
Automatic Translation of OpenMP to MPI

 Satyanarayana Koneru

 Sridhar Duggi

 A tool (add-on to Microsoft windows compute cluster server) which automatically

translates an OpenMP C code to MS-MPI C code (source-source) will be generated.

 MS-MPI is set of APIs used for programming distributed memory parallel
computers. But it is too lowlevel and difficult to code. OpenMP is the de facto method and language
extension for programming shared memory parallel computers. Programs written using OpenMP can be
parallelized stepwise from a sequential program. OpenMP programs resemble their original sequential
versions but the only variation is the introduction of directives and clauses required for parallel
execution. So we intend to convert OpenMP to MS-MPI. Hence it will be easier to write distributed
applications compared to that of complex hand-coding in MS-MPI (where in a lot of care has to be taken
while distribution and gathering of data) . And also most of the applications are coded for uniprocessor
systems , these applications can be converted to distributed arena easily by fewer modifications than

rewriting whole code. OpenMP is supported in C/C++/Fortran. As of now we are developing the
tool for C language. It is a source to source translation .
 The project is divided into 4 stages ,

1. Parsing
2. Translation of OpenMP Directives
3. Translation of Clauses
4. Incorporating communications

OpenMP

 Code

 AST I

 AST II

 AST III

Final MPI source

code in C

parsing

Translating

Directives

Translation of

clauses

Including

communications

Conversion of Clauses

.

1.Private clause

The PRIVATE clause declares variables in its list to be private to each thread . A new object of the same

type is declared once for each thread in the team . All references to the original object are replaced with

references to the new object .Variables declared PRIVATE are uninitialized for each thread .At the last

step a new variable of same type and variable name is declared within the scope of parallel region.

OpenMP code

 int a;

.

.

 #pragma omp parallel private(a)

 { …….

 ……..}

MPI Code

int a;

 .

 .

//parallel region

 {

 int a;

 ……

}

All the statements within the parallel region involving variable ‘a’ will point to the inner ‘a’ i.e. declared
in parallel region .

2.FIRSTPRIVATE Clause

The FIRSTPRIVATE clause combines the behavior of the PRIVATE clause with automatic initialization of

the variables in its list.Listed variables are initialized according to the value of their original objects prior

to entry into the parallel or work-sharing construct.

OpenMP Code

 int a;

 .

 .

 #pragma omp parallel firstprivate(a)

 {…….

 …….}

MPI Code

int a;

 .

 .

 //parallel region

 { int a=a;

 ………}

3.LASTPRIVATE Clause

The LASTPRIVATE clause combines the behavior of the PRIVATE clause with a copy from the last loop

iteration or section to the original variable object.The value copied back into the original variable object

is obtained from the last (sequentially) iteration or section of the enclosing construct.

OpenMP Code

 int a;

 .

 .

 #pragma omp parallel lastprivate(a)

 {…….

 …….}

MPI Code

 int a;

 .

 .

 //parallel region

 { int a;

 ………}

 a=a;

4.Reduce Clause

The REDUCTION clause performs a reduction on the variables that appear in its list of variables.A private

copy for each list variable is created for each thread. At the end of the reduction, the reduction variable

is applied to all private copies of the shared variable, and the final result is written to the global shared

variable.

OpenMP Code

int result;

#pragma omp parallel for default(shared) private(i) reduce(+:result)

 {

 for(i=0;i<n;i++)

 result=result+i;

 }

MPI Code

int result;

 //parallel region

{

 int result;

 for(i=0;i<n;i++)

 {

 if(i%n==proc_id)

 result=result+i;

 }

}

MPI_ALL_REDUCE(&result,&result,1,MPI_INT,MPI_SUM,MPI_COMM_WORLD);

In previous report , process for conversion of directives and some clauses were illustrated , in this report

process for conversion of clauses is illustrated.

