
 1 MicroParser – How to get started, Mårten Rånge

MicroParser – How to get started

THIS IS A DRAFT

MicroParser – a minimal parser combinator framework for C# with the focus on light

dependencies, small size and reasonable performance for strings that fits in memory.

What is parsing?
The process of converting a data stream into an object graph representing the content of that data stream, i.e. “x =

3”; can be parsed into AssignmentExpression(VariableReference(“x”), Constant (3)).

Why use a parser combinator framework?
Parsing is one of the interesting problems that if one apply standard structured programming the parser tends to

grow large, unwieldy and with lot of redundancies. Therefore numerous support tools have emerged to help

developers perform simple parsing, i.e. Regular Expression. Regular Expression has a couple of drawbacks:

1. No compile-time checking

2. Problematic to parse with operator precedence

3. Problematic to parse string value that contains escaped string terminators

4. No good error reporting if parsing failed

5. Difficult to reuse and combine regular expressions

A parser combinator framework can help with this.

Why is it called parser combinator?
A parser combinator function is a function that takes one or more parser as argument and combines it into a new

parser. A parser is basically a function that takes a string and a position and replies with the parser result and the

new position. In MicroParser this represented by Parser<T> which is declared as:

partial class Parser<TValue>
{
 // ParserState is basically a string with a position
 // ParserReply contains the updated state and the result of the parser
 // operation depending on if the operation was successful
 public delegate ParserReply<TValue> Function(ParserState state);

 public readonly Function Execute;

 public Parser (Function function);
 public static implicit operator Parser<TValue> (Function function);
}

 2 MicroParser – How to get started, Mårten Rånge

Essentially Parser is a placer holder for Parser.Function delegate. The main reason for introducing it as a class is

because delegates can’t be partial. Secondary reasons are that it enables operator overloading and better

performance pinpointing.

As parsers are functions essentially a parser combinator function is by nature a so-called higher-order functions i.e. it

takes zero or more functions as arguments and produces a function. This has been a trademark of functional

programming languages for years it gives a lot of expressiveness but these days.NET developers are using it every

day as almost all functions in System.Linq.Enumerable are higher-order functions.

To most developers higher-order functions seems confusing the first time one starts to use it, especially in the

context of a parser combinator framework that so heavily relies on higher-order functions. My advice is to ignore the

underlying details and try to read the parser combinator code as a configuration of a parser just as Regular

Expression is a string configuration of a parser.

After you have convinced yourself that it actually works it can be interesting to look into how actually a parser

combinator framework works:

Parser combinator resources

Excellent article on monadic parser combinators http://www.cs.nott.ac.uk/~gmh/monparsing.pdf
Parser combinators (Wikipedia) http://en.wikipedia.org/wiki/Parser_combinator

http://www.cs.nott.ac.uk/~gmh/monparsing.pdf
http://en.wikipedia.org/wiki/Parser_combinator

 3 MicroParser – How to get started, Mårten Rånge

What parser combinator frameworks exist?
This is just a small excerpt of available frameworks:

Name Description Language Silverlight
compatible

Pros Cons
(for .NET devs)

Parsec The mother of
modern parser
combinator
frameworks.
Pragmatic design
that aims to give
good
performance.

Haskell No Reasonable
speed.
Good
expressiveness.

Requires Haskell runtime.
Uncertain how well it
integrates with .NET.
Binary size (as you have to
include Haskell runtime).
Haskell language unknown
to many .NET developers.

GParsec Parsec for
Groovy.

Groovy
(Java)

No Reasonable
speed.
Good
expressiveness.

Requires Java runtime.
.NET and Java doesn’t
interop cleanly
Binary size (as you have to
include JRT).

FParsec Parsec for F#.

F# (.NET) Yes Reasonable
speed.
Good
expressiveness.
Handles very
large inputs.

Binary Size (as FParsec is a
very complete
framework).
F# language not known to
all developers.

Boost.Spirit C++ framework
developed by
Boost community.

C++ No Reasonable
speed.
Mature.

Requires a C++/C LI
project to integrate well
with .NET.
Quite advanced for non
C++ devs.
Poor error reporting.

MicroParser C# (.NET) Yes Reasonable
speed.
Good
expressiveness.
Small binary
size.
Is designed to
be internalized
in your
assemblies.

Not as complete as
FParsec.
Can’t deal with input
strings that are larger than
what can be read into
memory.

 4 MicroParser – How to get started, Mårten Rånge

Why develop MicroParser?
Stephan Tolksdorf has done a brilliant job with FParsec and he deserves every bit of respect. However, when getting

to the point where I need to deploy FParsec based parsers I have run into some issues:

1. The size of the FParsec framework is around 600kb – in a Silverlight project size matters.

2. FParsec is a visible dependency which can create conflict with other assemblies. This is not unique to FParsec

but all third party assemblies suffer from this.

3. Many C# developers are interested but wary of F#, also to maintain an FParsec based parser you have to

know a fair bit about FParsec. For a C# dev it can be hard to maintain a parser when one lacks both

knowledge of F# and FParsec.

MicroParser aims to be:

1. Smallish – around 30kb

2. Easy to internalize – can be source code included into an assembly to completely hide the dependency

3. Fairly easy for C# developers to understand

4. Deployable using .NET 3.5 runtime or Silverlight runtime. MicroParser requires VS2010 though.

Parsing with MicroParser
This sample is called Sample1 in the project SampleParsers

Let’s assume we like to be able to parse the following line:

AnIdentifier = 3

The expression consist of 2 parts, an identifier and an integer separated by an equal sign ‘=’. In parser combinator

framework one builds the parser from the bottom up.

We start by declaring a parser for the integer:

// Int () is a builtin parser for ints
Parser<int> p_int = CharParser.Int ();

The identifier parser would look like this:

Parser<SubString> p_identifier = CharParser
 .ManyCharSatisfy2 (// Creates a string parser
 CharSatisfy.Letter, // A test function applied to the
 // first character
 CharSatisfy.LetterOrDigit, // A test function applied to the
 // rest of the characters
 minCount:1 // We require the identifier to be
 // at least 1 character long
);

 5 MicroParser – How to get started, Mårten Rånge

We also needs to some help parsers to consume the ‘=’ token and superfluous whitespace:

Parser<Empty> p_spaces = CharParser.SkipWhiteSpace ();
Parser<Empty> p_assignment = CharParser.SkipChar (‘=’);

Combining the parsers into the complete parser:

Parser<Tuple<SubString,int>> p_parser = Parser.Group (
 p_identifier.KeepLeft (p_spaces),
 p_assignment.KeepRight (p_spaces).KeepRight (p_int));

In the end we execute the parser on the string:

ParserResult<Tuple<string,int>> result = Parser.Parse (
 p_parser,
 ‚AnIdentifier = 3‛);

if (result.IsSuccessful)
{
 Console.WriteLine (
 ‚{0} = {1}‛,
 result.Value.Item1,
 result.Value.Item2
);
}
else
{
 Console.WriteLine (
 result.ErrorMessage
);
}

 6 MicroParser – How to get started, Mårten Rånge

Complete sample:

using System;
using MicroParser;
// ReSharper disable InconsistentNaming
namespace SampleParsers
{
 class Program
 {
 static void Main (string[] args)
 {
 // Int () is a builtin parser for ints
 Parser<int> p_int = CharParser.Int ();

 Parser<SubString> p_identifier = CharParser
 .ManyCharSatisfy2 (// Creates a string parser
 CharSatisfy.Letter, // A test function applied to the
 // first character
 CharSatisfy.LetterOrDigit, // A test function applied to the
 // rest of the characters
 minCount: 1 // We require the identifier to be
 // at least 1 character long
);

 Parser<Empty> p_spaces = CharParser.SkipWhiteSpace ();
 Parser<Empty> p_assignment = CharParser.SkipChar ('=');

 Parser<Tuple<SubString, int>> p_parser =Parser.Group(
 p_identifier.KeepLeft(p_spaces),
 p_assignment.KeepRight(p_spaces).KeepRight(p_int));

 ParserResult<Tuple<SubString,int>> result = Parser.Parse (
 p_parser,
 "AnIdentifier = 3");

 if (result.IsSuccessful)
 {
 Console.WriteLine (
 "{0} = {1}",
 result.Value.Item1,
 result.Value.Item2
);
 }
 else
 {
 Console.WriteLine (
 result.ErrorMessage
);
 }

 Console.ReadKey ();
 }
 }
}

 7 MicroParser – How to get started, Mårten Rånge

Implicit Error Messages
A killer feature in Parsec and FParsec is the ability to generate readable error messages without explicit coding.

MicroParser attempts to provide this feature as well although admittedly FParsec does a better job at the time of

writing.

When using the sample code above:

Input MicroParser response

AnIdentifier = @ Pos: 15 ('@') - expected : digit

1nIdentifier = 3 Pos: 0 ('1') - expected : letter

AnIdentifier @ 3 Pos: 13 ('@') - expected : '='

This feature alone makes parser combinator frameworks such as Parsec, FParsec and MicroParser a very interesting

alternative to Regular Expressions.

 8 MicroParser – How to get started, Mårten Rånge

Expression parsing with operator precedence
This sample is called Sample2 in the project SampleParsers

The sample above is very straight forward to implement using regular expression and there’s little to gain by adding

a dependency to MicroParser. However imagine we have an expression such as this:

2*(x + 1) + y + 3

The expression is provided by our user and we like to compute the user defined expression. One idea is to use the

shipped C# compiler that is shipped with .NET to compile the expression and execute it. That will work but there are

some issues:

1. The user is writing C#, for simple formulas like above that’s not a problem but in some cases we like to add

domain specific operators or keywords.

2. Potential security issues – a black hat might use it to execute code in an unsecure context

A different approach is to specify a Domain Specific Language and parse that language using a parser framework

such as MicroParser or FParsec. This is an area where Regular Expression isn’t particular good at because Regular

Expression struggles with:

1. Operator precedence – i.e. “*/” binds harder than “+-“

2. Parenthesis matching – it’s difficult to express a regular expression that handles nested parenthesizes

3. Poor error message when the user types a faulty expression

A parser combinator framework has no problems with this.

In this sample we use MicroParser to parse an expression such as the one above and the result is an Expression tree

(System.Linq.Expression). This expression tree is then compiled into a delegate and executed. The variables “x” and

“y” will be provided as members of a dictionary.

 9 MicroParser – How to get started, Mårten Rånge

Let’s start with some basic parsers:

// Define a parameter expression that represent a dictionary, this dictionary
// will contain the variable values
var inputParameter = Expression.Parameter (
 typeof (IDictionary<string, double>),
 "input"
);

Func<string, Parser<Empty>> p_str = CharParser.SkipString;

var p_spaces = CharParser.SkipWhiteSpace ();

// Parse a double and map it into a ConstantExpression
var p_value = CharParser.Double ().Map (d =>(Expression)Expression.Constant (d));
// Parse a identifier and map it into a Expression that uses FindVariableValue
// to locate a value based on the identifier
var p_variable = CharParser
 .ManyCharSatisfy2 (
 CharSatisfy.Letter,
 CharSatisfy.LetterOrDigit,
 minCount: 1
)
 .Map (identifier => (Expression) Expression.Call (
 null,
 s_findVariableValue,
 inputParameter,
 Expression.Constant (identifier.ToString ()))
);

It’s time to define the term parser; that is a value (i.e. 3.14), a variable (i.e. “x”) or a sub expression (i.e. “(x + 3)”). As

the parser here will need to call itself recursively if it’s a sub expression we will have to use a special type of parser,

the redirect parser.

var p_astRedirect = Parser.Redirect<Expression> ();

// p_ast is the complete parser (AST = Abstract Syntax Tree)
var p_ast = p_astRedirect.Parser;

// Choice applies each parser consequentially until one matches.
var p_term = Parser.Choice (
 p_ast.Between (p_str ("(").KeepLeft (p_spaces), p_str (")")),
 p_value,
 p_variable
).KeepLeft (p_spaces);

 10 MicroParser – How to get started, Mårten Rånge

Complete the parser

// p_level is a support parser generator
// it accepts a parser it will apply on the input separated by the operators
// in the ops parameter
Func<Parser<Expression>, string, Parser<Expression>> p_level =
 (parser, ops) => parser.Chain (
 CharParser.AnyOf (ops , minCount:1, maxCount:1).KeepLeft (p_spaces),
 (left, op, right) =>
 Expression.MakeBinary (OperatorToExpressionType (op), left, right)
);

// By splitting */ and +- like this we ensure */ binds _harder_
var p_lvl0 = p_level (p_term, "*/");
var p_lvl1 = p_level (p_lvl0, "+-");

// This completes the parser
p_astRedirect.ParserRedirect = p_lvl1;

The parser p_ast will now parse the following expression:

2*(x + 1) + y + 3

And if X = 1 and Y = 2 the resulting delegate should produce the value 9.

 11 MicroParser – How to get started, Mårten Rånge

JSON parsing sample
This sample is in JsonSerializer.cs in the project MicroParser.Json.

JSON is getting more and more popular as an alternative to XML. While .NET has excellent XML tools it’s somewhat

lacking in JSON support.

The JSON specification (www.json.org) is a small grammar that can be implemented with the help of a parser

combinator such as MicroParser or FParsec.

Due to JSONs dynamic nature it fits very well together with languages such as JavaScript or Groovy. In .NET4 we got

something called ExpandoObject which also fits very well together with JSON:

// ExpandoObject sample
// What’s cool is that ExpandoObjects properties are bindable using WPF bindings
dynamic expando = new ExpandoObject ();
expando.Test = ‚This is a new property called Test‛;
expando.AnotherProperty = 3.14;

IDictionary<string, object> expandoAsDictionary = expando;
foreach (var kv in expandoAsDictionary)
{
 Console.WriteLine (‚{0} – {1}‛, kv.Key, kv.Value);
}

In this sample we will unserialize a JSON string into an ExpandoObject for fun and fortune.

Some simple parsers to parse basic JSON tokens:

Func<char, Parser<Empty>> p_char = CharParser.SkipChar;
Func<string, Parser<Empty>> p_str = CharParser.SkipString;
var p_spaces = CharParser.SkipWhiteSpace ();

var p_null = p_str ("null").Map (null as object);
var p_true = p_str ("true").Map (true as object);
var p_false = p_str ("false").Map (false as object);

var p_number = CharParser.Double ().Map (d => d as object);

http://www.json.org/

 12 MicroParser – How to get started, Mårten Rånge

The string value parser is a bit more complicated as JSON strings can be \-escaped:

const string simpleEscape = "\"\\/bfnrt";
const string simpleEscapeMap = "\"\\/\b\f\n\r\t";
Debug.Assert (simpleEscape.Length == simpleEscapeMap.Length);

var simpleSwitchCases = simpleEscape
 .Zip (
 simpleEscapeMap,
 (l, r) => Tuple.Create (
 l.ToString (),
 Parser.Return (new StringPart (r))
)
);

var otherSwitchCases =
 new[]
 {
 Tuple.Create (
 "u",
 CharParser
 .Hex (minCount: 4, maxCount: 4)
 .Map (ui => new StringPart ((char) ui)))
 };

var switchCases = simpleSwitchCases.Concat (otherSwitchCases).ToArray ();

var p_escape = Parser.Switch (
 Parser.SwitchCharacterBehavior.Consume,
 switchCases
);

var p_string = Parser
 .Choice (
 CharParser
 .NoneOf ("\\\"", minCount:1)
 .Map (ss => new StringPart (ss.Position, ss.Length)),
 CharParser.SkipChar ('\\').KeepRight (p_escape))
 .Many ()
 .Between (
 p_char ('"'),
 p_char ('"')
)
 .CombineStringParts ();

 13 MicroParser – How to get started, Mårten Rånge

Now we are ready to define the complete JSON value parser:

var p_array_redirect = Parser.Redirect<object> ();
var p_object_redirect = Parser.Redirect<object> ();

var p_array = p_array_redirect.Parser;
var p_object = p_object_redirect.Parser;

// Parser.Switch is used as we can tell by looking at the first character which
// parser to use
var p_value = Parser
 .Switch (
 Parser.SwitchCharacterBehavior.Leave,
 Tuple.Create ("\"", p_string),
 Tuple.Create ("0123456789", p_number),
 Tuple.Create ("{", p_object),
 Tuple.Create ("[", p_array),
 Tuple.Create ("t", p_true),
 Tuple.Create ("f", p_false),
 Tuple.Create ("n", p_null)
)
 .KeepLeft (p_spaces);

The array parser:

var p_elements = p_value.Array (p_char (',').KeepLeft (p_spaces));

p_array_redirect.ParserRedirect = p_elements.Between (
 p_char ('[').KeepLeft (p_spaces),
 p_char (']')
)
 .Map (objects => objects as object);

 14 MicroParser – How to get started, Mårten Rånge

The object parser:

var p_member = Parser.Group (
 p_string.KeepLeft (p_spaces),
 p_char (':').KeepLeft (p_spaces).KeepRight (p_value)
);

var p_members = p_member.Array (p_char (',').KeepLeft (p_spaces));

p_object_redirect.ParserRedirect =
 p_members
 .Between (
 p_char ('{').KeepLeft (p_spaces),
 p_char ('}')
)
 .Map (values =>
 {
 IDictionary<string, object> exp = new ExpandoObject ();
 foreach (var value in values)
 {
 exp.Add (value.Item1.ToString (), value.Item2);
 }

 return exp as object;
 });

The complete parser ensures leading whitespace is consumed:

s_parser = p_spaces.KeepRight (p_value);

This parser will now be able to parse JSON data such as below into an ExpandoObject:

{
 "Test": "This is a new property called Test",
 "AnotherProperty": 3.14,
 "AnArray": ["GML", "XML"]
}

