Master’s Thesis

Algorithmic Trading

Hidden Markov Models on Foreign Exchange Data

Patrik Idvall, Conny Jonsson

LiTH- MAT -EX--08/01--SE






Algorithmic Trading

Hidden Markov Models on Foreign Exchange Data

Department of Mathematics, Linkopings Universitet
Patrik Idvall, Conny Jonsson

LiTH- MAT -EX--08/01--SE

Master’s Thesis: 30 hp
Level: A

Supervisor: J. Blomvall,
Department of Mathematics, Linkdpings Universitet

Examiner: J. Blomvall,
Department of Mathematics, Linkopings Universitet

Linkdping: January 2008






Datum

SRS Ny Avdelning, Institution
& d})\ ... Date
5 " 3 Division, Department
ZIJL 3 Matematiska Instituti ] 2008
e, £ atematiska Institutionen anuary

581 83 LINKOPING

O

Ovrig rapport

LINKOPINGS UNIVERSITET SWEDEN

Sprak Rapporttyp ISBN

Language Report category

[] svenska/Swedish [] Licentiatavhandling ISRN

Engelska/English Examensarbete LITH-MAT - EX--08/01--SE
[] C-uppsats Serietitel och serienummer ISSN
D D-uppsats Title of series, numbering
]
]

URL for elektronisk version

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10719

Titel
Title

Forfattare
Author

Algorithmic Trading — Hidden Markov Models on Foreign Exchange Data

Patrik Idvall, Conny Jonsson

Sammanfattning
Abstract

In this master’s thesis, hidden Markov models (HMM) are evaluated as a tool for forecasting movements in a currency
cross. With an ever increasing electronic market, making way for more automated trading, or so called algorithmic
trading, there is constantly a need for new trading strategies trying to find alpha, the excess return, in the market.
HMMs are based on the well-known theories of Markov chains, but where the states are assumed hidden, governing
some observable output. HMMs have mainly been used for speech recognition and communication systems, but have
lately also been utilized on financial time series with encouraging results. Both discrete and continuous versions of
the model will be tested, as well as single- and multivariate input data.

In addition to the basic framework, two extensions are implemented in the belief that they will further improve the
prediction capabilities of the HMM. The first is a Gaussian mixture model (GMM), where one for each state assign
a set of single Gaussians that are weighted together to replicate the density function of the stochastic process. This
opens up for modeling non-normal distributions, which is often assumed for foreign exchange data. The second is an
exponentially weighted expectation maximization (EWEM) algorithm, which takes time attenuation in consideration
when re-estimating the parameters of the model. This allows for keeping old trends in mind while more recent
patterns at the same time are given more attention.

Empirical results shows that the HMM using continuous emission probabilities can, for some model settings,
generate acceptable returns with Sharpe ratios well over one, whilst the discrete in general performs poorly. The
GMM therefore seems to be an highly needed complement to the HMM for functionality. The EWEM however
does not improve results as one might have expected. Our general impression is that the predictor using HMMs that
we have developed and tested is too unstable to be taken in as a trading tool on foreign exchange data, with too
many factors influencing the results. More research and development is called for.

Nyckelord
Keyword

Algorithmic Trading, Exponentially Weighted Expectation Maximization Algorithm, Foreign
Exchange, Gaussian Mixture Models, Hidden Markov Models




Vi




Abstract

In this master’s thesis, hidden Markov models (HMM) are evaluated as a tool for fore-
casting movements in a currency cross. With an ever increasing electronic market,
making way for more automated trading, or so called algorithmic trading, there is con-
stantly a need for new trading strategies trying to find alpha, the excess return, in the
market.

HMMs are based on the well-known theories of Markov chains, but where the states
are assumed hidden, governing some observable output. HMMSs have mainly been used
for speech recognition and communication systems, but have lately also been utilized
on financial time series with encouraging results. Both discrete and continuous versions
of the model will be tested, as well as single- and multivariate input data.

In addition to the basic framework, two extensions are implemented in the be-
lief that they will further improve the prediction capabilities of the HMM. The first
is a Gaussian mixture model (GMM), where one for each state assign a set of single
Gaussians that are weighted together to replicate the density function of the stochas-
tic process. This opens up for modeling non-normal distributions, which is often as-
sumed for foreign exchange data. The second is an exponentially weighted expectation
maximization (EWEM) algorithm, which takes time attenuation in consideration when
re-estimating the parameters of the model. This allows for keeping old trends in mind
while more recent patterns at the same time are given more attention.

Empirical results shows that the HMM using continuous emission probabilities can,
for some model settings, generate acceptable returns with Sharpe ratios well over one,
whilst the discrete in general performs poorly. The GMM therefore seems to be an
highly needed complement to the HMM for functionality. The EWEM however does
not improve results as one might have expected. Our general impression is that the
predictor using HMMs that we have developed and tested is too unstable to be taken
in as a trading tool on foreign exchange data, with too many factors influencing the
results. More research and development is called for.

Keywords: Algorithmic Trading, Exponentially Weighted Expectation Maximization
Algorithm, Foreign Exchange, Gaussian Mixture Models, Hidden Markov Mod-
els
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a set of IV hidden states,

a state sequence of length 7" taking values from S,
a sequence consisting of 7" observations,

the transition probability matrix A,

a sequence of observation likelihoods,

the initial probability distribution,

the complete parameter set of the HMM,

the joint probability of {01, 02,...,0:} and ¢; =
s; given A,

the joint probability of {0¢41,0¢42,...,0r} and
q: = s; given A,

the probability of ¢; = s; given O and A,

the mean for state s; and mixture component m,
the covariance matrix for state s; and mixture
component m,

a vector of real valued weights for the Exponen-
tially Weighted Expectation Maximization,

the weights for the mth mixture component in
state s;,

the joint probability of ¢; = s; and ¢i41 = s
given O and A,

the highest joint probability of a state sequence
ending in ¢; = s; and a partial observation se-
quence ending in o, given A,

the state s; at time ¢ which gives us d; (), used for
backtracking.
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Chapter 1

Introduction

In this first chapter a description of the background to this master’s thesis will be given.
It will focus on the foreign exchange market on the basis of its structure, participants
and recent trends. The objective will be pointed out, considering details such as the
purpose of the thesis and the delimitations that have been considered throughout the
investigation. In the end of the objectives the disposal will be gone through, just to
give the reader a clearer view of the thesis’ different parts and its mutual order.

1.1 The Foreign Exchange Market

The Foreign Exchange (FX) market is considered the largest and most liquid* of all
financial markets with a $3.2 trillion daily turnover. Between 2004 and 2007 the daily
turnover has increased with as much as 71 percent. [19]

The increasing growth in turnover over the last couple of years, seen in figure 1.1
seems to be led by two related factors. First of all, the presence of trends and higher
volatility in FX markets between 2001 and 2004, led to an increase of momentum trad-
ing, where investors took large positions in currencies that followed appreciating trends
and short positions in decreasing currencies. These trends also induced an increase in
hedging activity, which further supported trading volumes. [20]

Second, interest differentials encouraged so called carry trading, i.e. investments in
high interest rate currencies financed by short positions in low interest rate currencies, if
the target currencies, like the Australian dollar, tended to appreciate against the funding
currencies, like the US dollar. Such strategies fed back into prices and supported the
persistence of trends in exchange rates. In addition, in the context of a global search
for yield, so called real money managers? and leveraged? investors became increasingly
interested in foreign exchange as an asset class alternative to equity and fixed income.

As one can see in figure 1.1, the trend is also consistent from 2004 and forward,
with more and more money put into the global FX market. The number of participants

1The degree to which an asset or security can be bought or sold in the market without affecting the asset’s
price.

2Real money managers are market players, such as pension funds, insurance companies and corporate
treasurers, who invest their own funds. This distinguishes them from leveraged investors, such as for example
hedge funds, that borrow substantial amounts of money.

3Leverage is the use of various financial instruments or borrowed capital, such as margin, to increase the
potential return of an investment.

Idvall, Jonsson, 2008. 1
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Figure 1.1: Daily return on the global FX market 1989-2007

and the share of the participants portfolio towards FX are continuously increasing,
comparing to other asset classes.

1.1.1 Market Structure

The FX market is unlike the stock market an over the counter (OTC) market. There
is no single physical located place were trades between different players are settled,
meaning that all participants do not have access to the same price. Instead the markets
core is built up by a number of different banks. That is why it sometimes is called
an inter-bank market. The market is opened 24 hours a day and moves according to
activity in large exporting and importing countries as well as in countries with highly
developed financial sectors. [19]

The participants of the FX market can roughly be divided into the following five
groups, characterized by different levels of access:

e Central Banks

Commercial Banks

Non-bank Financial Entities

Commercial Companies
e Retail Traders

Central banks have a significant influence in FX markets by virtue of their role in
controlling their countries’ money supply, inflation, and/or interest rates. They may
also have to satisfy official/unofficial target rates for their currencies. While they may
have substantial foreign exchange reserves that they can sell in order to support their
own currency, highly overt intervention, or the stated threat of it, has become less
common in recent years. While such intervention can indeed have the desired effect,
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there have been several high profile instances where it has failed spectacularly, such as
Sterling’s exit from the Exchange Rate Mechanism (ERM) in 1992.

Through their responsibility for money supply, central banks obviously have a con-
siderable influence on both commercial and investment banks. An anti-inflationary
regime that restricts credit or makes it expensive has an effect upon the nature and level
of economic activity, e.g. export expansion, that can feed through into changes in FX
market activity and behaviour.

At the next level we have commercial banks. This level constitute the inter-bank
section of the FX market and consist of participants such as Deutsche Bank, UBS AG,
City Group and many others including Swedish banks such as Nordea, SEB, Swedbank
and Handelsbanken.

Within the inter-bank market, spreads, which are the difference between the bid
and ask prices, are sharp and usually close to non-existent. These counterparts act as
market makers toward customers demanding the ability to trade currencies, meaning
that they determine the market price.

As you descend the levels of access, from commercial banks to retail traders, the
difference between the bid and ask prices widens, which is a consequence of volume.
If a trader can guarantee large numbers of transactions for large amounts, they can
demand a smaller difference between the bid and ask price, which is referred to as a
better spread. This also implies that the spread is wider for currencies with less frequent
transactions. The spread has an important role in the FX market, more important than
in the stock market, because it is equivalent to the transaction cost. [22]

When speculating in the currency market you speculate in currency pairs, which
describes the relative price of one currency relative to another. If you believe that
currency A will strengthen against currency B you will go long in currency pair A/ B.
The largest currencies is the global FX market is US Dollar (USD), Euro (EUR) and
Japanese Yen (JPY). USD stands for as much as 86 percent of all transactions, followed
by EUR (37 percent) and JPY (17 percent).* [19]

1.2 Shifting to Electronic Markets

Since the era of floating exchange rates began in the early 1970s, technical trading
has become widespread in the stock market as well as the FX markets. The trend in
the financial markets industry in general is the increased automation of the trading, so
called algorithmic trading (AT), at electronic exchanges. [2]

Trading financial instruments has historically required face-to-face contact between
the market participants. The Nasdaq OTC market was one of the first to switch from
physical interaction to technological solutions, and today many other market places
has also replaced the old systems. Some markets, like the New York Stock Exchange
(NYSE), still uses physical trading but has at the same time opened up some functions
to electronic trading. It is of course innovations in computing and communications that
has made this shift possible, with global electronic order routing, broad dissemination
of quote and trade information, and new types of trading systems. New technology also
reduces the costs of building new trading systems, hence lowering the entry barriers for
new entrants. Finally, electronic markets also enables for a faster order routing and data
transmission to a much larger group of investors than before. The growth in electronic

4Because two currencies are involved in each transaction, the sum of the percentage shares of individual
currencies totals 200 percent instead of 100 percent.
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trade execution has been explosive on an international basis, and new stock markets are
almost exclusively electronic. [11]

1.2.1 Changes in the Foreign Exchange Market

The FX market differs somewhat from stock markets. These have traditionally been
dealer markets that operate over the telephone, and physical locations where trading
takes place has been non-existing. In such a market, trade transparency is low. But
for the last years, more and more of the FX markets has moved over to electronic
trading. Reuters and Electronic Broking Service (EBS) developed two major electronic
systems for providing quotes, which later on turned into full trading platforms, allowing
also for trade execution. In 1998, electronic trading accounted for 50 percent of all
FX trading, and it has continued rising ever since. Most of the inter-dealer trading
nowadays takes place on electronic markets, while trading between large corporations
and dealers still remain mostly telephone based. [11] Electronic trading platforms for
companies have however been developed, like Nordea e-Markets, allowing companies
to place and execute trades without interaction from a dealer.

1.3 Algorithmic Trading

During the last years, the trend towards electronic markets and automated trading has,
as mentioned in section 1.2, been significant. As a part of this many financial firms has
inherited trading via so called algorithms®, to standardize and automate their trading
strategies in some sense. As a central theme in this thesis AT deserves further clari-
fication and explanation. In this section different views of AT is given, to present a
definition of the term.

In general AT can be described as trading, with some elements being executed
by an algorithm. The participation of algorithms enables automated employment of
predefined trading strategies. Trading strategies are automated by defining a sequence
of instructions executed by a computer, with little or no human intervention. AT is the
common denominator for different trends in the area of electronic trading that result in
increased automation in:

1. ldentifying investment opportunities (what to trade).
2. Executing orders for a variety of asset classes (when, how and where to trade).

This includes a broad variety of solutions employed by traders in different markets,
trading different assets. The common denominator for the most of these solutions is
the process from using data series for pre-trade analysis to final trade execution. The
execution can be made by the computer itself or via a human trader. In figure 1.2 one
can see a schematic figure over this process. This figure is not limited to traders using
AT; rather it is a general description of some of the main elements of trading. The four
steps presented in figure 1.2 defines the main elements of trading. How many of these
steps that are performed by a computer is different between different traders and is a
measure of how automated the process is. The first step includes analysis of market data
as well as adequate external news. The analysis is often supported by computer tools
such as spreadsheets or charts. The analysis is a very important step, which will end up

5A step-by-step problem-solving procedure, especially an established, recursive computational procedure
for solving a problem in a finite number of steps. [21]



1.3. Algorithmic Trading 5

Market Participants !

Trading Strategy

External 1. Pre-trade 2. Trading 3. Trading 4. Trade
News Analysis Signal Decision Execution
r r
Order Confirmation
| I ¥ 1
| i
1 - - ' 1
! Real Time Information Foreign Exchange Market i
! i
= i

iElectronic Exchange

Figure 1.2: Schematic picture over the process for trading

in a trading signal and a trading decision in line with the overlaying trading strategy.
The last step of the process is the real execution of the trading decision. This can be
made automatically by a computer or by a human trader. The trade execution contains
an order, sent to the foreign exchange market and the response as a confirmation from
the same exchange. [3]

This simplified description might not hold for any specific trader taking into ac-
count the many different kinds of players that exists on a financial market. However,
it shows that the trading process can be divided into different steps that follow sequen-
tially. If one are now to suggest how trading is automated, there is little difficulty in
discuss the different steps being separately programmed into algorithms and executed
by a computer. Of course this is not a trivial task, especially as the complex consid-
erations previously made by humans have to be translated into algorithms executed by
machines. One other obstacle that must be dealt with in order to achieve totally auto-
mated trading is how to connect the different steps into a functional process and how to
interface this with the external environment, in other words the exchange and the mar-
ket data feed. In the next section different levels of AT will be presented. The levels
are characterized by the number of stages, presented in figure 1.2, that are replaced by
algorithms, performed by a machine.

1.3.1 Different Levels of Automation

A broad variety of definitions of AT is used, dependent on who is asked. The differ-
ences is often linked to the level of technological skill that the questioned individual
possess. Based on which steps that are automated and the implied level of human
intervention in the trading process, different categories can be distinguished. It is im-
portant to notice that the differences do not only consist of the number of steps auto-
mated. There can also be differences between sophistication and performance within
the steps. This will not be taken in consideration here though, focusing on the level of
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automation.

Four different ways of defining AT are to be described, influenced by [3]. The first
category, here named AT presuppose that the first two steps are fully automated. They
somewhat goes hand in hand because the pre-trade analysis often leads to a trading
signal in one way or another. This means that the human intervention is limited to the
two last tasks, namely the trading decision and the execution of the trade.

The second category, AT is characterized by an automation of the last step in the
trading process, namely the execution. The aim of execution algorithms is often to
divide large trading volumes into smaller orders and thereby minimizing the adverse
price impact a large order otherwise might suffer. It should be mentioned that different
types of execution algorithms are often supplied by third party software, and also as a
service to the buy-side investor of a brokerage. Using execution algorithms leaves the
first three steps, analysis, trading signal and trading decision to the human trader.

If one combines the first two categories a third variant of AT is developed, namely
ATj. ATj s just leaving the trading decision to the human trader, i.e. letting algorithms
taking care of step 1, 2 and 4.

Finally, fully automated AT, AT, often referred to as black-box-trading, is obtained
if all four steps is replaced by machines performing according to algorithmically set
decisions. This means that the human intervention is only control and supervision,
programming and parameterizations. To be able to use systems, such as AT'3 and
ATy, great skills are required, both when it comes to IT solutions and algorithmic
development.

Independent on what level of automation that is intended, one important issue is
to be considered, especially if regarding high-frequency trading, namely the markets
microstructure. The microstructure contains the markets characteristics when dealing
with price, information, transaction costs, market design and other necessary features.
In the next section a brief overview of this topic will be gone through, just to give the
reader a feeling of its importance when implementing any level of algorithmic trading.

1.3.2 Market Microstructure

Market microstructure is the branch of financial economics that investigates trading and
the organization of markets. [8] It is of great importance when trading is carried out on
a daily basis or on an even higher frequency, where micro-based models, in contrary
to macro-based, can account for a large part of variations in daily prices on financial
assets. [4] And this is why the theory on market microstructure is also essential when
understanding AT, taking advantage of for example swift changes in the market. This
will not be gone through in-depth here, as it lies out of the this master’s thesis’ scope;
the aim is rather to give a brief overview of the topic. Market microstructure mainly
deals with four issues, which will be gone through in the following sections [5].

Price formation and price discovery

This factor focuses on the process by which the price for an asset is determined, and
it is based on the demand and supply conditions for a given asset. Investors all have
different views on the future prices of the asset, which makes them trade it at differ-
ent prices, and price discovery is simply when these prices match and a trade takes
place. Different ways of carrying out this match is through auctioning or negotiation.
Quote-driven markets, as opposed to order-driven markets where price discovery takes
place as just described, is where investors trade on the quoted prices set by the markets
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makers, making the price discovery happen quicker and thus the market more price
efficient.

Transaction cost and timing cost

When an investor trades in the market, he or she faces two different kinds of costs:
implicit and explicit. The latter are those easily identified, e.g. brokerage fees and/or
taxes. Implicit however are described as hard to identify and measure. Market impact
costs relates to the price change due to large trades in a short time and timing costs to
the price change that can occur between decision and execution. Since the competition
between brokers has led to significant reduction of the explicit costs, enhancing the
returns is mainly a question of reducing the implicit. Trading in liquid markets and
ensuring fast executions are ways of coping with this.

Market structure and design

This factor focuses on the relationship between price determination and trading rules.
These two factors have a large impact on price discovery, liquidity and trading costs,
and refers to attributes of a market defined in terms of trading rules, which amongst oth-
ers include degree of continuity, transparency, price discovery, automation, protocols
and off-markets trading.

Information and disclosure

This factor focuses on the market information and the impact of the information on
the behavior of the market participants. A well-informed trader is more likely to avoid
the risks related to the trading, than one less informed. Although the theory of market
efficiency states that the market is anonymous and that all participants are equally in-
formed, this is seldom the case which give some traders an advantage. When talking
about market information, we here refer to information that has a direct impact on the
market value of an asset.

1.3.3 Development of Algorithmic Trading

As the share of AT increases in a specific market, it provides positive feedback for
further participants to automate their trading. Since algorithmic solutions benefits from
faster and more detailed data, the operators in the market have started to offer these
services on request from algorithmic traders. This new area of business makes the
existing traders better of if they can deal with the increasing load of information. The
result is that the non-automated competition will loose out on the algorithms even more
than before. For this reason it is not bold to predict that as the profitability shifts in favor
of AT, more trading will also shift in that direction. [3]

With a higher number of algorithmic traders in the market, there will be an increas-
ing competition amongst them. This will most certain lead to decreasing margins, tech-
nical optimization and business development. Business development contains, amongst
other things, innovation as firms using AT search for new strategies, conceptually dif-
ferent from existing ones. Active firms on the financial market put a great deal of effort
into product development with the aim to find algorithms, capturing excess return by
unveiling the present trends in the FX market.
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1.4 Objectives

As the title of this master’s thesis might give away, an investigation of the use of hidden
Markov models (HMM) as an AT tool for investments on the FX market will be carried
out. HMMs is one among many other frameworks such as artificial neural networks
and support vector machines that could constitute a base of a successful algorithm.

The framework chosen to be investigated was given in advance from Algorithmic
Trading at Nordea Markets in Copenhagen. Because of this initiation, other frame-
works, as the two listed above, will not be investigated or compared to the HMMs
throughout this study. Nordea is interested in how HMMs can be used as a base for
developing an algorithm capturing excess return within the FX market, and from that
our purpose do emerge.

1.4.1 Purpose

To evaluate the use of hidden Markov models as a tool for algorithmic trading on
foreign exchange data.

1.4.2 Purpose Decomposition

The problem addressed in this study is, as we mentioned earlier, based on the insight
that Nordea Markets is looking to increase its knowledge about tools for AT. This is
necessary in order to be able to create new trading strategies for FX in the future. So,
to be able to give a recommendation, the question to be answered is: should Nordea
use hidden Markov models as a strategy for algorithmic trading on foreign exchange
data?

To find an answer to this one have to come up with a way to see if the framework
of HMMs can be used to generate a rate of return that under risk adjusted manners
exceeds the overall market return. To do so one have to investigate the framework of
HMMs in great detail to see how it could be applied to FX data. One also have to find
a measure of market return to see if the algorithm is able to create higher return using
HMMs. Therefore the main tasks is the following:

1. Put together an index which reflects the market return.

2. Trytofind an algorithm using HMMs that exceeds the return given by the created
index.

3. Examine if the algorithm is stable enough to be used as a tool for algorithmic
trading on foreign exchange data.

If these three steps are gone through in a stringent manner one can see our purpose
as fulfilled. The return, addressed in step one and two, is not only the rate of return
itself. It will be calculated together with the risk of each strategy as the return-to-risk
ratio, also called Sharpe ratio described in detail in 3.8.2. The created index will be
compared with well known market indices to validate its role as a comparable index
for market return. To evaluate the models stability back-testing will be used. The
models performance will be simulated using historical data for a fixed time period.
The chosen data and time period is described in section 3.1.
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1.4.3 Delimitations

The focus has during the investigation been set to a single currency cross, namely the
EURUSD. For the chosen cross we have used one set of features given to us from
Nordea Quantitative Research as supportive time series. The back testing period for
the created models, the comparative index as well as the HMM, has been limited to
the period for which adequate time series has been given, for both the chosen currency
cross and the given features. Finally the trading strategy will be implemented to an
extent containing step one and two in figure 1.2. It will not deal with the final trading
decision or the execution of the trades.

1.4.4 Academic Contribution

This thesis is written from a financial engineering point of view, combining areas such
as computer science, mathematical science and finance. The main academic contribu-
tions of the thesis are the following:

e The master’s thesis is one of few applications using hidden Markov models on
time dependent sequences of data, such as financial time series.

e Itis the first publicly available application of hidden Markov models on foreign
exchange data.

1.4.5 Disposal

The rest of this master’s thesis will be organized as follows. In chapter 2, the theoretical
framework will be reviewed in detail to give the reader a clear view of the theories used
when evaluating HMM as a tool for AT. This chapter contains information about differ-
ent trading strategies used on FX today as well as the theory of hidden Markov models,
Gaussian mixture models (GMM), an exponentially weighted expectation maximiza-
tion (EWEM) algorithm and Monte Carlo (MC) simulation.

In chapter 3 the developed model is described in detail to clear out how the theories
has been used in practice to create algorithms based on the framework of HMMs. The
created market index will also be reviewed, described shortly to give a comparable
measure of market return.

Chapter 4 contains the results of the tests made for the developed models. Trajecto-
ries will be presented and commented using different features and settings to see how
the parameters affect the overall performance of the model. The models performance
will be tested and commented using statistical tests and well known measurements.

The analysis of the results are carried out in chapter 5, on the base of different
findings made throughout the tests presented in chapter 4. The purpose of the analysis
is to clear out the underlying background to the results one can see, both positive and
negative.

Finally, chapter 6 concludes our evaluation of the different models and the frame-
work of HMMs as a tool for AT on FX. Its purpose is to go through the three steps
addressed in section 1.4.2 to finally answer the purpose of the master’s thesis. This
chapter will also point out the most adequate development needed to improve the mod-
els further.
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Chapter 2

Theoretical Framework

This chapter will give the reader the theoretical basis needed to understand HMMs,
i.e. the model to be evaluated in this master’s thesis. Different variants, like the one
making use of GMMs, and improvements to the HMM, that for example takes time
attenuation in consideration, will also be presented. The chapter however starts with
some background theories regarding market indices and FX benchmarks, which will
constitute the theoretical ground for the comparative index.

2.1 Foreign Exchange Indices

Throughout the years many different trading strategies have been developed to cap-
ture return from the FX market. As one finds in any asset class, the foreign exchange
world contains a broad variety of distinct styles and trading strategies. For other as-
set classes it is easy to find consistent benchmarks, such as indices like Standard and
Poor’s 500 (S&P 500) for equity, Lehmans Global Aggregate Index (LGAI) for bonds
and Goldman Sachs Commodity Index (GSCI) for commaodities. It is harder to find a
comparable index for currencies.

When viewed as a set of trading rules, the accepted benchmarks of other asset
classes indicate a level of subjectivity that would not otherwise be apparent. In fact,
they really reflect a set of transparent trading rules of a given market. By being widely
followed, they become benchmarks. By looking at benchmarks from this perspective
there is no reason why there should not exist an applicable benchmark for currencies.
[6]

The basic criteria for establishing a currency benchmark is to find approaches that
are widely known and followed to capture currency return on the global FX market.
In march 2007 Deutsche Bank unveiled their new currency benchmark, The Deutsche
Bank Currency Return (DBCR) Index. Their index contains a mixture of three strate-
gies, namely Carry, Momentum and Valuation. These are commonly accepted indices
that also other large banks around the world make use of.

Carry is a strategy in which an investor sells a certain currency with a relatively
low interest rate and uses the funds to purchase a different currency yielding a higher
interest rate. A trader using this strategy attempts to capture the difference between the
rates, which can often be substantial, depending on the amount of leverage the investor
chooses to use.

To explain this strategy in more detail an example of a ”"JPY carry trade” is here

Idvall, Jonsson, 2008. 11
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presented. Lets say a trader borrows 1 000 000 JPY from a Japanese bank, converts
the funds into USD and buys a bond for the equivalent amount. Lets also assume that
the bond pays 5.0 percent and the Japanese interest rate is set to 1.5 percent. The
trader stands to make a profit of 3.5 percent (5.0 - 1.5 percent), as long as the exchange
rate between the countries does not change. Many professional traders use this trade
because the gains can become very large when leverage is taken into consideration. If
the trader in the example uses a common leverage factor of 10:1, then he can stand to
make a profit of 35 percent.

The big risk in a carry trade is the uncertainty of exchange rates. Using the example
above, if the USD were to fall in value relative to the JPY, then the trader would run
the risk of losing money. Also, these transactions are generally done with a lot of
leverage, so a small movement in exchange rates can result in big losses unless hedged
appropriately. Therefore it is important also to consider the expected movements in the
currency as well as the interest rate for the selected currencies.

Another commonly used trading strategy is Momentum, which is based on the ap-
pearance of trends in the currency markets. Currencies appear to trend over time, which
suggests that using past prices may be informative to investing in currencies. This is
due to the existence of irrational traders, the possibility that prices provide information
about non-fundamental currency determinants or that prices may adjust slowly to new
information. To see if a currency has a positive or negative trend one have to calculate a
moving average for a specific historical time frame. If the currency has a higher return
during the most recent moving average it said to have a positive trend and vice versa.
[6]

The last trading strategy, described by Deutsche Bank, is Valuation. This strategy
is purely based on the fundamental price of the currency, calculated using Purchasing
Power Parity (PPP). A purchasing power parity exchange rate equalizes the purchasing
power of different currencies in their home countries for a given basket of goods. If
for example a basket of goods costs 125 USD in US and a corresponding basket in
Europe costs 100 EUR, the fair value of the exchange rate would be 1.25 EURUSD
meaning that people in US and Europe have the same purchasing power. This is why
it is believed that the currencies in the long run tend to revert towards their fair value
based on PPP. But in short- to medium-run they might deviate somewhat from this
equilibrium due to trade, information and other costs. These movements allows for
profiting by buying undervalued currencies and selling overvalued. [6]

2.1.1 Alphas and Betas

The described strategies are often referred to as beta strategies, reflecting market return.
Beside these there is a lot of other strategies, trying to find the alpha in the market.
Alpha is a way of describing excess return, captured by a specific fund or individual
trader. Alpha is defined using Capital Asset Pricing Model (CAPM). CAPM for a
portfolio is

rp =15+ Bp(rar —ry)

where 7 is the risk free rate, 3, = 2245272 the volatility of the portfolio relative
M

some index explaining market return, and (r s — rf) the market risk premia. Alpha
can now be described as the excess return, comparing to CAPM, as follows

a=r,—rp =1, — (1§ + Bp(rm —1y))

where 7 is the actual return given by the asset and r, the return given by CAPM.
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The above description of alpha is valid for more or less all financial assets. But
when it comes to FX, it might sometimes be difficult to assign a particular risk free rate
to the portfolio. One suggestion is simply to use the rates of the country from where
the portfolio is being managed, but the most reoccurring method is to leave out the risk
free rate. This gives

a=r,—1p =1, Bprm
where 7 is adjusted for various transaction costs, where the most common is the cost
related to the spread.

2.2 Hidden Markov Models

Although initially introduced in the 1960’s, HMM first gained popularity in the late
1980’s. There are mainly two reasons for this; first the models are very rich in mathe-
matical structure and hence can form the theoretical basis for many applications. Sec-
ond, the models, when applied properly, work very well in practice. [17] The term
HMM is more familiar in the speech recognition community and communication sys-
tems, but has during the last years gained acceptance in finance as well as economics
and management science. [16]

The theory of HMM deals with two things: estimation and control. The first in-
clude signal filtering, model parameter identification, state estimation, signal smooth-
ing, and signal prediction. The latter refers to selecting actions which effect the signal-
generating system in such a way as to achieve ceratin control objectives. Essentially,
the goal is to develop optimal estimation algorithms for HMMs to filter out the ran-
dom noise in the best possible way. The use of HMMs is also motivated by empirical
studies that favors Markov-switching models when dealing with macroeconomic vari-
ables. This provides flexibility to financial models and incorporates stochastic volatil-
ity in a simple way. Early works, proposing to have an unobserved regime following
a Markov process, where the shifts in regimes could be compared to business cycles,
stock prices, foreign exchange, interest rates and option valuation. The motive for a
regime-switching model is that the market may switch from time to time, between for
example periods of high and low volatility.

The major part of this section is mainly gathered from [17] if nothing else is stated.
This article is often used as a main reference by other authors due to its thorough
description of HMMs in general.

2.2.1 Hidden Markov Models used in Finance

Previous applications in the field of finance where HMMs have been used range all
the way from pricing of options and variance swaps and valuation of life insurances
policies to interest rate theory and early warning systems for currency crises. [16] In
[14] the author uses hidden Markov models when pricing bonds through considering
a diffusion model for the short rate. The drift and the diffusion parameters are here
modulated by an underlying hidden Markov process. In this way could the value of the
short rate successfully be predicted for the next time period.

HMMs has also, with great success, been used on its own or in combination with
e.g. GMM s or artificial neural networks for prediction of financial time series, as equity
indices such as the S&P 500. [18, 9] In these cases the authors has predicted the rate
of return for the indices during the next time step and thereby been able to create an
accurate trading signal.
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The wide range of applications together with the proven functionality, in both fi-
nance and other communities such as speak recognition, and the flexible underlying
mathematical model is clearly appealing.

2.2.2 Bayes Theorem

A HMM is a statistical model in which the system being modeled is assumed to be a
Markov process with unknown parameters, and the challenge is to determine the hidden
parameters from the observable parameters. The extracted model parameters can then
be used to perform further analysis, for example for pattern recognition applications.
A HMM can be considered as the simplest dynamic Bayesian network, which is a
probabilistic graphical model that represents a set of variables and their probabilistic
independencies, and where the variables appear in a sequence.

Bayesian probability is an interpretation of the probability calculus which holds
that the concept of probability can be defined as the degree to which a person (or
community) believes that a proposition is true. Bayesian theory also suggests that
Bayes theorem can be used as a rule to infer or update the degree of belief in light of
new information.

The probability of an event A conditional on event B is generally different from the
probability of B conditional on A. However, there is a definite relationship between
the two, and Bayes’ theorem is the statement of that relationship.

To derive the theorem, the definition of conditional probability used. The probabil-
ity of event A given B is

_ P(ANnB)
Likewise, the probability of event B, given event A is
_ P(BnA)

P(B|A) = PA)

Rearranging and combining these two equations, one find
P(A|B)P(B)=P(ANB)=P(BnA)=P(B|A)P(A).
This lemma is sometimes called the product rule for probabilities. Dividing both sides
by P(B), given P(B) # 0, Bayes’ theorem is obtained:
_ P(B|A)P(A)
P(A|B) = P(B)

There is also a version of Bayes’ theorem for continuous distributions. It is some-
what harder to derive, since probability densities, strictly speaking, are not probabili-
ties, so Bayes’ theorem has to be established by a limit process. Bayes’ theorem for
probability density functions is formally similar to the theorem for probabilities:

flz,y) _ flyle)f(x)

T =50 = )
and there is an analogous statement of the law of total probability:
_ ) f(x)
PEW) = 1 pyla) s

The notation have here been somewhat abused, using f for each one of these terms,
although each one is really a different function; the functions are distinguished by the
names of their arguments.
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2.2.3 Markov Chains

A Markov chain, sometimes also referred to as an observed Markov Model, can be
seen as a weighted finite-state automaton, which is defined by a set of states and a
set of transitions between the states based on the observed input. In the case of the
Markov chain the weights on the arcs going between the different states can be seen as
probabilities of how likely it is that a particular path is chosen. The probabilities on the
arcs leaving a node (state) must all sum up to 1. In figure 2.1 there is a simple example
of how this could work.

a9 = 0.2

N\
k%)
all = 0.4 \_>l33 =0.5

Figure 2.1: A simple example of a Markov chain explaining the weather. a ;;, found on
the arcs going between the nodes, represents the probability of going from state s ; to
state s;.

In the figure a simple model of the weather is set up, specified by the three states;
sunny, cloudy and rainy. Given that the weather is rainy (state 3) on day 1 (¢t = 1),
what is the probability that the three following days will be sunny? Stated more formal,
one have an observation sequence O = {s3, s1, 51,1} fort = 1,2, 3,4, and wish to
determine the probability of O given the model in figure 2.1. The probability is given

by:

P(O|Model) = P(sg, s1,s1,51|Model) =
= P(Sg) . P(81|53) . P(81|81) 'P(51|81) =
=1-0.25-04-0.4=0.04

For a more formal description, the Markov chain is specified, as mentioned above,
by:
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S ={s1,82,..., SN} a set of IV states,

A ={an,a12,...,ann} atransition probability matrix A, where each a;;
represents the probability of moving from state ¢
to state j, with "% | a;; = 1, Vi,

I = {m,m2 ..., TN} an initial probability distribution, where 7; indi-
cates the probability of starting in state 7. Also,
ZzNzl m =1

Instead of specifying II, one could use a special start node not associated with
the observations, and with outgoing probabilities @ s;qr+,s = m; s the probabilities of
going from the start state to state ¢, and astart,start = @i start = 0,Vi. The time
instants associated with state changes are defined as as ¢t = 1, 2, ... and the actual state
at time ¢ as g;.

An important feature of the Markov chain is its assumptions about the probabilities.
In a first-order Markov chain, the probability of a state only depends on the previous
state, that is:

P(qi|qt—1, -y q1) = P(qe|lqi—1)

Markov chains, where the probability of moving between any two states are non-
zero, are called fully-connected or ergodic. But this is not always the case; in for ex-
ample a left-right (also called Bakis) Markov model there are no transitions going from
a higher-numbered to a lower-numbered state. The way the trellis is set up depends on
the given situation.

The Markov Property Applied in Finance

Stock prices are often assumed to follow a Markov process. This means that the present
value is all that is needed for predicting the future, and that the past history and the
taken path to today’s value is irrelevant. Considering that equity and currency are
both financial assets, traded under more or less the same conditions, it would not seem
farfetched assuming that currency prices also follows a Markov process.

The Markov property of stock prices is consistent with the weak form of market
efficiency, which states that the present price contains all information contained in
historical prices. This implies that using technical analysis on historical data would
not generate an above-average return, and the strongest argument for weak-form mar-
ket efficiency is the competition on the market. Given the many investors following
the market development, any opportunities rising would immediately be exploited and
eliminated. But the discussion about market efficiency is heavily debated and the view
presented here is seen somewhat from an academic viewpoint. [12]

2.2.4 Extending the Markov Chain to a Hidden Markov Model

A Markov chain is useful when one want to compute the probability of a particular
sequence of events, all observable in the world. However, the events that are of interest
might not be directly observable, and this is where HMM comes in handy.

Extending the definition of Markov chains presented in the previous section gives:
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S ={s1,82,..., SN} a set of IV hidden states,
Q={q,q9,. - qr} a state sequence of length 7" taking values from .S,
O ={o01,09,...,0r} an observation sequence consisting of 7' obser-

vations, taking values from the discrete alphabet
V = {’Ul, V2, ...,UA[},

A ={an,a12,...,anyn} atransition probability matrix A, where each a;;
represents the probability of moving from state s;
to state s;, with 30 a;;, Vi,

B =b;(or) a sequence of observation likelihoods, also called
emission probabilities, expressing the probability
of an observation o, being generated from a state

s; attime ¢,

II={m,ms,...,7N} an initial probability distribution, where 7, indi-
cates the probability of starting in state s;. Also,
Zﬁil T, = 1.

As before, the time instants associated with state changes are defined as as ¢t =
1,2, ... and the actual state at time ¢ as ¢;. The notation A\ = {4, B, II} is also intro-
duced, which indicates the complete parameter set of the model.

A first-order HMM makes two assumptions; first, as with the first-order Markov
chain above, the probability of a state is only dependent on the previous state:

P(q|q—1, -, q1) = P(qe|gi—1)

Second, the probability of an output observation o, is only dependent on the state
that produced the observation, ¢;, and not on any other observations or states:

P(0t|Qt;Qt71; <031, 011, "'701) = P(Ot|qt)

To clarify what is meant by all this, a simple example based on one originally given
by [13] is here presented. Imagine that you are a climatologist in the year 2799 and
want to study how the weather was in 2007 in a certain region. Unfortunately you do
not have any records for this particular region and time, but what you do have is the
diary of a young man for 2007, that tells you how many ice creams he had every day.

Stated more formal, you have an observation sequence, O = {01, ..., 0365 }, Where
each observation assumes a value from the discrete alphabet V' = {1,2,3}, i.e. the
number of ice creams he had every day. Your task is to find the ”correct” hidden state
sequence, @ = {q1, ..., qses5}, With the possible states sunny (s1) and rainy (s2), that
corresponds to the given observations. Say for example that you know that he had one
ice cream at time ¢ — 1, three ice creams at time ¢ and two ice creams at time ¢ + 1.
The most probable hidden state sequence for these three days might for example be
Gt—1 = S2, ¢z = s1 and qz+1 = o, given the number of eaten ice creams. In other
words, the most likely weather during these days would be rainy, sunny and rainy. An
example of how this could look is presented in figure 2.2.

2.2.5 Three Fundamental Problems

The structure of the HMM should now be clear, which leads to the question: in what
way can HMM be helpful? [17] suggests in his paper that HMM should be character-
ized by three fundamental problems:
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0t41 =3

Figure 2.2: A HMM example, where the most probable state path (so, s1, s2) is out-
lined. a;; states the probability of going from state s; to state s;, and b;(o;) the proba-
bility of a specific observation at time ¢, given state s ;.

Problem 1 - Computing likelihood: Given the complete parameter set A and an ob-
servation sequence O, determine the likelihood P(O|)).

Problem 2 - Decoding: Given the complete parameter set A and an observation se-
guence O, determine the best hidden sequence Q.

Problem 3 - Learning: Given an observation sequence O and the set of states in the
HMM, learn the HMM M.

In the following three subsections these problems will be gone through thoroughly
and how they can be solved. This to give the reader a clear view of the underlying cal-
culation techniques that constitutes the base of the evaluated mathematical framework.
It should also describe in what way the framework of HMMs can be used for parameter
estimation in the standard case.

Computing Likelihood

This is an evaluation problem, which means that given a model and a sequence of ob-
servations, what is the probability that the observations was generated by the model.
This information can be very valuable when choosing between different models want-
ing to know which one that best matches the observations.

To find a solution to problem 1, one wish to calculate the probability of a given
observation sequence, O = {01, 02, ..., or }, given the model A\ = { A, B, IT}. In other
words one want to find P(O|X). The most intuitive way of doing this is to enumerate
every possible state sequence of length T". One such state sequence is

Q=1{q1,92---,q71} (2.2)
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where ¢; is the initial state. The probability of observation sequence O given a state
sequence such as 2.1 can be calculated as

T

P(0|Q,\) = [[ P(ot|ar. A) (2.2)

t=1

where the different observations are assumed to be independent. The property of inde-
pendence makes it possible to calculate equation 2.2 as

P(O]Q, ) = bg, (01) - bg, (02) - - .. - by (01). (2.3)
The probability of such a sequence can be written as
P(QP‘) = Mg " Qq1q2Aqaqs "+ -+ " Aqr_1q7- (24)

The joint probability of O and @, the probability that O an @ occurs simultaneously,
is simply the product of 2.3 and 2.4 as

P(0,QIN) = P(O[Q, ) P(Q[N). (2.5)

Finally the probability of O given the model X is calculated by summing the right hand
side of equation 2.5 over all possible state sequences Q

PO =224, g,.ar POIQ, N P(QIA) =

= qu,qz,m,qT Mg blh (Ol)aquh qu (02) tee G’QT—IQTbQT (OT)'

(2.6)

Equation 2.6 says that one at the initial time ¢ = 1 are in state ¢; with probability
T4, » and generate the observation o, with probability b, (o1). As time ticks from ¢ to
t 4+ 1 (¢t = 2) one transform from state ¢, to go with probability a,,,,, and generate
observation o, with probability b,, (02) and so on until t = T'.

This procedure involves a total of 2'N T calculations, which makes it unfeasible,
even for small values of N and 7. As an example it takes 2 - 100 - 5% ~ 1072
calculations for a model with 5 states and 100 observations. Therefor it is needed to find
a more efficient way of calculating P(O|\). Such a procedure exists and is called the
Forward-Backward Procedure. For initiation one need to define the forward variable
as

at(i) = P(Olv 02,...,0t,qt = Si|)‘)'

In other words, the probability of the partial observation sequence, 01, 02, . .., o; until
time ¢ and given state s, at time ¢. One can solve for «,(¢) inductively as follows:

1. Initialization:
ai(i) =mbi(o1), 1<i<N. (2.7)

2. Induction:

a1 (f) = [Z;V:I ay(i)aij| bj(op+1), 1<t<T -1,

1<j<N.

(2.8)

1The backward part of the calculation is not needed to solve Problem 1. It will be introduced when
solving Problem 3 later on.
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3. Termination:

N
P(OIN) =) ar(i). (2.9)
i=1

Step 1 sets the forward probability to the joint probability of state s ; and initial obser-
vation o;. The second step, which is the heart of the forward calculation is illustrated
in figure 2.3.

S1

o a; .
52 ox&
83 o oj
t t+1
(1) at41(5)

Figure 2.3: Illustration of the sequence of operations required for the computation of
the forward variable . (7).

One can see that state s; at time ¢ + 1 can be reached from N different states at
time ¢. By summing the product over all possible states s;,1 < i < N attime ¢ results
in the probability of s; at time ¢ 4+ 1 with all previous observations in consideration.
Once it is calculated for s, it is easy to see that ;1 (j) is obtained by accounting for
observation 0,41 in state s;, in other words by multiplying the summed value by the
probability b, (o,41). The computation of 2.8 is performed for all states s ;,1 < j < N,
for a given time ¢ and iterated forall ¢ = 1,2,...,T — 1. Step 3 then gives P(O|\) by
summing the terminal forward variables 1 (7). This is the case because, by definition

ar(i) = P(o1,02,...,0r,qr = Si|\)

and therefore P(O|)) is just the sum of the avr(i)’s. This method just needs N 27T
which is much more efficient than the more traditional method. Instead of 1072 cal-
culations, a total of 2500 is enough, a saving of about 69 orders of magnitude. In the
next two sections — one can see that this decrease of magnitude is essential because
P(O|\) serves as the denominator when estimating the central variables when solving
the last two problems.

In a similar manner, one can consider a backward variable 3, () defined as follows:

5t(l) = P(0t+1;0t+2; ce ,0T|Qt = Si;)\)

B:¢(7) is the probability of the partial observation sequence from ¢ + 1 to the last time,
T, given the state s; at time ¢ and the HMM \. By using induction, 5;(¢) is found as
follows:

1. Initialization:
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2. Induction:

Bi(i) = Y0 aijbi(0i41)Bisa (), t=T—1,T—2,...,1,

1<i<N.

Step 1 defines G (4) to be one for all s;. Step 2, which is illustrated in figure 2.4, shows
that in order to to have been in state s; at time ¢, and to account for the observation
sequence from time ¢ 4 1 and on, one have to consider all possible states s ; at time
t+ 1, accounting for the transition from s; to s; as well as the observation o, in state
s;, and then account for the remaining partial observation sequence from state s ;.

S1
i) 89
Si
) o %3
@ (; SN
t t+1
Be (1) Be+1(5)

Figure 2.4: Illustration of the sequence of operations required for the computation of
the backward variable 5 ().

As mentioned before the backward variable is not used to find the probability
P(O|X). Later on it will be shown how the backward as well as the forward calcula-
tion are used extensively to help one solve the second as well as the third fundamental
problem of HMMs.

Decoding

In this the second problem one try to find the “correct” hidden path, i.e. trying to
uncover the hidden path. This is often used when one wants to learn about the structure
of the model or to get optimal state sequences.

There are several ways of finding the “optimal” state sequence according to a given
observation sequence. The difficulty lies in the definition of a optimal state sequence.
One possible way is to find the states g; which are individually most likely. This criteria
maximizes the total number of correct states. To be able to implement this as a solution
to the second problem one start by defining the variable

Y:(1) = P(q = 54|O, \) (2.10)

which gives the probability of being in state s; at time ¢ given the observation sequence,
O, and the model, A. Equation 2.10 can be expressed simply using the forward and
backward variables, a; () and 5, (¢) as follows:
. a1 ) a1 )
(i) = 28050 oe@Bi(D) 211)
PO[N) SN a(4)Bi4)
Itis simple to see that -y, (¢) is a true probability measure. This since «; (i) accounts
for the partial observation sequence o1, 02,...,0; and the state s; at ¢, while 3;(7)
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accounts for the remainder of the observation sequence 0,1, 0¢49, . .., or given state
s; at time ¢. The normalization factor P(O|\) = Zf;l a(7) B¢ (i) makes ¢(i) a
probability measure, which means that

N
Z%(i) =1

One can now find the individually most likely state ¢; at time ¢ by using ~¢(7) as
follows:
q = argmax; ;< [ (i)], 1<t <T. (2.12)

Although equation 2.12 maximizes the expected number of correct states there
could be some problems with the resulting state sequence. For example, when the
HMM has state transitions which has zero probability the optimal state sequence may,
in fact, not even be a valid state sequence. This is due to the fact that the solution
of 2.12 simply determines the most likely state at every instant, without regard to the
probability of occurrence of sequences of states.

To solve this problem one could modify the optimality criterion. For example by
solving for the state sequence that maximizes the number of correct pairs of states
(qt, qr+1) or triples of states (g¢, gt+1, ge+2).

The most widely used criterion however, is to find the single best state sequence,
in other words to maximize P(Q|O, A) which is equivalent to maximizing P(Q, O|\).
To find the optimal state sequence one often uses a method, based on dynamic pro-
gramming, called the Viterbi Algorithm.

To find the best state sequence @ = {q1,qo, - .., gr} for a given observation se-
quence O = {01, 02, ...,0r}, one need to define the quantity
0i(i) = max  Plg1,q2,...,qt = Si,01,02,...,0|A]

q1,92,--,qt—1

which means the highest probability along a single path, at time ¢, which accounts for
the first ¢ observations and ends in state s;. By induction one have:

Or1(7) = [max de(i)ai;]bj(0r+1)- (2.13)

To be able to retrieve the state sequence, one need to keep track of the argument
which maximized 2.13, for each ¢ and j. This is done via the array ¢, (j). The complete
procedure for finding the best state sequence can now be stated as follows:

1. Initialization:
51(1) = 7T7;b7;(01), 1 S 7 S N

¥1(i) = 0.
2. Recursion:
(5f(j) = maxlSiSN[(St_l(i)aij]bj (Ot)7 2 t<T
1<j<N
‘ . =J = 2.14
Py (]) = argmaxlSiSN[&—l(Z)aij]a 2<t<T ( )
1<j<N
3. Termination:
P* = maxi<;<n[07(7)] (2.15)

g7 = argmax; <, <y [67(4)].
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4. Path (state sequence) backtracking:
G =Via(gf), t=T-1,T-2,...,1

It is important to note that the Viterbi algorithm is similar in implementation to
the forward calculation in 2.7 - 2.9. The major difference is the maximization in 2.14
over the previous states which is used in place of the summing procedure in 2.8. It
should also be clear that a lattice structure efficiently implements the computation of
the Viterbi procedure.

Learning

The third, last, and at the same time most challenging problem with HMMs is to de-
termine a method to adjust the model parameters A = {A, B,II} to maximize the
probability of the observation sequence given the model. There is no known analytical
solution to this problem, but one can however choose A such that P(O|\) is locally
maximized using an iterative process such as the Baum-Welch method, a type of Ex-
pectation Maximization (EM) algorithm. Options to this is to use a form of Maximum
A Posteriori (MAP) method, explained in [7], or setting up the problem as an opti-
mization problem, which can be solved with for example gradient technique, which
can yield solutions comparable to those of the aforementioned method. But the Baum-
Welch is however the most commonly used procedure, and will therefore be the one
utilized in this the first investigation of HMM on FX data.

To be able to re-estimate the model parameters, using the Baum-Welch method,
one should start with defining £, (¢, 7), the probability of being in state s; at time ¢, and
state s; at time ¢ + 1, given the model and the observations sequence. In other words
the variable can be defined as:

& (1, 5) = P(gt = si, g1 = 550, N).

The needed information for the variable £, (4, ) is shown in figure 2.5.

(o]
aijbj(ot+1)

51%2

Bi+1(J)
t+1 t+2

(¢]

Figure 2.5: Illustration of the sequence of operations required for the computation of
the joint event that the system is in state s; at time ¢ and state s; at time ¢ + 1.

From this figure one should be able to understand that £, (%, j) can be written using
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the forward and backward variables as follows:

o ag(@)aggbi(0i41) B ()
ft(zaj) - P(OF;\) L -

o (i)aijbj(0e41)Be+1(4)
> Z;-V:l ar(i)aiibj(0t+1)Be+1(5)

which is a probability measure since the numerator is simply P(q; = s;, 11 =
s, O|A) and denominator is P(O|X).

As described in 2.11, (1) is the probability of being in state s; at time ¢, given the
observation sequence and the model. Therefore there is a close relationship between
~v:(i) and & (i, j). One can express . (¢) as the sum of all £, (i, 7) over all existing states
as follows:

N
V(i) = th(m)-

By summing ~.(7) over time one get a number which can be interpreted as the
number of times that state s; is visited. This can also be interpreted as the number of
transitions from state s;. Similarly, summation of £, (4, j) over time can be interpreted
as the number of transitions from state s; to state s;. By using these interpretations,
a method for the re-estimation of the model parameters IT, A, B for the HMM is as
follows:

o= ), (2.16)
_ i &(d) 2.17
YT S e

) = s O @2.18)
(v = _—. :

A Ezw:l’yt(j)

One should see that equation 2.16 can be interpreted as the frequency in state s ; at
time ¢ = 1. Equation 2.17 should be interpreted as the expected number of transitions
from state s; to s; divided by the number of transitions from state s;. And finally,
equation 2.18 can be seen as the expected number of times in state s ; and observing
the symbol vy, divided by the expected number of times in state s ;.

If the current HMM is defined as A = {A, B,II} and used to compute the right
hand side of 2.16 — 2.18, and at the same time define the re-estimation HMM as \ =
(A, B,TI) as determined from the left hand side of 2.16 — 2.18 it has been proven that
either

1. the initial model A defines a critical point of the likelihood function, in which
case A = Aor

2. model X is more likely than model X in the sense that P(O|X) > P(O|)), which
means that one have found a new model A from which the observation sequence
is more likely to have been produced.

An iterative re-estimation process, replacing A\ with X\ can be done to a certain
extent, until some limiting point is reached. The final result of this re-estimation pro-
cedure is called a maximum likelihood estimation of the HMM. One problem, earlier
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discussed is that the forward-backward algorithm only leads to a local maximum. For
most applications the optimization surface is very complex and has many local max-
ima.

The re-estimation formulas of 2.16 - 2.18 can be derived directly from Baum’s
auxiliary function

QLX) = P(QIO, N 1og [P(0,QN)]
Q

by maximizing over ). It has been proven that maximization of Q(\, \) leads to an
increasing likelihood as follows:

m%X[Q(A,X)] = P(O[A) = P(ON).

An important aspect of the re-estimation procedure is that the stochastic constraints
of the HMM parameters, namely

N
Eﬁi = 1,
i=1

N
Y a; = 1,1<i<N,
j=1
M
b)) = 1,1<j <N,
k=1

are automatically satisfied at each iteration. By looking at the parameter estimation
problem as a constrained optimization of P(O|X) the techniques of Langrange mul-
tipliers can be used to find the best value of the adequate parameters. If setting up a
Lagrange optimization using multipliers, it can be shown that P is maximized when
the following set of conditions are met:

Wig—P
Ti = N ap (2.19)
Zk:lwk{??i
oP
Aij5—
ay; = —dm (2.20)

N P
D k=1 Tk e

bj (Uk) a;ﬁ_g
bj (vk) = M (o)

. 2.21)
121 05 () 52ty

By rewriting 2.19 — 2.21, the right hand side of every equation can be converted to
be identical to the right hand sides of each part of 2.16 — 2.18. This is showing that the
re-estimation formulas are indeed exactly correct at critical points of P(O|\).

This concludes the basics about what HMMs can be used for. In the next chapter
one will be able to see how this can be applied for forecasting movements in a currency
Cross.
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2.2.6 Multivariate Data and Continuous Emission Probabilities

When in previous sections addressing the observations, o,, it has been more or less
assumed that these take on scalar values. But sometimes they contain more than one
element, which means that data is generated from several distinct underlying causes
with an unknown relationship between them, where each cause contributes indepen-
dently to the process. But it is however not possible to see how much and in what way
they affect the final result. The observation sequence thus looks like:

02{51,...,5T}

where each observation oy is a vector. The overline is henceforward left out, since there
should be no confusion in the continuing as to what o is (scalar or multivariate).
It has up until now also been assumed that the emission probabilities are discrete:

bj(or) = P(ot|q: = s;)

. This means that there is a finite number of possible observations at each time instant
t. But this is not always the case, the rates of return in financial time series can for
example assume any value on a continuous scale. One possible solution is to use vector
quantization, creating a codebook, thus allowing the observation sequence O to assume
values from the discrete alphabet V. One could for example use different thresholds
for the returns and then sort them according to large drop, small drop, no change, etc.

The risk of loosing information using a discrete alphabet when dealing with con-
tinuous data due to poorly performed discretizing can be a problem. It is however fully
possible to use continuous emission probabilities. Each emission probability b ;(o;) is
then a D-dimensional log-concave or elliptically symmetric density. One of the more
commonly used densities is the Gaussian density, or Normal distribution, which for the
single-variate case gives

1 G

_ e 202
V2no;

bj(os) ~ N (o, 1y, 05) ’
and for the multivariate

1

e | (TR 720 R CTE TR
CrPI, 7

bj(ot) NN(Otaﬂjvzj) =

where j denominate the state. The variables p and X (similar for o) are calculated as

_ 23:1%(].)(%
Hi = T

ZtT:1 VMt (.7)

S ()0 — i) (or — py)T
ZtT:1 Vi (.7)

where v, () is the probability of being in state s; at time ¢, as stated in equation 2.10.

5 =

2.3 Gaussian Mixture Models

As just described in the last section, HMMs can take advantage of continuous emission
probabilities, e.g. Gaussian. But what if the underlying mechanism is non-normal?
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In [15], statistic tests on a EURUSD returns series shows that it is non-normal at a
99 percent confidence level, containing both skewness and kurtosis. This would be
an argument for using not one, but several, Gaussians to describe the process. And
this is where the Gaussian mixture model comes in handy. GMMs are widely used as
statistical models, being enduring and well-weathered models of applied statistics. [1]
Sample data are thought of as originating from various sources where the data from
each source is modeled as a Gaussian. The goal is to find the generating Gaussians,
that is their mean and covariances, and the ratio (the mixing weights) in which each
source is present.

Another argument for applying the GMM is that financial returns often behave
differently in normal situations and during crisis times, and in such a situation one
can assume an underlying mechanism so that each observation belongs to one of the
number of different sources or categories. In this form of mixture, each of the sources
is described by a component probability density function, and its mixture weight is the
probability that an observation comes from this component. [15]

For a more mathematical definition: suppose that the discrete random variable X
is a mixture of M discrete random variables Y;. Then the probability mass function of
X, fx(z), is aweighted sum of its component distributions:

fx(x) = Ym_) W fy,, (z)

(2.22)
Z%:lwm = 17 Wm 2 Om = 1,,]\/_{

In figure 2.6 three Gaussians probability density functions are plotted together with
the resulting mixture density function. The Gaussians constituting the mixture are
referred to as the mixture components.

0.2 q

0.15 7

0.1 q

Figure 2.6: A mixture of three Gaussians equally weighted (w; = 1/3,i = 1,2, 3).
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2.3.1 Possibilities to More Advanced Trading Strategies

Using GMM will supply additional information about the returns to be forecasted. In
the following two subsections some opportunities that emerge and from which one can
draw advantages will be gone trough.

Filtering Trades

When trading with foreign exchange one have to take the spread between the bid and
ask rate in consideration. On the EURUSD rate, the spread is about 3 pips? and with
an average exchange rate of 0.8971 this gives an average cost of 0.033 percent per
position. [15] It could therefore be interesting sorting out those trading decisions that
returns below 0.033 percent. Since the GMM returns a probability density function, it
is possible to derive more information than if the exchange rate is to go up or down.
It is for example possible to say: “a trade will only be executed if the expected return
exceeds a threshold d and the probability of this is greater than = percent”.

[15] finds in their report that applying this filter results in a lower number of trades,
which might not be surprising. The accumulated return over the test period is however
below that of the non-filter trading strategy.

Using Leverage

One way of gaining a higher profit despite fewer trades, following the filtering strategy
described above, would be to use leverage. By testing with different thresholds d, while
applying a leverage factor that ensures a volatility equal to that of the non-leverage
strategy, it is possible to find a combination that yields higher returns than in the case
without leverage. In [15] the use of leverage shows an increasing profit, with a leverage
factor around 45%. But the risk of large losses has also increased — with to few trades,
the losses far exceeds those of the other models in the peer group. It is evidently very
important to use leverage with care.

2.3.2 The Expectation Maximization Algorithm on Gaussian Mix-
tures

When applying the Gaussian mixtures to HMM every state is associated with one mix-
ture, see figure 2.7. Note that the number of components in a mixture is allowed to
vary between different states. Applying equation 2.22 to the case with HMM, where
m =1,..., M is the mixture component of state s;, j = 1, ..., N, one get:

M
bj(01) = 2=y Wimbjm(0r)
Z%:l Wim = 1y, Wim > 0Vj,m

The task now lies in finding the set of mixture parameters that optimizes the log-
likelihood of the model. This is done by using the EM algorithm described in previous
sections, and for this it should be recalled that for a state s ; atatime ¢ one have b;(o;) ~
N (o4, pj, o) for the single observation sequence and b (o) ~ N (o, uj, X;) for the
multivariate observation sequence. This gives:

21 pip = 0.0001
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Figure 2.7: A state sequence with a mixture, consisting of three components, for state
s1 attime ¢.

2
1 _ (ot —mjm)
252

bjm(ot) ~ N(Ot;ﬂjmao—jm) = Wa jm R
jm

where o is a scalar and 1, and o ;,,, are the mean and standard deviation for state s ;
and mixture component m. For a multivariate observation sequence one get:
1

— = 5¢
(2m)P/2 5 |12
where o is a vector and ,, and X;,,, are the mean and covariance matrix for state s ;
and mixture component m.

The learning of the model parameters thus becomes an estimation of means and
covariances for the different Gaussians. The variable ~y,(j, m) denotes the probabil-

ity of being in state s; at time ¢ with the mth mixture component accounting for the
observation o;. It is defined according [17]:

()3 () H WimN (01, fgm, Sim)
Sl a(BG) ] | Sl wikN (08 ks Sin)
and this in its turn give [17]:

-1
— L (0e=pym) T T} (01— im)
)

bjm(ot) ~ N(Ota Hjm z)]m) =

’yt(jv m) = [

T .
Zt:l Vt (]a m)ot

Hjm = T ;
Zt:l ’yt(jv m)
> > i1 ey m) (00 = ptjm) (00 = pjm)”
Jm .
S w(Gm)
T .
i Yoo e(g,m)

Y imt Yo %G k)
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whereas a;; and m; is calculated as before.

2.4 The Exponentially Weighted Expectation Maximiza-
tion Algorithm

Many studies on the EM algorithm have been carried out, but few have treated the
matter of non-stationarity in time series. For most data this is not a major concern and
the traditional EM based HMM have had great success in fields like language and video
processing. But when it comes to financial time series, it is not farfetched to assume
this could cause problems. [18] proposes in his work an EM algorithm that makes
use of a Exponentially Weighted Moving Average (EWMA) for time attenuation. This
allows for focus on more recent data, but while keeping information about trends and
patterns contained in older data in mind. New emerging trends would otherwise be
diluted.

For a more thorough explanation on the exponentially weighted expectation maxi-
mization (EWEM) algorithm, see [18].

2.4.1 The Expectation Maximization Algorithm Revisited

P(OJ\) is the probability of observing the sequence O = {o1,...,0r} given the
parameter set A = {A, B, II}. Assuming that the data is independent and identically
distributed (i.i.d.) with distribution P, the probability can be written as:

P(O|N) = [ P(o:|)) = L(NO)

t=1

The function L is called the likelihood function of the parameters given the data. The
task for the EM algorithm is to find a A* that maximizes the value of L:

A* = argmax, L(A|O)

Since the log function is monotonous, it is often easier maximize over the logarithm of
of the likelihood function since it reduces multiplications to additions. It should also
be noted that the EM algorithm only leads to a local maximum.

The target data for the EM algorithm can be viewed as composed of two parts, an
observed part, O = {o1,...,or}, and an underlying part, @ = {q1,...,qr}, i.e. the
hidden Markov chain. O is referred to as the incomplete data and Z = (O, Q) as the
complete data. By the Bayes rule, the joint probability density function for one of the
data in the complete data is:

P(Zf|)\) = P(ot,qt|)\) = P(qt|0t,/\)P(ot|/\)

This leads us to the complete data likelihood function for the overall data set based on
the joint density function:

L(AZ) = L(XO,Q) = P(O,Q|))

When estimating the hidden data @, O and A can be seen as constants and the likelihood
for the complete data can be seen as a function only dependent of Q:

L(AO,Q) = hox(Q)
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The EM algorithm now tries to find the expected value, the E-step, of the complete
data log-likelihood log P(O, Q|X), with respect to the unknown data @, given the ob-
served part O and the parameters from the last estimation A\. A Q function is defined to
denote this expectation:

QA X) = P(Q|O,\)log P(O,Q[N)
Q

where X is model parameters from previous estimations and X\ is the re-estimated
model. In the M-step we maximize the Q function with respect to A, and it has been
proven by Baum and his colleagues that this leads to an increased likelihood:

maxQ(\. X)) = P(O]%) > P(OI)

The two steps are repeated until the probability of the overall observation does not
improve significantly. This is what is performed in section 2.2.5.
Rewriting the Q function

An assumption when calculating the Q function, is that all data is of equal importance
in the parameter estimation. As stated above this is not true for all data, e.g. financial
time series. One therefore have to rewrite the Q function if the EWEM is to be used,
and this is done by including a time-dependent variable n which gives:

Q()\,X) =F [10g’l7P(O,Q|/\)|O, /\] =
=20 P(QIO,\)log nP(0, QIN)

Since the logarithmic function is monotonous and 0 < n < 1, 5 can be taken out
of the log function. The Q function then becomes:

Q(/\,X) = E[nIOgP(OaQP‘)'O?)‘] =
= > nP(QlO, N)log P(O, Q|X)

The weight 7 is a vector of real values between 0 and 1: n = {n1,...,nr}, where
T is the number of data in the observation sequence. The whole point of this is that the
likelihood for different data in the sequence is discounted by a confidence density.

2.4.2 Updating the Algorithm

With the Q function rewritten one can derive new expressions for the EM algorithm. A
full derivation will not be shown here, and the interested reader is referred to [18]. So
for the case of a HMM using GMM, where j stands for the state and m for the mixture
component, one get:

Zthl nev: (J, m)oy
ZtT:1 0ty (J, m)

Hjm =

Zthl neve (G, m) (08 = pjm) (01 — pijm)”

T .
> i1 Mg, m)
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ZtT:1 0ty (5, m)
T M ;
Zt=1 Zk=1 neve (g, k)

ZtT;f R (iv j)
S e (d)

where &(i, j) = P(g: = Si, qe+1 = 55|0, X) and ~,(¢) the probability of being in state
s; attime ¢. m; is calculated as before.

Wim =

ai; =

2.4.3 Choosing n

As mentioned above, the algorithm uses a EWMA for weighting the different observa-
tions. EWMAs are frequently used in technical analysis in finance, originally invented
to keep track of time changes in different time series. A short-term EWMA responds
faster to changes in the market, while a long-term EWMA takes more consideration
to long-term trends. When curves with different lengths cross each other, this usually
means a trend change.

The formula for calculating EWMASs for ¢t > 2 is:

Y =pXie + (1 - p)Yia (2.23)

where Y; and X, is the EWMA respectively the data at time ¢, and p the smoothing
factor. Replacing older Y's according to equation 2.23, one get:

Y =pXe1+p(1 = p)Xe—a + p(1 = p)? X3+ p(1 — p)* Xeu+ ... (2.24)

If the last time instant for which data is available is denoted with T, one can in equation
2.24 easily see that n = p for T and for older data at times ¢, n = p(1 — p)T~t. nis
obviously a function of the time and summarizing these observations, it can be set
accordingly:®
ne=p1—-p)"" t=1,....T,
0<p<l1

The smoothing factor can be seen as factor deciding how big the weights to old

data should be. p can be expressed in percentage, e.g. p = 0.1 equals 10 percents.
But it can also be expressed in terms of & time periods, where p = k—il For example,

k = 19 equals as well p = 0.1. In this master’s thesis, the number of time periods will
usually be stated since this might be more intuitive when looking at an EWMA. Figure
2.8 shows an example of how the choice of different smoothing factors will affect data.

3The setting of 7 here differs from what is presented in [18].
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Figure 2.8: The proportion of each of the 100 days used in the estimation procedure.
For p = 0.1 (k = 19), the last couple of days is given a lot of attention while older
data points hardly have any impact at all in the calculations. Descending to p = 0.022
(k = 89) older data gets less attenuated while days closer in time is given less attention.
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2.5 Monte Carlo Simulation

A MC simulation is a procedure for sampling random outcomes of a given stochastic
process. It can for example be used when one wants to get hold of the density function
for a certain process, as it supplies one with both the mean, as the expected value of
the outcomes, and the standard deviation of the underlying distribution. [12] It can
also be used if one wants to simulate for example the development for a financial asset
under a longer time period. MC simulations tends to be numerically more efficient than
other procedures when there are more than three stochastic variables. This is because
the time taken to carry out the MC simulation increase approximately linearly with the
number of underlying assets.

(@) (b)

Figure 2.9: (a) Monte Carlo simulation using 1000 simulations over 100 time periods.
(b) Histogram over the final value for the 1000 simulations.

When simulating the distribution for the currency cross returns, see figure 2.6, a
Brownian motion is used for each one of the Gaussians. The price change for a currency
cross is thereby given by:

dS = p;Sdt + 0;5dz

where dz is a Wiener process so that dz = ev/dt, e ~ N(0,1), and ; and o; are the
mean and standard deviation for each Gaussian mixture, : = 1, ..., M. Discretizing
the expression and dividing both sides with S, the process for the return is given by:

AS
- = u; At 4+ ;e V At,

which can be used to simulate the uncertainty in E[S;1]/S: — 1.
The accuracy of the result given by the MC simulation depends on the number of
trials. The standard error of the estimate is
g;

VN

where N is the number of simulations. A 95 percent confidence interval for the rate of
return v is therefor given as

1.960; << + 1.960;
i S U S Uy .
=N TN
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This shows that the uncertainty about the value of the rate of return is inversely propor-
tional to the square root of the number of trials. To double the accuracy of a simulation,
one must quadruple the number of trials; to increase the accuracy by a factor 10 one
have to increase the number of trials by a factor 100 and so on. [12]

The number 1.96 is given by the the normal distribution, where one for a double
sided 95 percent confidence interval have:

P(—s<S<s)=1—-a=095
o
B(s) = P(S <) =1 - 5 =075

d1(®(s)) = ®1(0.975) = 1.96

The 95 percent is a commonly used confidence level and will be used through out
this master’s thesis.

When MC simulation is used, a large number of simulations is needed to obtain
good results, i.e. a small o which gives a narrow confidence interval. To speed up this
process and to get even better random generation, different variance reduction tech-
niques are available, and one utilized here is latin hypercube sampling. This method
divides the interval [0, 1] into n segments, and in each of these segments one random
number is generated from an uniform process. The interval is then inverse transformed
to obtain a Gaussian distribution.

2.6 Summary

In this chapter the theoretical foundation of hidden Markov models have been presented
together with three fundamental problems, namely computing likelihood, decoding,
and learning. They all serve different purposes, depending on what one wants to do,
and are often considered the basis of HMM. In the next chapter one will see how
they can be utilized for forecasting cross movements on the currency market. It was
also shown that the HMM can be applied in different versions, for example taking in
multivariate data with continuous emission probabilities.

Extensions to the HMM framework, like Gaussian mixture models, opening up for
non-normal distributions which is often assumed for FX data, and an exponentially
weighted expectation maximization algorithm, taking time attenuation in considera-
tion, have also been reviewed. This in the hope that they will serve as good comple-
ments to the basic framework.

A short introduction to different and commonly used trading strategies, such as
carry and momentum, was also made and will be the starting point for the compara-
tive index to be created. Alphas, implying excess return, and betas, indicating market
return, was also introduced in this section.

The contents of this chapter should now be fully obtained, as the next chapter,
Applying Hidden Markov Models on Foreign Exchange Data, will try to give the reader
a clearer picture of how HMM can be used more specific on FX data as well as how
the implementation is to be carried out.
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Chapter 3

Applying Hidden Markov
Models on Foreign Exchange
Data

This chapter will explain how HMMs can be used on FX data for one-day predictions,
as well as how the implementation is to be carried out. The chapter constitute the core
of how one can turn the theory into a functional prediction framework. Data sources,
the choices regarding number of states and mixtures as well as window lengths, will be
gone through, together with various additions to the model. Different trading signals
will also be presented, and how this can affect the results.

3.1 Used Input Data

When applying the HMM framework on financial time series, focus will be on the
EURUSD. This is the major currency cross on the global FX market, which guaran-
tees a high liquidity. Two different combinations of input data will be tested; only
the EURUSD return and EURUSD returns together with six features, given by Nordea
Quantitative Research. Multiple inputs is possible since the HMM framework can han-
dle multivariate data, as seen in section 2.2.6, and it can be interesting to see whether
or not they might be of any aid.

These features will not, according to secrecy reasons, be listed explicitly. They will
from now on be named F' = { fo, f1,.-., f6}, Where fq is the return on EURUSD. It
is important to point out that the six features is calculated from price series as well as
for the return for EURUSD and have shown high significance using other mathemat-
ical frameworks, like artificial neural networks, for prediction of EURUSD. It should
however be noted that these six features not are linearly correlated with the EURUSD
return. One reason to use other time series to facilitate the prediction, is that there
are sideway movements in the long term trends. It should be possible to smooth these
movements using time series with other composition than the one to be predicted.

The size of data set amounts to approximately 1400 daily price quotes from the
years 2003-2006, and reallocation will as well take place on a daily basis. The set
of data allows for a 1000 days long training period (30/05/2003 — 22/02/2006), a 200
days out-of-sample period (23/02/2006 — 10/09/2006) and an additional amount of data

Idvall, Jonsson, 2008. 37
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that is needed for the first day’s historical time window, thus allowing for a maximum
window length of 200 days. The distinction between training and out-of-sample might
in this case be somewhat diffuse — the model parameters are re-estimated every day,
whether one is in the training or out-of-sample period. This means that the model is
constantly adopting and no settings are fixed after the training period. But all pre-
testing of the models have been performed during the training period, meaning that
choices regarding "optimal” model settings have been on the basis of the Sharpe ratios
and P-values for this time period.

A limited amount of data can be a problem during back-testing, since one usually
wants to test a model over long time periods. But as stated in the introduction the huge
increase in the total turnover during the last years due to changes in market conditions
has most certainly changed the play rules of the FX trading. And since back-testing
should be performed on data series reflecting today’s market conditions, results based
on data from the last couple of years should constitute a valid ground for evaluation.

3.2  Number of States and Mixture Components and Time
Window Lengths

The HMM framework is consisting of many different parameters. Two important ones,
when using HMM in combination with GMM, is the number of states, IV, and the
number of Gaussian mixtures, M. As one can see in different articles about the HMM
framework there is no analytical way of finding the optimal number of hidden states
for a hidden Markov model. [9, 18] One therefore have to find the optimal, in some
sense, combination through empirical experiments on historical data. Following this
idea, different combinations of hidden states and Gaussian mixtures will be tested to
see which one that generates the best forecast of EURUSD. Intuitively, the number of
states can be seen as the number of strategies that one have to forecast for the next
time step. This number should not be too large, neither too small. Too many states
will make little distinction between the different strategies and will increase the need
of computer strength. A too small number can on the other hand increase the risk
of misclassification. The number of mixture components used in the GMM part of
the framework follows the same discussion. The important point is to replicate the
skewness and kurtosis of the returns underlying distribution.

Because financial time series differs from other signals, an EWEM will be imple-
mented, described in section 2.4. Different lengths of the data sequence will also be
considered, trying to find an optimal length for EURUSD. The length of the window is
important according to the discussion in section 2.4.

3.3 Discretizing Continuous Data

As seen in section 2.2.6, one can use the HMM with both discrete and continuous
emission probabilities. Both cases will be investigated in this master’s thesis, giving an
interesting comparison between the two models and their performances.

The major difference is that the data in the first case have to be discretized, which
intuitively would mean a loss of information, possibly a lot if the discretizing is per-
formed poorly. Discretizing of the features will always be according:

1= sign(f7)
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where f is the discrete value of the continuous variable f¢. For the cross feature, fo,
for example, a rise, no matter how big or small, is represented by a 1 and so on.

But using seven data series, where f; = {—1,0, 1}, equals a total number of 2187
possible observations at each point in time.* This might be a problem, and therefore
a further discretizing will also be tested, reducing the number of possible observa-
tions. Looking at the six feature data series, one see that one can sort them into to
three groups, or pairs if one so wish. Within each pair, discretizing will be performed
accordingly:

e lffi=1and f{ =1= flmew
° Iffzd = —]_andf]d — _1:>fid,new -]

e Otherwise set £ = 0

K

This means that the number of additional features will go from six to three, and
using the four features £, f™, e and f5", reduces the number of possible
observations to 81. But this further discretizing might lead to even larger information

losses.

3.4 Initial Parameter Estimation

The first thing one must do when initializing the model is to supply the algorithm with
a parameter set, \. An easy and straightforward way of doing this is simply to let a ran-
dom generator choose the probabilities for A, B, and II, under certain constraints, e.g.
>, m = 1. Since the EM algorithm guarantees parameters that correspond to a local
maximum of the likelihood function, this does not appear to be a huge problem. One
want however to find the global optimum if possible, to ensure the best functionality
of the model. Experience has also shown that good initial estimates, especially for B,
are helpful in the discrete case and essential in the continuous case?. [17] A number of
different solutions have been proposed to the problem, unfortunately none of them is a
guarantee for finding the global optimum.

A simple K-means segmentation with clustering, presented in [17], will therefore
be implemented and tested for the continuous version, while all initializing for the
discrete case will be on the base of random numbers. The segmentation works accord-

ingly:

1. A large amount of data is read into the program. The parameters II, A, X, y,
and W are generated using random numbers. The log-likelihood, L », for the
parameter set X is calculated.

2. Based on the data, i.e. the observation sequence, O, and the parameters a Viterbi
path is generated, giving a state sequence (). With the Viterbi path given, one
can assign each observation, o, with a state, ¢: = s;, thus enabling for grouping
all observations o1, 02, . .., or into N groups, where N is the number of states.

3. Each of the NV groups from the previous step is partitioned into M segments,
where M is the number of mixture components in each Gaussian mixture. The

17
37 = 2187
2The equivalent to B in the continuous case are the set of mixture weights, W, and . and X.
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K-means clustering, that is used in this step, segments D data points into K
disjoint subsets, .S;, each containing D; data points so as to minimize the sum-
of-square criterion:

K
7= el
j=1des;

where x4 is a vector or scalar representing the dth data point and 1 ; is the geo-
metric centroid or mean of the data points in S ;.

4. One now have a total of N M groups. For each group, reflecting one particular
mixture component and state, 3 and p are calculated in standard manners. The
elements in W are estimated accordingly: w;; =(number of data points in group
1, j)/(total number of data points).

5. With the re-estimated parameter set ), the log-likelihood L is calculated. If
L~ — Ly is less than a threshold d, the process is stopped; otherwise one go to 2
and restart the iteration procedure.

It should be noted here that the parameters IT and A do not change during the
above described procedure — initiating these with random numbers is believed to be
satisfactory. And with the random initiations before the K-means clustering of W,
1 and X, one is still, to some extent, dependent of random numbers initializing the
process. Finally, the amount of data that will be used when clustering have to be
quite extensive, to get enough data points for each of the N M groups, increasing the
possibility to good estimates. But with larger amounts of data, one also get more
redundancy due to trends that might have perished long time ago. 3

3.5 Generating Different Trading Signals

One of the most important steps in a trading strategy is to create a correct trading
signal. Without a sophisticated signal, even a good parameter estimation can result
in poor performance. For the discrete case, only one signal will be tested. For the
continuous case one have two different choices — one ”standard” and one using MC
simulations.

3.5.1 Trading Signal in the Discrete Case

Here, one simply determine the most probable state for tomorrow, ¢;,, = s,., accord-
ing:
r = argmax;{ai; }

where i indicates the most probable state today according to the Viterbi path, i.e. ¢; =
sip,andr =1,..., N where N is the number of states in the model. Having done this,
one wants to know the most probable observation, o}, = o;,,. But since B is not
available for the time ¢ + 1, one have to use the last known B, which is available for
the time ¢, relaying on that this will give good enough estimates. This gives:

s = argmax, {b, (o)}

3No exponential weighting of observations was conducted during the initializing.
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with k = 1,..., D, where D is the number of possible observations. On the basis of
o}, the trading signal is determined. The simplest way is just by looking at & if
f¢ =1,golong, and if f§ = —1, go short.

A last option one have, which could be used to increase the probability of correct
decisions, is to look at the probabilities a;, and b,.(0f ). One could argue, that the higher
they are, the more certain the model is of the next state and the observation. Using a
threshold, more unlikely observations can be sorted out.

3.5.2 Standard Signal in the Continuous Case

When deciding if to go long or short when dealing with continuous input data, the
probability density function is used, given by the Gaussian mixture at the most probable
state in the next time step, ¢;, ;, which is determined as above. Having obtained / j.,,,
where m denotes the mixture component, m = 1,..., M, and j the most probable
state (i.e. ¢/, ; = s;), a value for the return is given by:

M
g = § Wim Hjm
m=1

where w;,, is the weight for a certain mixture component and state. If one instead
of mixture only have a single Gaussian, g is simply the value given in the estimation
procedure. g > 0 indicates that one should go long, g < 0 short, and g = 0 neutral.

Figure 3.1: A Gaussian mixture with a threshold d that the predicted return (in this case
positive returns) has to exceed in order to execute a trade. The Gaussians in the picture
are not extracted from one the HMMs, and the x-scale is therefore not proportional to
the usual values of the EURUSD returns.

As described in section 2.3.1, one have the possibility to filter trades that returns
less than the spread. In this case, a threshold d is set, see figure 3.1, and if the absolute
value of the returns does not exceed this, then the trade will not be executed. With the
notation used above, this means that g > d indicates that one should go long, g < —d
short, and —d < ¢ < d neutral. d will during testing be set to the mean of previous
day.
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3.5.3 Monte Carlo Simulation Signal in the Continuous Case

As mentioned in section 2.5, one can easily through MC simulation get the complete
probability distribution for the underlying asset. One can then study the probability
mass and how it is distributed, instead of just looking at the weighted means as in the
the last section. The procedure is simple; through MC simulation each one of the A
Gaussians is generated on the basis of j.;,, and X;,,, where m denotes the mixture
component,m = 1,..., M, and j the most probable state (just as in the previous case,
the most probable state is determined as in section 3.5.1). The Gaussians are then
weighted together, using w ;,,,, to one density function.

The trading decision is then taking in a similar way as above, but focus now lays
on the probability mass instead of the mean — if more than 50 percent of the mass
lies over zero, this means to go long, and if more than 50 percent lies bellow zero, one
should go short. In the event that the probability mass is equally distributed on both
sides of zero, the signal is go neutral. Having more than 50 percent of the probability
mass above zero equals having g > 0 in the standard trading signal, and these two
signals should therefore not differ from one another. The strength however with having
the probability mass, is that one now can apply a probability measure to a up or down
in an intuitive way. Instead of trying to relate the distance between . and zero and how
probable this is, it is simple to see for example if 55 percent of the probability mass lies
above, or below, zero.

And exactly as in the last section, one can filter out low-yielding trades by adding
a threshold d. Here, however, more than 50 percent, or some other probability, has to
lie above, or below, for a trade to take place.

3.6 Variable Constraints and Modifications

Some features was added to the program, to avoid common pitfalls in the estimation
process.

e Before sending multivariate data in to the EM algorithm, it should be ensured
that the data from the different sources are normalized. This is simply done
by extracting the mean from each data series and dividing it with its standard
deviation. Non-normalized data otherwise constitutes a problem when different
data series are compared.

e One problem in model building is overparametrization. This occurs when the
number of free parameters in the model is very large and the training data is
sparse. Except regulating the number of states and mixture components, some
restraints are set to A and W.* Some events might be occurring very seldom in
the training data, meaning that when re-estimating there might be probabilities
tending towards zero. To avoid this, the elements in A and W that are below
10~* are always set to this threshold.

o All covariance matrices are diagonal, since allowing for full covariance matrices
gives positive log-likelihoods. This implies that the time series are uncorrelated,
which is not entirely true since they show small linear correlations in between.

40ther suggested ways of dealing with overparametrization is for example parameter tying. This is
however only applicable when a parameter is known to be same in two or more states, e.g. the observation
density.
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But according to [17] this is preferable, rather than using full covariance matri-
ces, due to the difficulties in estimating good off-diagonal components in X.

e Furthermore, at each iteration \,,,;,, I is added to X, which is done to avoid sin-
gular covariance matrices which in its turn generates infinite likelihoods. A i,
is the smallest eigenvalue of X.

3.7 An lterative Procedure

The following steps refer to the case where the HMM have continuous emission prob-
abilities together with Gaussian mixtures. The procedure for other versions of the
HMM is however very similar, following the same steps and only differing in some of
the points.

Step O: Initialization One starts by selecting the number of historical days to use for
the re-estimation processes and if one wants to use the EWEM algorithm, and
the number of states and mixture components to be used. Furthermore, one also
have the choice between using the K-means segmentation for initializing the
parameter set X or if one simply wants to use a random generator for this.

Step 1: Updating the model The observation sequence O and parameter set A, either
given from the initializing process or from the last estimation, is taken and the
EM algorithm is run, updating all parameters, giving us A. This equals what is
done in Problem 3 in section 2.2.5.

Step 2: Generating a trading signal Given A and the observation sequence O, the
Viterbi path is determined, see Problem 2 in section 2.2.5, which in its turn gives
the trading signal, according to the description above. If ¢ = T one stop; other-
wise O is updated with today’s observation and one return to step 1.

Throughout the entire work, MATLAB will be used as testing environment. A
HMM Toolbox, containing some of the basic functions, will also be utilized.

3.8 Evaluating the Model

The performance of the HMM is to be evaluated in three ways. First, the capability of
correct predictions is statistically tested under a null hypothesis. Second, the risk taking
is evaluated with measurements as Sharpe ratio, maximum drawdown and value-at-
risk. And third, a beta index, reflecting market return, has been created for comparison.

3.8.1 Statistical Testing

In statistics, a null hypothesis is a hypothesis that is set up to be refuted to support an
alternative hypothesis. When used, it is assumed to be true until statistical evidence
indicates otherwise. In this case the null hypothesis is set up according:

Hy : the model is a random generator

5The toolbox is written by Kevin Murphy, assistant professor at University of British Columbia, and has
been approved by The MathWorks.
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or stated mathematically:
Hy: HR > 50%

where H R is the hit ratio of the model. The reason for choosing 50% is that only the
long/short positions are taken in consideration, and not the neutral. This leads to that
the probability of a correct guess is 50%.

A P-value, which is the probability of obtaining a result at least as extreme as
a given data point under the null hypothesis, must be calculated. Taking only the
long/short positions into account, makes it possible to use the binomial distribution.
The binomial distribution gives the discrete probability distribution P, (n|N) of obtain-
ing exactly n successes out of N Bernoulli trials, where the result of each Bernoulli
trial is true with probability p and false with probability 1—p. The binomial distribution
is given by:

Py(n|N) = (JD prL=p)N "

The probability of obtaining more successes than the n observed in a binomial

distribution is:
_ N k N—k
r= ¥ (})ra-n
k=n+1

If P, i.e. the P-value, is less or equal than a chosen significance level, «, the null
hypothesis, Hy, is rejected. If for example « is set to 0.05 and a P-value of 0.025 is
obtained for the model, using p = 0.5, the null hypothesis — that the outcome can be
ascribed to chance alone — is rejected.

It should be noted that the P-value is not to be seen as a probability of the model
being merely a random generator, it should only be used for testing the null hypothe-
sis. And obtaining a P-value greater than « does not say that the model is a random
generator, only that we can not reject it as not true.

3.8.2 Sharpe Ratio

When evaluating the payoff from an investment, it can be interesting putting the rate of
return against the amount of risk. A measure that does this is the Sharpe ratio, which
has a strong connection to theory of CAPM. The Sharpe ratio for a financial portfolio
in general is calculated according:

Hp — Ty

Op

where p,, and o, are the return and standard deviation for a portfolio p, and r ; the risk-
free rate, e.g. the rate for a specific government bond. A high Sharpe ratio indicates a
high return in relation to the risk, which is desirable.

But as discussed in section 2.1.1, the risk-free rate is usually left out when dealing
with FX investments. The Sharpe ratios in this master’s thesis is calculated as:

*
Hp
Op

where 1 is the mean return for the FX portfolio with respect to the spread.
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3.8.3 Value at Risk

When investing in a certain asset or portfolio of assets it is important to know the
risk of the investment. One frequently used risk measure is value-at-risk (VaR). When
using VaR, one is interested in finding the value, V'aR,, which holds for the following
statement: it is (1-«) percent certain that one will not loose more than VaR, units
in the following N days. Here, VaR,, is a function of two variables, namely the time
horizon (V') and the confidence level «.. The confidence level is represented by A , that
satisfies P(X > \,) = a where X ~ N(0,1). Now one can define VaR for a given
portfolio of assets, p, as follows

VaR, = A\ Vyo, VN

where o, and V,, are the portfolio’s volatility on a daily basis and total value respec-
tively. [12]

The volatility can be calculated using different methods, e.g. weighted scheme
(WS) or EWMA. The WS is a simple way of describing the volatility and can be for-
mulated as

m
0’12)(71) = Zwiui_i, Zwi =1lw; > 0Vi
i=1 i

where w; is the weight for the specific return u,,_; at day n. The length of the window
is m, which consider the last m returns. If all weights are set equal, one get a standard
moving average with length m.

If using an EWMA there is a small modification made to the WS. The weights are
exponential which makes the volatility a function of not only the return. It is now also
a function of the calculated volatility for the last time period. It can be expressed as

Ji(n) = aaﬁ(n ~ D+ (1—a)u?_,

where a € [0, 1] is the decay factor, which determine the weight put on the most recent
volatility estimate. [12]

When calculating VaR the important thing when choosing the way for estimating
the volatility is that the loss exceeds VaR as close to « percent as possible. By testing
different lengths of moving averages and decay factors one should chose model for
estimation after the above stated criteria.

3.8.4 Maximum Drawdown

The maximum loss from a market peak to the following valley, often called the max-
imum drawdown (MDD), is a measure of how large one’s losses can be. Large draw-
downs usually leads to fund redemption, and so the MDD is the risk measure of choice
for many money management professionals. A reasonable low MDD is therefore crit-
ical for the success of any investment strategy, certainly if its investors has a short
investment horizon. [23] In figure 3.2 one can see the maximum drawdown for EU-
RUSD for the period which has been used during testing. The cumulative loss is almost
20 percent, which implicates a loss of almost 16 percent of the portfolio value.
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Figure 3.2: The maximum drawdown for the EURUSD during the fixed back testing
period.

3.8.5 A Comparative Beta Index

To have something to compare the payoffs from the HMM trading strategies, a com-
parative index has been created. This should be seen as a market return on FX and thus
reflecting a beta strategy, see section 2.1.1. This index will also form the basis when
calculating the excess return, «, comparing the realized portfolio return with the one
given by CAPM.

Three trading strategies were discussed in the last chapter — carry, momentum and
valuation. Valuation was however omitted due to lack of satisfactory background PPP
data. According to the carry strategy, one should go short in low-yielding currencies
and long in high-yielding, whereas using momentum, one calculates and compares
two moving averages to see if there has been a change in trend. For a more detailed
explanation of the strategies see section 2.1. For the carry, reallocation was made
every three months, using 3m interbank offered rates (e.g. LIBOR, STIBOR, NIBOR)
for determining which currencies to long and short in. For the momentum strategy,
reallocation was performed more frequently, on a monthly basis, since trend changes
might occur more often than every third month.

The currencies selected to be available for investment, are those belonging to G10.
This group of currencies are highly liquid, thus making them a good selection for a mar-
ket index since they are “easy” to trade with. The ten currencies are: Euro (EUR), US
Dollars (USD), Japanese Yen (JPY), British Pound (GBP), Swiss Franc (CHF), Cana-
dian Dollars (CAD), Swedish Kronor (SEK), Norwegian Kronor (NOK), Australian
Dollars (AUD), and New Zealand Dollars (NZD). For both strategies we chose the two
currency crosses that, according historical data, would yield the most. All crosses was
stated versus the Euro, all other crosses have been created from this.

When calculating the yield, the effect of interest payments was also taken into
account, except from the profit or loss due to changes in the exchanges rates. This
effect was however almost negligible for the momentum strategy. Furthermore, an
approximative transaction cost of 0.1 percent per trade was also added. The interest
rates used were the 1m and 3m interbank offered rates, as mentioned above. ® All data

8For the AUD and NZD, deposit rates had to be used for the 1m rates, since there were no LIBOR rates
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used was provided by Nordea.

The index had a total return of 15.9 percent, corresponding to an average annual
return of 4.8 percent. The annualized volatility amounted to 5.8 percent, thus yielding
a Sharpe ratio of 0.83. These results are coherent with other market indices, e.g. the
DBCR Index. In figure 3.3 the return of the index is plotted, and it starts in June 2003
and ends in September 2006, which is the same time period that will be used when the
HMM is to be tested.

The without question best strategy for this particular time period was the carry,
yielding the highest return as well as the highest Sharpe ratio. One could alter the
results by removing one of the strategies, making the index perform better or worse.
This will however not be done, since a index should reflect a set, i.e. at least two,
strategies and not one specific.

Cumulative profit and loss, %
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Figure 3.3: Total return for the comparative beta index.

available until 2003.
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Chapter 4

Results

In this chapter the results from the back-testing is presented and it is divided into two
sections, one for the case with discrete emission probabilities and one for the continu-
ous case. During the sequences of test, various window lengths, number of states and
Gaussian mixtures, and trading signals will be tested, as well as special applications
like the K-means clustering. In figure 4.1 the development of the EURUSD exchange
rate during the back-testing period is plotted, the dashed line indicates where the out-
of-sample period starts.

In section 4.1 — 4.2, all testing has been performed with the spread excluded. Not
knowing exactly how much of the profits the spread would take, it was easier to see
if the model could find any patterns at all in the data, excluding the spread. The issue
regarding the spread is addressed again in section 4.3. This means that all Sharpe ratios
in the first two sections are calculated without consideration to the spread, and should
therefore only be used to compare the HMM s in between.

A problem that comes with large sets of information, is how to find the relevant
information. * In this chapter some, but far from all, tests are presented. In general the
best performing models together with small adjustments are chosen, which certainly
affects the presented material in such a way that the HMM seems to perform better
than it maybe does.

But during the rather extensive testing no extreme negative results where generated,
meaning that there where no negative payoffs that to the amount exceeded the payoffs
of the best performing models. Negative payoffs usually amounted to a maximum of
minus 10 — 15 percent.

4.1 The Discrete Model

A set of HMMs with discrete emission probabilities are reviewed, first where only the
EURUSD cross is used as input data and then where the features also have been applied
to the model.

1This problem is addressed in data mining, which is the principle of sorting through large amounts of
data and picking out relevant information.

Idvall, Jonsson, 2008. 49
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EURUSD exchange rate

200 400 600 800 1000 1200
Figure 4.1: Development of the EURUSD exchange rate during the back-testing period.

4.1.1 Using Only the Currency Cross as Input Data

Trying with different window lengths, the number of states is initially set to three,
which was shown to be the optimal number. For a window of length 30 days, the total
payoff amounts to over 40 percent, equaling an average annual return over 10 percent.
But the P-value is however not small enough to refute the null hypothesis on a 95
percent confidence level. Increasing the window length to 65 days, the model performs
extremely poor yielding -17.4 percent over the time period, but further increasing the
window up to a 100 days, gives a model that returns about the same as in the first case
during the training period, but substantially worse in the out-of-sample period. The null
hypothesis is however refutable on the 95 percent level and the Sharpe ratio amounts to
0.91. For test results, see figures 4.2 — 4.4. Further test with different window lengths
shows that there is no other model settings that gives better results.

Increasing or decreasing the number of states from three using the 100 days win-
dow, which gave the best results as just seen, the model is most of the time close to
something that looks like a random generator. The payoffs are very volatile, the total
returns often negative, and the P-values high. Trying with other time window lengths
than 100 days, for the cases with two, four, five, ... states, yields nothing.

Turning again to the case with three states and a 100 days window, the best so far,
a threshold is set to the probability P(q;4+1 = si|lqg: = s5) - P(bi(o¢)|q: = si). This
means that the model should be more certain about the outcome of tomorrow, thus
giving more accurate predictions. Using a threshold of 0.4, the average annual return
increases from 7.2 to 11.3 percent, see figure 4.5, and the Sharpe ratio from 0.91 to 1.53
while the number of trades decreases. The optimal size of the threshold considering
the payoff was found in an iterative process, trying for different values, where the hit
ratio peaked for 0.4.

4.1.2 Adding Features to the Discrete Model

Adding features to the discrete HMM does not improve results. On the contrary, they
seem to worsen things — the trajectories are even more volatile than before and the
payoffs never exceeds what could be considered as acceptable. In figure 4.6, one can
see the results when using a 100 days window, three states and six features. The further
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discretizing, proposed in section 3.3, does not help either; the model still performs very
poorly, see figure 4.7.
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Figure 4.2: Using only the cross as input data with a 30 days window and 3 states.
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Figure 4.3: Using only the cross as input data with a 65 days window and 3 states.
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Figure 4.4: Using only the cross as input data with a 100 days window and 3 states.
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Figure 4.5: Using only the cross as input data with a 100 days window and 3 states, as
in figure 4.4, but where a trade only is executed if P(g¢11 = s;|q: = s;)-P(bi(ot)|qs =
57,) > 0.4.
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Figure 4.6: Using the cross and the 6 features as input data with a 100 days window
and 3 states.
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Figure 4.7: Using the cross and the 3 features as input data with a 100 days window
and 3 states.
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4.2 The Continuous Model

The second model is a continuous version of the discrete HMM, which was considered
in the previous section. It is more complex because of its use of GMMs as continuous
emission probabilities, which makes it possible to use continuous scaled input data. All
tests were carried out using four hidden states together with two mixture components,
which through empirical studies was found to be the most profitable set up.

4.2.1 Prediction Using a Weighted Mean of Gaussian Mixtures

First of all the continuous model was tested on the simplest input data possible, namely
the cross with features excluded. The best test results were found when using 20 days of
input data where a total return of 22.7 percent was obtained during the training period.
As seen in figure 4.8, the model generates almost as much as 30 percent during the first
two years but is less accurate to find return during the last period. After a drawdown
during the out of sample period the total rate of return ends at a level of 17.5 percent.
If the window size instead is set to 30 days together with four states and two Gaussian
mixtures, a total return of 20.6 percent is obtained during the in sample period, seen
in 4.9. For both these tests one can see that the trajectories are very volatile, which
implicates low Sharpe ratios.

To add stability to the trading strategies, in some sense, the six features where
added. By testing 20 and 30 days of input as for figures 4.8 - 4.9 the result was found
to be worse than using only the cross as input. Therefore the tests presented in this
section will be using a historical window size larger than 50 days, which has been
shown more accurate when using multivariate data.

Using 50 days of input the model generates a return of 22.4 percent together with a
Sharpe ratio of 0.58. The trajectory, plotted in figure 4.10, is highly volatile and faces
a large drawdown at 480 days, which leads to an decrease in the overall payoff with
more than 20 percent. There is also a large decrease between day 700 and 1000.

When 75 days are used instead of 50 one can see a more stabile trajectory, shown
in figure 4.11. The obtained Sharpe ratio is now 1.29 together with a total return of
43.4 percent.

For 100 days of input the model performs very well during most of the whole
period, except between 750 and 950 days, and generates an annual rate of return of
18.1 percent. A total rate of return of 72.8 percent is generated, which together with
an annual volatility of 9.8 percent gives a Sharpe ratio of 1.91. One can see in figure
4.12 that the model performs as well out of sample as during the training period. The
P-value is 0.017, which indicates that the null hypothesis stated in section 3.8.1 can be
discarded.

Using even more data as input, as much as 125 days, does not improve the result
further. As shown in figure 4.13 one can see that the model is generating a stabile
trajectory for the first 700 days with no larger drawdown. During the last part of the
test period the rate of return is constant until reaching the out of sample period where
the cumulative profit decreases with 10 percent during the last 200 days ending up at
a level of 42.1 percent. Together with a annual volatility of 8.4 percent the obtained
Sharpe ratio is 1.39.

When adding the EWEM on the standard HMM the performance shown in figure
4.14 is obtained. For a moving average over 75 days and a period of historical data
of 100 days the total rate of return is less than for the model generating the trajectory
shown in figure 4.12. The total rate of return obtained after the whole period is 47.4
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percent. Looking at the volatility one finds that it is lower than when not using EWEM,
8.8 percent annually instead of 9.8.

It has earlier been discussed how important the initial parameters are for the stabil-
ity of a continuous HMM. When using K-means clustering with 100 days of input data
the return develops as shown in figure 4.15. One can see that the trajectory has two
large drawdowns, one at 200 days and one at 800 days. The total return for the whole
period is 46.2 percent, which together with a volatility of 9.9 percent gives a Sharpe
ratio of 1.30.

4.2.2 Using Monte Carlo Simulation to Project the Distribution

As presented in section 3.5 one can use MC simulation to project the underlying distri-
bution of the estimated return, taking advantage of the information such as mean and
standard deviation given from the parameter estimation. When using the set up that
generated the highest overall return and Sharpe ratio using the standard signal one can
in figure 4.16 see that the return is lower using MC simulation. The total return is
63.2 percent comparing with 72.8 percent. The volatility for the two tests are compa-
rable why the Sharpe ratio is lower for the model using MC simulation, 1.69 compared
to 1.91. The model using MC simulation has a low P-value, 0.022, which makes it
possible to reject the null hypothesis.

It is easy to set a level of the required certainty using MC simulation. When using
a minimum level of probability set to 55 percent, the cumulative profit develops as
shown in figure 4.17. Comparing this result to the one given in figure 4.16 one can
find many interesting results. The total rate of return is lower when using a minimum
probability, 52.2 versus 63.2 percent. On the other hand the hit ratio is higher and the
P-value together with the number of trades lower when a minimum probability is used.
The hit ratio is now as high as 54.1 percent which gives the model a P-value of 0.014.

Cumulative profit and loss, %
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Figure 4.8: Using only the cross as input data with a 20 days window, 4 states and 2
mixture components.
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Figure 4.9: Using only the cross as input data with a 30 days window, 4 states and 2
mixture components.
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Figure 4.10: Using features as well as the cross as input data with a 50 days window, 4
states and 2 mixture components.
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Figure 4.11: Using features as well as the cross as input data with a 75 days window, 4
states and 2 mixture components.
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Figure 4.12: Using features as well as the cross as input data with a 100 days window,
4 states and 2 mixture components.
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Figure 4.13: Using features as well as the cross as input data with a 125 days window,
4 states and 2 mixture components.
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Figure 4.14: Using features as well as the cross as input data with a 100 days window,
4 states and 2 mixture components. To weight the input we use EWEM with a 75 days
moving average.
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Figure 4.15: Using features as well as the cross as input data with a 100 days window,
4 states and 2 mixture components. To initiate the parameters K-means clustering is
used.
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Figure 4.16: Using features as well as the cross as input data with a 100 days window,
4 states and 2 mixture components. As trading signal we use the probability mass
simulated through Monte Carlo simulation.
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Figure 4.17: Using features as well as the cross as input data with a 100 days window,
4 states and 2 mixture components. As trading signal we use the probability mass
simulated through Monte Carlo simulation. A minimum level of 55 percent is set on
the probability mass.

4.3 Including the Spread

Up until now all testing have been performed with the spread excluded, since it could
be easier to see if the model was capable of finding any patterns at all in the analyzed
data. But in figure 4.18 and 4.19, the payoff curves are plotted for the best performing
discrete and continuous models, and where the spread has been considered. The best
performing models has been chosen considering the Sharpe ratios, since it also takes
the accumulated payoff in consideration, compared with risk measures.

As one can see, they still perform well but with lower rates of return, as expected.
In the discrete case, the total payoff amounts to 33.3 percent for the whole time period,
which equals a Sharpe ratio of 1.25. For the continuous model the Sharpe ratio de-
creases from 1.91 to 1.81. At an annual basis the model generates 17.0 percent, which
gives a total return of 67.7 percent.

The calculated s for the discrete as well as the continuous model were close to
zero, giving as close to the average annual return. This also means that the correlation
between these two strategies and the market index are close to non-existing and this is
probably due to that the EURUSD only constitutes a relatively small part of the market
index. The high level of the excess returns is also dependent on the fact that no risk
free rate is taken into consideration.
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Figure 4.18: Payoff for the best performing discrete model (only using the currency
cross, a 100 days time window, 3 states, and a 0.4 threshold) with the spread included.
As a comparison, the original trajectory is plotted as the dotted line.
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Figure 4.19: Payoff for the best performing continuous model (using the currency cross
together with features, a 100 days time window, 4 states and 2 Gaussian mixtures) with
the spread included. As a comparison, the original trajectory is plotted as the dotted
line.
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In section 3.8 one can together with the statistical test and Sharpe ratio also find VaR
and MDD. To evaluate a strategy it is important to consider the risk involved, why these
measures will be calculated for the best discrete and continuous model respectively.
For the discrete model the VaR is on average 0.65 percent of the portfolio value on
a daily basis, which gives 1.7 percent a week during the test period. The maximum
drawdown is 5.5 percent cumulative, which implicates a maximum loss of 5.9 percent
of the portfolio value. The continuous case has a higher VaR, on average 0.81 percent of
the portfolio a day and 2.1 percent a week. The maximum drawdown is cumulatively
21.3 percent, which constitute 13.5 percent of the portfolio value. This should be
compared to the cumulative MDD for the currency index created in this master’s thesis,
which is approximately 5 percent.

4.3.1 Filtering Trades

As stated in section 2.3.1 one can use a threshold, d, to filter trades which is predicted to
have a payoff that do not exceed d. In figure 4.20 the cumulative profit for the standard
trading signal when using a threshold equals today’s spread is presented. One can see
that the filter is too strict, in some sense. It filters out trades in a way which leads to a
decreasing overall rate of return. The Sharpe ratio decreases from 1.81 to 1.63 and the
total rate of return from 67.7 to 54.1.

When using the MC simulation as a part of the trading signal it is easier to relate the
threshold to a probability mass, as described in 3.5.3. When setting a threshold equal to
today’s spread and at the same time set the required probability mass to be bigger than
55 percent the trajectory develops as shown in figure 4.21. One interesting detail is that
the model using a threshold does outperform the model without a threshold during the
last 500 days. Still, the Sharpe ratio has decreased depending on the lower final return.
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Figure 4.20: Payoff for the best performing continuous model (using the currency cross
together with features, a 100 days time window, 4 states and 2 Gaussian mixtures) with
the spread included. A threshold is set to equal the spread.
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Figure 4.21: Payoff for the best performing continuous model with MC simulation
(using the currency cross together with features, a 100 days time window, 4 states and
2 Gaussian mixtures) with the spread included. A threshold is set to the trading signal,
a minimum of 55 percent for the probability mass.

4.4 Log-likelihoods, Random Numbers and Convergence

All models, even the one where the K-means clustering is performed, rely on the built-
in random generator in Matlab since the model parameters, A = {A, B,II}, are ini-
tiated by some random numbers. Previously when testing with different models, the
same random numbers? have been used to ease a comparison, but an interesting ques-
tion is how much this effects the finding of different optimums. To answer this question
the maximum likelihood method is addressed.

Each time a re-estimation of X is performed a log-likelihood is obtained. The value
of the log-likelihood corresponds to a certain local maximum on the surface where the
optimization is performed. As a result, a number of 1200 log-likelihoods is obtained
during testing, equaling the number of days in the period. Testing with different ran-
dom numbers but with the same settings regarding window size, numbers of states,
trading signal, etc., gives a number of log-likelihood sequences. Four different se-
quences, generated from four different sets of random numbers, are plotted for the
case of discrete emission probabilities in figure 4.22 and for the continuous case seven
different sequences are generated, see figure 4.23.

As one can see in figure 4.22(a) all log-likelihood sequences start in different
optimums in the discrete case. But after only 20 days, four sequences has become
two and when approaching the out-of-sample period the two latter converges into
one, see figure 4.22(b). This means that starting with four different parameter sets,
A1 # A2 # A3 # Ay, ends with four identical parameter sets after 1000 days,

2An initial statement in the code lets us control which random numbers that are used each time.
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Figure 4.22: (a) Log-likelihood sequence for the first 20 days for the discrete model
(b) Log-likelihood sequence for days 870 to 1070 for the discrete model

A1 = X2 = A3 = Mg, As a consequence, the payoff curve is for example identical
after 1000 days for all four random initiations.

But for the continuous case, convergence is less evident. The initially seven log-
likelihood sequences has only converged to a number of two-three paths after 1000
days, see figure 4.23(a), and close to 1200 days the sequences has diverged into a
number of four-five, see figure 4.23(b). Applying the K-means clustering gives similar
results.
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Figure 4.23: (a) Log-likelihood sequence for days 990 to 1010 for the continuous
model (b) Log-likelihood sequence for the last 20 days for the continuous model

All aforementioned trials have been carried out using only the currency cross and
a 100 days time window in the discrete case and a 20 days time window in the con-
tinuous case, this since the log-likelihood sequences in the latter case does not exhibit
convergence otherwise. This particular behavior, with faster convergence the smaller
the time window is, is valid also for other cases, and the opposite is obviously also true.

Adding features reduces the convergence pattern — for the discrete case an initial
number of eight sequences only converges to four within 1000 days and similar results
are given for the continuous case.
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Another interesting observation is that even if one sequence has a generally higher
log-likelihood compared to the others, i.e. a higher probability for the observed obser-
vations given ), this does not mean that the payoff nor the hit ratio are automatically

higher.
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Chapter 5

Analysis

In this chapter the overall performance will be discussed on the basis of different as-
pects, found through the tests made in chapter 4. This will then form as a basis for the
conclusions in the next chapter.

5.1 Effects of Different Time Windows

The number of historical days that the model make use of plays an important role.
Using for example a 30 days window, using only the currency cross as input data, both
the discrete and continuous model is functioning well. But the results are not exclusive
in the discrete case where a 100 days window also manages to generate a high payoff
during the back-testing period. Some time frames must obviously contain the "right”
information which can make the discrete HMM work for both large and small windows.
It is therefore difficult to say if the discrete sees the same patterns as the continuous in
the historical data.

The discrete HMM does not function at all when adding features, and the reasons
for this is discussed in section 5.3. In the continuous case, the window has to be ex-
tended to make the model work properly. Since information is added, and not removed,
one could intuitively believe that it would work at least as well as in the previous case.
One explanation, for needing more data, could be that more parameters have to be es-
timated as 1. and o goes from scalar values to 7x1 and 7x7* matrices. Even though the
amount of information in a specific time window also increases with a factor 7, even
more data might be required. Another explanation could be the non-linear covariations
between the features and the EURUSD cross, that might occur over other, in this case
longer, time periods.

The implementation of the EWEM algorithm was made to cope with the non-
stationarity in the time series. During testing one could see that it was only for &k = 75
(p = 0.03) that the model, making use of EWEM, generated a good payoff and where
the null hypothesis could be rejected. But the result was however not as good as in the
case where EWEM was omitted, ceteris paribus, and the observations made here do not
rule in favor for the EWEM. One possible reason for this, since the EWEM previously
has worked fine on equity data, is that FX data simply has other, or less time dependent,
characteristics.

1Since diagonal covariance matrices are used, it is actually only seven values that have to be estimated.

Idvall, Jonsson, 2008. 67
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5.2 Hidden States and Gaussian Mixture Components

As found during the empirical study, the combination of the number of states and mix-
ture components is important for the overall performance. Through numerous tests, it
has been shown that different set ups have been optimal for the discrete and the contin-
uous case. For the discrete models three states was found to be the best number at the
same time as four states together with two mixture components gave the best overall
performance for the continuous framework.

When comparing the two discrete cases, single-variate with multivariate, it has
through empirical studies been found that the same number of states has been the op-
timal way of describing the underlying Markov process. The same result has been
found for the continuous models, both the single-variate and the multivariate. The
same number of states is optimal for replicating the underlying historical data series.
This implicates that the number of time series used do not influence the chosen number
of hidden states, i.e. the degree of freedom needed for the hidden Markov model is the
same when replicating one as well as seven input series. This could have something to
do with the nonlinear correlation between the time series. They do support each other
in some sense and might therefore be replicated by the same number of hidden states.
Therefore one should not need more states to replicate the multivariate case than the
single-variate.

If comparing the discrete case with the continuous, one can see a different result,
namely that the optimal number of hidden states for the continuous model is higher
than for the discrete set up. The need of a higher degree of freedom for the continuous
Markov process should therefore be implicated by the characteristics of the input data.
In the discrete case, ups and downs are simply represented by binary digits while they
in the continuous case also contain information of how big or small past movements
has been. This larger amount of information in each data point, might be one of the
reasons which makes the continuous Markov model dependent on a higher number of
possible hidden states.

When looking at the task of finding the most suitable number of Gaussian mixtures
for the continuous framework it has been found that the use of two Gaussians is the best
way of describing the underlying distribution of the input data. This implicates that the
replicated data series is not normally distributed. Instead it is generated by a mixture
of two Gaussians where the weights indicates significant skewness and kurtosis, which
is in line with what one could expect initially.

5.3 Using Features as a Support

Adding features does not improve results in the discrete case. The explanation for this
should be the extreme increase — with a factor of over 700 going from one to seven
time series — in the number of possible observations at each time instant. Even if some
observations might be more reoccurring, the estimates get highly unreliable. Doubling
the time window does not help much neither, more data is needed for more accurate
estimates. But further increasing the time window, would most probably worsen the
ability of the model to comprehend short-term trends. Reducing the number of features
from six to three does not either work, and the reasons for this can be two: first the
number of possible observations might still be too large, and second the information
loss when further discretizing the data might have been too extensive.

The continuous model does however seem to find use for the additional data. This
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does not apply to all model set ups, as seen in chapter 4, but the best results spring
from models making use of additional time series. Apparently the larger amount of
information that comes with the features, as mentioned in the previous section, im-
proves the parameter estimations. Whereas the discrete model has a finite codebook,
strongly linked with the probability P(o:|g:) and the prediction, the continuous using
Gaussian mixtures does not depend on specific observation probabilities. With its esti-
mations of W, u, and %, it is more flexible in its structure. Furthermore, these results
also implicates that the supplied features, that has previously worked well with other
frameworks, also functions together with HMM.

5.4 The Use of Different Trading Signals

In the discrete case, the trading signal generating has been pretty straightforward. Ei-
ther with or without additional features to the currency cross, the most probable cross
return for the next day was the only determinant. Including a threshold for more ac-
curate predictions gave ambiguous results; up to 0.4 the hit ratio increased from 54.4
percent to 57.0 percent, just as one would expect, but further increasing it lead to a
decrease in the hit ratio. One source of error could simply be that the model is in the
”wrong” state at time ¢, meaning that the high probabilities for the next state and the
most likely observations refers to something that is not correct. This however does not
explain the peak in the hit ratio for the threshold 0.4.

Two trading signals has been used in the continuous case for generating a trading
signal. The overall performance for the two strategies has varied from test to test, why
it is important to find the underlying cause of this bias. The two signals is similar in
the way they use the mean of the Gaussian for predicting the rate of return for the next
time period, where it for the MC simulation is used, together with the volatility, to find
the underlying distribution.

Using the weighted mean of the Gaussian mixtures is the most intuit of the two
methods, it yet has its limitations. The only information given is the mean of the
Gaussian mixture, which does not in a clear way describe the form of the underlying
distribution. When implementing the MC simulation this problem was to be taken
care of. The probability mass has been simulated, making it possible to unveil the
complete underlying distribution, with mean, standard deviation and probability mass.
By gaining this information one can easy define a level of certainty that should be
used on the trading signal. Throughout the empirical studies it has been found that the
hit ratio increases up to a certainty level of 55 percent. This is not equivalent to an
increased payoff though. The reason why the hit ratio does not increase further when
the certainty level is increased, which would be the most intuitive behavior, is that the
model does not make estimations that are accurate enough.

The findings in this master’s thesis has shown that the filtering process is too strict
in some sense, filtering out profitable trades as well as nonprofitable. This is in line with
the results found in section 2.3.1. The underlying cause is the same as just mentioned;
due to the inaccuracy of the model, filtering is incorrectly executed.

In general, the use of MC simulation has given lower rates of return and hit ratios
though. One possible and also probable answer to this is the way the mean for tomor-
row has been simulated. Because this trading signal do not directly take the mean in
consideration, but instead the probability mass, there have certainly been a information
loss during the simulation process. A Brownian motion has been used for the sim-
ulation of the predicted mean. The interesting part in this case is to project the two
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underlying distributions, not to simulate the future development of EURUSD, which
makes the Brownian motion applicable. Still the simulation might have added or re-
moved skewness or kurtosis to the distributions, changing the probability mass for the
Gaussian mixture. As many as 100 000 simulations has been used, trying to minimize
the bias, but still there is one present.

Therefore one can say that both positive and negative results has been found for the
trading signal using MC simulation. Positive results such as the simulated probability
mass, and negative such as the information loss when simulating the underlying distri-
butions. Since the model performance is worsen when using MC it should not be used
if the certainty level is not larger than 50 percent.

5.5 Optimal Circumstances

The results given in chapter 4 does not show that there is an incorrect bias between the
model’s performance in different market characteristics, such as increasing or decreas-
ing trends. One can on the other hand see differences between periods with and without
clear trends — the models seems to have a hard time coping with changes, as the one
just before day 700 in the training period. This result is not shown in every trajectory,
but in many of them generated by the continuous model. Therefore it might be hard
to do a more deep going analysis of this phenomena. Similar results has been found
in previous works though, when HMMs has been used for prediction of movements in
equity indices, such as S&P 500.

This phenomena has also been seen in the transition matrices. When these type of
changes appear, the probabilities do vary a lot and quickly before they settle according
to the new pattern.

5.6 State Equivalence

The states in an ordinary Markov chain corresponds to events observable in the world,
as one could see in chapter 2, e.g. sunny, cloudy and rainy, and no further interpretation
is called for. But when it comes to a HMM it is more difficult since the states are
hidden. But as mentioned, in both chapter 2 and 3, the states could correspond to
different regimes, e.g. high or low volatility, or strategies. But the pattern of the during
testing generated Viterbi paths, does not point in any of these directions. A time period,
where the model would stay in one state for several days or weeks, could be followed
by one where the model would constantly switch state. It is therefore not possible to
tie the states to something observable, and one simply have to satisfy with that they
corresponds to some unknown underlying source of information that is linked to the
EURUSD cross and the features.

5.7 Risk Assessment

In section 4.3 VaR and MDD was calculated for the best continuous and discrete model
set ups. The measures shows that the continuous model contains a higher risk than the
discrete, both having a higher average VaR as well as MDD. The biggest difference lies
within the MDD though. Considering the continuous case one can see that the cumula-
tive MDD is 31.5 percent of the total return during the whole back testing period. For
the discrete model it is only 17.8 percent. This indicates that the risk for sustainable
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drawdowns is higher using the continuous HMM framework for forecasting move-
ments in EURUSD, when using MDD as a measure of risk. The created benchmark
index has a MDD compared to the total rate of return which lies between the HMMs’
values.

At the same time as the risk is higher using MDD as a risk measure for the contin-
uous model, one have to bear in mind that the potential for better overall return is more
likely as well. Looking at the Sharpe ratio one can see that it is higher for the contin-
uous model, which indicates that the rate of return in comparison to the risk taken, if
risk is measured as volatility instead of MDD, is higher as well.

According to the high level of risk it is important to find ways in which it can be
decreased, especially when using the continuous HMM. This can e.g. be done through
diversifying the investment by using other, uncorrelated, strategies as a complement to
the one presented in this master’s thesis. In this way one could decrease the risk of
large MDDs as well as high volatility for the total portfolio of investments.

5.8 Log-likelihood Sequence Convergence

From the observations made in section 4.4, three factors which influence the results
have been distinguished when testing different set ups:

e Using a discrete or a continuous model.
e Using features or not.

e Length of the time window.

The effect that the random numbers have on the test result have to be eliminated to
get a reliable testing in the out-of-sample period. For the discrete model using only the
cross as input data, one is able to do this since all log-likelihood sequences converge in
the training period. Except from modifying the model with respect to the three factors
above, two ways of incorporating with non-convergence is available:

e Extension of the training period.

e Using initial estimates for the HMM parameters.

Due to the somewhat limited amount of data, it is not possible to largen the back-
testing period to see where, or if, all sequences converge. It is reasonable to believe that
for the discrete multivariate case, full convergence will take place further ahead in time
like for the single-variate. But for the continuous case, it is more difficult to say any-
thing about the log-likelihood sequences. Since two sequences could converge and then
later on diverge, it seems rather unlikely that they ever would fully converge. Some-
thing else that speaks for this is the implemented K-means clustering, that was applied
in the hope that it would steer the initial model parameters, regardless of the random
initiation, towards one single set of model parameters, and thus evading the problem of
sparse training data. Since the number of paths for the log-likelihood sequences were
the same as before and full convergence non-existent, although the purpose was to go
round this problem with the K-means clustering, it could indicate that convergence
never would take place. Another explanation though could be that the segmentation
method was not solid enough to generate initial estimates that was good enough.
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To summarize why conversion or non-conversion is found, it is dependent on the
model complexity. Looking at the three factors stated above, one have on one end a
discrete single-variate model and on the other a continuous multivariate model. With
an increased complexity, one get a more difficult optimization problem with more lo-
cal maximums on the analyzed surface. Hence the number of possible paths between
different optimums increases as well. And if the paths never were to converge for the
continuous model, then the initialization of A would be just as crucial as described in
previous chapters. But not due to sparse training data, but due to the fact that different
log-likelihood sequences generates models that returns different. If one is not able to
find a rigid method for initiation, it is very important that one back-tests the model
with many different initial parameter values to find a solution that seems to work for
close-by historical time periods.



Chapter 6

Conclusions

The objective of this final chapter is to summarize our findings on the use of HMM as
a FX prediction tool. The questions that were stated in the beginning are once again
addressed and some final remarks on future research rounds up the chapter.

6.1 Too Many Factors Brings Instability

The hidden Markov model framework has previously been applied with great success
in finance but never on foreign exchange data, at least to our knowledge. The results
from our investigation has been somewhat mixed — for some settings we have been
able to generate payoffs with accompanying Sharpe ratios well above the one for our
created currency index, but for some cases the predictor been close to what looks like
a random generator. To summarize the analysis carried out in chapter 5, we note that
there are many factors that have to be considered when setting up a model, e.g. window
length and number of states. This, together with the fact that small model adjustments
sometimes leads to varying results, indicates a high instability of the model.

If this is due to the difficulties connected with the non-stationarity of data or some
other aspect of FX data that complicates the time series analysis is hard to say. One
of the conclusions we however draw is that a continuous model is preferable to the
discrete. The major reason for this is due to the characteristic of the input data plus the
more flexible structure associated with the continuous model. Each data point contains
more information, which of course always is desirable, and furthermore, using a con-
tinuous model opens up for more advanced data handling, e.g. Monte Carlo simulation
which we implemented. But further development is required as well as further test-
ing. Something that was of special interest when we started off, was how the Gaussian
mixture model and exponentially weighted expectation maximization algorithm was to
affect results. The first showed to be essential for good estimates and a well functioning
prediction capability, whereas the other did not act as an enhancement to the model.

One question that we asked ourself in the introduction was: should Nordea use
hidden Markov models as a strategy for algorithmic trading on foreign exchange data?
The answer to this is simple: no. At least not in this form. Even if some generated
higher Sharpe ratios than the index, the lack of stability is too extensive. If, however,
one of the models, generating a good Sharpe ratio in combination with a low P-value,
was to be used, our recommendation is that it should be so in combination with other,
uncorrelated, strategies to decrease the risks.
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Throughout the investigation a set of delimitations has been considered. This has,
most certainly, effected the conclusions drawn from this master’s thesis. Most of all it
effects the possibility of generalizing the conclusions, making them statable for every
currency pair and time frame. Since our focus has been on EURUSD during a fixed
period of time with one set of features the results should be seen as exclusive for this
set up.

With this we conclude our evaluation of hidden Markov models as a tool for al-
gorithmic trading on foreign exchange data. In the next section we will present some
interesting topics that can be further investigated in order to create more stable and
reliable models based on the framework of HMMs.

6.2 Further Research Areas

When it comes to future work it is first and foremost important to get a solid model
which gives reliable predictions. Having obtained this, one can extend the model with
other applications that can optimize the portfolio payoff.

Under model improvements we sort those things that can actually make the FX
movements prediction more accurate. As we have seen in this master’s thesis, the
HMM framework seems to perform very well for some settings and time periods. But
the instability needs to be addressed, and possible solutions might lie in the two sug-
gestions below.

Substituting the ML method: We have in our tests seen that the performance during
the test period, for the discrete case as well as the continuous is highly dependent
on the initiated random numbers. The weakness lies within the way of using ML
as an estimation method for finding the optimal set of model parameters via max-
imizing the log-likelihood. When using ML one assumes that the training period
is large enough to provide robust estimates. We have during our test session
seen that the continuous model do need a lot more training data than the dis-
crete model. To find a way around the dependence of historical data one could
use Maximum a Posteriori (MAP), mentioned in section 2.2.5, which could be a
more efficient method for parameter estimation. The MAP estimation framework
provides a way of incorporating prior information in the training process, which
is particularly useful when dealing with problems posed by lack of training data.
MAP has been applied successfully to acoustic modeling in automatic speech
recognition when using a continuous HMM with GMMs as emission probabil-
ities. It has also been proved helpful when smoothing parameters and adopting
models in the discrete case, when using a discrete set of emission probabilities.

Improving initial estimates: As we noted, when looking at convergence for the log-
likelihood paths, it is of utter importance that good initial parameter estimations
are obtained. The implemented K-means clustering did not work properly, so the
problems withstands. Other proposed ways of initiating the parameters includes
manual segmentation of the observation sequence into states, which however as-
sumes that one can tie certain observations to certain states, and maximum likeli-
hood segmentation of observations with averaging. If these, or other methods not
known to us, was to work, this would most probably increase the functionality
of the HMM.

When it comes to extensions to the HMM, two methods could be tried for optimiz-
ing the overall return.
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Portfolio of HMMs: Instead of just trading on the EURUSD cross, one could in-
clude other crosses, such as the EURSEK or EURNOK. Since different cur-
rency crosses might depend on different causes and have different trend patterns,
one would have to use several HMMs, one for each cross. These could then
treat different features while working under completely different model set ups.
And when working with a portfolio of investments, one could also make use
of stochastic programming and utility functions. This would open up for better
risk management, where trading decisions could be made with respect to the risk
aversion of the trader, and portfolio diversifying, eliminating non-systematic risk
as mentioned in section 5.7.

Using leverage: As briefly described in section 2.3.1, one can take advantage of lever-
age when using GMM. Back-testing with different thresholds, one can obtain
substantially larger profits. But the risk of large drawdowns due to too few trades
has also increased. Using leverage could furthermore be a part of the aforemen-
tioned HMM portfolio, where the risk thinking is more incorporated.
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