Automatic Translation of OpenMP to MPI

 Satyanarayana Koneru

 Sridhar Duggi

We will generate a tool (add-on to Microsoft windows compute cluster server) which automatically translates an OpenMP C code to MS-MPI (in CIL(MSIL) format).

MS-MPI is set of APIs used for programming distributed memory parallel

computers. But it is too lowlevel and difficult to code. OpenMP is the de facto method and language extension for programming shared memory parallel computers. Programs written using OpenMP can be parallelized stepwise from a sequential program. OpenMP programs resemble their original sequential versions but the only variation is the introduction of directives and clauses required for parallel execution. So we intend to convert OpenMP to MS-MPI. Hence it will be easier to write distributed applications compared to that of complex hand-coding in MS-MPI (where in a lot of care has to be taken while distribution and gathering of data) . And also most of the applications are coded for uniprocessor systems , these applications can be converted to distributed arena easily by fewer modifications than rewriting whole code. OpenMP is supported in C/C++/Fortran. As of now we are developing the tool for C language. It is a source to CIL(MSIL) translation .

The project is divided into 5 stages ,

1. Parsing
2. Translation of OpenMP Directives

3. Translation of Clauses

4. Converting into CIL
5. Incorporating communications

Stage I :

Abstract Syntax Tree (AST) for the code is created using Microsoft C + OpenMP grammar rules . The front end is designed using Flex and Yacc rules.

Stage II & III :
 [image: image1.png]OPENMP_CONSTRUCT

PARALLEL_CONSTRUCT

PARALLEL_DIRECTIVE STRUCTURED_BLOCK

[image: image2.png]OPENMP_CONSTRUCT

PARALLEL_CONSTRUCT

DATA_distribution STRUCTURED_BLOCK DATA_gathering

Above diagram shows the change in parser tree while converting parallel directives and clauses into their respective MS-MPI API . The structured block part may also change if it encapsulates other directives .

Stage IV :

Now the AST is converted into CIL format , we will be using MS PHOENIX framework .
Stage V :

Now the complete CIL is analysed and the variables required for a block will be listed using Live-In Live-Out analysis . These variables are distributed between processes through communications.

 converting into CIL

Translating Directives

parsing

CIL with communication

CIL with out Communication

 AST III

 AST II

 AST I

OpenMP

 Code

Translating Clauses

Incorporating Communications

