
Ms. Pacman AI controller 

Jonas Flensbak 

Georgios N. Yannakakis 

Center for Computer Games Research 

IT University of Copenhagen 

Rued Langgaards Vej 7 

2300 Copenhagen S, Denmark 

{flensbak; yannakakis}@itu.dk 

 

Abstract 

This document describes a rule-based heuristic-search controller for the original Ms. Pacman entering the 

Ms. Pacman competition of WCCI 2008. The controller is implemented in an efficient screen-capture 

framework, which manages a lot of the functionality that would otherwise lie in the controller, thus, 

speeding up the development of new controllers. First a brief presentation of the framework is given 

followed by a detailed description of the controller. 

Framework 

The framework has been developed in .NET 2.0 and 3.5 for the core functionality required in a Ms. Pacman 

controller. The main elements of the framework include. 

• Screen reader 

Fast and relatively reliable software that captures a screenshot and transforms it into a game state. 

• Game state 

This is a representation of a Ms. Pacman game; it includes the maze type, a discrete representation 

of the map elements such as pills, power-pills, walls, and empty corridors, as well as the position 

and movement direction of the ghosts and Ms. Pacman. Moreover, the state of the ghosts (e.g. 

hunting, edible eaten) is represented. A pre-calculated map that contains the shortest distance 

between any two discrete positions in the grid map is also included along with the direction the 

controller will have to choose to get there. 

• Control program 

A program that makes sure the Ms. Pacman game is positioned correctly on the screen, loads a 

user selected controller, and provides statistics about the running game. 

• Visualizer / Simulator 

A program that can either visualize a game state or simulate the Ms. Pacman game by imitating the 

ghosts’ controllers existing in the original game. The advantage of the simulator is that the game 

can achieve at least 10 times higher real-time speed than the speed of the original Ms. Pacman 

game on a 2.0 GHz processor, thus, making the application of machine learning approaches 

possible for this game. 

Controller 

The controller presented here is primarily based on the concepts of pill-hunting and short- and medium-

range ghost avoidance. Initially a very simple controller, called SmartPac, was implemented to test the 



framework. The SmartPac controller, implemented in approximately 100 lines of code, worked surprisingly 

well by achieving 9500 points on average with a maximum score of 15070. SmartPac worked simply from 

short-range ghost avoidance, only “seeing” ghosts within 4 discrete grid-cells. In broad terms the short-

range avoidance works by eliminating the possible directions Ms. Pacman can move towards, starting with 

the most dangerous. If none of the directions are considered safe (i.e. all have a ghost within a distance of 4 

grid-cells), then the direction that corresponds to the longest distance to a ghost is considered the least 

dangerous and is chosen. In SmartPac, if more than one direction is safe then the path that corresponds to 

the shortest distance to a pill is chosen. Even though SmartPac is a very simple approach and the generated 

Ms. Pacman behavior demonstrates great difficulty escaping when cornered by 2 or more ghosts, it works 

well because of its efficient pill-eating behavior. Before the ghosts exit from their starting position, 

SmartPac has already eaten a large portion of the pills and therefore minimizes the time in which all the 

ghosts are out hunting. 

Several approaches were applied to improve SmartPac, but many Computational Intelligence (CI) 

techniques failed primarily because they generated less efficient pill-eating Ms. Pacman behaviors. It 

appears that CI generated behaviors which proved (at times) very good at escaping complex situations 

would also frequently cower in a far corner because they would sense the ghosts from far away. Another 

observation was that the top row of pills in the first Ms. Pacman maze (level 1 and 2) would in many cases 

be considered so dangerous to enter that the controller would often avoid it completely. 

The controller submitted for the competition, called SmartDijkstraPac, builds upon the speed and effective 

short-range avoidance of SmartPac. In addition to this, a medium-range avoidance algorithm has been 

implemented (see Figure 1). Medium-range avoidance works by predicting the possible routes that the 

ghosts may travel to for the next n discrete grid-cells. In SmartDijkstraPac the compromise for n was for 7 

turns. The medium-range avoidance algorithm is what gives the Dijkstra part of the SmartDijkstraPac name, 

as the prediction algorithm uses a modified Dijkstra’s algorithm (Cormen, 2001) that determines the 

shortest route based on the probability of a ghost appearing in a grid-cell at the same time as Ms. Pacman. 

Since the speed of Ms. Pacman and the ghosts is variable to some degree, the predicted routes are game 

state dependent and become less reliable the further the prediction is (i.e. the longer the route). The 

controller uses the predicted routes to decide upon which direction is the least dangerous. Additionally 

edible ghosts are also hunted when they are close to Ms. Pacman as this, on average, increases the score 

although the diversion of hunting ghosts also seems to make Ms. Pacman less likely to complete the first 

two mazes without being caught. 

 

Figure 1: Predicted ghost routes; the more red a route is the higher the probability of a ghost being there. 



The basic steps of the SmartDijkstraPac algorithm are as follows. If the algorithm chooses a direction at any 

step then no further steps are evaluated. When a direction is considered dangerous this is carried on into 

the next step. 

1. Use short-range avoidance to eliminate dangerous directions: 

If only one direction is safe then choose that direction, or if no directions are safe then choose the 

least unsafe direction. 

2. Use medium-range avoidance to eliminate dangerous directions: 

If only one direction is safe then choose that direction, or if no directions are safe then choose the 

least unsafe direction. 

3. If any edible ghosts are relatively close, then choose a safe direction to the closest edible ghost. 

4. Find the safe direction that has the shortest distance to a pill. 

The additions over SmartPac have increased the average score of SmartDijkstraPac up approximately 2500 

points, giving an average of 11832 points and a maximum score of 23780 as seen in the table below.  

AI Average Min Max Games played Lines of code 

SmartPac 9470 4830 15070 64 ~100 

SmartDijkstraPac 11832 4600 23780 113 ~400 

Future Work 

Relatively effective and reliable rule-based methods for short- and medium-range ghost avoidance have 

been implemented for controlling the Ms. Pacman agent. However, a reliable method for long-range ghost 

avoidance might provide an enhancement to the current algorithm. An effective long-avoidance method 

would ideally allow Ms. Pacman to move to parts of the maze that are less dangerous. A lot of work also 

remains on representing the game state in a way that takes the speed characteristics of the ghosts and Ms. 

Pacman better into account. 

References 

Cormen, L. e. (2001). Introduction to Algorithms. Cambridge: MIT Press. 

 


