
NMock3 Cheat Sheet – Copyright © 2010 NMock3, Updated March 2010

NMock3 is a Mocking and Stubbing framework that uses expectations to
define interactions between a controller and the mock. Its primary use is
to be the implementation of a code interface.
Visit h ttp: / /NMock3.codeplex.com for Tutorials and Documentation.

Creating a MockFactory. A MockFactory creates and ties
together all mocks. Only one is needed per test class.

MockFactory _factory = new MockFactory();

Creating a Mock<T>. A Mock<T> is used to set
expectations on how the underlying type will be exercised.

Mock<IBusinessLogic> _mock =

_factory.CreateMock<IBusinessLogic>();

Creating a Stub<T>. A Stub<T> is a Mock<T> where all
expectations are defaulted to AtLeast(0). (No expectations)

Stub<IBusinessLogic> _stub =

_factory.CreateStub<IBusinessLogic>();

 Syntax:

Syntax properties. Some properties in the API are only
included for readability. (Affectionately called syntactic
sugar.) Expects is a "syntax class".

_mock

 .Expects

 .####

Specifying the number of calls. The Expects syntax
class contains properties to specify the number of expected
calls to the member specified in the expectation

.One

.AtLeast(int)

.AtMost(int)

.No

.Exactly(int)

.Between(int, int)

 Expectations:

Getting a property value. Creates an expectation that the
getter of this property will be called.
GetProperty uses the lambda expression to extract the
name of the property for the expectation.
WillReturn is strongly-typed for compile time checking.

_mock

 .Expects

 .One

 .GetProperty(m => m.SayHello)

 .WillReturn("Hello, World!");

Setting a property value. Creates an expectation that the
setter of this property will be called and this value will be
set. NMock3 will use the value from the lambda expression
as the expected value.

_mock

 .Expects

 .One

 .SetPropertyTo(m => m.RowCount = 3);

Calling a method. Creates an expectation that this
method will be called with the supplied parameters and will
return the specified value.

_mock

 .Expects

 .One

 .MethodWith(m => m.Search("query", 10))

 .WillReturn(dataSet);

Binding events. Creates an expectation that this event
will be bound to a delegate.
MockEventInvoker is a class that can be used later to
actually invoke the event.
(null is only needed for the compiler!)

MockEventInvoker saveInvoker =

_mock

 .Expects

 .One

 .EventAddHandler(m => m.Save += null);

Firing events. Use the Invoke method to raise an event in
a unit test after all expectations have been created.

saveInvoker.Invoke(this, EventArgs.Empty);

 Verification:

Verifying calls. NMock3 will throw an exception
immediately when something unexpected happens. Call
this method to verify that all expectations were met.

[TestCleanup] public void TearDown() {

_factory.VerifyAllExpectationsHaveBeenMet();

}

Suppressing exceptions. Unit tests that are designed to
throw exceptions should call this method to avoid cleanup.

_factory

.SuppressUnexpectedAndUnmetExpectations();

 Advanced:

The MockObject. The Mock<T> class exposes a
MockObject property to access the underlying type.

Controler controler = new

Controler(_mock.MockObject);

Ordering calls. NMock3 can add constraints to the
expectations so that they are executed in a specific order.

using(_factory.Ordered) {

 _mock.Expects.One.####;

 _mock.Expects.One.####;

}

Throwing an exception. Creates an expectation that an
exception will be thrown when this method or property is
accessed.

_mock

 .Expects

 .One

 .MethodWith(m => m.ThrowError())

 .Will(Throw.Exception(new Exception()));

http://nmock3.codeplex.com/

