NMock«<3»

NMock3 is a Mocking and Stubbing framework that uses expectations to
define interactions between a controller and the mock. Its primary use is
to be the implementation of a code interface.

Visit http://NMock3.codeplex.com for Tutorials and Documentation.

Creating a MockFactory. A MockFactory creates and ties
together all mocks. Only one is needed per test class.

MockFactory factory = new MockFactory();

Creating a Mock<T>. A Mock<T> is used to set
expectations on how the underlying type will be exercised.

Mock<IBusinessLogic> mock =
_factory.CreateMock<IBusinessLogic> () ;

Creating a Stub<T>. A Stub<T> is a Mock<T> where all
expectations are defaulted to AtLeast(0). (No expectations)

Stub<IBusinessLogic> stub =
_factory.CreateStub<IBusinessLogic> () ;

Syntax:

Syntax properties. Some properties in the API are only _mock

included for readability. (Affectionately called syntactic -Expects

sugar.) Expects is a "syntax class". CHHERE

Specifying the number of calls. The Expects syntax -One -No

class contains properties to specify the number of expected

.AtLeast (int) .Exactly (int)

calls to the member specified in the expectation .AtMost (int) .Between (int, int)
Expectations:
Getting a property value. Creates an expectation that the _mock
getter of this property will be called. -Expects
GetProperty uses the lambda expression to extract the .One
name of the property for the expectation. .GetProperty(m => m.SayHello)
WillReturn is strongly-typed for compile time checking. .WillReturn ("Hello, World!");
Setting a property value. Creates an expectation that the ~_mock
setter of this property will be called and this value will be -Expects
set. NMock3 will use the value from the lambda expression .One
as the expected value. .SetPropertyTo (m => m.RowCount = 3);
Calling a method. Creates an expectation that this _mock
method will be called with the supplied parameters and will -Expects
return the specified value. .One
.MethodWith (m => m.Search ("query", 10))

.WillReturn (dataSet) ;

Binding events. Creates an expectation that this event
will be bound to a delegate.

MockEventinvoker is a class that can be used later to
actually invoke the event.

(null is only needed for the compiler!)

MockEventInvoker savelInvoker =
_mock
.Expects
.One
.EventAddHandler (m => m.Save += null);

Firing events. Use the Invoke method to raise an event in
a unit test after all expectations have been created.

savelInvoker.Invoke (this, EventArgs.Empty) ;

Verification:

Verifying calls. NMock3 will throw an exception
immediately when something unexpected happens. Call
this method to verify that all expectations were met.

[TestCleanup] public void TearDown () {
_factory.VerifyAllExpectationsHaveBeenMet () ;
}

Suppressing exceptions. Unit tests that are designed to
throw exceptions should call this method to avoid cleanup.

_factory
.SuppressUnexpectedAndUnmetExpectations () ;

Advanced:

The MockObject. The Mock<T> class exposes a
MockObiject property to access the underlying type.

Controler controler = new
Controler (mock.MockObject) ;

Ordering calls. NMock3 can add constraints to the
expectations so that they are executed in a specific order.

using (_ factory.Ordered) {
_mock.Expects.One. ####;
_mock.Expects.One. ####;
}

Throwing an exception. Creates an expectation that an
exception will be thrown when this method or property is
accessed.

_mock
.Expects
.One
.MethodWith (m => m.ThrowError ())
.Will (Throw.Exception (new Exception())):;

NMock3 Cheat Sheet — Copyright © 2010 NMock3, Updated March 2010

http://nmock3.codeplex.com/

