
WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 1

Contents
WCF 101 .. 3

Services, Proxies and Endpoints.. 3

Creating a New Service ... 5

Configuring the ServiceHost ... 7

Calling the Service ... 9

Metadata and Proxy Generation .. 10

Proxy Generation Fundamentals .. 11

ClientBase<T> and ChannelFactory<T> .. 13

Sharing Types and Libraries .. 15

Arrays and Data Binding.. 17

Change Notifications ... 18

Version Tolerance ... 19

Proxy Lifetime Management ... 20

ClientBase<T> Proxy Creation and Disposal ... 20

ChannelFactory<T> and MRU Caching .. 24

Exception Handling ... 25

Exceptions and Faults ... 25

Exceptions and Proxy Lifetime .. 27

Asynchronous Calls and Multithreading ... 30

Asynchronous Proxies ... 30

Multithreading Considerations ... 32

Duplex Communications and Callbacks .. 34

Service Design ... 35

Implementing the Callback Contract .. 38

Managing Duplex Proxy Lifetime .. 40

Hosting Services with WPF Clients .. 45

Client-Side Service Design ... 46

Managing ServiceHost Lifetime .. 48

Managing Subscriptions .. 51

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 2

Consuming REST-Based Services ... 53

A Crash Course in REST-Based Services .. 54

Using WebChannelFactory<T> .. 55

WCF REST Starter Kit ... 56

Viewing the Help Page .. 57

Generating Types with Paste XML as Types .. 59

Using HttpClient to Issue HTTP Requests.. 64

DataContracts and Shared Types .. 64

Acknowledgements ... 66

Today, most applications comprise at least three tiers: a client application tier, a middle tier, and a

database tier. Client applications, be they web applications or rich clients, rely on the middle tier to

coordinate access to application resources including database assets. In a service-oriented architecture,

this middle tier is composed of services – each exposing a well-defined chunk of business functionality.

Windows Communication Foundation (WCF) is Microsoft’s technology for developing services, and for

building clients that consume services. WCF can be used to build classic client-server applications that

rely on services hosted within a specific intranet domain, or to build and consume interoperable services

or REST-based services over the Internet.

Most WCF documentation focuses on how to design, implement and host WCF services – with limited

discussion of the client-side implications. This whitepaper will focus specifically on the client-side

experience when building Windows Presentation Foundation (WPF) applications that consume WCF

services over the intranet or Internet. Specifically, this paper will focus on issues that client developers

frequently encounter when consuming WCF services including:

 Recommended practices for proxy generation

 Data binding considerations

 Guidance on sharing libraries between clients and services

 Managing proxy lifetime and dealing with exceptions and session timeouts

 Caching optimizations

 Considerations for multithreaded and duplex clients

 Hosting services at the client

 Consuming REST-based services

To provide some foundation for those new to WCF, the first section will provide a quick tour of the

requirements to design, implement, host, and consume a WCF service. Following that, each section will

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 3

dig in to concerns relevant to WPF client development and only where applicable summarize how a

service should be implemented to support specific scenarios.

WCF 101
If you are new to WCF, this section will introduce you to WCF and explain the basics related to building

and consuming WCF services. If you are already familiar with WCF, you can feel free to skip this section.

WCF is Microsoft’s platform for building distributed service-oriented applications for the enterprise and

the web that are secure, reliable, and scalable. It supersedes previous technologies such as .NET

Remoting, Enterprise Services and ASP.NET Web Services (ASMX) by offering a unified object model for

building applications that support the same distributed computing scenarios. WCF supports scenarios

such as:

 Classic client-server applications where clients access functionality on remote server machines

 Distribution of services behind the firewall in support of a classic service-oriented architecture

 Asynchronous or disconnected calls implemented with queued messaging patterns

 Workflow services for long running business operations

 Interoperable web services based on SOAP protocol and advanced WS* protocols

 Web programming models with support for Plain-Old-XML (POX), Javascript Object Notation
(JSON), Representational State Transfer (REST) and Syndication with RSS or Atom/Pub

WCF was initially introduced with the .NET Framework 3.0 which released with Windows Vista in

January 2007 –alongside with Windows Workflow Foundation (WF) and Windows Presentation

Foundation (WPF). When the .NET Framework 3.5 released with Visual Studio 2008 in November 2007

additional WCF features were introduced including improvements to the web programming model and

support for the latest WS* protocols.

It is impossible to sum up a platform as vast and feature-rich as WCF in a short section – but the sections

to follow will explain some fundamental concepts that will provide you with a foundation for

subsequent sections in this paper – including the steps required to create and host a service, and to call

a service from a WPF client.

Services, Proxies and Endpoints
Figure 1 provides a visual perspective on the fundamental architecture of a WCF service and WCF client.

A service is a type that exposes one or more service operations (methods) for remote clients to call.

These operations usually coordinate calls to the business and data tier to implement their logic, while

the service itself is a boundary for distributed communications. Services can be hosted in any managed

process – for server deployments this is typically Internet Information Services (IIS) 6, the Windows

Process Activation Service (WAS) (part of IIS 7), or a Windows Service. Part of the hosting process is to

initialize a ServiceHost instance, tell it which service type should be instantiated for incoming requests,

and configure endpoints to tell it where requests should be sent. An endpoint comprises the address

where messages should be sent, a binding which describes a set of protocols supported at the address,

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 4

and a contract describing which operations can be called at the address and their associated metadata

requirements. The ServiceHost can be initialized programmatically or by declarative configuration – in

either case it will be initialized with one or endpoints that will trigger initializing the service type when

request are received. ServiceHost initialization is explicit for self-hosting scenarios (like a Windows

Service or test Console) and automatic when hosting with IIS or WAS.

Figure 1: Fundamental architecture of a WCF implementation

In order for a client to call operations exposed by a hosted service it must have access to the service

metadata (the contract) so that it can send messages with the required parameters, and process return

values accordingly.

Clients typically rely on proxy generation to improve their productivity for writing code to call remote

services. Services enable metadata exchange in order to support proxy generation. A proxy is a type that

looks much like the service type, except that it does not include the service implementation. This type is

configured much the same as the ServiceHost – it requires access to one of the service endpoint

addresses, the binding for that endpoint, and the contract. This way the client and service agree on

where the proxy should send messages, what protocols should be used, and what data should be

serialized to call the operation, along with what data will be serialized upon its return. It doesn’t matter

if the client proxy looks identical to the service type, nor if the supporting types are implemented exactly

as they are at the service. What matters is wire-compatibility between the two.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 5

In the next sections I’ll explain how to create, host and consume your first service. The example that will

be used for many of the discussions in this whitepaper is a Todo List application – and so I will use that

example to walk you through this process.

Creating a New Service
When you create a service you begin with defining the service contract and any associated data

contracts required for serialization. The Todo List application uses the service contract shown in Figure 2

(ITodoListService) and the data contract shown in Figure 3 (TodoItem with associated enumerations).

Figure 2: ITodoListService service contract implementation

[ServiceContract(Namespace="http://wcfclientguidance.codeplex.com/2009/04")]

public interface ITodoListService

{

 [OperationContract]

 List<TodoItem> GetItems();

 [OperationContract]

 string CreateItem(TodoItem item);

 [OperationContract]

 void UpdateItem(TodoItem item);

 [OperationContract]

 void DeleteItem(string id);

}

Figure 3: TodoItem data contract implementation with dependent enumerations

[DataContract(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

public class TodoItem

{

 [DataMember(Order=1, IsRequired=false)]

 public string ID { get; set; }

 [DataMember(Order = 2, IsRequired = true)]

 public string Title { get; set; }

 [DataMember(Order = 3, IsRequired = true)]

 public string Description { get; set; }

 [DataMember(Order = 4, IsRequired = true)]

 public PriorityFlag Priority { get; set; }

 [DataMember(Order = 5, IsRequired = true)]

 public StatusFlag Status { get; set; }

 [DataMember(Order = 6, IsRequired = true)]

 public DateTime? CreationDate { get; set; }

 [DataMember(Order = 7, IsRequired = true)]

 public DateTime? DueDate { get; set; }

 [DataMember(Order = 8, IsRequired = true)]

 public DateTime? CompletionDate { get; set; }

 [DataMember(Order = 9, IsRequired = true)]

 public double PercentComplete { get; set; }

 [DataMember(Order = 10, IsRequired = true)]

 public string Tags { get; set; }

}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 6

public enum PriorityFlag

{

 Low,

 Normal,

 High

}

public enum StatusFlag

{

 NotStarted,

 InProgress,

 Completed,

 WaitingOnSomeoneElse,

 Deferred

}

The service contract is implemented as a CLR interface decorated with the ServiceContractAttribute,

each method decorated with the OperationContractAttribute so that it will be included in the service

metadata. You typically supply a Namespace to the ServiceContractAttribute to disambiguate messages

on the wire.

The data contract is a CLR type decorated with the DataContractAttribute, each member decorated with

the DataMemberAttribute to include it in serialization. Again, a Namespace is supplied to the

DataContractAttribute to disambiguate types during serialization. It is also a recommended practice that

DataMemberAttributes include values for the Order and IsRequired properties. Order is alphabetical by

default, but supplying explicit order improves clarity and maintainability. By default no values are

required, so it is important to be explicit if any values are indeed required to fill out the type.

The service contract is implemented by a CLR type like the one shown in Figure 4 (TodoListService). The

service type implements one or more service contract and coordinates calls to the business and data tier

of the application. In this simple example the implementation of the service is embedded directly into

the service type. The ServiceBehaviorAttribute is used to apply service behaviors that are tightly coupled

to the implementation.

Figure 4: Implementation of TodoListService

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerCall,

ConcurrencyMode=ConcurrencyMode.Multiple)]

public class TodoListService: ITodoListService

{

 private static object _TodoListLock = new object();

 private static List<TodoItem> _SharedTodoList = new List<TodoItem>();

 public List<TodoItem> GetItems()

 {

 return _SharedTodoList;

 }

 public string CreateItem(TodoItem item)

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 7

 {

 lock (_TodoListLock)

 {

 item.ID = _SharedTodoList.Count.ToString();

 _SharedTodoList.Add(item);

 }

 return item.ID;

 }

 public void UpdateItem(TodoItem item)

 {

 lock (_TodoListLock)

 {

 TodoItem found = _SharedTodoList.Find(x => x.ID == item.ID);

 found.Title = item.Title;

 found.Description = item.Description;

 found.DueDate = item.DueDate;

 found.CompletionDate = item.CompletionDate;

 found.PercentComplete = item.PercentComplete;

 found.Priority = item.Priority;

 found.Status = item.Status;

 found.Tags = item.Tags;

 }

 }

 public void DeleteItem(string id)

 {

 lock (_TodoListLock)

 {

 _SharedTodoList.RemoveAll(x => x.ID == id);

 }

 }

}

Typically, services use InstanceContextMode.PerCall so that each call gets its own instance of the

service, and ConcurrencyMode.Multiple so that multithreaded clients can execute multiple concurrent

threads at the service. Since this example uses an in-memory collection to store TodoItem instances – a

lock is used to protect access to the collection from multiple executing threads.

Configuring the ServiceHost
Assuming you are hosting on Windows Server 2003 or Windows Server 2008 machines – you will

typically host services in Internet Information Services (IIS), Windows Process Activation Service (WAS)

or self-host in a Windows Service. For testing purposes one usually uses a Console application to host

services – graduating to the appropriate Windows Service or Web Site host to run final tests equivalent

to production.

I’ll start by explaining the hosting process with a Console and then compare to the other hosting

environments. To host a service you will initialize the ServiceHost for that service type and supply one or

more service endpoints, custom binding configurations if applicable, and configure runtime behaviors.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 8

Figure 5 shows the code to initialize the ServiceHost for the TodoListService in the context of a Console

test host. A few things are notable:

 Since the lifetime of the Console host is tied to the ServiceHost instance, it is ok to use the
“using” statement. In the event that Close() throws an exception, when the process is shut down
it will clean up any lingering channel resources. If this were a Windows Service, you would call
Close() directly, and call Abort() in the face of an exception to ensure proper clean up if the
process was to remain alive. You’ll see this pattern employed with proxies in this whitepaper.

 Handle the Faulted event so that you can notify administrators of any problems.

Figure 5: Initialization the ServiceHost for the TodoListService

static void Main(string[] args)

{

 using (ServiceHost host = new

ServiceHost(typeof(TodoList.TodoListService)))

 {

 host.Faulted += new EventHandler(host_Faulted);

 host.Open();

 Console.WriteLine("ServiceHost now running.");

 Console.ReadLine();

 }

 Console.ReadLine();

}

static void host_Faulted(object sender, EventArgs e)

{

 Console.WriteLine("ServiceHost has faulted. Restart the service.");

}

The code in Figure 5 assumes that endpoints will be configured in the app.config (this would be the

web.config for IIS and WAS hosting). Figure 6 shows the <system.serviceModel> section for the

TodoListService. A single endpoint is exposed over WSHttpBinding – which by default secures calls with

a Windows credential. A metadata exchange endpoint is exposed over MexHttpBinding (a variation of

WSHttpBinding without security) to support proxy generation. The associated service behavior (see the

<serviceBehaviors> section) enables the ServiceMetadataBehavior to support the metadata exchange

endpoint, and to enable HTTP browsing (so that you can view the WSDL document in the browser). The

debug setting to includeExceptionDetailsInFaults should be set to false in production deployments.

Figure 6: Service model configuration for the TodoListService

<system.serviceModel>

 <services>

 <service name="TodoList.TodoListService"

behaviorConfiguration="serviceBehavior">

 <endpoint address="" binding="wsHttpBinding"

contract="Contracts.ITodoListService" />

 <endpoint address="mex" binding="mexHttpBinding"

contract="IMetadataExchange" />

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 9

 <host>

 <baseAddresses>

 <add baseAddress="http://localhost:8000"/>

 </baseAddresses>

 </host>

 </service>

 </services>

 <behaviors>

 <serviceBehaviors>

 <behavior name="serviceBehavior">

 <serviceDebug includeExceptionDetailInFaults="false"/>

 <serviceMetadata httpGetEnabled="true"/>

 </behavior>

 </serviceBehaviors>

 </behaviors>

</system.serviceModel>

With this you now have a service to consume from your WPF client.

Calling the Service
Once you have created a WPF application and the Console host is running you can generate a proxy for

your WPF client to call the service. If the service, the host and the client are part of the same solution,

you must run the Console host without debugging first in order to generate a proxy using Add Service

Reference. From Solution Explorer you can right-click on the WPF project and select Add Service

Reference which launches the Service Reference dialog. Supply the base address to the service as shown

in Figure 7. If the service is hosted with IIS or WAS, the base address is the address to the .svc endpoint

such as “http://localhost/TodoListWebHost/TodoListService.svc”.

Figure 7: Adding a service reference using a self-hosted service base address

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 10

This generates a proxy class named TodoListServiceClient, generates copies of the service metadata such

as the service contract and data contract discussed earlier, and generates a client-side service model

configuration for the app.config. You can now write code to construct the proxy and begin making calls

to service operations such as GetItems() as in the following code:

TodoListServiceClient _Proxy = new TodoListServiceClient();

_ToDoItems = _Proxy.GetItems();

Of course there are some additional details we will now begin to discuss related specifically to client-

side development – however this should give you the gist of how you can create, host and consume a

WCF service.

Metadata and Proxy Generation
In theory, the client does not care how a service is implemented since it relies on published service

metadata to generate a proxy that can call the service. This generates a client-side copy of the necessary

metadata that results in a similar set of types to the service implementation with wire compatibility. The

client application can optionally share metadata libraries with the service. The sections to follow will

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 11

discuss the proxy generation features available to Add Service Reference and SvcUtil, compare

ClientBase<T> and ChannelFactory<T>, compare proxy generation and shared libraries, and provide

recommendations for client-side representations of types for data binding, change notifications, and

version tolerance.

Proxy Generation Fundamentals
No matter how types are implemented at the service, WSDL definition, or the runtime

ServiceDescription accessible through WS-MetadataExchange that is used to generate a proxy using

SvcUtil. The ServiceHost initializes a ServiceDescription that, among other things, includes information

for all service endpoints including related service contracts, message contracts, fault contracts, data

contracts and other serializable types such as types marked with the SerializableAttribute, types that

implement IXmlSerializable, and XmlSerializer types if the XmlSerializer is being used at the service. For

those new to WCF, Figure 8 summarizes these contract types and their role in service development.

Figure 8: A summary of contract types that may be used at the service

Contract Type Service Usage

Service Contract Usually implemented as a CLR interface decorated with the
ServiceContractAttribute. Defines service operations to be exposed
for a particular endpoint.

Message Contract Used to define SOAP messages as in parameters or return values
from a service operation. Includes header and body elements that
must be serializable types.

Fault Contract Used to indicate in the service metadata the type of SOAP fault
details that may be returned by a particular service operation if
exception occurs and a fault is thrown.

Data Contract The preferred way to define types that can be serialized by the
DataContractSerializer for a WCF service. Forces you to opt-in all
elements to be serialized according to preferred SOA semantics.

SerializableAttribute Types marked with the SerializableAttribute are also serializable
through the DataContractSerializer. This is useful for legacy types
that are in pre-defined assemblies but results in wire-serialization
(fields, not properties).

IXmlSerializable Types that implement this interface are used handle custom XML
serialization and deserialization for complex schemas that are not
easily represented by other serializable types.

XmlSerializer When the XmlSerializer is employed instead of the
DataContractSerializer, these types can employ XmlSerializer
attributes such as the XmlElementAttribute or
XmlAttributeAttribute to control type serialization.

Plain Old CLR Object (POCO) Types that are not marked with any attributes can also be serialized
through the DataContractSerializer so long as they do not
participate in a hierarchy that involves other serializable types nor
reference any serializable types – in other words, all types must be
POCO types.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 12

Regardless of the types used to implement the service contract, proxy generation will create a service

contract equivalent for the client. This will include a service contract, message contracts if applicable,

and fault contracts if applicable. Typically, all serializable types are represented as data contracts at the

client – even if they are represented by an alternate serializable type at the service. The exception to

this is if the type cannot be represented as a data contract because of a complex schema, in which case

the XmlSerializer may be configured for use at the client and all types decorated with XmlSerializer

attributes. SvcUtil makes this decision as it inspects the metadata.

Figure 9 captures the process of proxy generation using SvcUtil assuming the default behavior –

generating data contracts for all serializable types.

Figure 9: Proxy generation with SvcUtil

Visual Studio supplies this functionality through Add Service Reference as discussed earlier. In fact, all of

the key features are available through the dialog, as shown in Figure 10, making it unnecessary to use

SvcUtil from the command line to generate proxies unless you are automating the process or have a

special circumstance.

Figure 10: Useful Service Reference settings for WPF clients

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 13

The following settings from Figure 10 are particularly useful when generating proxies for WPF clients:

 Select “Generate asynchronous operations” to simplify asynchronous calls to the service and
improve perceived performance at the client

 Select ObservableCollection for client-side data binding – something I’ll talk more about

 By default the proxy will reuse types in referenced assemblies so don’t forget to add references
to any shared libraries containing data contracts and serializable types before generating the
proxy

ClientBase<T> and ChannelFactory<T>
The proxy generated by Add Service Reference inherits ClientBase<T> which exposes operations

according to the service contract for a particular endpoint, and wraps calls to the inner communication

channel. An alternative to this would be to directly construct the channel using ChannelFactory<T>,

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 14

which provides access to the same service operations but does not provide the functionality of

ClientBase<T>. Figure 11 compares the two approaches.

Figure 11: Comparison between ClientBase<T> and ChannelFactory<T>

Feature ClientBase<T> ChannelFactory<T>

Metadata Service metadata including
service contracts, data contracts,
message contracts and fault
contracts are automatically
generated for the client. No
need to share code.

Assumes service metadata
including service contracts, data
contracts, message contracts
and fault contracts are already
available to the client, possibly
through shared assemblies.

Contracts and Object Model Contracts are automatically
generated by SvcUtil based on
metadata and may not be
identical to the object model
employed by the service.

Contracts are often available
through shared libraries if you
own both sides – thus the object
model is identical to that used by
the service.

Extended Channel Features Exposes ICommunicationObject
and IContextChannel features
without the need to cast the
proxy reference.

Must cast the channel reference
to access ICommunicationObject
and IContextChannel features.

Channel Factory Caching Automatically caches the
channel factory based on a
limited set of proxy constructors
and initialization parameters.

Must manually cache the
channel factory. This can yield
more flexibility in caching
options.

Asynchronous Pattern Can generate a proxy that
exposes asynchronous
operations and implements an
asynchronous pattern that
exposes callback events that are
invoked on the UI thread to
simplify interaction with control
properties.

Can generate a channel that
exposes asynchronous
operations, invoke operations
asynchronously and implement
callback events. Callback events
are executed on a new thread
which means interacting with
control properties must be
marshaled to the UI thread.

When working with WPF clients, ClientBase<T> yields the following distinct advantages:

 You can expose collections as ObservableCollection<T> directly from the proxy. If you are
sharing metadata libraries, it is unlikely that the service contract implements
ObservableCollection<T> as its return type for collections.

 The event-based asynchronous pattern marshals results to the UI thread removing the need to
do this manually.

Generally speaking, the ClientBase<T> implementation, although sometimes verbose, should do the

trick in a simple application. The only drawback is that the client-side object model is not identical to

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 15

that of the service, and if you own both sides of the implementation it may be preferable for developers

to use the same implementation. More complex applications usually need more streamlined exception

handling implementations, more control over channel factory caching, and other custom functionality

added to their proxies – which implies editing the generated proxy or rolling a custom proxy wrapper.

Sharing Types and Libraries
You have three main options to choose from for proxy generation or working with a custom proxy:

 If you don’t own both sides, you are likely to generate a proxy using Add Service Reference
(SvcUtil) which will create copies of all service contracts, data contracts and other related types
from metadata. This is illustrated in Figure 12.

 You can optionally add a reference to some shared libraries, or pre-created libraries containing
data contracts and other serializable types – before you generate the proxy. This way, the
generated proxy will use the referenced types as shown in Figure 13.

 You can share libraries that include not only data contracts and serializable types, but also any
service contracts, message contracts and fault contracts. In this case you would create a custom
proxy using ClientBase<T> or ChannelFactory<T> as shown in Figure 14.

Figure 12: Classic proxy generation using SvcUtil

Figure 13: Generating proxies with shared types

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 16

Figure 14: Creating a custom proxy using shared service contracts and related types

As mentioned earlier, proxy generation is usually good enough for simple examples. If you share libraries

containing complex types you can generate a proxy using those types. On advantage of this might be

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 17

sharing validation code on both sides, for example, while still leveraging the benefits of generating the

ClientBase<T> implementation.

Chances are, however, that if you own the libraries with complex types you probably also own the

service implementation which means you can share all metadata in separate libraries. This approach is

good for productivity and version control – if libraries are shared all developers are sure to be using the

same contracts.

If you decide to share libraries between service and client developers, you should isolate assemblies

containing metadata from those with the service and business implementation. For example, create an

assembly for contracts and another for entities. The contracts assembly should contain the service

contract and any message contracts or fault contract types. The entities assembly should contain all data

contracts or other forms of serializable types used by service contracts and message contracts.

Some of the topics to be discussed in this whitepaper should also be considered if you are sharing

metadata libraries between clients and services:

 You should create a synchronous and asynchronous version of the service contract so that
clients can use the latter even if the service uses the synchronous version.

 Service contracts will expose List<T> which means clients will have to convert results to
ObservableCollection<T> for data binding – instead of deserializing into that collection type.

 Implementations of INotifyPropertyChanged and IDataErrorInfo, frequently used by clients,
should only be available to the client code. Use partial classes to achieve this.

 Implement IExtensibleDataObject at the client only. If you implement this interface on types
shared by the client and service – be sure to set use the ServiceBehaviorAttribute to disable
support for this at the service to prevent denial of service attacks.

Arrays and Data Binding
Collections, lists and arrays are always represented in service metadata as XSD schema arrays. By

default, SvcUtil (and Add Service Reference) generates a proxy that represents arrays as System.Array –

but this is not a particularly friendly programming model compared to other collection types, nor is it

helpful for data binding activities. Typically you would choose from List<T>, BindingList<T> or

ObservableCollection<T> as the collection type (from Figure 10) as you generate your proxy. Each of

these types implements several interfaces that are common to collections such as IList,

IEnumerable<T>, IEnumerable, ICollection<T>, and ICollection – but they differ in the following

respects:

 If you aren’t doing any data binding, List<T> is an obvious choice as it provides an easy to use
object model for interacting with collections. It does not, however, supply and benefits for data
binding activities.

 BindingList<T> is typically chosen to support data binding in Windows Forms applications or for
shared libraries that will be used by both WPF and Windows Forms applications.

 ObservableCollection<T> is the preferred data binding collection for WPF clients.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 18

As an example, if you bind a WPF DataGrid control to a collection of type List<T> the UI is not

automatically updated when the list or the items in the list are updated. However, if you bind to

BindingList<T> or ObservableCollection<T>, you need only assign the collection to the ItemsSource

property and the UI is updated with the collection. The following code binds an

ObservableCollection<T> to a DataGrid:

ObservableCollection <TodoItem> _TodoItems = new

ObservableCollection<TodoItem>();

_TodoItems = _Proxy.GetItems();

TodoDataGrid.ItemsSource = _TodoItems;

Any changes to _TodoItems will be reflected in the DataGrid, for example:

_TodoItems.Add(new TodoItem {…}); // UI updated!

Change Notifications
When you generate a proxy with Add Service Reference, data contract types implement the

INotifyPropertyChanged interface. As shown in Figure 15, the set operation for each property raises the

PropertyChanged event so that subscribing clients will be notified of the change.

Figure 15: A partial view of the INotifyPropertyChanged implementation in the TodoItem data

contract

[System.Runtime.Serialization.DataContractAttribute(Name="TodoItem",

Namespace="http://wcfclientguidance.codeplex.com/2009/04/schemas")]

[System.SerializableAttribute()]

public partial class TodoItem : object, IExtensibleDataObject,

INotifyPropertyChanged

{

 // fields

 [System.Runtime.Serialization.DataMemberAttribute(IsRequired=true)]

 public string Title {

 get {

 return this.TitleField;

 }

 set {

 if ((object.ReferenceEquals(this.TitleField, value) != true)) {

 this.TitleField = value;

 this.RaisePropertyChanged("Title");

 }

 }

 }

 // additional members

 public event PropertyChangedEventHandler PropertyChanged;

 protected void RaisePropertyChanged(string propertyName) {

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 19

 System.ComponentModel.PropertyChangedEventHandler propertyChanged =

this.PropertyChanged;

 if ((propertyChanged != null)) {

 propertyChanged(this, new

System.ComponentModel.PropertyChangedEventArgs(propertyName));

 }

 }

}

One way that you can leverage this implementation is to provide a PropertyChanged handler for each

item in a collection. If the collection is bound to a WPF DataGrid, as the user makes changes you can

handle it by sending updates to the service if applicable. The following code illustrates this:

// subscribing to PropertyChanged

foreach(TodoItem item in _TodoItems)

{

 item.PropertyChanged += Item_PropertyChanged;

}

// sending updates to the service

void Item_PropertyChanged(object sender, PropertyChangedEventArgs e)

{

 TodoItem item = (TodoItem) sender;

 _Proxy.UpdateItem(item);

}

Of course, for very large lists a more appropriate approach might be to send updates in batch rather

than as changes are made to individual items.

If you are sharing libraries between client and service, it is best not to use notifications at the service. It

is best to keep the implementation in shared libraries to that which both client and service can share –

as in the core data contract implementation – and use partial classes to implement client-specific

features like INotifyPropertyChanged at the client.

Version Tolerance
Proxies generated with Add Service Reference also create data contract types that implement

IExtensibleDataObject to support version tolerance. The implementation adds a single member,

ExtensionData, to the type as shown here:

[DataContract(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

public class TodoItem : IExtensibleDataObject

{

 // data members

 #region IExtensibleDataObject Members

 public ExtensionDataObject ExtensionData { get; set; }

 #endregion

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 20

}

The implementation supports scenarios where the client accesses a service that has updated its data

contracts to add new data members unknown to earlier versions at the client. Unknown XML elements

are preserved in the deserialized instance of the type at the client, so that if the client saves updates to

other members, when serializing messages to the service elements in the ExtensionData dictionary will

be serialized along with it.

You typically do not want to support this at the service to prevent Denial-of-Service (DoS) attacks, so if

you are sharing libraries between clients and services you can implement this interface and suppress the

behavior at the service by applying the ServiceBehaviorAttribute with IgnoreExtensionDataObject set to

true.

[ServiceBehavior(IgnoreExtensionDataObject=true)]

Proxy Lifetime Management
You will typically keep each proxy instance around for the lifetime of your WPF application – but, that

means your code must also handle recreating the proxy when the communication channel is no longer

usable, and look for optimizations such as channel factory caching. This section will focus on techniques

for managing proxy lifetime for both ClientBase<T> and ChannelFactory<T>, in addition to channel

factory caching optimizations.

ClientBase<T> Proxy Creation and Disposal
Proxies based on ClientBase<T> hide the specifics of channel factory and channel creation. A reference

to a ClientBase<T> proxy therefore is a reference to both the underlying channel factory and channel. To

align proxy lifetime with that of the application you typically create the proxy when the main window is

created and dispose of it when the main window is closed. This is contrary to the plethora of WCF

samples that illustrate creating a proxy and disposing of it during each method call like the following

code illustrates:

using (TodoListServiceClient proxy = new TodoListServiceClient())

{

 proxy.UpdateItem(item);

}

There are a few reasons why the using statement is not recommended for proxy lifetime management.

First, it is costly to create the client channel and doing this for every call carries a lot of overhead. In a

multithreaded client if each thread creates a new proxy it can severely impact application performance.

Second, the call to Dispose() actually calls the proxy’s Close() method – which may fail if the client

channel is in a faulted state. This can happen when the channel has a transport session and a problem

occurs such as an uncaught exception at the service.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 21

NOTE: Transport sessions are present with TCP and Named Pipe bindings, and with HTTP bindings that

have either reliable sessions or secure sessions enabled.

It is better practice to create the proxy and scope it to the application, and when closing the proxy place

a try…catch around the call to Close(). If Close() fails, the code should call Abort() to clean up remaining

channel resources the proxy has allocated. Figure 16 illustrates this. The proxy is created when the main

Window is constructed, and disposed during the Closed event. In the event something causes the client

channel to fault, the Faulted event is handled – at which time the proxy is aborted to clean up, and a

new instance created. This ensures there is always a proxy available for use. This code makes a few

assumptions about the application’s requirements:

 That any exceptions causing the channel to fault have already been reported to the user

 That the service does not use in-memory sessions and thus it is acceptable to create a new
proxy without data loss from the user’s perspective

 That when the application is shutting down, any exceptions thrown when Close() is called are
not useful to report

Figure 16: Proxy lifetime aligned with the lifetime of the main application window

public partial class MainWindow : Window

{

 private TodoListServiceClient _Proxy;

 public MainWindow()

 {

 InitializeComponent();

 if (!DesignerProperties.GetIsInDesignMode(new DependencyObject()))

 {

 _Proxy = new TodoListServiceClient();

_Proxy.InnerChannel.Faulted += new

EventHandler(InnerChannel_Faulted);

 _TodoItems = _Proxy.GetItems();

 }

 }

 void InnerChannel_Faulted(object sender, EventArgs e)

 {

 _Proxy.Abort();

 _Proxy = new TodoListServiceClient();

 _Proxy.InnerChannel.Faulted+=new EventHandler(InnerChannel_Faulted);

 }

 private void AddTodoButton_Click(object sender,

System.Windows.RoutedEventArgs e)

 {

 _Proxy.CreateItem(_NewTodo);

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 22

 }

 void Item_PropertyChanged(object sender, PropertyChangedEventArgs e)

 {

 _Proxy.UpdateItem(item);

 }

 private void DeleteTodoItem_Click(object sender,

System.Windows.RoutedEventArgs e)

 {

 _Proxy.DeleteItem(item.ID);

 }

 private void window_Closing(object sender, CancelEventArgs e)

 {

 try

 {

 _Proxy.Close();

 }

 catch

 {

 _Proxy.Abort();

 }

 }

}

You may see examples that check to see if the channel is in a faulted state and call Abort() if it is,
otherwise call Close():

if (_Proxy.State == System.ServiceModel.CommunicationState.Faulted)

 _Proxy.Abort();

else

 _Proxy.Close();

Although this approach may work most of the time, there is always a chance that the underlying channel
will change to faulted state after you check the state. In that case, Close() will still throw an exception
and resource cleanup left incomplete. For these reasons the approach in Figure 16 is better in practice.

If you are using ChannelFactory<T> to create a proxy, rather than the generated type based on
ClientBase<T>, the equivalent code to create and dispose of the channel is shown in Figure 17. The key
differences in this approach are as follows:

 The channel factory is explicitly cached so that, in the event the channel is faulted, the same
channel factory can be used to recreate the channel

 The Faulted event is exposed by the channel

 The proxy must be cast to ICommunicationObject to close or abort the channel.

Calls to service operations using the proxy remain identical to that shown in Figure 16.

Figure 17: Managing proxy lifetime with ChannelFactory<T>

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 23

public partial class MainWindow : Window

{

 ChannelFactory<ITodoListService> _Factory;

 private ITodoListService _Proxy;

 public MainWindow()

 {

 InitializeComponent();

 if (!DesignerProperties.GetIsInDesignMode(new DependencyObject()))

 {

 _Factory = new ChannelFactory<ITodoListService>("");

 _Proxy = _Factory.CreateChannel();

 _Proxy.Faulted += new EventHandler(InnerChannel_Faulted);

 }

 }

 void InnerChannel_Faulted(object sender, EventArgs e)

 {

 ICommunicationObject co = _Proxy as ICommunicationObject;

 co.Abort();

 _Proxy = _Factory.CreateChannel();

 _Proxy.Faulted += new EventHandler(InnerChannel_Faulted);

 }

 private void window_Closing(object sender, CancelEventArgs e)

 {

 try

 {

 _Proxy.Faulted -= InnerChannel_Faulted;

 ICommunicationObject co = _Proxy as ICommunicationObject;

 co.Close();

 }

 catch

 {

 try

 {

 ICommunicationObject co = _Proxy as ICommunicationObject;

 co.Abort();

 }

 catch {}

 }

 try

 {

 _Factory.Close();

 }

 catch

 {

 try

 {

 _Factory.Abort();

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 24

 }

 catch {}

 }

 }

}

Although attaching the lifetime of the proxy to the application is ideal, there could be reason to create a
new instance of the proxy before the application is closed, including:

 As mentioned earlier, the underlying channel could be put into a faulted state causing the proxy
to be unusable

 If your application supports logging in an alternate user – this requires constructing a new proxy
since the channel is immutable

 For the same reason, if any other facet of the channel must be modified during the lifetime of
the application, a new proxy with those features must be created

Figure 16 and Figure 17 illustrate recreating the channel when the Faulted event is handled, but you

may also explicitly recreated the channel for any of these reasons. If this is the case, you must

remember to close or abort the previously created proxy, which means both the factory and channel if

using ChannelFactory<T>, to clean up those resources.

ChannelFactory<T> and MRU Caching
Although you may try to hold on to each proxy for the lifetime of the application, you can optimize the

cost to recreate the channel by caching the channel factory. Figure 17 showed the code to do this for a

single proxy by maintaining a reference to the factory separate from the actual channel (proxy)

reference. In .NET 3.5 SP1 a new feature was introduced to automatically cache the channel factory in

the Most Recently Used (MRU) channel cache when you create proxies using ClientBase<T>.

The MRU cache automatically stores channel factories for each ClientBase<T> proxy you create in the

application domain based on common initialization properties. Thus, you can write code to recreate the

proxy and the underlying code will search for a channel factory that matches those initialization

parameters – creating a new channel factory only if necessary.

Suppose the Todo List application also exposed an AdminService – Figure 18 illustrates how the client,

while creating the generated ClientBase<T> proxy for each service, also generates an entry in the MRU

cache for each factory type.

Figure 18: Populating the MRU cache while generating ClientBase<T> proxies

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 25

In reality, caching the channel (proxy) is what yields the best performance for a client application – in

particular if it is multithreaded. Where channel factory caching comes in handy is when proxies must be

recreated for timeouts or faulted channels in a multithreaded application. The MRU cache feature

removes the need to manually cache the channel factory and build a custom proxy – when

ClientBase<T> is doing the job just fine.

Exception Handling
When you want to communicate with a WCF service you will typically construct the proxy, keep it alive

for the lifetime of the application, and make calls to service operations using the same proxy instance. If

the operation throws an exception, it is converted into a SOAP fault – the interoperable standard for

returning exceptions from a service. In a perfect situation you can use the same proxy to make calls to

services operations even after an exception is thrown. Depending on the nature of the communication

channel, and the type of exception thrown, you may have to contend with faulted channels and proxy

recreation semantics.

This section will review the types of exceptions that a service can throw, the client-side semantics for

handling service exceptions, and issues related to session expiry and faulted channels that impact proxy

lifetime.

Exceptions and Faults
Services have a few options for reporting exceptions to client applications:

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 26

 They can allow CLR exceptions to flow up to the service channel

 They can trap CLR exceptions and throw a simple fault exception in its place

 They can trap CLR exceptions and throw a detailed fault exception

Allowing CLR exceptions to propagate to the client is not recommended. By default this results in a very

general fault being reported to the client, and is not useful for the application or the end user to act on.

Furthermore, uncaught exceptions are considered a risk to the service channel and thus the channel is

faulted. In the presence of a transport session (TCP, Named Pipes or HTTP with secure sessions or

reliable sessions enabled) this renders the proxy unusable.

Throwing a simple fault implies using FaultException to throw the fault as follows:

throw new FaultException("Invalid operation.");

This is useful for reporting a simple error message to the client, without faulting the channel. The client

can catch this as a FaultException as follows:

catch (FaultException faultex)

{

 MessageBox.Show(faultex.Message);

}

Throwing a detailed fault implies using the generic type FaultException<T> to throw the fault from the

service – where T is a data contract or other serializable type describing additional details to be returned

to the client beyond a simple error message. Figure 19 illustrates a simple example of a data contract

used as the fault detail, and the code to throw the fault.

Figure 19: Throwing FaultException<T> at the service

[DataContract(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

public class FaultDetail

{

 public string OriginalExceptionType { get; set; }

 public string OriginalExceptionMessage { get; set; }

}

throw new FaultException<FaultDetail>(new FaultDetail { OriginalExceptionType

= "InvalidOperationException", OriginalExceptionMessage = "Unable to update

item." }, "Invalid item ID.", FaultCode.CreateSenderFaultCode("SenderFault",

"http://wcfclientguidance.codeplex.com/2009/04"));

Typically, when the service implements an exception handling model that includes throwing detailed

faults, operations will include a FaultContractAttribute for each type of FaultException<T> that can be

thrown by the operation. Fault contracts are included in the WSDL description so that clients can

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 27

generate proxies that include the fault contract and a copy of the data contract matching the fault detail

type. The client can then catch detailed faults as follows:

catch (FaultException<FaultDetail> faultex)

{

 string errorMessage = faultex.Message;

 FaultDetail detail = faultex.Detail;

 MessageBox.Show(string.Format("Error message: {0}, Detail: {1}",

errorMessage, detail));

}

If the service throws exceptions with details, this probably means that the service designer thinks the

detail is important – beyond a simple error message. At a minimum, services should throw a simple

FaultException instead of allowing exceptions to propagate to fault the communication channel.

Exceptions and Proxy Lifetime
If the communication channel between clients and services does not involve a transport session, proxy

lifetime is not impacted by certain types of exceptions. The following scenarios involve session, and

therefore require special consideration:

 Intranet communications over TCP (NetTcpBinding) or Named Pipes (NetNamedPipeBinding)
involve a socket or named pipe – both being transport sessions.

 Internet communications over HTTP that include either secure sessions or reliable sessions. By
default WSHttpBInding and WS2007HttpBinding enables secure sessions, WSDualHttpBInding
requires reliable sessions, and WSFederationHttpBInding and WS2007FederationHttpBinding
requires secure sessions.

BasicHttpBinding and WebHttpBinding are not included in this list since they do not support advanced

web service protocols.

In the presence of sessions there are two key concerns: session timeouts and uncaught CLR exceptions.

By default, sessions have a lifetime of ten minutes, after which time the service channel will timeout and

be put into a faulted state. Figure 20 illustrates what happens when the service channel times out.

When the proxy accesses the service the timer begins (1). If the client does not call the service within

the session timeout period the service channel is faulted (2) which means the session no longer exists at

the service. On the next call the service, the call will fail since the session is gone, the client channel will

be faulted, and a communication exception reported to the client (3) indicating the source of the

timeout. There isn’t a specific timeout exception – instead the channel that owned the session is the

source of the fault. From here on in if the client tries to use the proxy a communication exception will be

reported indicating that the channel is faulted (4).

Figure 20: The impact of timeout exceptions on the client proxy

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 28

Figure 21 captures a similar flow for the case where an uncaught exception is thrown at the service. The

session is established when the proxy makes the first call (1) and both ends of the session remain intact

so long as there isn’t a session timeout (2). If the proxy calls a service operation that throws an uncaught

exception, the service channel is faulted and a generic fault is reported to the client channel, which in

turn reports the general exception to the calling client code (3). Both the service and client channel are

in a faulted state at this point (4), thus subsequent calls to the proxy result in a communication

exception (5).

Figure 21: The impact of uncaught exceptions on the client proxy

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 29

If the client wants to provide a pleasant (and useful) experience for the end-user, the following should

be done when sessions are present. When making a call with a proxy, if a CommunicationException is

thrown – and it is not a FaultException – in order to hide the session timeout from the end-user create a

new proxy and try the call again. If it still fails – you have a bigger problem that requires the user’s

attention. If it succeeds, you may have had a session timeout or a faulted channel resulting from a one-

way call – the latter of which would not be reported until the next call. An example of how this should

work is shown here:

try

{

 // use the proxy here

}

catch (CommunicationException comEx)

{

 FaultException faultEx = comEx as FaultException;

 if (faultEx != null)

 {

 throw;

 }

 // use the proxy again here, if it throws, let it

}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 30

You should also handle the client channel’s Faulted event and recreate the proxy when the event is

triggered. The user will still be presented with any exceptions that occur at the service – causing the

faulted channel – but they will seamlessly be presented with a new channel to continue working with

the service. This approach is particularly important when calling services that unfortunately do not

convert uncaught exceptions to faults. In the previous section of this whitepaper, Figure 16 and Figure

17 illustrate how to handle the Faulted event and recreate the proxy using ClientBase<T> and

ChannelFactory<T> scenarios respectively.

As you can imagine, all of this exception handling can cause significant clutter in the client code.

Fortunately, you can create an exception handling proxy wrapper that handles recreating the channel

when it is faulted. A sample has been provided to illustrate this.

Asynchronous Calls and Multithreading
Client applications can be optimized with asynchronous calls and multithreading. Delegating work to

threads other than the UI thread can improve perceived performance since the user is able to continue

interacting with the UI while other work is being done. The downside, of course, is that this requires

some knowledge of multithreading and synchronization techniques. This section will not become a crash

course in multithreading as that would require another whitepaper, however it will provide you with

some tips directly related to client that call WCF services including the most effective way to call services

asynchronously, and considerations for multithreaded clients that consume services.

Asynchronous Proxies
Although individual calls to service operations may not impact the perceived performance of your WPF

client applications, applications that must retrieve large amounts of data or make frequent service calls

can benefit from making those calls asynchronously. Asynchronous calls free up the UI thread to process

Windows messages so that users can keep working while as remote calls are in progress.

Proxies generated with Add Service Reference support two modes of asynchronous operations:

delegate-based and event-based. Delegate-based asynchronous operations follow the traditional

asynchronous delegate pattern whereby each call is broken into two: a begin operation, and an end

operation. The following illustrates such an implementation for the TodoListService proxy for the

GetItems() operation:

public IAsyncResult BeginGetItems(AsyncCallback callback,

object asyncState)

{

 return base.Channel.BeginGetItems(callback, asyncState);

}

public ObservableCollection<TodoItem> EndGetItems(IAsyncResult result)

{

 return base.Channel.EndGetItems(result);

}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 31

When the client code calls BeginGetItems() the service call is executed on a separate thread. Typically,

you will pass a delegate to the AsyncCallback parameter to be notified when the call is complete – at

which time you will call EndGetItems() to retrieve the result. Figure 22 illustrates this. The callback will

execute on the thread that executed the call – which is not the UI thread. As such, to interact with the UI

any work should be posted to the UI thread. One effective way to do this is to expose access to the

synchronization context of the main Window so that the callback can use that to send or post messages

for execution. As shown in Figure 22, the main Window can expose a member called _SyncContext that

represents the Window’s synchronization context. The SynchronizationContext instance exposes a

Send() and Post() method – the former executes synchronously, the latter, asynchronously.

Figure 22: Calling service operations using the asynchronous delegate pattern

// Synchronization context for the main Window

private SynchronizationContext _SyncContext = SynchronizationContext.Current;

// invoke the service asynchronously

_Proxy.BeginGetItems(OnGetItemsCallback, null);

// Asynchronous callback

private void OnGetItemsCallback(IAsyncResult result)

{

 if (result.IsCompleted)

 {

 this._SyncContext.Send(state =>

 {

 _TodoItems = _Proxy.EndGetItems(result);

 foreach (TodoItem item in _TodoItems)

 {

 item.PropertyChanged += Item_PropertyChanged;

 }

 TodoDataGrid.ItemsSource = _TodoItems;

 }, null);

 }

}

The drawback of the delegate-based asynchronous pattern is that every callback must synchronize

access to UI components, and to other instance members belonging to the main Window. This requires

developers to write synchronization logic which quickly adds to code clutter, and can become hard to

follow. An alternative to this is to use the event-based approach.

Asynchronous proxies also expose an asynchronous call for each service operation – with the suffix

“Async” – and an event handler which is fired when the call is completed. For the GetItems() operation

two implementations of GetItemsAsync() provided – one that takes a state parameter in the event the

client is multithreaded and must associate responses with a particular call:

public void GetItemsAsync() {…}

public void GetItemsAsync(object userState) {…}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 32

The default implementation fires the GetItemsCompleted event, which passes a strongly typed set of

event arguments that includes the expected result of the call as a parameter:

public event EventHandler<GetItemsCompletedEventArgs> GetItemsCompleted;

Figure 23 illustrates the relevant client code require to use this event-based pattern. Note that the

synchronization context is not longer required since the GetItemCompleted event is executed on the UI

thread. This logic is encapsulated in the proxy.

Figure 23: Calling service operations using the event-based asynchronous pattern

// Suscribing to the completed event

_Proxy.GetItemsCompleted += new

EventHandler<GetItemsCompletedEventArgs>(_Proxy_GetItemsCompleted);

// Calling the operation asynchronously

_Proxy.GetItemsAsync();

// Handling the completed event

void _Proxy_GetItemsCompleted(object sender, GetItemsCompletedEventArgs e)

{

 _TodoItems = e.Result;

 foreach (TodoItem item in _TodoItems)

 {

 item.PropertyChanged += Item_PropertyChanged;

 }

 TodoDataGrid.ItemsSource = _TodoItems;

}

Clearly the second approach greatly simplifies the client experience. In fact, there is very little reason to

use the former delegate-based approach. So why does SvcUtil generate both patterns in the proxy? In

some very special cases, you may want to execute code that does NOT interact with the UI on the

callback thread first, before posting code to execute on the UI thread. Any time work that does not

involve the UI can perform on another thread, UI performance is improved. In this case you can leverage

the delegate-based pattern to exercise more control.

Multithreading Considerations
Sometimes making asynchronous calls to services isn’t sufficient to improve the perceived performance

of your WPF client applications. Client applications sometimes keep make numerous concurrent calls to

keep the UI up-to-date by polling services, and have other processing logic that must be performed

alongside service calls. In short, sometimes the client must manage its own threads and perform work to

communicate with services from those non-UI threads. This usually means that synchronous operations

exposed by the proxy can be used, instead of either of the asynchronous patterns discussed in the

previous section – after all, the code is running on a separate thread.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 33

You have some options for creating custom threads including asynchronous delegates, custom threads,

and new features of the Task Parallel Library and PLINQ – available in CTP format at the time of this

writing for .NET 3.5 SP1. These approaches are summarized in Figure 24.

Figure 24: A short comparison of multithreading approaches

Multithreading Approach Characteristics

Asynchronous Delegates Asynchronous delegates execute on a thread from the thread pool
and are throttled up to the thread pool limit (the default is usually
25). All code is executed on that thread, including any callback
notifications when the thread has finished executing. Calls to update
UI elements must be executed on the UI thread, and code that
interacts with shared resources such as member variables must be
synchronized while the thread is executing and during callback.

Custom Threads Custom threads execute on a new thread that is not taken from the
thread pool – thus the throttle limit is not applicable. All code is
executed on that thread, and you must write custom code, usually
involving wait handles, to interact with the thread and discover when
the thread is has completed execution. There are no callbacks built-in.
This approach provides a much finer grained control over threads but
also requires additional expertise.

Task Parallel Library and PLINQ This library simplifies multithreading by reducing the number of lines
of code necessary to kick off a new thread, and manage the thread
pool and number of concurrent calls. In addition, the underlying code
automatically takes advantage of multi-core and multiprocessor
systems by distributing work among them. PLINQ is a special aspect of
this library that enables you to iterate of a collection of items and all
code related to each iteration is executed in parallel on separate
threads. The iteration is blocking until all threads are complete. This is
a really clean way to do things in parallel that might involve a remote
service call.

Regardless of your approach to multithreading you must consider the following optimizations where

WCF services are concerned:

 You should share the same proxy instance with all threads – so long as each thread doesn’t
require different channel settings such as address or credentials. This reduces the overhead of
creating a new channel on each thread – which can really slow performance in a multithreaded
client!

 Use the MRU cache or provide a custom channel factory caching solution to reduce overhead on
each thread in the event a new channel must be created to recover from session expiry or
uncaught exceptions at the service. Remember that this is only likely to be an issue if a transport
session is being used.

 Always call Open() on the proxy or channel before any of the threads begins making calls to
service operations. The first call to a service operation will call Open() for you, however it will
cause all other threads to queue, waiting for the first call to complete. If you call Open() ahead

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 34

of time, calls can execute concurrently using the same proxy instance. Be sure to lock the call to
Open() and maintain a variable indicating if the channel is already open. Don’t rely on the
channel’s State property since this can change immediately after you check the value.

Duplex Communications and Callbacks
Services may define callback contracts when service operations are long running and warrant out-of-

band notifications, or when implementing a transient publish and subscribe (pub-sub) scenario.

Consider the example shown in Figure 25. In this scenario the Todo List application incorporates a

transient pub-sub design using duplex communication. If one of the Todo List clients adds, updates, or

deletes an item - other subscribing clients are notified of the change.

Figure 25: Transient pub-sub implementation using callbacks

In this section I'll describe the relevant characteristics and recommendations for implementing callbacks

between WPF clients and WCF services – in the context of this scenario.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 35

Service Design
In this transient pub-sub implementation the service maintains a list of subscribers in the application

domain. Since duplex communication relies a transport session, the service can count on each

subscribing client communicating with the same service channel – so in a distribute environment with

multiple application domains each will maintain its own subscriber list.

A transport session is provided for all endpoints that support duplex communication including

NetTcpBinding, NetNamedPipeBinding or WSDualHttpBinding. The latter simulates a transport session

using reliable sessions.

In the TodoListService implementation there are three contracts:

 ITodoListService defines core service functionality

 ISubscriber defines subscribe and unsubscribe functionality

 ITodoListEvents defines events for the callback contract

These contracts are shown in Figure 26. Note that the ITodoListEvents contract is associated with

ITodoListService as the callback contract. Also note that ITodoListService inherits ISubscriber – so that a

single duplex endpoint can be exposed for the service as follows:

<endpoint address="TodoListService" binding="wsDualHttpBinding"

contract="Contracts.ITodoListService" />

Figure 26: Service contracts for the duplex TodoListService

[ServiceContract(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04")]

public interface ISubscriber

{

 [OperationContract]

 void Subscribe();

 [OperationContract]

 void Unsubscribe();

}

[ServiceContract(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04")]

public interface ITodoListEvents

{

 [OperationContract(IsOneWay = true)]

 void ItemAdded(TodoItem item);

 [OperationContract(IsOneWay = true)]

 void ItemChanged(TodoItem item);

 [OperationContract(IsOneWay = true)]

 void ItemDeleted(string id);

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 36

}

[ServiceContract(Namespace="http://wcfclientguidance.codeplex.com/2009/04",

CallbackContract=typeof(ITodoListEvents))]

public interface ITodoListService: ISubscriber

{

 [OperationContract]

 List<TodoItem> GetItems();

 [OperationContract]

 string CreateItem(TodoItem item);

 [OperationContract]

 void UpdateItem(TodoItem item);

 [OperationContract]

 void DeleteItem(string id);

}

The TodoListService implementation of ISubscriber is shown in Figure 27. Access to the subscriber list is

protected with a lock since multiple threads can access the static member. Very simply this

implementation adds or removes the calling subscriber’s callback contract from the list.

Figure 27: TodoListService implementation of the ISubscriber contract

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerCall,

ConcurrencyMode=ConcurrencyMode.Multiple)]

public class TodoListService: ITodoListService, ISubscriber

{

 public static object _SubscriberLock = new object();

 public static List<ITodoListEvents> _TodoListEventSubscribers = new

List<ITodoListEvents>();

 public void Subscribe()

 {

 ITodoListEvents callback =

OperationContext.Current.GetCallbackChannel<ITodoListEvents>();

 lock (this.m_subscriberLock)

 {

 if (!_TodoListEventSubscribers.Contains(callback))

 {

 _TodoListEventSubscribers.Add(callback);

 }

 }

 }

 public void Unsubscribe()

 {

 ITodoListEvents callback =

OperationContext.Current.GetCallbackChannel<ITodoListEvents>();

 lock (this.m_subscriberLock)

 {

 if (_TodoListEventSubscribers.Contains(callback))

 {

 _TodoListEventSubscribers.Remove(callback);

 }

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 37

 }

 }

}

When a particular client calls one of the service operations to add, update or delete an item it notifies

the remaining subscribers of the change. A simple way to do this is to traverse the subscriber list and

invoke the appropriate callback operation for each callback channel – omitting that of the calling client.

The following code illustrates this code for the CreateItem() operation:

ITodoListEvents callback =

OperationContext.Current.GetCallbackChannel<ITodoListEvents>();

foreach (ITodoListEvents cb in _TodoListEventSubscribers)

{

 if (cb != callback)

 {

 cb.ItemAdded(item);

 }

}

This code can be improved by doing the following:

 The service should publish callback events on a separate thread so that the current call can
return

 Any exceptions thrown while publishing should be caught since the service shouldn’t care about
exceptions thrown during a callback operation

 In the event one of the callback channels is no longer available, the service should remove it
from the subscriber list

 Traversal of the subscriber list should be protected from concurrent access in the event the list
is changed during publishing

These improvements are shown in the Publish method shown in Figure 28.

Figure 28: Publishing on a separate thread at the service

private void Publish(TodoListEvent todoListEvent, TodoItem item)

{

 ITodoListEvents callback =

OperationContext.Current.GetCallbackChannel<ITodoListEvents>();

 Thread t = new Thread(x =>

 {

 List<ITodoListEvents> toremove = new List<ITodoListEvents>();

 lock (_SubscriberLock)

 {

 foreach (ITodoListEvents cb in _TodoListEventSubscribers)

 {

 if (cb.GetHashCode() != x.GetHashCode())

 {

 Console.WriteLine("Sending event to {0}",

cb.GetHashCode());

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 38

 try

 {

 if (todoListEvent == TodoListEvent.ItemAdded)

 cb.ItemAdded(item);

 else if (todoListEvent == TodoListEvent.ItemAdded)

 cb.ItemChanged(item);

 else if (todoListEvent == TodoListEvent.ItemDeleted)

 cb.ItemDeleted(item.ID);

 }

 catch (Exception ex)

 {

 FaultException faultex = ex as FaultException;

 if (faultex == null)

 {

 Console.WriteLine("Callback failed, removing

{0}", cb.GetHashCode());

 toremove.Add(cb);

 }

 }

 }

 }

 if (toremove.Count > 0)

 {

 foreach (ITodoListEvents cb in toremove)

 {

 _TodoListEventSubscribers.Remove(cb);

 }

 }

 }

 });

 t.Start(callback);

}

Implementing the Callback Contract
When the client generates a proxy for a duplex endpoint it generates a copy of the service contract in

addition to the callback contract. The proxy inherits DuplexClientBase<T> instead of ClientBase<T> and a

bunch of functionality is provided therein to facilitate processing callbacks at the client. An important

part of this is the implementation of the callback contract.

It is usually best to implement the callback contract on a separate type for manageability. The following

is a partial view of a simple callback contract implementation for the TodoListService:

public class TodoListCallback: ITodoListServiceCallback

{

 public void ItemAdded(TodoItem item)

 {…}

 public void ItemChanged(TodoItem item)

 {…}

 public void ItemDeleted(string id)

 {…}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 39

}

To initialize the proxy, the callback contract type is constructed and wrapped in an InstanceContext type

– the latter supplies the host site for the client to receive callbacks. The InstanceContext is passed to the

proxy constructor when it is initialized as follows:

TodoListCallback callback = new TodoListCallback(this);

_Proxy = new TodoListServiceClient(new InstanceContext(callback));

private DuplexChannelFactory<ITodoListService> _Factory;

private ITodoListService _Proxy;

That summarizes the basics: construct a callback object and pass it to the duplex proxy instance. From

there the lifetime of the callback object is tied to that of the proxy – as you would expect. There are,

however, some recommended practices to consider for the callback type definition:

 Access to the application Window

 Execution on a separate thread from the UI

 Handling UI updates from another thread

 Exception handling

Access to the main window, or some other application Window, may be necessary if callback operations

update the UI. One pattern for this is to pass a reference to the Window that the callback will interact

with in the constructor:

private MainWindow _MainWindow;

public TodoListCallback(MainWindow window)

{

 _MainWindow = window;

}

Callbacks should not execute on the UI thread. Although this removes concurrency issues it has a

negative impact on UI performance since callback messages are processed through the message pump

along with other windows messages. It is best if the callback object throttles messages and forwards

relevant calls to the UI thread as needed. For this reason, the callback object should use the

CallbackBehaviorAttribute and set UseSynchronizationContext to false. By default, ConcurrencyMode

is set to ConcurrencyMode.Single. The CallbackBehaviorAttribute is applied to the callback type

definition:

[CallbackBehavior(ConcurrencyMode = ConcurrencyMode.Single,

UseSynchronizationContext=false)]

public class TodoListCallback: ITodoListServiceCallback

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 40

Callback operations must, however, interact with UI elements on the UI thread. One effective way to do

this is to expose access to the synchronization context of the main Window as discussed earlier with

asynchronous calls. The callback object can use the synchronization context to send or post messages

for execution. For this example, the main Window of the Todo List Client application includes this

member to expose the synchronization context:

public SynchronizationContext _SyncContext = SynchronizationContext.Current;

When the callback object receives an event it can access this _SyncContext member and send a delegate

to execute on its thread. The following illustrates how the AddItem event sends code to execute on the

main Window’s thread:

public void ItemAdded(TodoItem item)

{

 _MainWindow._SyncContext.Send(state =>

 {

 _MainWindow._TodoItems.Add(item);

 }, null);

}

Another important consideration for callback contracts is exception handling. If the callback operation

throws an uncaught exception, this faults the communication channel – even if the callback operation is

one-way – thus the client’s proxy and callback object will no longer be usable. It is always best practice

to throw faults instead of exceptions from services and from callback objects. The following illustrates

an update to the ItemAdded event that catches exceptions and converts them to a simple

FaultException:

public void ItemAdded(TodoItem item)

{

 try

 {

 _MainWindow._SyncContext.Send(state =>

 {

 _MainWindow._TodoItems.Add(item);

 }, null);

 }

 catch (Exception ex)

 {

 throw new FaultException(ex.Message);

 }

}

Managing Duplex Proxy Lifetime
In a perfect world, when you create a duplex proxy in support of two-way communications between

client and service – the client and server channel would remain active until the user terminates the

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 41

application. Of course, this is not the case. Any of the following problems can play havoc on your

communication channel:

 A server machine fails or the application domain with the server channel is shut down or
recycled.

 The service or callback instance throws an uncaught exception which ultimately faults the
channel on both ends.

The client must therefore not only manage the lifetime of the duplex proxy, but handle subscription to

the service and collection of any server data created when communications were down. The typical

steps for duplex proxy lifetime management are as follows:

 Create the proxy when the application starts and keep it alive for the duration of the application
which usually means tying lifetime to the main application Window

 Close or abort the proxy when the application Window is closed

 Recreate the proxy when the client channel is faulted, which includes either providing a new
callback instance or passing the same instance to the proxy once again

 Each time the proxy is created or recreated, subscribe once again to the service and retrieve the
latest data

Figure 29 illustrates these practices. InitializeProxy() and GetData() are called when the Window is

created, and if the proxy is faulted or closed unsuspectingly. The proxy handles both the Faulted and

Closed events because with a duplex channel, there are times that the Faulted event is not fired but the

proxy is closed due to an uncaught exception from a callback operation. Also notable is that both the

Faulted and Closed handlers may execute on the callback thread if a problem originates from that

thread - and so both handlers post their work to the UI thread.

Figure 29: Duplex proxy lifetime management with DuplexClientBase<T>

public partial class MainWindow : Window

{

 private TodoListServiceClient _Proxy;

 public MainWindow()

 {

 if (!DesignerProperties.GetIsInDesignMode(new DependencyObject()))

 {

 InitializeProxy();

 GetData();

 }

 }

 private void GetData()

 {

 try

 {

 _TodoItems = _Proxy.GetItems();

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 42

 foreach (TodoItem item in _TodoItems)

 {

 item.PropertyChanged += Item_PropertyChanged;

 }

 TodoDataGrid.ItemsSource = _TodoItems;

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 }

 private void InitializeProxy()

 {

 try

 {

 TodoListCallback callback = new TodoListCallback(this);

 _Proxy = new TodoListServiceClient(new

InstanceContext(callback));

 _Proxy.InnerDuplexChannel.Closed += new

EventHandler(InnerDuplexChannel_Closed);

 _Proxy.InnerDuplexChannel.Faulted += new

EventHandler(InnerDuplexChannel_Faulted);

 _Proxy.Subscribe();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 }

 void InnerDuplexChannel_Closed(object sender, EventArgs e)

 {

 this._SyncContext.Post(state =>

 {

 InitializeProxy();

 GetData();

 }, null);

 }

 void InnerDuplexChannel_Faulted(object sender, EventArgs e)

 {

 this._SyncContext.Post(state =>

 {

 _Proxy.Abort();

 InitializeProxy();

 GetData();

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 43

 }, null);

 }

 private void window_Closing(object sender, CancelEventArgs e)

 {

 try

 {

 _Proxy.InnerDuplexChannel.Closed -= InnerDuplexChannel_Closed;

 _Proxy.InnerDuplexChannel.Faulted -= InnerDuplexChannel_Faulted;

 _Proxy.Unsubscribe();

 _Proxy.Close();

 }

 catch (Exception)

 {

 _Proxy.Abort();

 }

 }

}

If you don’t rely on the generated proxy or DuplexClientBase<T> for duplex channels, you can use

DuplexChannelFactory<T> directly. This provides a similar experience to ChannelFactory<T> in terms of

channel factory caching and casting required during cleanup – but it accepts the callback type to its

constructor as does DuplexClientBase<T>. In fact, DuplexChannelFactory<T> will wrap the callback type

in the InstanceContext for you so you can save a step there. Figure 30 illustrates the differences from

Figure 29 for duplex proxy lifetime management with DuplexChannelFactory<T>.

Figure 30: Duplex proxy lifetime management with DuplexChannelFactory<T>

public partial class MainWindow : Window

{

 private DuplexChannelFactory<ITodoListService> _Factory;

 private ITodoListService _Proxy;

 private void InitializeProxy()

 {

 try

 {

 TodoListCallback callback = new TodoListCallback(this);

 if (_Factory == null)

 _Factory = new DuplexChannelFactory<ITodoListService>(new

InstanceContext(callback), "");

 _Proxy = _Factory.CreateChannel();

 ICommunicationObject co = _Proxy as ICommunicationObject;

 co.Faulted += new EventHandler(InnerDuplexChannel_Faulted);

 co.Closed += new EventHandler(InnerDuplexChannel_Closed);

 _Proxy.Subscribe();

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 44

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 }

 void InnerDuplexChannel_Faulted(object sender, EventArgs e)

 {

 this._SyncContext.Post(state =>

 {

 ICommunicationObject co = _Proxy as ICommunicationObject;

 co.Abort();

 InitializeProxy();

 GetData();

 }, null);

 }

 private void window_Closing(object sender, CancelEventArgs e)

 {

 try

 {

 ICommunicationObject co = _Proxy as ICommunicationObject;

 co.Faulted -= InnerDuplexChannel_Faulted;

 co.Closed -= InnerDuplexChannel_Closed;

 }

 catch

 {

 try

 {

 ICommunicationObject co = _Proxy as ICommunicationObject;

 co.Abort();

 }

 catch {}

 }

 try

 {

 _Factory.Close();

 }

 catch (Exception)

 {

 try

 {

 _Factory.Abort();

 }

 catch { }

 }

 }

}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 45

Hosting Services with WPF Clients
As mentioned earlier, any managed executable can host a WCF service. Generally, services hosted on

server machines do not involve a user interface since they are unattended – but applications can find

uses for hosting services as part of a client application. Some examples include:

 Using a router service at the client to determine which services to forward messages to, perhaps
to handle online/offline situations

 Hosting services at the client to be shared by multiple client applications, perhaps to manage
local statistics and handle notifications

 Publish and subscribe (pub-sub) scenarios that use durable subscriptions instead of transient
duplex channels

Figure 31 illustrates the latter pub-sub scenario for the Todo List application discussed in other sections

of this whitepaper.

Figure 31: The Todo List application implemented as a durable pub-sub scenario

The sections to follow will explore considerations relevant to hosting services in a WPF client application

using the scenario illustrated in Figure 31 as an example.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 46

Client-Side Service Design
Services hosted in a client application have similar design considerations related to throttling,

concurrency and exception handling as do callback instances in a duplex scenario. Consider the

TodoListSubscriberService definition shown in Figure 32. This service has the following characteristics:

 The ServiceHost instance will not be synchronized with the UI thread, as Indicated by the setting
for UseSynchronizationContext on the ServiceBehaviorAttribute. That means that all calls will
execute on a new thread at the client.

 The service uses InstanceContextMode.Singleton which slightly reduces the overhead of each
request as only one instance of the service will be created.

 The service uses ConcurrencyMode.Single which prevents multiple threads from executing
concurrently on the service type. Since requests do not execute on the UI thread, they are
processed one by one and as needed post instructions to the UI thread.

 All service operations catch any exceptions and throw faults to prevent the communication
channel with the TodoListService (the publisher) from being faulted.

Figure 32: Implementation of a client-side subscriber service based on ITodoListEvents

[ServiceBehavior(ConcurrencyMode=ConcurrencyMode.Single, InstanceContextMode

= InstanceContextMode.Single, UseSynchronizationContext=false)]

public class TodoListSubscriberService: ITodoListEvents

{

 private MainWindow _MainWindow;

 public TodoListSubscriberService(MainWindow window)

 {

 _MainWindow = window;

 }

 public void ItemAdded(TodoItem item)

 {

 try

 {

 _MainWindow._SyncContext.Send(state =>

 {

 _MainWindow._TodoItems.Add(item);

 }, null);

 }

 catch (Exception ex)

 {

 throw new FaultException(ex.Message);

 }

 }

 public void ItemChanged(TodoItem item)

 {

 try

 {

 _MainWindow._SyncContext.Send(state =>

 {

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 47

 TodoItem found = _MainWindow._TodoItems.First<TodoItem>(x =>

x.ID == item.ID);

 found.PropertyChanged -= _MainWindow.Item_PropertyChanged;

 found.CreationDate = item.CreationDate;

 found.CompletionDate = item.CompletionDate;

 found.Description = item.Description;

 found.DueDate = item.DueDate;

 found.Title = item.Title;

 found.Priority = item.Priority;

 found.PercentComplete = item.PercentComplete;

 found.Status = item.Status;

 found.Tags = item.Tags;

 found.PropertyChanged += _MainWindow.Item_PropertyChanged;

 }, null);

 }

 catch (Exception ex)

 {

 throw new FaultException(ex.Message);

 }

 }

 public void ItemDeleted(string id)

 {

 try

 {

 _MainWindow._SyncContext.Send(state =>

 {

 TodoItem found = _MainWindow._TodoItems.First<TodoItem>(x =>

x.ID == id);

 _MainWindow._TodoItems.Remove(found);

 }, null);

 }

 catch (Exception ex)

 {

 throw new FaultException(ex.Message);

 }

 }

}

By default, when you construct a ServiceHost instance on the UI thread, the service will join the UI

thread. That's why setting UseSynchronizationContext to false is an important part of configuring a

client-side hosted service. This ensures that concurrent calls to the service do not place too much

pressure on the message pump which is better served handling Windows messages that update the UI

for end-users. Of course, as needed, the service thread will post message to the UI thread as well - but

this should be done in a controlled manner. That is why it is also necessary to throttle at the service, and

this is handled with using ConcurrencyMode.Single.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 48

If you want to increase throughput at the client, you can optionally use ConcurrencyMode.Multiple and

rely on the ServiceThrottleBehavior to control how many concurrent threads should execute at the

client. The service behavior settings in code and in configuration are shown here assuming that four

concurrent calls are allowed to process at the client:

[ServiceBehavior(ConcurrencyMode=ConcurrencyMode.Multiple,

InstanceContextMode = InstanceContextMode.Single,

UseSynchronizationContext=false)]

public class TodoListSubscriberService: ITodoListEvents

<serviceThrottling maxConcurrentCalls="4" />

With ConcurrencyMode.Multiple any state managed by the singleton service instance will also require
concurrency protection.

Regardless of the number of concurrent calls, since operations are not called on the UI thread any
interactions with the UI must sent or posted to that synchronization context - as discussed earlier with
callbacks. In fact, the implementation of each service operation on the TodoListSubscriberService type is
almost identical to the callback object implementation discussed earlier.

One difference, however, is in how the main Window is passed to the service type. Since the service is a
singleton, you can construct the service type and initialize it prior to constructing the ServiceHost as
shown here:

TodoListSubscriberService subscriberService = new

TodoListSubscriberService(this);

_SubscriberServiceHost = new ServiceHost(subscriberService);

The Window exposes a SynchronizationContext member as with the duplex scenario to support sending
updates to the UI thread.

As for exception handling, just as any good service should - faults are thrown instead of exceptions to
preserve the communication channel in the presence of sessions.

Managing ServiceHost Lifetime
The lifetime of the ServiceHost instance for a client-side service is usually tied to the application lifetime

– although this is not a strict requirement. Assuming it is you will likely use the following lifetime

management guidelines:

 Open the ServiceHost when the main Window is created

 Dispose of the ServiceHost when the main Window is closing

 If the ServiceHost should be faulted or closed during the lifetime of the application – recreate it

As mentioned before, since the service type is likely to be a Singleton in a client-side host you should

construct the service type first, and then pass it to the ServiceHost during initialization. In addition,

before opening the ServiceHost handle the Closing and Faulted events to be sure that the application is

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 49

aware of such failures and can respond accordingly. The resulting code to initialize the ServiceHost

would then be as follows:

private void InitializeSubscriberService()

{

 TodoListSubscriberService subscriberService = new

TodoListSubscriberService(this);

 _SubscriberServiceHost = new ServiceHost(subscriberService);

 _SubscriberServiceHost.Closing += new

EventHandler(_SubscriberServiceHost_Closing);

 _SubscriberServiceHost.Faulted += new

EventHandler(_SubscriberServiceHost_Faulted);

 _SubscriberServiceHost.Open();

}

There are a few possible approaches to endpoint configuration for client-side services:

 You can used a fixed endpoint configuration with an agreed upon port for the application,
usually configured on installation.

 You can find a free port to use each time the ServiceHost is initialized.

In either case, the client must subscribe to the service sending an address where it can be reached. The

prior example for ServiceHost initialization assumes the address is configured as the service endpoint in

the app.config for the application as follows:

<system.serviceModel>

 <services>

 <service

name="TodoList.WpfClient.SubscriberService.TodoListSubscriberService">

 <endpoint address="http://localhost:9000/TodoListSubscriberService"

binding="basicHttpBinding" contract="Contracts.ITodoListEvents"/>

 </service>

 </services>

</system.serviceModel>

If you go the dynamic route and look for a free port (assuming that administrators of client machines

haven’t locked down ports) you can use the FindFreePort() function shown in Figure 33, and initialize the

ServiceHost with a base address and endpoint in code like so:

int freeport = FindFreePort();

Uri httpBase = new

Uri(string.Format("http://localhost:{0}/SubscriberService", freeport));

TodoListSubscriberService subscriberService = new

TodoListSubscriberService(this);

_SubscriberServiceHost = new ServiceHost(subscriberService, httpBase);

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 50

_SubscriberServiceHost.AddServiceEndpoint(typeof(ITodoListEvents), new

BasicHttpBinding(), "");

You can also omit the call to AddServiceEndpoint() and use the following relative endpoint configuration

for the service, relying on the dynamic base address as the service endpoint:

<system.serviceModel>

 <services>

 <service

name="TodoList.WpfClient.SubscriberService.TodoListSubscriberService">

 <endpoint address="" binding="basicHttpBinding"

contract="Contracts.ITodoListEvents"/>

 </service>

 </services>

</system.serviceModel>

Figure 33: Implementation of FindFreePort()

private int FindFreePort()

{

 int port = 0;

 IPEndPoint endPoint = new IPEndPoint(IPAddress.Any, 0);

 using (Socket socket = new Socket(AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp))

 {

 socket.Bind(endPoint);

 IPEndPoint local = (IPEndPoint)socket.LocalEndPoint;

 port = local.Port;

 }

 if (port == 0)

 throw new InvalidOperationException("Unable to find a free port.");

 return port;

}

When the application Window is closed cleanup should include disposing of the ServiceHost. Typically

Close() is called instead of Abort() in order to allow any messages in the pipeline to complete processing

prior to shutdown. For client-side services this is usually not a concern, since if the application is shutting

down the UI won’t need to respond to messages. Assuming this, the following shutdown code would be

used:

 try

 {

 _SubscriberServiceHost.Faulted -= _SubscriberServiceHost_Faulted;

 _SubscriberServiceHost.Closing -= _SubscriberServiceHost_Closing;

 _SubscriberServiceHost.Abort();

 }

 catch

 {}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 51

If you want to gracefully shutdown, for example if the client will save the results of any outstanding

messages somewhere locally, here is an alternative:

 try

 {

 _SubscriberServiceHost.Faulted -= _SubscriberServiceHost_Faulted;

 _SubscriberServiceHost.Closing -= _SubscriberServiceHost_Closing;

 _SubscriberServiceHost.Close();

 }

 catch

 {

 _SubscriberServiceHost.Abort();

 }

That sums up how to create and dispose of the ServiceHost instance, but what happens in the event the

ServiceHost is faulted or closed unsuspectingly during the lifetime of the application? In this case, the

client will no longer receive notifications from the service. Although a very rare occurrence, this case

should be handled none-the-less. In the event the ServiceHost Faulted or Closing events are fired

unexpectedly you can, and should try to recreate the ServiceHost instance. If there is a bigger issue, such

as incorrect configuration, it will fail again and the issue should be reported. Since these events execute

on the ServiceHost thread – not the UI thread – you can use the main Window’s synchronization context

to execute necessary recovery code on the UI thread.

The following code illustrates posting a call to the UI thread that executes InitializeSubscriberService() –

the function described earlier:

this._SyncContext.Post(state =>

{

 InitializeSubscriberService();

}, null);

Managing Subscriptions
With duplex communications the client and service channel maintain a session and the callback object

lifetime is tied to the lifetime of the proxy. The service can maintain a list of callback objects for

subscribing clients – but this list cannot be persisted so if anything goes wrong, the channel must be

recreated by the client to reestablish communications.

When the client application hosts a service in a pub-sub scenario, a subscription process is necessary to

notify remote services of the location of that service. In this case, the client holds a proxy to the remote

service, and the remote service holds a proxy to the client-side service. There are many approaches to

pub-sub in terms of the layers of coupling between clients and services – and this discussion won’t

address the various approaches. The goal here is to provide a summary of considerations for the client

for maintaining that subscription in the face of various possible failures.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 52

In the case of the TodoListService from the scenario shown in Figure 31, the lifetime of this subscription

is managed by the proxy. Since the TodoListService exposes the ISubscriber interface, the client can call

Subscribe() when the application starts, and Unsubscribe() when the application is closed. The question

is of what information must be passed to successfully subscribe? This can be handled in a number of

ways:

 If you pass only the address of the service, there is an assumption that the client and service
agree on the appropriate binding and contract for the SubscriptionService endpoint.

 As an alternative, the service can infer the binding configuration from the scheme of the
endpoint. For example, if the client exposes an HTTP endpoint at its service, the binding may
default to WSHttpBinding with a specific configuration.

 Another option might be for the service to infer the same binding as the client used when
invoking Subscribe(). The service could look at the service endpoint hit by the client and use the
same binding configuration.

 Another option, if more flexibility is required, is to provide all necessary binding configuration
details in the call to Subscribe(). The amount of detail depends on the application’s
requirements of course.

Assuming that the service requires only the address, it may implement Subscribe() and Unsubscribe() as

shown in Figure 34. The Subscribe() implementation in this example creates a channel using the address

of the subscriber and a fixed binding and events contract – storing the channel in a dictionary keyed by

the address. Unsubscribe() removes the dictionary entry and closes the channel. Distributed

implementations will normally store subscribers in a database table, for durability. In that case the proxy

might be cached in a particular application domain to save overhead where possible, and otherwise be

created on demand.

Figure 34: Implementation of Subscribe() and UnSubscribe() for the TodoListService

public void Subscribe(string address)

{

 ITodoListEvents subscriber =

ChannelFactory<ITodoListEvents>.CreateChannel(new BasicHttpBinding(), new

EndpointAddress(address));

 lock (_SubscriberLock)

 {

 if (!_TodoListEventSubscribers.ContainsKey(address))

 {

 _TodoListEventSubscribers.Add(address, subscriber);

 }

 }

}

public void Unsubscribe(string address)

{

 lock (_SubscriberLock)

 {

 if (_TodoListEventSubscribers.ContainsKey(address))

 {

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 53

 ITodoListEvents subscriber = _TodoListEventSubscribers[address];

 _TodoListEventSubscribers.Remove(address);

 ICommunicationObject obj = subscriber as ICommunicationObject;

 try

 {

 obj.Close();

 }

 catch

 {

 obj.Abort();

 }

 }

 }

}

If the remote service is unavailable for any reason, calls to the service from the proxy will fail. This is an

indication that notifications from the service are not being sent to the client-side subscriber service –

and in the case of the Todo List application, the client must assume it is no longer up to date on the

latest list of TodoItem entries. The client must therefore do the following to recover when the service is

unavailable:

 If calls from the proxy fail, and a session is present, the proxy will be faulted at some point and
this can be the trigger to recreate the proxy, subscribe to the service again, and request the
latest data.

 If calls from the proxy fail, and there is no session, the proxy will NOT be faulted. In that case the
proxy must use the communication exception to trigger subscribing again and requesting the
latest data.

 In both cases, the client may have to make a few attempts to recreate the client proxy if the
service is unavailable for some time. If the channel uses reliable sessions, this is handed on your
behalf – and so failure indicates retries have already fails and the application should shut down.

If the ServiceHost fails at the client (again, a rare occasion at best) the following steps should be taken:

 Reconstruct the ServiceHost instance

 Use the proxy to resubscribe to the remote service since it could have removed the subscription
if a notification failed

 Use the proxy to request the latest data since the application is surely out of sync if notifications
were lost

Consuming REST-Based Services
REST-based services differ from traditional SOAP-based services primarily in the following ways:

 You use HTTP GET, POST, PUT or DELETE requests to communicate with service operations
available at a particular Uri.

 Messages are formatted as Plain-Old-XML (POX) or JSON.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 54

 REST-based services are not documented by WSDL, nor can proxies be generated using
metadata exchange. Clients therefore do not use typical proxies to communicate with REST-
based services.

In this section I will provide you with a crash course in creating and hosting a REST-based service for

consumption by a WPF client, to provide context when I discuss your options at the client.

A Crash Course in REST-Based Services
You can REST-enable a SOAP-based service contract by decorating service operations with

WebGetAttribute and WebInvokeAttribute. These attributes are used to describe the following:

 The Uri template that will invoke each operation.

 The HTTP verb used to invoke each operation – which is typically GET, POST, PUT or DELETE.

 The request and response format which can be XML or JSON.

 Whether the request or response will include a wrapper element or not.

Figure 35 shows the ITodoListService contract as a REST-based contract.

Figure 35: The REST-based version of the ITodoListService contract

[ServiceContract(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04")]

public interface ITodoListService

{

 [OperationContract]

 [WebGet(BodyStyle = WebMessageBodyStyle.WrappedRequest, RequestFormat =

WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate =

"Items")]

 List<TodoItem> GetItems();

 [OperationContract]

 [WebInvoke(BodyStyle = WebMessageBodyStyle.WrappedRequest, RequestFormat

= WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate =

"Items", Method = "POST")]

 string CreateItem(TodoItem item);

 [OperationContract]

 [WebInvoke(BodyStyle = WebMessageBodyStyle.WrappedRequest, RequestFormat

= WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate =

"Items/{id}", Method = "PUT")]

 void UpdateItem(string id, TodoItem item);

 [OperationContract]

 [WebInvoke(BodyStyle = WebMessageBodyStyle.WrappedRequest, RequestFormat

= WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate =

"Items/{id}", Method = "DELETE")]

 void DeleteItem(string id);

}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 55

Assuming the base address for this service is “http://localhost/TodoListService.svc” then Figure 36

summarizes the expected interaction over HTTP.

Figure 36: Interacting with the TodoListService over HTTP

HTTP Verb Relative Uri Description

GET /Items Requests all items from the service. An array of TodoItem
types is returned.

POST /Items Sends a new TodoItem to create at the service. The new
item id is returned.

PUT /Items/{id} Sends a new TodoItem to update a particular item at the
service.

DELETE /Items/{id} Indicates to the service an item to delete by its id.

To host a REST-based service you must enable the endpoint behavior, WebHttpBehavior, in order to

bypass the default SOAP message processing supplied by the service model. This is typically done by

initializing the WebServiceHost for your service type, instead of using the ServiceHost type. If you are

self-hosting (as in a Console test host or Windows Service) this is done manually as follows:

WebServiceHost host = new WebServiceHost(typeof(TodoListService));

host.Open();

For services hosted in IIS 6 or IIS 7 with the WAS – you configure the WebServiceHostFactory for the .svc

endpoint as follows:

<%@ ServiceHost Service="TodoList.TodoListService"

Factory="System.ServiceModel.Activation.WebServiceHostFactory" %>

Of course you must provide at least one endpoint to reach the service, and for REST-based services

endpoints use the binding WebHttpBinding as shown here:

<service name="TodoList.TodoListService">

 <endpoint address="" binding="webHttpBinding"

contract="Contracts.ITodoListService" />

</service>

Using WebChannelFactory<T>
As mentioned earlier, there isn’t a proxy generation experience for REST-based services. If you have

access to the metadata libraries as in the shared libraries approach discussed earlier, you can easily

create a proxy using WebChannelFactory<T> - the equivalent of ChannelFactory<T> for WCF’s web

programming model. This requires you to have access to the libraries that define the service contract

and any data contracts and other serializable types it relies on. It is always good practice to separate

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 56

metadata libraries from service implementations – and so if you follow this practice you should already

be well positioned to work with WebChannelFactory<T> at the client.

In fact, the developer experience working with WebChannelFactory<T> is like that of

ChannelFactory<T>. First, your client should reference libraries that contain the service contract and

data contracts. Second, you create a client channel for the service as follows:

WebChannelFactory<ITodoListService> _ChannelFactory = new

WebChannelFactory<ITodoListService>(

new Uri("http://localhost:8000/TodoListService"));

ITodoListService _Proxy = _ChannelFactory.CreateChannel();

By default WebChannelFactory<T> uses a WebHttpBinding endpoint for the proxy at the address

specified in the constructor. You can also explicitly provide the binding configuration as follows:

_ChannelFactory = new WebChannelFactory<ITodoListService>(new

WebHttpBinding(), new Uri("http://localhost:8000/TodoListService"));

_Proxy = _ChannelFactory.CreateChannel();

Proxy generation for classic SOAP-based services produces an application configuration file with the

appropriate endpoint configuration including the address, binding and contract. It is usually desirable to

externalize the endpoint address since this may change as you move from development to production

machines. The following configuration section and code produces the equivalent results:

_ChannelFactory = new WebChannelFactory<ITodoListService>("default");

_Proxy = _ChannelFactory.CreateChannel();

<system.serviceModel>

 <client>

 <endpoint address="http://localhost:8000/TodoListService"

binding="webHttpBinding" contract="Contracts.ITodoListService"

name="default"/>

 </client>

</system.serviceModel>

You can also create the channel in a single call, however in order to cache the channel factory it is better

to create the channel factory first and then the channel.

WCF REST Starter Kit
Microsoft published the WCF REST Starter Kit to assist WCF developers in building HTTP services based

on the web programming model which includes REST-based services as well as syndication feeds. The

REST Starter Kit includes the following:

 Visual Studio templates to improve developer productivity producing REST-based services and
syndication feeds

 Improved help page when browsing to HTTP services to facilitate discovery of functionality

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 57

 Better error reporting, improved extensibility and caching for HTTP services

 Support for metadata generation using Paste XML as Types

 HttpClient type to simplify client code

The goal of this paper is not to elaborate on ways that the REST Starter Kit affects the service

developer’s approach to REST-based services. I will, however, explain how the kit helps the client

developer to consume REST-based services.

NOTE: At the time of this writing the WCF REST Starter Kit Preview 2 is available on CodePlex at

http://aspnet.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=24644. This section is subject to

change as the kit evolves and as features from the kit are introduced into Visual Studio 2010.

Probably one of the most common types of REST-based services you can consume is a resource

collection like the list of TodoItem types used in other examples for this paper. This discussion assumes

this type of service will be consumed from your REST-based client using the REST Starter Kit. The steps

to consume such a service are as follows:

 Browse to the help page to learn how you can interact with the service over HTTP

 Generate types from the schemas available via the help page

 Reference the appropriate REST Starter Kit assemblies in the client project

 Use the HttpClient type to communicate with service Uris over HTTP including GET, PUT, POST
and DELETE instructions

Viewing the Help Page

Figure 37 provides an example of what the browser help page for a REST-based service looks like. Shown

in the figure is the description for GetItems() and UpdateItems() methods. Each method description

includes the Uri to which HTTP requests should be sent, the HTTP verb (method) to use, the request and

response schema, a sample request and response message format in XML or JSON. You can use this

information to build the HttpClient code necessary to interact with the service, and to generate types

for serialization at the client.

Figure 37: A partial view of the browser help page produced for a REST-based service

http://aspnet.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=24644

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 58

Note that the browser help page only appears friendly as shown in Figure 37 if you turn on feed reading

view as illustrated in Figure 38.

Figure 38: Enabling feed reading view for IE 7

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 59

Generating Types with Paste XML as Types

If you click on the request or response schema link from the help page you will be shown a schema for

the message. Using this you can generate types for the client project. First, view the source of the

schema shown in the browser (Page->View Source). Copy this to the clipboard and from Visual Studio

select Edit->Paste XML as Types (see Figure 39). This feature is installed with the WCF REST Starter Kit. If

your types depend on enumerations you will have to paste the schema first and then instead of pasting

the schema for the type – paste the sample XML.

NOTE: At the time of this writing Paste XML as Types does not handle schemas with enumeration

dependencies. When you paste the sample XML for the type you’ll have to wire up properties that use

the enumerations by hand as they will be pasted as string types.

Figure 39: Paste XML as Types feature

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 60

For Uri operations that return a collection of types, such as a call to GetItems() – a collection of items is

returned. If the response is XML, it looks similar to the following:

<ItemInfoList>

 <ItemInfo>

 <EditLink>...</EditLink>

 <Item>...</Item>

 </ItemInfo>

 <ItemInfo>

 <EditLink>...</EditLink>

 <Item>...</Item>

 </ItemInfo>

</ItemInfoList>

The collection actually includes a wrapper type for the main resource, which includes an <EditLink>

element associated with each resource <Item>. The <EditLink> property supplies a Uri where clients can

drill down to interact with the resource. The actual resource type is contained inside the <Item>

element. For example, properties of the TodoItem type discussed earlier would be serialized inside this

element.

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 61

Using Paste XML as Types based on the sample XML for the TodoListService collection response, the

types in Figure 40 are generated (edited for brevity). This result works great for retrieval of the

collection using the following code:

HttpClient _Proxy = new

HttpClient("http://localhost:53978/TodoListWebHost/TodoListService.svc/");

HttpResponseMessage response = _Proxy.Get();

response.EnsureStatusIsSuccessful();

ItemInfoList itemsCollection =

response.Content.ReadAsXmlSerializable<ItemInfoList>();

This code constructs the HttpClient type supplied with the WCF REST Starter Kit, supplies it with the

base Uri to the service, issues an HTTP GET using the Get() method of the HttpClient proxy and

deserializes the results using the XmlSerializer. From there you can interact with the deserialized

itemsCollection instance.

Figure 40: Types generated for a collection response from the TodoListService

[System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true)]

[System.Xml.Serialization.XmlRootAttribute(Namespace = "", IsNullable =

false)]

public partial class ItemInfoList

{

 [System.Xml.Serialization.XmlElementAttribute("ItemInfo")]

 public ItemInfoListItemInfo[] ItemInfo {get; set;}

}

[System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true)]

public partial class ItemInfoListItemInfo

{

 public string EditLink {get; set;}

 public ItemInfoListItemInfoItem Item {get; set;}

}

[System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true)]

public partial class ItemInfoListItemInfoItem

{

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public string ID {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public string Title {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 62

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public string Description {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public string Priority {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public string Status {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public System.DateTime CreationDate {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public System.DateTime DueDate {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public System.DateTime CompletionDate {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public float PercentComplete {get; set;}

 [System.Xml.Serialization.XmlElementAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

 public string Tags {get; set;}

}

In addition to generating types for the collection result, you should generate types required as input to a

request, such as an HTTP POST to add a new item. The result from Paste XML as Types is slightly

different as shown in Figure 41 for adding a new TodoItem. The main difference is that the type name

matches the resource type name as defined for the service (“TodoItem”) and a root namespace is

defined for serialization of elements, instead of a namespace defined for individual properties. This is

important because if you try to use the type defined for the collection in Figure 40

(“ItemInfoListItemInfoItem”) even if the CLR type is renamed correctly it won’t work because the service

requires a root namespace (this might change as the WCF REST Starter Kit evolves).

Figure 41: Types generated for a single item response from the TodoListService

[System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true, Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

[System.Xml.Serialization.XmlRootAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas", IsNullable = false)]

public partial class TodoItem

{

 public string ID {get; set;}

 public string Title {get; set;}

 public string Description {get; set;}

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 63

 public string Priority {get; set;}

 public string Status {get; set;}

 public System.DateTime CreationDate {get; set;}

 public System.DateTime DueDate {get; set;}

 public System.DateTime CompletionDate {get; set;}

 public float PercentComplete {get; set;}

 public string Tags {get; set;}

}

To address the incongruent results from types generated by Paste XML as Types for collections versus

individual calls I recommend the following:

 Generate types for the response from an HTTP GET for the collection.

 Generate the type used by the request for an HTTP POST (add feature). Use this type instead of
the type generated for the collection, and refactor accordingly.

In addition, you may have to do any of the following in order to get serialization to work properly:

 If your types rely on enumerations, paste those from their respective schema representations
separately.

 After pasting the type that depends on enumerations, you will have to rewire it to use the enum
definition.

 Add XmlElementAttribute to type properties to control order in serialization to match that of
the service type expectations.

 If you refactor the CLR type names be sure and supply the correct ElementName property to the
XmlRootAttribute for the type.

Figure 42 illustrated the resulting type definitions (without their internal details) used for the

TodoListService.

Figure 42: Refactored XmlSerializer types generated for the TodoListService

[System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true)]

[System.Xml.Serialization.XmlRootAttribute(Namespace = "", IsNullable =

false, ElementName="ItemInfoList")]

public partial class TodoItemList

{…}

[System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true)]

[System.Xml.Serialization.XmlRootAttribute(Namespace = "", IsNullable =

false)]

public partial class ItemInfo

{…}

[System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true, Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas")]

[System.Xml.Serialization.XmlRootAttribute(Namespace =

"http://wcfclientguidance.codeplex.com/2009/04/schemas", IsNullable = false)]

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 64

public partial class TodoItem

{…}

Using HttpClient to Issue HTTP Requests

As mentioned earlier, you use the HttpClient type from Microsoft.Http to communicate with your REST-

based services. This type exposes functionality to execute HTTP GET, POST, PUT and DELETE commands

via Get(), Post(), Put() and Delete() methods. You initialize the HttpClient instance with the correct base

Uri for the service and supply any relative Uri requirements for each command. To pass content to a

request, as in a POST to create a new item, you can use the HttpContent type – more specifically, the

HttpContentExtensions type which exposes static methods such as CreateXmlSerializable<T>() to

construct content from a serializable type. Likewise, to read content from an HTTP response

HttpContentExtensions supplies extension methods such as ReadAsXmlSerializable<T>() to rehydrate

types. Figure 43 shows a partial listing of the code used to issue GET, POST, PUT and DELETE requests to

the TodoListService.

Figure 43: HttpClient code to issue HTTP GET, POST, PUT and DELETE requests to the TodoListService

HttpClient _Proxy = new

HttpClient("http://localhost:53978/TodoListWebHost/TodoListService.svc/");

// HTTP GET

HttpResponseMessage response = _Proxy.Get();

response.EnsureStatusIsSuccessful();

TodoItemList itemsCollection =

response.Content.ReadAsXmlSerializable<TodoItemList>();

// HTTP POST

HttpContent content =

HttpContentExtensions.CreateXmlSerializable<TodoItem>(todoItem);

HttpResponseMessage response = _Proxy.Post("", content);

response.EnsureStatusIsSuccessful();

ItemInfo newItemWithId = response.Content.ReadAsXmlSerializable<ItemInfo>();

// HTTP PUT

HttpContent content =

HttpContentExtensions.CreateXmlSerializable<TodoItem>(todoItem);

 HttpResponseMessage response = _Proxy.Put(todoItem.ID, content);

 response.EnsureStatusIsSuccessful();

// HTTP DELETE

HttpResponseMessage response = _Proxy.Delete(todoItem.ID);

response.EnsureStatusIsSuccessful();

DataContracts and Shared Types

If you own the service and the client, you are likely going to prefer sharing your data contract libraries

with your client application. In this case you will need to create data contracts for the item collection

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 65

and type wrapper discussed earlier, and you will also change some of the methods used for serialization

and deserialization. Figure 44 shows the data contract equivalent of the item collection and type

wrapper used when retrieving a collection result from the TodoListService. The CLR type name is not

important, but the DataContractAttribute must supply a Name property matching the name of the

wrapper elements returned by the service, and an empty namespace since that is what the service

returns.

Figure 44: Data contract equivalents for the item collection and type wrapper from Figure x

[DataContract(Name="ItemInfoList", Namespace="")]

public partial class TodoItemList

{

 [DataMember(Name="ItemInfo")]

 public TodoItemInfo[] ItemInfo {get; set;}

}

[DataContract(Name="ItemInfo", Namespace="")]

public partial class TodoItemInfo

{

 [DataMember]

 public string EditLink {get; set;}

 [DataMember]

 public TodoItem Item {get; set;}

}

As for the HttpClient code used to interact with the service, the main difference is in how the content
for each request is serialized and deserialized. Instead of using XmlSerializer methods, data contract
methods are used such as the ReadAsDataContract<T>() and CreateDataContract<T>() – as shown in
Figure 45.

Figure 45: Data contract equivalents for the item collection and type wrapper from Figure x

HttpClient _Proxy = new

HttpClient("http://localhost:53979/TodoListWebHost/TodoListService.svc/");

// HTTP GET

HttpResponseMessage response = _Proxy.Get();

response.EnsureStatusIsSuccessful();

TodoItemList itemsCollection =

response.Content.ReadAsDataContract<TodoItemList>();

// HTTP POST

HttpContent content =

HttpContentExtensions.CreateDataContract<TodoItem>(todoItem);

HttpResponseMessage response = _Proxy.Post("", content);

response.EnsureStatusIsSuccessful();

TodoItemInfo newItemWithId =

response.Content.ReadAsDataContract<TodoItemInfo>();

WCF Guidance for WPF Developers
Michele Leroux Bustamante, May 2009

wcfguidanceforwpf.codeplex.com Page 66

// HTTP PUT

HttpContent content =

HttpContentExtensions.CreateDataContract<TodoItem>(todoItem);

HttpResponseMessage response = _Proxy.Put(todoItem.ID, content);

response.EnsureStatusIsSuccessful();

// HTTP DELETE

HttpResponseMessage response = _Proxy.Delete(todoItem.ID);

response.EnsureStatusIsSuccessful();

Acknowledgements
I’d really like to thank the many product team members at Microsoft who are very responsive to

answering questions related to WCF and the WCF REST Starter Kit! You guys rock!

