What Functional Programmers can Learn from the Visitor
Pattern

Technical Report, March 2003

Konstantin Laufer
Department of Computer Science
Loyola University Chicago
6525 North Sheridan Road
Chicago, lllinois 60626, USA

laufer@acm.org

ABSTRACT

This paper explores the practical potential for enhancing
code reuse in functional languages by leveraging techniques
and experiences from object-oriented programming. Since
data types in typed functional languages do not support
adding new variants, programming techniques derived from
the object-oriented Visitor pattern can be readily applied to
recursive functions on trees in functional languages.

Specifically, we demonstrate how to define recursive func-
tions on trees in such a way that they can be extended with-
out modification through an inheritance-like mechanism.
Furthermore, we demonstrate how the extensions themselves
can be made highly reusable through a mechanism akin to
mixin-based inheritance, which allows an extension to be ap-
plied to any suitable recursive function. These mechanisms
combine well with the usual higher-order approach to reuse
in functional languages.

Although general encodings of inheritance in functional lan-
guages are not novel, such encodings lead to a particularly
simple and elegant presentation when limited to recursive
functions on trees. Because of their simplicity, we believe
that these techniques have the potential to enhance code
reuse in the practice of functional programming without re-
quiring additional tool support.

Categories and Subject Descriptors

D.1.1 [Programming Techniques|: Applicative (Func-
tional) Programming; D.1.5 [Programming Techniques]:
Object-oriented Programming; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques— Object-oriented Pro-
gramming; D.2.11 [Software Engineering]: Software Ar-
chitectures— Patterns

ICFP 2003 Uppsala, Sweden

General Terms
Design, Languages

Keywords

Algebraic data types, Composite pattern, code reuse, higher-
order functions, inheritance, mixins, recursive functions, re-
usable components, reuse, traversal, trees, Visitor pattern

1. INTRODUCTION

Trees are widely used to represent hierarchical information
such as documents or programs. In typed functional lan-
guages such as ML [12] and Haskell [10], trees are directly
supported in the form of recursive algebraic data types.
Data types representing trees are comprised of at least one
variant for (interior) nodes and at least one variant for leaf
nodes. Once a tree type has been specified, it is easy to de-
fine recursive functions on trees. Typically, such functions
have at least one branch for each variant of the data type.
They traverse the tree recursively by applying themselves to
subtrees until a leaf is reached and compute the result on the
way back to the root of the tree. In functional languages,
code reuse is usually achieved by relying on higher-order
functions to compose behaviors [1].

In object-oriented languages, trees are typically implemented
using the Composite pattern [9], in which an interface or ab-
stract superclass represents the tree data type and the sub-
classes represent the variants. Recursive functions over the
resulting tree structures are provided using the Visitor pat-
tern [9], which makes it easy to add new functions on trees
without changes to the data type but makes it hard to add
new variants to the data type. In object-oriented languages,
code reuse is usually achieved through delegation and in-
heritance [11, 14]. Recently, visitor combinators [17] have
emerged as a way to improve reuse of imperative Visitor
code.

This paper explores the practical potential for enhancing
code reuse in functional languages by leveraging techniques
and experiences from object-oriented programming. Since
data types in functional languages such as Standard ML
and Haskell do not support adding new variants anyway,
programming techniques derived from the Visitor pattern
can be readily applied to recursive functions on trees in

functional languages. Furthermore, because all visitors on a
particular tree type usually implement the same interface,
the absence of subtype polymorphism in the aforementioned
languages is not a problem.

Specifically, we demonstrate how to define recursive func-
tions on trees in such a way that they can be extended with-
out modification through an inheritance-like mechanism.
Furthermore, we demonstrate how the extensions themselves
can be made highly reusable through a mechanism akin to
mizin-based inheritance [2, 3, 8, 7, 15] which allows an exten-
sion to be applied to any suitable recursive function. These
mechanisms combine well with the usual higher-order ap-
proach to reuse in functional languages. They also apply
to other recursive data structures, such as lists, that can be
encoded as trees.

Although general encodings of inheritance in functional lan-
guages are not novel [16, 5, 4], such encodings lead to a
particularly simple and elegant presentation when limited
to functions on recursive data structures. Because of their
simplicity, we believe that these techniques have the po-
tential to enhance code reuse in the practice of functional
programming without requiring additional tool support.

While the examples in this paper have been implemented in
Standard ML, other higher-order typed (HOT) languages
could have been used as well. The potential benefit of the
techniques presented here is expected to be greater in the
context of eager languages rather than lazy languages be-
cause recursive functions in lazy languages do not usually
require the same enhanced tree traversal control as eager
languages.

The rest of this paper is organized as follows. Section 2
presents a simple tree example, and Section 3 explains why
ordinary recursive functions on trees are not extensible with-
out modification. Section 4 shows how a simple encoding of
inheritance can make recursive functions extensible. Sec-
tion 5 argues why the higher-order approach of separating
tree traversal from operations is not always sufficient. Sec-
tion 6 demonstrates how reuse can be enhanced by encoding
mixins. Section 7 discusses the presence of additional argu-
ments to recursive functions, and Section 8 describes how
to handle mutual recursion. Section 9 applies the various
techniques to an extended example of abstract syntax trees
for a simple programming language.

2. RECURSIVE FUNCTIONS ON TREES

In this section, we first present a simple polymorphic tree
type along with a typical recursive function on such trees.
In our tree type, the type variable ’a represents the poly-
morphic element type. This tree type has two variants, a
leaf holding a data value, and an (interior) node with a left
and a right subtree.

datatype ’a Tree = Leaf of ’a
| Node of ’a Tree * ’a Tree

Given this type, we can now define trees such as this one,
whose element type is int.

val t = Node(
Leaf 2,
Node (
Leaf 8,
Leaf 5))

Next, we define a simple recursive function that sums the
numeric values at the leaves of a tree of integers.

i
csum 1 + csum r

fun csum (Leaf i)
| csum (Node(l, r))

- csum;

val it = fn : int Tree -> int

We can apply this function to any argument of type int
Tree, for example:

- csum (Leaf 3);

val it = 3 : int

- csum t;

val it = 15 : int

3. RECURSIVE FUNCTIONS ARENOT EX-
TENSIBLE

The problem with ordinary recursive functions on trees such
as csum above is that they are closed to any further extension
without changing their original definition, hence the choice
of name c(losed)sum. Therefore, such functions are not
useful as reusable components.

To illustrate this limitation further, let us attempt to extend
csum in such a way that it adds only those leaves into the
result whose integer data is even. The idea is that odd inte-
ger values are replaced by zero. Interior nodes are processed
as in the original definition of csum.

fun csumEven (t as (Leaf i)) =
let val x = csum t in
if x mod 2 = 0 then x else O
end
| csumEven t = csum t

- csumEven;

val it = fn : int Tree -> int

This extended function works fine on leaves:

- csumEven (Leaf 4);
val it = 4 : int
- csumEven (Leaf 5);
val it = 0 : int

However, it fails for more complex trees:

- csumEven t;
val it = 15 : int

The correct value for the sum of the even leaf values of t is
10.

What went wrong? The problem is that csumEven passes
interior nodes on to the original csum, which invokes itself
recursively instead of csumEven. Consequently, it is csum
that processes the leaves and counts both even and odd val-
ues.

4. INHERITANCE: MAKING RECURSIVE
FUNCTIONS EXTENSIBLE

To turn a recursive function such as csum into a reusable
building block, we can rewrite it with reuse in mind. Specif-
ically, we introduce an additional argument this to denote
the function that results after applying any extensions. We
will apply that function recursively, instead of hard-coding
recursive calls to csum.

fun sum this (Leaf i) =i
| sum this (Node(l, r)) = this 1 + this r

- sum;

val it = fn : (int Tree -> int) -> int Tree -> int

This version of sum is a higher-order function that we can
no longer apply directly to trees. Instead, we must first “tie
the knot” by forming the fixpoint of sum over the argument
this. Then we can apply the resulting function to the tree
to achieve the expected result:

fun nsum t = sum nsum t

- nsum;
val it = fn :
- nsum t;

val it = 15 : int

int Tree -> int

By defining the following call-by-value fixpoint operator on
functions, we no longer need to define an explicit fixpoint
version of each function. This operator takes a higher-order
function and returns its fixpoint on the first argument.

fun new f t = f (new f) t

- new;
val it = fn : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b
- new sum;

val it = fn : int Tree -> int

- new sum t;

val it = 15 : int

But what do we gain from this extra pain? We are now
able to reuse extensible functions unchanged as the basis for
extension. Functions such as sum can be thought of as visitor
classes with a single method whose branches correspond to
the per-variant methods in the Visitor pattern; the fixpoint
formation required before using the function can be viewed
as instantiation.

Extended functions inherit the behavior from the original
function and need to specify only what is different from
the original behavior. When the original function is ap-
plied recursively, the extended behavior gets applied; this
corresponds to dynamic method dispatch. While class-based
object-oriented languages support inheritance and dynamic

|- Node(Leaf 2, Node(Leaf 8, Leaf 5))
A—'; Node(Leaf 2, Node(Leaf 8, Leaf 5)) —>’—
Leaf 2

Leaf 2

______________ 2
Node (Leaf 8, Leaf 5))
Node (Leaf 8, Leaf 5)) —>|—
Leaf 8

_____________ 1]

Figure 1: Sequence diagram of the evaluation of
fsumEven t.

method dispatch directly, allowing Visitor classes to be ex-
tended easily, we have to encode this capability in the form
of the additional this argument.

Compared to the general, imperative encoding presented by
Thorup and Tofte [16], our restriction to visitor classes leads
to this much simpler, applicative encoding of objects and
inheritance. It seems practical to use this encoding without
additional tool support.

The following extended version of sum for adding only the
even leaf data values, fsumEven, is defined similarly to csum-
Even above. The difference is that fsumEven invokes sum
instead of csum, passing itself as the actual argument for
this, the argument for the resulting extended function.

fun fsumEven (t as (Leaf _)) =
let val x = sum fsumEven t in
if x mod 2 = 0 then x else O
end
| fsumEven t = sum fsumEven t

- fsumEven;

val it = fn : int Tree -> int

This function behaves as expected. When processing an in-
terior node, the inherited behavior from sum recurses into
the tree and invokes its this argument, fsumEven, on the
subtrees. When reaching a leaf, f sumEven thus processes the
leaf and replaces any odd value with zero. The UML [13]
sequence diagram shown in Figure 4 illustrates this process.
Execution time proceeds from top to bottom. Solid arrows
represent calls, and their labels indicate actual argument
values; dashed arrows represent returns, and their labels in-
dicate return values. The stacked activation boxes represent
(directly or, as is the case here, indirectly) recursive function
invocations.

- fsumEven (Leaf 4);
val it = 4 : int

- fsumEven (Leaf 5);
val it = 0 : int

- fsumEven t;

val it = 10 : int

However, since its only argument is the tree, £ (inal) sumEven
is not extensible any further, as its name indicates.

To allow future extension, an extended function must also
accept a this argument representing the function that re-
sults after applying any further extensions. This requires all
extensions to take a this argument. An extensible version
of fsumEven can be written as follows:

fun sumEven this (t as (Leaf _)) =
let val x = sum this t in
if x mod 2 = 0 then x else O
end
| sumEven this t = sum this t

- sumEven;

val it = fn : (int Tree -> int) -> int Tree -> int

As is the case with sum, we must first apply the fixpoint
operator new before passing the tree argument. The function
then behaves as desired:

- new sumEven;

val it = fn : int Tree -> int
- new sumEven (Leaf 4);

val it = 4 : int

- new sumEven (Leaf 5);

val it = 0 : int

- new sumEven t;

val it = 10 : int

Even better, we can apply further extensions to sumEven
without changing its definition. The following function sums
all even leaf data values that are greater than or equal to
the threshold y.

fun sumEvenAtLeast y this (t as (Leaf _)) =
let val x = sumEven this t in
if x >= y then x else 0
end
| sumEvenAtLeast y this t = sumEven this t

- sumEvenAtLeast;

val it = fn : int -> (int Tree -> int) -> int Tree -> int
- sumEvenAtLeast 5;

val it = fn : (int Tree -> int) -> int Tree -> int

Once this function receives its threshold argument, we can
form the fixpoint and apply it to trees as usual.

- new (sumEvenAtLeast 5);

val it = fn : int Tree -> int

- new (sumEvenAtLeast 5) (Leaf 4);
val it = 0 : int

- new (sumEvenAtLeast 5) (Leaf 5);
val it = 0 : int

- new (sumEvenAtLeast 5) (Leaf 6);
val it = 6 : int

- new (sumEvenAtLeast 5) t;

val it = 8 : int

In summary, we can describe the general idiom for convert-
ing a closed recursive function cf t -> r to an exten-
sible recursive function f (t => r) -> (t -> r) as fol-
lows. t is a polymorphic instance of a recursive data type
Type type with n variants. £1 through fn are type expres-
sions possibly involving the polymorphic type variables ’al
through ’>ak. C1 through Cn are contexts not containing cf.
The fixpoint of £ over its first argument can be applied to a
value of type Type (with appropriate type arguments).

= Variantl of of fi1[’al...’ak]
[
| Variantn of of fn[’al...’ak]

datatype (’al...’ak) Type

fun cf (Variant1(x1, ., xml) C1[cf]

| ¢f (Variantn(x1,

., xmn) = Cnl[cf]
fun f this (Varianti(x1,

| ...
| £ this (Variantn(x1,

., xm1) = C1[this]

., xmn)) = Cn[this]

In the transformation of csum to sum above, the general
idiom is applied as follows:

k=1
n =2
fi[’a]l = ’a

f2[’a] = ’a Tree * ’a Tree
ml =1
m2 = 2
C1[f]
C2[f]

i
fl+fr

5. WHY TREEFOLD IS NOT ENOUGH

At this point or earlier, most functional programmers have
wondered why the familiar higher-order fold function on
trees does not satisfy all of the reuse needs motivated above.
In this approach, the fold function is responsible for travers-
ing the tree. It takes a tuple of functions, one for each vari-
ant of the tree type, which it uses to compute the result for
the current node from the partial, recursive results for the
subtrees. The functions in the tuple usually know nothing
about the tree structure or its traversal.

Specifically, the fold method for our simple tree type can
be defined as follows:

fun fold (ops as (f, _)) (Leaf i) =f i
| fold (ops as (_, g)) (Node(l, r))
g(fold ops 1, fold ops r)

- fold;
val it = fn :
(’a => ’b) * (b * ’b -> ’b) -> ’a Tree -> ’b

A pair of functions to sum the leaf values of a tree is given
here. Whenever the fold method is processing a leaf, it
applies the first, identity function to the leaf data; whenever
it is processing a node, it recursively applies itself to the two
subtrees and adds up the two partial results.

val sumOps = (fn x => x, op +)

- sumOps;

val it = (fn,fn) (’a -> ’a) * (int * int -> int)

This combination of functions behaves as expected:

- fold sumOps;

val it = fn : int Tree -> int
- fold sumOps t;

val it = 15 : int

Like the extensible function approach, the treefold approach
allows functions to act as reusable components that can be
combined without modifying their definition. To take this
approach one step further, we can define an point-wise ex-
tension operator that allows extensions to be applied to ar-
guments to fold. This operator is right-associative because
extensions are applied from right to left.

infixr O
fun op 0 ((£’, g’), (£, @) =
(fn i => £’ i (f 1),

fn (x, y) => g’ (x, y) (g (x, ¥))

We can now define extensions that result in adding only even
leaf data values and only those that exceed a given threshold.
The additional arguments i and (x, y), respectively, are re-
quired for generality in case the extensions want to consider
the original partial results as well as those produced by the
tuple of functions to be extended.

val evenOps =
(fn i => fn r => if r mod 2 = 0 then r else O,
fn (x, y) => fn r => 1)

fun atLeastOps x =
(fn i => fn r => if r >= x then r else O,
fn (x, y) => fn r => 1)

- evenOps;
val it = (fn,fn)
(’a => int -> int) * (b * ’c -> ’d -> ’d)
- atLeastOps;
val it = fn :
int -> (’a -> int -> int) * (°b * ’c -> ’d -> ’d)

These tuples of functions can be combined to achieve the
same effect as the sumEvenAtLeast function defined above.

- fold ((atLeastOps 5) 0 evenOps 0 sumOps);

val it = fn : int Tree -> int

- fold ((atLeastOps 5) 0 evenOps 0 sumOps) (Leaf 4);
val it = 0 : int

- fold ((atLeastOps 5) O evenOps 0 sumOps) (Leaf 5);
val it = 0 : int

- fold ((atLeastOps 5) O evenOps 0 sumOps) (Leaf 6);
val it = 6 : int

- fold ((atLeastOps 5) 0 evenOps 0 sumOps) t;

val it = 8 : int

We observe that the treefold approach hard-codes the traver-
sal strategy. This is not a problem as long as a fixed set of

traversal strategies is sufficient to achieve the desired result.
However, in some cases, traversal decisions depend on the
specific structure or data of the tree argument. As we will
see in the extended example in Section 9, this is frequently
the case with trees representing programs. For example,
when processing a node representing a if expression, the
“then” branch of the statement should be processed only
if the condition evaluates to true; otherwise, processing it
might lead to an exception.

Although the following example is somewhat contrived, it
does illustrate this issue in conjunction with our simple tree
type. The purpose of this function is to sum up all leaf data
values in the tree in such a way that the right subtree of
a node is ignored if the recursive result for the left subtree
is even. This cannot be achieved using a fixed traversal
strategy such as fold.

fun sumIgnoreRightIfLeftEven this (Node(l, r)) =
let val x = sum this 1 in
if x mod 2 = 0 then x else x + sum this r
end
| sumIgnoreRightIfLeftEven this t = sum this t

- sumIgnoreRightIfLeftEven;

val it = fn : (int Tree -> int) -> int Tree -> int

- new sumIgnoreRightIfLeftEven t;

val it = 2 : int

- new sumIgnoreRightIfLeftEven (Node(Leaf 3, Leaf 5));
val it = 8 : int

It should be noted that this problem disappears when lazy
evaluation is used. Using fold in a lazy language, the right
subtree would be processed only when needed anyway, and
one could write the following function tuple to achieve the
effect of the sumIgnoreRightIfLeftEven function:

val ignoreRightIfLeftEvenOps =
(fn i =>fnr =>r,
fn (x, y) => fn r =>
if x mod 2 = O then x else x + y)

- fold (ignoreRightIfLeftEvenOps 0 sumOps) t;

val it = 2 : int

- fold (ignoreRightIfLeftEvenOps 0 sumOps)
(Node(Leaf 3, Leaf 5));

val it = 8 : int

6. MIXINS: MAKING EXTENSIONS REUS-
ABLE

In this section, we will explore ways to make extensions such
as those presented in Section 4 more reusable. A key lim-
itation of those extensions is that they apply to a fixed,
hard-coded original extensible function.

Instead, we would like to define extensions in such a way
that they can be applied to any suitable extensible function.
We can achieve this effect by abstracting over all recursive
invocations of the original function. Revisiting the definition
of sumEven, we observe that all such invocations are of the
form sum this, enclosed between pairs of marker comments.

fun sumEven this (t as (Leaf _)) =
let val x = (*-=>*) sum this (*<--*) t in

if x mod 2 = 0 then x else O
end
| sumEven this t = (¥-->*) sum this (*<--%) t

We now abstract over recursive invocations of sum this by
replacing all such invocations with an additional argument
super to refer to the original function to which this extension
applies.

fun keepEven this super (t as (Leaf _)) =
let val x = super t in
if x mod 2 = 0 then x else 0
end
| keepEven this super t = super t

- keepEven;

val it = fn : ’a -> (’b Tree -> int) -> ’b Tree -> int

To apply the keepEven extension to sum, we first abstract
over the this argument representing the extended function
and then form the fixpoint.

- fn this => keepEven this (sum this);

val it = fn : (int Tree -> int) -> int Tree -> int
- new (fn this => keepEven this (sum this));

val it = fn : int Tree -> int

- new (fn this => keepEven this (sum this)) t;

val it = 10 : int

To provide additional motivation, let us consider another
extensible function that multiplies all the leaf data values
of a tree, and an extension that increments each leaf data
value by a specified value.

fun prod this (Leaf i) =1
| prod this (Node(l, r)) = this 1 * this r

fun incBy x this super (t as (Leaf _))
| incBy x this super t

super t + x
super t

The following examples show how incBy can be applied to
different extensible functions.

- new prod t;

val it = 80 : int

- new (fn this => incBy 1 this (sum this)) t;
val it = 18 : int

- new (fn this => incBy 1 this (prod this)) t;
val it = 162 : int

In object-oriented terminology, abstract extensions that can
be applied to different superclasses are called mixins. Mix-
ins are not supported directly by most mainstream object-
oriented languages but can be encoded using an enhanced
version of the Decorator (Wrapper) pattern [9]. This en-
coding generally works well in conjunction with the Visitor
pattern because the interface of the visitors does not change
under extension.

Multiple extensions can be combined by chaining them and
forming the fixpoint at the end. Since the resulting chains

can become unwieldy because of an occurrence of this for
each extension in the chain, it is convenient to define a
function, extend, that allows a chain of extensions to be
expressed as a list. As expected, extend [] = new.

fun extend extensions super t =
let

fun extend’ []

super this t
extend’ (ext :: exts) super this t =
ext this (extend’ exts super this)

super this t

ot

in
new (extend’ extensions super) t
end

- extend;

val it = fn
((’a => ’b) -> (’a -> ’b) -> ’a -> ’b) list
-> ((Ca => ’b) => ’a => ’b) -> ’a > ’b

The extend function takes a list of reusable extensions and
an extensible function and returns an extended function that
is ready to use on a tree. Multiple extensions can now be
applied conveniently.

- extend [incBy 1, keepEven] sum t;
val it = 13 : int
- extend [keepEven, incBy 1] sum t;
val it = 6 : int

Of course, for additional reusability, the extensions them-
selves can be higher-order functions, such as the following
keep extension, which takes a predicate and a replacement
value to be used if the predicate is not satisfied.

fun keep p z this super (t as (Leaf _)) =
let val x = super t in
if p x then x else z
end
| keep p z this super t = super t

fun isEven i = i mod 2 = 0
fun isAtLeast x i =i >= x

- extend [keep (isAtLeast 5) 0, keep isEven 0] sum t;
val it = 8 : int

In summary, we can describe the general idiom for mix-
ins as follows. Given an extensible function £ (t > 1)
-> (t -> r), a mixin on the type of f is a function m :
(t > 1) > (t -> 1) -> (t -> r) (or of a more general
type). Here, the first argument of type t -> r is the func-
tion that results after all extensions are applied to the orig-
inal function; the second argument is the (possibly already
extended) function f to be further extended using m. The
fixpoint of fn this => m this (f this) (t >1) >
(t -> r) over this can be applied to a value of type t.

7. DEALING WITH ADDITIONAL ARGU-
MENTS

It is common for recursive functions to take additional ar-
guments whose values change during the traversal of the

tree [6]. The following (extensible) function for prettyprint-
ing a tree illustrates this technique. The prefix argument
represents the indentation level for the current node. Trees
are printed in a LISP-like style.

fun printTree this prefix (Leaf i) = Int.toString i
| printTree this prefix (Node(l, r)) =

"(\n" ~
prefix = " " ~ (this (prefix ~ " ") 1) =~ "\n" ~
prefix =~ " " ~ (this (prefix ~ " ") r) = "\n" ~
prefix ~ ")"
- print (new printTree "" t);
(
2
(
8
5
)
)

val it = () : unit

The printNicer extension adds the variant constructor
names and commas in the right places to the printed tree
so that it prints like its source-level definition. Observe that
the extension also has the additional argument before the
tree itself.

fun printNicer this super prefix (t as (Leaf i)) =
"Leaf (" ~ (super prefix t) =~ ")"
| printNicer this super prefix (t as (Node(l, r))) =

"Node (\n" ~
prefix =~ " " ~ (this (prefix =~ " ") 1) = ",\n" ~
prefix =~ " " ~ (this (prefix =" ") r) -~ "\n" "
prefix =~ ")"

Fortunately, applying suitable extensions to functions still
works using the extend function defined in Section 6. The
arguments of the extensions to the right of this and super
must match the arguments of the original to the right of
this.

- print (extend [printNicer] printTree "" t);
Node(
Leaf(2),
Node (
Leaf(8),
Leaf (5)
)
)

val it = () : unit

The difference between the print functions described here
and, for example, the incBy function from Section 6 is that
the argument values of the print functions changes during
the recursive traversal of the tree. Therefore, the prefix
argument to these functions must not be applied until after
the fixpoint is formed.

8. DEALINGWITHMUTUAL RECURSION

Conceptually, on the basis of Bekic’s theorem [18], we do
not expect mutual recursion to cause any difficulties. In
practice, it turns out that we can handle mutual recursion by

introducing an additional argument for each function that
participates in the mutual recursion.

The following example illustrates this issue. We first define
a version of csum that consists of a pair of mutually recur-
sive functions. We then make these functions extensible by
introducing two this arguments, one for each function in
the pair.

i
csum2 1 + csum2 r

fun csuml (Leaf i)
| csuml (Node(1l, r))
and csum2 t = csuml t

fun suml thisl this2 (Leaf i) =i
| suml thisl this2 (Node(l, r)) = this2 1 + this2 r
fun sum2 thisl this2 t = thisl t

- suml;
val it = fn :
- sum2;
val it = fn :

’a -> (int Tree -> int) -> int Tree -> int

(’a => ’b) -> ’c -> ’a -> ’b

As before, we must first “tie the knot” by forming the fix-
point of the two functions over the two this arguments, and
then we can apply the function nsuml to tree arguments.

fun nsuml t = suml nsuml nsum2 t
and nsum2 t = sum2 nsuml nsum2 t

- nsuml;

val it = fn :
- nsuml t;
val it = 15 : int

int Tree -> int

To extend the function, we first apply the extension and then
form the fixpoint. For example, we can apply the extension
keepEven from Section 6 as follows:

fun nsumEvenl t =

(keepEven nsumEvenl (suml nsumEvenl nsumEven2)) t
and nsumEven2 t =

sum2 nsumEvenl nsumEven2 t

- nsumEvenli;

val it = fn :
- nsumEvenl t;
val it = 10 : int

9. EXTENDED EXAMPLE:ANINTERPRET-
ER FOR A SIMPLE LANGUAGE

In this section, we present an interpreter for a simple im-
perative language as an extended example. This language
has constants, variables, arithmetic expressions, assignment,
sequences of statements, and while loops.

int Tree -> int

We start by defining the tree data type for abstract syn-
tax trees (ASTSs) in this language. Constants carry an in-
teger value; variables have a display name and an integer
reference; arithmetic expressions have two subexpressions;
assignments have a left-hand side and a right-hand side; se-
quences have a list of subexpressions; finally, while loops
have a condition and a body.

datatype Expr = Const of int

Var of string * int ref
Plus of Expr * Expr
Minus of Expr * Expr
Assign of Expr * Expr
Sequence of Expr list
While of Expr * Expr

Next, we provide a non-extensible version of an interpreter
for programs represented as ASTs. As usual, the interpreter
models constructs in the object language (Expr) using suit-
able constructs in the metalanguage (appropriately, ML).

fun ceval (Const i) = i
| ceval (Var(_,x)) = !x
| ceval (Plus(1l,r)) = (ceval 1) + (ceval r)
| ceval (Minus(l,r)) = (ceval 1) - (ceval r)
| ceval (Assign(Var(_,x),r)) = (x := ceval r ; !x)
|

ceval (Sequence(e :: es)) =

(ceval e ; ceval (Sequence es))

ceval (Sequence(nil)) = 0

ceval (e as (While(c,b))) =

if ceval ¢ = 0 then O else (ceval b ; ceval e)

Now we can define and evaluate programs in this language,
such as the following example:

val x = Var ("x", ref 2)
val y = Var ("y", ref 3)
val Var ("r", ref 0)

R
]

val s = While(y,
Sequence ([
Assign(r, Plus(r, x)),
Assign(y, Minus(y, Const 1))

D

In a typical imperative language, the source code for this
program would look as follows; the program multiplies x
and y.

int x = 2; int y = 3; int r = 0;
while (y > 0) {r=r+x;y=y-1; }

To execute the program s, we first evaluate s itself and then
inspect the result variable r.

- ceval s;
val it = 0 : int
- ceval r;
val it = 6 : int

We now convert ceval to an extensible function called eval
in the usual way, replacing recursive calls with calls to the
additional argument this.

fun eval this (Const i) = i
| eval this (Var(_,x)) = !x
| eval this (Plus(l,r)) = (this 1) + (this r)
| eval this (Minus(l,r)) = (this 1) - (this r)
| eval this (Assign(Var(_,x),r)) =
(x := eval this r ; !x)

eval this (Sequence(e :: es)) =
(this e ; this (Sequence es))
eval this (Sequence(nil)) = 0
eval this (e as (While(c,b)))
if this ¢ = 0 then O else (this b ; this e)

Having an extensible version of eval enables us to write
some extensions to eval that instrument the evaluation pro-
cess. In practice, such extensions may be found in program-
ming environments for debugging purposes.

The first extension, watch, prints an informative message
each time an assignment is made to the variable specified as
an argument. All other language constructs are evaluated
normally, that is, by super.

fun watch (Var(n,y)) this super
(e as (Assign(Var(_,x),r))) =
let val result = super e in
if y = x then
print n = " =" ~ (Int.toString (!x)) ~ "\n"
else
(O
result
end
| watch _ this super t = super t

Having more than two variants in the data type, we can
better appreciate the benefits of extending an existing func-
tion: the extension only needs to specify the behavior for
the cases that are handled differently; all other cases can be
passed to the original function.

The second extension, tracewhile, prints an informative
message each time a while loop is evaluated.

fun tracewhile this super (e as (While(c,b))) =
let val cond = this c in
if cond = O then
(print "done\n" ; 0)
else
(print "repeating\n" ; this b ; this e)
end

We can combine these extensions to evaluate the program
in “heavy” debug mode.

- extend [watch x, watch y, tracewhile, watch r] eval s;

repeating
r=2
y =2
repeating
r =4
y=1
repeating
r==6
y=0
done

val it = 0 : int
- new eval r;
val it = 6 : int

Acknowledgments

The author would like to thank Radhakrishnan Jagadeesan,
Michael J. Maher, and Neeraj Mehta for insightful feedback
and discussions.

10.

1]

2]

[10]

[11]

[12]

[13]

REFERENCES
R. Bird and P. Wadler. An introduction to functional
programming. Prentice Hall International (UK) Ltd.,
1988.

G. Bracha and W. Cook. Mixin-based inheritance. In
N. Meyrowitz, editor, Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages,
and Applications / Proceedings of the European
Conference on Object-Oriented Programming, pages
303-311, Ottawa, Canada, 1990. ACM Press.

G. Bracha and D. Griswold. Extending Smalltalk with
mixins. In OOPSLA’96 Workshop on Extending the
Smalltalk Language, April 1996. Electronic note
available at
http://www.javasoft.com/people/gbracha/mwp.html.

K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing
object encodings. In Theoretical Aspects of Computer
Software, pages 415-438, 1997.

J. Eifrig, S. F. Smith, V. Trifonov, and A. E. Zwarico.
An interpretation of typed OOP in a language with
state. Lisp and Symbolic Computation, 8(4):357-397,
1995.

M. Felleisen and D. P. Friedman. A little Java, a few
patterns. MIT Press, Cambridge, Massachusetts, USA,
1998.

R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In Proceedings of
the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), volume 34(1),
pages 94-104, 1998.

M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In Conference Record of POPL 98: The
25TH ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Diego,
California, pages 171-183, New York, NY, 1998.

E. Gamma, R. Helm, R. E. Johnson, and J. M.
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley,
Reading, Massachusetts, 1995.

K. Hammond, J. Peterson, et al. Report on the
Programming Language Haskell: A Non-strict, Purely
Functional Language. Yale University, New Haven,
Connecticut, USA, 1997. Version 1.4.

H. Lieberman. Using prototypical objects to
implement shared behavior in object-oriented systems.
In N. Meyrowitz, editor, Proceedings of the Conference
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 214-223, New
York, NY, 1986. ACM Press.

R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. MIT Press, Cambridge, Massachusetts,
USA, 1990.

OMG. Unified modeling language. Specification v1.3,
Object Management Group, June 1999.
http://www.omg.org/technology/uml/.

(14]

(15]

(16]

(17]

(18]

K. Ostermann and M. Mezini. Object-oriented
composition untangled. In Proceedings OOPSLA 01,
Tampa Bay, FL, 2001.

Y. Smaragdakis and D. Batory. Mixin-based
programming in C++4-. Technical Report CS-TR-98-27,
University of Texas at Austin, Jan. 1998.

L. Thorup and M. Tofte. Object oriented
programming and Standard ML. In ACM SIGPLAN
Workshop on Standard ML and its Applications, June
94.

J. Visser. Visitor combination and traversal control. In
Proceedings of the OOPSLA 01 conference on Object
Oriented Programming Systems Languages and
Applications, pages 270-282. ACM Press, 2001.

G. Winskel. The formal semantics of programming
languages: an introduction. MIT Press, Cambridge,
Massachusetts, USA, 1993.

