
Implementation

 In openmp program is divided into serial and parallel regions(parallel means that part of the

code can be parallelized).we explicitly indicate the parallel regions and the type of parallelism (data or

the functional parallelism) using compiler directives. OPENMP provides seven main directives. Each

directive is supported with set of clauses that add exact constrained properties to the directive.

Directives:

 #pragma omp parallel

 #pragma omp for [clause[,]]

 #pragma omp sections

 #pragma omp single

 #pragma omp barrier

 #pragma omp master

 #pragma omp parallel for

 #pragma omp parallel sections

Each directive specifies a specific property of the following block to the compiler. Based on the property

and the way of execution of threads we corresponding convert it into the mpi code where in each

process in MPI is analogous to the thread in OPENMP.

 Following are the properties of each block and their equivalent conversions…

1 . # pragma omp parallel [clauses, []]

 This directive describes the parallel regions in the code(part that to be executed in parallel).The

serial regions are executed by a single thread called Master Thread and at the start of the parallel

regions invokes other threads to run the region specified the above directive in parallel.

Ex :

#include<omp.h>

#include<stdio.h>

Main()

{

 Int A[5];

 A[0]=0; //Statement 1

 A[1]=1; //Statement 2

 A[2]=2; //Statement 3

 #pragma omp parallel

 {

 A[3]=3; //Statement 4

 A[4]=4; //Statement 5

}

}

Description :

The block containing statement #4 and statement #5 is defined as parallel region by the parallel

directive and hence this block will be executed by set of threads .

Conversions :

In the converted MPI code , serial regions of OPENMP code are redundantly executed in all the

processes of MPI . Whereas parallel regions of OPENMP code are executed in parallel through processes

in MPI(but each process’s work in the parallel region in MPI can be changed with the help of other

directives specified inside parallel directive in OPENMP code).

Converted MPI Code :

#include<mpi.h>

#include<stdio.h>

Main()

{

 Int process_rank , no_processes;

 MPI_Init();

 MPI_Comm_rank(MPI_COMM_WORLD,&process_rank);

 MPI_Comm_size(MPI_COMM_WORLD,&no_processes);

 Int A[5];

 A[0]=0;

 A[1]=1;

 A[2]=2;

 A[3]=3;

 A[4]=4;

//A[3] &A[4] (data) values will be updated to all the processes through mpi communications

}

2 . #pragma omp for [clause[]]

 This directive is used to describe the data parallelism in a for loop . And this directive has to be

the child of the “#pragma omp parallel” directive (i.e. this for loop should be with in the block specified

by parallel directive). Condition on for loop is that there shouldn’t be data dependencies between the

iterations of the loop . Hence with the specification of this directive over the for loop , total iterations

are divided evenly among the threads in OPENMP .

Ex :

#include<omp.h>

#include<stdio.h>

Main()

{

 Int A[5];

 Int I;

 #pragma omp parallel

{

 #pragma omp for

 For(i=0;i<5;i++)

 A[i]=I;

}

}

Description :

Suppose if we have three threads in the parallel region then thread 1 and thread 2 does two iterations

and thread 3 does one iteration , totally all the threads does five iterations together .

Conversion :

Here ,instead of the threads in OPENMP , the processes in MPI divide the total iterations among

themselves .

Converted Code :

#include<mpi.h>

#include<stdio.h>

Main()

{

 Int process_rank , no_processes;

 MPI_Init();

 MPI_Comm_rank(MPI_COMM_WORLD,&process_rank);

 MPI_Comm_size(MPI_COMM_WORLD,&no_processes);

 Int A[5];

 For(i=0;i<5;i++)

{

 If(i%no_processes == process_rank)

 {

 A[i]=I;

}

}

 //(data) values will be updated to all the processes through mpi communications

}

Description :

 Suppose two MPI processes are running then the process 1 does three iterations (i=0,2,4) and

the process 2 does two iterations (i=1,3) .

3 . # pragma omp sections [clause[]]

 This directive defines the functional parallelism in OPENMP . In the region specified by this

directive we divide the total instructions among the threads in OPENMP . And this directive has to be

the child of the “#pragma omp parallel” directive (i.e. this sections loop should be with in the block

specified by parallel directive). Grouping of instructions in this region are done by the directive “#

pragma section” .

Ex :

#include<omp.h>

#include<stdio.h>

Main()

{

 Int A[5];

 #pragma omp parallel

{

 #pragma omp sections

{

 #pragma omp section // Section 1

 {

 A[0]=0;

 A[1]=1;

}

#pragma omp section //Section 2

 {

 A[2]=2;

 A[3]=3;

}

#pragma omp section //Section 3

 {

 A[4]=4;

 }

}

 }

}

Description :

 Suppose we have two threads in the parallel region then thread ,thread one executes section 1

and 3, thread two executes section 2.

Conversion:

 Sections are divided among the process in mpi.

Converted code(MPI):

#include<mpi.h>

#include<stdio.h>

Main()

{

 Int process_rank , no_processes;

 MPI_Init();

 MPI_Comm_rank(MPI_COMM_WORLD,&process_rank);

 MPI_Comm_size(MPI_COMM_WORLD,&no_processes);

 Int A[5],NO_SECTION;

 NO_SECTION=3;//this value is automatically generated during conversion from OPENMP.

 for(i=process_rank;i<NO_SECTION;i+=no_processes)

{

 Switch(i)

 {

 Case 0:

 {

 A[0]=0;

 A[1]=1;

 Break;

 }

 Case 1:

 {

 A[2]=2;

 A[3]=3;

 Break;

 }

 Case 2:

 {

 A[4]=4;

 Break;

 }

 }

 }

//(data) values will be updated to all the processes through mpi communications

}

Description :

 Suppose there are two mpi process ,then process one does the section 0,2,4 and process two

does section 1,3.

4.#pragma omp barrier

 This directive is used for synchronization among the threads.

Conversion :

 Similar to this,mpi provides with a synchronization function that does same as the above

directive.

 MPI_Barrier(MPI_COMM_WORLD);

5.#pragma omp single

 This directive declares that the particular block has to be executed only one thread during the

whole execution the program.

openMP code:

#include<omp.h>

#include<stdio.h>

Main()

{

 Int A[5];

 A[0]=0;

 A[1]=1;

 A[2]=2;

 #pragma omp single

 {

 A[3]=3;

 A[4]=4;

 }

}

Conversion :

 The block enabled by single directive is executed by p-1th process where p is the no of process

in mpi.

Converted code (MPI):

#include<mpi.h>

#include<stdio.h>

Main()

{

 Int process_rank , no_processes;

 MPI_Init();

 MPI_Comm_rank(MPI_COMM_WORLD,&process_rank);

 MPI_Comm_size(MPI_COMM_WORLD,&no_processes);

 Int A[5];

 A[0]=0;

 A[1]=1;

 A[2]=2;

 If(process_rank==no_process-1)

 {

 A[3]=3;

 A[4]=4;

 }

//(data) values will be updated to all the processes through mpi communications

}

6.#pragma omp parallel for

 This directive is combination of directives ’parallel’ and ‘for’ together. It describes that the block

is in parallel region as well as it a for loop (for loop should’t have data dependencies between the

iterations).

Conversion :

 Similar as ‘for’ directive is done.

7.#pragma omp parallel sections

 This directive is combination of directives ’parallel’ and ‘sections’ together. It describes that the

block is in parallel region as well as it functional parallelism.

Conversion:

 Same as ‘sections’ directive is done.

8.#pragma omp master

 The block described with this directive should be executed by the master thread of the

OPENMP.

openMP code:

#include<omp.h>

#include<stdio.h>

Main()

{

 Int A[5];

 A[0]=0;

 A[1]=1;

 A[2]=2;

 #pragma omp master

 {

 A[3]=3;

 A[4]=4;

 }

}

Conversion:

 Analogous to master thread in OPENMP is 0th process in mpi.

Converted code (MPI):

#include<mpi.h>

#include<stdio.h>

Main()

{

 Int process_rank , no_processes;

 MPI_Init();

 MPI_Comm_rank(MPI_COMM_WORLD,&process_rank);

 MPI_Comm_size(MPI_COMM_WORLD,&no_processes);

 Int A[5];

 A[0]=0;

 A[1]=1;

 A[2]=2;

 If(process_rank==0)

 {

 A[3]=3;

 A[4]=4;

 }

//(data) values will be updated to all the processes through mpi communications

}

Apart from these main directives ,we need to implement clauses set of the each directive (like labeling

private and shared variables)and a communication algorithm for updating the variable at the end of

each directive block.

