SharePoint Portal Server		.NET Protocol Handler

[image: mselogo_color]

Microsoft Office SharePoint Server
.NET Protocol Handler

Saturday, February 02, 2008
Version 2007.2

Prepared By
John Kozell
Principal Consultant
johnkoz@microsoft.com

Microsoft Office SharePoint Server	1
.NET Protocol Handler	1
Preface	3
Terms	3
Prerequisites	3
1	Overview	5
2	Protocol Handler	6
2.1	ProtocolHandler Object	6
2.1.1	ISearchProtocol::Init / Shutdown	6
2.1.2	ISearchProtocol::CreateAccessor / CloseAccessor	6
2.2	Accessor Object	7
2.2.1	IUrlAccessor	7
3	Content Enumerator	8
3.1	Properties	8
3.2	Methods	9
3.3	Interfaces	9
4	Installation	10
4.1	Protocol Handler	10
4.2	Content Source	10
5	Troubleshooting	12
5.1	Tracing	12
5.2	Debugging	13

 (
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication and is subject to change at any time without notice to you.

This document and its contents are provided AS IS
 without warranty of any kind,
and should not be interpreted as an offer or commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.
The descriptions of other companies’ products in this
document
, if any, are provided only as a convenience to you. Any such references should not be considered an endorsement or support by Microsoft. Microsoft cannot guarantee their accuracy, and the products may change over time. Also, the descriptions are intended as brief highlights to aid understanding, rather than as thorough coverage. For authoritative descriptions of these products, please consult their respective manufacturers.
This deliverable is provided AS IS without warranty of any kind and MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, OR OTHERWISE.
All trademarks are the property of their respective companies
.
Printed in the
United States of America
©
2007
 Microsoft Corporation. All rights reserved.
)
[bookmark: _Toc189714560]Preface
Having decided a protocol handler was necessary here are a few of the compelling reasons why we embarked on a C# version as opposed to the traditional C++ implementation:
· Faster development. Development in C# is significantly faster than C++, thus providing a quicker time to market for new, enhanced or repaired code. Much of this benefit is well documented in numerous industry articles. Some main contributing factors include:
· Simpler code. Much of the housekeeping and plumbing required in the coding have been factored out and included in the .NET framework (resource management, reference counting, string manipulation, etc.)
· Leverage .NET services. There are a host of classes in the framework that accelerated development such as HTTPRequest.
· More stable code. Because much of the housekeeping is eliminated, most of the mistakes associated with it are also eliminated.
· Ample resources. Because it is written in C#, there is a lower barrier to entry for developers, thus relaxing the skill profile required (C++) to develop and maintain Protocol Handlers.

This document is not intended to duplicate or replace existing Protocol Handler documentation, but rather rationalize and simplify the concepts for the reader.
[bookmark: _Toc189714561]Terms
Content – A body (sometimes hierarchical) of digitized computer information for which metadata and clear text can be extracted for indexing. Subsequent searching of the index yields results which can be navigated to by the user.
Content Item – The smallest unit of Content which is URI addressable. This can be thought of as the “leaf-node” of a hierarchical content structure.
Content Container – An URI addressable piece of content which can also contain Content Items.
Content Source – A URI which addresses some body of content capable of being indexed. This content may be either a Content Container or a Content Item.
[bookmark: _Toc189714562]Prerequisites
To get started writing a Protocol Hander, the following prerequisites are recommended:
· Developer
· Intermediate knowledge of a .NET language such as C#.
· Experience building class libraries in Visual Studio .NET 2003.
· Experience attaching the Visual Studio .NET debugger to running processes.
· Development Environment
· A working SharePoint Portal Server 2003, with the following:
· The “Search Service” role should be assigned to that server.
· Visual Studio .NET 2003 installed on the server.
· Terminal Services active.
· An alternate developer workstation, such as Windows XP. Running a “Remote Console” (terminal server) session into the server is the preferred way of interaction as it is more faster and more flexible;
[bookmark: _Toc189714563]Overview
The Search Engine of SharePoint Portal Server 2003 uses indexes to provide fast retrieval of content items in response to query criteria. These indexes are built and updated in batch mode by the Indexer which delegates communication to Protocol Handlers to the Filter Daemon. A Protocol Handler is responsible for accessing a content source and extracting its content. The Indexer uses the Filter Daemon to communicate and manage the Protocol Handlers.

Multiple Filter Daemons are created and re-created depending on the resource demands and reliability of the Protocol Handlers. If a particular Protocol Handler consumes more memory than a set threshold or becomes unresponsive, that Filter Daemon is terminated and a new copy created.

In the current product, Protocol Handlers exist as traditional in-process COM objects, and were traditionally written in C++. The .NET framework, with it’s COM interop facilities allows these Protocol Handlers to be implemented in “Managed Code” and appear to the Filter Daemon as standard COM objects.

This document and its accompanying sample, demonstrates the feasibility and practicality of creating these Protocol Handlers in C#, or any other .NET language.
[bookmark: _Toc189714564]Protocol Handler
The Protocol Handler should be thought of as a collection of objects (implementing interfaces) that work together to provide the Filter Daemon access to the underlying content. These objects are grouped together into one or more DLLs, with one object serving as a well known entry point.

The Filter Daemon detects and links to a new protocol handler through the use of the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SPSSearch\ProtocolHandlers
SPSPH = SPSPH.ProtocolHandler
[bookmark: _Ref106600509]Figure 1 Protocol Registration Key

Here, a string value is added which corresponds to the Protocol Handler’s Url Protocol. In the case of this sample, the protocol is “SPSPH”. The data for this value is the COM creatable application ID. The Filter Daemon creates an object of this type and queries for one of the supported Protocol Handler interfaces, implemented here in the “ProtocolHandler” object.
[bookmark: _Toc189714565]ProtocolHandler Object
The entry point of the Protocol Handler is the class which implements the ISearchProtocol[footnoteRef:2] interface. This class is created at most once for each instance of the Filter Daemon process (there can be multiple filter daemon processes). Once the class is created, subsequent interaction with the class is done through the ISearchProtocol interface. [2: In absence of the newer ISearchProtocol interface, the Filter Daemon will query for the older IProtocolHandler interface.]

[bookmark: _Toc189714566]ISearchProtocol::Init / Shutdown
Init and Shutdown are the first and last[footnoteRef:3] methods called as the Filter Deamon is creating and destroying the Protocol Handler object. [3: Other than the constructor and destructor.]

Tip:	The Filter Daemon will typically not shutdown the Protocol Handler after the last Accessor has been closed. However, when the Filter Daemon terminates it will shutdown the Protocol Handler. Stopping the Search Service (i.e. not killing the mssdmn.exe process) is one technique that will force all Filter Daemons to shutdown along with their Protocol Handlers.
[bookmark: _Toc189714567]ISearchProtocol::CreateAccessor / CloseAccessor
The Filter Daemon calls CreateAccessor when it needs to access the content of the Content Source listed in its queue. CreateAccessor should instantiate a new Accessor object and return a reference to that object back to the Filter Daemon in an out parameter.

The thread calling CreateAccessor will be used to perform the actual calls to the Accessor being created. Upon a successful call to CloseAccessor that thread will be returned to the pool for subsequent calls to CreateAccessor.

Tip:	You may see a premature call to CloseAccessor if you’re Protocol Handler throws an exception. In this case you will notice that not all the interfaces or methods depicted in the accompanying sequence diagram have been called.
[bookmark: _Toc189714568]Accessor Object
The Accessor object is responsible for orchestrating the extraction of the content and delivering it to the Filter Daemon. This is done through the IUrlAccessor and IFilter interfaces. Since access to a given Accessor object occurs on a single thread, the same object is used for both interfaces, thus simplifying the design.
[bookmark: _Toc189714569]IUrlAccessor
This interface acts as a proverbial concierge to the Filter Daemon, by getting it what it wants when it wants it. It handles fetching characteristics and metadata for the container/item, such as its size and type. It also handles providing additional interfaces, such as the IFilter and IStream interfaces needed to iterate through containers and items (respectfully).
[bookmark: _Toc189714570]Content Enumerator
The intent of the Content Enumerator component is to encapsulate the portion of the Protocol Handler that interacts directly with the content source. The Content Enumerator exposes a set of simple and well defined interfaces, properties and methods that are used by the ProtocolHandler object to access the necessary data.

It is possible to create a single core ProtocolHandler object (much like the sample provided) and simply link different Content Enumerators when producing a Protocol Handler assembly.

The lists below area simplified summery of the available Properties, Methods and Interfaces. For a complete explanation please refer to the sample source code.
[bookmark: _Toc189714571]Properties
· ProtocolPrefix (string, ex: “SPSPH”) – The ProtocolHandler object does not store the protocol and relies on reading this from the Content Enumerator.
· IsContainer (boolean) – Once the Content Enumerator is initialized with a content source string, it can make a determination if the string addresses a container or item. This property reflects that decision.
· Type (UriType) – reveals whether the content source is a container or item. The result should be stored in IsContainer. These two properties could potentially be consolidated.
· Size (ulong) – The size, in bytes, of an item.
· ContentType (string, ex: “text/html”) – The standard MIME type of the content returned in IStream.
· IDPath (string) – A multi-valued string containing a seriese of GUIDs separated by a colon (:). This string represents a logical path through the Area Hierarchy. The value enables the ability to simulate content appearing in an Area when searching “This Topic”; or when creating Search Scopes that limit cope to a specific area.
· AreaID (Guid) – Returns the Guid of the Area associated with the content. This enables the search results to be grouped by Area.
· Url (string) – Returns the Url used to originally construct the object.
· LastModified (DateTime) – The last data and time the container or item was changed. This enables incremental crawling.
· Content (IStream) – Allows the Filter Daemon to read the actual content of the container or item. This property returns a reference to the Content Enumerator itself, since it implements IStream.
· LaunchUrl (string) – The Search Engine uses this value as the address when forming the hyperlink for the item/container in the search results page.
· Title (string) –The human readable name for the container or item. (Not currently used correctly.)
· SecurityDescriptor (byte[]) – What users have access to this content item. This enables the search results to be “security trimmed” only show results users have the ability to access.
[bookmark: _Toc189714572]Methods
· ContentEnumerator (constructor) – creates a new Content Enumerator and associates a content source string with it.
· Init – Performs expensive initialization, such as connecting to the content source and setting up enumerators.
· Terminate – Closes and frees resources allocated with Init and other methods along the life of the object.
· EnsureContent – Performs the actual download of the content to the protocol handler.
[bookmark: _Toc189714573]Interfaces
· IEnumerator – Used by the Accessor to enumerate containers and items from the content source. Strings are returned to the Filter Daemon for accumulation on its work queue, which is later drained by subsequent calls to CreateAccessor.
· IStream (UCOMIStream) – Allows the Filter Daemon to extract the content of items for later parsing by the appropriate IFilter.
[bookmark: _Toc189714574]Installation
[bookmark: _Toc189714575]Protocol Handler
The protocol handler itself (the .NET assembly) can be installed in either of two ways:
1. If installing the final protocol handler on a production machine; in addition to a typically installation script the assembly needs to be registered with COM, using REGASM.EXE.
2. If performing development on the SPS Indexing Server, Visual Studio will automatically perform the necessary operations to register the assembly as a COM object when the component is built. The binary may be left in the target build directory.
[bookmark: _Toc189714576]Content Source
The Content Source is the entry point or “seed” passed to the Protocol Handler to initiate the crawling process and takes the form:
	PROTOCOL://DOMAIN/QUALIFIER
Where:
PROTOCOL = the protocol string recorded in the registry (see Figure 1)
DOMAIN = the DNS name assigned to the portal farm
QUALIFIER = any string, including parameters, which makes sense to the protocol handler.

For development purposes it is convenient to create a separate content index exclusively for the new protocol handler. This allows crawls to be isolated and yields more flexibility for resetting indexes, etc.

Unfortunately the out-of-box user interface does not seem to allow the setting of an important property[footnoteRef:4] when creating a content source, as a result the provided CSInstaller utility must be used to create the content source. It is a command line utility with the following syntax: [4: The “FollowDirectories” property should be set to true if your content source emits additional containers.]

	 List indexes (catalogs):
		CSInstaller /L
			/serverName:<server>
			/siteName:<site>
	 Remove Content Source:
		CSInstaller /U
			/serverName:<server>
			/siteName:<site>
			/url:<proto://server/path>
	 Add Content Source:
		CSInstaller /I
			/serverName:<server>
			/siteName:<http://server[:port]/[.../]>
			/index:<indexname>
			/url:<proto://server/path>
			/sourceGroup:<group>
			/hops:<#>
			/depth:<#>
			/followComplexUrls:[T | F]
			[/displayName:<name>]
			[/userName:<name>]
			[/password:<password>]
[bookmark: _Toc189714577]Troubleshooting
There are two primary approaches which can be used to troubleshoot or debug the protocol handler: tracing and the debugger. It is common to utilize both during the course of development. Typically Tracing will provide a broad and course view of the code paths taken by the Protocol Handler. Once a problem area has been localized, the Visual Studio .NET debugger may be attached to the process to provide step-by-step code debugging.

Aside from the approach being used, there are a number of tips that may help accelerate the overall troubleshooting effort:
· Item only Content Source. When adding a content source to the SPS index, consider fully qualifying the Content Source, so that it addresses a single item in the content rather then a container or root of the entire content type.
· Frequently view the Gather Log. SPS is good about recording the error code and description for exceptions generated from the protocol handler.
· Turn on success audits in index administration. This will cause the Gather Log to be more verbose by logging all indexing steps, not simply errors and exceptions.
[bookmark: _Toc189714578]Tracing
Tracing provides the big picture of activities in the Protocol Handler. It will help reveal how many accessors are being created, how the content queue is being built and drained and can help narrow what code path should be debugged.

The accompanying sample incorporates a simple logging class (Logging.cs) that utilizes the .NET tracing file facility (System.Diagnostics.Trace). This logging class is dormant by default, but can be activated by installing and modifying a configuration file for the Filter Daemon. The following is a typical example of the parameters required:
<configuration>
	<system.diagnostics>
		<switches>
			<add name="UniqueLog" value="1" />
			<add name="LoggingLevel" value="4" />
		</switches>
	</system.diagnostics>
</configuration>
Figure 2 Logging Configuration

UniqueLog – Boolean which enables or disables the creation of a trace file.
0 = Tracing is disabled, no log file will be created.
1 = Tracing is enabled at the level prescribed by “LoggingLevel”. This file will be written to the root directory of the “C:” with a name in the following format:
	PPPPP-XXXXXX.LOG
Where:
	PPPPP is the name of the process, in this case MSSDMN.
	XXXXXX is the process ID.
LoggingLevel – Controls the verbosity of the log file. See System.Diagnostics.TraceLevel for the possible enumeration values.

This file should be named MSSDMN.EXE.CONFIG and placed in the same directory where MSSDMN.EXE is found (normally “C:\Program Files\SharePoint Portal Server\Bin”).
[bookmark: _Toc189714579]Debugging
The indexer (crawler) uses the Filter Daemon to perform the actual communication with each Protocol Handler. The Filter Daemon’s process is MSSDMN.EXE and it is this process that Visual Studio .NET should attach to for real-time debugging.

Usually the Indexer will load the Filter Daemon the first time the content source (protocol) is crawled. It usually won’t unload it until the Indexer is shutdown. But it will be terminated and recreated in cases where the working set gets too big, or it becomes unresponsive. Sometimes it terminates because the Protocol Handler throws an exception.

At times, multiple instances of the MSSDMN process may be executing in memory simultaneously. This is a normal circumstance as the Indexer invokes multiple Filter Daemons for efficiency and reliability reasons. If multiple instances are found when beginning a debugging session it may be necessary to “kill” these processes (using Task Manager, for example) and let the Indexer create a new copy so there is no ambiguity as to which instance to attach.

If attaching to the Filter Daemon is proving difficult or execution cannot be intercepted fast enough, consider inserting a “hard” break in the code:
 System.Diagnostics.Debugger.Break();
Figure 3 Debugging Break Point

This will activate the Just In Time Debugging feature of Windows and automatically attach a new copy of Visual Studio .NET to the correct MSSDMN process. However, the prompt for this activation will appear on the server’s console, rather than a terminal server session.

Tip:	Kick off an initial crawl, this will load the Protocol Handler in memory. Then, attach to the process and set a break point. Finally, re-run the crawl of that content source.

Tip:	Add a content source that is just one item (IsDirectory=false) so that you can troubleshoot the item logic first, before iterating through containers.

At times you may see multiple MSSDMN processes spawned during a crawl, with corresponding warnings in the Gather Log. This can occur for a variety of reasons, but one in particular may not be obvious. The managed protocol handler’s memory footprint may tend to be larger than typical protocol handlers written in C++ (due to the CLR and its memory management). This can make attaching to the correct process difficult. To help alleviate this, the memory quota may be increased via registry values on the Indexing server.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SPSSearch\Gathering Manager]
DedicatedFilterProcessMemoryQuota = 0x06400000
FilterProcessMemoryQuota = 0x06400000	
Figure 4 Memory Quota Registry Key

0x06400000 (or ~100K bytes) represents the default value present on a “clean” SPS installation. If an MSSDMN process grows beyond this, SPS will spawn and additional process. Increasing the value of DedicatedFilterProcessMemoryQuota will allow the working set of the process to increase without intervention.
[image: g_ms]
[image: mselogo_color]	Created: 10 January 2007
Microsoft Corporation Confidential	Last Saved: 2 February 2008	Page 2
image1.png

image2.png

image3.wmf

