
Introduction to Message Passing and the MPAPI Framework

- 1 -

Introduction to Message Passing
and the MPAPI Framework

Covers MPAPI version 1.1

Copyright © Frank Thomsen, 2008
mpapi@sector0.dk

http://sector0.dk

Revision 3

Introduction to Message Passing and the MPAPI Framework

- 2 -

Table of contents
Table of contents..2
Preface..3
About Message Passing ...3
About Message Passing API (MPAPI) ..4

Terminology...5
Architecture..5

Design goals...7
Setting up a system ..7

Running the examples..8
Local node..8
Distributed node in a cluster ..9

A note on OpenLocal and OpenDistributed...10
Defining a worker ..10
Basic primitives..15

Spawning a new worker...15
Getting a list of registered nodes in the cluster..15
Getting the number of processors available to a node ...15
Sending a message ...15

Unicast ...15
Limitations on address and message type ..15

Broadcast..16
Receiving a message ..16

The Receive primitives ..16
The HasMessages primitives ...16
Filtering on incoming messages...17
Simulating synchronous behaviour..17

Monitoring another worker ..18
Using the log ..19

Troubleshooting ...20
Problems with Mono.NET ...20
Heterogenous clusters vs. homogenous clusters ..20
Too many or too large messages congest the network / framework..21

All primitives ...21
Overridables in a Worker...21
Opening a Node instance ...22
Primitives available from a Worker subclass...23
Primitives available from the local node..25
Accessing the current Worker instance from anywhere..25
Registration server ...26

Introduction to Message Passing and the MPAPI Framework

- 3 -

Preface
How do we write secure, robust, scalable, mutilthreaded software? There are several approaches,
and no definitive answer to this question. But the recent advent of multicore processors have put a
new emphasis on how we as programmers write software that can utilize this new hardware
architecture so that the processors are not idle and we get maximum performance.

Traditionally we write sequential programs. That is what programmers are taught, and it is
(relatively) easy to understand the flow in the software. Programmers are also taught that they
should avoid multithreading whenever possible, because chances are that bugs will be present –
indeed one gets the feeling that bugs are inherent in multithreaded software. And the fact is that
getting multithreading right in imperative languages like C++, Java or C# is extremely hard; the
primitives provided in these languages for handling threads and their synchronization are not
adequate. It looks simple on paper, but writing multithreaded software is rarely as trivial as the
textbook examples.

The problem is shared state. All threads have access to the same memory locations so several
threads can concurrently read and update the same memory. That is a recipe for disaster, as you no
doubt realize. The solution to this is using locks, either as semaphores, monitors, mutexes or some
other construct. But using locks can be very hard to get right – race conditions and deadlocks lurks
right beneath the surface. As Simon Peyton Jones from Microsoft Research put it in the book
”Beautiful code” by Greg Wilson, ”locks are bad”. Either you take too few locks, too many lock,
take the wrong locks, or take them in the wrong order. Furthermore, error recovery is very hard,
because the programmer has to guarantee that any error does not leave the system in an inconsistent
state. I have been a developer and architect on several enterprise level systems with a panic solution
that restarts the application if an unknown error occurs and we cannot guarantee the state of the
system. That is not by choice as much as by necessity – the complexity of systems rapidly grow out
of control when dealing with multithreading.

About Message Passing
Message passing is a different approach to concurrency than we are used to when using modern,
imperative languages like C++, C# or Java. In those languages we use shared state concurrency,
where all threads in the same process space has access to the same areas of memory (i.e. variables
etc.). This present a problem with how we synchonize the threads to avoid inconsistent memory,
and it is usually done with locks, semaphores, monitors or other constructs. As explained in the
preface this is not as trivial as one might think, and there are always one or more problems in the
synchonization that can be very hard to detect, leading to unstable systems and a lot of time spend
on debugging and rewriting parts of the software.

In message passing concurrency each thread has access only to its own state. This helps
programmers write more robust software since the need to synchonize memory no longer exists.
The only means for a thread to communicate with other threads is by sending them messages 1, and
state is not transferred between threads in these messages.

1 This is not entirely true in MPAPI; since the framework is written in C# it is still possible to break the non-shared state
if one really wants to, but that would violate the primary design of the system.

Introduction to Message Passing and the MPAPI Framework

- 4 -

This approach also has the advantage of working perfectly in a distributed environment, since the
simplest solution to letting processes and threads on physically disparate computers communicate is
by using message passing. This is already being done in existing frameworks – MPI (Message
Passing Interface), MS-MPI (Microsoft Message Passing Interface), Beowulf clusters and others –
used in high performance computing (HPC).

About Message Passing API (MPAPI)
I wrote the MPAPI framework for 3 reasons:

• I was looking for a way to simplify the development of multithreaded applications without
having to worry about locks and other thread synchronization mechanisms. The problems
with thread synchronization are becoming more and more apparent as we move from single
core to multicore CPUs. The majority of software today is written with a single core in
mind, and hence does not fully utilize the multiple cores in modern CPUs.

• I spend a couple of weeks investigating the functional programming language Erlang.
Erlang has from the beginning been designed with parallel and distributed computing in
mind. The solution the engineers at Ericsson came up with is very simple and elegant, and I
wanted to investigate how this would work in a .NET context.

• For some time I have been researching genetic algorithms and genetic programming. This is
a particularly compute intensive branch of computer science, and I wanted a framework that
would easily let me write software that could scale on multiple computers.

The framework is now in a state where it can be released, although it is still in some kind of flux as
I gain more and more experience with developing software with it.

Introduction to Message Passing and the MPAPI Framework

- 5 -

Terminology
• Worker : A worker is the main entity of the MPAPI framework. This is where the

programmer specific code is written, and a worker has all the primitives needed to
communicate with other workers in the cluster. A worker runs in its own background thread
inside a node, and receives messages in an asychronous manner through its mailbox. A
worker has an id which is unique within the node. Together with the node id this identifies
the worker in the cluster.

• Node : A node is the entity that runs one or more workers. The node is responsible for
dispatching messages to the right receivers, and for maintaining connections to all other
nodes in the cluster. There is typically one node per computer, and each node has some
primitives that enables Worker-code to access information about the cluster which it is part
of. Each node is assigned a unique id within the cluster.

• Message : Messages are the means by which workers communicate. A message consists of:
o An Id, which is unique for each message. This is mainly used to trace messages

through the cluster, and should be disregarded.
o A message type which distinquishes it from other types.
o A message level, which indicates if the message has been send by the system of from

user code.
o Content, which is the payload of the message. This is used to transfer state to and

from workers.
• Registration Server : This server is used to register and unregister nodes in the cluster. It is

also responsible for notifying existing nodes when a node registereds or unregisteres. The
registration server is distributed as a standalone executable with the MPAPI framework, but
is not necessary to start if the software runs only one node on a local machine.

Architecture
One of the design goals was to provide programmers with a simple interface to write multithreaded,
single-computer applications using message passing. Since the majority of software is not
distributed, this was a core design principle.

Figure 1: A local node with multiple worker
threads.

Introduction to Message Passing and the MPAPI Framework

- 6 -

But since message passing is very useful when controlling applications on multiple computers, and
since some systems require more computing power than is ever possible with a single computer, I
designed the distributed logic into the framework as well. In the MPAPI framework this provides
the programmer with a slightly modified set of primitives, but basically he or she is unaware of the
distributed aspect.
A cluster build with MPAPI consist of a main node, which controls the cluster, a number of sub
nodes, which are the real work horses of the cluster, and a registration server. The registration
server binds the cluster together by allowing nodes to register and unregister with the cluster, and
existing nodes in the cluster is notified of such events. Communication between nodes is not
handled by the registration server, but directly from node to node.

The registration server is a standalone executable which is distributed with the framework.

An application written in MPAPI implements a number of workers. Each worker communicates
with each other through the node. The messages are not propagated down through the Remoting
layer unless two communicating workers are on two different nodes.

This asynchronous design enables programmers to write more robust in the likes of a micro kernel.

A micro kernel is a special operating system (OS) design, where the OS itself it nothing more than a
message layer; drivers and everything that comprise an OS are implemented as separate entities that
communicate through messaging. Linux, Unix and Microsoft Windows are examples of operating

Figure 2 - A cluster with a main node, a number of sub nodes,
and a registration server.

Figure 3 : The layered structure of a
MPAPI application.

Introduction to Message Passing and the MPAPI Framework

- 7 -

systems that are monolithic, not micro kernels. MK design is an old concept, but lately even
Microsoft has realised the potential to write robust and secure operating systems with this approach
– their newly released Singularity research operating system, that showcases how such operating
systems might (or should?) be implemented in the future, is based on a micro kernel design.

Design goals
The following goals where formulated prior to starting development.

• The framework must be compatible with both Microsoft.NET and Mono.NET. That is why I
wrote the RemotingLite framework 2.

• Writing single-computer or multiple-computer (cluster) applications must be equally simple.
Making an application function in a distributed environment must be trivial, and the
framework must not function differently from a programmers perspective when in local- or
distributed mode.

• Performance is paramount. Thus I have gone to great lengths to optimize all aspects of the
framework, from serialization of messages, to controlling threads that perform all the
asynchronous operations of the framework.

• The programming paradigm must be simple, the number of primitives small, and the
approach must be somewhat similar to what is done in the functional programming language
Erlang. Simplicity is a key design goal.

• Software systems written with MPAPI must be highly reliable, scalable and robust. This is
accomplished by preventing errors from any given worker to affect all other workers – a
crashing worker will only notify about it, if another worker is monitoring it.

Setting up a system
Writing an application using MPAPI is very easy, or at least the initial part is. There are two modes
a node can operate in – local and distrributed mode.
In the following I will give examples taken from the two small example applications that can be
downloaded together with this document. Those applications are PrimeCalculatorApp and
DistributedPrimeCalculatorApp . Each one calculates the number of prime numbers between
2 and another number (specified in the class MainWorker) using a rather naïve algorithm for
testing primality. This algorithm is not the most effective – certainly there are other and more

2 RemotingLite is a small framework for writing service oriented, distributed applications. It borrows ideas from
Windows Communication Foundation (WCF), but is not compatible with any other service standards. RemotingLite
runs on both Microsoft and Mono .NET runtimes.

Figure 4 : A micro kernel OS, where everything - applications, drivers,
etc. - communicates via message passing.

Introduction to Message Passing and the MPAPI Framework

- 8 -

effective algorithms as well as statistical algorithms – but it is good enough for demonstration
purposes.

Running the examples
The examples provided here are both a local version and a distributed version. When running the
distributed example you need to start the executables up in the following order:

1. RegistrationServer.exe

2. DistributedPrimeCalculatorApp.exe – choose “slave” mode.
3. DistributedPrimeCalculatorApp.exe – choose “master” mode.

If you want to run the example on several machines you need to start all the slaves up before
starting the master.

Note: You may need to alter the values for the port numbers and IP addresses in the configuration
files related to the registration server and application to fit your own network setup and firewall
settings.

Local node
In local mode the node will not attempt to connect to a registration server, or any other node. This
operating mode can be used in applications that are not required to run in a distributed mode, i.e. a
normal client- or server application.

To open a node, you first start by creating it. After that you only need to call the method
OpenLocal<TRootWorker>() , which opens the node and starts a background thread running the
worker specified by the TRootWorker type in this generic method. TRootWorker must inherit
from Worker in one way or the other.

static void Main(string [] args)
{
 using (Node node = new Node())
 {
 node.OpenLocal< MainWorker >();

 /* Since the node spawns new workers in separate th reads, and as
 * background threads, we have to prevent the m ain thread from
 * terminating here. */
 Console .ReadLine();
 }
}

Here we define the node in the entry point (Main(string[])) to a console application.

Note that we use using(…) to define the node. That is not strictly necessary, but using ensures a
call to Dispose() when the node is no longer used. Calling Dispose() is important, especially
when opening the node in distributed mode, since this will do a bit of cleanup.

Introduction to Message Passing and the MPAPI Framework

- 9 -

Distributed node in a cluster
Opening a node in distributed mode will make it connect to a registration server, and afterwards all
other nodes already registered in the cluster. This mode can be used in servers farms or compute
clusters, where a lot of computing power and parallel processing is required. This next example
shows how to open a number of slave nodes and one controlling (master) node. I use the same
executable for both master and slave, but there is nothing that prevents you from writing separate
applications.

We start again by opening the node in the main entry point for a console application.But first we
must gather a bit of information about what operating mode (master or slave) and what port number
this particular node will accept incoming connections on. Next is the address and port number for
the registration server. This has been specified in the following configuration file since this is the
same for both master and slave nodes.

<?xml version =" 1.0 " encoding =" utf-8 " ?>
<configuration >
 < appSettings >
 < add key =" RegistrationServerAddress " value =" 192.168.1.2 " />
 < add key =" RegistrationServerPort " value =" 8000 " />
 </ appSettings >
</ configuration >

The entry point of the application would then look something like this:

static void Main(string [] args)
{
 //get the variable parameters needed
 string modusOperandi = "" ;
 while (modusOperandi != "m" && modusOperandi != "s")
 {
 Console .Write("[m]aster or [s]lave > ");
 modusOperandi = Console .ReadLine();
 }
 Console .Write("This nodes port number > ");
 int port = int .Parse(Console .ReadLine());

 //Get the information in the config file
 string regServerAddress =
 ConfigurationManager .AppSettings["RegistrationServerAddress"];
 int regServerPort =
 int .Parse(ConfigurationManager .AppSettings["RegistrationServerPort"]);

 using (Node node = new Node())
 {
 if (modusOperandi == "m")
 //open the node in master mode and start the main w orker
 node.OpenDistributed< MainWorker >(regServerAddress, regServerPort, port);
 else
 //open the node in slave mode
 node.OpenDistributed(regServerAddress, regSer verPort, port);
 //prevent the main thread from terminating
 Console .ReadLine();
 }
}

Introduction to Message Passing and the MPAPI Framework

- 10 -

Note here that we use one of the two OpenDistributed methods; when starting a distributed
node we must specify whether or not we want a worker to start up right away. In the case of a slave
node we will let the master node (MainWorker) decide when and where to spawn slave workers.

Each node that registers with the registration server is assigned an id, which is a number (of type
ushort) between 0x0000 and 0xFFFE. 0xFFFF is part of a broadcast address, so there can be
65,535 nodes in a cluster. Each node can have 65,535 workers running, where the worker id
0xFFFF is the last part of the broadcast address. More on that later.

That is what is needed to start a node in either local or distributed mode. As you can see there is not
much difference between the two modes. Starting with a single computer application does not mean
that you have to rewrite a lot of code in order to make it part of a cluster.

A note on OpenLocal and OpenDistributed
The two methods, OpenLocal<TRootWorker>() and
OpenDistributed<TRootWorker>(string, int, int) both return TRootWorker . This
way you can get the instance of a worker that is automatically started up.

Defining a worker
A worker can be thought of as a thread. In fact the framework will spawn a new background thread
for each worker that is spawned.
You start by subclassing the type Worker , which is defined in the framework as an abstract class.
In this example we have the type PrimeWorker , which receives batches of numbers from the
MainWorker instance in the main node, and tests them for primality.

public class PrimeWorker : Worker
{
 public override void Main()
 {
 }
}

The Main() method has to be overridden, and is the main entry point of a worker. There are other
optional methods to override, which I will get back to later.
What we want this worker to do is enter a message processing loop. When it gets a Start message
it will immediately send a RequestBatch message to the main worker to get a batch. The main
worker will reply with a ReplyBatch message which will hold an instance of the Batch class in
its content. All numbers between Batch.Minimum and Batch.Maximum is tested for prime
numbers in a class called PrimeFinder . This class will count the numbers of prime numbers in the
current batch, and send the result back to the main worker with a Result message. After that the
prome worker requests a new batch to test.

Introduction to Message Passing and the MPAPI Framework

- 11 -

As programmer you define the message types yourself. In this example I have specified them like
this:

public class MessageTypes
{
 public const int Terminate = 0; //tells the prime worker to stop
 public const int Start = 1; //initialize the prime workers
 public const int ReplyBatch = 2; //the main worker sends a batch of numbers
 public const int RequestBatch = 3; //the prime worker requests a new batch
 public const int Result = 4; //the prime worker sends the count back
}

and the Batch type looks like this:

 [Serializable]
 public class Batch
 {
 private long _minimum;
 private long _maximum;

 public Batch(long minimum, long maximum)
 {
 _minimum = minimum;
 _maximum = maximum;
 }

 public long Maximum
 {
 get { return _maximum; }
 }

 public long Minimum
 {
 get { return _minimum; }
 }
 }

Notice that all types that are sent as content in a message must be serializable, regardless of whether
or not the message is send to a local worker or across a TCP/IP network to a remote worker; all
messages are serialized to prevent shared state, and if the content cannot be serialized the
framework will flag that as an error and continue.

Introduction to Message Passing and the MPAPI Framework

- 12 -

The PrimeFinder class looks like this:

 public class PrimeFinder
 {
 public void CountPrimes(long min, long max, WorkerAddress returnAddress)
 {
 long count = 0;
 for (long primeCandidate = min; primeCandidate <= max; prime Candidate++)
 if (IsPrime(primeCandidate))
 count++;
 Worker .Current.Send(returnAddress, MessageTypes .Result, count);
 }

 public bool IsPrime(long primeCandidate)
 {
 //two is by definition a prime number, 1 is not how ever
 if (primeCandidate == 2)
 return true ;
 //throw an exception if the number is less than 2
 if (primeCandidate < 2)
 throw new ArgumentException ("Prime candidates cannot be less than 2");
 //throw away even numbers
 if ((primeCandidate % 2) == 0)
 return false ;

 long max = (long)(Math .Sqrt(primeCandidate) + 1);
 for (long divisor = 3; divisor < max; divisor += 2)
 if ((primeCandidate % divisor) == 0)
 return false ;
 return true ; //it is a prime
 }
 }

Since this class does not inherit from Worker we have to access the current worker in order to send
a message. This is done with the static property Worker.Current , which provides an interface to
the current worker.

Important: The current worker is found via the current thread context. So calling
Worker.Current from a thread that you have created yourself will only yield null .

Introduction to Message Passing and the MPAPI Framework

- 13 -

We can now write the code for the PrimeWorker.Main() method:

public override void Main()
{
 PrimeFinder primeFinder = new PrimeFinder ();
 Message msg;
 do
 {
 msg = Receive(); //block and wait for incoming messages
 switch (msg.MessageType)
 {
 case MessageTypes .Start:
 //request the first batch to process
 Send(msg.SenderAddress, MessageTypes .RequestBatch, null);
 break ;

 case MessageTypes .ReplyBatch:
 //We have receives a batch from the main worker. Pr ocess it
 Batch batch = (Batch)msg.Content;
 primeFinder.CountPrimes(batch.Minimum,

batch.Maximum,msg.SenderAddress);
 //request the next batch to process
 Send(msg.SenderAddress, MessageTypes .RequestBatch, null);
 break ;

 default :
 //we do not care about all other messages
 break ;
 }
 }
 while (msg.MessageType != MessageTypes .Terminate);
}

The main worker (MainWorker), which is responsible for a number of things:

1. Spawn as many PrimeWorker instances on each node (except its own) as there are
available processors.

2. Initialize all prime workers by broadcasting a Start message.
3. Send new batches of numbers to test until we have reached the limit.
4. Send a Terminate message to all workers if there are no more batches to test.
5. Keep score of the number of primes found so far.
6. Terminate if there are no more prime workers running.

public override void Main()
{
 //set up some preconditions
 long max = 9999999;
 long batchSize = 50000; //the number of numbers to test in each batch
 long currentMinimum = 2;
 long primeCount = 0;

 //spawn workers on each remote node
 List <WorkerAddress > workers = new List <WorkerAddress >();
 List <ushort > remoteNodeIds = Node.GetRemoteNodeIds();

Introduction to Message Passing and the MPAPI Framework

- 14 -

 foreach (ushort nodeId in remoteNodeIds)
 {
 // Spawn a prime worker for each processor/processi ng core
 int processorCount = Node.GetProcessorCount(nodeId);
 for (int i = 0; i < processorCount; i++)
 {
 WorkerAddress worker = Spawn< PrimeWorker >(nodeId); //here we specify

 the exact node id
 workers.Add(worker);
 Monitor(worker); //receive messages when the worker terminates
 }
 }

 //Initialize all workers
 Broadcast(MessageTypes .Start, null);

 //start listening for requests and results
 Message msg;
 do
 {
 msg = Receive();
 switch (msg.MessageType)
 {
 case MessageTypes .RequestBatch:
 //a worker has requested the next batch
 //check if there are any left to process
 if (currentMinimum <= max)
 {
 long currentMax = currentMinimum + batchSize;
 currentMax = currentMax > max ? max : cur rentMax;
 Send(msg.SenderAddress, MessageTypes .ReplyBatch,

new Batch (currentMinimum, currentMax));
 currentMinimum = currentMax + 1;
 }
 else
 Send(msg.SenderAddress, MessageTypes .Terminate, null);
 break ;
 case MessageTypes .Result:
 primeCount += (long)msg.Content;
 break ;
 case SystemMessages .WorkerTerminated:
 //a worker terminated - remove it from the list
 workers.Remove(msg.SenderAddress);
 break ;
 case SystemMessages .WorkerTerminatedAbnormally:
 //a worker terminated abnormally - remove it from t he list
 workers.Remove(msg.SenderAddress);
 break ;
 default :
 break ;
 }
 }
 while (workers.Count > 0); //keep listening until all workers are terminated
}

All primitives used in this example will be explained in the next chapter.

Introduction to Message Passing and the MPAPI Framework

- 15 -

Basic primitives
This chapter gives an introduction to the most basic primitives used in an application using MPAPI.

Spawning a new worker
WorkerAddress, broadcast address

Getting a list of registered nodes in the cluster
Each worker has a reference to the node in which it is running through the Node property. Amongst
other things you can get a list of ids of all the remote nodes in the cluster by calling the method
List<ushort> GetRemoteNodeIds() on this property.

Getting the number of processors available to a node
The Node property also gives you two methods for getting the processor count available to each
node:

• int GetProcessorCount() , which gives you the number of processors available to the
local node.

• int GetProcessorCount(ushort) , which gives you the number of processors
available to the node with the specified id. If the id equals the local nodes id, then the result
is the same as calling GetProcessorCount() .

Sending a message

Unicast
Sending a message to a specific worker requires you to know the exact address of this worker. A
WorkerAddress comprise of a node id and a worker id, which uniquely identifies the worker. The
WorkerAddress class has one constructor which takes both ids as arguments.
The Send primitive has the following signature:

void Send(WorkerAddress receiverAddress, int messag eType, object content)

where messageType is used to distinguish different types of messages, and content is the
payload of the message. content must be serializable, but otherwise there are no restrictions.

Limitations on address and message type
As previously mentioned, there can be 65,565 nodes in a cluster, each containing a maximum of
65,565 workers. The address 0xFFFF,0xFFFF for node id and worker id respectively is reserved
for broadcasting.
The message type is an integer that the programmers specify. Allowed values are in the range [0 ;
2,147,483,647], both included, which should be adequate for most purposes. Values smaller than 0
are reserved for system message types, defined in the class SystemMessages .

Introduction to Message Passing and the MPAPI Framework

- 16 -

Broadcast
It is also possible to broadcast messages to all workers in the cluster using the Broadcast
primitive which has the following signature:

void Broadcast(int messageType, object content)

Receiving a message

The Receive primitives
There are 4 overloaded Receive primitives in MPAPI. Each one will block the current thread if
there are no messages that fulfills their respective search criteria, and is only unblocked when a new
message arrives. The blocking behaviour is done using wait handles so the thread will not use any
CPU cycles while it is not necessary. All Receive primitives uses the mailbox as a FIFO-stack so
the oldest messages are processed first.

The overloaded primitive has the following signatures:
Message Receive()
Returns when there is any message in the mailbox.

Message Receive(int messageType)
Returns when there is at least one message with the specified message type.

Message Receive(WorkerAddress senderAddress)
Returns when there is at least one message from the specified sender.

Message Receive(WorkerAddress senderAddress, int me ssageType)
Returns when there is at least one message from the specified sender, and with the specified
message type.

The HasMessages primitives
While the Receive primitives will block the worker until a message fulfills the criteria, it is
sometimes necessary to check the mailbox without blocking the thread. This is done with the
HasMessages primitives, which has the following signatures:

bool HasMessages()

Returns true if there is any message in the mailbox.

bool HasMessages(int messageType)

Returns true if there is at least one message with the specified message type.

bool HasMessages(WorkerAddress senderAddress)
Returns true if there is at least one message from the specified sender.

bool HasMessages(WorkerAddress senderAddress, int m essageType)

Returns true if there is at least one message from the specified sender, and with the specified
message type.

Introduction to Message Passing and the MPAPI Framework

- 17 -

Filtering on incoming messages
If you are not a bit careful when writing the message loops that fetches messages from the inbox
you might end up with a congested mailbox. Failing to empty the mailbox properly will quickly fill
it up, and the framework will warn you when there are more than 10,000 unprocessed messages
waiting for any given worker. This is not in itself dangerous, just bad style.
To further ensure that this will not happen you can use the SetMessageFilter primitive to block
any unwanted messages. The filter operates on message types, and the primitive has the following
signature:
void SetMessageFilter(params int[] filters)

This way you can call it with a variable number of inputs. Each time you call SetMessageFilter
the original filters are deleted.

Simulating synchronous behaviour
All this message passing is done asynchronously – immediately after sending a message the worker
continues without worrying about the dispatching and possible replies to this message. So how do
we perform synchronous “calls” in the framework? Normally this might indicate a wrong design in
the application since message passing is asynchronous by nature, and to maintain maximum
performance normal message passing behaviour is encouraged. But this is the real world, and
experience dictates that all the best plans are often revised.

The following example shows how to simulate a synchronous call to another worker.

private int SquareValue(int a, WorkerAddress address)
{
 /* The following message types should be defined in a separate class.
 * This is only to show how to use message passin g to call a method
 * synchronously */
 int msgType_RequestSquareValue = 20; //request a worker to square a value
 int msgType_ReplySquareValue = 21; //the result from the operation

 //send the request to square the integer a
 Send(address, msgType_RequestSquareValue, a);

 /* Block the worker until a reply with the correct message type
 * is received from the worker */
 Message msg = Receive(address, msgType_ReplySquareValue);

 //return the squared value
 return (int)msg.Content;
}

You have to be careful, though, that the two message types are not used for anything else. Although
the sequence in which messages are received and processed is guaranteed by the framework, it
cannot prevent the code from sending messages in the wrong order.

Introduction to Message Passing and the MPAPI Framework

- 18 -

Monitoring another worker
One of the design goals of the MPAPI framework is the ability to write robust software. This in
itself is a grand goal, and if a programmer is dedicated enough it is possible to make an entire
distributed application crash. But one thing I have learned over the years is that proper exception
handling is only a theory – exception handling is always spotty, and more than once has this
resulted in the system crashing with some esoteric error message hidden in several gigabytes of
logfiles on the server.
Errors, either bugs in the code or faulty data, exists in all systems. One of the key design features in
MPAPI is that any worker crashing does not interfere with others, or crashes the entire system. This
is done by encapsulating the worker in a try-catch statement that will catch any unhandled
exceptions that might be thrown in the code. That, together with the fact that state is not shared
between threads, makes it hard to crash a system written using MPAPI.
But preventing an error from propagating through the system and bringing it to a halt, is not in itself
useful if we are unaware of it. For that reason you have the Monitor primitive available. This
primitive binds one worker to another so that the monitoring worker will receive a special message
when the monitored worker terminates, either normally or abnormally. That enables a programmer
to take the appropriate action – either restart the worker or do something else - and the system can
continue to work without causing too much trouble for users, or aborting a big computation.

The Monitor primitive has the following signature:
void Monitor(WorkerAddress monitoree)
and takes as argument the address of the worker which we want to monitor.

The message types that are received when a worker terminates are defined in the
SystemMessages 3class. If the monitored worker terminates abnormally due to an unhandled
exception, the monitoring worker will receive a
SystemMessages.WorkerTerminatedAbnormally , and the exception that caused the error is
in the Content property of the message. A normal termination will result in a
SystemMessages.WorkerTerminated message.

See the example code for the class MainWorker , where I have shown an example of how to
monitor other workers, and a possible example of how to react when a worker terminates.

3 All system messages has the message level set to MessageLevel.System, whereas normal messages has the level set to
MessageLevel.User.

Introduction to Message Passing and the MPAPI Framework

- 19 -

Using the log
No large system can function properly without logging information about errors and other
informating in order to weed out bugs or trace functionality, especially multithreaded and
distributed systems. The MPAPI framework has a build in thread safe log you can use if you do not
want to use Console.WriteLine() or one of the major logging frameworks like NLog and
Log4Net.

The Log class in MPAPI has a number of static thread safe methods with the following signatures:

static void Info(string formattedMessage, params ob ject[] arguments)

Logs a message if the Log.LogLevel properrty is set to LogLevel.Info .

static void Warning(string formattedMessage, params object[] arguments)

Logs a message if the Log.LogLevel properrty is set to LogLevel.Warning .

static void Error(string formattedMessage, params o bject[] arguments)

Logs a message if the Log.LogLevel properrty is set to LogLevel.Error .

static void Debug(string formattedMessage, params o bject[] arguments)
Logs a message if the Log.LogLevel properrty is set to LogLevel.Debug . This is typically
enabled when trying to trace bugs in the system.

Each log-method takes a formattedString argument. This, together with the variable number of
arguments, is used exactly like a string.Format(…) call. For example, the call Log.Info(“The

string ‘{0}’ is {1} characters long”, str, str.Leng th) will give the following
output if str is “A string”:

Info | The string ‘A string’ is 8 characters long

Consult the MSDN library for further information.

The log can be customized. You can use the Log.LogType property to set how the log treats log
messages. The LogType enumeration can be one of the following values:

• LogType.None : Nothing is logged
• LogType.Console : The log writes messages to standard out (usually the console

window).
• LogType.File : The log writes messages to a file. The file is located in the same directory

as the executable running the node, and has the filename <executable>.exe.log .
• LogType.Both : The log will write message to standard out as well as the log file.

All values can be OR’ed, but LogType.Console | LogType.File is the same as
LogType.Both . The default value for Log.LogType is LogType.Console .

Introduction to Message Passing and the MPAPI Framework

- 20 -

The Log.LogLevel property is used to set what is logged. The LogLevel enumeration can have
one of the following values:

• LogLevel.None : Nothing will be logged.
• LogLevel.Info : A message is logged if Log.Info is called.
• LogLevel.Warning : A message is logged if Log.Warning is called.
• LogLeve.Error : A message is logged if Log.Error is called.
• LogLevel.InfoWarningError : A message is logged if Log.Info , Log.Warning or

Log.Error is called.
• LogLevel.Debug : A message is logged if Log.Debug is called.
• LogLevel.DebugCore : This level is used by the framework to trace messages through the

entire system. Warning: LogLevel.DebugCore generates a lot of information, and can
severely degrade performance!

LogLevel values can be OR’ed to provide different functionality. The default value for
Log.LogLevel is LogLevel.InfoWarningError .

An example of how to set the log type and log level to something else than the default values is this:

static void Main(string [] args)
{
 Log .LogLevel = LogLevel .Info | LogLevel .Debug;
 Log .LogType = LogType .Both;
 using (Node node = new Node())
 {
 ...
 }
}

Troubleshooting

Problems with Mono.NET
One of the design goals of MPAPI was, that it should be compatible with both Microsoft.NET and
Mono.NET, and this has been accomplished. But I have experienced some problems when trying to
run the binaries compiled with Microsofts compiler on the Mono.NET runtime, and vice versa. The
framework can run on both platforms, so I suggest you compile the source with Monos gmcs
compiler if you plan to run it in Monos runtime. The binary package available in the release
contains binaries compiled with both compilers, and there is a mono_build.bat file available for
both MPAPI, RemotingLite and the example code.

Heterogenous clusters vs. homogenous clusters
A cluster is made from two or more computers. If those computers are not similar in hardware there
will be differences in the number of workers they can handle, and the execution time of an
algorithm. Think this into your design.
For example, one computer can have an older processor with hyperthreading technologi. This will
make the node report back that it has two processors, while in fact it has only one.

Introduction to Message Passing and the MPAPI Framework

- 21 -

Too many or too large messages congest the network / framework
When designing a system with any kind of message passing – not just MPAPI - as synchronization
mechanism the mantra is “small and few messages, big computations”. Remember that two nodes in
two different processes share no memory, and a message has to be serialized, sent and deserialized,
even between two workers in the same node (to prevent shared state, and threads locking each
other). The problem will be greater if the communication has to take place over a network.

Since messages are the life blood of such a system I have gone to great lengths to improve
performance of these operations. But nevertheless, regardless of messaging framework, it is not as
fast as direct method invocation on an object in the same process space. Even the topology and
general usage of your network can have an impact.

If performance is not as expected you might try to fine tune your hardware (network, primarily), or
the system by redefining how often a message is sent. It might improve performance to lower the
rate of sending, but with bigger payloads in the individual messages.

All primitives

Overridables in a Worker
When subclassing Worker you have a few options regarding methods to override in order to
receive specific notifications. The worker entry point is mandatory to implement.

public abstract void Main()
This is the main entry point to a worker, and it is mandatory to implement.

public virtual void OnWorkerTerminated()
This method is called when the current worker terminates correctly.
It is optional to override this method.

public virtual void OnWorkerTerminatedAbnormally(Ex ception e)
The method is called when the current worker terminates due to an unhandled exception. The
exception that caused the error is an argument to the method.
It is optional to override this method.

public virtual void OnRemoteNodeRegistered(ushort n odeId)
This method is called when a new node is registered in the cluster.
It is optional to override this method.

public virtual void OnRemoteNodeUnregistered(ushort nodeId)
This method is called when a node unregisters from the cluster, perhaps for a software update.
It is optional to override this method.

Introduction to Message Passing and the MPAPI Framework

- 22 -

Opening a Node instance
A node can be opened in 3 different ways using the following methods:

Method Arguments Return value Explanation
OpenDistributed(
 string registrationServerNameOrAddress,
 int registrationServerPort,
 int port)

• registrationServerNameOrAddress :
The IP address or DNS hostname of the
computer the reg. server is running on.

• registrationServerPort : The port
number of the registration server.

• port : The port number the node will accept
incoming connections on.

void Opens a node in distributed mode without
spawning a worker.

OpenDistributed<TRootWorker>(
 string registrationServerNameOrAddress,
 int registrationServerPort,
 int port)

• TRootWorker : The type of worker to spawn
at startup.

• registrationServerNameOrAddress :
The IP address or DNS hostname of the
computer the reg. server is running on.

• registrationServerPort : The port
number of the registration server.

• port : The port number the node will accept
incoming connections on.

TRootWorker Opens a node in distributed mode, and
starts a worker of type
TRootWorker .

OpenLocal<TRootWorker>() • TRootWorker : The type of worker to spawn
at startup.

TRootWorker Opens a node in local mode, and starts
a worker of type TRootWorker .
The node will not attempt to connect to
the registration server or any other
nodes.

Introduction to Message Passing and the MPAPI Framework

- 23 -

Primitives available from a Worker subclass
These are the primitives defined in the IWorker interface.

Primitive Arguments Return value Explanation
Broadcast(
 int messageType,
 object content)

• messagetype : The type
of message.

• content : The contents of
the message.

void Broadcasts a message to all workers.

HasMessages() bool Checks if there are any messages waiting.
HasMessages(int messageType) • messageType : The type

of message to filter on.

bool Checks if there are any messages with the specified
message type waiting.

HasMessages(WorkerAddress senderAddress) • senderAddress : The
sender address to filter on.

bool Checks if there are any messages with the specified
sender address waiting.

HasMessages(
 WorkerAddress senderAddress,
 int messageType)

• senderAddress : The
sender address to filter on.

• messageType : The type
of message to filter on.

bool Checks if there are any messages with the specified
sender address and message type waiting.

Id None – property Ushort Gets the Id of the worker.
Monitor(WorkerAddress monitoree) • monitoree : The address

of the worker to monitor.

void Binds this worker to the worker with the specified
address, so this worker will receive notifications if the
monitored worker terminates.

Node None, it is a property IWorkerNode Gets an interface to the local node.
Receive() Message Gets the first message in the queue. The thread will be

blocked if there are none.
Receive(int messageType) • messageType : The type

of message to filter on.

Message Gets the first message in the queue with the specified
message type. The thread will be blocked if there are
none.

Receive(WorkerAddress senderAddress) • senderAddress : The
sender address to filter on.

Message Gets the first message in the queue with the specified
sender address. The thread will be blocked if there are
none.

Receive(
 WorkerAddress senderAddress,
 int messageType)

• senderAddress : The
sender address to filter on.

• messageType : The type
of message to filter on.

Message Gets the first message in the queue with the specified
sender address and message type. The thread will be
blocked if there are none.

Introduction to Message Passing and the MPAPI Framework

- 24 -

Primitive Arguments Return value Explanation
Send(
 WorkerAddress receiverAddress,
 int messageType,
 object content)

• receiverAddress :
Address of the receiving
worker.

• messageType : The type
of message.

• content : The contents of
the message.

void Sends a message with a specific type and content to
another worker.

SetMessageFilter(params int[] filters) • filters : A variable list of
message types.

void Sets the message filters on the current worker. This will
prevent messages with a message type not in the filter list
to arrive in the mailbox.

Sleep(int ms) • ms : The number of
milliseconds to sleep.

void Forces the worker thread to sleep for a period of time.

Spawn(
 string workerTypeName,
 ushort nodeId)

• workerTypeName : The
fully qualified name of the
type of worker to spawn.

• nodeId : Id of the node on
which to spawn the worker.

WorkerAddress Spawns a worker with the specified fully qualified name
on the specified node.
A fully qualified name is of the format
“Namespace.SubNamespace.ClassName,
AssemblyName”. See MSDN documentation on
Type.GetType(string) for further information.
Use this if the target worker type is not known in the
project holding the current worker.

Spawn<TWorkerType>() • TRootWorker : The type
of worker to spawn.

WorkerAddress Spawns a worker of the specified type on the local node.

Spawn<TWorkerType>(ushort nodeId) • TRootWorker : The type
of worker to spawn.

• nodeId : Id of the node on
which to spawn the worker.

WorkerAddress Spawns a worker of the specified type on the specified
node.

Introduction to Message Passing and the MPAPI Framework

- 25 -

Primitives available from the local node
These primitives on the local node is available from a worker through the Worker.Node property, which will return an instance of the
interface IWorkerNode .

Primitive Arguments Return value Explanation
GetId() Ushort Gets the Id of the node.
GetIPEndPoint(ushort nodeId) • nodeId : The id of the node. IPEndPoint Gets the end point of the specified node. From the end point you

can get IP address and port number.
GetProcessorCount() int Gets the number of processors/cores available to the local node.
GetProcessorCount(ushort nodeId) • nodeId : The id of the node. int Gets the number of processors/cores available to the specified

node.
GetRemoteNodeIds() List<ushort> Gets a list of ids of remote nodes that has been registered in the

cluster.
GetWorkerCount() int Gets the number of workers running on the local node.
GetWorkerCount(ushort nodeId) • nodeId : The id of the node. int Gets the number of workers running on the specified node.

Accessing the current Worker instance from anywhere
Usually you will not restrict you code to be inside a worker instance. This is bad object oriented design, and the worker classes will get
unnecessarily large.
So to access the current worker from anywhere in the code there is a static property on the Worker class that will return the instance of the
current worker.

public static IWorkerNode Current {get; }

Note : The framework will try to match the current thread context against a worker instance. So if you call Worker.Current from within
a thread you yourself have spawned, a null value is returned.

Introduction to Message Passing and the MPAPI Framework

- 26 -

Registration server
The MPAPI framework comes with a registration server readily available in the
RegistrationServer.exe executable. But this does not mean that you have to use this
secondary application. If you want to bundle the registration server with for example the master
node application this is possible.
The RegistrationServer.exe executable does nothing more than create an instance of the
RegistrationServerBootstrap class in the namespace MPAPI.RegistrationServer . It
has a single method – Open(int) – which takes a port number as an argument. The following code
is from the RegistrationServer.exe executable and shows how to use it:

static void Main(string [] args)
{
 int port;
 string sPort = ConfigurationManager .AppSettings["Port"];
 if (! int .TryParse(sPort, out port))
 {
 Console .WriteLine(string .Format("Cannot parse '{0}' as an integer" , sPort));
 return ;
 }
 RegistrationServerBootstrap registrationServer =
 new RegistrationServerBootstrap ();
 registrationServer.Open(port);
}

If you plan to instantiate the registration server within another application, remember to do it before
instantiating any nodes so that the nodes can register properly.

The RegistrationServerBootstrap class implements the IDisposable interface.
Remember to call the Dispose() method, either explicitly or implicitly with the using keyword,
in order to properly clean up. This is not done in the above example since the application terminates
when the call to Open(port) returns.

