Page 7

	[image: image1.wmf]
	MSBuild Extras - Toolkit for .NET 1.1 “MSBee”

Documentation

	
	
	
	Last updated: 5/3/2006 1:56 PM

	

	author
	SaraF
	Released date
	5/3/2006

	Project location
	MSBee Homepage

21. Overview

1.1 Introduction
2
1.2 Product Information
2
1.3 Quick Start
2
2. Installation
3
2.1 System requirements
3
2.1.1 .NET Framework 2.0 Redist
3
2.1.2 .NET Framework 1.1 Redist
3
2.1.3 .NET Framework 1.1 SDK
3
2.1.4 Windows Installer v3.1
3
2.2 Install
3
2.2.1 Wizard installation
3
2.2.2 Command line installation
3
2.3 Uninstall
4
3. Overview
4
3.1 Introduction to MSBuild
4
3.2 Introduction to MSBee
5
3.2.1 MSBee.dll
5
3.2.2 MSBuildExtras.FX1_1 targets files
5
3.2.3 MSBuildExtras.FX1_1.Common.targets
5
3.2.4 RCRFX1_1.exe
6
4. Using MSBee
6
4.1 MSBee targets in migrated VS projects
6
4.2 Importing MSBee targets
6
4.2.1 Importing MSBee targets to Project Files
6
4.2.2 Using the Custom Targets Property
7
Same-Language Solutions
7
Mixed-Language Solutions
7
4.3 Moving MSBee
8
4.4 Building VS projects that target .NET 1.1
8
4.5 Using the LC (License Complier) Task
8
4.6 Using the FX1_1 constant
9
4.7 Using the BaseFX1_1OutputPath
9
5. Verifications
9
5.1 Verifying the build
9
5.2 Verifying the runtime version
10
6. Known Issues
10
6.1 Partial Classes in VS 2005 will not work with MSBee
10
6.2 C++ projects are not supported by MSBee
10
7. Frequently Asked Questions
10
7.1 Why does MSBee use a DLL and an Exe, instead of just a targets file?
10
7.2 Is there VS 2005 IDE support for building against .NET 1.1?
10
7.3 Why does the ResGen task create a temporary directory?
11
8. Support
11
9. Change History
11

1. Overview

1.1 Introduction

Since the release of MSBuild in .NET Framework 2.0, a very frequent customer request has been to provide a means for MSBuild to build .NET 1.1 applications. This demand stems from users who want to use Visual Studio 2005 and .NET 2.0 but need to continue servicing customers who use .NET 1.1.

MSBuild Extras – Toolkit for .NET 1.1 “MSBee” is an addition to MSBuild that allows developers to build managed applications in Visual Studio 2005 that target .NET 1.1.

1.2 Product Information

MSBee is a member of Power Toys for Visual Studio, developed by the Developer Solutions Team.

More information regarding MSBee and other Power Toys for Visual Studio can be found at the following locations:

· MSBuild Extras – Toolkit for .NET 1.1 “MSBee” CodeGallery Homepage
· Developer Solutions Forums
· Developer Solutions Team Blog
· Craig Lichtenstein’s Blog (Lead MSBee Developer)
1.3 Quick Start

1. Unzip MSBeeSetup.zip

2. Run MSBeeSetup.msi (see Section 2.2)

3. Import the appropriate MSBee .targets file directly after the standard Import element in the project file (see Section 4.2)

4. Run MSBuild on the command line with the TargetFX1_1 property set to true (see Section 4.3)
2. Installation

2.1 System requirements

Installation of MSBee requires Administrator privileges.

The following items listed below are required for installing MSBee.

2.1.1 .NET Framework 2.0 Redist

The .NET Framework 2.0 Redist is required to run MSBee and MSbuild, since they are .NET 2.0 based-binaries.
2.1.2 .NET Framework 1.1 Redist

The .NET Framework 1.1 Redist is required for users to compile and run .NET 1.1 binaries. The redist contains the csc and vbc compilers.

2.1.3 .NET Framework 1.1 SDK

The .NET Framework 1.1 SDK is required for using resgen.exe.

2.1.4 Windows Installer v3.1

Windows Installer v3.1 is included in recent service packs for Windows. For a list of these service packs and the Windows Installer download, please visit the Windows Installer v3.1 KB article.

2.2 Install

Files installed by the MSBeeSetup.msi are as follows:
1. MSBuildExtras.Fx1_1.CSharp.targets

2. MSBuildExtras.Fx1_1.VisualBasic.targets

3. MSBuildExtras.Fx1_1.Common.targets
4. MSBee.dll
5. RCRFX1_1.exe
6. MSBee ReadMe.doc (this doc)
MSBee will be installed by default to %Program Files%\MSBuild\MSBee. More information about changing the default install location can be found in section 4.3.
Upon installation, MSBee will appear in Add-Remove Programs.

2.2.1 Wizard installation

To use the wizard installation, simply execute the MSBeeSetup.msi file.

2.2.2 Command line installation

The command line install can be run unattended in order to install on multiple machines for lab scenarios.

To use the command line install, run the following:

msiexec [/quiet] /i MSBeeSetup.msi

2.3 Uninstall

There are several ways to uninstall MSBee:

1. Uninstall from Add-Remove Programs

2. Run MSBeeSetup.msi and select the option to uninstall

3. Uninstall via command line:

msiexec /x MSBeeSetup.msi [/quiet]

MSBee uninstall will remove all of the components listed in section 2.2.

3. Overview

3.1 Introduction to MSBuild

Since MSBee is an extension of MSBuild, it’s necessary to review how MSBuild works. MSBuild consists of an executable, a build engine, tasks, and .targets files. When using MSBuild on the command line, a user interacts with the executable by providing it a VS 2005 / MSBuild project file as input. MSBuild project files are XML-based and enable a user to describe what items should be built and how they need to be built with different platforms and configurations.

Note that C# and VB projects use VS 2005 project files that work directly with MSBuild. However, there are some VS 2005 projects that behave differently. C++ project files, for example, still use the VS 2003 project file format. MSBuild handles these files by forwarding them to another tool, vcbuild, which actually builds the project.

For MSBuild to perform an operation, such as compiling C# files, it invokes tasks. Tasks are reusable units of executable code that perform operations. Some tasks, like the csc task, invoke the csc compiler to compile C# files. Other tasks, like the copy task, can perform operations on files. The execution logic of a task is written in managed code by extending the abstract Task class. A UsingTask element is then included in a project file to indicate where a task’s implementation can be found. The task itself is executed by creating an XML element, whose name is the task, as a child of a “target” element. Tasks can accept parameters, which are passed in as element attributes.

Targets group MSBuild tasks together in a particular order and expose sections of a project file as entry points into the build process. Targets are declared as XML elements in project files with the .targets extension. These .targets files are imported within applicable Visual Studio project files by using an Import element. Typically, nested imports are used where the VS project file imports a .targets file that is language specific (a C# project imports the Microsoft.CSharp.targets file), and that file imports the Microsoft.Common.targets file. The Microsoft.Common.targets file contains target elements that can be used in any managed code project.

For more information regarding MSBuild, please visit the online MSBuild Documentation.

3.2 Introduction to MSBee

As an extension of MSBuild, MSBee provides additional tasks and targets that allow .NET 1.1 applications to be built. MSBee consists of four files: MSBee.dll, MSBuildExtras.FX1_1.Common.targets, MSBuildExtras.FX1_1.CSharp.targets, and MSBuildExtras.FX1_1.VisualBasic.targets.

3.2.1 MSBee.dll

The MSBee DLL contains tasks that have been written for targeting .NET 1.1. Some of these tasks are new while others are duplicates of tasks that already exist for MSBuild. The duplicate tasks were created to override tasks that are tied to .NET 2.0. The GetFrameworkPath task, for example, returns the path to the .NET Framework 2.0 directory. Because MSBee is targeting .NET 1.1, it includes its own version of GetFrameworkPath which returns the path to the .NET Framework 1.1 directory. A UsingTask element in the MSBuildExtras.FX1_1.Common.targets file specifies that the duplicate tasks’ implementations are inside the MSBee DLL.

3.2.2 MSBuildExtras.FX1_1 targets files

While some task implementations are tied to a specific .NET version, other MSBuild tasks exist that can already target other versions of the .NET framework. These tasks all shell out to particular executables and they all have a parameter, named ToolPath, which controls where the task looks for the executable. This is leveraged by copying these tasks and their encompassing targets from the standard MSBuild .targets files to the corresponding MSBee .targets files. Note that the copied targets and tasks keep the same name as the originals; the resolution of the duplicate targets is explained below. Within the MSBee .targets files, these tasks’ ToolPath parameters are assigned to the .NET Framework 1.1 directory path since the corresponding task executables reside in that directory. The .NET 1.1 directory path is obtained by using the MSBee GetFrameworkPath task. Since these tasks were written to support the switches of the .NET 2.0 tools, it’s necessary to filter out the switches that didn’t exist in the .NET 1.1 counterparts. This is accomplished by commenting out the task attributes that are tied to the non-existent switches.

3.2.3 MSBuildExtras.FX1_1.Common.targets

Outside of tasks, the MSBuildExtras.FX1_1.Common.targets file performs other functions.

· The MSBuild common.targets file includes a search path used by the ResolveAssemblyReference task to find assemblies. This search path includes registry keys and paths that are tied to .NET 2.0. The MSBee common.targets file replaces .NET 2.0 specific paths with their .NET 1.1 counterparts. Additionally, the GetRegistryValue task (a new task included in the MSBee.dll) is used to retrieve Visual Studio 2003 specific assembly paths from the registry.

· The MSBee common.targets file overwrites .NET version specific properties from the MSBuild common.targets file.

· The MSBee common.targets file replaces the default output and intermediate output directories with special paths that include “FX1_1” directories. This allows a user to have assemblies that target .NET 1.1 and .NET 2.0 side-by-side.

3.2.4 RCRFX1_1.exe

COM references are commonly used in Windows programming and must be resolved like any other assembly being referenced by the compiler. In this case, resolving a COM reference doesn’t just include finding its location, but also generating interop assemblies if they’re not already present. This latter requirement affects MSBee since any interop assemblies generated through MSBuild will be .NET 2.0 assemblies, which are not compatible with the .NET 1.1 compilers. Therefore, MSBee requires its own version of the ResolveComReference (RCR) task.

Our approach is to rebuild the necessary MSBuild code, for resolving a COM reference, into a .NET 1.1 executable. Since the application is executed in the 1.1 runtime, .NET 1.1 interop assemblies are produced. An app.config file ensures that it only runs with the 1.1 runtime. MSBee’s own RCR task starts this executable, retrieves the COM reference data obtained by the executable, and passes the data back to MSBuild.
4. Using MSBee

4.1 MSBee targets in migrated VS projects

To build projects using MSBee targets and tasks, and thus produce a .NET 1.1 assembly, a user needs to add an import element for the appropriate MSBee language-specific .targets file in the VS project file. The location of the import element is significant since the imported MSBee .targets file contains altered versions of targets that already exist in the corresponding MSBuild .targets file. For MSBuild to use the MSBee versions of the targets, these targets must be imported after their counterparts in the MSBuild .targets file. Thus, the MSBee .targets file must be imported after the MSBuild .targets file is imported. This behavior applies to all MSBuild elements; when using properties, for example, the last value assigned to a property is the value of the property for the entire processing of the project.

The import statement for the MSBee .targets file includes two conditionals, both of which control whether the import actually occurs. One condition checks if the “TargetFX1_1” property is set to true. The other condition checks that the “BuildingInsideVisualStudio” property is set to false. The purpose of these is to only import the .targets file when the user wants to target .NET 1.1 and is running MSBuild from the command line.

4.2 Importing MSBee targets

You can import a MSBee targets file in one of two ways that best suits your development environment:

1. Adding the MSBee targets file directly to each project file

2. Specifying a targets file with the Custom Targets property
4.2.1 Importing MSBee targets to Project Files

To import an MSBee .targets file in a VS project file, find the import element for the MSBuild .targets file. For a VB project, the line you are looking for is shown below.

<Import Project="$(MSBuildBinPath)\Microsoft.VisualBasic.targets" />

Immediately under this line, insert an import of a MSBee language-specific .targets file. For a VB project, you will want to insert the line below.
<Import Project="$(MSBuildExtensionsPath)\MSBee\MSBuildExtras.FX1_1.VisualBasic.targets" Condition=" '$(BuildingInsideVisualStudio)' == '' AND '$(TargetFX1_1)'=='true'" />

4.2.2 Using the Custom Targets Property
The MSBuild CustomAfterMicrosoftCommonTargets property allows users to avoid having to import an MSBee .targets file in each project.

Same-Language Solutions

For solutions that contain just a single language, use the CustomAfterMicrosoftCommonTargets property to specify the appropriate MSBee .targets file for the language.

For example, in a C#-only solution:
msbuild [project file] /p:TargetFX1_1=true /p:CustomAfterMicrosoftCommonTargets=”%ProgramFiles%\MSBuild\MSBee\MSBuildExtras.Fx1_1.CSharp.targets”
Mixed-Language Solutions
For solutions that contain two or more different languages, use the CustomAfterMicrosoftCommonTargets to specify a path to a conditional targets file that handles all of the lanagues in the solution.

For example, in a C# and VB mixed-solution:
msbuild [project file] /p:TargetFX1_1=true /p:CustomAfterMicrosoftCommonTargets=<path to conditional targets>\MSBuildExtras.Fx1_1.Conditional.targets
where MSBuildExtras.Fx1_1.Conditional.targets may be defined as

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>
<_CSharpTargetsFile>$(ProgramFiles)\MSBuild\MSBee\MSBuildExtras.Fx1_1.CSharp.targets</_CSharpTargetsFile> <_VisualBasicTargetsFile>$(ProgramFiles)\MSBuild\MSBee\MSBuildExtras.Fx1_1.VisualBasic.targets</_VisualBasicTargetsFile>

</PropertyGroup>

<Import Condition=" '$(MSBuildProjectExtension)' == '.csproj' and Exists('$(_CSharpTargetsFile)') " Project="$(_CSharpTargetsFile)" />

<Import Condition=" '$(MSBuildProjectExtension)' == '.vbproj' and Exists('$(_VisualBasicTargetsFile)') " Project="$(_VisualBasicTargetsFile)" />

<PropertyGroup Condition=" !Exists('$(_CSharpTargetsFile)') or !Exists('$(_VisualBasicTargetsFile)') ">

<CoreCompileDependsOn>MSBeeTargetsNotFound</CoreCompileDependsOn>

</PropertyGroup>

<Target Name="MSBeeTargetsNotFound">

<Error

Text="Please download and install MSBee from:

http://msdn.microsoft.com/vstudio/downloads/tools/msbee/default.aspx" />

</Target>

</Project>
4.3 Moving MSBee

It’s possible to use MSBee from any location on your machine, not just the default installation directory. This is particularly useful if you want to store MSBee in your source tree or allow multiple people to access it on a file share. To relocate MSBee, simply move the entire MSBee directory to wherever you wish.

After moving, be sure to update any MSBee specific paths to its new location. If you’ve imported a MSBee .targets file in a project file, you’ll need to update the Project attribute with the new path to the .targets file. If you’re using the Custom Targets property with a conditional targets file, be sure to update the file with the new paths to the MSBee .targets files.
4.4 Building VS projects that target .NET 1.1

Once the user imports an MSBee .targets file, the project can be built using .NET 1.1. This is done by invoking msbuild.exe on the command line with the TargetFX1_1 property set to true and the project file (or its solution file) passed in. An example of a command build targeting .NET 1.1 is shown below:

msbuild [project file] /t:Rebuild /p:TargetFX1_1=true
4.5 Using the LC (License Complier) Task

The License Compiler (LC.exe) is used to license managed executables. It reads in a .licx file and generates a .licenses file to be used as an embedded resource in a managed executable.

MSBee overrides the MSBuild LC Task to use the 1.1 version of LC.exe.

To use the LC Task

1. Create a valid .licx file (see the LC.exe documentation for an example)

2. Add the .licx file to a project with its Build Action property set to ‘Embedded Resource’
3. Build using MSBee

4.6 Using the FX1_1 constant

During the Beta 2 release, there was a community request to define a constant for .NET 1.1 builds in order to skip 2.0-specific code. For example, the assembly properties below are deprecated in .NET 2.0, generating warnings; however, they are required for .NET 1.1. The FX1_1 constant allows users to define conditional statements to solve this.
#if FX1_1

[assembly: AssemblyDelaySign(false)]

[assembly: AssemblyKeyFile("C:\\Keys\\MyKey.snk")]

#endif

4.7 Using the BaseFX1_1OutputPath
During the Beta 2 release, there was a community request to specify the MSBee output path. MSBee will replace the default ‘bin\FX1_1’ base path with the value specified in the BaseFX1_1OutputPath property. For example,
msbuild [project file] /p:BaseFX1_1OutputPath=bin\altFX1_1 /p:TargetFX1_1=true
replaces the default output path of bin\FX1_1\Debug with bin\altFX1_1\Debug.
5. Verifications

5.1 Verifying the build

You can verify the project was successfully built against .NET 1.1 from the generated build log. The CoreCompile task will call the required compiler from the .NET 1.1 directory, as seen below for a C# project.

Target CoreCompile:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\Csc.exe /noconfig /warn:4 /define:DEBUG;TRACE /debug+ /debug:full /optimize- /out:obj\FX1_1\Debug\ConsoleApplication1.exe /target:exe Program.cs Properties\AssemblyInfo.cs
5.2 Verifying the runtime version

Use ildasm to verify a MSBee-built project will run with .NET 1.1, provided you do not have access to a machine with only .NET 1.1 installed. Ildasm allows you to view an application’s manifest which shows the version of mscorlib being used by the application.
6. Known Issues

6.1 Partial Classes in VS 2005 will not work with MSBee

Since partial classes didn’t exist in .NET 1.1, the compilers doesn’t know how to handle them and the build fails. For example, the Visual Studio 2005 IDE project converter separates the auto-generated design classes from developer-written code, using partial classes to combine the two. Such projects will not build with MSBee.

6.2 C++ projects are not supported by MSBee

Visual Studio 2005 C++ project files have not been updated for MSBuild. Hence, you cannot import the necessary MSBee .targets file.

7. Frequently Asked Questions

7.1 Why does MSBee use a DLL and an Exe, instead of just a targets file?

MSBee provides additional functionality and support beyond the scope of what a targets file can provide. The use of a DLL makes MSBee extensible, allowing for new tasks to be added.

Currently, MSBee.dll implements the following tasks specifically designed for .NET 1.1.

· GenerateResource task that generates .resources using resgen.exe

· GetRegistryValue task for retrieving the Visual Studio assembly search paths

· GetFrameworkPath and GetFrameworkSDKPath tasks to find the .NET Framework and SDK paths, respectively

· LC task to create licenses for managed executables

· ResolveComReference task for resolving COM references to locations on disk; which relies on RCRFX1_1.exe to create COM interop for .NET 1.1.

7.2 Is there VS 2005 IDE support for building against .NET 1.1?

At this time, we are not planning to add IDE support. Since MSBee will be a shared source release, the potential is there for the community to provide this support.
7.3 Why does the ResGen task create a temporary directory?

ResGen.exe 2.0 has a command line switch to specify references that include types being used in a .resx file. ResGen.exe 1.1 lacks this capability. The only way to find the types in those references is to have the references reside adjacent to the ResGen executable at runtime. Thus, we copy the references along with ResGen.exe to a temp sub-directory prior to running ResGen.exe. After the resources are generated, we delete the temp subdirectory.
8. Support
For general questions, including “How Do I…”, visit the Developer Solutions and Power Toys Forums
Bug reports and suggestions can be filed on the MSBee bug reporting site.
For general questions related to Power Toys for Visual Studio, visit the Developer Solutions Team Blog
9. Change History

	Change
	Changed By
	Date

	Created
	SaraF@Microsoft.com
	2/6/2006

	Finalized for Beta 1 Release
	SaraF@Microsoft.com
	2/9/2006

	Updated for Beta 2 Release
	SaraF@Microsoft.com
	3/23/2006

	Updated for RTM
	CLichten@Microsoft.com
	5/3/2006

