
1

PRINT

CONTENTS

HIC 2010; 18: 1–5

Abstract.
Maintaining health information systems over time requires a considerable amount of effort and time. This is
especially marked in systems involving structured clinical data such as electronic medical records. Inevitably
most of software is then dictated by volatile healthcare concepts and processes. Literature indicates that
maintenance tasks alone may usually constitute 70-80% of the whole software cost. It has been suggested that
openEHR based systems will effectively tackle this by separating domain knowledge from software code. The
objective of this paper is to investigate whether it is easier to introduce changes to an openEHR based clinical
application. An endoscopy reporting application driven by openEHR archetypes has been implemented in
.Net/C#. It has the same functionality and appearance as the existing application which has been developed
using traditional methods. Afterwards a number of change requests have been implemented in both systems
while recording the development effort using ISO/IEC 9216 series standard software maintainability metrics.
This paper presents the implementation methodology and preliminary results of the larger evaluation study
employing formal software measurement techniques. On average, the openEHR based application took
approximately nine times less effort to implement the change requests. This is the first quantitative comparative
study in the literature and has the potential to affect how we develop health information systems in future.

Introduction
Modifications in software become inevitable after the product has been deployed which may include
corrections, improvements or adaptation to changes in environment, requirements and functional specifications.
Maintenance comprises activities needed to carry out these tasks and is a major part of the software lifecycle.
Software maintainability, on the other hand, is a software quality attribute which is defined as the capability
of the software product to be modified (ISO/IEC 9126-1: 2001).

ISO 9126 present a comprehensive quality model which comprises three distinct aspects of quality:
internal, external and in-use. Internal quality refers to the characteristics of software from an internal view
and is attributable to requirements, design and implementation artefacts such as code. External quality refers
to the characteristics from an external view when software is executed, which is typically measured and
evaluated while testing in a simulated environment. Quality in use is the user’s view of the quality of software.
This study evaluates maintainability as an external quality characteristic.

A typical software development project starts with the requirements collection phase where developers
interact with domain experts and users to identify and document them. Then comes the design phase where
the blueprint of software is laid out based on the elicited requirements. There is a handover in traditional
development methodologies where domain knowledge is extracted from the problem domain and then
transferred to the solution domain by means of formal models and programming constructs. Development then
continues with coding, testing, verification and validation, deployment followed by the maintenance phase.
The essential difficulty in maintenance arises from the fact that if requirements change or new requirements
are introduced then the whole development cycle has to be repeated again – from redesign to redeployment.
It is a well known fact that maintenance usually exceeds initial development costs (around 70-80% of total
cost) (Sommerville 2000).

Classic software development approaches, typically the Object Oriented formalism together with relational
databases, work well in domains where domain concepts are stable and that most of the requirements can be
elicited at the outset. However, healthcare is a “wicked” domain – that is the size and complexity of Medicine
negatively affects this process (Wicked Problem n.d.). Moreover, the rapidly changing body of knowledge
plus the non-deterministic nature of Medicine, that is the Art of Medicine, adds more to the problem. Not only
is the body of knowledge highly variable but also medical conduct changes from time to time and place to
place across different organisations and jurisdictions (Rector 1999; Beale 2005; Paech and Wetter 2008). In
a typical development project clinicians, without much idea about the technologic limitations or possibilities,
express their needs. IT professionals on the other hand, without much background in biomedical and clinical
sciences, try to comprehend these requirements. This has fundamentally two consequences: 1) Not all
requirements can be elicited in the first place or they may be wrong resulting from the cognitive limitations
of handover between healthcare and technical professionals, 2) Elicited requirements then frequently need
to be altered or more likely new ones come into play. Thus is it only natural to expect more effort and cost

18th Annual Health Informatics Conference, HIC 2010
D.P. Hansen, L.K. Schaper & D. Rowlands (Eds.)

© 2010 The authors and HISA Ltd. All rights reserved.

On the maintainability of openEHR based health
information systems – an evaluation study in

endoscopy
Koray Atalag, Hong Yul Yang, Jim Warren

Department of Computer Science, the University of Auckland, New Zealand

18th Annual Health Informatics Conference, HIC 2010

2

PRINT

CONTENTS

HIC 2010; 18: 1–5

associated with maintenance, especially in clinical applications. Solid evidence is scarce in literature but
Girosi et al. reports that most long term costs associated with electronic medical record (EMR) systems are
due to maintenance. This obviously creates a very large room for improvement and that tackling this will
certainly impact on how we will develop systems in future. This is the main motivation of this study.

Traditionally, both technical and domain knowledge expressed as software requirements are hard-coded
into the program code, database schema and user interfaces. While the former type of knowledge is mostly
static, the latter is highly volatile and often causes modifications in software. Thus it is a compelling idea to
separate domain knowledge from technical environment, embed in a formal model and then develop software
accordingly. This has been shown to improve software maintainability (Cao, Ramesh and Rossi 2009).

openEHR has developed a methodology which here we will denote “the Multi-level Modelling and
Development Methodology (MLM/D)”. This can potentially minimise, if not totally eliminate, the handover
paradigm (hence dealing with incomplete or wrong requirements). It does this by separating domain concepts
from software code using domain specific models called Archetypes and a set of stable technical reference
models (RM). Archetypes formally constrain RM entities to build clinically valid domain concepts such as
blood pressure measurement. In the runtime software is driven by these models for dynamic graphical user
interface (GUI) creation and data validation (Beale 2002). As a result altering software after deployment
mostly involves remodelling done by domain experts.

A clinical reporting and analysis application in the field of gastrointestinal endoscopy has been formerly
developed by the primary author for use in a real clinical setting circa 1999. Most of the functional
specifications were defined by the Minimal Standard Terminology for Digestive Endoscopy (MST) which
formally prescribes the structure, well defined terms and rich semantics in this domain (Delvaux 2000).
During development, this domain knowledge has been embedded into the software. Object-Procedural
programming has been employed using Microsoft Visual Basic 6 together with Microsoft Access for data
modelling and persistence. After deployment it became apparent that modifying the application to meet new
requirements was quite cumbersome. This has been the starting point of the quest for finding a better means to
build future-proof clinical applications. In an earlier study this application has served as a research prototype
(GST) where the objective was to validate that the openEHR MLM/D can faithfully represent the problem
domain (Atalag 2009).

The aim of this paper is to present the initial results of the larger evaluation study, and also to unravel a
generic implementation path for clinical applications using openEHR and .Net/C#.

Figure 1. GST and GastrOS GUI for MST Findings for Colon

18th Annual Health Informatics Conference, HIC 2010

3

PRINT

CONTENTS

HIC 2010; 18: 1–5

Methodology
The study comprises: 1) Defining software requirements for GastrOS with reference to GST by means of
preparing a formal Software Requirements Specification document (SRS); 2) Archetype modelling based
on MST; 3) Design, implementation and testing of GastrOS; 4) Introducing change requests (CR) and
implementing them; 5)Measuring maintainability using external metrics, and evaluation.

The open source openEHR Archetype Editor was used to model archetypes based on MST. Then an
openEHR template representing the full endoscopy report was modelled using Ocean Template Designer.
This is the sink of all domain knowledge bringing together all MST archetypes. Then three operational
templates were automatically generated representing each examination type. To explicitly define the scope
and functionality of GastrOS the SRS document was prepared. We have excluded parts such as patient
administration, detailed search and reporting.

GastrOS consists of two distinct sub-systems: 1) openEHR based Structured Data Entry (SDE)
Component which provides all data entry and validation functionality driven by underlying MST Archetypes;
and 2) a Wrapper Application to provide a minimum level of functionality to drive the SDE component
(performing functions like patient and visit data entry and sign-off/reporting). Both components are designated
to be free and open source.

The SDE component (hereafter referred to simply as ‘SDE’) is a programming library that takes in an
operational template in XML form as input and dynamically constructs an appropriate graphical data entry
form. It has the capability to store and validate user-entered data. Thus if a clinician wanted modifications in
the form, he or she needs only to change the model and then SDE would automatically generate an updated
form that reflects these changes. This component is also targeted to be reusable across clinical domains – in
applications that require hierarchical data entry and validation.

To make this work, SDE first parses the input operational template into a tree-like data structure, called
archetype objects. Each archetype object acts as a blueprint for a specific part of the data to be entered and
stored, as well as the GUI widget to represent the data (Figure 1). It can be as atomic as a single textual entry
or as complex as an entire group of findings. SDE defines a set of mapping rules to determine what kind of
GUI widget to create for what kinds of data elements. For example it would create a text field for a textual
entry (i.e. name of a drug), a drop-down list for a restricted range of values (i.e. organ types), or a panel for
a cluster value that further contains sub-values (i.e. a diagnosis entry). These rules are fairly generic so as
to accommodate as wide a range of usage domains as possible. The consequence of this is that without any
external customisation, the aesthetics and visual behaviour of the GUI generated by SDE would be uniform
across different usage domains. For this reason we introduced what we call ‘GUI directives’, which allows
the user to encode additional instructions to customise the appearance and behaviour of the generated GUI
widgets. An example of a simple directive would be to put a border around a panel representing a specific
cluster; a complex example would be adding the option of dynamically showing and hiding a group of values.
Because the Archetypes are not designed to hold presentation related information, we have chosen to embed
the GUI directives as template annotations to feed into the GUI generator. Interestingly, all the directives we
used turned out to be generic enough to be applicable to any other clinical domain.

The change requests used in this study for evaluation comprise real cases which caused GST to be modified.
These are mostly due to errors detected in MST and local extensions (Table 1). Each CR has been assigned
as a maintenance task to both GST and GastrOS. Then the primary author performed necessary programming
and testing tasks on GST who is the original developer, and similarly the second author performed these tasks
on GastrOS while the primary author, who is also a domain expert, made necessary changes in the models.

The following ISO 9126 maintainability external quality metrics related with changeability have been
selected:

Change cycle efficiency (CCE) is used to answer the question: Can the user’s problem be solved to his
satisfaction within an acceptable time scale? It is computed by measuring the time from initial request to
resolution of the problem.

Modification complexity (MC) is used to answer the question: Can the maintainer easily change the
software to resolve problem? It gives a ratio that is computed by sum of time spent on each change per size
of software change divided by total number of changes.

The measurements were done while modifications were being made to both applications. A Subversion
repository (SVN) and an issue tracking system (Atlassian Jira) have been setup to document and help with
data collection.

18th Annual Health Informatics Conference, HIC 2010

4

PRINT

CONTENTS

HIC 2010; 18: 1–5

Table 1. The change requests (CR) and measurement results used in the study

No Type Description
Time (min) Changed LOC

GST GastrOS GST GastrOS

1 Fix MST: Anatomic site (colon): add site anal canal 3 10 1 83

2 Ext MST: Findings (stomach): add term rapid urease test | add attribute result |
add attribute values positive and negative 30 5 45 37

3 Fix MST: Findings (stomach and colon>protruding lesions>tumor/mass): add
attribute: Diameter | change attribute value diameter in mm. è in mm. 50 13 92 2

4 Ext MST: Findings (colon>protruding lesions>hemorrhoids): add new attribute
type and add attribute values Internal and External 30 7 46 23

5 Fix MST: Therapeutic procedures (Sphincterotomy>Precut): add attribute value No 6 5 1 4

6 Ext MST: Therapeutic procedures (Thermal therapy>Device): add attribute value
Heat-probe 11 5 1 4

7 Ext MST: Diagnoses (stomach): add main diagnoses Antral superficial,
Pangastritis, Atrophic, Alkaline reflux and Somatitis 6 8 4 20

8 Ext MST: Diagnoses: Add free text description for each organ 50 10 60 20

9 New Other: Split lower gastrointestinal examination type into colonoscopy and
rectoscopy. Bind both types to Findings for colon 30 10 6 2

10 New Other: Localise MST Findings for Stomach form to English 1116 70 722 499

TOTAL 1332 143 978 694

Table 2. Comparison of changeability metric values

Metric GST GastrOS

CCE 133.20 14.30

MC 0.14 0.02

Results
The CRs used in the study are presented in Table 1, along with the measurements for the elapsed time (in
minutes) to complete each CR as well as the size of change – in lines of code (LOC) for both software source
code and archetype model expressed as Archetype Definition Language statements. The ‘Type’ column
depicts whether this caused a correction or extension of clinical concepts described in MST or addition of
a new feature. The short-hand notations in the ‘Description’ column point out to their location in MST. The
CCE and MC metric values computed from the time and change measures are shown in Table 2.

GastrOS showed lower values for both CCE and MC than GST – by factors of approximately 9 and 7
respectively, the former indicating 9 times less effort overall to modify GastrOS, and the latter indicating the
changes were on average 7 times less complex.

Discussion
GastrOS is the first openEHR implementation of a desktop clinical information system using .Net platform
and C#. Having a clinically validated clinical application at our disposal was the distinguishing feature of
this study which gave us the capability to design a comparative study. The paper presents the implementation
methodology only superficially due to space constraints. All artefacts and source code are available on
GastrOS Project Website (http://gastros.sourceforge.net).

The metrics used in the study are very simple. It is worth underlining that it is the external quality
characteristics of software which determine the final maintenance effort, and that these metrics are far more
accurate and have a higher predictive power than internal metrics. We also believe these results are potentially
generalisable to clinical applications because they don’t rely on internal attributes.

Better maintainability of the openEHR based application can be attributed to a number of factors: first the
CRs were mostly related with the domain knowledge. This confirms our prior assumption about the source
of changing requirements. Second, much less handover was needed between the clinical and technical roles
due to the clear separation model vs. software. Third the modelling formalism itself was quite intuitive and
that the high level graphical modelling tools proved to be very efficient when making necessary changes.
Moreover it is possible to ensure backward compatibility of data using openEHR as it provides a semantically
coherent specialisation mechanism.

18th Annual Health Informatics Conference, HIC 2010

5

PRINT

CONTENTS

HIC 2010; 18: 1–5

We have chosen to exclude search and reporting parts due to resource constraints. In fact we believe that
it is these aspects of the software that openEHR would have the highest impact on maintainability because
a powerful querying mechanism is also provided. The closest study where formal software engineering
techniques have been employed is the study by Arisholm et al. (2001). They have evaluated changeability
of two different programming approaches by writing software with same functionality (coffee machine). A
full-blown clinical application using real-life CRs has been implemented in this study. These results, when
supported by further work and other independent studies, may have a large impact on software cost and
schedule estimation in health IT. Work is still underway to expand and validate these preliminary results
within the context of the larger evaluation study where we are investigating how internal quality reflects on
external quality and the cause of better maintainability using openEHR.

Narrowing the scope to clinical aspects was a limitation. However this should not be all too disturbing
revisiting the fact that the source of difficulties is the volatility of domain concepts and not administrative
aspects. It is noteworthy to point out that the primary author has performed maintenance tasks in both
systems. These are indeed two distinct roles and neither of the authors had technical experience on the other
application. So any bias is unlikely to have propagated to the maintenance tasks. It can then be argued that
parameterising software can have equal effects on maintainability. However this type of approach might
inevitably be too application specific and cannot be reused in other domains due to the aforementioned nature
of the problem domain.

Conclusion
We have discussed how the maintainability of health information systems has a major impact on their cost
and argued that this is mainly due to the essential difficulties in healthcare domain. Constantly changing
knowledge translates into changing requirements. In order to evaluate the implications of openEHR formalism
on software maintenance an openEHR based endoscopy reporting application has been developed using
.Net/C#. It is based on the same requirements of an existing application developed with a traditional approach.
Then the maintainability of both systems has been assessed using standard metrics. Our results indicate that
the openEHR based application on average took nine times less effort, thereby making it significantly more
maintainable.

Acknowledgements
This work was supported by a research grant from the University of Auckland (Project No: 3624469/9843).
Special thanks to Dr. Heather Leslie and Dr. Louis Korman for their help during modelling. We also
acknowledge Dr. Ewan Tempero for providing us with rigour in software engineering aspects. Our deepest
gratitude goes to the Bedogni family who founded the Clinton Bedogni Fellowship in Open Systems which
enabled this research. Training, support and C# openEHR Reference Model library have been provided by
Ocean Informatics Pty. Ltd.

References
Arisholm E, Sjøberg DIK, Jørgensen M. 2001. Assessing the Changeability of two Object-Oriented Design Alternatives--a Controlled
Experiment. Empirical Software Engineering; 6(3):231-277.
Atalag K. 2009. Archetype Based Domain Modeling for Health Information Systems
GastrOS: Case Study on Digestive Endoscopy and Validation of the Minimal Standard Terminology (MST 2). VDM Verlag. http://
www.amazon.com/exec/obidos/ASIN/3639134168/ejelta5-20.
Beale T. 2002. Archetypes: Constraint-based domain models for future-proof information systems. In Eleventh OOPSLA Workshop on
Behavioral Semantics: Serving the Customer, 16-32. Seattle, Washington, USA: Northeastern University.
Beale T. 2005. The Health Record: why is it so hard? In IMIA Yearbook of Medical Informatics 2005: Ubiquitous Health Care Systems,
eds. Haux R and Kulikowski C, 301-304. Stuttgart: Schattauer.
Cao L, Ramesh B and Matti R. 2009. Are Domain-Specific Models Easier to Maintain Than UML Models? IEEE Softw. 26, no. 4:
19-21.
Delvaux, M. 2000. Minimal standard terminology in digestive endoscopy. Endoscopy , 32(2), 162-88.
Girosi F, Meili R and Scoville R. 2005. Extrapolating Evidence of Health Information Technology Savings and Costs. RAND
Corporation.
ISO/IEC 9126-1: 2001. Software engineering – Product quality – Part 1: Quality model. International Standard. Software engineering
– Product quality. Geneva, Switzerland: International Organization for Standardization.
Paech B and Wetter T. 2008. Rational quality requirements for medical software. In Proceedings of the 30th international conference
on Software engineering, 633–638.
Rector A L. 1999. Clinical terminology: why is it so hard? Methods of Information in Medicine 38, no. 4-5 (December): 239-252.
doi:10.1267/METH99040239.
Sommerville I. 2000. Software Engineering. 6th ed. Addison Wesley.
Wicked Problem (n.d.). Retrieved April 29, 2010, from Wikipedia: http://en.wikipedia.org/wiki/Wicked_problem

	Button19:
	Button20:
	Button21:
	Button22:
	Button23:
	Button24:
	Button27:
	Button28:
	Button222:
	Button223:

