
NMock3 Cheat Sheet – Copyright © 2013 NMock3, Updated September 2013 

 

NMock3 is a Mocking and Stubbing framework that uses expectations to 
define interactions between a controller and the mock.  Its primary use is 
to be the implementation of a code interface. 
Visit h t tp: / /NMock3.codeplex.com for Tutorials and Documentation. 

Creating a MockFactory.  A MockFactory creates and ties 
together all mocks.  Only one is needed per test class. 

MockFactory factory = new MockFactory(); 

Creating a Mock<T>.  A Mock<T> is used to set 
expectations on how the underlying type will be exercised. 

Mock<Interface> mock = 
factory.CreateMock<Interface>(); 

Creating a Stub.  A Stub<T> is a Mock<T> where all 
expectations are defaulted to AtLeast(0). (No expectations) 

mock.Stub.Out... 

 Syntax:  

Syntax properties.  Some properties in the API are only 
included for readability.  (Affectionately called syntactic 
sugar.)  Expects is a "syntax class". 

mock 
    .Expects 
    .#### 

Specifying the number of calls.  The Expects syntax 
class contains properties and methods to specify the 
number of expected calls to the member specified in the 
expectation 

.Any 

.One 

.AtLeast(int) 

.AtMost(int) 

.No 

.Exactly(int) 

.AtLeastOne 

.AtMostOne 

.Between(int, int) 

 Expectations:  

Getting a property value.  Creates an expectation that the 
getter of this property will be called. 
GetProperty uses the lambda expression to extract the 
name of the property for the expectation. 
WillReturn is strongly-typed for compile time checking. 

mock 
    .Expects 
    .One 
    .GetProperty(_ => _.SayHello) 
    .WillReturn("Hello, World!"); 

Setting a property value.  Creates an expectation that the 
setter of this property will be called and this value will be 
set.  NMock3 will use the value from the lambda expression 
as the expected value. 

mock 
    .Expects 
    .One 
    .SetPropertyTo(_ => _.RowCount = 3); 

Calling a method.  Creates an expectation that this 
method will be called with the supplied parameters and will 
return the specified value.  The parameters will be wrapped 
in EqualMatchers meaning the values will be matched 
exactly (even object references.)  See Matchers below. 

mock 
    .Expects 
    .One 
    .MethodWith(_ => _.Search("query", 10)) 
    .WillReturn(dataSet); 

Binding events.  Creates an expectation that this event 
will be bound to a delegate.  "Add" or "Remove" is inferred 
by the use of "+=" or "-=" in the expression.  EventInvoker 
is a class that can be used later to actually invoke the 
event.  (null is only needed for the compiler!) 

EventInvoker saveInvoker = 
mock 
    .Expects 
    .One 
    .EventBinding(_ => _.Save += null); 

Invoking events.  Use the Invoke method to raise an event 
in a unit test after all expectations have been created. 

saveInvoker.Invoke(); 

 Verification:  

Verifying calls.  NMock3 will throw an exception 
immediately when something unexpected happens.  Call 
this method to verify that all expectations were met. 

[TestCleanup] public void TearDown() { 
factory.VerifyAllExpectationsHaveBeenMet(); 
} 

Suppressing exceptions.  Unit tests that are designed to 
throw exceptions should call this method to clear thrown 
exceptions. 

factory.ClearException(); 

 Advanced:  

The MockObject property.  The Mock<T> class exposes 
a MockObject property to access the underlying type. 

Controler controler = new 
Controler(mock.MockObject); 

Ordering calls.  NMock3 can add constraints to the 
expectations so that they are executed in a specific order. 

using(factory.Ordered) { 
    mock.Expects.One.####; 
    mock.Expects.One.####; 
} 



NMock3 Cheat Sheet – Copyright © 2013 NMock3, Updated September 2013 

 

 Matchers:  

Matching a Type.  In some situations it is not possible to 
match the instance of an object.  To accomplish this, use 
a matcher instead.  Note how the use of ‘null’ in the 
method call is used to match the signature and the 
matcher and argument are specified in the ‘.With’ call. 

mock.Expects.One 
.Method(_ => _.Method1(null, null)) 
.With(Is.TypeOf<IDbCommand>(), 5); 

Custom Matching.  To perform custom matching, create 
a subclass of Matcher or use the Is.Match<>() shortcut 
(which creates an instance of PredicateMatcher<T>)  The 
shortcut provides a way to perform matching logic in a 
method or expression without deriving a class. 

mock.Expects.One 
.Method(_ => _.Method2(null)) 
.With( 
Is.Match<Customer>(c => c.Id != null)); 
//check that the customer Id is not null 

Invoking a Callback.  Some APIs like RIA Services 
perform Async operations and require a callback method 
as a parameter.  In NMock3, use a CallbackMatcher<T> 
to match those parameters.  Later on in the unit test, 
simulate the callback by calling the action stored in the 
Callback property of the CallbackMatcher<>. 

var matcher = new CallbackMatcher<Action>(); 
mock 
    .Expects 
    .One 
    .Method(_ => _.Async(null)) 
    .With(matcher); 
matcher.Callback(); //simulate the callback 

 Actions:  

Returning a value.  Use the ‘.WillReturn()’ shorthand to 
specify the value to return.  ‘.WillReturn()’ is a strongly-
typed shorthand to the syntax method Return.Value(). 

mock.Expects.One 
    .MethodWith(_ => _.Search("query", 10)) 
    .WillReturn(dataSet); 

Returning queued values.  Use a QueueAction<> to 
return a sequence of values when an expectation is 
matched multiple times. 

var queue = new Queue<string>(); 
queue.Enqueue("string 1"); 
queue.Enqueue("string 2"); 
mock.Expects.Exactly(2) 
.PropertyGet(_ => _.StringProp) 
.Will(Return.Queue<string>(queue)); 

Throwing an exception.  Creates an expectation that an 
exception will be thrown when this method or property is 
accessed. 

mock.Expects.One 
    .MethodWith(_ => _.ThrowError()) 
    .Will(Throw.Exception(new Exception())); 

Performing an Action.  Actions can also be used to do 
something when an expectation is met.  In this example, 
SaveAsync is void and DoSomething is invoked when 
SaveAsync is called by using the syntax method 
Invoke.Action which wraps an InvokeAction class. 

mock 
    .Expects 
    .One 
    .MethodWith(_ => _.SaveAsync()) 
    .Will(Invoke.Action(DoSomething); 
private void DoSomething() {...;} 

 Expect class:  

Expecting an exception.  Instead of using an 
ExpectedException attribute, wrap a method call with an 
Expect.That(Action).Throws(Exception) call.  By using this 
convention you are assured that the exception is thrown 
on the right method and not just somewhere in the unit 
test. 

Expect 
    .That(() => obj.DoSomething(null)) 
    .Throws<ArgumentNullException>("Expected 
an ArgumentNullException that contains the 
string 'argument'.", new 
StringContainsMatcher("Parameter name: 
argument")); 

Setting expectations on non-Mock<> types.  Previous 
versions of NMock and in other mocking frameworks, the 
Mock<> type is not used and expectations are applied 
directly to an instance of a type that is really a proxy. 

var instance = 
factory.CreateInstance<Interface>(); 
 
Expect.On(instance).One.Method(_ 
=>_.DoSomething()); 

 Advanced Property Expectations:  

Getting an internal value.  In some cases the code 
under test will create an instance of an object inside of a 
method and then set a property to that value.  Normally 
NMock would validate that the property was set through 
an expectation but it would disregard the value.  Using the 
.WillReturnSetterValue() method signals NMock to retain 
the value for a future call. 

mock.Expects.One.SetProperty(_ => 
_.Prop).To(Is.TypeOf<AType>()); 
mock.Expects.One.GetProperty(_ => 
_.Prop).WillReturnSetterValue(); 
 
mock.MockObject.DoSomething(); 
Assert.AreEqual(aType, mock.MockObject.Prop); 



NMock3 Cheat Sheet – Copyright © 2013 NMock3, Updated September 2013 

 

 Arrange, Act, Assert Syntax:  

Arranging.  Create a mock instance.  Use the 
Expectations class to store references to the expectations. 
 
The Arrange method is equivalent to Exactly(1) with the 
benefit of auto-detecting if a Property, Method, or Event is 
referenced. 

var mock = factory.CreateMock<IInterface>(); 
var expectations = new Expectations(3); 
 
expectations[0] = mock.Arrange(_ => 
_.Property).WillReturn(5); 
expectations[1] = mock.Arrange(_ => 
_.Method(6)).With(7).WillReturn(8); 
expectations[2] = mock.Arrange(_ => _.Event 
+= null); 

Acting.  Invoke the operations on the "class under test" 
by using the MockObject property of the mock or just 
invoke them inline. 

var controller = new 
Controller(mock.MockObject); 
 
controller.DoSomething(); 

Asserting.  Verify the expectations by using the Assert() 
method on the IVerifyableExpectation instance. 

expectations.ForEach(_ => _Assert()); 

 


