 0.04 -0.38
bn fp /man gy 0.854 141 0.04 0.11 -0.71
bn fp /alv gy 0.678 111 0.01 0.04 -0.71
bn fp /fte fp 0.735 81 0.02 0.06 -0.47
agf fp /man gy 0.663 81 0.03 0.08 -1.02
wlsnc na /man gy 0.774 171 0.02 0.05 -0.71
wlsnc na /bn fp 0.632 111 0.02 0.06 -1.38
una na /man gy 0.655 81 0.01 0.03 -0.45
una na /stm fp 0.72 81 0.02 0.05 -1.11
tnt na /alv gy 0.806 171 0.04 0.15 -0.61
tnt na /bn fp 0.767 111 0.02 0.05 -0.99
sbmo na /man gy 0.896 81 0.09 0.24 -1.33
sbmo na /bas gy 0.751 141 0.02 0.06 -1.36
rdsa na /muv2 gy 0.978 81 0.16 0.43 -2.50
rdsa na /eoa gy 0.948 81 0.10 0.30 2.26
rdsa na /con gy 0.907 81 0.05 0.12 1.50
rdsa na /cbk gy 0.937 81 0.02 0.05 -1.19
rdsa na /gle fp 0.911 81 0.04 0.10 -1.84
phia na /stm fp 0.954 111 0.02 0.08 -0.60
phia na /una na 0.95 111 0.02 0.05 -0.84
kpn na /man gy 0.769 141 0.02 0.06 -0.67
kpn na /dte gy 0.787 81 0.01 0.04 -0.52
kpn na /alv gy 0.68 111 0.02 0.06 -0.84
kpn na /bn fp 0.607 111 0.02 0.05 -1.17
kpn na /wlsnc na 0.775 141 0.02 0.04 -0.95
heia na /stm fp 0.836 81 0.01 0.02 -0.35
heia na /rno fp 0.939 111 0.02 0.05 -0.15
heia na /cs fp 0.956 111 0.02 0.04 -0.05
heia na /una na 0.87 81 0.02 0.06 -0.08
gtn na /cbk gy 0.724 81 0.03 0.08 -2.11
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Pair AR.parameter Length R Delta γ

fora na /gle fp 0.857 111 0.05 0.17 -1.66
fora na /rdsa na 0.995 81 0.05 0.13 -0.40
dsm na /man gy 0.555 81 0.02 0.06 -0.98
dsm na /dbk gy 0.546 81 0.01 0.04 -1.64
dsm na /bay gy 0.807 81 0.04 0.11 -3.29
dsm na /stm fp 0.737 81 0.04 0.11 -2.37
dsm na /kpn na 0.717 81 0.04 0.11 -1.99
buhr na /su fp 0.817 81 0.07 0.22 -1.77
buhr na /ca fp 0.862 111 0.06 0.16 -3.83
asml na /ifx gy 0.915 81 0.11 0.28 -3.43
asml na /stm fp 0.826 141 0.02 0.05 -1.47
asml na /una na 0.852 81 0.02 0.05 -0.96
akza na /sap gy 0.925 81 0.12 0.46 1.72
akza na /bmw gy 0.894 81 0.06 0.19 0.64
akza na /gle fp 0.871 81 0.05 0.13 2.20
akza na /dx fp 0.909 81 0.06 0.17 0.82
akza na /cs fp 0.912 81 0.05 0.14 2.41
akza na /heia na 0.847 81 0.10 0.27 4.67
akza na /fora na 0.916 81 0.06 0.18 0.15
ah na /eoa gy 0.811 81 0.09 0.60 1.87
agn na /ah na 0.711 141 0.02 0.06 -0.58
aaba na /bay gy 0.709 81 0.02 0.05 -1.26

8.2 Stochastic spread

Spread name AR.parameter Length Delta R ω

con gy /man gy -0.086(0.067) 229 0.03 0.08 0.11(0.38)
con gy /dcx gy 0.867(0) 199 0.02 0.05 0.004(0.957)
bmw gy /dcx gy -0.958(0) 259 0.00 0.00 -0.221(0)
rno fp /man gy -0.073(0.098) 139 0.04 0.10 0.196(0.168)
rno fp /dcx gy 0.941(0) 169 0.02 0.05 0.01(0.874)
rno fp /con gy -0.66(0.039) 79 0.01 0.01 0.286(0.066)
ug fp /vow gy 0.753(0.01) 349 0.06 0.24 -0.243(0)
ug fp /man gy -1(0) 79 0.00 0.00 0.694(0.048)
ug fp /dcx gy 0.846(0.017) 259 0.05 0.14 -0.241(0.002)
ug fp /con gy -0.992(0) 259 0.00 0.00 -0.15(0.138)
ug fp /bmw gy -0.984(0) 199 0.00 0.00 -0.114(0.188)
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Spread name AR.parameter Length Delta R ω

ug fp /rno fp -0.985(0) 229 0.00 0.00 -0.161(0.043)
ml fp /vow gy -0.992(0) 379 0.00 0.00 -0.178(0.002)
ml fp /man gy -0.935(0) 139 0.00 0.01 0.145(0.4)
ml fp /dcx gy -0.624(0.073) 169 0.00 0.01 -0.009(0.897)
ml fp /bmw gy -0.893(0) 379 0.00 0.00 0.076(0.137)
ml fp /rno fp -0.583(0.052) 229 0.01 0.02 0.007(0.918)
ml fp /ug fp -0.695(0.075) 319 0.00 0.01 0.061(0.397)
vie fp /rwe gy 0.675(0.092) 79 0.01 0.03 -0.16(0.378)
rdsa na /sbmo na -0.096(0.026) 319 0.05 0.12 -0.295(0)
ren na /wlsnc na -0.197(0.073) 79 0.03 0.08 -0.014(0.96)
fte fp /dte gy -1(0) 79 0.00 0.00 -0.201(0.035)
kpn na /dte gy -1(0) 79 0.00 0.00 -0.643(0)
buhr na /tnt na 0.932(0.001) 79 0.03 0.09 0.556(0.054)
buhr na /hgm na 0.885(0) 79 0.04 0.11 -0.282(0.451)
tms fp /sie gy -0.122(0.049) 199 0.11 0.34 -0.082(0.274)
tms fp /sap gy 0.861(0.001) 289 0.07 0.22 -0.243(0.001)
tms fp /ifx gy -0.76(0.034) 139 0.00 0.00 -0.286(0.01)
stm fp /tms fp -0.788(0.099) 169 0.00 0.00 0.25(0.005)
su fp /tms fp 0.917(0) 349 0.03 0.09 -0.017(0.852)
cap fp /sap gy -0.994(0) 319 0.00 0.00 0.143(0.023)
phia na /sie gy 0.893(0) 109 0.02 0.06 0.119(0.166)
phia na /dpw gy 0.815(0) 109 0.05 0.14 0.285(0.001)
phia na /tms fp -0.639(0.001) 139 0.01 0.02 0.129(0.144)
phia na /stm fp -0.999(0) 79 0.00 0.00 -0.512(0.001)
gtn na /su fp 0.68(0.001) 379 0.07 0.20 -0.122(0.365)
asml na /sap gy -0.948(0) 349 0.00 0.00 0.026(0.638)
asml na /tms fp -0.867(0.002) 199 0.00 0.00 0.255(0.002)
asml na /su fp -0.984(0) 319 0.00 0.00 0.251(0.002)
ai fp /bay gy -0.716(0.047) 319 0.00 0.00 -0.363(0)
dsm na /bay gy 0.9(0) 379 0.03 0.09 -0.482(0)
dsm na /ai fp 0.913(0) 109 0.04 0.10 -0.297(0.256)
akza na /bay gy -0.614(0.065) 169 0.00 0.01 -0.094(0.377)
akza na /bas gy -0.646(0.069) 319 0.00 0.00 -0.02(0.812)
akza na /dsm na 0.866(0) 319 0.05 0.23 0.147(0.114)
bn fp /meo gy -0.884(0) 289 0.00 0.00 -0.109(0.182)
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Spread name AR.parameter Length Delta R ω

una na /bn fp -0.852(0) 319 0.00 0.00 -0.102(0.154)
num na /meo gy -0.83(0.013) 79 0.00 0.00 -0.486(0.119)
num na /una na -0.116(0.006) 289 0.04 0.09 -0.077(0.44)
heia na /una na -0.877(0) 79 0.00 0.00 -0.34(0.012)
heia na /num na -0.91(0) 349 0.00 0.00 -0.165(0.123)
ah na /bn fp -0.686(0) 379 0.00 0.01 0.432(0)
ah na /num na -0.701(0.089) 319 0.00 0.01 0.576(0)
cs fp /dx fp 0.744(0.034) 199 0.02 0.05 0.602(0)
agf fp /muv2 gy -1(0) 109 0.00 0.00 -0.265(0.009)
inga na /agf fp -1(0) 79 0.00 0.00 0.576(0)
fora na /agf fp -0.992(0) 139 0.00 0.00 0.198(0.025)
agn na /gle fp 0.108(0.04) 199 0.04 0.12 0.158(0.041)
agn na /cs fp 0.765(0.005) 199 0.03 0.07 -0.038(0.594)
cbk gy /dbk gy -0.996(0) 379 0.00 0.00 0.158(0.068)
aca fp /cbk gy -0.981(0) 349 0.00 0.00 -0.168(0.104)
bnp fp /dbk gy 0.742(0.042) 169 0.04 0.14 0.009(0.878)
inga na /dbk gy -0.992(0) 79 0.00 0.00 0.078(0.662)
inga na /cbk gy -1(0) 349 0.00 0.00 -0.313(0.003)
fora na /cbk gy -0.978(0) 289 0.00 0.01 -0.324(0.003)
aaba na /cbk gy -0.979(0) 259 0.00 0.01 -0.51(0)
aaba na /dx fp 0.659(0.01) 229 0.03 0.06 0.121(0.049)
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