Introduction to Message Passing and the MPAPI Fnaorie

Introduction to Message Passing
and the MPAPI Framework

Covers MPAPI version 1.1

Copyright © Frank Thomsen, 2008

mpapi@sector0.dk
http://sector0.dk

Introduction to Message Passing and the MPAPI Fnaorie

Table of contents

TaBIE Of CONTENTS ...ceiiiiiiie e e e e e e e e e e e e e e e e e s bbbt baa e e e e e eees 2
e =] = (oL PP 3...
ADOUL MESSAJE PASSING ..uuuuuiiiieeeeeee e o ettt s e s e e e e e aeaee et e eeesseeenaeeeeesssssssnnnnnaaaeaaaaaeaaees 3
About Message PassSing AP (IMPAPI)u e et ee e e e e e e eeeanaeens 4
1= 11011 e][0T V2SS 5
N o 011 (=Tox (U PR 5
D11 o 1o T T= | USRS 7
SEHHNG UP 8 SYSTEIM ...ttt s e e e e e e e e e et e e e e e e e e e e e e eeetsaaab b e e e e e e e aaeeaaaas 7
RUNNING the @XAMPIES .. .o ermmmmm et e e e e ettt eeeeees s s s s e e e e e eeaaeeeeeeeennnnnnnns 8
(o Tor= I T T [PPSR 8
Distributed NOAE IN @ CIUSTENoiiiiiiiiieieeee et a e e e e 9
A note on OpenLocal and OpenDistribUted. ... 10
(D= T a1 o = TR0 T] USRS 10
BaASIC PIIMITIVES. ..ttt e e e e e e e et ettt ettt et tb s mnaas et b a e e e e e e e eeeaeeeeeeeesnnnnnnns 15
SPAWNING @ NEW WOTKET eieieieeeeee s eeeeees s s s e e e e e e e e e e e e e e eeeeeeesssasan s e e e e aaeeeaaeeeeeeeees 15
Getting a list of registered nodes in the CIUSLeL............ooiiiiiiiiiiii e, 15
Getting the number of processors available t0 @N0d..........cccooeeeeeiiiiiiiieeee e 15
SENAING B MESSAGE .ceeeeiettuiiniiiae e e e eeeemmmm e a e e e e e e e e aattetaeeettaassaa s aaaaaaaaaaseaaaaeaaaaeeeeeeesnsnnnnes 15
O[>] TP TP PPPPPPP 15
Limitations on address and MeSSAJE tYPE ... e seeeeeeeeereeeieeiriiiiriinnaaaeasseaeaaasasaaeeees 1D
o= To (o= 1] H ST PP PP PPPPPPPPPPP 16
RECEIVING @ MESSAQE ..evtvuiiiiiiieee e oo+ttt eeeettt bbb e e s s e e e e e e e e e aaaaaaeaaaaaaeeeeeesasebnnnnnnnnnnes 16
The RECEIVE PIIMILIVEScii i eeeeee e e s e e e e e e e e e e e e et nnnar s a e e e e e eeaeaes 16
The HasMeSSages PriMITIVEScooioii oo e e e aa e e e e e e e e e e e e eeeeeeeeeees 16
Filtering 0N INCOMING MESSAJES.uuuuuereereeeeerrruernniaaaaaaeeeaeeeerseeerreeernnnnnreerrrrrnn 17
Simulating Synchronous DENAVIOUT ... 17
MONItOriNG @NOTNEN WOTKET ... eeeeeee e e e e e rea e e e e e e e e e e e e e e e eeeneaeannnes 18
(1S3 0 To IR 1 g = (o o [P 19
QLI 18 0] (=] T L] 1] o U PPUOPRR 20
Problems With MONO.NET ...t e e e e e e e et e e ee et beennaeeeseeebnnn e e e e as 20
Heterogenous clusters vS. NOMOQENOUS CIUSTEIS cameeeieiie e 20
Too many or too large messages congest the netvii@ework..................coiiiiiiiiiiiieeane, 21
I 0 111 LV 21
OVerridables IN @ WOTKET ..ot e e s 21
(@] 01T o T To = T\ To o [N g 1 ¢= 1 o R 22
Primitives available from a Worker SUDCIASS . . vveiiiiieieeeiii e 23
Primitives available from the 1ocal NOUE......ccoouuiiiiiiiiii e 25
Accessing the current Worker instance from anywhere..............uuuiiiiiiineeeiiniieeeeee e 25
[T RS = L[0T JEST=T 7= 26

Introduction to Message Passing and the MPAPI Fnaorie

Preface

How do we write secure, robust, scalable, mutiibdesl software? There are several approaches,
and no definitive answer to this question. Butrgment advent of multicore processors have put a
new emphasis on how we as programmers write sadttisat can utilize this new hardware
architecture so that the processors are not idlexsnget maximum performance.

Traditionally we write sequential programs. Thatvisat programmers are taught, and it is
(relatively) easy to understand the flow in thetwafe. Programmers are also taught that they
should avoid multithreading whenever possible, bseahances are that bugs will be present —
indeed one gets the feeling that bugs are inh@menultithreaded software. And the fact is that
getting multithreading right in imperative languadi&e C++, Java or C# is extremely hard; the
primitives provided in these languages for handthrgads and their synchronization are not
adequate. It looks simple on paper, but writingtithueaded software is rarely as trivial as the
textbook examples.

The problem is shared state. All threads have adoethe same memory locations so several
threads can concurrently read and update the sam®ng. That is a recipe for disaster, as you no
doubt realize. The solution to this is using loakther as semaphores, monitors, mutexes or some
other construct. But using locks can be very harget right — race conditions and deadlocks lurks
right beneath the surface. As Simon Peyton Jowoes Ricrosoft Research put it in the book
"Beautiful code” by Greg Wilson, "locks are bad'itlier you take too few locks, too many lock,
take the wrong locks, or take them in the wrongeor&urthermore, error recovery is very hard,
because the programmer has to guarantee that mmydees not leave the system in an inconsistent
state. | have been a developer and architect @ralesnterprise level systems with a panic solution
that restarts the application if an unknown ermguws and we cannot guarantee the state of the
system. That is not by choice as much as by ndgessiie complexity of systems rapidly grow out
of control when dealing with multithreading.

About Message Passing

Message passing is a different approach to conmyrhan we are used to when using modern,
imperative languages like C++, C# or Java. In tHasguages we ushared state concurrency,
where all threads in the same process space hassaitcthe same areas of memory (i.e. variables
etc.). This present a problem with how we synchetie threads to avoid inconsistent memory,
and it is usually done with locks, semaphores, teosior other constructs. As explained in the
preface this is not as trivial as one might thisukgl there are always one or more problems in the
synchonization that can be very hard to detectlitggto unstable systems and a lot of time spend
on debugging and rewriting parts of the software.

In message passing concurrency each thread has access only to its own state.hElps
programmers write more robust software since tlegl ne synchonize memory no longer exists.
The only means for a thread to communicate witleothreads is by sending them messdgand
state is not transferred between threads in thessages.

! This is not entirely true in MPAPI; since the frawork is written in C# it is still possible to biethe non-shared state
if one really wants to, but that would violate fmémary design of the system.

Introduction to Message Passing and the MPAPI Fnaorie

This approach also has the advantage of workinigqéy in a distributed environment, since the
simplest solution to letting processes and threadshysically disparate computers communicate is
by using message passing. This is already being thoexisting frameworks — MPI (Message
Passing Interface), MS-MPI (Microsoft Message Ragbiterface), Beowulf clusters and others —
used in high performance computing (HPC).

About Message Passing APl (MPAPI)

| wrote the MPAPI framework for 3 reasons:

* | was looking for a way to simplify the developmehimultithreaded applications without
having to worry about locks and other thread symcization mechanisms. The problems
with thread synchronization are becoming more ancerapparent as we move from single
core to multicore CPUs. The majority of softwarddagp is written with a single core in
mind, and hence does not fully utilize the multiptges in modern CPUs.

* | spend a couple of weeks investigating the fumai@rogramming language Erlang.
Erlang has from the beginning been designed withllghand distributed computing in
mind. The solution the engineers at Ericsson caoith is very simple and elegant, and |
wanted to investigate how this would work in a .N&htext.

* For some time | have been researching geneticidlgts and genetic programming. This is
a particularly compute intensive branch of compatéence, and | wanted a framework that
would easily let me write software that could saaemultiple computers.

The framework is now in a state where it can beastd, although it is still in some kind of flux as
| gain more and more experience with developingnsoe with it.

Introduction to Message Passing and the MPAPI Fnaorie

Terminology

* Worker : A worker is the main entity of the MPAPI frameskoThis is where the
programmer specific code is written, and a workaes &ll the primitives needed to
communicate with other workers in the cluster. Akeo runs in its own background thread
inside a node, and receives messages in an aswelsramanner through its mailbox. A
worker has an id which is unique within the nodegdther with the node id this identifies
the worker in the cluster.

* Node: A node is the entity that runs one or more wisk&he node is responsible for
dispatching messages to the right receivers, aneh&ntaining connections to all other
nodes in the cluster. There is typically one noglegqpmputer, and each node has some
primitives that enables Worker-code to access im&tion about the cluster which it is part
of. Each node is assigned a unique id within theter.

* Message : Messages are the means by which workers commauignié message consists of:

o An Id, which is unique for each message. This i;iyaised to trace messages
through the cluster, and should be disregarded.

0 A message type which distinquishes it from othpety

0 A message level, which indicates if the messagdbas send by the system of from
user code.

o Content, which is the payload of the message. iShised to transfer state to and
from workers.

* Registration Server : This server is used to register and unregistdes in the cluster. It is
also responsible for notifying existing hodes whamde registereds or unregisteres. The
registration server is distributed as a standagéxeeutable with the MPAPI framework, but
IS not necessary to start if the software runs only node on a local machine.

Architecture

One of the design goals was to provide programmihsa simple interface to write multithreaded,
single-computer applications using message pasSinge the majority of software is not
distributed, this was a core design principle.

Mode

| Worker

| W orker
Worker %
]

Mailbox Frimitives

Programmer
specific
code

L 1
| I

Figure 1. A local node with multiple worker
threads.

Introduction to Message Passing and the MPAPI Fnaorie

But since message passing is very useful whenabngr applications on multiple computers, and
since some systems require more computing powarishever possible with a single computer, |
designed the distributed logic into the framewaskneell. In the MPAPI framework this provides
the programmer with a slightly modified set of pitines, but basically he or she is unaware of the
distributed aspect.

A cluster build with MPAPI consist of a main noaéich controls the cluster, a number of sub
nodes, which are the real work horses of the aluatel a registration server. The registration
server binds the cluster together by allowing nddeeggister and unregister with the cluster, and
existing nodes in the cluster is notified of sugkrégs. Communication between nodes is not
handled by the registration server, but directhyrfrnode to node.

[Maintode] Fegistration server

[Nodew {NodeJ (Node} [Nod;

o,

Figure2 - A cluster with a main node, a number of sub nodes,
and aregistration server.

The registration server is a standalone executabieh is distributed with the framework.

An application written in MPAPI implements a numioémworkers. Each worker communicates
with each other through the node. The messagesam@opagated down through the Remoting
layer unless two communicating workers are on tifferént nodes.

Figure3: Thelayered structureof a
M PAPI application.

This asynchronous design enables programmers te more robust in the likes of a micro kernel.

A micro kernel is a special operating system (O&jigh, where the OS itself it nothing more than a
message layer; drivers and everything that compans®S are implemented as separate entities that
communicate through messaging. Linux, Unix and bBoifft Windows are examples of operating

Introduction to Message Passing and the MPAPI Fnaorie

systems that am@onolithic, notmicro kernels. MK design is an old concept, but lately even
Microsoft has realised the potential to write ralbarsd secure operating systems with this approach
— their newly releasefingularity research operating system, that showcases howogpechting
systems might (or should?) be implemented in tharéy is based on a micro kernel design.

N N Keyboard Hard disk MNetwork
Application Application driver driver driver

t i 4 ! }
Messadging layer

Figure4: A micro kernel OS, where everything - applications, drivers,
etc. - communicates via message passing.

Design goals
The following goals where formulated prior to stagtdevelopment.

* The framework must be compatible with both Micre$¢ET and Mono.NET. That is why |
wrote the RemotingLite framewofk

» Writing single-computer or multiple-computer (cleigtapplications must be equally simple.
Making an application function in a distributed gomment must be trivial, and the
framework must not function differently from a pragymers perspective when in local- or
distributed mode.

» Performance is paramount. Thus | have gone to ggegths to optimize all aspects of the
framework, from serialization of messages, to ahig threads that perform all the
asynchronous operations of the framework.

* The programming paradigm must be simple, the nurmbprimitives small, and the
approach must be somewhat similar to what is dornlea functional programming language
Erlang. Simplicity is a key design goal.

» Software systems written with MPAPI must be higtdifable, scalable and robust. This is
accomplished by preventing errors from any givemkeoto affect all other workers — a
crashing worker will only notify about it, if anahworker is monitoring it.

Setting up a system

Writing an application using MPAPI is very easyabtteast the initial part is. There are two modes
a node can operate in — local and distrributed mode

In the following | will give examples taken fromethwo small example applications that can be
downloaded together with this document. Those apfiins arérimeCalculatorApp and
DistributedPrimeCalculatorApp . Each one calculates the number of prime numbetrgden

2 and another number (specified in the cMamWorker) using a rather naive algorithm for
testing primality. This algorithm is not the moffeetive — certainly there are other and more

2 RemotingLite is a small framework for writing s&® oriented, distributed applications. It borrddsas from
Windows Communication Foundation (WCF), but is camnpatible with any other service standards. Rergbtie
runs on both Microsoft and Mono .NET runtimes.

Introduction to Message Passing and the MPAPI Fnaorie

effective algorithms as well as statistical algoms — but it is good enough for demonstration
purposes.

Running the examples

The examples provided here are both a local vemnoha distributed version. When running the

distributed example you need to start the execesalnp in the following order:
1. RegistrationServer.exe

2. DistributedPrimeCalculatorApp.exe — choose “slave” mode.
3. DistributedPrimeCalculatorApp.exe — choose “master” mode.

If you want to run the example on several machywmesneed to start all the slaves up before
starting the master.

Note: You may need to alter the values for the port nemsiland IP addresses in the configuration
files related to the registration server and agpilon to fit your own network setup and firewall
settings.

Local node
In local mode the node will not attempt to conrtec registration server, or any other node. This

operating mode can be used in applications that@resquired to run in a distributed mode, i.e. a
normal client- or server application.

To open a node, you first start by creating it.eAtihat you only need to call the method
OpenLocal<TRootWorker>() , which opens the node and starts a backgrounddhrening the
worker specified by th&RootWorker type in this generic metho@RootWorker must inherit
from Worker in one way or the other.

static void Main(string [] args)

{

using (Node node = new Node())
{
node.OpenLocal< MainWorker >();
/* Since the node spawns new workers in separate th reads, and as
* pbackground threads, we have to prevent the m ain thread from

* terminating here. */
Console .ReadLine();
}

}

Here we define the node in the entry poMaif(string[])) to a console application.

Note that we usesing(...) to define the node. That is not strictly necessamyusing ensures a
call toDispose() when the node is no longer used. Calldigpose() is importantespecially
when opening the node in distributed mode, sinisevifil do a bit of cleanup.

Introduction to Message Passing and the MPAPI Fnaorie

Distributed node in a cluster

Opening a node in distributed mode will make itroect to a registration server, and afterwards all
other nodes already registered in the cluster. Mtnde can be used in servers farms or compute
clusters, where a lot of computing power and parallocessing is required. This next example
shows how to open a number of slave nodes andarteoding (master) node. | use the same
executable for both master and slave, but themetising that prevents you from writing separate
applications.

We start again by opening the node in the mairygraint for a console application.But first we
must gather a bit of information about what opagtnode (master or slave) and what port number
this particular node will accept incoming connecti@n. Next is the address and port number for
the registration server. This has been specifigtiarfollowing configuration file since this is the
same for both master and slave nodes.

<?xml version ="1.0" encoding ="utf-8 " ?>

<configuration >

< appSettings >

< add key ="RegistrationServerAddress " value ="192.168.1.2 "/>
< add key =" RegistrationServerPort " value ="8000"/>

</ appSettings >

</ configuration >

The entry point of the application would then l@zkmething like this:

static void Main(string [] args)

/lget the variable parameters needed

string modusOperandi = ;

while (modusOperandi != "m" && modusOperandi != "s")
{
Console .Write("[m]aster or [s]lave > ");
modusOperandi = Console .ReadLine();
}
Console .Write("This nodes port number > ");
int port = int .Parse(Console .ReadLine());

/IGet the information in the config file
string regServerAddress =

ConfigurationManager AppSettings["RegistrationServerAddress" 1;
int regServerPort =
int .Parse(ConfigurationManager AppSettings["RegistrationServerPort" D;
using (Node node = new Node())
if (modusOperandi == "m")
/lopen the node in master mode and start the main w orker
node.OpenDistributed< MainWorker >(regServerAddress, regServerPort, port);
else
/lopen the node in slave mode
node.OpenDistributed(regServerAddress, regSer verPort, port);

/Iprevent the main thread from terminating
Console .ReadLine();

Introduction to Message Passing and the MPAPI Fnaorie

Note here that we use one of the @enDistributed methods; when starting a distributed
node we must specify whether or not we want a waxkestart up right away. In the case of a slave
node we will let the master nodddinWorker) decide when and where to spawn slave workers.

Each node that registers with the registrationeseissassigned an id, which is a number (of type
ushort) betweerdox0000 andOxFFFE. OxFFFF is part of a broadcast address, so there can be
65,535 nodes in a cluster. Each node can have BWwb6ers running, where the worker id
OxFFFF is the last part of the broadcast address. Motthatrater.

That is what is needed to start a node in eith@allor distributed mode. As you can see therets no
much difference between the two modes. Starting wisingle computer application does not mean
that you have to rewrite a lot of code in ordemake it part of a cluster.

A note on OpenLocal and OpenDistributed

The two method€QpenLocal<TRootWorker>() and
OpenDistributed<TRootWorker>(string, int, int) both returnTRootWorker . This
way you can get the instance of a worker that israatically started up.

Defining a worker

A worker can be thought of as a thread. In factithmework will spawn a new background thread
for each worker that is spawned.

You start by subclassing the typrker , which is defined in the framework as an abstcéags.

In this example we have the typeameWorker , which receives batches of numbers from the
MainWorker instance in the main node, and tests them foragditiyn

public class PrimeWorker : Worker

{
public override void Main()

{
}
}

TheMain() method has to be overridden, and is the main gt of a worker. There are other
optional methods to override, which | will get baoKater.

What we want this worker to do is enter a messageessing loop. When it getsSgart message
it will immediately send &equestBatch message to the main worker to get a batch. The mai
worker will reply with aReplyBatch message which will hold an instance of Bagch class in

its content. All numbers betwe®atch.Minimum andBatch.Maximum is tested for prime
numbers in a class call@limeFinder . This class will count the numbers of prime nursbarthe
current batch, and send the result back to the marker with aResult message. After that the
prome worker requests a new batch to test.

-10 -

Introduction to Message Passing and the MPAPI Fnaorie

As programmer you define the message types youtsdliis example | have specified them like
this:

public class MessageTypes

{
public const int Terminate = 0; /Itells the prime worker to stop
public const int Start=1; /linitialize the prime workers
public const int ReplyBatch =2; /Ithe main worker sends a batch of numbers
public const int RequestBatch = 3; /lthe prime worker requests a new batch
public const int Result=4; /lthe prime worker sends the count back

}

and theBatch type looks like this:

[Serializable]
public class Baich

{

private long _minimum;
private long _maximum;

public Batch(long minimum, long maximum)

__minimum = minimum;
__maximum = maximum;

}

public long Maximum

{

get { return _maximum;}

public long Minimum

get { return _minimum;}
}
}

Notice that all types that are sent as contentireasage must be serializable, regardless of whethe
or not the message is send to a local worker asaa TCP/IP network to a remote worker; all
messages are serialized to prevent shared staltd,the content cannot be serialized the
framework will flag that as an error and continue.

-11 -

Introduction to Message Passing and the MPAPI Fnaorie

ThePrimeFinder class looks like this:

public class PrimeFinder

public void CountPrimes(long min, long max, WorkerAddress returnAddress)
{
long count =0;
for (long primeCandidate = min; primeCandidate <= max; prime Candidate++)
if (IsPrime(primeCandidate))
count++;
Worker .Current.Send(returnAddress, MessageTypes .Result, count);

public bool IsPrime(long primeCandidate)
{
/ltwo is by definition a prime number, 1 is not how ever
if (primeCandidate == 2)
return true ;
/Ithrow an exception if the number is less than 2
if (primeCandidate < 2)
throw new ArgumentException ("Prime candidates cannot be less than 2");
/lthrow away even numbers
if ((primeCandidate % 2) == 0)
return false ;

long max=(long)(Math.Sqrt(primeCandidate) + 1);
for (long divisor = 3; divisor < max; divisor += 2)
if ((primeCandidate % divisor) == 0)
return false
return true ; //itis a prime

}
}

Since this class does not inherit froYlorker we have to access the current worker in ordeenad s
a message. This is done with the static prop#dsker.Current , which provides an interface to
the current worker.

Important: The current worker is found via the current tidreantext. So calling
Worker.Current from a thread that you have created yourselfovilly yield null

-12 -

Introduction to Message Passing and the MPAPI Fnaorie

We can now write the code for tRe@meWorker.Main() method:

public override void Main()

PrimeFinder primeFinder = new PrimeFinder ();
Message msg;
do
{
msg = Receive(); /Iblock and wait for incoming messages
switch (msg.MessageType)
{
case MessageTypes .Start:
/Irequest the first batch to process
Send(msg.SenderAddress, MessageTypes .RequestBatch, null);
break ;
case MessageTypes .ReplyBatch:
/IWe have receives a batch from the main worker. Pr ocess it
Batch batch = (Batch)msg.Content;
primeFinder.CountPrimes(batch.Minimum,
batch.Maximum,msg.SenderAddress);
/Irequest the next batch to process
Send(msg.SenderAddress, MessageTypes .RequestBatch, null);
break ;
default
/lwe do not care about all other messages
break ;
}
while (msg.MessageType != MessageTypes .Terminate);

}

The main workerNlainWorker), which is responsible for a number of things:

1. Spawn as mangrimeWorker instances on each node (except its own) as there a

available processors.

Initialize all prime workers by broadcastingtrt message.

Send new batches of numbers to test until we heaehed the limit.

Send a@erminate message to all workers if there are no more batthéest.
Keep score of the number of primes found so far.

Terminate if there are no more prime workers rugnin

ok wnN

public override void Main()
{
/Iset up some preconditions
long max =9999999;
long batchSize = 50000; /lthe number of numbers to test in each batch
long currentMinimum = 2;
long primeCount = 0;

/Ispawn workers on each remote node
List <WorkerAddress > workers = new List <WorkerAddress >();
List <ushort >remoteNodelds = Node.GetRemoteNodelds();

-13-

Introduction to Message Passing and the MPAPI Fnaorie

foreach (ushort nodeld in remoteNodelds)

{
/I Spawn a prime worker for each processor/processi ng core
int processorCount = Node.GetProcessorCount(nodeld);
for (int i=0;i<processorCount; i++)
{
WorkerAddress worker = Spawn< PrimeWorker >(nodeld); /Ihere we specify

the exact node id
workers.Add(worker);

Monitor(worker); /Ireceive messages when the worker terminates
}
}
lnitialize all workers
Broadcast(MessageTypes .Start, null);

/Istart listening for requests and results
Message msg;
do
{
msg = Receive();
switch (msg.MessageType)

{
case MessageTypes .RequestBatch:
/la worker has requested the next batch
/Icheck if there are any left to process
if (currentMinimum <= max)
{
long currentMax = currentMinimum + batchSize;
currentMax = currentMax > max ? max : cur rentMax;
Send(msg.SenderAddress, MessageTypes .ReplyBatch,
new Batch (currentMinimum, currentMax));
currentMinimum = currentMax + 1;
}
else
Send(msg.SenderAddress, MessageTypes .Terminate, null);
break ;
case MessageTypes .Result:
primeCount += (long)msg.Content;
break ;
case SystemMessages .WorkerTerminated:
/la worker terminated - remove it from the list
workers.Remove(msg.SenderAddress);
break ;
case SystemMessages .WorkerTerminatedAbnormally:
/la worker terminated abnormally - remove it from t he list
workers.Remove(msg.SenderAddress);
break ;
default
break ;
}
}
while (workers.Count > 0); /Ikeep listening until all workers are terminated

}

All primitives used in this example will be explaohin the next chapter.

-14 -

Introduction to Message Passing and the MPAPI Fnaorie

Basic primitives
This chapter gives an introduction to the mostdpsmitives used in an application using MPAPI.

Spawning a new worker
WorkerAddress, broadcast address

Getting a list of registered nodes in the cluster

Each worker has a reference to the node in whighritnning through thBode property. Amongst
other things you can get a list of ids of all teexote nodes in the cluster by calling the method
List<ushort> GetRemoteNodelds() on this property.

Getting the number of processors available to a node

TheNode property also gives you two methods for getting phocessor count available to each
node:

* int GetProcessorCount() , Which gives you the number of processors avagl&bthe
local node.
* int GetProcessorCount(ushort) , Which gives you the number of processors

available to the node with the specified id. If theequals the local nodes id, then the result
is the same as callingetProcessorCount()

Sending a message

Unicast

Sending a message to a specific worker requireso/know the exact address of this worker. A
WorkerAddress comprise of a node id and a worker id, which ualgudentifies the worker. The
WorkerAddress class has one constructor which takes both idsgsnents.

TheSend primitive has the following signature:

void Send(WorkerAddress receiverAddress, int messag eType, object content)

wheremessageType is used to distinguish different types of messagedcontent is the
payload of the messagmntent must be serializable, but otherwise there areestrictions.

L imitations on address and message type

As previously mentioned, there can be 65,565 noda<luster, each containing a maximum of
65,565 workers. The addre®e=FFF,0xFFFF for node id and worker id respectively is reserved
for broadcasting.

The message type is an integer that the programspersfy. Allowed values are in the range [0 ;
2,147,483,647], both included, which should be adégfor most purposes. Values smaller than O
are reserved for system message types, definde iclassSystemMessages .

-15 -

Introduction to Message Passing and the MPAPI Fnaorie

Broadcast

It is also possible to broadcast messages to akew® in the cluster using tiBeoadcast
primitive which has the following signature:

void Broadcast(int messageType, object content)

Receiving a message

The Receive primitives

There are 4 overloadd®kceive primitives in MPAPI. Each one will block the cunteghread if

there are no messages that fulfills their respec@arch criteria, and is only unblocked when a new
message arrives. The blocking behaviour is donggusait handles so the thread will not use any
CPU cycles while it is not necessary. Riceive primitives uses the mailbox as a FIFO-stack so
the oldest messages are processed first.

The overloaded primitive has the following signasir
Message Receive()

Returns when there is any message in the mailbox.

Message Receive(int messageType)
Returns when there is at least one message witpdwfied message type.

Message Receive(WorkerAddress senderAddress)
Returns when there is at least one message frosptwfied sender.

Message Receive(WorkerAddress senderAddress, int me ssageType)
Returns when there is at least one message frosptwfied sender, and with the specified
message type.

The HasMessages primitives

While theReceive primitives will block the worker until a messagsfills the criteria, it is
sometimes necessary to check the mailbox withaaiohg the thread. This is done with the
HasMessages primitives, which has the following signatures:

bool HasMessages()
Returngrue if there is any message in the mailbox.

bool HasMessages(int messageType)
Returngrue if there is at least one message with the speaifiessage type.

bool HasMessages(WorkerAddress senderAddress)
Returngrue if there is at least one message from the spdcsiader.

bool HasMessages(WorkerAddress senderAddress, int m essageType)
Returngrue if there is at least one message from the spdagader, and with the specified
message type.

-16 -

Introduction to Message Passing and the MPAPI Fnaorie

Filtering on incoming messages

If you are not a bit careful when writing the meageséoops that fetches messages from the inbox
you might end up with a congested mailbox. Faitmgmpty the mailbox properly will quickly fill
it up, and the framework will warn you when there more than 10,000 unprocessed messages
waiting for any given worker. This is not in itseldngerous, just bad style.

To further ensure that this will not happen you uae theSetMessageFilter primitive to block
any unwanted messages. The filter operates on geesgaes, and the primitive has the following
signature:

void SetMessageFilter(params int[] filters)

This way you can call it with a variable numbeiirgduts. Each time you calletMessageFilter

the original filters are deleted.

Simulating synchronous behaviour

All this message passing is done asynchronoustymediately after sending a message the worker
continues without worrying about the dispatching possible replies to this message. So how do
we perform synchronous “calls” in the framework?dally this might indicate a wrong design in
the application since message passing is asynamsdmonature, and to maintain maximum
performance normal message passing behaviour asaged. But this is the real world, and
experience dictates that all the best plans aemavised.

The following example shows how to simulate a syachus call to another worker.

private int SquareValue(int a, WorkerAddress address)

/* The following message types should be defined in a separate class.
* This is only to show how to use message passin g to call a method
* synchronously */

int msgType_RequestSquareValue = 20; /lrequest a worker to square a value
int msgType_ReplySquareValue = 21; /lthe result from the operation

/Isend the request to square the integer a
Send(address, msgType_RequestSquareValue, a);

/* Block the worker until a reply with the correct message type
* is received from the worker */
Message msg = Receive(address, msgType_ReplySquareValue);

/Ireturn the squared value
return (int)msg.Content;

}

You have to be careful, though, that the two mes$gges are not used for anything else. Although
the sequence in which messages are received aoglsgel is guaranteed by the framework, it
cannot prevent the code from sending messages wrttng order.

-17 -

Introduction to Message Passing and the MPAPI Fnaorie

Monitoring another worker

One of the design goals of the MPAPI frameworkes ability to write robust software. This in
itself is a grand goal, and if a programmer is datid enough it is possible to make an entire
distributed application crash. But one thing | htesaned over the years is that proper exception
handling is only a theory — exception handlinglisays spotty, and more than once has this
resulted in the system crashing with some esogerar message hidden in several gigabytes of
logfiles on the server.

Errors, either bugs in the code or faulty datastsxin all systems. One of the key design features
MPAPI is that any worker crashing does not interfeith others, or crashes the entire system. This
is done by encapsulating the worker immyacatch ~ statement that will catch any unhandled
exceptions that might be thrown in the code. Ttuagether with the fact that state is not shared
between threads, makes it hard to crash a systétemusing MPAPI.

But preventing an error from propagating through gfistem and bringing it to a halt, is not in itsel
useful if we are unaware of it. For that reason lyaue theMonitor primitive available. This
primitive binds one worker to another so that thanitoring worker will receive a special message
when the monitored worker terminates, either nolywal abnormally. That enables a programmer
to take the appropriate action — either restarintbeker or do something else - and the system can
continue to work without causing too much trouldedsers, or aborting a big computation.

TheMonitor primitive has the following signature:
void Monitor(WorkerAddress monitoree)

and takes as argument the address of the workehwie want to monitor.

The message types that are received when a watkeinates are defined in the
SystemMessages °class. If the monitored worker terminates abnoryndille to an unhandled
exception, the monitoring worker will receive a

SystemMessages.WorkerTerminatedAbnormally , and the exception that caused the error is
in theContent property of the message. A normal termination vedult in a
SystemMessages.WorkerTerminated message.

See the example code for the clesgnWorker , where | have shown an example of how to
monitor other workers, and a possible example of tooreact when a worker terminates.

% All system messages has the message level setssdgelevel.System, whereas normal messages Hasdhset to
Messagelevel.User.

-18 -

Introduction to Message Passing and the MPAPI Fnaorie

Using the log

No large system can function properly without lagginformation about errors and other
informating in order to weed out bugs or trace fiomality, especially multithreaded and
distributed systems. The MPAPI framework has adouilthread safe log you can use if you do not
want to useConsole.WriteLine() or one of the major logging frameworks like NLagda
Log4Net.

ThelLog class in MPAPI has a number of static thread sathods with the following signatures:

static void Info(string formattedMessage, params ob ject[] arguments)
Logs a message if theg.LogLevel properrty is set thogLevel.Info

static void Warning(string formattedMessage, params object[] arguments)
Logs a message if theg.LogLevel properrty is set thogLevel.Warning

static void Error(string formattedMessage, params o bject[] arguments)
Logs a message if theg.LogLevel properrty is set tbogLevel.Error

static void Debug(string formattedMessage, params o bject[] arguments)
Logs a message if theg.LogLevel properrty is set thogLevel.Debug . This is typically
enabled when trying to trace bugs in the system.

Each log-method takesf@amattedString argument. This, together with the variable nundfer
arguments, is used exactly likatang.Format(...) call. For example, the calbg.Info(“The
string {0} is {1} characters long”, str, str.Leng th) will give the following

output ifstr is “A string”:
Info | The string ‘A string’ is 8 characters long
Consult the MSDN library for further information.

The log can be customized. You can useLtiteLogType property to sehow the log treats log
messages. TheogType enumeration can be one of the following values:

* LogType.None : Nothing is logged

* LogType.Console : The log writes messages to standard out (usttelgonsole
window).

* LogType.File :The log writes messages to a file. The fileosated in the same directory
as the executable running the node, and has #rafile<executable>.exe.log

* LogType.Both : The log will write message to standard out ab agethe log file.

All values can be OR’ed, bubgType.Console | LogType.File is the same as
LogType.Both . The default value fdrog.LogType isLogType.Console

-19 -

Introduction to Message Passing and the MPAPI Fnaorie

ThelLog.LogLevel property is used to seihat is logged. TheogLevel enumeration can have
one of the following values:
* LogLevel.None : Nothing will be logged.

* LogLevel.Info : A message is loggedlibg.Info is called.

* LogLevel.Warning : A message is loggedlibg.Warning is called.

* LogLeve.Error : A message is loggedlibg.Error s called.

e LogLevel.InfowarningError : A message is loggedlibg.Info , Log.Warning or

Log.Error is called.

* LogLevel.Debug : A message is loggedlibg.Debug is called.

* LogLevel.DebugCore : This level is used by the framework to trace sages through the
entire systemWarning: LogLevel.DebugCore generates bot of information, and can
severely degrade performance!

LogLevel values can be OR’ed to provide different functiapaThe default value for
Log.LogLevel isLogLevel.InfoWarningError

An example of how to set the log type and log legedomething else than the default values is this:

static void Main(string [] args)

Log.LogLevel = LogLevel .Info | LogLevel .Debug;
Log.LogType = LogType .Both;
using (Node node = new Node())

{

}
}

Troubleshooting

Problems with Mono.NET

One of the design goals of MPAPI was, that it stdad compatible with both Microsoft. NET and
Mono.NET, and this has been accomplished. But elesperienced some problems when trying to
run the binaries compiled with Microsofts compiber the Mono.NET runtime, and vice versa. The
frameworkcan run on both platforms, so | suggest you compigesburce with Monos gmcs
compiler if you plan to run it in Monos runtime. binary package available in the release
contains binaries compiled with both compilers, #rate is anono_build.bat file available for
both MPAPI, RemotingLite and the example code.

Heterogenous clusters vs. homogenous clusters

A cluster is made from two or more computers. ¢fsth computers are not similar in hardware there
will be differences in the number of workers they diandle, and the execution time of an
algorithm. Think this into your design.

For example, one computer can have an older procesth hyperthreading technologi. This will
make the node report back that it has two procsssdrile in fact it has only one.

-20 -

Introduction to Message Passing and the MPAPI Fnaorie

Too many or too large messages congest the network / framework

When designing a system with any kind of messagsip@ — not just MPAPI - as synchronization
mechanism the mantra is “small and few messaggsdmputations”. Remember that two nodes in
two different processes share no memory, and aagedss to be serialized, sent and deserialized,
even between two workers in the same node (to pteshared state, and threads locking each
other). The problem will be greater if the commauaiicn has to take place over a network.

Since messages are the life blood of such a syidt@wve gone to great lengths to improve
performance of these operations. But neverthetegaydless of messaging framework, it is not as
fast as direct method invocation on an object emgame process space. Even the topology and
general usage of your network can have an impact.

If performance is not as expected you might trfirie tune your hardware (network, primarily), or
the system by redefining how often a message is kenight improve performance to lower the
rate of sending, but with bigger payloads in traiviual messages.

All primitives

Overridables in a Worker

When subclassing/orker you have a few options regarding methods to oderin order to
receive specific notifications. The worker entrymiaes mandatory to implement.

public abstract void Main()
This is the main entry point to a worker, and itnandatory to implement.

public virtual void OnWorkerTerminated()
This method is called when the current worker teates correctly.
It is optional to override this method.

public virtual void OnWorkerTerminatedAbnormally(Ex ception e)

The method is called when the current worker teateis due to an unhandled exception. The
exception that caused the error is an argumeihetonethod.

It is optional to override this method.

public virtual void OnRemoteNodeRegistered(ushort n odeld)
This method is called when a new node is registerdiae cluster.
It is optional to override this method.

public virtual void OnRemoteNodeUnregistered(ushort nodeld)
This method is called when a node unregisters ftanctluster, perhaps for a software update.
It is optional to override this method.

-21 -

Introduction to Message Passing and the MPAPI Fnaorie

Opening a Node instance

A node can be opened in 3 different ways usingahewing methods:

Method Arguments Return value Explanation
OpepDistriputed(. registrationServerNameOrAddress void Opens a node in distributed mode wit|
string registrationServerNameOrAddress, The IP address or DNS hostname of the spawning a worker.
:2: :)eot‘qr;)snat'onserverport’ computer the reg. server is running on.
e registrationServerPort : The port
number of the registration server.
e port :The port number the node will accept
incoming connections on.
OpepDistrit?uted.<TRootWorker>(+ TRootWorker : The type of worker to spawn TRootWorker Opens a node in distributed mode, an
string (eglst_ratlonServerNameOrAddress, at startup. starts a worker of type
:2: :)eogrl)snat'onserverport’ registrationServerNameOrAddress TRootWorker .
The IP address or DNS hostname of the
computer the reg. server is running on.
* registrationServerPort : The port
number of the registration server.
» port :The port number the node will accept
incoming connections on.
OpenLocal<TRootWorker>() « TRootWorker : The type of worker to spawn | TRootWorker Opens a node in local mode, and star

at startup.

a worker of typel'RootWorker .
The node will not attempt to connect {
the registration server or any other

ts

(0]

nodes.

-22 -

Introduction to Message Passing and the MPAPI Fnaorie

Primitives available from a Worker subclass
These are the primitives defined in tiidorker interface.

Primitive Arguments Return value Explanation
Broadcast(« messagetype :Thetype | Vvoid Broadcasts a message to all workers.
|nt.messageType, of message.
object content) e« content : The contents of
the message.
HasMessages() bool Checks if there are any messages waiting.
HasMessages(int messageType) « messageType : The type | bool Checks if there are any messages with the specified
of message to filter on. message type waiting.
HasMessages(WorkerAddress senderAddress) « senderAddress : The bool Checks if there are any messages with the specified
sender address to filter on. sender address waiting.
HasMessages(« senderAddress : The bool Checks if there are any messages with the specified
WorkerAddress senderAddress, sender address to filter on. sender address and message type waiting.
int messageType)
+ messageType : The type
of message to filter on.
Id None — property Ushort Gets the Id of the worker.
Monitor(WorkerAddress monitoree) « monitoree : The address | void Binds this worker to the worker with the specified
of the worker to monitor. address, so this worker will receive notificatioithe
monitored worker terminates.
Node None, it is a property IWorkerNode Gets an interface to the local node.
Receive() Message Gets the first message in the queue. The threaddevil
blocked if there are none.
Receive(int messageType) « messageType : Thetype | Message Gets the first message in the queue with the spdcif
of message to filter on. message type. The thread will be blocked if theee a
none.
Receive(WorkerAddress senderAddress) « senderAddress : The Message Gets the first message in the queue with the spdcif
sender address to filter on. sender address. The thread will be blocked if theee
none.
Receive(« senderAddress : The Message Gets the first message in the queue with the spdcif

WorkerAddress senderAddress,
int messageType)

sender address to filter on.
+ messageType : The type
of message to filter on.

sender address and message type. The thread will be
blocked if there are none.

-23-

Introduction to Message Passing and the MPAPI Fnaorie

Primitive Arguments Return value Explanation
Send(« receiverAddress void Sends a message with a specific type and content to
WorkerAddress receiverAddress, Address of the receiving another worker.
int messageType,
object content) worker.
+ messageType : The type
of message.
e content :The contents of
the message.
SetMessageFilter(params int] filters) . filters * A variable list of | void Sets the message filters on the current workes Wil
message types. prevent messages with a message type not in taelfiit
to arrive in the mailbox.
Sleep(int ms) e ms: The number of void Forces the worker thread to sleep for a periodhws.t
milliseconds to sleep.
Spawn(« workerTypeName :The | WorkerAddress Spawns a worker with the specified fully qualifiegime
string workerTypeName, fully qualified name of the on the specified node.
ushort nodeld) type of worker to spawn. A fully qualified name is of the format
« nodeld :Id of the node on “Namespace.SubNamespace.ClassName,
which to spawn the worker. AssemblyName”. See MSDN documentation on
Type.GetType(string) for further information.
Use this if the target worker type is not knowriha
project holding the current worker.
Spawn<TWorkerType>() « TRootWorker :Thetype | WorkerAddress Spawns a worker of the specified type on the lacale.
of worker to spawn.
Spawn<TWorkerType>(ushort nodeld) « TRootWorker :Thetype | WorkerAddress Spawns a worker of the specified type on the sigetif

of worker to spawn.
nodeld : Id of the node on
which to spawn the worker.

node.

-24 -

Introduction to Message Passing and the MPAPI Fnaorie

Primitives available from the local node
These primitives on the local node is availablenftaworker through thé/orker.Node property, which will return an instance of the

interfacelWorkerNode

Primitive Arguments Return value Explanation

Getld() Ushort Gets the Id of the node.

GetlPEndPoint(ushort nodeld) « nodeld :The id of the node.| IPEndPoint Gets the end point of the specified node. Frometitepoint you
can get IP address and port number.

GetProcessorCount() int Gets the number of processors/cores availablecttottal node.

GetProcessorCount(ushort nodeld) « nodeld :Theid of the node.| int Gets the number of processors/cores availableetspecified
node.

GetRemoteNodelds() List<ushort> Gets a list of ids of remote nodes that has begisteged in the
cluster.

GetWorkerCount() int Gets the number of workers running on the locaeno

GetWorkerCount(ushort nodeld) « nodeld :The id of the node.| int Gets the number of workers running on the spetifiede.

Accessing the current Worker instance from anywhere

Usually you will not restrict you code to be insi@&vorker instance. This is bad object orientedgmesind the worker classes will get
unnecessarily large.

So to access the current worker from anywherearctde there is a static property on\taker class that will return the instance of the
current worker.

public static IWorkerNode Current {get; }

Note : The framework will try to match the current thdecontext against a worker instance. So if youwatker.Current ~ from within
a thread you yourself have spawneduth value is returned.

.25 -

Introduction to Message Passing and the MPAPI Fnaorie

Registration server

The MPAPI framework comes with a registration sereadily available in the
RegistrationServer.exe executable. But this does not mean that you hawuse this
secondary application. If you want to bundle thgisiation server with for example the master
node application this is possible.

TheRegistrationServer.exe executable does nothing more than create an testfithe
RegistrationServerBootstrap class in the namespak¥®API.RegistrationServer t
has a single methodGpen(int) — which takes a port number as an argument. Tilewiog code
is from theRegistrationServer.exe executable and shows how to use it:

static void Main(string [] args)

{

int port;
string sPort = ConfigurationManager AppSettings["Port"];
if (! int .TryParse(sPort, out port))
{
Console .WriteLine(string .Format("Cannot parse {0} as an integer" , SPort));
return
} o
RegistrationServerBootstrap registrationServer =
new RegistrationServerBootstrap 0;
registrationServer.Open(port);
}

If you plan to instantiate the registration semhin another application, remember to dbetore
instantiating any nodes so that the nodes cantezgisoperly.

TheRegistrationServerBootstrap class implements thBisposable interface.

Remember to call theispose() method, either explicitly or implicitly with thesing keyword,

in order to properly clean up. This is not don¢him above example since the application terminates
when the call t@pen(port) returns.

- 26 -

