Using the ACORD Service Factory for a Property and Casualty Policy Management Service

Author: N. Peter Schnettler, CFA

Pete is an Architect with Microsoft Consulting Service and has been involved with number of Insurance engagements for Microsoft. Prior to working for Microsoft, Pete was one of a team of chief architects at Allstate Insurance.

Introduction

The purpose of this whitepaper is to demonstrate how one can use the ACORD Service Factory to generate a P&C Policy Management Service. The ACORD Service Factory (ASF) contains a framework for generating a Windows Communications Foundation (WCF) Service using either Life or P&C ACORD messages. This paper will discuss why we used ASF, how it was used and will provide examples of the application and messages built using ASF.
Background
We had been working with a mid-sized insurance company on a new application for taking endorsements from their customers with P&C policies through a call center. The call center application would allow the company to consolidate their customer information in one place and allow them to handle endorsements over the phone. Therefore, the application design would ultimately included interfacing with their legacy policy management system. After some requirements gathering sessions with the company’s architects, it became clear that they would replace their policy management system at some point in the future. They were also interested in one interface that not only our call center application but also their extranet agency endorsement system and a customer self service internet site could use as well. Since the legacy endorsement application was mainframe based, the design called for Microsoft’s Host Integration Server (HIS). It became clear that the architecture called for a smart client for the CSR's while the interaction with the mainframe would be server based using HIS. We decided that the design still needed a service interface that all of these applications mentioned above could use and would not have to change once the legacy policy management system was replaced.
It made sense that the interface should support ACORD messages which were application neutral and not based on the needs nor data model of the mainframe policy management system. The P&C ACORD messages support many of the requirements that the application needed. Namely the ability to support transactions by allowing us to bundle multiple endorsements for a customer in one message. If a customer called to add a vehicle, a new driver and then to assign the driver as the primary on the new vehicle, all three of these changes needed to be handled as one transaction. The Mod Info aggregate list built into each of the ACORD P&C modification submission messages would allow us to create one transaction. The ACORD messages also handle the need for both synchronous and asynchronous request and response scenarios. Finally as the list of policy management vendors that support ACORD message structure continues to grow, it became clear that the use of ACORD messages for a policy management service was the right design decision.

ACORD Service Factory
I started looking within Microsoft for a .Net solution based on ACORD. The search led me to collaboration with Microsoft’s Insurance Industry group. This group has been working on an Insurance Value Chain whose goal was an industry standard web service interface based on ACORD using Microsoft’s .Net Framework and Windows Communication Foundation. One of the result of this groups work is the ACORD Service Factory (ASF). For reasons mentioned above, we based our service design on ASF for our policy management service instead of having to start from scratch.
In order to use the ACORD XML schema to build and receive messages we would need to build a set of classes from the schema. This can be accomplished by using XsdObjectGen by Colin Cole and Dan Rogers (see link at http://www.microsoft.com/downloads/details.aspx?FamilyID=89E6B1E5-F66C-4A4D-933B-46222BB01EB0&displaylang=en). However, the corresponding class file is over 300,000 lines of code. This large file could have bloated our assembly and slow down build times. The alternative is to try to figure out which messages, aggregates and types that are needed and to cut down the schema. This is not an easy task as each aggregate and type need to be identified and marked. Then the task of taking out what is not marked within the almost 33,000 line schema file. Fortunately ASF takes care of this for us. ASF has been broken up by service type. Namely the P&C services are Billing, Claims, Commercial, Farm and Personal Lines and Surety. There are two more that will be used in most services; they are Common and Extension. We will take advantage of these as we build our endorsement service.

Preparing the ASF Solution for the P&C Endorsement Service

First we started with a copy of the P&C version ASF. The solution comes with a generic name space of CompanyX.Insurance.Pc. We did a find and replace throughout the solution to set the namespace to fit the needs of the company standards and the service we were building. The project and solution files will also need to be renamed.
[image: image1.png]
Application Requirements

The service that we are designing will need to first provide a way for the CSR’s to see the customer’s policy information when we pass either the insured’s name or policy number. After interacting with the customer, the CSR will enter one or more endorsements into our smart client application. The CSR will need to quote the endorsement and once the insured agrees apply the endorsement.
Identifying the Message and Service Contracts

The ASF supports WCF by segregating the service types by service, message and data contracts. This makes it easy to choose what is needed for your service. To start narrowing down our solution we first look in the Contracts project and determine what is needed and not needed for our service. We will start in the Service Contracts folder to identify what messages will be used since we want to take a contract first approach with this design. The ASF has broken out the messages into categories and lines of business. The ACORD messages are further broken out by purpose; inquiry messages for querying for information including requesting a quote, submission messages for transactions and notification for events such as notification of cancellation.
We have identified that our service will need to show policy information first. We will us the ACORD Policy Inq. Rq. message to build the inquiry request and the Policy Inq. Rs. as the response which are both need for the GetI nsurance Policy Status service method which will provide the policy information. The interface for getting the policy information is within the Common Insurance Inquiry interface in the Common Insurance Folder.
The endorsement side including satisfying the quoting need of the policy management service will use the messages within the Personal Lines Folder. The choice of interfaces will be limited to Submission interfaces. The question that we needed to answer in order to make the interface and message selection is whether the company handles mono-line and/or package policies. The company did not offer mono-line policies but instead offers a bundled policy of auto and home owners. The home owner’s policy handles dwelling, watercraft, recreational vehicles, and watercraft accessories and, scheduled property (Inland Marine). Umbrella policies were also offered but were out of scope for this service. If the company had offered mono-line policies we would have selected the specific interfaces; for example, IPersonal Auto Submission for straight auto. For our bundled policy we selected the IPersonal Package Submission interface which contains the Modify Personal Package Policy method that we will use for package policy endorsements which takes a Per’s Pkg. Policy Mod Rq. request message and returns a Per’s Pkg Policy Mod Rs response message. In also contains the Get Personal Package Policy Quote method for our quoting requirement which takes a per’s Pkg Policy Quote Inq Rq request and returns the quote in the per’s Pkg Policy Quote Inq Rs response message. Since we do not need any other message or service contracts, we drag ICommon Insurance Inquiry and IPersonal Package Submission to the Service Contracts folder and delete the remaining folders.
[image: image2.png]
Data Contracts for the Policy Management Service

We need to identify what data contracts are needed to support the message contracts. The data contracts represent the ACORD aggregates and their supporting data types. The classes that make up the message contracts will also become important later when we map our business entities to the ACORD aggregates before constructing our request messages and mapping to our business entities when our service returns an ACORD response message. All of the supporting ACORD data types for the messages we selected are in the Acord Common Insurance class found in the Common Insurance folder and the Acord Personal Insurance class found in the Personal Insurance folder. These classes are dragged to the Data Contracts folder and the rest of the folders are deleted.
Let’s take a look at some of the other folders under the Contracts project. We want to retain the Fault Folder for WCF Fault messages. We split faults up into two types for our service. One fault will be used for system related issues such as login failure or an exception was thrown. These system fault conditions will be handled by fault messages. Other issues that are not system related but instead application related such as data errors or no information found from a query will be handled within the ACORD response message. The response message has a Message Status aggregate which contain the Msg Status Cd and Msg. Error Cd. types. The service will need to determine how to handle exceptions and errors and whether a method passes either a fault message or the expected response message with the proper code values set in the Message Status. Lastly, the Schemas directory contains the ACORD XML schema and the xml files that are used to generate their corresponding class files.
Defining the Service Layer
We next move to the web site project that will host the service. Just as we did in the Service Contract, we deleted all of the “svc” files except for the Common Insurance Service and Personal Package Service. In the App_Code folder we need to modify the Common Insurance Service and Personal Package Service classes. For the Common Insurance Service class, we remove all references to ICommon Insurance. Modification, ICommon Insurance Notification, ICommon Insurance Submission and all the methods that those interfaces were expecting. For the Personal Package Service class, we remove all references and methods for IPersonal Package Notification. As for the remaining methods in IPersonal Package Submission, we will provide the quote service in this implementation, since our application will allow “what-if” endorsements and quoting. For renewal, additions and the other submission services, these services will be provided in a future implementation. For these we can pass a fault message indicating that the service has not been implemented. For the Get Personal Package Policy Quote and Modify Personal Package Policy methods, we will come back to these later.
[image: image3.png]
Finally before we leave the Services project, we need to make changes to the web.config file to pare it down to just the service endpoints what this service will be exposing. We will use the Svc Config Editor which is provided with the Windows SDK.

[image: image4.png]
Defining the Service Agent

The Service Agent is what the client will use to access the policy management services. We will again clear all of the classes except for the Common Insurance Service and the Personal Package Service. For the Common Insurance Service, we removed all but the Common Insurance Inquiry interface, Common Insurance Inquiry Channel interface and Common Insurance Inquiry Client class. For the Personal Package Service, we will retain the Personal Package Submission and Personal Package Submission Channel interfaces and the Personal Package Submission Client class. The Personal Package Submission Client and Common Insurance Inquiry Client represent the proxy class that the client will use to invoke the service methods. The other option is to regenerate this code using the Service Model Metadata Utility Tool (Svcutil.exe, see http://msdn.microsoft.com/en-us/library/aa347733(VS.85).aspx).
Framework Functional Tests

The ASF contains three projects for functional tests. The first test for Commercial Insurance.Services.FunctionalTests will be removed as we are dealing with Personal Lines. For the Personal Insurance.Services.Functional Tests, we will remove all but the Personal Package Submission Client Test. The last test project is the Services.Functional Tests in which we will remove all but the Common Insurance Inquiry Client Test. It may make sense here to combine all of he tests into one test project.
We have now completed all of the modifications to the ASF solution in preparations for our service implementation. The last step is to add our business entity project to the solution. The business entities are used to bind to the controls in the smart client UI.
Use Case for our Policy Management Service
Before we look at how we will implement our Service, let’s take a look at how it will be used.

Use Case 1: Policy Inquiry

A customer Ted Johnson calls into one of the customer service representative (CSR) in our call center and the CSR will ask the Ted for his policy number or name. The application will take this information and construct a Policy Inq. Rq. The application will use the proxy class in the Service Agent to call GetI nsurance Policy Status method. The Service implementation will take the policy number or insured’s name and look up their policy information in the backend policy management system. The service interface will construct a Policy Inq. Rs. response message. If the policy was not found a Message Status Cd. would indicated “Rejected” in the Message Status. If one or more policies are found (more than one Ted Johnson), then each of the policies is mapped to the ACORD aggregates and added to the Policy Inq. Rs. response and then it is returned to the client. The policy information is presented to the CSR so that they can respond to questions or requests for endorsements.
Use Case 2: Quoting a What-if Endorsement
Ted has purchased a Chevy Impala for his daughter and wants it added to his policy. His daughter is a new driver and has not been added to Ted’s policy. The CSR collects the driver information for his daughter, the vehicle information and assigns the daughter as the primary driver of the Impala. Ted may want to know how much this is going to cost him. The application would call into the Service Agent layer to construct the ACORD Pers Pkg Policy Quote Inq Rq with the new driver, vehicle information and driver assignment. The Pers Pkg Policy Quote Inq Rq would be used to call the Get Personal Package Policy Quote method and the backend policy management system would determine the premium change. The Service would construct the Pers Pkg Policy Quote Inq Rs response message with the new quote and returns it through the Service Agent. The CSR tells Ted what the change in premium will be.
Use Case 3: Apply the Endorsement

Ted is ok with the quote and asks that the changes be made to his policy. In this case, the Service Agent will construct an ACORD Per’s Pkg Policy Mod Rq with all of the changes. The Service will determine all of the changes within the request message and call the appropriate methods in the backend policy management system. If there are data errors, they will be noted in the Message Status in the Pers Pkg Policy Mod Rs response message, otherwise the response will return with success in the Messag Status.
Complete the design for the Policy Management Service
Service Agent for Use Case 1

We need to add to the design for the Service Agent. In order to call the service to get the policy, the Service Agent will need to construct the Policy Inq Rq message. Below is a sample of the ACORD message to lookup Ted Johnson’s policy with policy number 11122223333.
 <PolicyInqRq xmlns="http://www.ACORD.org/standards/PC_Surety/ACORD1.11.0/xml/">

 <RqUID>{B69361BA-0325-4ce3-A794-994BD37AC0AE}</RqUID>

 <TransactionRequestDt>1999-05-31T13:20:00.000-05:00</TransactionRequestDt>

 <TransactionEffectiveDt>1999-05-31T13:20:00.000-05:00</TransactionEffectiveDt>

 <CurCd/>

 <AsOfDt>1999-05-31</AsOfDt>

 <Requestor>

 <MiscParty>

 <ItemIdInfo>

 < InsurerId >CCF</ InsurerId >

 </ItemIdInfo>

 </MiscParty>

 </Requestor>

 <PartyInqInfo>

 <InsuredOrPrincipal id="Insured">

 <GeneralPartyInfo>

 <NameInfo>

 <PersonName>

 <Surname>

 Johnson

 </Surname>

 <GivenName>

 Ted

 </GivenName>

 </PersonName>

 </NameInfo>

 </GeneralPartyInfo>

 <ItemIdInfo>

 <InsurerId>11122223333</InsurerId>

 </ItemIdInfo>

 </InsuredOrPrincipal>

 </PartyInqInfo>

 </PolicyInqRq>

One of the benefits of AFT is how easy it is to build the ACORD messages. If you look inside of the message classes, you will see that each property checks for null and creates and instance if it is null before returning it. That reduces the code that one has to write to checking for nulls and creating instances. The source code to generate this message would look like:

using System;

using Contoso.PersonalLines.PolicyMgmnt.CommonInsurance.DataContracts;

namespace Contoso.PersonalLines.PolicyMgmnt.ServiceAgents

{

 public class PolicyInqRqMsgFactory

 {

 public static PolicyInqRq Build(string firstName, string lastName, string policyNo)

 {

 PolicyInqRq msg = new PolicyInqRq();

 msg.RqUID = Guid.NewGuid().ToString();

 msg.TransactionRequestDt.Value = System.DateTime.Today;

 msg.TransactionEffectiveDt.Value = System.DateTime.Today

 msg.CurCd = new CurCd();

 msg.AsOfDt.Value = System.DateTime.Today;

 msg.Requestor.MiscParty.ItemIdInfo.SystemId = "CCF";

 msg.PartyInqInfo.InsuredOrPrincipal.Add(new InsuredOrPrincipal());

 msg.PartyInqInfo.InsuredOrPrincipal[0].id = "Insured";

 msg.PartyInqInfo.InsuredOrPrincipal[0].GeneralPartyInfo.NameInfo.Add(new NameInfo());

 msg.PartyInqInfo.InsuredOrPrincipal[0].GeneralPartyInfo.NameInfo[0].

PersonName.GivenName.Value = firstName;

 msg.PartyInqInfo.InsuredOrPrincipal[0].GeneralPartyInfo.NameInfo[0].

PersonName.Surname.Value = lastName;

 msg.PartyInqInfo.InsuredOrPrincipal[0].ItemIdInfo.InsurerId.Value = policyNo;

 return msg;

 }

 }

}

Once we have constructed the request message and passed it to the service. We will get back a Policy Inq. Rs. response message which may look like:
 <PolicyInqRs>

 <RqUID>{B69361BA-0325-4ce3-A794-994BD37AC0AE}</RqUID>

 <TransactionResponseDt>1999-05-31T13:20:00.000-05:00</TransactionResponseDt>

 <MsgStatus>

 <MsgStatusCd>SuccessWithInfo</MsgStatusCd>

 </MsgStatus>

 <AsOfDt>1999-05-31</AsOfDt>

 <Requestor>

 <MiscParty>

 <ItemIdInfo>

 <InsurerId >CCF</InsurerId >

 </ItemIdInfo>

 </MiscParty>

 </Requestor>

 <PolicyInqInfo>

 <PartialPolicy>

 <PolicyNumber>11122223333</PolicyNumber>
 <LOBCd> PPKGE</LOBCd>

 </PartialPolicy>

 </PolicyInqInfo>

 <PolInfo>

 <PersPkgPolicy>

 <InsuredOrPrincipal id="Insured">

 . . .Insured information here
 </InsuredOrPrincipal>

 <PersPolicy>
 <LOBCd>PPKGE</LOBCd>

 . . .Policy information here
 </PersPolicy>

 <Location id=””>
 <ItemIdInfo />

 <Addr />

 . . .With ids that reference dwellings and garaging locations
 </Location>
 <Dwell LocationRef=” ids that reference back to Locations”>

 . . .Homes here

 </Dwell>

 <PersDriver>
 <GeneralPartyInfo/>

 . . .Drivers here
 </PersDriver>

 <PersVeh>

 . . .Vehicles here
 </PersVeh>

 <PropertySchedule>
 <IsSummaryInd/>

 <ItemDefinition/>
 . . .Scheduled Property here
 </PropertySchedule>

 </PersPkgPolicy>

 </PolInfo>

 </PolicyInqRs>

The Service Agent will have mapping logic to convert the ACORD aggregates from the response message such as per’s Driver to the applications business entity such as Driver. These business entities are then bound to controls in the UI layer of the client for the CSR to view and modify.

Service Provider for Use Case 1

The Service Provider project has not been mentioned as of yet but plays an important role for the service Tier. The Server Provider assembly will be deployed to the server and will contain all of the backend logic. The Web Service layer will call into the business façade within a try catch block. If an exception is thrown the catch will construct the fault message and pass it back to the client. For Use Case 1, this would be a Policy Inq Ft message. For our implementation, we would return fault messages for those exceptions that we did not explicitly throw in one of the lower layers. For those that we threw explicitly and caught in the web service layer, we set the Message Status in the response message to Rejected or Error and used the Msg. Error Cd. and Msg. Status Desk.

[image: image5.emf]Service Layer

Service Providers

Business Facade

WCF Web Service Layer

Business Logic

Data Access Layer

Passes requests

back and forth

from the

Business Façade

and creates Fault

Messages

Orchestrates

which methods in

the Business

Logic to call.

Maps to and from

ACORD

Messages

Contains all of

the logic for

calling into the

Data Access

This layer has the

logic to call the

backend Policy

Management

System

In the Business Façade layer for Use Case 1, we have a Common Insurance Service BF class which implements the same interface as the web service. For Use Case 1, this would be ICommon Insurance Inquiry. The Common Insurance Service BF class will extract either the policy number and/or customer name from the request message and call into the business logic layer. In this implementation the business logic provided an interface into the policy management system while the data access layer knows all of the details for how to interact with the mainframe based policy management system. In this way, other application that may not deal with ACORD, can build their own business façade over the business logic that deals with the policy management system.

Once the Common Insurance Service BF receives the requested results from the business logic layer it will construct the Policy Inq. Rs. response message and return it to the web service.

[image: image6.emf]ServiceAgentPolicyInqRqMsgFactory

Build

PolicyInqRq

CommonInsuranceInquiryClient

GetInsurancePolicyStatus

CommonInsuranceService

GetInsurancePolicyStatus

CommonInsuranceServiceBF

GetInsurancePolicyStatus()

Policy

CommonInsuranceServiceBL

GetPolicy

GetInsurancePolicyStatus()

PolicyInqRs

PolicyInqRs

PolicyInqRs

MapFromAcord()

Service Agent for Use Case 2

Use Case 2 is our quoting scenario. The web service method Get Personal Package Policy Quote is looking for a per’s Pkg Policy Quote Inq Rq request message as a parameter. The Service Agent will use the ASF framework to construct the message based for the most part from the prior Policy Inq. Rs. The idea behind building this request message is to show how the policy would look after the endorsements is in effect. Therefore we need to add the new items for the quote including the daughter as a new driver and the Impala as the new vehicle. Care must be taken to insure that required elements are included the message structure in order for the message to be in compliance with the schema. We used unit testing to validate generated test messages are following the ACORD schema. The following shows what this message could look like:
 <PersPkgPolicyQuoteInqRq xmlns="http://www.ACORD.org/standards/PC_Surety/ACORD1.11.0/xml/">

 <RqUID>{B69361BA-0325-4ce3-A794-994BD37AC0AE}</RqUID>

 <TransactionRequestDt>1999-05-31T13:20:00.000-05:00</TransactionRequestDt>

 <TransactionEffectiveDt>1999-05-31T13:20:00.000-05:00</TransactionEffectiveDt>

 <CurCd/>

 <InsuredOrPrincipal id="Insured">

 . . .Insured information here
 </InsuredOrPrincipal>

 <PersPolicy>

 <LOBCd>PPKGE</LOBCd>

 . . .Policy information here
 <DriverVeh DriverRef="Daughter" VehicleRef="Impala">

 <UsePct>100</ UsePct > <!—This is the driver assignment(
 </DriverVeh>

 . . . Other Driver assignments would follow
 </PersPolicy>

 <Location id=””>

 <ItemIdInfo />

 <Addr />

 . . .With ids that reference dwellings and garaging locations

 </Location>

 <Dwell LocationRef=” ids that reference back to Locations”>

 . . .Homes here

 </Dwell>

 <PersDriver id="Daughter">

 <GeneralPartyInfo/>

 . . .Drivers here including daughter added as a new driver
 </PersDriver>

 <PersVeh>

 . . .Vehicles here including Impala as a new vwhicle
 </PersVeh>

 <PropertySchedule>

 <IsSummaryInd/>

 <ItemDefinition/>

 . . .Scheduled Property here

 </PropertySchedule>

 </PersPkgPolicyQuoteInqRq>

The Pers Pkg Policy Quote Inq Rq message is broken into list of repeating aggregates. They include DriverVeh for all of the vehicle assignments. Location is used to identify all of the geographic locations for dwellings covered in the homeowner’s portion of the package policy and garaging locations for vehicles. The repeating Dwell aggregate is for each home covered on the policy. For this request message, the per’s Driver would contain all of the previous drivers on the auto portion of the policy as well as the daughter that is being added. The Pers Veh is repeated for each vehicle and the new Impala. Finally the Property Schedule would only be added if there was any scheduled property covered on the homeowner’s portion of the package policy.

[image: image7.emf]ServiceAgentPolicyInqRqMsgFactory

Build

PersPkgPolicyQuoteInqRq

PersonalPackageServiceClient

GetPersonalPackagePolicyQuote()

PersonalPackageService

GetPersonalPackagePolicyQuote()

PersonalPackageServiceBF

GetInsurancePolicyStatus()

double

PersonalPackageServiceBL

GetPremiumDifference

BuildResponseMsg

PersPkgPolicyQuoteInqRs

PersPkgPolicyQuoteInqRs

PersPkgPolicyQuoteInqRs

MapFromAcord

Mapping our business entities to the ACORD aggregates can be accomplish in one of two ways. The first is to use ASF to map each property of the business aggregates to the ACORD properties with source code. This is the most straight forward method but can involve some impact on performance. Not only does each assignment get executed, but within the properties each of the ACORD aggregates is checked for null and will be instantiated if it is null. The other method is to construct the XML from an XSLT file. Given the complexity of the ACORD schema, generation of an XSL file from scratch will be quite a challenge. One can use the BizTalk Mapper to generate an XSLT file to construct the request message and to map the response message back to the business entity. The BizTalk Mapper is a drag and drop tool that will generate the XSLT file from within Visual Studio. The Mapper offers functoids for more complex mapping logic that will generate script code within the XSLT file.
[image: image8.png]
We have found that despite having to deserialize to XML, run the transformation and then serialize back into the object model was still more efficient than using straight source code.
Mapping our business entities to the ACORD aggregates

The first step is to add the project which contained our Business Entities to the Solution. These are the classes that will be bound to our UI controls. In next step, we will need to determine which ACORD aggregates match to our business entities (see below).

	Business Entities
	ACORD Aggregate

	Vehicle, Recreational Vehicle
	Pers Veh_Type

	Driver
	PersDriver_Type

	Dwelling
	Dwell_Type

	Location
	Location_Type

	Driver Attributes
	Accident Violations_Type

	Loss Payee, Mortgagee
	Additional Interest_Type

	Coverage
	Coverage_Type

	Scheduled Property Item
	Property Schedule_Type

	Watercraft
	Watercraft_Type

	Watercraft Accessory
	Watercraft Accessory_Type

	Homeowners Policy
	Home Policy_Type

	Pers Auto Policy
	Pers Auto Policy_Type

The approach we took for mapping was to add two methods to each of our business entities. One method was Map to Acord and the other Map from Acord. The Business Entity project will need a reference to the Contracts project. The mapping logic may look like the following.
public void MapFromAcord(PersDriver_Type persDrvr)

{

 if (persDrvr.DriverInfo.PersonInfo.GenderCd.Value == "Male")

 {

 this.Gender = Gender.Male;

 }

 else

 {

 this.Gender = Gender.Female;

 }

 this.FirstName = persDrvr.GeneralPartyInfo.NameInfo[0].

 PersonName.GivenName.Value;

 if (!string.IsNullOrEmpty(

 persDrvr.GeneralPartyInfo.NameInfo[0].

 PersonName.OtherGivenName[0].Value))

 {

 this.MiddleName = persDrvr.GeneralPartyInfo.NameInfo[0].

 PersonName.OtherGivenName[0].Value;

 }

 this.LastName = persDrvr.GeneralPartyInfo.NameInfo[0].

 PersonName.Surname.Value;

 this.MaritalStatus = acordToMaritalStatus(

 persDrvr.DriverInfo.PersonInfo.MaritalStatusCd);

 this.RelationshipToInsured = acordToRelationshipToInsured(

 persDrvr.PersDriverInfo.DriverRelationshipToApplicantCd);

 this.DateOfBirth = persDrvr.DriverInfo.PersonInfo.BirthDt.Value;
 this.LicenseNum = persDrvr.DriverInfo.License[0].LicensePermitNumber.Value;

 this.LicenseState = persDrvr.DriverInfo.License[0].StateProvCd.Value;

}

 The final step is to write the logic that will build the request message. This logic will build the shell of the request message and then traverse our Policy object model iterating through the list of entities and calling the Map to Acord methods to add tot eh request message.
Using the BizTalk Mapper to build the message

[Note: At the time this paper was written, the BizTalk Mapper was only supported in Visual Studio 2005]. First you will need the developer tool for BizTalk. Once they have been installed, open Visual Studio and add a new project. Select BizTalk Projects and the Empty BizTalk Server Project.
[image: image9.png]
Before we can add a mapper, we need to have both from and to schema files. While the ACORD schema file is provide for you with ASF, a schema for our Business Entity must be generated. The easiest approach we took to do this was to create a Policy instance with data and serialize it to Xml. Then use the Xsd.exe tool to infer an Xsd schema from the Xml file. The resulting Xsd may need some further tweaking for areas where data was not available to instantiate. At this point, you can add the schema to you project and assign namespaces to them in the property pane..
The next step is to add a new Biztalk mapper by using add new item from the project.

[image: image10.png]
The new map will open and schemas need to be assigned. One map needs to be created for “from an ACORD aggregate” and one for “to an ACORD Aggregate”.

[image: image11.png]
Once the mapping is completed, in order to generate the Xslt file from the map, right click on the btm file from the solution explorer and validate the map. In the output area, there will be a link to the XSLT file that the mapper has generated. Save this XSLT file back into your project. Where we described performing the mapping above in source code, we would substitute the serialization to Xml, then using Xsl Compiled Transform to transform the file to another Xml file and then to desterilize it back into the object model.
Service Provider for Use Case 2

The service provider for our quoting scenario would contain a class in the Business Façade Personal Package Service BF which would implement IPersonal Package Submission interface. The Get Personal Package Policy Quote method (see below) would map from the request message to the parameters for the backend policy management system in order to obtain the premium difference. Once the premium is returned, the Service Provider would construct the Pers Pkg Policy Quote Inq Rs response message. Most of the response message can be constructed by copying from the request message. We put the premium difference in the Net Change Amt of the Policy Summary Info aggregate at the end of the response message.
 <PersPkgPolicyQuoteInqRs xmlns="http://www.ACORD.org/standards/PC_Surety/ACORD1.11.0/xml/">

 <RqUID>{B69361BA-0325-4ce3-A794-994BD37AC0AE}</RqUID>

 <TransactionResponseDt>1999-05-31T13:20:00.000-05:00</TransactionResponseDt>

 <MsgStatus>

 <MsgStatusCd>SuccessWithInfo</MsgStatusCd>

 </MsgStatus>

 <InsuredOrPrincipal id="Insured">

 . . .Copied from PersPkgPolicyQuoteInqRq request message
 </InsuredOrPrincipal>

 <PersPolicy>

 <LOBCd>PPKGE</LOBCd>

 . . . Copied from PersPkgPolicyQuoteInqRq request message
 </PersPolicy>

 <Location id=””>

 . . . Copied from PersPkgPolicyQuoteInqRq request message

 </Location>

 <Dwell>

 . . . Copied from PersPkgPolicyQuoteInqRq request message

 </Dwell>

 <PersDriver>

 . . . Copied from PersPkgPolicyQuoteInqRq request message

 </PersDriver>

 <PersVeh>

 . . . Copied from PersPkgPolicyQuoteInqRq request message

 </PersVeh>

 <PropertySchedule>

 . . . Copied from PersPkgPolicyQuoteInqRq request message

 </PropertySchedule>

 <PolicySummaryInfo>

 <NetChangeAmt>

 <Amt> Premium difference goes here </Amt>

 </NetChangeAmt>
 <PolicyStatusCd>QuotedNotBound</PolicyStatusCd>
 </PolicySummaryInfo>

 </PersPkgPolicyQuoteInqRs>

The source code in the Business Façade may look like the following:

public PersPkgPolicyQuoteInqRs GetPersonalPackagePolicyQuote(PersPkgPolicyQuoteInqRq request)

{

 PersPkgPolicyQuoteInqRs msg = new PersPkgPolicyQuoteInqRs();

 msg.RqUID = request.RqUID;

 msg.TransactionResponseDt.Value = System.DateTime.Today;

 msg.TransactionEffectiveDt.Value = System.DateTime.Today;

 msg.InsuredOrPrincipal = request.InsuredOrPrincipal;

 msg.Location = request.Location;

 msg.Dwell = request.Dwell;

 msg.PersDriver = request.PersDriver;

 msg.PersVeh = request.PersVeh;

 msg.PropertySchedule = request.PropertySchedule;

 try

 {

 Policy policy = new Policy();

 //Build Policy instance by mapping each Acord Aggregate

 // to the policy structure

 //This method will call all subsequest MapFromAcord methods until

 // everything has been mapped back into the policy

 policy.MapFromAcord(

 request.PersPolicy,

 request.Location,

 request.Dwell,

 request.PersDriver,

 request.PersVeh,

 request.PropertySchedule);

 //Create an instance of the Business Logic

 PersonalPackageServiceBL bl = new PersonalPackageServiceBL();

 decimal premiumDif = bl.GetPremiumDifference(policy);

 msg.PolicySummaryInfo.NetChangeAmt.Amt.Value = premiumDif;

 msg.MsgStatus.MsgStatusCd.Value = MessageStatusEnum.SuccessWithInfo;

 return msg;

 }

 catch (DataInputException dex)

 {

 msg.MsgStatus.MsgStatusCd.Value MessageStatusEnum.Rejected;

 msg.MsgStatus.MsgErrorCd.Value = MessageErrorEnum.DataError;

 msg.MsgStatus.MsgStatusDesc.Value = dex.Message;

 return msg;

 }

 catch (Exception ex)

 {

 //Let the Service pass the Fault message

 throw;

 };

}

The Business Logic layer contains the interface into the backend policy management system. The response message would pass back through the web service to the Service Agent. In our application, the CSR would be presented with a Message Box containing the premium difference.
Service Agent for Use Case 3

For the endorsement to be applied, we need to call the Modify Personal Package Policy method of our web service with a Pers Pkg Policy Mod Rq request message (see message below). This request message is not constructed the same as the quoting request. The Mod request uses the Mod Info aggregate to identify each of the endorsement actions. In our scenario, those actions are “Add daughter as a new driver”, “Add the Impala as a new vehicle”, “Add a garaging location for the Impala” and “Assign the daughter as the primary driver”. For each action, a separate Mod Info node is added to the request message. The Mod Info node has required Action Cd node that would be set to “A” for add, “D” for delete and “M” for modify. The corresponding aggregates will be added to the message to support the actions. In this scenario it is the detailed driver information for the daughter mapped into the per’s Driver aggregate. The Id Ref attribute of the Mod Info is used to tie the action with the underlying aggregate. In this first action the Id Ref is set to “d3” while the driver information for the daughter is in a per’s Driver node with an id of “d3”.
 <ModInfo IdRef="d3">

 <ActionCd>A</ActionCd>

 <ChangeDesc>Add Driver #3</ChangeDesc>

 </ModInfo>

. . .

 <PersDriver id="d3">

 <!-- Added Daughter Driver as Driver 3 Info -->

 </PersDriver>

Our next action is to add the new Impala in which we will map the vehicle information from our Vehicle business entity that we had bound to our UI into the Pers Veh aggregate in the Service Agent.
 <ModInfo IdRef="v3">

 <ActionCd>A</ActionCd>

 <ChangeDesc>Add Vehicle #3</ChangeDesc>

 </ModInfo>

. . .

 <PersVeh id="v3" LocationRef="L1">

 <!-- Associate new Impala vehicle 3 with Garaging Location 1 -->

 <!-- The new Impala vehicle detail would go here-->

 </PersVeh>

. . .

 <Location id="L1">

 <!-- Garaging Location Info -->

 </Location>

Since we require a garaging location, the Pers Veh aggregate has a Location Ref of “L1” that ties it back to the Location aggregate which contains the physical address of the garaging location. We tie the action to the aggregate with an id of “v3” since it will be the third vehicle on the policy. Next we add the driver assignment in which we pair the Driver Veh aggregate with the Mod Info actions with an id of “dv1”.
 <ModInfo IdRef="dv1">

 <ActionCd>A</ActionCd>

 <ChangeDesc>Driver #3: Add DriverVeh aggregate</ChangeDesc>

 </ModInfo>

. . .

 <DriverVeh id="dv1" DriverRef="d3" VehicleRef="v3">

 <UsePct>100</UsePct>

 </DriverVeh>

. . .

 <PersDriver id="d3">

 <!-- Added Daughter Driver as Driver 3 Info -->

 </PersDriver>

. . .

 <PersVeh id="v3" LocationRef="L1">

 <!-- Associate new Impala vehicle 3 with Garaging Location 1 -->

 <!-- The new Impala vehicle detail would go here-->

 </PersVeh>

The owner of the Impala wanted to utilize the same coverage as the rest of his vehicles. We will use the Coverage aggregate under the Pers Pkg Auto Line Business. The Pers Pkg Auto Line Business contains references back to the driver (with Driver Ref), vehicle (with Veh Ref) and driver assignment (with Driver Veh Ref) in order to tie all of the together. Therefore we add three more Mod Info blocks each tie these endorsements to the common coverage with an Id Ref of “Auto LOB” which will tie to the Pers Pkg Auto Line Business as well as add the new references.
<PersPkgPolicyModRq xmlns="http://www.ACORD.org/standards/PC_Surety/ACORD1.11.0/xml/">

 <ModInfo IdRef="d3">

 <ActionCd>A</ActionCd>

 <ChangeDesc>Add Driver #3</ChangeDesc>

 </ModInfo>

 <ModInfo IdRef="v3">

 <ActionCd>A</ActionCd>

 <ChangeDesc>Add Vehicle #3</ChangeDesc>

 </ModInfo>

 <ModInfo IdRef="dv1">

 <ActionCd>A</ActionCd>

 <ChangeDesc>Driver #3: Add DriverVeh aggregate</ChangeDesc>

 </ModInfo>

 <ModInfo IdRef="AutoLOB">

 <ActionCd>R</ActionCd>

 <RefName PreviousRefs="d3">DriverRefs</RefName>

 <ChangeDesc>Add Driver #3 ref to AutoLineBusiness</ChangeDesc>

 </ModInfo>
 <ModInfo IdRef="AutoLOB">

 <ActionCd>R</ActionCd>

 <RefName PreviousRefs="v3">VehRefs</RefName>

 <ChangeDesc>Add vehicle #3 ref to AutoLineBusiness</ChangeDesc>

 </ModInfo>

 <ModInfo IdRef="AutoLOB">

 <ActionCd>R</ActionCd>

 <RefName PreviousRefs="dv1">DriverVehRefs</RefName>

 <ChangeDesc>Add DriverVeh #3 ref to AutoLineBusiness</ChangeDesc>

 </ModInfo>

 <PersPolicy>

 <DriverVeh id="dv1" DriverRef="d3" VehicleRef="v3">

 <UsePct>100</UsePct>

 </DriverVeh>

 </PersPolicy>

 <Location id="L1">

 <!-- Garaging Location Info -->

 </Location>

 <PersDriver id="d3">

 <!-- Added Daughter Driver as Driver 3 Info -->

 </PersDriver>

 <PersVeh id="v3" LocationRef="L1">

 <!-- Associate new Impala vehicle 3 with Garaging Location 1 -->

 <!-- The new Impala vehicle detail would go here-->

 </PersVeh>

 <PersPkgAutoLineBusiness id="AutoLOB"

 DriverRefs="d3"

 VehRefs="v3"

 DriverVehRefs="dv1">

 <!--Add to same Coverage across all vehicles -->

 </PersPkgAutoLineBusiness>

</PersPkgPolicyModRq>
Once the request message has been constructed, the Modify Personal Package Policy method is invoked and the service will return a Pers Pkg Policy Mod Rs response if no system errors are encountered. As before the response will indicate if the endorsement was successful and will contain the premium difference in the Policy Summary Info.
Service Provider for Use Case 3
The formation of the Mod Info section of the request message will most likely depend on how the backend policy management system will process endorsements. The ACORD Mod Request messages provide for a great deal of flexibility for submitting endorsements. There are no rules as to the order or frequency of Mod List nodes in the message. ACORD does not provide any coding that identifies the type of endorsement that is being submitted. For example there is no ACORD code that says this is an “adds driver” endorsement; it all has to be interpreted. If we encounter a Mod List with an Action Cd of “A” and a Id Ref of “AX”, we will need to use XPath to find the matching “X1” id and look at what is attached to the “X1” if in order to determine what is being added. My point here is that the logic in the Service Agent that builds the Mod message needs to format the request message in such a way that the Service Provider can easily interpret what the endorsement is from the Mod List. One could leverage the Change Desc in the Mod List to point to the method in the backend policy management system. This could make it easier to interpret the endorsements but requires full control over the formation of the messages as well as interpretation. If your intention is isolate the building of the request message from interpreting the message perhaps to use other technologies to build the request messages such as InfoPath forms or other application in which you do not have control over how the request message is built, then much more complicated rule logic is needed to interpret the intention of the message.
The following source code would depict how the Modify Personal Package Policy in the business façade would interpret the request message and apply the endorsement.
public PersPkgPolicyModRs ModifyPersonalPackagePolicy(PersPkgPolicyModRq request)

{

 PersPkgPolicyModRs msg = new PersPkgPolicyModRs();

 msg.RqUID = request.RqUID;

 msg.TransactionResponseDt.Value = System.DateTime.Today;

 msg.TransactionEffectiveDt.Value = System.DateTime.Today;

 //Need to Serialize to Xml inorder to find nodes

 XmlDocument doc = SerializeRequestToXML(request);

 PersonalPackageServiceBL bl = new PersonalPackageServiceBL();

 try

 {

 //Iterae through each ModInfo and process Endorsement

 foreach (ModInfo modInfo in request.ModInfo)

 {

 string modInfoIdRef = modInfo.IdRef;

 //Find the aggregate that accompanies the ModInfo item

 XmlNode node = doc.SelectSingleNode("//*[@id='" + modInfoIdRef + "']");

 if (node != null)

 {

 //Interprete the Endorsement from the node type and Action Code

 switch (node.Name)

 {

 case "PersDriver":

 {

 //Deserialize the Xml Node back tot the object

 Driver driver = SerializeDriverFromNode(node);

 if (modInfo.ActionCd.Value == ActionEnum.A)

 {

 bl.AddDriver(driver);

 }

 break;

 }

 case "PersVeh":

 {

 Vehicle veh = SerializeVehicleFromNode(node);

 //Add, change or Delete

 if (modInfo.ActionCd.Value == ActionEnum.A)

 {

 bl.AddVehicle(veh);

 }

 //Handle Garaging Locations

 if (node.Attributes.Count > 1)

 {

 string locationRef = node.Attributes[1].Value;

 //Get the Location for the Garage

 XmlNode locNode = doc.SelectSingleNode("//*[@id='" + locationRef + "']");

Contoso.PersonalLinesServices.BusinessEntities.Location location = SerializeLocationFromNode(locNode);

 //Add, change or Delete

 if (modInfo.ActionCd.Value == ActionEnum.A)

 {

 bl.AddGaragingLocation(location,veh);

 }

 }

 break;

 }

 case "DriverVeh":

 {

 //Deserialize the Xml Node back tot the object

 XmlSerializer serializer = new XmlSerializer(typeof(DriverVeh));

 StringReader reader = new StringReader(node.OuterXml);

 DriverVeh driverVeh = serializer.Deserialize(reader) as DriverVeh;

 reader.Close();

 string driverRef = node.Attributes[1].Value;

 //Get the Driver assigned to the vehicle

 XmlNode drvrNode = doc.SelectSingleNode("//*[@id='" + driverRef + "']");

 Driver driver = SerializeDriverFromNode(drvrNode);

 string vehRef = node.Attributes[2].Value;

 //Get the Vehicle that is assigned

 XmlNode vehNode = doc.SelectSingleNode("//*[@id='" + vehRef + "']");

 Vehicle veh = SerializeVehicleFromNode(vehNode);

 if (modInfo.ActionCd.Value == ActionEnum.A)

 {

 bl.AssignDriver(driver,veh);

 }

 break;

 }

 /// Case . . .

 }

 }

 }

 return msg;

 }

 //We have a data error in which we need to provide back to the user

 catch (DataInputException dex)

 {

 msg.MsgStatus.MsgStatusCd.Value = MessageStatusEnum.Rejected;

 msg.MsgStatus.MsgErrorCd.Value = MessageErrorEnum.DataError;

 msg.MsgStatus.MsgStatusDesc.Value = dex.Message;

 return msg;

 }

 catch

 {

 throw;

 }

}

The following priovate methods will serialize and deserialize aggregates to either make it easier to find nodes or to pass as arguments to the backend policy management system.
private static XmlDocument SerializeRequestToXML(PersPkgPolicyModRq request)

{

 StringWriter writer = null;

 XmlDocument doc = new XmlDocument();

 try

 {

 XmlSerializer serializer = new XmlSerializer(typeof(PersPkgPolicyModRq));

 writer = new StringWriter();

 serializer.Serialize(writer, request);

 doc.LoadXml(writer.ToString());

 writer.Close();

 }

 catch

 {

 if (writer != null)

 {

 writer.Close();

 }

 }

 return doc;

}

private static Vehicle SerializeVehicleFromNode(XmlNode node)

{

 //Deserialize the Xml Node back tot the object

 XmlSerializer serializer = new XmlSerializer(typeof(PersVeh));

 StringReader reader = new StringReader(node.OuterXml);

 PersVeh persVeh = serializer.Deserialize(reader) as PersVeh;

 reader.Close();

 //Map from Acord to make the method call

 Vehicle veh = new Vehicle();

 veh.MapFromAcord(persVeh);

 return veh;

}
Conclusion

Our design required the use of a service to process the requests of a policy management system. This allowed us to offer the service to all applications that had a need for policy management. In this way our call center application uses the same service and the customer self-service portal and agency portal. It also allowed us to isolate the backend application from it users. Since the interface used ACORD messages, we could offer an interface that was application agnostic. If the replacement system was a vended solution, it would most likely support ACORD and would not require as significant an investment at integration with front-end applications that require policy management services.
The ACORD Service Factory allowed us to jump start the development of our service. It also allowed us to leverage WCF as a service provider. We were able to use WCF session state to hold open connections to the backend mainframe application. ASF also provided an architecture approach which leverages best practice including separation of service layers within the Service Providers and a Service Agent layer to handle message construction and mapping.
_1274680924.vsd
ServiceAgent

Sequence

PolicyInqRqMsgFactory

Build

PolicyInqRq

CommonInsuranceInquiryClient

GetInsurancePolicyStatus

CommonInsuranceService

GetInsurancePolicyStatus

CommonInsuranceServiceBF

GetInsurancePolicyStatus()

Policy

CommonInsuranceServiceBL

GetPolicy

GetInsurancePolicyStatus()

PolicyInqRs

PolicyInqRs

PolicyInqRs

MapFromAcord()

_1274680925.vsd
Sequence

ServiceAgent

Sequence

PolicyInqRqMsgFactory

Build

PersPkgPolicyQuoteInqRq

PersonalPackageServiceClient

GetPersonalPackagePolicyQuote()

PersonalPackageService

GetPersonalPackagePolicyQuote()

PersonalPackageServiceBF

GetInsurancePolicyStatus()

double

PersonalPackageServiceBL

GetPremiumDifference

BuildResponseMsg

PersPkgPolicyQuoteInqRs

PersPkgPolicyQuoteInqRs

PersPkgPolicyQuoteInqRs

MapFromAcord

_1274680923.vsd
Cluster

Drag the side handles to change the width of the text block.

Passes requests back and forth from the Business Façade and creates Fault Messages

Orchestrates which methods in the Business Logic to call. Maps to and from ACORD Messages

Contains all of the logic for calling into the Data Access

This layer has the logic to call the backend Policy Management System

Service Providers

Business Logic

Data Access Layer

WCF Web Service Layer

Service Layer

Business Facade

